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ABSTRACT 
 

The impact of LRRK2 expression and kinase activity in gene by  
environment mouse models of Parkinson’s disease 

 
By Mary Krista Herrick 

 
 

Extensive research has shown that Parkinson’s disease (PD) is a multifactorial disease 

with age, genetics, and environmental factors all contributing to risk for development of PD over 

an individual’s lifespan. The perfect combination of factors creates an environment in which 

peripheral and brain inflammation shift from protective to deleterious roles and promote PD 

pathogenesis. However, models exploring the multifaceted components of PD, especially in the 

context of one of the greatest genetic contributors to PD, Leucine-Rich Repeat Kinase 2 (LRRK2), 

in the immune system are vastly underexplored given that most PD LRRK2-related research has 

focused on the neuron. With the knowledge that LRRK2 is highly expressed in immune cells, the 

question of whether LRRK2 expression and phosphorylation regulates immune cell effector 

functions that then promote peripheral inflammation associated with PD and other immune 

diseases has now been brought to the forefront of the PD field.  

We hypothesize that LRRK2 functions in immune cells to regulate effector functions and 

responses to inflammatory stress; but whether LRRK2 activation hastens protective or deleterious 

inflammatory responses when its levels increase in cells during inflammation remains to be 

determined, as do the effects of pathogenic LRRK2 mutations that increase risk for PD. To 

address this knowledge gap, in this doctoral dissertation we have utilized BAC transgenic LRRK2 

mouse models overexpressing mouse wildtype LRRK2 or LRRK2 G2019S in all cells that 

endogenously express LRRK2. The aims of this research were to examine how 1) increased 

LRRK2 protein and or G2019S-dependent kinase activity affects immune cell profiles in vivo as a 

function of age; and 2) to investigate the extent to which specific environmental factors implicated 

in PD (bacterial and viral infections, colitis, and pesticides) act as second hits in the LRRK2 mice 

to promote PD-associated neuroinflammation and neuropathology. Here we report that increased 



 

LRRK2 protein or G2019S-dependent gain-of-function kinase activity does not alter immune cell 

profiles with aging. Additionally, we report that a second hit in the form of colitis, but not pesticides 

or bacterial and viral infections, in mice with increased mutant LRRK2 enhance neuroinflammation 

to promote neurotoxicity in the nigrostriatal pathway, resulting in PD-like neuropathology. 

Completion of the studies will advance our understanding of the role of LRRK2 in immune cells 

and alterations in the latter as a consequence of pathogenic mutations; such knowledge is a 

prerequisite to development of LRRK2-targeted therapeutics that will protect the brain without 

detrimental or untoward effects on immune system function in the fight against idiopathic and 

familial forms of PD. 
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CHAPTER 1: BACKGROUND AND LITERATURE REVIEW 
 
1.1: Parkinson’s disease 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder next 

to Alzheimer’s disease (AD). By the end of 2020, it is estimated that 930,000 Americans will have 

PD, and that number is expected to increase in excess of 1.2 million by 2030 (Marras et al., 2018). 

PD currently affects over 10 million people worldwide but is expected to rise to nearly 13 million 

people by 2040 (Dorsey & Bloem, 2018), thus placing a huge burden on health care costs and 

caregivers. It was recently revealed that the economic burden of patients with PD is more than 

$51 billion annually in the US alone. These huge burdens from such a debilitating disease 

collectively warrant the need for research into PD pathophysiology and pathogenesis to develop 

therapeutics to help mitigate, delay, or prevent the disease.  

First described in 1817 by James Parkinson in his “Essay on the Shaking Palsy” 

(Parkinson, 1922), PD is characterized as a progressive motor disorder with four primary motor 

symptoms including tremor, rigidity, postural instability and bradykinesia (Gelb, Oliver, & Gilman, 

1999). Secondary motor symptoms, including but not limited to shuffling gait or freezing, a mask-

like expression, micrographia and speech difficulties, can also occur. Beyond the typical motor 

symptoms, several non-motor symptoms are associated with PD. Non-motor symptoms can 

range along a broad spectrum from cognitive and mood changes, such as anxiety, depression, 

and language and memory difficulties to sleep disorders, such as insomnia or restless leg 

syndrome, to gastrointestinal (GI) dysfunction, such as constipation or early satiety. Many of these 

non-motor symptoms often appear decades prior to the first sign of any motor abnormality. Given 

the vast number of both motor and non-motor symptoms, PD is often hard to diagnose, as patients 

present with different and varying degrees or severity of symptoms. As of today, there are no 

specific blood tests available to diagnose PD; so a clinical diagnosis of PD is based on the 
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presence of bradykinesia and at least one of the three other primary motor symptoms as well as 

improvement of motor symptoms with dopaminergic medications (Postuma et al., 2015).   

