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Abstract

Reinforcement Learning with Manifold Optimization
By Jafer Hasnain

Reinforcement learning is a rapidly advancing field which in recent years has
expanded out of its niche origins to become one of the most potent paradigms available
within machine learning. The explosion of deep learning in the past decade has only
furthered this growth, leading an acceleration in the development of state-of-the-art
RL methods for highly complex use cases. Simultaneously, the study of information
geometry has expanded the understanding of the geometric spaces traversed by RL
algorithms as the field matures. The first part of this work provides an introduction
to reinforcement learning from its first principles, followed by an exploration of
two categories of differential/information geometric methods applied to RL. The
experiments in this work aim to broaden the understanding of this manifold structure
and draw intuitive conclusions regarding the utility of such techniques for improving
RL methods.
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Chapter 1

Introduction

This work explores the field of reinforcement learning from a geometric perspective.

Chapter 2 introduces reinforcement learning through its historical origins from the

field of optimal control, followed by a construction of foundational RL theory based

on the framework of Markov Decision Processes. This chapter concludes with an

exposition of policy-gradient methods as the basis for the majority of state-of-the-art

algorithms used today. The first portion of Chapter 3 aims to explore the effects of

imposing a manifold structure implied from the action space on the semi-gradient

SARSA algorithm with the goal of developing a method of curvilinear descent upon

its parameters, concluding with an experimental implementation of the developed

methods and discussion of the results. The second portion of Chapter 3 draws from

the field of information geometry in order to formalize the geometric structure of

statistical manifolds and examine the derived methods for RL that have appeared in

recent years, as well as explore the difficulties, complications, and considerations that

must be made.

The ultimate objective of this work is to provide a motivation for the development

of reinforcement learning methods that leverage the geometry of the parameter spaces

they traverse.
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Chapter 2

Background

This chapter serves as a brief introduction to reinforcement learning (RL) — including

the terminology, notation, and methods relevant for the subsequent chapters. Specifi-

cally, the development of ideas in this chapter is meant to motivate and elucidate the

concept of RL with function approximation, which serves as the basic framework for

all of the following material in this work.

2.1 Introduction to Reinforcement Learning

Reinforcement learning (RL) is a paradigm within machine learning that concerns the

following question: How can an agent within an environment maximize its expected

reward? More specifically, the objective of RL is to ascertain the optimal policy — i.e.

the best action with respect to reward — for the agent in each possible state of the

environment. Evidently, such a broad question opens the door for the application of

this framework to a huge class of problems, particularly those that can be formulated

in the language of optimal control. As will be shown, the generality of this framework

gives way to its extensibility, where a prudent use of assumptions, approximations,

and heuristics allows agents to be trained in even the most treacherous environments.

2



3

2.1.1 History and examples

The earliest theoretical underpinnings of reinforcement learning come from the study

of optimal control where, for a dynamical system, the goal is to obtain a control policy

such that an objective function is maximized [38]. In the mid-1950’s, mathematician

Richard Bellman formulated such problems in a language that later became ubiquitous

in modern RL. In particular, he introduced a principle of optimality, which provides a

necessary condition for an optimal policy as having an optimal substructure, resulting

directly in his groundbreaking method of dynamic programming [7]. His formulation

of decision processes centers around ascribing a “value” to each state as the optimal

expected payoff from beginning in that state. With dynamic programming, the Bellman

equation for discrete-time problems (and the similarly named Hamilton-Jacobi-Bellman

equation for continous-time problems) provide a direct way to obtain the optimal

value function for a system via the convergent process of value iteration. The discrete-

time case — more precisely described in terms of Markov decision processes — is of

particular relevance to reinforcement learning, where it serves as the fundamental

framework through which problems are formulated.

In 1960, engineer Ron Howard extended Bellman’s value iteration to introduce

policy iteration, which extended the understanding of the intimate relationship between

policy evaluation and improvement. Indeed, most modern reinforcement methods

can be framed in the context of general policy iteration [14]. A 2002 article by

Howard retrospectively describes the development of policy iteration as in the realm

of operations research (in fact, the method was developed for the Sears’ catalogue

mailing system), as well as the general excitement around the MDP framework at the

time [15]. The advancements made with Markov decision processes in the context

of optimal control, however, still lacked the “learning” aspect crucial in the modern

study.

Sutton [38] describes the origin of this aspect as the early exploration of “trial-
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and-error” methods in pursuit of artificial intelligence. While Deep RL — i.e. RL

with neural networks — is a much later development, Minsky’s SNARCs (Stochastic

Neural Analog Reinforcement Computers) provide one of the earliest computational

attempts for trial-and-error learning. Furthermore, the 1960s saw the groundbreaking

work of British researcher Donald Michie on trial-and-error learning in the form of his

famous MENACE (Matchbox Educable Noughts and Crosses Engine) for tic-tac-toe

[27]. Michie’s BOXES algorithm used for MENACE was also used to build the GLEE

(Game Learning Expectimaxing Engine) method for the cart-pole i.e. pole balancing

problem, a test environment that will be encountered later in this work. Similarly

groundbreaking was Arthur Samuel’s 1959 program for playing checkers, which utilized

techniques that bear resemblance to later temporal-difference (TD) methods. The

use of board games as a test environment and backdrop against which major RL

breakthroughs are made is a constant theme throughout the history of the field.

In the early-1980’s, key developments by Richard Sutton and Andrew Barto

provided the synthesis of the aforementioned developments with conceptual tools in

neuroscience and animal psychology, eventually leading to the development of temporal-

difference learning. The advent of TD methods can be identified as a recognizable

turning point from the disparate threads of work in optimal control and trial-and-error

towards a more unified branch of machine learning — one notably distinct from the

supervised/unsupervised learning dichotomy. Crucially, temporal-difference methods

improved upon the Monte-Carlo methods of the time by introducing the concept of

bootstrapping — i.e. on-line improvement of predictions as the agent progresses within

an episode. The gap between Monte-Carlo and TD methods was further blurred

by Sutton’s development of TD(λ) [37], which was utilized by Gerald Tesauro in

conjunction with an artificial neural network for TD-Gammon (for backgammon).

The success of TD-Gammon in 1992 was a clear demonstration of the capability of

RL to meet and even surpass the capabilities of humans in certain environments.
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Christopher Watkin’s introduction of Q-learning in his 1989 PhD thesis represented a

clear advancement in the direction of off-policy learning, a distinction that will be

explored in a following section [42].

The methods as described thus far are overwhelmingly — in their purest form

— tabular methods for problems modeled as discrete MDPs, and thus suffer from

the “curse of dimensionality” (coined by Bellman [7]). The inescapable constraint

on computability raised by the massive state-action spaces encountered in real-world

problems has been recognized from the beginning — indeed by Bellman himself [7].

Such difficulties have motivated the development and usage of function approximations

from the beginning, ranging from simple linear approximations to the state-of-the-art

neural networks of today’s deep learning. The critical works introducing the standard

methods for function approximated RL — and especially deep reinforcement learning

— will be cited, examined, and explored in the following work.

2.1.2 Markov decision processes

Markov decision processes (MDP) serve as the basic, idealized mathematical framework

within which reinforcement learning problems can be formulated. Formally, an MDP

is a stochastic process that satisfies the Markov property — i.e. that the conditional

probability distribution of future states depends only on the current state (otherwise

known as “memory-less”). This framework describes the trajectory of an agent as

it interacts with an environment. There are a number of notational conventions in

common use surrounding the study of MDPs. It is thus of note to the reader that the

conventions used in this work will primarily follow those of Sutton (1998) [38].

Specifically, an MDP is composed of a state space denoted S, an action space

denoted A, and a transition probability distribution denoted p(s′, r | s, a). This

distribution describes the probability of the agent transitioning to state s′ and receiving

reward r, given it takes action a in state s. The Markov property ensures that the
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dynamics of the environment are completely determined by p(s′, r | s, a). Since MDPs

are inherently a stochastic process, it is crucial to recognize the trajectory of an agent

through the environment as a sequence of random variables St ∈ S, At ∈ A, and

by convention, Rt+1 ∈ R where R is the set of possible rewards. Furthermore, the

action taken in a particular state is given by the policy denoted π(a | s) which, by

representation as a conditional probability distribution, allows for the consideration of

both stochastic and deterministic policies.

With this notation, the transition probability distribution is denoted as

p(s′, r | s, a) = P{St = s′, Rt = r | St−1 = s, At−1 = a} (2.1)

and the trajectory of an agent through an environment represented as

S0, A0, R1, S1, A1, R2, S2, A2, R3 . . . (2.2)

where for an episodic MDP, there is some finite t = T such that the trajectory

terminates at RT . For a continuing MDP, the case of T =∞ is considered [38].

In a similar fashion, the policy of an agent is formally defined as

π(a | s) = P{At = a | St = s} (2.3)

as a distribution over the actions a ∈ A(s) available to the agent in state s ∈ S.

In many cases, the initial state distribution, denoted µ(s) = P{S0 = s}, is of particular

importance, especially regarding the “exploration vs. exploitation” considerations

often made in RL.

MDPs are further categorized into discounted and undiscounted varieties, which

refer to the relative weight given to long-term rewards. A discount rate parameter γ

where 0 ≤ γ ≤ 1 is introduced to attenuate the preference for immediate vs. future



7

expected reward. With this parameter in mind, the total discounted future reward at

time t is denoted Gt where

Gt =
T∑

k=0

γkRt+k+1 (2.4)

The objective of the agent will thus be to select a policy π(a | s) such that the chosen

At maximizes the expected Gt.

Towards this objective, it is crucial to determine the value of each state in terms

of the total reward that can be expected when following a particular policy. The

contributions of Bellman [7] towards the utility of value functions in MDPs may be

recalled from the previous section. Given a particular policy, two interrelated value

functions can be constructed: the state-value function and the action-value function

(alternatively called the state-action value function).

The state-value function vπ(s) under a policy π is defined as

vπ(s) = Eπ[Gt | St = s] , for all s ∈ S (2.5)

i.e. the total expected reward for an agent starting in state s and following policy π.

The action-value function qπ(s, a) under a policy π is defined as:

qπ(s, a) = Eπ[Gt | St = s, At = a] , for all s ∈ S and a ∈ A(s) (2.6)

i.e. the total expected reward for an agent starting in state s, then taking action a,

and thereafter following policy π.

With a characterization of state-values and action-values defined, the objective of

the agent can be described as to find an optimal policy denoted π∗ — i.e. the policy

in which vπ∗ and qπ∗ ascribe the maximum value to each state (or state-action pair).
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Formally, value functions under the optimal policy π∗ are given by

vπ∗ = max
π

vπ(s) and qπ∗ = max
π

qπ(s, a) (2.7)

The major contribution of Bellman [7] to the study of MDPs comes from the aptly

named Bellman optimality equations which, for finite MDPs, provide a recursive

definition for each value function as

vπ∗(s) = max
a∈A(s)

qπ∗(s, a)

= max
a

E[Rt+1 + γvπ∗(St+1) | St = s, At = a]

= max
a

∑
s′,r

p(s′, r | s, a)[r + γvπ∗(s
′)]

(2.8)

with an equivalent form for qπ∗(s, a) as

qπ∗(s, a) = E[Rt+1 + γmax
a′

qπ∗(St+1, At+1) | St = s, At = a]

=
∑
s′,r

p(s′, r | s, a)[r + γmax
a′

qπ∗(s
′, a′)]

(2.9)

where s′ and a′ denote the next state and action respectively. Intuitively, these

equations compute the maximum value of a state/state-action as the reward of the

best possible action plus the maximum value of the resulting state/state-action,

allowing for a recursive construction that relates each state/state-action to those

surrounding.

