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Abstract

Elliptic Curves, eta-quotients, and Weierstrass mock modular forms

By Amanda Susan Clemm

The relationship between elliptic curves and modular forms informs many modern

mathematical discussions, including the solution of Fermat's Last Theorem and the

Birch and Swinnerton-Dyer Conjecture. In this thesis we explore properties of elliptic

curves, a particular family of modular forms called eta-quotients and the relation-

ships between them. We begin by discussing elliptic curves, speci�cally considering

the question of which quadratic �elds have elliptic curves with everywhere good re-

duction. By revisiting work of Setzer, we expand on congruence conditions that

determine the real and imaginary quadratic �elds with elliptic curves of everywhere

good reduction and rational j-invariant. Using this, we determine the density of such

real and imaginary �elds. In the next chapter, we begin investigating the properties

of eta-quotients and use this theory to prove a conjecture of Han related to the vanish-

ing of coe�cients of certain combinatorial functions. We prove the original conjecture

that relates the vanishing of the hook lengths of partitions and the number of 3-core

partitions to the coe�cients of a third series by proving a general theorem about this

phenomenon. Lastly, we will see how these eta-quotients relate to the Weierstrass

mock modular forms associated with certain elliptic curves. Alfes, Gri�n, Ono, and

Rolen have shown that the harmonic Maass forms arising fromWeierstrass ζ-functions

associated to modular elliptic curves �encode� the vanishing and nonvanishing for cen-

tral values and derivatives of twisted Hasse-Weil L-functions for elliptic curves. We

construct a canonical harmonic Maass form for the �ve curves proven by Martin and

Ono to have weight 2 newforms with complex multiplication that are eta-quotients.

The holomorphic part of this harmonic Maass form is referred to as the Weierstrass

mock modular form. We prove that the derivative of the Weierstrass mock modular

form for these �ve curves is itself an eta-quotient or a twist of one.
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Chapter 1

Introduction

The relationship between elliptic curves and modular forms informs many modern

mathematical discussions, including the solution of Fermat's Last Theorem and the

Birch and Swinnerton-Dyer Conjecture. In this thesis we explore properties of elliptic

curves, a particular family of modular forms called eta-quotients, and the relation-

ships between them. We begin by discussing elliptic curves, speci�cally considering

the question of which quadratic �elds have elliptic curves with everywhere good re-

duction. By revisiting work of Setzer, we expand on congruence conditions that de-

termine the real and imaginary quadratic �elds over which there exists elliptic curves

of everywhere good reduction and rational j-invariant. Using this, we determine the

density of such real and imaginary �elds. In the next chapter, we begin investigating

the properties of eta-quotients and use this theory to prove a conjecture of Han re-

lated to the vanishing of coe�cients of certain combinatorial functions. We prove the

original conjecture that relates the vanishing of the hook lengths of partitions and the

number of 3-core partitions to the coe�cients of a third series by proving a general

theorem about this phenomenon. Lastly, we will see how these eta-quotients relate

to the Weierstrass mock modular forms associated with certain elliptic curves. Alfes,

Gri�n, Ono, and Rolen have shown that the harmonic Maass forms arising from



2

Weierstrass ζ-functions associated to modular elliptic curves �encode� the vanishing

and nonvanishing for central values and derivatives of twisted Hasse-Weil L-functions

for elliptic curves. We construct a canonical harmonic Maass form for the �ve isogeny

classes of elliptic curves proven by Martin and Ono to have weight 2 newforms with

complex multiplication that are eta-quotients. The holomorphic part of this harmonic

Maass form is referred to as the Weierstrass mock modular form. We prove that the

derivative of the Weierstrass mock modular form for these �ve curves is itself an

eta-quotient or a twist of one.

1.1 Elliptic curves with everywhere good reduction

(Joint work with S. Trebat-Leder)

An elliptic curve E over a �eld K is a smooth projective curve of genus 1 (de�ned

over K) with a distinguished (K-rational) point.

Up to isomorphism, every elliptic curve over K can be described using the general

Weierstrass equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (1.1)

This de�nes a model for a smooth (non-singular) projective genus 1 curve over

K with the rational point (0 : 1 : 0). We can take this model, reduce its coe�cients

modulo some prime and obtain another (possibly singular) curve Ẽ. If Ẽ is non-

singular, we say E has good reduction at p. We say that an elliptic curve E/K has

everywhere good reduction, or EGR(K), if E has good reduction at every prime. We

say that an elliptic curve E/K has EGRQ(K) if it additionally has Q−rational j-

invariant. Similarly, we say a number �eld has EGR if there exists a EGR(K) elliptic

curve and a number �eld has EGRQ if there exists a EGRQ(K) elliptic curve.
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It is a well-known result that over Q there are no elliptic curves E with everywhere

good reduction. However, the same is not true over general number �elds. For

example, if K = Q(
√

29) where a = 5+
√

29
2

, the elliptic curve

E : y2 + xy + a2y = x3

has everywhere good reduction over K. This leads to the natural question: over

which number �elds do there exist elliptic curves with everywhere good reduction?

This question has often been approached by studying E/K with everywhere

good reduction which satisfy additional properties, such as those which have a K-

rational torsion point or admit a global minimal model. For many real and imaginary

quadratic �eldsK of small discriminant, explicit examples of elliptic curves E/K with

everywhere good reduction can be found in the literature, such as [Kid99] and [Ish86].

There are also many known examples of such �elds for which there do not exist any

elliptic curves E/K with everywhere good reduction; see [Kid99], [KK97], [Kag00]

for example. In Chapter 3 we will be considering the following question: if there

are in�nitely many real (respectively imaginary) quadratic �elds K with EGR, does

there exist a positive proportion of K with EGR? We obtain our result by revisiting

a consequence of Setzer that shows there are in�nitely many quadratic �elds with

EGRQ. Letting R(X) be the number of real quadratic number �elds K with discrim-

inant at most X for which there exists an elliptic curve E/K with EGRQ, we prove

the following.

Theorem 1.1.1. With R(X) as above, we have that

R(X)� X√
log(X)

.

If I(X) is the number of imaginary quadratic number �elds K with absolute

discriminant at most X for which there exists an elliptic curve E/K with EGRQ, we
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also obtain the result below.

Theorem 1.1.2. With I(X) as above, we have that

I(X)� X√
log(X)

.

To prove Theorem 1.1.1 and Theorem 1.1.2, we �rst show that all real (resp. imagi-

nary) quadratic �elds of a certain form have EGRQ, and then count these �elds. Using

this approach we were also able to determine nonexistence of EGRQ quadratic �elds.

Theorem 1.1.3. Let p ≡ 3 (mod 8) be prime.

1. Let K = Q(
√
p). Then there are no E/K with EGRQ.

2. let K = Q(
√
−p). Then there are no E/K with EGRQ.

Remark. While we have only looked at curves with rational j-invariant, Noam Elkies'

computations [Elk] suggest that very few E/K with EGR have j(E) 6∈ Q and unit

discriminant. Therefore Theorem 1.1.3, which to the best of our knowledge has not

previously appeared in the literature, suggests that most �elds of the form K =

Q(
√
±p) for primes p ≡ 3 (mod 8) are not EGR. This is consistent with Elkies' data.

Remark. In [Kag00], Kagawa showed that if p is a prime number such that p ≡ 3(4)

and p 6= 3, 11, then there are no elliptic curves with EGR over K = Q(
√

3p) whose

discriminant is a cube in K. Since all EGR(K) curves have cubic discriminant as

shown in Setzer [Set81], this gives a result similar to Theorem 1.1.3.

1.2 3-cores and modular forms

In their study of supersymmetric gauge theory, Nekrasov and Okounkov discovered

a striking in�nite product identity [NO06]. This surprising theorem relates the sum

over products of partition hook lengths to the powers of Euler products and has been
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generalized in many ways to give expressions for many in�nite product q-series. The

original identity is given by

Fz(x) :=
∑
λ

x|λ|
∏

h∈H(λ)

(
1− z

h2

)
=
∞∏
n=1

(1− xn)z−1,

where the sum is over integer partitions, |λ| is the integer partitioned by λ, and H(λ)

denotes the multiset of classical hook lengths associated to a partition λ.

In Chapter 4, we will describe other specializations of the Nekrasov-Okounkov

formula. The connection to eta-quotients arises from the work of Han and Ono

in [HO11]. In earlier work [Han10], Han conjectured a relation between numbers a(n)

that are given in terms of hook lengths of partitions, with numbers b(n) from the

generating function for the t-core partitions of n. This generating function is given

by the following formula,

Ct(x) =
∞∑
n=0

b(n)xn :=
∞∏
n=1

(1− xtn)t

1− xn
.

Speci�cally, in [Han09], Han conjectured, based on numerical evidence, that the

non-zero coe�cients of F9(x) and C3(x) are supported on the same terms. These

coe�cients have the following generating functions:

C3(x) =
∞∑
n=0

b(n)xn :=
∞∏
n=1

(1− x3n)3

1− xn
,

F9(x) =
∞∑
n=0

a(n)xn :=
∞∏
n=1

(1− xn)8.

Assuming the notation above, Han conjectured a(n) = 0 if and only if b(n) = 0.

This conjecture is proved in a joint paper with Ono, [HO11]. Han and Ono

normalized the two functions and showed both were eta-quotients. Using properties

of these particular modular forms, they proved the original conjecture.
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Recently Han discovered another series that appears to be supported on the same

terms as C3(x) and F9(x). This series is given by,

C(x) =
∞∑
n=0

c(n)xn :=
∞∏
n=1

(1− xn)2(1− x3n)2.

Based on numerical evidence, Han conjectured a(n) = 0 if and only if b(n) = 0 if

and only if c(n) = 0.

Here we prove the following general theorem that produces in�nitely many modu-

lar forms, including F9(x) and C(x), that are supported precisely on the same terms

as C3(x).

It is convenient to normalize C3(x) as shown below:

B(z) =
η(9z)3

η(3z)
=
∞∑
n=1

b∗(n)qn :=
∞∑
n=0

b(n)q3n+1.