Neuropathologically, PD is characterized by two primary hallmarks: progressive loss of 

dopaminergic neurons in the substantia nigra pars compacta (SNpc) and aggregation of a-

synuclein (asyn) leading to Lewy Body formation. Decreased dopamine levels in the nigrostriatal 

pathway as a result of nigral dopaminergic neuron death or degeneration of their terminals results 

in the stereotypic motor symptoms associated with PD. In fact, it is estimated that motor symptoms 

do not appear until at least 50% of SN dopaminergic neurons are lost with more recent reports 

suggesting symptoms do not appear until after 70% SN dopaminergic neuron loss (Greffard et 

al., 2006; Lang & Lozano, 1998; S. Y. Ma, Roytta, Rinne, Collan, & Rinne, 1997). Accumulation 

and aggregation of asyn due to abnormal protein structure or mutations is hypothesized to disrupt 

neuronal homeostasis and contribute to synaptic dysfunction. More recently, the role of the 

immune system and neuroinflammation in PD pathogenesis has garnered considerable attention 

and is now considered another key feature of PD; but it is not yet known how early inflammation 

starts in PD and whether it is a critical contributor of PD pathogenesis and progression. Evidence 

and rationale for exploring the immune system and neuroinflammation in the context of PD 

pathogenesis will be discussed in detail below. 

  

1.2: PD as a multifactorial disease 

PD is considered a multifactorial disease with a complex interaction of genetics, aging, 

and environmental exposures all thought to contribute to pathogenesis. Here, each component 

as a contributing factor to the pathogenesis of PD will be reviewed.  
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1.2.1: Aging 

The greatest risk factor for PD is aging, with PD affecting 1% of those over the age of 60 

and 5% of those over the age of 85 (Bennett et al., 1996; de Lau & Breteler, 2006; Nussbaum & 

Ellis, 2003; Tanner & Goldman, 1996; Wood-Kaczmar, Gandhi, & Wood, 2006). Aging is 

considered the most important determinant of PD risk (Collier, Kanaan, & Kordower, 2011; Levy, 

2007), with age at the time of onset of disease affecting disease phenotype and severity (Hely et 

al., 1995). Several reports have suggested that aging alone is sufficient to induce changes in the 

nigrostriatal pathway. Initial studies showing neurodegeneration in the SN of PD patients also 

reported neuronal loss in the SN of healthy control subjects (McGeer, Itagaki, Akiyama, & 

McGeer, 1988; Mortera & Herculano-Houzel, 2012; Stark & Pakkenberg, 2004). Estimates 

suggest a 7% dopaminergic neuron loss per decade in the SN of healthy controls (McGeer, 

McGeer, & Suzuki, 1977), suggesting that aging alone contributes to progressive functional 

decline and neurodegeneration, albeit to lower levels than those associated with development of 

PD. Studies have also shown that aging can contribute to a decrease in striatal dopamine, which 

is similarly observed before neuronal degeneration in PD (Carlsson & Winblad, 1976; Kish, 

Shannak, Rajput, Deck, & Hornykiewicz, 1992; Riederer & Wuketich, 1976). Furthermore, a 

decrease in nigral cell volume and a loss of neuronal dendrites and dendritic spines have all been 

associated with aging (Cruz-Sanchez, Cardozo, & Tolosa, 1995; Finch, 1993; Mann & Yates, 

1979). All of these typical age-related changes in the nigrostriatal pathway are similarly observed 

in PD, albeit with higher severity in PD patients, consistent with the hypothesis that PD 

pathogenesis arises from a complex combination of age, genetics and environmental exposures. 