The Bellman optimality equations for finite MDPs serve their most crucial role in

the method of dynamic programming and indeed allow for a direct — albeit often

computationally impractical — way to solve for a unique solution for finite MDPs

where the environment dynamics are totally known. While the content of this work

does not directly concern dynamic programming, finite MDPs, or problems where

the environment dynamics are known, the framework defined for MDPs allows for a
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more precise mathematical characterization of RL problems and thus describes the

objective of all RL methods: to converge to an optimal policy. As will be described in

the following sections, the methods used in RL often reach this objective by iteratively

refining their approximation of the value functions and converging to a deterministic

policy that is greedy with respect to them. Crucially, the use of function approximation

allows for a process that does not require computation over the entire state-action

space which, in nearly all real-world problems, is infeasible.

2.2 Methods and algorithms

This section introduces a subset of methods and algorithms used in reinforcement

learning with emphasis on those relevant for this work, as well as place them within

the conventional classifications used in the field. In particular, the objective of this

section is to introduce the usage of function approximation as a powerful and necessary

tool for the real-world application of RL.

2.2.1 Classifications

Reinforcement learning algorithms can broadly be divided into two categories: model-

based and model-free. The use of the term “model” in these terms is often a source of

confusion. In this case, model-based refers to an RL algorithm that relies on knowing

— or otherwise building an estimate for — the environment dynamics. Dynamic

programming, for example, requires total knowledge of the transition probability

distribution and rewards as is necessary for solving the Bellman equations. In a

general sense, a model-based algorithm relies less on sampling and more on constructing

accurate predictions for the outcome of each action, and are thus typically considered

“sample-efficient” [19]. Comparatively, model-free methods are not concerned with

simulating environment dynamics and instead learn value-function estimates or policies
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based solely on experience accrued by interacting with the environment. Such methods

thus enjoy the advantage of greater generalizability at the cost of slower, more intensive

learning. Model-based methods are encountered much less frequently and indeed the

majority of available RL methods, including those used in this work, are classified as

model-free.

Within the category of model-free algorithms, a further distinction is made between

on-policy vs. off-policy methods. This distinction is defined by the difference in the

behavior policy — the policy that determines an agent’s trajectory — and the update

policy — that which guides the update rule for the optimal policy estimate. As

the name suggests, the behavior and update policies are one and the same for on-

policy methods i.e. the agent improves its own policy through experience. On the

other hand, an off-policy method maintains a distinction between the behavior and

update policies such that the agent’s own behavior may not be related to the optimal

policy estimate it is building. Since off-policy methods can improve the estimate

while still exploring heavily, it may appear that they would be preferred to on-policy

methods. Unsurprisingly, the reality is more nuanced. Given enough exploration,

off-policy methods produce an unbiased estimate of the optimal policy, as well as

being considered sample-efficient. However, on-policy methods are often easier to

implement, less computationally intensive, and may produce “safer” policies since the

agent is following its own estimate (thus discouraging a risky policy) [13]. Ultimately,

the user must choose a paradigm that suits the specific use-case.

2.2.2 Dynamic programming

Although dynamic programming as a method is not directly relevant to this work,

a cursory overview of the framework is useful as an introduction to the interplay

between policy evaluation and policy improvement where, as mentioned previously,

most reinforcement learning methods can framed in the context of general policy
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iteration.

Dynamic programming, in its most common form, is applicable for solving control

problems modeled as discrete finite Markov decision processes. Note that the method

developed by Bellman [7] is also applicable for continuous control problems either in

the usual way via discretization, or by solving the Hamilton-Jacobi-Bellman partial

differential equation through numerical methods. In the usual case, “discrete” refers

to discrete-time (as MDPs are required to be) and “finite” refers to a finite state and

action space. The following exposition summarizes that provided by Sutton (2018)

[38], with reference to Howard (1960) [14] when applicable.

Recall the Bellman optimality equations (2.8) and (2.9) respectively:

vπ∗(s) = max
a

∑
s′,r

p(s′, r | s, a)[r + γvπ∗(s
′)]

qπ∗(s, a) =
∑
s′,r

p(s′, r | s, a)[r + γmax
a′

qπ∗(s
′, a′)]

The main idea of policy iteration is begin with some non-optimal policy π0 and

alternate steps of policy evaluation and policy improvement until the the Bellman

equations are satisfied — at which point the unique optimal policy has been reached.

The general scheme of this process is as follows:

π0
Ev−→ vπ0

Im−→ π1
Ev−→ vπ1

Im−→ π2
Ev−→ vπ2

Im−→ . . . . . .
Im−→ π∗

Ev−→ vπ∗

Policy evaluation itself is often an iterative process via

vk+1(s) =
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)[r + γvk(s
′)] (2.10)

which can be shown to converge to vπ in general [14].



12

Policy improvement is more straightforward. Consider some policy π for which vπ

has been evaluated. Denote the greedy policy π′ where

π′(a | s) = argmax
a

qπ(s, a)

= argmax
a

∑
s′,r

p(s′, r | s, a)[r + γvπ(s
′)]

(2.11)

where the selection of the maximizing action ensures that vπ′(s) ≥ vπ(s) for all s.

If vπ′(s) = vπ(s), then

vπ′(s) = max
a

∑
s′,r

p(s′, r | s, a)[r + γvπ′(s′)] (2.12)

which satisfies Bellman optimality.

The method of dynamic programming via policy iteration for finite MDPs consists

of the alternating application of evaluation and improvement until optimality is reached.

Since both steps require knowledge of the environment dynamics i.e. the transition

probability p(s′, r | s, a), the method is classified as model-based.

2.2.3 Temporal-difference methods

Temporal-difference (TD) learning is centered around the idea of bootstrapping, that

is, constantly updating prior predictions to match new experience. The “temporal-

difference” as named refers to the difference between a previous and newer estimate

constructed as the agent gains experience in the environment. Sutton (1988) [37]

provides a succinct demonstration

Suppose you wish to predict the weather for Saturday, and you have some model
that predicts Saturday’s weather, given the weather of each day in the week.
In the standard case, you would wait until Saturday and then adjust all your
models. However, when it is, for example, Friday, you should have a pretty
good idea of what the weather would be on Saturday – and thus be able to
change, say, Saturday’s model before Saturday arrives.
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TD methods are classified as model-free, but include both on-policy and off-policy

variants. In their simplest construction, TD methods solve the control problem by the

evaluation of qπ along a certain type of policy. This evaluation is done by minimization

of the TD error which compares a prior evaluation to a newer unbiased estimate of

the true value — called the TD target. If with sufficient exploration the policy being

evaluated converges to a greedy policy, then qπ → qπ∗ is expected since the optimal

policy is always greedy with respect to action-values. A common choice is an ε-greedy

policy which, for small ε > 0, selects a random action with probability ε and the

greedy action otherwise. The construction of the TD target is the main difference

between the various TD algorithms. In general, the update rule for the iteration in

the tabular case is

q(St, At)← q(St, At) + α[Ut − q(St, At)] (2.13)

where α is the step-size (alternatively “learning rate”) and Ut is the chosen TD target.

SARSA (“state-action-reward-state-action”) is the ubiquitous on-policy TD method

in which the TD target is set as the n-step discounted reward experienced by the

agent. Specifically, the target is set as

Ut:t+n = Rt+1 + γRt+2 + γ2Rt+3 + . . .+ γn−1Rt+n + γnqt+n−1(St+n, At+n) (2.14)

The simplest case is referred to as SARSA(0) i.e. one-step SARSA, where the update

rule is

q(St, At)← q(St, At) + α[Rt+1 + γq(St+1, At+1)− q(St, At)] (2.15)

Note that the next action At+1 is sampled from the policy — typically ε-greedy — and

thus the update depends only on state-action pairs visited by the agent’s trajectory.

For this reason, n-step SARSA is considered an on-policy algorithm. Additionally,
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convergence to the optimal policy for SARSA(0) is guaranteed assuming infinite visits

to every state-action pair and convergence to a greedy policy Singh (2000) [35]. These

criteria motivate the usual choice for ε-greedy policies.

However, the TD target can be modified to incorporate off-policy learning. Q-

learning is the standard off-policy TD method. It allows the agent to pursue an

exploratory trajectory while simultaneously updating the action-value estimate as if

a greedy policy were being followed, recalling the discussion of behavior and update

policies from Section 2.2.1. The Q-learning update for the tabular case is set as

q(St, At)← q(St, At) + α[Rt+1 + γmax
a′

q(St+1, a
′)− q(St, At)] (2.16)

There are a few differences between Q-learning and SARSA that have been shown

heuristically [40]. Q-learning generally converges faster than SARSA, but SARSA

will often prefer a “safer” policy. Such a difference may be attributed to SARSA’s

on-policy nature where a ε-greedy policy may discourage risky trajectories that skirt

on the brink of failure.

2.2.4 Function approximation

The discussion of reinforcement learning via Markov decision processes has thus far

proceeded with the assumption that the state-action space is small enough to be

stored and enumerated in its entirety. Methods that utilize a total representation of

the environment are referred to as tabular methods in reference to their typical storage

as an array. However, the majority of real-life applications have state-action spaces

much too vast to be reasonably stored or computed on in their entirety, leading to the

“curse of dimensionality” for tabular methods, as coined by Bellman [7]. Approximate-

solution methods therefore provide an useful toolkit for learning optimal policies on

otherwise intractable environments.
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Approximate-solution methods center around the construction of a simpler model

for the state (or state-action) space such that the target — typically a value or

advantage function — may be usefully approximated. Most often, the goal is to

construct either v̂π : S → R or q̂π : S × A → R as approximations to the true value

functions vπ(s) or qπ(s, a) respectively — i.e. evaluate policy π. There are a wide

variety of methods to construct such approximations. Most relevant to this work are

parametric methods in which the approximations are defined with respect to some

vector w of parameters.

The simplest category of parametric methods are linear parametric methods in

which the state (or state-action) space is represented by d features. Let ϕ : S×A → Rd

be a feature map for the state-action space with d features. For (s, a) ∈ S ×A, denote

the linear function approximation of qπ(s, a) as

q̂w(s, a) = w⊤ϕ(s, a) (2.17)

where w ∈ Rd is the vector of parameters such that

w ∈ argmin
z∈Rd

Es∼µ,a∼π[qπ(s, a)− q̂z(s, a)]2 (2.18)

i.e. the mean squared error is minimized. Such a policy evaluation for π is often done

iteratively via gradient methods. If parameter w is obtained such that q̂w ≈ qπ∗ , then

the control problem is solved simply by selecting a policy π that is greedy with respect

to q̂w. The minimization problem as stated can be reframed as a desired to achive

Bellman optimality, where the objective in this case would be to obtain the parameter

w such that the Bellman error

δw(s, a) = E[Rt + γ max
a′∈A(s)

q̂w(St+1, a
′)− q̂w(s, a) | St = s, At = a] (2.19)
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for each state-action pair is minimized in squared expectation, i.e.

w ∈ argmin
z∈Rd

Es∼µ,a∼πwδz(s, a)
2 (2.20)

This objective applies to parametric methods generally and not only to the linear

case. In fact, artificial neural networks (ANNs) are encompassed by the category

of non-linear parametric methods where — amongst other complexities — the same

construction and minimization problem apply.