Theorem 1.2.1. Suppose that f(z) =
∞∑
n=1

A(n)qn is an even weight newform with

trivial Nebentypus that has complex multiplication by Q(
√
−3) and a level of the form

3s, where s ≥ 2. Then the coe�cients A(n) = 0 if and only if b(n) = 0. More

precisely, A(n) = b∗(n) = 0 for those non-negative integers n for which ordp(n) is odd

for some prime p ≡ 2 (mod 3).

Remark. Here we let q := e2πiz and
∞∑
n=1

A(n)qn is the usual Fourier expansion at

in�nity.

Consider the normalized functions of F9(x) and C(x) given by:

A(z) =
∞∑
n=1

a∗(n)qn :=
∞∑
n=0

a(n)q3n+1,

C(z) =
∞∑
n=1

c∗(n)qn :=
∞∑
n=0

c(n)q3n+1

Remark. Theorem 1.2.1 implies the original work of Han and Ono. As explained
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in [HO11], A(z) is a weight 4 newform with complex multiplication by Q(
√
−3) with

level 9. Theorem 1.2.1 also implies Han's new conjecture because C(z) is the weight

2 complex multiplication form for the elliptic curve with complex multiplication by

Q(
√
−3) given by y2 + y = x3 − 7 with level 33 = 27 [MO97].

Remark. It turns out that more is true about the relationship between the two series

A(z) and C(z). If p ≡ 1 (mod 3) is prime, then we have that c∗(p) divides a∗(p).

To prove Theorem 1.2.1, we make use of the known description of C3(x), the

generating function for the 3-core partition function, and then generalize the work

in [HO11] regarding F9(x) to extend to this situation.

1.3 Weierstrass mock modular forms and eta-quotients

In the 1980s, Waldspurger [Wal81], and Kohnen and Zagier [Koh82, Koh85, KZ81]

used the Shimura correspondence to relate the square roots of central values of

quadratic twists of modular L-functions to certain coe�cients of 1/2-integral weight

cusp forms. When the weight of these 1/2-integral weight cusp forms is 3/2, Gross,

Zagier and Kohnen [GKZ87,GZ86] utilized these results for their work on the Birch

and Swinnerton-Dyer conjecture.

Ono and Bruinier [BO10b], generalized a theorem of Walspurger and Kohnen to re-

late weight 1/2 harmonic Maass forms to the vanishing and non-vanishing of L(ED, 1)

and L′(ED, 1) for quadratic twists ED of all modular elliptic curves. However, these

harmonic Maass forms are very di�cult to compete. There are in�nitely many weight

3/2 modular forms that map onto the weight 2 newform via the Shimura correspon-

dence and these harmonic Maass forms are preimages under ξ1/2 of the weight 3/2

modular forms. Additionally, these harmonic Maass forms were originally constructed

using the theory of Poincare series.

Instead of attempting to construct these harmonic Maass forms via preimages of



8

certain weight 3/2 forms, in a recent paper, Alfes, Gri�n, Ono, and Rolen [AGOR14]

obtain canonical weight 0 harmonic Maass forms that arise from Eisenstein's corrected

Weierstrass zeta-function for elliptic curves over Q. Guerzhoy [Gue15] had previously

studied the construction of harmonic Maass forms using the Weierstrass zeta-function

in his work on the Kaneko-Zagier hypergeometric di�erential equation. This canonical

harmonic Maass form encodes the central L-values and L-derivatives that occur in

the Birch and Swinnerton-Dyer Conjecture for elliptic curves in a family of quadratic

twists [AGOR14], [BOR09]. For more information on these mock modular forms,

see [BO06,BO10a].

After the proof of Fermat's Last Theorem and the subsequent expository articles

describing the modularity thoerem, Martin and Ono wrote an article compiling the

complete list of all weight 2 newforms that are eta-quotients. In [MO97], Martin and

Ono prove that there are exactly twelve weight 2 newforms FE(τ) that are products

and quotients of functions of the form η(δτ) where η(τ) is the Dedekind eta function

η(τ) := q1/24

∞∏
n=1

(1− qn),

where q := e2πiτ . By the modularity of elliptic curves, there is an isogeny class of

E/Q for each of these eta-quotients. Martin and Ono present a table of elliptic curves

E corresponding to these cusp forms and describe the Grössencharacters for the �ve

curves with complex multiplication.

Let E be one of the �ve elliptic curves with complex multiplication whose associ-

ated newform, FE(τ), is an eta-quotient. Let NE denote the conductor of this curve

and label its coe�cients ai such that they belong to the Weierstrass model

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

The following table contains a strong Weil curve for each of the weight 2 newforms
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with complex multiplication that are eta-quotients.

NE FE(τ) a1 a2 a3 a4 a6

27 η2(3τ)η2(9τ) 0 0 1 0 -7
32 η2(4τ)η2(8τ) 0 0 0 4 0
36 η4(6τ) 0 0 0 0 1

64
η8(8τ)

η2(4τ)η2(16τ)
0 0 0 -4 0

144
η12(12τ)

η4(6τ)η4(24τ)
0 0 0 0 -1

Table 1.1: Table of �ve elliptic curves

The holomorphic part of the cannonical harmonic Maass form is a mock modular

form, referred to as the Weierstrass mock modular form. Let Ẑ+
E(τ) denote the Weier-

strass mock modular form of E, and let ZNE(τ) := q · d
dq
Ẑ+
E(τ) denote the derivative

of the Weierstrass mock modular form. Let χD :=
(
D
·

)
denote the usual Kronecker

symbol so that
(∑

a(n)qn
)
|χD=

∑
χD(n)a(n)qn.

Theorem 1.3.1. The derivative of the Weierstrass mock modular form for each of

the �ve elliptic curves E given in Table 1.1 is an eta-quotient or a twist of one, as

described below.

Z27(τ) = −η(3τ)η6(9τ)η−3(27τ),

Z32(τ) = −η2(4τ)η6(16τ)η−4(32τ),

Z36(τ) = −η3(6τ)η(12τ)η3(18τ)η−3(36τ),

Z64(τ) = −η2(4τ)η6(16τ)η−4(32τ) |χ8 ,

Z144(τ) = −η3(6τ)η(12τ)η3(18τ)η−3(36τ) |χ12 .

We also obtain p-adic formulas for the corresponding weight 2 newform using

Atkin's U -operator, ∑
a(n)qn | U(m) :=

∑
a(mn)qn.



10

By taking a p-adic limit, we can retrieve the coe�cients of the original cusp form,

FE(τ), of the elliptic curve. Let ZNE(τ) =
∞∑

n=−1

d(n)qn be the derivative of the

Weierstrass mock modular form as before.

Theorem 1.3.2. For each of the �ve elliptic curves listed in Table 1.1, if p is inert

in the �eld of complex multiplication, then as a p-adic limit we have

FE(τ) = lim
ω→∞

ZNE(τ) | U(p2ω+1)

d(p2ω+1)
.

We prove this theorem using techniques outlined in [GKO10]. Similar results can

be found in both [EGO10] and [AGOR14].
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Chapter 2

Background

2.1 Good Reduction

An elliptic curve E over a �eld K is a smooth projective curve of genus 1 (de�ned

over K) with a distinguished (K-rational) point.

Up to isomorphism, every elliptic curve over K can be described using the general

Weierstrass equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (2.1)

This de�nes a smooth projective genus 1 curve over K with the rational point

(0 : 1 : 0). This rational point is the point at in�nity. If the characteristic of K is not

2 or 3, using a change of variables we can reduce the general Weierstrass equation to

the following:

E : y2 = xx + Ax+B. (2.2)

Assuming the characteristic of K is not 2 or 3, we can de�ne the discriminant of

an elliptic curve as ∆ = −16(4A3 + 27B2).

A curve given by a Weierstrass equation is nonsingular if and only if ∆ 6= 0. Dif-
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ferent models of the same elliptic curve result in di�erent values for the discriminant.

If K is a local �eld, complete with a discrete valuation v and uniformizer π, we

de�ne reduction modulo π by reducing coe�cients modulo π to obtain a (possibly

singular) curve Ẽ. We say E has good reduction if Ẽ is nonsingular. If there exists

a model such that v(∆) = 0 then E has good reduction at v. If the class number of

K is 1, we can de�ne the minimal Weierstrass equation, the equation such that v(∆)

is minimized subject to the condition that the coe�cients are still in OK . We say an

equation for E is a global minimal model if and only if the equation is minimal with

respect to all discrete valuations of K.

If E is given by the minimal Weierstrass equation, then E has good reduction at v if

and only if v(∆) = 0. If E is an elliptic curve over a number �eld K, then E has good

reduction at v if E has good reduction when considered over the completion Kv. If E

has good reduction at every valuation v, then we say E has everywhere good reduction

or EGR. Therefore, if the discriminant of an elliptic curve is a unit when considered

over a number �eld K, it is possible for that curve to have good reduction everywhere.

One way to prove there are no elliptic curves over Q with everywhere good reduction

is to look at the congruence conditions related to curves with discriminant ∆ = ±1.

However, for K = Q(
√

29), a = 5+
√

29
2

, and E : y2 + xy+ a2y = x3, we see ∆ is a unit

(i.e. it has norm 1) and so E has everywhere good reduction over K.

2.2 Harmonic Maass forms

Let E be an elliptic curve over Q such that E ' C/ΛE, where ΛE is a two-dimensional

lattice in C. By the modularity of elliptic curves over Q, we have the modular

parameterization

φE : X0(NE)→ C/ΛE ' E,
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where NE is the conductor of E. Suppose E is a strong Weil curve and let

FE(z) =
∞∑
n=1

aE(n)qn ∈ S2(Γ0(NE))

be the associated newform where q = e2πiz.

Let ℘(ΛE; z) be the usual Weierstrass ℘-function given by

℘(ΛE; z) :=
1

z2
+

∑
ω∈ΛE\{0}

(
1

(z− ω)2
− 1

ω2

)
.

All elliptic functions with respect to ΛE are naturally generated from the Weier-

strass ℘-functions. While there can never be a single-order elliptic function, Eisenstein

constructed a simple function with a single pole that can be modi�ed, at the expense

of holomorphicity, to become lattice-invariant (see [Wei99]). Eisenstein began with

the Weierstrass zeta-function, the holomorphic function de�ned for z /∈ ΛE by

ζ(ΛE; z) :=
1

z
+

∑
ω∈ΛE\{0}

(
1

z− ω
+

1

ω
+

z

ω2

)
=

1

z
−

∑
ω∈ΛE\{0}

G2n+2(ΛE)z2n+1.