 

1.2.2: Genetics 

Up until the 1990s, it was largely thought that PD was idiopathic with no clear inheritance 

pattern. Since the 1990s, roughly 23 monogenic genes have been linked to familial PD with 

approximately 5-10% of PD cases following classical Mendelian inheritance patterns (Lesage & 
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Brice, 2009). Variants in the genes SNCA, LRRK2, GBA, and VPS35 have all been linked to 

dominantly inherited PD, while variants in PRKN (PARK2), PARK7 (DJ-1), PINK1, ATP13A2, and 

SYNJ1 have all been linked to recessively inherited PD often in the form of early-onset PD for the 

former three genes or atypical PD for the latter two genes. While these monogenic forms are 

associated with high risk for development of PD, it is important to note that they are extremely 

rare, and most have low and incomplete penetrance. However, they do have higher incidences in 

certain populations, such as those with Ashkenazi Jewish ancestry (X. Liu et al., 2011; van der 

Brug, Singleton, Gasser, & Lewis, 2015). Over the last two decades, increases in the number of 

genome-wide association studies (GWAS) have allowed for the identification of several variants 

that are high in frequency in human population but confer low risk for development of PD (D. 

Chang et al., 2017; International Parkinson Disease Genomics et al., 2011; Maraganore et al., 

2005; Nalls et al., 2014; Satake et al., 2009; Simon-Sanchez et al., 2009). More recently, a GWAS 

identified 90 risk variants, of which 38 identified as novel, the majority found in the same loci as 

monogenic forms of PD (Blauwendraat, Nalls, & Singleton, 2020; Nalls et al., 2019). This supports 

the hypothesis that understanding mechanisms related to genes implicated in monogenic PD may 

shed light on those mechanisms associated with high-risk variants related to development of 

idiopathic PD.  

 

1.2.3: Environmental exposures and lifestyles 

 As individuals age, they are exposed to a number of environmental conditions, develop 

different kinds of infections, and are engaged in diverse and extremely variable lifestyles. Thus, it 

is no surprise that incidence of PD has been associated with a slew of environmental factors that 

either appear to increase or decrease risk for its development. These include, but are not limited 

to, increased incidence of PD after pesticide exposure, traumatic brain injury, consumption of 

dairy products, and exposure to certain viral or bacterial infections (Ballard, Tetrud, & Langston, 

1985; Langston, 1996; M. Park et al., 2005; Priyadarshi, Khuder, Schaub, & Shrivastava, 2000; 
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Simon, Tanner, & Brundin, 2020). Interestingly, exposure to the toxin, 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP), after its accidental discovery to have caused dopaminergic neuronal 

loss in humans during recreational drug use, has become one of the main methods to induce 

dopaminergic neuronal loss and degeneration in animal models alongside the use of two 

pesticides that inhibit mitochondrial respiration, paraquat and rotenone (Langston, 1985; 

Langston & Ballard, 1984; Tanner et al., 2011). Viral or bacterial infections induce worsening of 

motor symptoms in PD patients while a recent study identified an association between 

tuberculosis (TB) and PD, suggesting that inflammation or immunological challenges may trigger 

PD pathogenesis (Brugger et al., 2015; C. H. Shen et al., 2016; Umemura et al., 2014). On the 

other hand, decreased PD incidence has been associated with increased caffeine consumption 

and moderate smoking, while increased exercise and the use of nonsteroidal anti-inflammatory 

drugs (NSAIDs) such as ibuprofen has been associated with reduced incidence of idiopathic PD 

(Hernan, Takkouche, Caamano-Isorna, & Gestal-Otero, 2002; Kenborg et al., 2015; Ritz et al., 

2007; G. W. Ross et al., 2000; F. Yang et al., 2015). Some of these studies have shown 

associations with occupational hazards through exposure to certain chemicals or metals 

(Goldman, 2014; Gorell et al., 1997; Priyadarshi, Khuder, Schaub, & Priyadarshi, 2001; Steenland 

et al., 2006). While a number of other factors have been associated with PD incidence, results 

are often conflicting. Given the wide variety of environmental exposures and lifestyles and reliance 

upon self-reported over-the-counter anti-inflammatory drug consumption or occupational 

exposures, not all studies report these associations. While none of the associations imply 

causality, the field hypothesizes that the correct combination of these factors can create the 

perfect storm to enable an environmental trigger to contribute to PD pathogenesis; therefore, all 

of these immunological and environmental factors are worthy of investigation in future 

investigations. 
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1.3: The aging immune system 

It is well established that as individuals age, their immune system ages accordingly. 