Deep reinforcement learning is the application of ANNs as function approximators

in the same way as described thus far. The major benefit that ANNs hold over linear

methods is that the set of features does not require deliberate construction. Of course,

the structure of the network as designed has a bearing on the performance of the

approximator, but the network’s hidden layers learn the important features of the

state-action space themselves — albeit in an opaque manner. As an example to

demonstrate a neural network-approximated value function, consider the two-layer

case in which the approximation of q is constructed as

q̂θ(x) =
1√
m

m∑
j=1

ajσ(W
⊤
j x) (2.21)

where the state-action pair (s, a) ∈ S × A is represented by a vector x ∈ X ⊆ Rd

where d > 2, ∥x∥2 = 1, and the set of rewards bounded above for any x ∈ X . The

parameters of this network are θ = (a1, . . . , am,W1, . . . ,Wm) and σ(y) is the chosen

activation function. The training procedure thus proceeds on θ until a θ∗ is obtained

such that q̂θ∗ satisfies the minimization in (2.20).
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2.2.5 Policy-gradient methods

The objective of reinforcement learning is to converge to an optimal policy. In the

previous section, this objective was reached via the convergence of a function approxi-

mation to the optimal value function and subsequently choosing the greedy policy.

Instead, consider converging upon the policy directly. This idea is a generalization

of the method of policy iteration described in Section 2.2.2 in which the policy is

improved with respect to some evaluated performance measure. Using the tools of

function approximation developed thus far, the policy may be parametrized with

respect to a set of features. Ensuring differentiability of this construction across the

parameter space allows for standard methods of stochastic gradient ascent/descent to

be applied.

Formally, consider a smooth parametrized policy πθ where θ is the parameter.

Note that a stochastic policy is desired i.e. the policy defines a probability distribution

for the actions conditional on the current state and is thus denoted πθ(a | s). A

common choice for such a policy is a softmax selection (i.e. the normalized exponential

function) which ensures a differentiable policy that satisfies the requirements for a

probability distribution.

A softmax policy is defined as

πθ(a | s) =
eh(s,a,θ)∑
b e

h(s,b,θ)
(2.22)

where h : S ×A×Θ→ R ascribes a numerical preference for each action. Notably,

the function h(s, a, θ) can make use of a featurizer ϕ(s, a) in the same manner as the

value function approximations discussed previously. The construction of h(s, a, θ) may

simply be linear in the features i.e.

h(s, a, θ) = θ⊤ϕ(s, a) (2.23)
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or more complex — like an artificial neural network as described in Section 2.2.3. Of

course, softmax selection is only a single example of a possible parameterization.

The performance measure of interest is often the total expected reward of a

trajectory. Consider a trajectory τ = (s0, a0, r1, s1, a1, r2, . . . rT ) and denote the total

reward for the trajectory as R(τ). The aim is to maximize the performance measure

J(θ) = Eτ [R(τ)] =

∫
p(τ |θ)R(τ)dτ (2.24)

i.e. the expected total reward over possible trajectories under πθ.

Gradient ascent with respect to θ requires evaluation of ∇θJ(θ) as

∇θJ(θ) = ∇θ

∫
p(τ |θ)R(τ)dτ

=

∫
p(τ |θ)∇θ log p(τ |θ)R(τ)dτ

= Eτ [∇θ log p(τ |θ)R(τ)]

(2.25)

where p(τ | θ) is the probability of a particular trajectory under πθ. Unrolling this

into an expression in terms of the initial state distribution, policy, and transition

probability results

p(τ |θ) = µ(s0) · πθ(a0|s0) · p(s1, r1|s0, a0) · πθ(a1|s1) · p(s2, r2|s1, a1)

. . . πθ(aT−1|sT−1) · p(sT , rT |sT−1, aT−1)

(2.26)

which can be substituted into the previous expression to yield

∇θJ(θ) = Eτ

[
T−1∑
t=0

∇θ log πθ(at|st)R(τ)

]
(2.27)

Remarkably, the policy gradient expression allows for an unbiased estimate of the

performance gradient to be computed without knowledge of the environment dynamics.

However, this expression is known to have high variance for longer time horizons [24].
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In general, performance gradient estimators for the infinite time horizon have the form

g = Eτ

[
∞∑
t=0

Ψt∇θ log πθ(at|st)

]
(2.28)

where ∇θ log πθ(at|st) is called the score function [30].

Schulman (2018) [33] provides a list of common choices for Ψt

•
∑∞

t=0 rt : total trajectory reward

•
∑∞

t=t′ rt′ : reward following at

•
∑∞

t′=t rt′ − b(st′) : baselined version of above

• qπθ
(st, at) : state-action value function

• Aπθ
(st, at) : advantage function

• rt + vπθ
(st+1)− vπθ

(st) : one-step TD residual

Advantage functions are of particular interest as a choice to reduce the estimator

variance. Broadly, advantage functions approximate the quantity qπθ
(st, at)− vπθ

(st)

i.e. the excess expected reward gained by taking action at.

Practical applications of policy gradient methods often make the tradeoff between

variance and bias. Schulman (2018) [33] provides the generalized advantage estimate,

the exposition of which will be provided here due to its ubiquitous usage. In particular,

Schulman considers the γ-discounted value functions which — although introducing

bias into the estimate — greatly reduce the variance by attenuating the effects of

rewards distal to (st, at)

vγπθ
(st) = Eτ

[
∞∑
k=0

γkrt+k

]

qγπθ
(st, at) = Eτ

[
r̃t +

∞∑
k=1

γkrt+k

]

Aγ
πθ
(st, at) = qγπθ

(st, at)− vγπθ
(st)

(2.29)
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where r̃t is the off-trajectory reward from taking action at.

With this formulation, the γ-discounted policy gradient is defined as

gγ = Eτ

[
∞∑
t=0

Aγ
πθ
∇θ log πθ(at|st)

]
(2.30)

Under GAE, the advantage function Aγ
πθ

is estimated by the k-step discounted ap-

proximation Â
(k)
πθ constructed by first considering the discounted one-step TD residual

δγt = rt + γvγπθ
(st+1)− vγπθ

(st) (2.31)

which can be verified to be an unbiased estimator for Aγ
πθ

as

E[δγt ] = E[rt + γvγπθ
(st+1)− vγπθ

(st)]

= E[qγπθ
(st, at)− vγπθ

(st)]

= Aγ
πθ
(st, at)

(2.32)

The k-step discounted approximation is thus defined as the telescoping sum

Â(1)
πθ

:= δγt = rt + γvγπθ
(st+1)− vγπθ

(st)

Â(2)
πθ

:= δγt + γδγt+1 = rt + γrt+1 + γ2vγπθ
(st+2)− vγπθ

(st)

...

Â(k)
πθ

:=
k−1∑
l=0

γlδγt+1

(2.33)

The generalized advantage estimator GAE(γ, λ) is finally given by the exponentially-

weighted average of the k-step approximations. The specific details of the derivation
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may be found in Schulman (2018) [33].

GAE(γ, λ) = (1− λ)(Â(1)
πθ

+ λÂ(2)
πθ

+ λ2Â(3)
πθ

+ . . .)

...

=
∞∑
l=0

(γλ)lδγt+l

(2.34)

The policy gradient estimate with generalized advantage estimation is therefore

computed for N sampled trajectories as

ĝγ =
1

N

N∑
n=1

∞∑
t=0

∇θ log πθ(a
n
t |snt )

∞∑
l=0

(γλ)lδγt+l (2.35)



Chapter 3

Manifold-optimized RL

This chapter motivates and presents the application of information geometry towards

the improvement of the standard reinforcement learning methods presented in the

last chapter. This exploration is done under the hypothesis that there exists a latent

manifold structure to the various objects studied in RL which may be exploited to

improve the training trajectory. This idea is approached from two directions: imposing

an explicit manifold restriction on value-function parameters, and introducing second-

order policy information as a regularizer.

3.1 Motivation and previous work

The manifold hypothesis is a pervasive idea in machine learning which contends

that high-dimensional data exists in the vicinity of — or is perhaps sampled from —

embedded low-dimensional manifolds. This hypothesis has been used to motivate the

development of manifold learning techniques which leverage this assumption in the

spirit of dimensionality reduction and feature selection. Specifically, as Cayton (2005)

[8] describes, such techniques aim to duplicate the behavior of principal component

analysis (PCA) except on manifolds instead of on linear subspaces. The literature in

this regard has expanded in recent years with attempts to either test this hypothesis,

22
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such as the algorithm proposed in Fefferman (2013) [10], or leverage it through manifold

regularization, such as in Saxe (2014) [29], Lee (2015) [23], and Jin (2020) [20].

These efforts build upon a more general theory of statistical manifolds — known as

information geometry — of which the prolific work of Amari forms the foundational

basis. Amari (1998a) [5] introduces the natural gradient as an improved descent

direction for cost-function defined on a manifold, extending these ideas in Amari (2000)

[6] for manifold learning within the parameter space of neural networks. Building

directly off of Amari’s work, Kakade (2001) [21] introduces the natural policy gradient

as an improvement over the standard policy gradient method by including information

from the manifold of policies. In particular, the work of Amari and Kakade revolve

around the use of the Fisher information matrix as a suitable metric on a statistical

manifold. Schulman’s popular Trust-Region Policy Optimization (TRPO) [31] and

Proximal-Policy Optimization [32] methods that are ubiquitous in RL today draw

directly from Kakade’s natural policy gradient, allowing all three methods to be viewed

through an information theoretic lens. Most recently, the work of Chen (2023) [9] has

introduced a method for learning a suitable metric tensor which reflects the differential

structure of the policy network and loss function, rather than the standard choice of

the Fisher information metric.

In general, the motivation behind all of these methods — and indeed this work itself

— is to exploit the geometric structure inherent in the objects of interest in reinforcement

learning. The potential of manifold learning has already been demonstrated by the

precedent, but the application of such techniques to reinforcement learning is a

relatively recent development. In this sense, the purpose of this work is to explore

the application of geometric techniques to reinforcement learning and to examine the

performance of the resulting modified algorithms.
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3.2 Manifold-restricted methods

A straightforward approach for examining the effect of an assumed geometric structure

is to impose a manifold restriction. By forcing an algorithm’s training orbit to lie

upon some manifold within the broader parameter space, a simpler case study is

constructed allowing for a more interpretable examination. Specifically, the objective

of this section is to use such a restriction to develop an understanding of the tangent

space of a parameter manifold and develop a method for curvilinear descent upon

that manifold. The purpose of this section is demonstrative rather than practical

since information geometric considerations are not taken into account i.e. both of the

methods presented ignore stochastic effects.

In this section, the manifold restriction chosen is an orthogonality restriction which

has precedent for deep neural networks in Huang (2017) [16]. For an application to

reinforcement learning, an orthogonality restriction may be a useful proxy for the

orthogonal structure of the action space of some environments. Intuitively, some

environments may have discrete actions sets — such as {up, down, left, right} or

{forward, backward} or {active, inactive} — in which it may be desirable for the the

action-value function approximation q(s, a) to reflect their inherent orthogonality.

The setup for this section is as follows:

Consider a linear approximation to the state-action value function of an RL problem

with a discrete, finite action space A as

qW (s, a) = (We(a))⊤ϕ(s) (3.1)

where function e : A → R|A| maps action a to a standard basis vector of R|A|, featurizer

ϕ : S → Rd maps a state to a vector of d features, and W ∈ Rd×|A| is the matrix of

parameters. As discussed in Section 2.2.3, the objective is to obtain parameter matrix
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W such that the Bellman error

δW (s, a) = E[Rt + γ max
a′∈A(s)

qW (St+1, a
′)− qW (s, a) | St = s, At = a] (3.2)

for each state-action pair is minimized in squared expectation, i.e.

W ∗ = argmin
W∈Rd×|A|

Es∼µ,a∼πW

[
1

2
δW (s, a)2

]
(3.3)

For the entirety of this section and the subsequent experiments, the algorithm used

for solving this minimization is a one-step semi-gradient SARSA (see Section 2.2.4) in

which the standard update rule is given by

Wt+1 = Wt + α[rt + γqWt(st+1, at+1)− qWt(st, at)]∇qWt(st, at) (3.4)

where the step-size is denoted α for convenience, but more accurately denoted as

αt which decreases in iteration to satisfy the convergence conditions for stochastic

gradient descent (see Section 2.2.4).