The derivative of this function is −℘(ΛE; z). Eisenstein's corrected zeta-function is

given by

ZE(z) := ζ(ΛE; z)− S(ΛE)z− deg(φE)

4π||FE||2
z̄,

where S(ΛE) := lim
s→0+

∑
06=ω∈ΛE

1

ω2|ω|2s
, deg(φE) is the degree of the modular parame-

terization and ||FE|| is the Petersson norm of FE. In [Rol16], Rolen provides a new,

direct proof of the lattice-invariance of ZE(z) using the standard theory of di�erential

operators for Jacobi forms.

A harmonic weak Maass form of weight k ∈ 1
2
Z on Γ0(N) (see [AGOR14]) is a

smooth function on H which satis�es:

1. f |kγ = f for all γ ∈ Γ0(N);
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2. ∆kf = 0, where ∆k is weight k hyperbolic Laplacian on H;

3. There is a polynomial Pf ∈ C[q−1] such that

f(z)− Pf (z) = O(e−εy),

as v →∞ for some ε > 0. Similar conditions must hold at all cusps.

The canonical harmonic Maass form arises from the corrected Weierstrass zeta-

function. De�ne Z+
E(z) := ζ(ΛE; z)−S(ΛE)z. Let EE(z) be its Eichler integral de�ned

EE(z) := −2πi

∫ i∞

z

FE(τ)dτ =
∞∑
n=1

aE(n)

n
qn.

The nonholomorphic function ẐE(z) is given by

ẐE(z) = Ẑ+
E(z) + Ẑ−E(z) = ZE(E(z)).

Alfes, Gri�n, Ono, and Rolen proved the following.

Theorem 2.2.1 (Theorem 1.1 of [AGOR14]). Assume the notation and hypotheses

above. Then the following are true:

1. The poles of Ẑ+
E(z) are precisely those points z for which EE(z) ∈ ΛE.

2. If Ẑ+
E(z) has poles in H, then there is a canonical modular form ME(z) with

algebraic coe�cients on Γ0(NE) for which Ẑ+
E(z)−ME(z) is holomorphic on H.

3. We have that ẐE(z)−ME(z) is a weight 0 harmonic Maass form on Γ0(NE).

In particular, the holomorphic part of ẐE(z) is Ẑ+
E(z) = Z+

E(EE(z)), where Ẑ+
E(z)

is a weight 0 mock modular form known as the Weierstrass mock modular form for

E.
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2.3 Eta-Quotients

One important example of a modular form is the Dedekind eta function, denoted

η(z). This function is de�ned by the in�nite product

η(z) := q1/24

∞∏
n=1

(1− qn).

Using Jacobi's Triple Product Identity, we can deduce Dedekind's eta function is a

modular form of weight 1/2, more precisely,

Theorem 2.3.1 (Theorem 1.61 of [Ono04]). For τ ∈ H, we have

η(τ + 1) = eπi/12η(τ),

and

η(−1/τ + 1) = (−iτ)1/2η(τ).

An eta-quotient is any function f(τ) of the form

f(τ) =
∏
δ|N

η(δτ)rδ ,

where N ≥ 1 and each rδ is an integer. If each rδ ≥ 0 then f(τ) is an eta-product.

In [Ono04], Ono described the following result of Gordon, Hughes, and Newman

on eta-quotients.

Theorem 2.3.2 (Theorem 1.64 of [Ono04]). If f(τ) =
∏
δ|N

η(δτ)rδ is an eta-quotient

with k = 1
2

∑
δ|N

rδ ∈ Z, with the additional properties that

∑
δ|N

δrδ ≡ 0 (mod 24)
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and ∑
δ|N

N

δ
rδ ≡ 0 (mod 24) ,

then f(τ) satis�es

f

(
az + b

cz + d

)
= χ(d)(cz + d)kf(z).

Here the character χ is de�ned for χ(d) :=
(

(−1)ks
d

)
, where s =

∏
δ|N

δrδ .

The following formula can be used to determine the order of vanishing of an eta-

quotient at each cusp c/d.

Theorem 2.3.3 (Theorem 1.65 of [Ono04]). Let c, d and N be positive integers with

d|N and gcd(c, d) = 1. If f(z) is an eta-quotient satisfying the conditions of Theorem

1.64 for N , then the order of vanishing of f(z) at the cusp c
d
is

N

24

∑
δ|N

gcd(d, δ)2rδ

gcd(d, N
d

)dδ
.

2.4 Newforms

2.4.1 Newforms with complex multiplication

We now brie�y recall the theory of newforms with complex multiplication (see Chapter

12 of [Iwa97] or Section 1.2 of [Ono04]). Let D < 0 be the fundamental discriminant

of an imaginary quadratic �eld K = Q(
√
D). Let OK be the ring of integers of K and

χK :=
(
D
•

)
be the usual Kronecker character associated to K. Let Λ be a nontrivial

ideal in OK and I(Λ) denote the group of fractional ideals prime to Λ. Then φ de�nes

a homomorphism

φ : I(Λ)→ C×
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such that for each α ∈ K× with α ≡ 1 (mod Λ), we have

φ(αOK) = αk−1.

Let ωφ be the Dirichlet character de�ned as

ωφ(n) := φ((n))/nk−1

for every integer n coprime to Λ. The cusp form Ψ(z) is de�ned as

Ψ(z) :=
∑
a

φ(a)qN(a),

where the sum is over the integral ideals a that are prime to Λ and N(a) is a norm

of the ideal a. This cusp form is a �newform� in the sense of Atkin and Lehner.

The Atkin-Lehner theory of newforms for modular forms with trivial Nebentypus

categorizes the relationship between spaces of modular forms of weight k on di�erent

congruence subgroups [AL70].

2.4.2 Weight 2 newforms

In [MO97], Martin and Ono compile the complete list of all weight 2 newforms that

are eta-quotients along with their strong Weil curves. Five of these curves have

complex multiplication, and using q-series in�nite product identities, they described

the Grössencharacters for these curves. The curves with conductors 27, 36, and 144

have complex multiplication by Q(
√
−3) and the curves with conductors 32 and 64

have complex multiplication by Q(i). In addition, Martin and Ono in [MO97] proved

the curves with N = 36 and N = 144 are quadratic twists of each other. Let E be one

of the 12 elliptic curves whose associated newform, FE(τ), is an eta-quotient. Let NE

denote the conductor of this curve and label its coe�cients ai such that they belong
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to the Weierstrass model

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

The following table contains a strong Weil curve for each of the weight 2 newforms

that are eta-quotients.

NE FE(τ) a1 a2 a3 a4 a6

11 η2(τ)η2(11τ) 0 -1 1 -10 -20
14 η(τ)η(2τ)η(7τ)η(14τ) 1 0 1 4 -6
15 η(τ)η(3τ)η(5τ)η(15τ) 1 1 1 -10 -10
20 η2(2τ)η2(10τ) 0 1 0 4 4
24 η(2τ)η(4τ)η(6τ)η(12τ) 0 -1 0 -4 4
27 η2(3τ)η2(9τ) 0 0 1 0 -7
32 η2(4τ)η2(8τ) 0 0 0 4 0
36 η4(6τ) 0 0 0 0 1

48
η4(4τ)η4(12τ)

η(2τ)η(6τ)η(8τ)η(24τ)
0 1 0 -4 -4

64
η8(8τ)

η2(4τ)η2(16τ)
0 0 0 -4 0

80
η6(4τ)η6(20τ)

η2(2τ)η2(8τ)η2(10τ)η2(40τ)
0 1 0 -4 -4

144
η12(12τ)

η4(6τ)η4(24τ)
0 0 0 0 -1

Table 2.1: Table of �ve elliptic curves
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Chapter 3

Elliptic curves with everywhere good

reduction

3.1 Introduction

In this �rst chapter, we investigate the following question: over which number �elds

do there exist elliptic curves with everywhere good reduction?

For many real and imaginary quadratic �elds K of small discriminant, explicit

examples of elliptic curves E/K with everywhere good reduction can be found in the

literature, such as [Kid99] and [Ish86]. There are also many known examples of such

�elds for which there do not exist any elliptic curves E/K with everywhere good

reduction; see [Kid99], [KK97], [Kag00] for example.

This question has often been approached by studying E/K with everywhere good

reduction which satisfy additional properties (as de�ned in Chapter 2), such as those

which have aK-rational torsion point, admit a global minimal model, or have rational

j-invariant. We say E/K is admissible if it has everywhere good reduction and a K-

rational point of order 2. A curve E/K is g-admissible if it is admissible and has a

global minimal model.
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For example, Kida [Kid99] showed that if K satis�es certain hypotheses, every

E/K with EGR has a K-rational point of order two. This condition led to a series

of non-existence results for particular real quadratic �elds with small discriminant.

In [Set81], Setzer classi�ed elliptic curves with EGRQ over real quadratic number

�elds. Kida extended Setzer's approach by giving a more general method suitable for

computing elliptic curves with EGR over certain real quadratic �elds with rational

or singular j-invariants in [Kid00]. Comalada [Com90] showed that there exists E/K

with EGR, a global minimal model, and a K-rational point of order two if and only

if one of his sets of diophantine equations has a solution. Ishii supplemented this

theorem by studying K−rational 2 division points in [Ish86] to demonstrate speci�c

real quadratic �elds without EGR elliptic curves. Later Kida and Kagawa in [KK97]

generalized Ishii's result to obtain non-existence results for Q(
√

17), Q(
√

73) and

Q(
√

97). Yu Zhao determined criteria for real quadratic �elds to have elliptic curves

with EGR and a non-trivial 3-division point. In [Zha13], he provides a table for all

such �elds with discriminant less than 10,000.

For imaginary quadratic �elds, Stroeker [Str83] showed that no E/K with EGR

admits a global minimal model. In [Set78], Setzer showed that there exist elliptic

curves with EGR and a K-rational point of order two if and only if K = Q(
√
−m)

withm satisfying certain congruence conditions. Comalada and Nart provided criteria

to determine when elliptic curves have EGR in [CN92]. Kida combined this result

with a method of computing the Mordell-Weil group in [Kid01] to prove there are no

elliptic curves with EGR over the �eldsQ(
√
−35),Q(

√
−37),Q(

√
−51) andQ(

√
−91).