Immune aging is characterized by two primary concepts: immunosenescence, the loss of effector 

function; and inflammaging, the low-level chronic inflammation that persists with age. 

Inflammaging is characterized by excess production of circulating inflammatory mediators, or 

cytokines, most notably, C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor 

(TNF) from chronically activated innate and adaptive immune cells (Figure 1.1) (Bruunsgaard et 

al., 2003; Frasca & Blomberg, 2016). Both the innate and adaptive immune systems are affected 

with aging as their respective immune responses are decreased with age. Human studies have 

shown a reduction in lymphoid cells but an increase in myeloid immune cells with age (Figure 1.1) 

(Goronzy, Li, Yang, & Weyand, 2013; Hearps et al., 2012; Lages et al., 2008; M. Li et al., 2019; 

Seidler, Zimmermann, Bartneck, Trautwein, & Tacke, 2010). The aging adaptive immune system 

is impaired as naïve T and B cell populations as well as T and B cell receptor diversity are reduced 

with age (Figure 1.1) (Franceschi, Bonafe, & Valensin, 2000; Franceschi, Valensin, Fagnoni, 

Barbi, & Bonafe, 1999; Goronzy et al., 2013). Furthermore, T cell receptor sensitivity is decreased 

in response to stimuli and there is a failure of self-tolerance and production of autoantibodies 

(Goronzy et al., 2013). Collectively, these processes in the immune system typical of aging 

contribute to an increase in susceptibility to infection and autoimmunity in the elderly.  



 7 

 

Figure 1.1: Age-related alterations in immune cell populations and function. As a person 

ages, cytokines and certain immune cell populations (myeloid, memory T and B, and T regulatory 

cells) are increased, while others are decreased (naïve T and B cells). Immune cell function is 

decreased (chemotaxis, phagocytosis and antibody production). 

 

1.4: Evidence for the immune system playing a role in PD pathogenesis 

The central nervous system (CNS) was initially considered to be immunologically inert for 

a number of reasons, including the presence of immunoincompetent microglia as brain resident 
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immune cells, a lack of draining lymphatics, and complete isolation from the peripheral immune 

system with the blood brain barrier (BBB) physically separating the two (Barker & Billingham, 

1977). However, recent discoveries support the idea that the CNS is “immune specialized” rather 

than “immune privileged” and that it is not as isolated as originally described. The idea that the 

CNS lacked a lymphatic system was disproven with the discovery of a lymphatics system in the 

meninges of humans and rodent models that is responsible for draining cerebrospinal fluid (CSF) 

into the bloodstream (Absinta et al., 2017; Aspelund et al., 2015; Louveau et al., 2015). Although 

the BBB physically separates the brain and the peripheral immune system, it does allow crosstalk 

between the two as it is a highly selective semipermeable membrane allowing nutrients in and 

preventing the entrance of potentially toxic molecules, which is necessary to maintain the proper 

functioning of the CNS (Carson, Doose, Melchior, Schmid, & Ploix, 2006). Impaired BBB integrity 

can result in an influx of cytokine and chemokine signaling, debris, microbial pathogens, and 

peripheral immune cells, all of which can activate microglia and promote neuroinflammation, 

which has been shown to be cytotoxic or protective depending on the circumstances (Carson et 

al., 2006; Engelhardt & Ransohoff, 2012; More, Kumar, Kim, Song, & Choi, 2013). 

Neuroinflammation, peripheral inflammation, and the immune system play a role in several 

neurodegenerative disorders. Cellular and epidemiological evidence that inflammation and the 

immune system contributes to PD pathogenesis will be reviewed in detail below.  