The orthogonality condition to be imposed on this algorithm requires thatW⊤W =

I at all iterations. In particular, the set {X ∈ Rn×p | X⊤X = Ip} is a smooth manifold

embedded in Rn×p referred to as the Stiefel Manifold, and is normally denoted as

Vp(Rn) to describe a p-tuple of orthonormal vectors (a p-frame) in Rn. Verification

that Vp(Rn) is a smooth manifold follows from the Preimage Theorem [28].

Lemma 3.2.1. The space Vp(Rn) of p-frames in Rn is a compact smooth manifold of

dimension nk + k(k−1)
2

.

Proof. (Compactness) Consider Vp(Rn) as a subspace of all orthonormal p-tuples of

(Sn−1)p = Sn−1 × Sn−1 × · · ·
p times

× Sn−1 × Sn−1 (3.5)
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where Sn is the n-sphere. Since n-spheres are compact then their product is compact.

Vp(Rn) takes the subspace topology of this product and since

Vp(Rn) = {(v1, . . . , vp) ∈ (Sn−1)p | ⟨vi, vj⟩ = 0 for i ̸= j and ⟨vi, vj⟩ = 1 for i = j}

(3.6)

every convergent sequence Vk ∈ Vp(Rn) converges to an element of Vp(Rn), thus it is a

closed subspace. Since Vp(Rn) is a closed subspace of compact space, it is compact.

(Manifold) Define the map

f : Rn×p → Rp×p (3.7)

where f(X) = X⊤Y and observe that Vp(Rn) = f−1(Ip). It suffices to show that Ip is

a regular value of f i.e. that the map between tangent spaces

dfX : TX(Rn×p)→ Tf(X)(Rp×p) (3.8)

is surjective for all X ∈ Vp(Rn). Calculate dfX(Y ) as

dfX(Y ) = lim
h→0

f(X + hY )− f(X)

h

= lim
h→0

(X + hY )⊤(X + hY )−X⊤X

h

= lim
h→0

X⊤Y + Y ⊤X + hY ⊤Y

= X⊤Y + Y ⊤X

(3.9)

where for any Z ∈ Rp×p, set Y = 1
2
XZ and obtain

dfX(Y ) = X⊤(
1

2
XZ) + (

1

2
XZ)⊤X = Z (3.10)

thus the map between tangent spaces is surjective and Ip is a regular value of f ,

therefore Vp(Rn) is a smooth manifold by the Preimage Theorem. Specifically, Vp(Rn)
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is of dimension

dimVp(Rn) = dimRn×p − dimRp×p = np− p(p+ 1)

2
(3.11)

The geometric structure of the Stiefel manifold will be explored further in Section

3.2.2 with curvilinear descent. In order to examine the effects of an orthogonal

restriction on the action-value function approximation parameters, the most direct

method is to simply re-orthogonalize the parameter matrix at each step. Such a

procedure is equivalent to projecting the next iterate onto the Stiefel manifold at the

closest point with respect to some metric, as will be shown in the next section.

3.2.1 Orthogonal Procrustes

The simplest procedure for implementing an orthogonal restriction is to produce the

matrix W via the standard update and then compute the matrix R with orthogonal

columns (i.e. where R⊤R = I) which is closest to W with respect to the Frobenius

inner product ⟨A,B⟩ = Tr(A⊤B) and its induced norm. This problem is equivalent to

the Orthogonal Procrustes Problem well-known in the literature whose general solution

is given by Schönemann (1966) [34]. An additional solution for reduced-rank matrices

is given by Zou (2006) [17].

Theorem 3.2.2. Let R,W ∈ Rn×p be two matrices and consider the minimization

R̂ = argmin
R
∥R−W∥2F s.t R⊤R = I (3.12)

Suppose the singular value decomposition W = UΣV ⊤, then R̂ = UV ⊤
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Proof. The proof follows from a straightforward substitution of the decomposition

R̂ = argmin
R
∥R−W∥2

= argmin
R
⟨R−W,R−W ⟩

= argmin
R
∥R∥2 + ∥W∥2 − 2⟨R,W ⟩

= argmax
R
⟨R,W ⟩

= argmax
R
⟨R,UΣV ⊤⟩

= argmax
R
⟨U⊤RV,Σ⟩

= UV ⊤ since Σ non-negative

(3.13)

Specifically, the last statement results since U⊤R̂V = I is required for the maximization.

A simple procedure to project W onto the Stiefel manifold at the point closest

with respect to the Frobenius norm can now be constructed by first producing Wt+1

via the standard one-step semi-gradient SARSA update, then computing the singular

value decomposition Wt+1 = Ut+1Σt+1V
⊤
t+1, and finally producing

W̃t+1 = Ut+1V
⊤
t+1 (3.14)

3.2.2 Curvilinear descent on Stiefel manifold

Imposing an orthogonality restriction on the parameter matrix can also be enforced

by replacing the standard stochastic gradient descent in the parameter space with

a curvilinear descent along the embedded Stiefel manifold. In particular, such a

method requires a characterization of the tangent space of Stiefel manifolds in order

to construct a parameterized curve along which to compute the update. The idea in



29

this section is thus to compute the standard update direction, project this direction

onto the tangent plane of the Stiefel manifold, and then use a parameterization of a

curve along the manifold to produce the next iterate.

Recall the Stiefel manifold as

Vp(Rn) = {X ∈ Rn×p | X⊤X = Ip} (3.15)

Consider a particular X ∈ Vp(Rn) and extend X to an orthonormal basis of Rn,

letting X⊥ be the n× (n− p) matrix composed of the additional vectors such that the

concatenation [XX⊥] is an n× n orthonormal matrix. Since it is orthonormal, it is an

invertible linear operator and thus an automorphism on Rn×p. Therefore, any element

U ∈ Rn×p can be written as U = [XX⊥]C for some C ∈ Rn×p. Splitting C =

A
B


where A and B are p× p and (n− p)× p respectively allows for the representation

U = XA+X⊥B (3.16)

Denote the tangent space of the Stiefel manifold at X as TXVp(Rn). Tagare (2011)

[41] provides the following characterization

Lemma 3.2.3. For any Z ∈ TXVp(Rn)

Z⊤X +X⊤Z = 0 (3.17)

holds i.e. Z is a skew-symmetric p× p matrix

Proof. Let Y (t) be a smooth curve on Vp(Rn) where Y (0) = X and Y ′(0) = Z ∈

TXVp(Rn). Since Y (t) lies on the Stiefel manifold, Y (t)⊤Y (t) = Ip holds and differen-
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tiation with respect to t results

Y ′(t)⊤Y (t) + Y (t)⊤Y ′(t) = 0 (3.18)

where evaluation at t = 0 gives the result.

The tangent space can be further represented by in terms of the orthonormal basis

[XX⊥] as follows

Lemma 3.2.4. A matrix Z = XA+X⊥B is in the tangent space TXVp(Rn) if and

only if A is skew-symmetric

Proof. (⇒) Let Z ∈ TXVp(Rn) represented as Z = XA + X⊥B. The condition

from Lemma 3.2.3 requires Z⊤X +X⊤Z = 0 which upon substitution of Z results

A⊤ + A = 0 i.e. A is skew-symmetric.

(⇐) Consider the subspace S of Rn×p of all matrices Z = XA+X⊥B with A skew-

symmetric. From the forward direction, it has been shown that TXVp(Rn) is a subspace

of S. Furthermore,

dim(S) = np− p(p+ 1)

2
= dim(Vp(Rn)) = dim(TXVp(Rn)) (3.19)

thus S = TXVp(Rn)

The canonical inner product used on the tangent space of Stiefel manifolds used

predominantly in the literature aims to weigh each coordinate A and B equally. It is

given (without proof) as

⟨Z1, Z2⟩ = Tr(Z⊤
1 (I −

1

2
XX⊤)Z2) (3.20)

For some point X ∈ Vp(Rn) and a function F : Rn×p → R, let G =

[
∂F

∂Xi,j

]
∈ Rn×p
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and define the directional derivative of F at X towards some Z as

DFX(Z) = Tr(G⊤Z) (3.21)

The aim is to find a matrix form AX that represents the action of DFX on the tangent

plane with respect to the canonical inner product. Following Tagare (2011) [41]:

Lemma 3.2.5. The vector AX with A = (GX⊤ − XG⊤) represents the action of

DFX on the tangent space TXVp(Rn)

Proof. Consider the differential G =

[
∂F

∂Xi,j

]
∈ Rn×p as well as some vector Z ∈

TXVp(Rn). Each can be represented in the coordinate form at X as G = XGA+X⊥GB

and Z = XZA+Z⊥ZB with the restriction that ZA is skew symmetric. The directional

derivative DFX(Z) is thus given by the substitution as

DFX(Z) = Tr(G⊤Z)

= Tr(G⊤
AZA) + Tr(G⊤

BZB)

(3.22)

Perform the decomposition GA = sym(GA) + skew(GA) where upon substitution,

DFX(Z) = Tr(skew(GA)
⊤ZA) + Tr(G⊤

BZB) (3.23)

since ZA is skew-symmetric (and thus Tr(sym(GA)
⊤ZA) = 0)

Consider some matrix U = XA+X⊥B that represents the action of DFX on the

tangent space TXVp(Rn) with respect to the canonical inner product. Specifically,

⟨U,Z⟩ = Tr(skew(GA)
⊤ZA) + Tr(G⊤

BZB) is required.

⟨U,Z⟩ = Tr(U⊤(I − 1

2
XX⊤)Z2)

=
1

2
Tr(A⊤ZA) + Tr(B⊤ZB)

(3.24)

where the requirement results in A = 2skew(GA) and B = GB. To simplify this form
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further, note that skew(GA) =
1
2
(GA −G⊤

A) =
1
2
(X⊤G−G⊤X) allowing for

U = 2skew(GA) +X⊥GB

= X(X⊤G−G⊤X) +X⊥GB

= XGA +X⊥GB −XG⊤X

= G−XG⊤X

= (GX⊤ −XG⊤)X

(3.25)

i.e. if A = (GX⊤ −XG⊤), then AX is the action of DFX on the tangent plane.

In the case of the semi-gradient SARSA algorithm, the function of interest is

qW (s, a) = (We(a))⊤ϕ(s) where at each time step, the gradient ∇qW (s, a) =

[
∂qW
∂Xi,j

]
is computed as per the standard update rule. Let n = d = |ϕ(S)| and p = |A|.

Assuming W ∈ Rn×p enters an update with orthonormal columns, the action of DqW

on the tangent space TWVp(Rn) is given by

AW = (∇qWW⊤ −W∇q⊤W )W (3.26)

Since A is skew-symmetric, the action of A on W can be mapped to an orthogonal

action using the Cayley transformation, allowing a parameterized curve on the Stiefel

manifold to be constructed as:

Y (t) =

(
I +

t

2
A

)−1(
I − t

2
A

)
W (3.27)
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This transformation and choice of parameterization ensures that

Y (t)⊤Y (t) = W⊤

[(
I +

t

2
A

)−1(
I − t

2
A

)]⊤(
I +

t

2
A

)−1(
I − t

2
A

)
W

= W⊤
(
I +

t

2
A

)(
I − t

2
A

)−1(
I +

t

2
A

)−1(
I − t

2
A

)
W

= W⊤
(
I − t

2
A

)−1(
I +

t

2
A

)(
I +

t

2
A

)−1(
I − t

2
A

)
W

= W⊤W

= I

(3.28)

i.e. Y (t) remains on the Stiefel manifold for all t, and also

Y ′(t) = −
(
I +

t

2
A

)−1(
1

2
A

)(
I +

t

2
A

)−1(
I − t

2
A

)
W

+

(
I +

t

2
A

)−1(
−1

2
A

)
W

Y ′(0) = −AW

(3.29)

i.e. the tangent vector at t = 0 is −AW , the opposite direction of the gradient.