There are no elliptic curves with EGRQ(K) for −37 < m < −1. However, there are

elliptic curves with small discriminant and EGRQ(K) for real quadratic �elds K.

Cremona and Lingham [CL07] described an algorithm for �nding all elliptic curves

over any number �eld K with good reduction outside a given set of primes. However,

this procedure relies on �nding integral points on certain elliptic curves over K, which
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can limit its practical implementation.

Table 3.1 shows what is known for K = Q(
√
m) with square-free positive integers

m ≤ 47. We stop at 47 because to the best of our knowledge, the m = 51 case is still

unknown.

Table 3.1: Real Quadratic Fields Q(
√
m) with and without EGR

EGR no EGR
6 2
7 3
14 5
22 10
26 11
29 13
33 15
37 17
38 19
41 21

23
30
31
34
35
39
42
43
46
47

The results listed above gives many methods to prove that a particular quadratic

number �eld has an EGR elliptic curve. A method of Setzer regarding the classi�-

cation of elliptic curves over both real and imaginary quadratic number �elds with

rational j-invariant, shows that there in�nitely many quadratic �elds which have an

EGR elliptic curve.

Let R(X) be the number of real quadratic number �elds K with discriminant at

most X and an EGRQ(K) elliptic curve. By revisiting the results of Setzer, we prove
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the following.

Theorem 3.1.1. With R(X) as above, we have that

R(X)� X√
log(X)

.

If I(X) is the number of imaginary quadratic number �elds K with |∆K | < X

and an EGRQ(K) elliptic curve, we also obtain the result below.

Theorem 3.1.2. With I(X) as above, we have that

I(X)� X√
log(X)

.

To prove Theorem 3.1.1, we �rst show that all real quadratic �elds of the form

described below in Theorem 3.1.3 have EGRQ, and then count these �elds.

Theorem 3.1.3. Let m = 2q, where q = q1 · · · qn ≡ 3 (mod 8) with qj ≡ 1, 3 (mod 8)

distinct primes. Then the real quadratic �eld K = Q(
√
m) has EGRQ.

Remark. If m is as described in Theorem 3.1.3, there exists E/K with EGRQ and

j(E) = 203 as shown by Setzer in 3.2.1.

Similarly, to prove Theorem 3.1.2, we show all imaginary quadratic �elds found

below in Theorem 3.1.4 have EGRQ.

Theorem 3.1.4. Let m = 37q, where q = −q1 · · · qn ≡ 1 (mod 8) with qj distinct

primes such that
( qj

37

)
= 1. Then the imaginary quadratic �eld K = Q(

√
m) has

EGRQ.

Remark. If m is as described in Theorem 3.1.4, there exists E/K with EGRQ and

j(E) = 163 as shown by Setzer in 3.2.1.

We can achieve results like Theorem 3.1.3 and 3.1.4 for integers other than 2 and

37; these two cases are all is required to prove Theorem 3.1.1 and 3.1.2.
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To obtain a density result for m = qD, where D is �xed and q varies, we de�ne

certain `good' D. We say D is good if it is the square free part of A3 − 1728, where

A satis�es certain congruence conditions modulo powers of 2 and 3. Both D = 2

and D = 37 are examples of `good' values of D. These congruence conditions will

be described explicitly in Section 3.2. If D is good, then K = Q(
√
Dq) has EGRQ

whenever D and q satisfy certain explicit conditions, see Section 3.2. For any square-

free D, de�ne

εD =

 1 D ≡ 1 (mod 4)

−1 otherwise

When sign(D) = −εD, we get real quadratic �elds Q(
√
qD), and when sign(D) = εD,

we get imaginary quadratic �elds.

Using this, we show that RD(X), the number of q ≤ X such that Q(
√
Dq) is a

real EGRQ quadratic number �eld, satis�es the following lower bound:

Theorem 3.1.5. Let D be good with r distinct prime factors and RD(X), the number

of EGRQ real quadratic number �elds Q(
√
Dq) with q ≤ X. Assume that sign(D) =

−εD. Then

RD(X)� X

log1−1/2r X
.

We obtain a similar result to show that ID(X), the number of EGRQ imaginary

quadratic number �elds Q(
√
Dq) satis�es the following lower bound.

Theorem 3.1.6. Let D be good with r distinct prime factors and ID(X), the number

of EGRQ imaginary quadratic number �elds Q(
√
Dq) with q ≤ X. Assume that

sign(D) = εD. Then

ID(X)� X

log1−1/2r X
.

Remark. While we have only looked at curves with rational j-invariant, Noam Elkies'

computations [Elk] suggest that very few E/K with EGR have j(E) 6∈ Q and unit

discriminant. Therefore, the theorem below, which to the best of our knowledge
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has not previously appeared in the literature, suggests that most �elds of the form

K = Q(
√
±p) for primes p ≡ 3 (mod 8) are not EGR. This is consistent with Elkies'

data.

Using this approach we were also able to determine nonexistence of EGRQ quadratic

�elds.

Theorem 3.1.7. Let p ≡ 3 (mod 8) be prime.

1. Let K = Q(
√
p). Then there are no E/K with EGRQ.

2. let K = Q(
√
−p). Then there are no E/K with EGRQ.

Remark. In [Kag00], Kagawa showed that if p is a prime number such that p ≡ 3(4)

and p 6= 3, 11, then there are no elliptic curves with EGR over K = Q(
√

3p) whose

discriminant is a cube in K. Since all EGR(K) curves have cubic discriminant as

shown in Setzer [Set81], this gives a result similar to Theorem 3.1.7.

In Section 3.2, we describe conditions arising from Setzer to de�ne when we have

EGRQ quadratic �elds. In Section 3.3, we use these conditions to �nd a lower bound

based on an example of Serre. In Section 3.4, we will give examples of EGRQ real

quadratic �elds and EGRQ imaginary quadratic �elds.

3.2 Constructing EGRQ Quadratic Fields

In [Set81], given a rational j-invariant, Setzer determines whether there exists an

elliptic curve and number �eld over which this curve has everywhere good reduction.

Following his notation, we make the following de�nitions. Let R be the following set:

R = {A ∈ Z : 2|A⇒ 16|A or 16|A− 4, and 3|A⇒ 27|A− 12}.

Note that by the Chinese Remainder Theorem, R is then the union of the following

congruence classes:
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• 1, 5 (mod 6)

• 4, 16, 20, 32 (mod 48)

• 39 (mod 54)

• 228, 336 (mod 432)

We say that D is good if it is in the following set:

{D : Dt2 = A3 − 1728, D square-free, A ∈ R, t ∈ Z}.

For example, the good D with |D| < 100 are exactly

−91,−67,−43,−26,−19,−11,−7, 2, 7, 37, 65, 79.

Remark. We note that±1 are not good, as the elliptic curves Y 2 = X3−1728,−Y 2 =

X3 − 1728 have no integral points with Y 6= 0.

By Setzer [Set81], the only candidates for elliptic curves E with EGRQ(K) over a

quadratic �eld K have j(E) = A3 with A ∈ R.

Theorem 3.2.1 (See [Set81].). Let K = Q(
√
m) be a quadratic �eld with m square-

free. Then there exists an elliptic curve E/K with EGRQ if and only if the following

conditions are satis�ed for some good D | ∆K.

1. εDD is a rational norm from K.

2. If D ≡ ±3 (mod 8), then m ≡ 1 (mod 4).

3. If D is even then m ≡ 4 +D (mod 16).
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To prove the theorem, Setzer shows that given a pair (m,D) satisfying the condi-

tions of the theorem, there exists u ∈ K× such that

Eu,A : y2 = x3 − 3A(A3 − 1728)u2x− 2(A3 − 1728)2u3

has j-invariant A3 and EGRQ over K.

Remark. We correct a mistake in Condition (2) of this theorem as written in [Set81].

We note that if u ≡ v (mod 4OK) and m ≡ 2, 3, (mod 4), then we must have

that N(u) ≡ N(v) (mod 8). However, if m ≡ 1 (mod 4), we only know that N(u) ≡

N(v) (mod 4). Moreover, we can pick w ∈ 4OK such that N(u + w) ≡ N(u) +

4 (mod 8).

Condition (2) as written in Setzer's paper states that if D ≡ ±3 (mod 8), then

m ≡ 5 (mod 8). D ≡ ±3 (mod 8) implies that a certain element u ∈ OK has

N(u) ≡ 5 (mod 8). But for the curve to have good reduction at primes dividing

2, it is necessary that u is congruent to a square modulo 4OK . For m ≡ 2, 3 (mod 4)

this is not possible, as no squares can have norm equivalent to 5 modulo 8. However,

if m ≡ 1 (mod 4), the condition that N(u) ≡ 5 (mod 8) is not an obstacle, as u is

congruent modulo 4OK to elements of norm 1 modulo 8. Setzer mistakenly assumes

that this can only happen when m ≡ 5 (mod 8).

In proving that �elds do and do not have elliptic curves with EGRQ, the following

equivalent version of Setzer's theorem will be useful.

Theorem 3.2.2. Fix D good, and m = qD square-free. K = Q(
√
m) has EGRQ if

and only if the following conditions are satis�ed:

1. (−εDq/pi) = 1 for all odd primes pi dividing D;

2. (εDD/qj) = 1 for all odd primes qj dividing q;

3. m > 0 if εDD < 0;
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4. If D ≡ ±3 (mod 8) then q ≡ D (mod 4);

5. If D is even then q ≡ D + 1 (mod 8).

Proof of Theorem 3.2.2. We need to show that the conditions in Theorem 3.2.1 are

equivalent to those in Theorem 3.2.2.

Assume that K = Q(
√
m) where m is square-free.

Clearly if m = qD, D divides ∆K . We need to show that if D | ∆K then D | m.

This is trivial for m ≡ 1 (mod 4), as then ∆K = m. If m ≡ 3 (mod 4), then D cannot

be even because of condition (3) of Theorem 3.2.1, so D | m. If m ≡ 2 (mod 4), then

D must be square-free, so D | m.