 

1.4.1: Cellular evidence for inflammation playing a role in PD pathogenesis  

1.4.1.1: Innate immunity - Microglia 

Microglia are considered brain resident immune cells or “brain macrophages” that are 

responsible for a number of functions, including synaptic remodeling and pruning for proper brain 

function, clearance of debris, and bi-directional communication with neurons for neuronal 

homeostasis and maintenance. Although similar in function to bone marrow-derived 

macrophages, microglia are derived from yolk sac progenitors (Ginhoux & Prinz, 2015; Saijo & 
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Glass, 2011). In a resting state, microglia scavenge the parenchyma until signals, including but 

not limited to asyn, pesticides, environmental toxins, viral or bacterial antigens, cytokines or 

antibodies direct them to a site of injury. Microglia morphology shifts from a highly ramified one 

into an amoeboid shape as they become activated, and they begin to proliferate. They secrete 

immunomodulatory mediators and cytokines, such as TNF, to promote a pro-inflammatory 

environment, to which dopaminergic neurons in the midbrain are particularly sensitive (McGuire 

et al., 2001; Mount et al., 2007; Tansey & Goldberg, 2010). Microglia are densely populated in 

the SN and striatum of the brain, areas that are both affected in PD. One of the first pieces of 

evidence showing neuroinflammation in the brains of PD patients came in 1988 when McGreer 

and colleagues showed human leukocyte antigen (HLA) immunoreactive microglia in SN post 

mortem tissue from PD patients (McGeer, Itagaki, Boyes, & McGeer, 1988). The number of HLA-

DR-positive microglia was found to increase with neuronal degeneration throughout the 

nigrostriatal pathway (Imamura et al., 2003). Activated microglia, which express TNF, IL-6, and 

interleukin 1 beta (IL-1b) are partially responsible for the elevated levels of TNF, IL-1b, IL-6, 

transforming growth factor beta (TGFb), reactive oxygen species (ROS), nitric oxide species 

(NOS) and proapoptotic proteins found in the SN, striatum, CSF, and serum of PD patients (Blum-

Degen et al., 1995; Eidson et al., 2017; Imamura et al., 2003; Mogi, Harada, Kondo, et al., 1994; 

Mogi, Harada, Riederer, et al., 1994; Nagatsu, Mogi, Ichinose, & Togari, 2000).  

To further understand the role of microglia in PD pathogenesis, studies have used positron 

emission tomography (PET) ligands to measure and trace neuroinflammation in the human brain. 

The use of ligands, such as [11C](R)-PK11195, that binds translocator protein (TPSO, formerly 

known as the peripheral benzodiazepine receptor), which was originally thought to be selectively 

expressed on activated microglia, showed microglial activation in the brains of PD patients, but 

the levels of microglia activation did not correlate with clinical severity (Banati, 2002; Bartels et 

al., 2010; Gerhard et al., 2006). Usage of this first-generation PET ligand has allowed researchers 
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to conclude that microglia are activated early in the disease process, leaving them to promote 

neuroinflammation in vulnerable PD associated brain regions. However, the accuracy of this 

particular ligand may be influenced by a number of issues, such as TPSO genetic polymorphisms 

that influence binding affinity of the PET ligand, low brain density and expression in multiple cell 

types, including infiltrating cells from the periphery (Tronel et al., 2017); therefore, new accurate 

targets must be identified for development of PET ligands to ensure these are faithful reporters of 

microglia number and activation state.  

 

1.4.1.2: Innate immunity - Monocytes 

In addition to brain resident microglia, evidence also suggests a role for peripheral 

monocytes in PD pathogenesis. Classical monocytes are elevated in PD patients and display an 

altered transcriptome profile relative to monocytes from healthy controls with a distinct gene 

expression noted in PD patients early on in disease stage (Grozdanov et al., 2014; Kannarkat et 

al., 2015; Schlachetzki et al., 2018). Furthermore, monocytes from PD patients displayed higher 

proliferative rates and contrasting responses to specific stimulation paradigms with some reports 

suggesting increased while others decreased pro-inflammatory cytokine production (Grozdanov 

et al., 2014; Nissen et al., 2019; Reale, Iarlori, et al., 2009). The chemokine, CCL2, is upregulated 

in PD patients suggesting the potential for an increase in CNS recruitment of monocytes and 

enhanced inflammation, both of which are hypothesized to contribute to neurodegeneration in PD 

(Gao et al., 2015; Grozdanov et al., 2014; Parillaud et al., 2017; Xie et al., 2017). In fact, 

pathogenic asyn has been shown to induce alterations in PD monocytes, including 

hyperactivation, impaired cytokine release and decreased phagocytosis noted in primary cells 

from both human and animal models, suggesting that monocytes display a dysregulated 

inflammatory response to asyn (Gardai et al., 2013; Grozdanov et al., 2019). Finally, LRRK2, one 

of the genes implicated in idiopathic and familial PD, displays increased expression in monocyte 
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populations and has therefore been postulated to contribute to monocyte dysregulation 

(Bliederhaeuser et al., 2016; Cook et al., 2017). To this end, levels of LRRK2 in peripheral 

monocytes may serve as a potential biomarker for PD. 