Therefore, Y (t) is a descent curve for qW (s, a) on the Stiefel manifold.

The two implementations of this descent curve used in the following experimental

section are to either solve the n× n system of equations for a given t

(
I +

t

2
A

)
Y (t) =

(
I − t

2
A

)
W (3.30)

or to further simplify the form using Sherman-Morrison-Woodbury formula. Specifi-

cally, perform the decomposition A = UV ⊤ where U = [∇qW ,W ] and V = [W,−∇qW ]

and apply the formula to result

(
I +

t

2
A

)−1

=

(
I +

t

2
UV ⊤

)−1

= I − t

2
U

(
I +

t

2
V ⊤U

)−1

V ⊤ (3.31)
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where substitution of this form into Y (t) and simplification results

Y (t) = W − t · U
(
I +

t

2
V ⊤U

)−1

V ⊤W (3.32)

which requires inversion of a 2p×2p matrix. Recall that n is the number of features and

p is the cardinality of the action space. Both implementations have their drawbacks

and thus both are tested in the following experimentation.

3.2.3 Experiments and Results

The following experiments were conducted on a custom implementation of one-step

semi-gradient SARSA built on top of the GNFlow package by Dr. Elizabeth Newman,

named ClassicControl on a Manifold (see Appendix for details). This implementation

utilizes an ε-greedy policy and linear polynomial featurizer of the state-action value

function qw(s, a) with the following parameters

polynomial featurizer order = 8

discount γ = 0.9

number of episodes = 400

maximum steps = 9000

εmin = (varied)

εmax = 1

initial step-size α0 = (varied)

with a step-size regime of αt+1 =
αt

1+
√
t
and exploration regime taken logarithmically

from εmin to εmax across the number of episodes.

The test environments for the following experiments are the MountainCar and Trajec-

tory environments from the OpenAI Gym package [1], chosen due to the intuitively
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orthogonal nature of their action spaces. As indicated in the parameter list, ex-

periments were performed over a log log sweep of values for εmin and α0 between

0.005 and 0.2, with default values of 0.01 for both paramters. The results denoted

CurvilinearNoInverse refer to the curve parameterization provided in Eq. (3.30).

The CurvilinearInverse of Eq. (3.32) method is present in the implementation,

but the results are omitted due to them being identical. Lastly the results denoted

Procrustes refer to the method given in Eq. (3.14)

Three experiments are selected for each method (Original, Procrustes, and

CurvilinearNoInverse) across the parameter sweep that represent the best, worst,

and an interesting case.

For the MountainCar environment, the Original method yields

(a) α0 = 0.037, ε = 0.01 (b) α0 = 0.179, ε = 0.01

(c) α0 = 0.01, ε = 0.07

Figure 3.1: MountainCar with standard one-step semi-gradient SARSA
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As shown by the examples provided in Figure 3.4, the standard one step semi-gradient

SARSA method can achieve rapid convergence for a select choice of parameters —

thus verifying the implementation — but is extremely sensitive to both α0 and εmin.

The Procrustes method yields:

(a) α0 = 0.127, ε = 0.01 (b) α0 = 0.094, ε = 0.01

(c) α0 = 0.01, ε = 0.014

Figure 3.2: MountainCar with orthogonal restriction via Eq. (3.14)

in which an apparent convergence is interspersed with multiple catastrophic stretches

of episodes.

The CurvilinearNoInverse method yields a similar result:
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(a) α0 = 0.005, ε = 0.01 (b) α0 = 0.01, ε = 0.025

(c) α0 = 0.094, ε = 0.01

Figure 3.3: MountainCar with orthogonal restriction via Eq. (3.30)

in which for some parameter choices the same periodic nature is observed, and for

others the catastrophic collapse in training is not recoverable.

The implementation of the orthogonal methods was carefully checked, and indeed

the value ∥W⊤W − I∥ remained less than 10−8 for all episodes in both orthogonal

methods, indicating that the manifold restriction held with respect to single precision

throughout the training. However, neither methods were able to display consistent

convergence to the optimal policy without catastrophic collapse. The reason behind

this collapse — and particularly the periodic nature observed in some experiments —

remains unclear. A potential source of this anomaly may be related to the curvature

of the Stiefel manifold at certain points. In areas with extremely high curvature, the
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distance between the new iterate generated by the standard update and that generated

by the manifold-restricted update may be extremely large. Examining ∥Wt+1 −Wt∥

across the episodes lends credence to this hypothesis

(a) α0 = 0.127, ε = 0.01 (b) α0 = 0.127, ε = 0.01

Figure 3.4: MountainCar with Procrustes, return (left) and ∥Wt+1 −Wt∥ (right)

in which the catastrophic collapses correspond exactly to a relative spike in ∥Wt+1−Wt∥.

The conclusion of this observation is that the Stiefel manifold restricted methods as

formulated are — unfortunately — not viable except with additional consideration for

the step-size taken, which may require knowledge of the curvature at each iteration.

3.3 Manifold-regularized/preconditioned methods

The purpose of this section is to explore the motivation, development, and current

state of second-order optimization in its application to policy-gradient methods in

reinforcement learning. In this regard, the theoretical foundations of manifold learning

come from the field of information geometry i.e. the study of statistical manifolds.

A ubiquitous feature within this field is the construction of an approximations for

metric tensor on the manifold of parameters for the purpose of deriving an improved

descent iteration as an alternative to stochastic gradient descent. Such efforts are

motivated in a similar fashion as the Newton method in contrast to gradient descent
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i.e. via a local approximation that captures curvature information. The majority of

this section focuses on the use of the Fisher information matrix as a metric tensor

on the statistical manifold of policy parameters, leading to the method of natural

gradient descent.

The considerations that motivate the natural gradient lead to the TRPO (Trust-

region policy optimization) and PPO (Proximal policy optimization) methods that are

considered state-of-the-art in reinforcement learning today. In regard to the natural

gradient, much of the difficulty in its application to reinforcement learning comes from

the construction of a suitable approximation to the true Fisher information matrix,

which otherwise requires taking an expectation over the entire model distribution.

In reinforcement learning, however, the information available for sampling is often

only obtained through the collection of trajectories. In most cases, this deficiency has

been addressed via computation of the empirical Fisher matrix as a proxy for the true

Fisher matrix, but recent work has shown clear issues in the motivation, properties,

and results of this approximation.

3.3.1 Motivation

The motivation behind all second-order optimization methods is to compute a descent

direction that yields the greatest decrease in the objective function with respect to a

local quadratic model. Consider an iteration on the model parameters as θk and a

loss function denoted L(θk). The objective is to compute a descent direction δk such

that the local quadratic model of L(θk + δk) centered at θk is minimized, resulting in

the iteration θk+1 = θk +αkδ
∗
k for some step-size αk. Specifically, this quadratic model

is constructed as

Mk(δ) = L(θk) +∇L(θk)⊤δ +
1

2
δ⊤Bkδ (3.33)
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where Bk ∈ Rn×n is a symmetric matrix that captures the curvature of the loss

function at θk. The resulting objective is to find

δ∗k = argmin
δ

Mk(δ) (3.34)

which can be found as δ∗k = −B−1
k ∇L(θk) when Bk is non-singular and positive definite.

In this construction, the choice of Bk = I yields the method of steepest descent and

Bk = ∇2L(θk) — where ∇2L denotes the Hessian — yields the Newton method. The

choice of δ∗k = ∇L(θk) indeed provides the direction of steepest descent in the case of

an orthonormal coordinate system used in Euclidean space. However, this choice does

not generalize to the context of a Riemannian manifold in which local distances are

influenced by the geometry.

Consider the n-dimensional parameter space of θ to be a generalized Riemannian

manifold (Rn, gij) where gij is the (0, 2)-type metric tensor defined on Rn and denote

the tangent space at θ as Tθ. Specifically, the following properties hold for all θ ∈ Rn

(using abstract index notation)

(a) For all u, v ∈ Tθ, gijuivj = gjiu
ivj i.e. gij is symmetric

(b) Assume there exists ui such that giju
ivj for all vj ∈ Tθ, then ui = 0 i.e. gij is

non-degenerate

Amari (2016) [18] provides a construction of the steepest descent direction on a

Riemannian manifold. The squared local distance between two points θ and θ+ dθ on

the manifold is given by the quadratic form

ds2 = gijdθ
idθj (3.35)

The objective thus becomes to compute the direction dθ yielding the largest change in

the loss function L(θ). The curvature of the manifold requires restricting the step-size
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of dθ to be of equal magnitude in all directions i.e. for some small constant ε > 0,

require

gijdθ
idθj = ε2 (3.36)

and denote dθ = εa where ∥a∥2 = gija
iaj = 1. The problem of finding the direction of

greatest change thus becomes to maximize

L(θ + dθ)− L(θ) = ∇L(θ) · εa (3.37)

subject to ∥a∥2 = 1, which can be written as the constrained quadratic problem

a∗ = argmax
a

∇L(θ) · a− λgijaiaj (3.38)

Denoting G = [gij], the solution is as a∗ = 1
2λ
G−1∇L(θ) and the natural gradient of

L at θ is denoted ∇̃L(θ) = G−1(θ)∇L(θ) i.e. δ = −∇̃L(θ) is the steepest descent

direction.

As mentioned previously, the replacement of G(θ) with H(θ) = ∇2L(θ) yields the

Newton method, and indeed choosing the Hessian as an estimate of the metric produces

the most accurate local model of the curvature in certain scenarios (specifically when θ

lies on a Hessian manifold i.e. G(θ) = H(θ)). The issues with naive implementations

of Newton’s method are well-known. The most apparent of these drawbacks in any

optimization context is the assumption that H(θ) is positive-definite which is required

for the local quadratic model to have a minimum. In the context of neural networks

with n parameters (where n is typically quite large), the calculation and storage of

the n2 elements of the Hessian — not to mention the cost of solving H(θ)δ = −∇L(θ)

at each iteration — result in an immensely expensive method. In addition to these

drawbacks, Martens (2020) [25] describes a more conceptual issue that may arise:

that the local optimality of the Hessian-based approximation can generalize poorly to
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the broader space. He describes a worst-case scenario in which the quadratic model

M(δ) is an extremely poor local approximation of L(θ) but nonetheless has the correct

minimizer at θ∗. In this regard, the choice of approximations made can affect the

near/far-sightedness of the method.

3.3.2 Geometry of statistical manifolds

Consider the parameterized conditional probability distribution πθ(a|s) wholly specified

by θ — purposely notated as such since the following analysis will later be applied to

stochastic policies in reinforcement learning. Denote S the space of all distributions

of this type (e.g. all neural networks of a given structure across the space of θ) and

consider θ to be the local coordinate system of S. More accurately, the space under

consideration is the quotient space S̃ = S\R where R is defined by the equivalence

relation θ ∼ θ′ when

πθ(a|s) = πθ′(a|s) (3.39)

i.e. the two parameters specify identical conditional distributions. However, for ease

of notation, the space under consideration will simply be denoted S. The divergence

between two points θ, θ′ ∈ S is defined by the Kullback-Leibler (KL) divergence

between the two distributions they specify as

DKL(πθ : π
′
θ) =

∫
πθ(a|s) log

πθ(a|s)
πθ′(a|s)

ds da (3.40)

Note that the KL-divergence is not symmetric and thus cannot be considered a metric.