Now, εDD is a rational norm from K if and only if there exists a rational solution

to εDD = a2 − b2Dq. Since D | a, the above is equivalent to the existence of a

rational solution to εD = D(a′)2 − b2q, which is equivalent to the existence of a

nontrivial integer solution to εDx
2 −Dy2 + qz2 = 0. By Legendre's Theorem [IR90],

this equation has a nontrivial integral solution if and only if the following hold:

1. εD,−D, and q do not all have the same sign, which is equivalent to condition

(3).

2. εDD is a square modulo |q|, which is equivalent to condition (2).

3. −εDq is a square modulo |D|, which is equivalent to condition (1).

4. −Dq is a square modulo |εD|, which is always the case.

Lastly, conditions (4) and (5) are directly equivalent to conditions in Theorem 3.2.1.

To prove Theorem 3.1.1, the lower bound for RD(X) and Theorem 3.1.2, the

lower bound for ID(X), we require Theorem 3.1.3 (which considers the case D = 2)

and Theorem 3.1.4 (which considers the case D = 37). Below, we prove both those

theorems using the result above.
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Proof of Theorem 3.1.3. Let A = 20 ∈ R. This shows that D = 2 is good. For

m = 2q with q = q1 · · · qn ≡ 3 (mod 8) and qj ≡ 1, 3 (mod 8) distinct primes, all of the

conditions in Theorem 3.2.2 are satis�ed, and so K = Q(
√
m) has EGRQ.

Proof of Theorem 3.1.4. Let A = 16 ∈ R. This that shows that D = 37 is good. For

m = 37q with q = −q1 · · · qn ≡ 1 (mod 8) and qj distinct primes such that
( qj

37

)
= 1, all

of the conditions in Theorem 3.2.2 are satis�ed, and so K = Q(
√
m) has EGRQ.

We also can use Theorem 3.2.2 to prove nonexistence results about EGRQ quadratic

�elds.

Proof of Theorem 3.1.7. Let p ≡ 3 (mod 8) be prime.

To show that there are no E/Q(
√
p) with EGRQ, we must show that neither of

the pairs (D, q) = (p, 1), (−p,−1) satisfy the conditions of Theorem 3.2.2. We note

that since p = D ≡ ±3 (mod 8), condition (d) implies that q ≡ 5D ≡ ±1 (mod 8),

which is a contradiction.

Similarly, to show that there are no EGRQ(Q(
√
−p), we have to show that neither

of the pairs (D, q) = (p,−1), (−p, 1) satisfy the conditions of the theorem. We note

that in both cases, condition (a) implies that
(
−1
p

)
= 1, which is a contradiction.

3.3 Finding Lower Bounds

To prove the lower bounds, we use an example of Serre [Ser72] as a reference. Let

K/Q be a Galois extension and C ⊂ Gal(K/Q) be a conjugacy class. Let π(K/Q, C)

denote the set of primes p that are unrami�ed in K/Q which Frobenius conjugacy

class C.

De�nition. We call a set of primes a Chebotarev set if there are �nitely many �nite

Galois extensions Ki/Q and conjugacy classes Ci ⊂ Gal(Ki/Q) such that up to �nite

sets, P = ∪iπ(Ki/Q, Ci).
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De�nition. We de�ne a set E ⊂ N>0 to be multiplicative if for all pairs n1, n2

relatively prime, we have that n1n2 ∈ E if and only if n1 ∈ E or n2 ∈ E.

Given a multiplicative set E, let P (E) be the set of primes p in E. Let Ē :=

N>0 − E, and Ē(X) := {m ∈ Ē,m ≤ X}.

Theorem 3.3.1 (See [Ser72].). Suppose that E is multiplicative and P (E) is a Cheb-

otarev set with density 0 < α < 1. Then

Ē(X) ∼ cX/ logαX

for some c > 0.

We will use the theorem above to prove Theorem 3.1.5 and Theorem 3.1.6. As

shown in Section 3.2, the special cases with D = 2, 37 will then imply Theorem 3.1.1

and 3.1.2.

Proof of Theorem 3.1.5 and Theorem 3.1.6. Let D be good. Let D′ be the odd part

of D, and δ = εDεD′D/D′. Note that if D is odd, then δ = 1.

Also de�ne

ĒD := {qa11 · · · qann : qj is prime, aj ≥ 0,

(
qj
p

)
= 1,

(
δ

qj

)
= 1},

for all odd primes p | D.

The compliment ED = N− ĒD is then multiplicative and P (ED) has Chebotarev

density α = 1 − 1/2r, where r is the number of prime factors of D. Therefore, by

Theorem 3.3.1, we have

ĒD(X) ∼ cX/ logαX.

Now, we have to relate ĒD(X) to RD(X) and ID(X). We do this by showing that if

±q ∈ Ē(X) is squarefree and satis�es congruence conditions coming from (d) and (e)

of Theorem 2.2, then m = qD has EGRQ.
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Let CD be the set of q ∈ Z that satisfy the congruence conditions (d) and (e) of

Theorem 3.2.2, so that

CD =


{q ∈ Z : q ≡ D (mod 4)} if D ≡ ±3 (mod 8)

{q ∈ Z : q ≡ D + 1 (mod 8)} if D ≡ 0 (mod 2)

{q ∈ Z} otherwise

We de�ne

RE
D(X) := {Dq : sgn(D)q ∈ ĒD(X/D), q squarefree, q ∈ CD}

IED(X) := {Dq : −sgn(D)q ∈ ĒD(X/D), q squarefree, q ∈ CD}

Lemma 3.3.2. For good D, RE
D(X) ⊂ RD(X) if εD = −sgn(D) and IED(X) ⊂ ID(X)

if εD = sgn(D).

Proof. We need to check (a) and (b) of Theorem 3.2.2. They follows from the prop-

erties of the Jacobi Symbol. Let D be good. If either εD = −sgn(D) with 0 < qD or

εD = sgn(D) with 0 > qD, we have that 0 < −εDq =
∏
qj, so

(
−εDq
p

)
=
∏(

qj
p

)
= 1.

Note that then we always have that εD′D′ ≡ 1 (mod 4) and εDD = δD′εD′ . So

(
εDD

qj

)
=

(
δ

qj

)(
εD′D′

qj

)
=

(
qj

|εD′D′|

)
=

∏
p|D odd

(
qj
p

)
= 1

Since a positive proportion of ±q ∈ ED(X/D) satisfy the extra conditions of being
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squarefree and in CD, we have that

RE
D(X), IED(X) >>

X

logαX
,

and hence the same is true of the bigger sets RD(X), ID(X).

Proof of Theorem 3.1.1. The theorem follows immediately from Theorem 3.1.5 and

Theorem 3.1.3. Theorem 3.1.3 shows D = 2 is good with r = 1 distinct factors and

the real quadratic �eld K = Q(
√
qD) has EGRQ. If R(X) is the number of these

�elds, Theorem 3.1.5 shows

R(X)� X√
log(X)

.

Proof of Theorem 3.1.2. The theorem follows immediately from Theorem 3.1.6 and

Theorem 3.1.4. Theorem 3.1.4 shows D = 37 is good with r = 1 distinct factors and

the imaginary quadratic �eld K = Q(
√
qD) has EGRQ. If I(X) is the number of

these �elds, Theorem 3.1.6 shows

I(X)� X√
log(X)

.

3.4 Examples

In this section, we explain how to �nd elliptic curves with EGRQ when the conditions

of Theorem 3.2.2 are satis�ed, and give examples of elliptic curves with EGRQ. The

results in this section are based on Setzer's construction in 3.2.1.

We start with a quadratic �eld K = Q(
√
m) and a factorization m = Dq with D
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good which satis�es the conditions of Theorem 3.2.2. We want to �nd u such that

Eu,A : y2 = x3 − 3A(A3 − 1728)u2x− 2(A3 − 1728)2u3

has EGRQ(K). Let α ∈ K have norm εDD, and pick n odd such that β := nα =

a+b
√
m ∈ OK . Let A ∈ R be such that D is the square-free part of A3−1728. De�ne

d1, d2 such that 32(A3− 1728) = Dd2
1d

4
2 with d1 square-free. If m ≡ 1, 2 (mod 4), then

one of u = ±βd1 works. If m ≡ 3 (mod 4), then either u = ±βd1 both work or

u = ±βd1ρ both work, where ρ = 1
2
(m+ 1) +

√
m.

The table below has some examples.

A D d1 q α u

20 2 42 3 2 +
√

6 −d1α = −84− 42
√

6

−15 −7 1 −11 35 + 4
√

77 −d1α = −35− 4
√

77

−32 −11 42 −15 77 + 6
√

165 d1α = 3234 + 252
√

165

−32 −11 42 −3 11 + 2
√

33 −d1α = −462− 84
√

33

39 79 1 5 79 + 4
√

395 ±d1αρ = ±(17222 + 871
√

395)

16 37 6 −7 37 + 6
√
−259 ±d1α = ±(222 + 36

√
−259)



33

Chapter 4

A conjecture of Han on 3-cores and

modular forms

4.1 Introduction

We begin this chapter by providing a brief background into some of the combinatorial

identities involved in Han's conjectures.

A partition λ of n is an ordered tuple λ = (λ1, λ2, . . . , λk) with λ1 ≥ λ2 ≥ · · · ≥ λk,

such that λ1 + λ2 + · · ·+ λk = n. To each partition λ of n, we can associate a frame

with λi boxes in the ith row such that the rows of boxes are lined up on the left. This

is called a Young diagram of shape λ (or a Ferrers diagram). The partitions of n are

in a one-to-one correspondence with Young diagrams of size n. A Young diagram of

shape λ is a standard Young tableau if each cell contains a distinct positive integer

1 ≤ i ≤ n such that each column and row form an increasing sequence. The hook

length, hv(λ), for a cell v is computed by adding the number of the cells to the right

of v and the number of cells below v, counting v only once. The hook length multi-set

of λ, H(λ) is the multi-set of all hook lengths of λ.

The original identity of Nekrasov and Okounkov relates the sum over products of
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partition hook lengths to the powers of Euler products and is given by

Fz(x) :=
∑
λ

x|λ|
∏

h∈H(λ)

(
1− z

h2

)
=
∞∏
n=1

(1− xn)z−1,

where the sum is over integer partitions, |λ| the integer partitioned by λ, and H(λ)

the multiset of classical hook lengths associated to a partition λ.