 

1.4.1.3: Adaptive immunity - T and B cells 

Beyond innate immunity contributing to inflammation in PD, there has also been ample 

evidence to suggest a role for adaptive immunity in PD pathogenesis. In the same study showing 

HLA-DR positive microglia in the brains of PD patients, McGreer and colleagues also showed that 

T cells infiltrate the brains of PD patients, which has been replicated in other human studies and 

animal models (Brochard et al., 2009; McGeer, Itagaki, Boyes, et al., 1988). Subsequent studies 

have looked more specifically at T cell subsets in the brain and periphery to try to understand their 

role in the inflammatory component of PD pathogenesis. Interestingly, HLA-DR+ T cells and 

memory T cells have been shown to be increased in PD patients relative to healthy controls, while 

naïve T cells, cluster of differentiation 4 (CD4) positive, and regulatory T cells are reduced (Bas 

et al., 2001; Chiba et al., 1995; Fiszer, Mix, Fredrikson, Kostulas, & Link, 1994). Furthermore, 

CD4+, forkhead box P3 (FOXP3)-positive regulatory T cells have increased suppressive activity 

in PD patients, which correlates with a finding that dopamine lowers regulatory T cell function 

(Kipnis et al., 2004; Rosenkranz et al., 2007). Similar to observations in the brain, levels of pro-

inflammatory cytokines, TNF, interferon gamma (IFNg), IL-1b, IL-6, interleukin 2 (IL-2), interleukin 

8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1), are also dysregulated in the serum of 

PD patients and some of their levels correlate with disease severity and disability (Brodacki et al., 

2008; Koziorowski, Tomasiuk, Szlufik, & Friedman, 2012; Reale, Iarlori, et al., 2009). This may 

be a consequence of altered lymphocyte populations that contribute to immune cell dysregulation 

as higher levels of IFNg-producing T cells relative to interleukin 4 (IL-4) producing T cells have 

been identified, which is in accordance with a reduced CD4:CD8 T cell ratio in the periphery of 
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PD patients (Baba, Kuroiwa, Uitti, Wszolek, & Yamada, 2005). T cell dysregulation in PD patients 

has been suggested as T cells exhibit increased TNF receptor expression (Bongioanni, Castagna, 

Maltinti, Boccardi, & Dadone, 1997). In 2017, a groundbreaking study by Sulzer and colleagues 

was the first to suggest that specific T cell subsets, mainly CD4+ T cells, recognized certain asyn 

peptides in PD patients (Sulzer et al., 2017) further supporting a role of adaptive immunity in PD 

pathogenesis. While there are discrepancies between findings in T cell populations, dysregulation 

and understanding the role of T cells in PD pathogenesis, one thing is clear – dysregulation in 

immune cell traffic from the periphery to the CNS is likely to promote a pro-inflammatory 

environment that can contribute to the progressive neuronal cell death associated with PD.  

Less understood, the role of B cells in PD is still being explored as reports suggest B cells 

are reduced in the blood of PD patients relative to controls (Bas et al., 2001; Stevens et al., 2012). 

Immunoglobulin G (IgG) antibody deposits have been found on dopaminergic neurons in the brain 

and IgG receptors have been found on activated microglia suggesting humoral immunity may play 

a role in neuroinflammation and neurodegeneration (Orr, Rowe, Mizuno, Mori, & Halliday, 2005). 

Autoantibodies, antibodies against an individual’s own proteins, such as asyn, dopamine, and 

melanin are present in the sera and CSF of PD patients, and in some cases are elevated relative 

to controls (Caggiu et al., 2016; Carvey et al., 1991; Double et al., 2009; M. Han, Nagele, 

DeMarshall, Acharya, & Nagele, 2012; Papachroni et al., 2007; Yanamandra et al., 2011). Levels 

of asyn autoantibodies in patients with mild and moderate PD have been correlated in CSF and 

plasma, supporting the hypothesis that asyn autoantibodies could serve as a potential biomarker 

for PD (Horvath, Iashchishyn, Forsgren, & Morozova-Roche, 2017) 

Collectively, cellular data from the innate and adaptive immune systems provides 

evidence that immune dysregulation in both the periphery and brain can cause upregulation of 

pro-inflammatory cytokines that activate microglia and initiate a cascade of pro-inflammatory 
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signaling ultimately resulting in progressive neurotoxicity and neurodegeneration associated with 

PD. 