Choosing DKL as a notion of distance, however, allows for the specification of the

Riemannian structure of S. Consider some loss function L(θ). With respect to DKL

as the divergence between two coordinates, the steepest descent (natural gradient)
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direction upon the manifold is F (θ)−1∇L(θ) where

F (θ) = ∇2
θ′DKL(πθ : πθ′)|θ=θ′ (3.41)

i.e. the Hessian of the KL-divergence at θ. Specifically, the matrix F (θ) is called the

Fisher information matrix and takes the form

F (θ) = Es∼µ,a∼πθ
[∇ log πθ(a|s)∇ log πθ(a|s)⊤] (3.42)

pre-emptively using the RL notation s ∼ µ to denote the sampling of s from the

stationary distribution µ(s). Under certain regularity conditions (for exchanging

integration and differntiation), this form of the Fisher matrix can be shown to be

equivalent to the Hessian of DKL as follows:

F (θ) = ∇2
θ′DKL(πθ : πθ′)|θ=θ′

= ∇2
θ′

∫
πθ(a|s) log

πθ(a|s)
πθ′(a|s)

ds da
∣∣
θ=θ′

= −
∫
πθ(a|s)∇2

θ log πθ(a|s) ds da (*)

= Es∼µ,a∼πθ
[−∇2

θ log πθ(a|s)]

= Es∼µ,a∼πθ

[
− 1

πθ(a|s)
∇2

θπθ(a|s)
]
+ Es∼µ,a∼πθ

[
1

πθ(a|s)2
∇πθ(a|s)∇πθ(a|s)⊤

]
(3.43)

where upon taking expectation and exchanging differentiation/integration (*) the first

term reduces to ∇2
θ 1 = 0 while the second term is rearranged as

F (θ) = Es∼µ,a∼πθ

[
1

πθ(a|s)2
∇πθ(a|s)∇πθ(a|s)⊤

]
= Es∼µ,a∼πθ

[
1

πθ(a|s)
∇πθ(a|s)

1

πθ(a|s)
∇πθ(a|s)⊤

]
= Es∼µ,a∼πθ

[
∇ log πθ(a|s)∇ log πθ(a|s)⊤

]
(3.44)
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The Fisher information matrix in this form has the property that for two points θ and

θ + dθ on the statistical manifold, the local divergence between them is

DKL(πθ : πθ+dθ) =
1

2
dθ⊤F (θ)dθ (3.45)

This property allows the Fisher information matrix to be used as a Riemannian metric.

In fact, Amari (1987) [3] proves that the Fisher metric is the unique invariant metric

on the manifold characterized by KL-divergence.

3.3.3 Natural policy-gradient

The choice of notation for the parameterized conditional probability distribution

πθ(a|s) in the previous subsection foreshadows the application of the natural gradient

to reinforcement learning. Amari (1998b) [2] makes the case for the natural gradient

as Fisher efficient in the sense that with step-size choice αk = 1
k
, the parameter

estimates are unbiased and their covariance approaches the Cramer-Rao lower bound

(more accurately: specifically in the case of a maximum-likelihood cost function). As

described in Section 2.2.5, one of the primary motivations for the development of new

policy-gradient methods is the desire to decrease the variance in parameter estimates.

The use of such tools from information geometry serve not only as the theoretical

basis for naive implementations of the natural gradient in RL, but also as motivation

for the development of methods such as Trust-region Policy Optimization (TRPO)

and Proximal Policy Optimization (PPO) as methods that, at their basis, aim to

bound the KL-divergence of the new iterate θk+1 i.e. constrain DKL(πθk+1
: πθk) < δ

for some radius δ.

Kakade (2001) [21] introduces the natural policy gradient in a specific context for

actor-critic methods with — as he describes — a compatible function approximation.

However, the method is generalizable to more complex function approximations. The
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construction is as follows:

Let ψθ(s, a) = ∇θ log πθ(s, a) and fw(s, a) = w⊤ψθ(s, a) where f is a linear function

approximation of qπ(s, a) parameterized by w. The function approximation f is

compatible with the policy in the sense described by Sutton (1999) [39] which allows

for an unbiased approximation of the true policy-gradient with respect to maximizing

the undiscounted reward. Denote this reward J(θ) and consider the standard policy

gradient

∇θJ(θ) =
∑
s,a

µ(s)∇πθ(s, a)qπ(s, a) (3.46)

where µ(s) is the stationary distribution. Let w∗ minimize the squared error ϵ(w, π)

i.e.

w∗ = argmin
w

ϵ(w, π) = argmin
w

∑
s,a

µ(s)πθ(s, a)(fw(s, a)− qπ(s, a))2 (3.47)

implying that ∇wϵ(w
∗, π) = 0 i.e.

∑
s,a

µ(s)πθ(s, a)ψθ(s, a)(ψθ(s, a)
⊤w∗ − qπ(s, a)) = 0 (3.48)

or equivalently

(∑
s,a

µ(s)πθ(s, a)ψθ(s, a)ψθ(s, a)
⊤

)
w∗ =

∑
s,a

µ(s)πθ(s, a)ψθ(s, a)qπ(s, a) (3.49)

where substitution with the previous definitions results F (θ)w∗ = ∇θJ(θ)

Furthermore, let w∗ minimize the approximation error ϵ(w, π) and construct the itera-

tion on policy parameters θ′ = θ + αF (θ)−1∇θJ(θ). Then ∆θ = αw∗ by compatibility
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of the function approximator and to first order,

πθ′(s, a) = πθ(s, a) +∇θπθ(s, a)∆θ +O(α2)

= πθ(s, a)(1 + αψθ(s, a)
⊤w∗) +O(α2)

= πθ(s, a)(1 + αfw∗(s, a) +O(α2)

(3.50)

i.e. the iteration converges to the greedy action with respect to the the local linear

approximation fw∗(s, a).

While the method outlined in Kakade (2001) [21] is specific to the compatibile

function approximation, the same natural gradient iteration on policy parameters can

be applied to methods with more advanced approximations such as those employing

neural networks.

As mentioned previously, the basic motivation behind state-of-the-art policy gradi-

ent methods such as TRPO and PPO is to impose a constraint on the KL-divergence

of the newly computed step. Consider the current iterate θk and the selection of new

iterate θ. Following Section 3.3.2, the KL-divergence between the two iterates can be

locally approximated as

DKL(πθk : πθ) ≈
1

2
(θ − θk)⊤F (θk, s)(θ − θk) (3.51)

Denote F̄ (θ) = Eτ∼πθk
[F (θk, s)] the average Fisher information. Constraining the new

iterate to lie within a trust-region of radius δ is to require

1

2
(θ − θk)⊤F̄ (θ)(θ − θk) ≤ δ (3.52)

which produces the iteration θ = θk + αkF̄ (θ)
−1∇J(θk) where ∇J(θk) is the standard
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policy gradient. Furthermore, the constraint on the KL-divergence requires that

αk =
δ√

∇J(θk)⊤F̄ (θ)−1∇J(θk)
(3.53)

With the addition of conditions for expanding or contracting the trust-region radius δ,

the TRPO method as introduced by Schulman (2015) [31] is complete. In this setup,

the natural policy gradient can be viewed as the same method but without adherence

to the trust-region constraint.

Introduced by Schulman (2017) [32], PPO does not use the Fisher matrix directly

but still aims for a similar goal. Specifically, denote the ratio between policies at the

current θk and new θ as

rθ(s, a) =
πθ(a|s)
πθk(a|s)

(3.54)

At each iteration, PPO aims to maximize

Eτ∼πθk
[rθ(s, a)Aθk(s, a)] (3.55)

where Aθk is a chosen advantage function. There are two versions of PPO in current

use: PPO-Clip and PPO-Penalty.

The objective function used in PPO-Clip for some choice of ε

L(s, a, θ, θk) = Eτ∼πθk

[
min {rθ(s, a)Aθk(s, a), clip(ε, Aθk(s, a))}

]
(3.56)

where

clip(ε, Aθk(s, a)) =


(1 + ε)A if A ≥ 0

(1− ε)A if A < 0

(3.57)

The objective function used in PPO-Penalty for some choice of β

L(s, a, θ, θk) = Eτ∼πθk

[
rθ(s, a)Aθk(s, a)− βDKL(πθk : πθ)

]
(3.58)
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as is clearly apparent for PPO-Penalty — and slightly disguised in PPO-Clip — each

method is motivated by a desire to constrain the KL-divergence of the next iterate

while also producing a suitably large improvement in the objective.

3.3.4 Empirical Fisher information matrix

Recall the natural policy gradient method outlined by Kakade (2001) [21] in which

the iteration on policy parameters is defined as

θ′ = θ + αF (θ)−1∇θJ(θ) (3.59)

In this method, the Fisher information matrix is estimated in an online fashion as the

weighted sum of outer products

Ft+1 = Ft +∇ log πθt(at|st)∇ log πθt(at|st)⊤ (3.60)

where for a trajectory of length T , Kakade presents the estimate F
T
as a consistent

estimate of F . However, recent work in the study of Fisher information has challenged

this notion and drawn distinctions in the properties of the true Fisher information

matrix and the empirical Fisher information matrix. Specifically, the true Fisher

matrix (in the notation of RL policies) is given as

F (θ) = Ea∼πθ,s∼µ(s)[∇ log πθt(at|st)∇ log πθt(at|st)⊤] (3.61)

Notably, the expectation of the outer product of gradients is taken with respect to both

the conditional action distribution specified by the policy, as well as the stationary

distribution µ(s). Indeed only when the expectation is taken over the entire domain

of both distributions does the Fisher matrix hold the desired properties that produce

a suitable metric for the statistical manifold. In Amari (1998) [4], the analysis and
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examples provided consider an explicit formulation of the Fisher based on a stationary

distribution µ(s) ∼ N(0, 1) for a basic perceptron model with no hidden layers. In

the majority of real world use-cases — especially in reinforcement learning with deep

neural networks — the total information of the distributions required to explicitly

compute the Fisher matrix is simply unavailable. In lieu of the true Fisher, a common

choice is to instead to compute the empirical Fisher as an estimate via

F̄ =
1

T

∑
(a,s)∈τ

∇ log πθ(a|s)∇ log πθ(a|s)⊤ (3.62)

Recent work, however, has challenged the empirical Fisher as a suitable estimate

and has demonstrated its shortcomings in application to the natural gradient where,

in many cases, it underperforms significantly in comparison to natural gradient

ascent/descent with the true Fisher or even standard gradient ascent/descent [22].

Specifically, the critical property of the true Fisher matrix as converging to the Hessian

of the loss function in expectation does not hold for the empirical Fisher in general.

Similarly, the true Fisher can be shown as equivalent to the commonly used Generalized

Gauss-Newton (GGN) matrix under certain conditions, but this equivalency does not

hold for the empirical Fisher — a detailed analysis of which given in Kunstner (2020)

[22] — and natural gradient experiments have displayed significant underperformance

in comparison to the GGN.

Martens (2020) provides a simple example to demonstrate these shortcomings.