The Nekrasov-Okounkov formula specializes in the case z = 2 and z = 4 to

two classical q-series identities. The �rst is a special case of Euler's Pentagonal

Number Theorem, and the second gives Jacobi's famous identity for the product
∞∏
n=1

(1− xn)3, [Han09].

F2(x) =
∞∏
n=1

(1− xn) =
∞∑

n=−∞

(−1)nx
3n2+n

2 , (Euler)

F4(x) =
∞∏
n=1

(1− xn)3 =
∞∑
n=0

(−1)n(2n+ 1)x
n2+n

2 , (Jacobi).

In [Han10], Han extended the Nekrasov-Okounkov identity to consider the number

of t-core partitions of n. A partition of n is called a t-core partition of n if none of its

hook numbers are multiples of t. While working on this generalization, Han investi-

gated the nonvanishing of in�nite product coe�cients. For example, he considers the

in�nite product, ∏
n≥1

(1− xsn)t
2/s

1− xn
,

and conjectures in [Han09] that the coe�cient of xn is not equal to 0 for t ≥ 5, t, s

positive integers such that s|t and t 6= 10. Letting s = 1 and t = 5, Han reformulates

the famous conjecture of Lehmer that the coe�cients of

x
∏
n≥1

(1− xn)24 =
∑
n≥1

τ(n)xn
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never vanish.

In [Han09], Han formulated a conjecture comparing the nonvanishing of terms of

F9(x) with terms of C3. Recall C3 is the series given by

C3(x) =
∞∑
n=0

b(n)xn :=
∞∏
n=1

(1− x3n)3

1− xn

= 1 + x+ 2x2 + 2x4 + · · ·+ 2x14 + 3x16 + 2x17 + 2x20 + . . . . (1.1)

and F9(x) is the series given by

F9(x) =
∞∑
n=0

a(n)xn :=
∞∏
n=1

(1− xn)8

= 1− 8x+ 20x2 − 70x4 + · · · − 520x14 + 57x16 + 560x17 + 182x20 + . . . (1.2)

Based on numerical evidence, Han conjectured that the non-zero coe�cients of

F9(x) and C3(x) are supported on the same terms; assuming the notation above,

a(n) = 0 if and only if b(n) = 0.

This conjecture is proved in a joint paper with Ono [HO11]. In addition to proving

the conjecture, Han and Ono proved a(n) = b(n) = 0 precisely for those non-negative

integers n for which ordp(3n+ 1) is odd for some prime p ≡ 2 (mod 3).

Recently Han discovered another series that appears to be supported on the same

terms as C3(x) and F9(x). This series is given by,

C(x) =
∞∑
n=1

c(n)xn :=
∞∏
n=1

(1− xn)2(1− x3n)2

= 1− 2x− x2 + 5x4 + · · ·+ 8x14 − 6x16 − 10x17 − x20 + . . . (1.3)

Based on numerical evidence, Han conjectured a(n) = 0 if and only if b(n) = 0 if

and only if c(n) = 0.

Here we prove the following general theorem that produces in�nitely many mod-
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ular forms, including those in Equations (1.2) and (1.3) that are supported precisely

on the same terms as Equation (1.1).

It is convenient to normalize Equation (1.1) as shown below.

B(z) =
η(9z)3

η(3z)
=
∞∑
n=1

b∗(n)qn :=
∞∑
n=0

b(n)q3n+1 (2.1)

= q + q4 + 2q7 + 2q13 + q16 + 2q19 + q25 + 2q28 + . . . .

Theorem 4.1.1. Suppose that f(z) =
∞∑
n=1

A(n)qn is an even weight newform with

trivial Nebentypus that has complex multiplication by Q(
√
−3) and a level of the form

3s, where s ≥ 2. Then the coe�cients A(n) = 0 if and only if b(n) = 0. More

precisely, A(n) = b∗(n) = 0 for those non-negative integers n for which ordp(n) is odd

for some prime p ≡ 2 (mod 3).

Remark. Here we let q := e2πiz and
∞∑
n=1

A(n)qn is the usual Fourier expansion at

in�nity.

Remark. Consider the normalized function of a(n) and c(n) given by,

A(z) =
∞∑
n=1

a∗(n)qn :=
∞∑
n=0

a(n)q3n+1

= q − 8q4 + 20q7 − 70q13 + 64q16 + 56q19 − 125q25 − 160q28 + . . . (2.2)

and

C(z) =
∞∑
n=1

c∗(n)qn :=
∞∑
n=0

c(n)q3n+1

= q − 2q4 − q7 + 5q13 + 4q16 − 7q19 − 5q25 + 2q28 + . . . (2.3)

Theorem 4.1.1 implies the original work of Han and Ono. As explained in [HO11],

A(z) is a weight 4 newform with complex multiplication byQ(
√
−3) with level 9. The-
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orem 4.1.1 also implies Han's new conjecture concerning coe�cients of (1.3) because

C(z) is the weight 2 complex multiplication form for the elliptic curve with complex

multiplication by Q(
√
−3) given by y2 + y = x3 − 7 with level 33 = 27 [MO97].

Remark. It turns out that more is true about the relationship between the two series

in Equations (1.2) and (1.3). If p ≡ 1 (mod 3) is prime, then we have that c∗(p) divides

a∗(p). We will prove this statement in Section 3.1.

To prove Theorem 4.1.1, we make use of the known description of Equation (1.1),

the generating function for the 3-core partition function, and then generalize the work

in [HO11] to extend to this situation.

We begin by recalling the exact formula for the coe�cients b∗(n) of the modular

form B(z), (2.1), de�ned below. Recall that the Dedekind's eta function, denoted

η(z), is de�ned by the in�nite product

η(z) := q1/24

∞∏
n=1

(1− qn).

The coe�cients b∗(n) are given by

B(z) =
η(9z)3

η(3z)
=
∞∑
n=1

b∗(n)qn :=
∞∑
n=0

b(n)q3n+1

= q + q4 + 2q7 + 2q13 + q16 + 2q19 + q25 + 2q28 + . . . .

Lemma 4.1.2 (Lemma 2.5 of [HO11]). Assuming the notation above, we have that

B(z) =
∞∑
n=1

b∗(n)qn =
∞∑
n=0

b(n)q3n+1 =
∞∑
n=0

∑
d|3n+1

(
d

3

)
q3n+1.

The following lemma describes the nonvanishing conditions for the Equation (2.1)

as described in [HO11].
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Lemma 4.1.3. Assume the notation above. Then b∗(n) = 0 if and only if n is a

non-negative integer for which ordp(n) is odd for some prime p ≡ 2 (mod 3).

To prove the original conjecture, Han and Ono recalled the exact formula for the

coe�cients a∗(n) described in [HO11]. The modular form A(z), (2.2), is given by

A(z) = η8(3z) =
∞∑
n=1

a∗(n)qn :=
∞∑
n=0

a(n)q3n+1

where q := e2πi and z ∈ H, the upper half of the complex plane. This normalized

series A(z), such that a(n) ≡ a∗(3n + 1), is an example of a newform with complex

multiplication in S4(Γ0(9)), the space of weight 4 cusp forms on Γ0(9). Using the

theory of newforms, Han and Ono proved the following theorem.

Theorem 4.1.4 (Theorem 2.1 of [HO11]). Assume the notation above. Then the

following are true:

1. If p = 3 or p ≡ 2 (mod 3) is prime, then a∗(p) = 0.

2. If p ≡ 1 (mod 3) is prime, then

a∗(p) = 2x3 − 18xy2,

where x and y are integers for which p = x2 + 3y2 and x ≡ 1 (mod 3).

The theorem above shows that a∗(n) satis�es the same nonvanishing conditions

demonstrated by b∗(n) as noted in Lemma 4.1.3, proving the original conjecture.

4.2 Proof of Theorem 4.1.1

Consider the function Ψ(z) de�ned by

Ψ(z) :=
∑
a

φ(a)qN(a) =
∞∑
n=1

a(n)qn,
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where the sum is over the integral ideals a that are prime to Λ and N(a) is the norm

of the ideal a. This function Ψ(z) is a cusp form in Sk(Γ0(D ·N(Λ)),
(−D
•

)
ωφ). When

p does not divide the level, notice that if p is inert in K, then a(p) = 0 [Ono04].

The cusp form Ψ(z) is a �newform� in the sense of Atkin and Lehner [Ono04].

Therefore, Ψ(z) is a normalized cusp form that is an eigenform of all the Hecke

operators and all the Atkin-Lehner involutions |kW (Qp) for primes p|N and |kW (N).

The following theorem describes the vanishing Hecke eigenvalues when there is a

prime p such that p2 divides the level.

Theorem 4.2.1 (Theorem 2.27 (3) of [Ono04]). Suppose f(z) =
∞∑
n=1

a(n)qn ∈ Snewk (Γ0(N))

is a newform. If p is a prime for which p2|N , then a(p) = 0.

This information gives the following nonvanishing conditions on newforms with

complex multiplication.

Lemma 4.2.2. Suppose that f(z) =
∞∑
n=1

A(n)qn is an even weight newform with

trivial Nebentypus and complex multiplication by Q(
√
−3) with level of the form 3s

where s ≥ 2. Then A(p) = 0 if and only if p = 3 or p ≡ 2 (mod 3) is prime.

Proof of Lemma 4.2.2. The level of f(z) is 3s and therefore 3 is the only prime that

divides the level. Since k ≥ 2, we know 32 always divides the level, therefore by

Theorem 4.2.1 in [Ono04], A(3) = 0. When p ≡ 2 (mod 3) for p 6= 3 prime, p is inert

and therefore A(p) = 0.

Corollary 4.2.3. The following are true about A(n).

1. If m and n are coprime positive integers, then

A(mn) = A(m)A(n).

2. For every positive integer t, we have that A(3t) = 0.
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3. If p ≡ 2 (mod 3) is prime and t is a positive integer, then A(pt) = 0 if t is odd

and A(pt) 6= 0 if t is even.

4. If p ≡ 1 (mod 3), then A(pt) 6= 0.

Proof of Corollary 4.2.3. Claim (1) is well known to hold for all normalized Hecke

eigenforms.

Claim (2) follows as A(3) = 0.