Consider the case with n = 1 parameters, predictive distribution πθ ∼ N(θ, 1), state-

action space S = {(0, 0)}, and loss function L(θ) = 1
2
θ2. In this example, loss gradient

∇L(θ) = θ, empirical Fisher F̄ (θ) = θ2, and true Fisher F (θ) = 1. The iteration
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utilizing the empirical Fisher for some exponent 1
2
≤ ξ ≤ 1 given as

θk+1 = θk − αk(F̄ (θk)
ξ)−1∇L(θk)

= θk − αk(θ
2
k)

−ξθk

= (1− αk|θk|−2ξ)θk

(3.63)

fails to converge to the minimizer θ = 0 unless ξ < 1 and ak → 0 sufficiently fast. In

the case of convergence, the rate is limited to the rate of convergence of αk → 0. In

contrast, the iteration utilizing the true Fisher given as

θk+1 = θk − αkF
−1∇L(θk)

= θk − αkθk

= (1− αk)θk

(3.64)

experiences linear convergence with rate |1−α| for any fixed step-size 0 < αk = α < 1

Solutions to the shortcomings of the empirical Fisher suggested in recent literature

center around building truly unbiased approximations to the true Fisher. Kunstner

(2020) [22] suggests a Monte-Carlo approximation to the true Fisher obtained by

re-sampling actions a from πθ(a|s) and computing the estimate as

F̂ (θ) =
∑
n

∇ log πθ(an|s)∇ log πθ(an|s)⊤ (3.65)

which, while noisy, produces an unbiased estimate of the true Fisher matrix.

The most significant advancement in the construction of the true Fisher matrix in

the context of neural networks comes from Martens (2015) [26] which introduces the

Kroenecker-factored Approximate Curvature (KFAC). The details of its construction

are fairly involved and will thus be summarized only briefly:

Consider the output distribution p(y|x) of a neural network of ℓ layers with weights
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W ∈ RCin×Cout where Cin and Cout denote the number of input and output neurons

connected to the layer respectively. Denote the input activation vector a ∈ RCin and

the pre-activation vector for the next layer as s = Wa. Construct the loss function as

log-likelihood i.e. L = log p(x, y) where the gradient with respect to the weights is

given as ∇WL = (∇sL)a
⊤. Denote the true Fisher corresponding to layer ℓ as Fℓ and

construct the approximation F̂ℓ as

Fℓ = E[vec{∇WL}vec{∇WL}⊤]

= E[aa⊤ ⊗∇sL(∇sL)
⊤]

≈ E[aa⊤]⊗ E[∇sL(∇sL)
⊤]

= F̂ℓ

(3.66)

where critically, an assumption of independence between the gradients and the second-

order information of the activations is being made. Since the natural gradient requires

F̂−1
ℓ , the properties of the Kroenecker product i.e. (A⊗B)−1 = A−1⊗B−1 are utilized

to construct — in the case of the original implementation in Martens (2020) [25] —

block diagonal or block tri-diagonal approximations of the true F−1
ℓ . The advantage

of KFAC thus lies in the parallelization facilitated by the block matrix structure, as

well as the fact that storage and computation is required only on matrices of size

W . George (2018) [12] improves KFAC by introducing Eigenvalue-corrected KFAC

(EKFAC) which — as a cursory summary — computes eigendecompositions of the

two terms of the Kroenecker product and rescales the diagonal matrix to better match

the true second moments of the policy gradient.

3.3.5 Approximate-Fisher natural policy-gradient

This subsection will briefly summarize current literature on the application of Fisher ap-

proximations to the natural policy-gradient. Following the development of Kroenecker-
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factored Approximate Curvature by Martens (2015) [26], the first appearance of KFAC

applied to reinforcement learning appears in Wu (2017) [43] with the introduction of

Actor-Critic Kroenecker-factored Trust Region (ACKTR), which indicated significant

performance increase over Advantage Actor-Critic (A2C) and TRPO implementations

with similar parameters. In the OpenAI Gym benchmark environments, ACKTR

displayed increases in sample efficiency of up to 10 times over the other methods,

as well as modest improvements in wall-clock time. The original ACKTR as im-

plemented performs the natural gradient update only upon the actor, but further

experiments in natural gradient descent with respect to the critic network indicate

slight improvements, with better performance in regard to variance arising from using

the Generalized Gauss-Newton (GGN) instead. In Wu (2018) [36], natural gradient

ascent using KFAC is applied to PPO yielding modest improvements over standard

PPO (i.e. with an SGD update) and underperforming in comparison to ACKTR in

all benchmarks.

In Gebotys (2022) [11], implementation of natural policy gradient using

1. Diagonal approx. (store and estimate only block diagonals of F )

2. Hessian-free (HF) approx. (e.g. TRPO)

3. Kroenecker-factor approx. (i.e. KFAC/EKFAC)

4. Woodbury approx. (TENGraD, m×m block diagonal where m is batch-size)

are compared across seven MuJoCo (OpenAI Gym) environments. In all experi-

ments, the diagonal approximation performed the worst, Woodbury approximation

(TENGraD) performed the best, and EKFAC consistently outperformed KFAC. How-

ever, the computational cost of TENGraD is prohibitively expensive for batches of

appreciable size.

The current literature thus demonstrates the utility of information geometric

techniques to reinforcement learning, verifying the construction of the policy parameter
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space as a generalized Riemannian manifold with the Fisher information matrix as the

metric tensor. With the theoretical basis for the natural gradient from Amari (1998)

[4] requiring the true Fisher matrix, the most significant advancements in natural

policy gradient methods has been the improvement of Fisher approximations. In

this sense, the curvature of the policy parameter space has proven to be an essential

consideration for developing robust, efficient RL methods.

3.3.6 Experiments and Results

The following experiments were conducted on a custom implementation of Proximal

Policy Optimization (both Penalty and Clip varieties) with Generalized Advantage

Estimation built using the TorchRL package, named Geometric Control (see Appendix

for details). The implementation utilizes a size [64, 64] multi-layer perceptron with

Tanh activations for both the policy and value function approximation. The policy

MLP trains the parameters loc and scale for a probabilistic actor with a normalized

Tanh distribution i.e. πθ ∼ TanhNormal(loc, scale), while the value MLP estimates

the advantage. Both MLPs are orthonormal initialized. The advantage used is the

Generalized Advantage Estimate (GAE) presented in section 2.2.5

The purpose of these experiments are to examine the difference between an empirical

Fisher distribution and one obtained via Monte-Carlo methods (i.e. sampling the

policy). Two algorithms are implemented — PPO-Penalty and PPO-Clip — as well

as two test environments from the OpenAI Gym - MuJoCo package: HalfCheetah-v4

and InvertedPendulum-v4 [1]. The following parameters are used

frames per batch = 2000

total frames = 200, 000

mini-batch size = 100

loss optimization epochs = 10
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learning rate λ = 3× 10−4

discount γ = 0.99

GAE learning rate λGAE = 0.95

PPO-Clip ε = 0.2

PPO-Penalty KL-target d = 0.01

PPO-Penalty β = 1

Monte-Carlo Fisher sample size = 20

The Monte-Carlo and empirical Fisher approximations are computed as outlined

by Eq. (3.65) and Eq. (3.62) respectively. Specifically, the estimate is only collected

for every mini-batch on the last optimization epoch (i.e. 2000/100 = 20 estimates

per batch. For the Monte-Carlo approximation, during each mini-batch in the last

epoch a sample of 20 actions is collected from the policy distribution πθ and ∇ log πθ is

computed for the sample, the sum of which results in the Fisher approximation for the

current batch (as per Kunstner (2020) [22]) For the empirical Fisher approximation,

during each mini-batch in the last epoch the current log policy gradient is collected

and the outer products are averaged over the batch.

It is important to note that since the goal of these experiments is to compare the

two Fisher approximations, a full training (e.g. with 1,000,000 total frames) was not

conducted due to both time and computational cost restrictions, as well as the fact

that the training rewards are not the object of study (the PPO implementations and

test environments used are standard).

The observed reward from each algorithm-environment pair is
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(a) InvertedPendulum, PPO-Penalty (b) InvertedPendulum, PPO-Clip

(c) HalfCheetah, PPO-Penalty (d) HalfCheetah, PPO-Clip

Figure 3.5: PPO training rewards per batch

Although the failure of PPO-Penalty on InvertedPendulum is anomalous, the

rest of the experiments display the expected early-training behavior and verify the

implementation.

Two quantities were tracked for each Fisher approximation in these experiments:

the 2-norm and the trace. Since the eigenvalues of the Hessian provide the principal

curvatures — and the true Fisher is equivalent to the Hessian in expectation via

Eq. (3.43)— the 2-norm is tracked as a measure of the largest principal curvature.

There are two reasons for tracking the trace: First, the trace of the Hessian of a

function defined on a Riemannian manifold provides the divergence of the gradient

field. Secondly, from the theory of optimal experimental design, the trace of the



56

Fisher information matrix is used as a proxy for the average variance of estimates —

specifically, maximizing the Fisher trace results in minimizing the average variance

(called A-optimality), thus the trace is tracked.

The norm of the Monte-Carlo Fisher approximation for each batch:

(a) InvertedPendulum, PPO-Penalty (b) InvertedPendulum, PPO-Clip

(c) HalfCheetah, PPO-Penalty (d) HalfCheetah, PPO-Clip

Figure 3.6: 2-norm of Monte-Carlo Fisher approximation
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The norm of the empirical Fisher approximation for each batch:

(a) InvertedPendulum, PPO-Penalty (b) InvertedPendulum, PPO-Clip

(c) HalfCheetah, PPO-Penalty (d) HalfCheetah, PPO-Clip

Figure 3.7: 2-norm of empirical Fisher approximation

Comparison between the norms of each approximation, particularly when pay-

ing close attention to the scales, displays stark differences. For the PPO-Penalty

experiments on both environments, the norm of the empirical Fisher [Fig. 3.7 (a) (c)]

remains near-zero throughout a majority of the training arc but interspersed with

spikes many orders of magnitude large, indicating poor conditioning. However — and

ignoring the anomalous PPO-Penalty on InvertedPendulum results — the norm of

the Monte-Carlo Fisher [Fig. 3.6 (a) (c)] remains within an order of magnitude for a

majority of the training. For the PPO-Clip experiments on both environments, the

results are starkly different than PPO-Penalty. Both the Monte-Carlo and empirical
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Fisher norms exhibit a consistent, stable increase as the training proceeds, without

any of the large spikes seen with PPO-Penalty. While sharing a similar trend, however,

the Monte-Carlo and empirical Fisher norms differ by an order of magnitude as the

empirical Fisher norm barely exceeds a magnitude of 1.

The trace of the Monte-Carlo Fisher approximation for each batch:

(a) InvertedPendulum, PPO-Penalty (b) InvertedPendulum, PPO-Clip

(c) HalfCheetah, PPO-Penalty (d) HalfCheetah, PPO-Clip

Figure 3.8: Trace of Monte-Carlo Fisher approximation
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The trace of the empirical Fisher approximation per batch:

(a) InvertedPendulum, PPO-Penalty (b) InvertedPendulum, PPO-Clip

(c) HalfCheetah, PPO-Penalty (d) HalfCheetah, PPO-Clip

Figure 3.9: Trace of empirical Fisher approximation

Comparisons between the traces of the two Fisher approximations yield the same

conclusions as the norm comparisons. Surprisingly, the results of the experiments

indicated that the norm and trace of each approximation tracked extremely closely in

regards to trend/change (not necessarily in actual value).
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Finally, the 2-norm difference between the Monte-Carlo and empirical Fisher

(a) InvertedPendulum, PPO-Penalty (b) InvertedPendulum, PPO-Clip

(c) HalfCheetah, PPO-Penalty (d) HalfCheetah, PPO-Clip

Figure 3.10: Normed difference between MC and empirical Fisher approximations

Examining the 2-normed difference between the two approximations across the

training arc indicates a constant difference for PPO-Penalty [Fig 3.10 (a) (c)] and

divergence for PPO-Clip [Fig 3.10 (b) (d)]. The normed difference does not appear to

converge to zero in any case indicating that the two approximations do not appear to

estimate the same quantity. Specifically, if Kunstner (2020) [22] is correct in that the

Monte-Carlo approximation is unbiased with respect to the true Fisher, the experiment

validates the claim that the empirical Fisher is biased.