To prove Claim (3), observe that every newform is a Hecke eigenform. Moreover,

since A(1) = 1, the Hecke eigenvalue of T (p) is A(p).Therefore, for every integer n

and prime p 6= 3, we have that

A(p)A(n) = A(pn) + pk−1A(n/p).

The left hand side of the equation is the statement that A(p) is the Hecke eigenvalue.

The right hand side of the equation is the action of the Hecke operator T (p). Let

n = pt and p ≡ 2 (mod 3) be prime. Since A(p) = 0 for p ≡ 2 (mod 3), this equation

becomes

0 = A(pt+1) + pk−1A(pt−1).

Claim (3) follows from induction as A(1) = 1 and A(p) = 0.

To prove Claim (4), let p be a prime such that p ≡ 1 (mod 3). Suppose that

A(p) = 0. This implies that α is totally imaginary, but then

p = (β
√
−3))(−β

√
−3) = 3β2,

which is false. Claim (4) then follows by induction.

Proof of Theorem 4.1.1. The theorem follows by combining Lemma 4.1.3, Corollary 4.2.3

and Lemma 4.2.2.
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4.3 Relating A(z) and C(z)

We normalize the function c(n) using the following series,

C(z) =
∞∑
n=1

c∗(n)qn :=
∞∑
n=0

c(n)q3n+1.

The series C(z) is a modular form given by

C(z) = η2(3z)η2(9z) =
∞∑
n=1

c∗(n)qn.

In [MO97], Martin and Ono gave a complete description of all weight 2 newforms

that are products and quotients of the Dedekind eta-function. The descriptions in

[MO97] include formulas for the pth coe�cients. Since these coe�cients are Hecke

multiplicative, it su�ces to give the formula for only p prime. Speci�cally, for C(z),

we have the following theorem.

Theorem 4.3.1 (Theorem 2 in [MO97]). Assuming the notation above, the following

are true.

1. If p ≡ 2 (mod 3), then c∗(p) = 0.

2. If p ≡ 1 (mod 3), then c∗(p) = 2m+n where p = m2+mn+n2 and m ≡ 1 (mod 3)

and n ≡ 0 (mod 3).

Recall 4.1.4 from [HO11] gave the following conditions on the coe�cients of A(z):

If p ≡ 1 (mod 3) is prime, then

a∗(p) = 2x3 − 18xy2,

where x and y are integers for which p = x2 + 3y2 and x ≡ 1 (mod 3).
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Here we show that c∗(p)|a∗(p) for primes p ≡ 1 (mod 3) and n being even:

p = m2 +mn+ n2

=
(
m+

n

2

)2

+ 3
(n

2

)2

= x2 + 3y2.

Let x =
(
m+ n

2

)
and y =

n

2
. Then

a∗(p) = 2x3 − 18xy2

= 2
(
m+

n

2

)3

− 18
(
m+

n

2

)(n
2

)2

= (2m+ n)(m+ 2n)(m− n)

= c∗(p)(m+ 2n)(m− n).

Since m ≡ 1 (mod 3) and n ≡ 0 (mod 3), we have a∗(p) ≡ c∗(p) (mod 3) and as

mentioned in a remark, c∗(p)|a∗(p).
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Chapter 5

Weierstrass mock modular forms

5.1 Introduction

In Chapter 2, we discussed results of Alfes, Gri�n, Ono, and Rolen [AGOR14] that

obtain a canonical weight 0 harmonic Maass forms arising from Eisenstein's corrected

Weierstrass zeta-function for elliptic curves over Q. Guerzhoy [Gue15] had also pre-

viously studied the construction of harmonic Maass forms using the Weierstrass zeta-

function in his work on the Kaneko-Zagier hypergeometric di�erential equation. In

this chapter, we will focus on the Weierstrass mock modular forms associated to

5 speci�c elliptic curves. These �ve elliptic curves are the curves Martin and Ono

proved in [MO97] to be the only �ve elliptic curves with complex multiplication whose

associated weight 2 newform is a product or quotient of Dedekind eta-functions. We

prove that the derivative of the Weierstrass mock modular form of each such elliptic

curve E is a weight 2 weakly holomorphic modular form which also turns out to be an

eta-quotient or a twist of one. We also obtain p-adic formulas for the corresponding

weight 2 newforms using Atkin's U -operator.

Let E be one of the �ve elliptic curves with complex multiplication whose associ-

ated newform, FE(τ), is an eta-quotient. Let NE denote the conductor of this curve
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and label its coe�cients ai such that they belong to the Weierstrass model

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

The following table contains a strong Weil curve for each of the weight 2 newforms

with complex multiplication that are eta-quotients.

NE FE(τ) a1 a2 a3 a4 a6

27 η2(3τ)η2(9τ) 0 0 1 0 -7
32 η2(4τ)η2(8τ) 0 0 0 4 0
36 η4(6τ) 0 0 0 0 1

64
η8(8τ)

η2(4τ)η2(16τ)
0 0 0 -4 0

144
η12(12τ)

η4(6τ)η4(24τ)
0 0 0 0 -1

Table 5.1: Table of �ve elliptic curves

Let Ẑ+
E(τ) denote the Weierstrass mock modular form of E, and let ZNE(τ) :=

q · d
dq
Ẑ+
E(τ) denote the derivative of the Weierstrass mock modular form (see Sec-

tion 2.2 for details). Let χD :=
(
D
·

)
denote the usual Kronecker symbol so that(∑

a(n)qn
)
|χD=

∑
χD(n)a(n)qn.

Theorem 5.1.1. The derivative of the Weierstrass mock modular form for each of

the �ve elliptic curves E given in Table 5.1 is an eta-quotient or a twist of one, as

described below.

Z27(τ) = −η(3τ)η6(9τ)η−3(27τ)

Z32(τ) = −η2(4τ)η6(16τ)η−4(32τ)

Z36(τ) = −η3(6τ)η(12τ)η3(18τ)η−3(36τ)

Z64(τ) = −η2(4τ)η6(16τ)η−4(32τ) |χ8

Z144(τ) = −η3(6τ)η(12τ)η3(18τ)η−3(36τ) |χ12
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We also obtain p-adic formulas for the corresponding weight 2 newform using

Atkin's U -operator, ∑
a(n)qn | U(m) :=

∑
a(mn)qn.

By taking a p-adic limit, we can retrieve the coe�cients of the original cusp form,

FE(τ), of the elliptic curve. Let ZNE(τ) =
∞∑

n=−1

d(n)qn be the derivative of the

Weierstrass mock modular form as before.

Theorem 5.1.2. For each of the �ve elliptic curves listed in Table 5.1, if p is inert

in the �eld of complex multiplication, then as a p-adic limit we have

FE(τ) = lim
ω→∞

ZNE(τ) | U(p2ω+1)

d(p2ω+1)
.

Example. Here we illustrate Theorem 5.1.2 for the prime p = 5 and the newform

with conductor 27. Let

ZE,ω(p, τ) =
ZNE(τ) | U(p2ω+1)

d(p2ω+1)
.

If p = 5, then we have

ZE,0(5, τ) = q + 8q4 + 49q7 + 75q10 + . . . ≡ FE(z) (mod 5)

ZE,1(5, τ) = q +
195040

480
q4 +

6821395

480
q7 + . . . ≡ FE(z)

(
mod 52

)
.

We prove this theorem using techniques outlined in [GKO10]. Similar results can

be found in both [EGO10] and [AGOR14]. In [EGO10], El-Guindy and Ono study

a modular function that arises from Gauss's hypergeometric function that gives a

modular parameterization of period integrals of E32, the elliptic curve with conductor

32. In [AGOR14], Theorem 1.3 builds p-adic formulas for the corresponding weight

2 newforms using the action of the Hecke algebra on the Weierstrass mock modular
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forms.

5.2 Weierstrass mock modular forms

Recall we are interested in computing the Weierstrass mock modular form for the

elliptic curves with conductors 27, 32, 36, 64, and 144 given by Table 5.1. The value

of S(ΛE) is 0 for each of these curves and so the Weierstrass mock modular form

Ẑ+
E(z) is ζ(ΛE; EE(z)). Bruinier, Rhoades, and Ono [BOR09], and Candelori [Can]

proved that if a normalized newform has complex multiplication then the holomorphic

part of a certain harmonic Maass form has algebraic coe�cients; in particular, the

coe�cients of Ẑ+
E(z) are algebraic.

Relabeling z as τ so that q = e2πiτ , we can now de�ne the derivative of the

Weierstrass mock modular form as ZNE(τ) = q · d
dq
Ẑ+
E(τ). The list below gives the

�rst few terms of the q-expansion for the derivative of the Weierstrass mock modular

form for each of the �ve curves.

NE q-expansion for ZNE(τ)
27 −q−1 + q2 + q5 + 6q8 − 6q11 − 7q14 − 9q17 + 8q20 + 15q23 + . . .
32 −q−1 + 2q3 + q7 − 2q11 + 5q15 − 14q19 − 4q23 + 12q27 + . . .
36 −q−1 + 3q5 + q11 − 5q17 − 8q23 − q29 + 28q35 + . . .
64 −q−1 − 2q3 + q7 + 2q11 + 5q15 + 14q19 − 4q23 − 12q27 + . . .
144 −q−1 − 3q5 + q11 + 5q17 − 8q23 + q29 + 28q35 + . . .

5.3 Eta-quotients

In Chapter 2, we described some of the properties of eta-quotients. We now want to

relate these properties to the Weierstrass mock modular forms formulated above. If

the derivative of the Weierstrass mock modular form, ZNE(τ), is an eta-quotient, cer-

tain properties must hold. In [Ono04], Ono described the following result of Gordon,

Hughes, and Newman on eta-quotients.
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Theorem 5.3.1 (Theorem 1.64 of [Ono04]). If f(τ) =
∏
δ|N

η(δτ)rδ is an eta-quotient

with k = 1
2

∑
δ|N

rδ ∈ Z, with the additional properties that

∑
δ|N

δrδ ≡ 0 (mod 24)

and ∑
δ|N

N

δ
rδ ≡ 0 (mod 24) ,

then f(τ) satis�es

f

(
aτ + b

cτ + d

)
= χ(d)(cτ + d)kf(τ)

for all  a b

c d

 ∈ Γ0(N).

Here the character χ is de�ned for χ(d) :=
(

(−1)ks
d

)
, where s =

∏
δ|N

δrδ .

In Section 5.5, we will prove that the derivative of the Weierstrass mock modular

form ZNE(τ) is an eta-quotient or a twist of one. In order to help us identify plausible

eta-quotients to describe ZNE(τ), note that any such eta-quotient
∏
δ|NE

η(δτ)rδ must

satisfy the following:

∑
δ|NE

rδ = 4,

∑
δ|NE

δrδ = −24,

∑
δ|NE

NE

δ
rδ ≡ 0 (mod 24) ,

∏
δ|NE

δrδ = a2 for some integer a.

(5.1)
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This description follows from Theorem 5.3.1, together with the fact that ZNE(τ)

has weight 2, level NE and leading term q−1.

5.4 Examples

5.4.1 NE = 27

Consider the curve E : y2 + y = x3 − 7, which has conductor NE = 27. The eta-

quotient η(3τ)η6(9τ)η−3(27τ) satis�es the four properties described in Equation(1)

for NE = 27 and its initial terms match with those of Z27(τ), as shown below:

η(3τ)η6(9τ)η−3(27τ) = q−1 − q2 − q5 − 6q8 + 6q11 + 7q14 + 9q17 −O(q20)

Z27(τ) = −q−1 + q2 + q5 + 6q8 − 6q11 − 7q14 − 9q17 +O(q20).

Thus we de�ne η27 = −η(3τ)η6(9τ)η−3(27τ) and guess that Z27 = η27. This will

be proven in Section 5.5 in order to establish Theorem 5.1.1.

5.4.2 NE = 32

Consider the curve, E : y2 = x3+4x. The eta-quotient η2(4τ)η6(16τ)η−4(32τ) satis�es

the four properties described in Equation(1) for NE = 32 and its initial terms match

with those of Z32(τ), as shown below:

η2(4τ)η6(16τ)η−4(32τ) = q−1 − 2q3 − q7 + 2q11 − 5q15 + 14q19 +O(q23)

Z32(τ) = −q−1 + 2q3 + q7 − 2q11 + 5q15 − 14q19 −O(q23).

Letting η32 = −η2(4τ)η6(16τ)η−4(32τ), we will later prove Z32 = η32 in Section 5.5

to establish Theorem 5.1.1.
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5.4.3 NE = 36

Consider the curve with level 36, E : y2 = x3+1. The eta-quotient η3(6τ)η(12τ)η3(18τ)η−3(36τ)

satis�es the four properties described in Equation(1) for NE = 36 and its initial terms

match with those of Z36(τ), as shown below:

η3(6τ)η(12τ)η3(18τ)η−3(36τ) = q−1 − 3q5 − q11 + 5q17 + 8q23 + q29 −O(q35)

Z36(τ) = −q−1 + 3q5 + q11 − 5q17 − 8q23 − q29 +O(q35).

Letting η36 = −η3(6τ)η(12τ)η3(18τ)η−3(36τ), we will later prove Z36 = η36.

5.4.4 NE = 64

Consider the curve with level 64, E : y2 = x3−4x. The eta-quotient η2(4τ)η6(16τ)η−4(32τ)

satis�es the four properties described in Equation(1) forNE = 64. Note−η2(4τ)η6(16τ)η−4(32τ) =

η32. The initial terms of this eta-quotient match with those of Z64(τ), as shown below:

η2(4τ)η6(16τ)η−4(32τ) = q−1 − 2q3 − q7 + 2q11 − 5q15 + 14q19 +O(q23)

Z64(τ) = −q−1 − 2q3 + q7 + 2q11 + 5q15 + 14q19 −O(q23).

Letting η64 = η32 |χ8 , we will later prove Z64 = η64.

5.4.5 NE = 144

Consider the curve with level 144, E : y2 = x3−1. The eta-quotient η3(6τ)η(12τ)η3(18τ)η−3(36τ)

satis�es the four properties described in Equation(1) forNE = 144. Note−η3(6τ)η(12τ)η3(18τ)η−3(36τ) =

η36. The initial terms of this eta-quotient match with those of Z144(τ), as shown be-
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low:

η3(6τ)η(12τ)η3(18τ)η−3(36τ) = q−1 − 3q5 − q11 + 5q17 + 8q23 +O(q29)

Z144(τ) = −q−1 − 3q5 + q11 + 5q17 − 8q23 +O(q29).

Letting η144 = η36 |χ12 , we will later prove Z144 = η144.

5.5 Proof of Theorem 5.1.1 and Theorem 5.1.2

Proof of Theorem 5.1.1. When the conductor of E is 27, 32, and 36, the modular

parameterization of these 3 curves has degree 1 (as computed in Sage [Dev15]) and

each Weierstrass mock modular form has only a single pole at in�nity. Let SNE

denote Sturm's bound for the space of modular forms on Γ0(NE) of weight 2, and

let ηNE denote the eta-quotient described in Section 5.3. For example, recall η27 =

−η(3τ)η6(9τ)η−3(27τ). Consider the di�erence of the eta-quotients, ηNE , and the

derivatives of the Weierstrass mock modular form, ZNE(τ). Both q-expansions have

a simple pole at in�nity. The principal part of ZNE(τ) for NE = 27, 32, 36 is constant

at every cusp except in�nity because the degree of modular parameterization for

E27, E32 and E36 is 1. Using the following formula, one can verify with a few Sage

computations that the order of vanishing of ηNE is nonnegative at each cusp c/d

(except at in�nity, where there is a simple pole) [Dev15].

Theorem 5.5.1 (Theorem 1.65 of [Ono04]). Let c, d and N be positive integers with

d|N and gcd(c, d) = 1. If f(z) is an eta-quotient satisfying the conditions of Theorem

1.64 for N , then the order of vanishing of f(z) at the cusp c
d
is

N

24

∑
δ|N

gcd(d, δ)2rδ

gcd(d, N
d

)dδ
.

Since the di�erence ZNE(τ)−ηNE is holomorphic, as shown above, if ZNE(τ)−ηNE
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is 0 for SNE coe�cients, the identities claimed for NE = 27, 32, 36 are correct. The

following table gives Sturm's bound for the space of modular forms on Γ0(NE) of

weight 2.

NE SNE
27 13
32 17
36 25

After checking the coe�cients of the expansions up to the corresponding bound, we

see Z27(τ) = η27 = −η(3τ)η6(9τ)η−3(27τ), Z32(τ) = η32 = −η2(4τ)η6(16τ)η−4(32τ),

and Z36(τ) = η36 = −η3(6τ)η(12τ)η3(18τ)η−3(36τ), as claimed.

The modular parametrization for E64 has degree 2, and the modular parametriza-

tion for E144 has degree 4 (as computed in Sage [Dev15]; also see [Zag85]); therefore

we cannot apply Sturm's bound to the di�erence of the associated Weierstrass mock

modular forms and eta-quotients. Instead we prove Z64 is a twist of Z32 by χ8,

and Z144 is a twist of Z36 by χ12. Consider �rst Z64, Z32, and χ8, where χ8 de-

notes the Kronecker symbol as before. We have already shown (Z32 − η32) |χ8= 0.

Therefore, Z32 |χ8 −η32 |χ8= 0. Since Z32 |χ8 −η32 |χ8 is a twist of a holomorphic

di�erence, we can use Sturm's bound to check up to S32 coe�cients and con�rm

Z32 |χ8= η32 |χ8= η64. To prove Z32 |χ8= Z64, note the q-expansions are equal up to

17 coe�cients and their di�erence is holomorphic (as the principal part of each is con-

stant at every cusp except in�nity as shown before). Therefore, Z32 |χ8= Z64 so Z64 =

η32 |χ8= η64 = −η2(4τ)η6(16τ)η−4(32τ) |χ8 . The proof for Z36 |χ12= Z144 is similar,

giving us the equality Z144 = η36 |χ12= η144 = −η3(6τ)η(12τ)η3(18τ)η−3(36τ) |χ12 .

Proof of Theorem 5.1.2. Theorem 5.1.2 is a consequence of Theorem 5.5.2 of Guerzhoy,

Kent, and Ono. Let g(τ) =
∞∑
n=1

b(n)qn ∈ S2(Γ0(NE)) denote the normalized newform

and EE(τ) its Eichler integral. Recall, g has rational coe�cients. Let f = f+ +f− de-

note a weight-0 harmonic Maass form where f+ is the holomorphic part. If ξ = ξ2 :=
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2iy2 d̄
dτ̄
, then we say that g is a shadow of f+ if ξ(f) = g. We say f ∈ H0(Γ0(NE)) is

good for g(τ) if the following hold;

1. The principal part of f at the cusp ∞ belongs to Q[q−1].

2. The principal part of f at other cusps is constant.

3. ξ(f) = g
<g,g>

where < ·, · > denotes the usual Petersson inner product.

LetD denote the operatorD := 1
2πi

d
dτ

so thatD(f+) =
∞∑
n=1

d(n)qn is the derivative

of the holomorphic part of the harmonic Maass form, i.e. the mock modular form.

Guerzhoy, Kent, and Ono relate the coe�cients of g and f using the following theorem.

Theorem 5.5.2 (Theorem 1.2 (2) of [GKO10]). Suppose g(τ) ∈ S2(Γ0(N)) has CM

and g is good for f . If p is inert in the �eld of complex multiplication, then we have

that

g = lim
ω→∞

D(f+) | U(p2ω+1)

d(p2ω+1)
.

Consider FE(τ) ∈ S2(Γ0(NE)), the normalized newform equal to an eta-quotient

for one of the elliptic curves E with complex multiplication listed in Table 5.1, ẐE(z)

the canonical harmonic Maass form and ZNE(τ) the derivative of the Weierstrass

mock modular form. The harmonic Maass form ẐE(z) is good for FE as follows:

1. The principal part of ẐE(z) at ∞ belongs to Q[q−1].

2. There are no poles at other cusps for NE = 27, 32, 36. Since Z64 is a twist of Z32

and Z144 is a twist of Z36, the principal parts of ẐE(z) for E64 and E144 must

have constant principal parts at other cusps.

3. By de�nition of ẐE(z), we have ξ(f) = g
<g,g>

.

Therefore, ẐE(z) is good for FE and we can apply Theorem 5.5.2 to show the

p-adic limit holds for the derivative of the Weierstrass mock modular form.
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