The comparisons made in these experiments are for the purpose of both comparing

the two Fisher approximations, as well as examining basic information about the
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curvature of the policy parameters space across the training arcs for PPO-Penalty

and PPO-Clip. From a qualitative perspective, it is reasonable to conclude from these

results that the Monte-Carlo approximation enjoys much greater numerical stability

than its empirical counterpart. Similarly, PPO-Clip appears to enjoy greater stability

(with respect to Fisher approximations) than PPO-Penalty. Using the PPO-Clip

results as a reference point, it appears that the general trend is an increase in the

Fisher norm (i.e. greater curvature) as well as an increase in the Fisher trace (i.e.

lower variance of estimates). These qualitative observations line up with intuition

about the expected behavior near the optimal θ∗.

The time constraints of this project inhibited the completion of further experiments,

which would have included natural gradient implementations with both Fisher approx-

imations and with KFAC. Nonetheless, the utility and importance of second-order

information, as well as the validity of the information geometrical perspective for

policy distributions has been demonstrated in both the literature and experimentation.

Future work in the field of RL with manifold optimization continues beyond the natural

gradient with works such as Chen (2023) [9], which abandon the Fisher metric and

instead iteratively learn a new metric that minimizes the Hessian trace and allows for

a curvilinear ascent via the Levi-Civita connection on the policy parameter manifold.

Improvements over the methods explored in this work will only progress as the fields

of reinforcement learning and information geometry continue to collide.
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Appendix

The experiments in this work were conducted on two programs written by the author:

ClassicControl [github] built on Dr. Elizabeth Newman’s GNFlow3 package for the

SARSA experiments in Chapter 3.2, which was subsequently rewritten as the more

general GeomControl [github] built on the newly-released TorchRL package for the

policy-gradient experiments in Chapter 3.3.

ClassicControl: Batch Multi-processed RL Runner for GNFlow3
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https://github.com/bnsina/ClassicControl
https://github.com/bnsina/GeomControl
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GeomControl: Batch Multi-processed RL Runner for TorchRL

Both programs ingest CSV files of jobs with specified parameters.

For example, an excerpt of one of the job files for the Section 3.2.3 experiments using

ClassicControl looks like

and the job file for the Section 3.3.6 experiments using GeomControl was



Bibliography

[1] OpenAI Gym Documentation. https://www.gymlibrary.dev/index.html. Ac-

cessed: 2023-09-30.

[2] S. Amari and S.C. Douglas. Why natural gradient? In Proceedings of the

1998 IEEE International Conference on Acoustics, Speech and Signal Processing,

ICASSP ’98 (Cat. No.98CH36181), volume 2, pages 1213–1216 vol.2, 1998b. doi:

10.1109/ICASSP.1998.675489.

[3] S.-I. Amari, O. E. Barndorff-Nielsen, R. E. Kass, S. L. Lauritzen, and C. R. Rao.

Differential Geometry in Statistical Inference. Lecture Notes-Monograph Series,

10:i–240, 1987. ISSN 07492170. URL http://www.jstor.org/stable/4355557.

[4] Shun-ichi Amari. Natural Gradient Works Efficiently in Learning. Neural Compu-

tation, 10(2):251–276, 02 1998. ISSN 0899-7667. doi: 10.1162/089976698300017746.

URL https://doi.org/10.1162/089976698300017746.

[5] Shun-ichi Amari. Natural Gradient Works Efficiently in Learning. Neural Com-

putation, 10(2):251–276, 1998a. doi: 10.1162/089976698300017746.

[6] Shun-ichi Amari. Information Geometry of Neural Networks. volume E75-A,

page 2, 08 2000. ISBN 978-3-540-67925-7. doi: 10.1007/3-540-44533-1 2.

[7] Richard E. Bellman. Dynamic Programming. Princeton University Press, 1957.

64

https://www.gymlibrary.dev/index.html
http://www.jstor.org/stable/4355557
https://doi.org/10.1162/089976698300017746


65

[8] Lawrence Cayton. Algorithms for Manifold Learning. 2005. URL https://api.

semanticscholar.org/CorpusID:408872.

[9] Gang Chen and Victoria Huang. Deep Metric Tensor Regularized Policy Gradient,

2023. URL https://arxiv.org/abs/2305.11017.

[10] Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the Manifold

Hypothesis. J. Amer. Math. Soc., 29:983–1049, 2016. URL https://www.ams.

org/journals/jams/2016-29-04/S0894-0347-2016-00852-4/.

[11] Brennan Gebotys, Alexander Wong, and David A. Clausi. Bag of Tricks for

Natural Policy Gradient Reinforcement Learning. CoRR, abs/2201.09104, 2022.

URL https://arxiv.org/abs/2201.09104.

[12] Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal

Vincent. Fast Approximate Natural Gradient Descent in a Kronecker-factored

Eigenbasis. CoRR, abs/1806.03884, 2018. URL http://arxiv.org/abs/1806.

03884.

[13] Nessrine Hammami and Kim Khoa Nguyen. On-Policy vs. Off-Policy Deep

Reinforcement Learning for Resource Allocation in Open Radio Access Network.

In 2022 IEEE Wireless Communications and Networking Conference (WCNC),

pages 1461–1466, 2022. doi: 10.1109/WCNC51071.2022.9771605.

[14] Ronald A. Howard. Dynamic Programming and Markov Processes. MIT Press,

1960.

[15] Ronald A. Howard. Comments on the Origin and Application of Markov Decision

Processes. Operations Research, 50(1):100–102, 2002. doi: 10.1287/opre.50.1.100.

17788. URL https://doi.org/10.1287/opre.50.1.100.17788.

https://api.semanticscholar.org/CorpusID:408872
https://api.semanticscholar.org/CorpusID:408872
https://arxiv.org/abs/2305.11017
https://www.ams.org/journals/jams/2016-29-04/S0894-0347-2016-00852-4/
https://www.ams.org/journals/jams/2016-29-04/S0894-0347-2016-00852-4/
https://arxiv.org/abs/2201.09104
http://arxiv.org/abs/1806.03884
http://arxiv.org/abs/1806.03884
https://doi.org/10.1287/opre.50.1.100.17788


66

[16] Lei Huang, Xianglong Liu, Bo Lang, Adams Wei Yu, Yongliang Wang, and

Bo Li. Orthogonal Weight Normalization: Solution to Optimization over Multiple

Dependent Stiefel Manifolds in Deep Neural Networks, 2017. URL https://

arxiv.org/abs/1709.06079.

[17] Robert Tibshirani Hui Zou, Trevor Hastie. Sparce Principle Component Analysis.

Journal of Computational and Graphical Statistics, 15(2):271, 2006. doi: 10.1198/

106186006X113430. URL https://hastie.su.domains/Papers/spc_jcgs.pdf.

[18] Shun ichi Amari. Information Geometry and Its Applications. Springer Tokyo,

2016.

[19] Michael Janner. Model-Based Reinforcement Learning: Theory and Practice.

https://bair.berkeley.edu/blog/2019/12/12/mbpo/, 2019. Accessed 2024-

01-16.

[20] Charles Jin and Martin Rinard. Manifold Regularization for Locally Stable Deep

Neural Networks, 2020. URL https://arxiv.org/abs/2003.04286.

[21] Sham M Kakade. A natural policy gradient. In T. Dietterich, S. Becker, and

Z. Ghahramani, editors, Advances in Neural Information Processing Systems,

volume 14. MIT Press, 2001. URL https://proceedings.neurips.cc/paper_

files/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf.

[22] Frederik Kunstner, Lukas Balles, and Philipp Hennig. Limitations of the Empirical

Fisher Approximation. CoRR, abs/1905.12558, 2019. URL http://arxiv.org/

abs/1905.12558.

[23] Taehoon Lee, Minsuk Choi, and Sungroh Yoon. Manifold Regularized Deep

Neural Networks using Adversarial Examples. CoRR, abs/1511.06381, 2015. URL

http://arxiv.org/abs/1511.06381.

https://arxiv.org/abs/1709.06079
https://arxiv.org/abs/1709.06079
https://hastie.su.domains/Papers/spc_jcgs.pdf
https://bair.berkeley.edu/blog/2019/12/12/mbpo/
https://arxiv.org/abs/2003.04286
https://proceedings.neurips.cc/paper_files/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf
http://arxiv.org/abs/1905.12558
http://arxiv.org/abs/1905.12558
http://arxiv.org/abs/1511.06381


67

[24] Yanli Liu, Kaiqing Zhang, Tamer Basar, and Wotao Yin. An Improved Analysis

of (Variance-Reduced) Policy Gradient and Natural Policy Gradient Methods.

In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors,

Advances in Neural Information Processing Systems, volume 33, pages 7624–7636.

Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_

files/paper/2020/file/56577889b3c1cd083b6d7b32d32f99d5-Paper.pdf.

[25] James Martens. New Insights and Perspectives on the Natural Gradient Method.

Journal of Machine Learning Research, 21(146):1–76, 2020. URL http://jmlr.

org/papers/v21/17-678.html.

[26] James Martens and Roger B. Grosse. Optimizing Neural Networks with Kronecker-

factored Approximate Curvature. CoRR, abs/1503.05671, 2015. URL http:

//arxiv.org/abs/1503.05671.

[27] Donald Michie. Experiments on the Mechanization of Game-Learning Part I.

Characterization of the Model and its parameters. The Computer Journal, 6

(3):232–236, 11 1963. ISSN 0010-4620. doi: 10.1093/comjnl/6.3.232. URL

https://doi.org/10.1093/comjnl/6.3.232.

[28] Gereon Quick. TMA 4192 Differential Topology: Lecture 16, Stiefel Mani-

folds and Grassmanians, March 2022. URL https://folk.ntnu.no/gereonq/

TMA4192V2022/TMA4192_Lecture16.pdf.

[29] Andrew Saxe, James McClelland, and Surya Ganguli. Exact solutions to the

nonlinear dynamics of learning in deep linear neural networks. In Proceedings of

the International Conference on Learning Represenatations 2014, 2014.

[30] John Schulman. Optimizing Expectations: From Deep Reinforcement Learning to

Stochastic Computation Graphs. PhD thesis, University of California, Berkeley,

2016.

https://proceedings.neurips.cc/paper_files/paper/2020/file/56577889b3c1cd083b6d7b32d32f99d5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/56577889b3c1cd083b6d7b32d32f99d5-Paper.pdf
http://jmlr.org/papers/v21/17-678.html
http://jmlr.org/papers/v21/17-678.html
http://arxiv.org/abs/1503.05671
http://arxiv.org/abs/1503.05671
https://doi.org/10.1093/comjnl/6.3.232
https://folk.ntnu.no/gereonq/TMA4192V2022/TMA4192_Lecture16.pdf
https://folk.ntnu.no/gereonq/TMA4192V2022/TMA4192_Lecture16.pdf


68

[31] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.

Trust Region Policy Optimization. In Proceedings of the 32nd International

Conference on Machine Learning, volume 37 of Proceedings of Machine Learning

Research, pages 1889–1897, Lille, France, 07–09 Jul 2015. PMLR. URL https:

//proceedings.mlr.press/v37/schulman15.html.

[32] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

Proximal Policy Optimization Algorithms, 2017. URL https://arxiv.org/abs/

1707.06347.

[33] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter

Abbeel. High-Dimensional Continuous Control Using Generalized Advantage

Estimation, 2018.

[34] Peter H. Scönemann. A Generalized Solution of the Orthogonal Procrustes

Problem. Psychometrika, 31(1):1–3, 1966. doi: 10.1007/BF02289451. URL

https://web.stanford.edu/class/cs273/refs/procrustes.pdf.

[35] Satinder Singh, Tommi Jaakkola, Michael Littman, and Csaba Szepesvári. Con-
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