 

1.4.2: Epidemiological evidence linking the immune system and PD 

1.4.2.1: PD genetic susceptibility linked to immune-associated genes 

Interestingly, several of the histological markers and key cytokines upregulated in PD 

patients have also been genetically linked to increased risk for PD, further supporting a link 

between inflammation and PD (Bialecka et al., 2008; D. Li et al., 2012; O. A. Ross et al., 2004; 

Wahner, Sinsheimer, Bronstein, & Ritz, 2007). GWAS have identified HLA-DR as a genetic risk 

factor for late on-set PD, while an interaction between IL-6 and estrogen receptor polymorphisms 

have been linked to increased risk for early onset PD (Hakansson et al., 2005; Hamza et al., 

2010). IL-1b polymorphisms are more abundant in PD patients relative to healthy controls and 

may affect the onset of disease similarly to how TNF genetic variants affect it (Nishimura, Kuno, 

Kaji, Yasuno, & Kawakami, 2005; Schulte et al., 2002). Polymorphisms in the TNF gene have 

been associated with increased incidence of PD with certain single nucleotide polymorphisms 

(SNPs) correlated to earlier disease onset (Chu, Zhou, & Luo, 2012; Nishimura et al., 2001; Yu 

et al., 2011). Despite not being a risk factor for PD, allelic distribution of IFNg is significantly 

different between early-onset and late-onset PD (Mizuta et al., 2001), perhaps further implicating 

a role of T cells in PD pathogenesis as T cells are major producers of IFNg. To further support 

this hypothesis, pathway analysis has implicated genes involved in the ‘regulation of 

leukocyte/lymphocyte activity’ as conferring an increased susceptibility to PD (Holmans et al., 

2013). Therefore, future therapeutics to target the immune system may help delay or mitigate the 

inflammatory milieu that contributes to PD pathogenesis or disease progression.  
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1.4.2.2: Non-steroidal anti-inflammatory drugs 

Given that NSAIDs have been shown to reduce the risk of other neurodegenerative 

diseases, it is no surprise that similar findings have been observed in PD. One of the first reports 

linking NSAIDs and PD identified ibuprofen, acetaminophen, and aspirin as capable of reducing 

the loss of dopamine neurons in culture by promoting dopaminergic neuronal integrity (Casper, 

Yaparpalvi, Rempel, & Werner, 2000). Furthermore, the NSAIDs, sodium salicylate, aspirin, and 

meloxicam, have been shown to protect against MPTP-induced dopaminergic neurotoxicity in 

animal models (Aubin, Curet, Deffois, & Carter, 1998; Ferger, Teismann, Earl, Kuschinsky, & 

Oertel, 1999; Sairam, Saravanan, Banerjee, & Mohanakumar, 2003). Following these initial 

reports in animal models, an epidemiological study found patients who regularly consumed non-

aspirin NSAIDs (two or more tablets per day) had a lower risk of developing PD relative to 

nonregular NSAID users (H. Chen et al., 2003). This was further supported by a follow up study 

showing that ibuprofen users, but not acetaminophen or aspirin users, had a 35% lower risk of 

developing PD than nonusers, highlighting the fact that only certain NSAIDs appeared to be 

associated with protective benefits (H. Chen et al., 2005). These protective properties may be 

based on the well-known cyclooxygenase (COX) inhibition of NSAIDs but also their inhibitory 

effects on NOS and ROS, to which dopaminergic neurons are particularly susceptible (Asanuma, 

Nishibayashi-Asanuma, Miyazaki, Kohno, & Ogawa, 2001). In 2006, a controversial study 

reported that non-aspirin NSAIDs reduced the risk for PD by 20% in men but increased the 

incidence in women by 20%, one of the first to link sex differences with NSAID use and PD 

incidence (Hernan, Logroscino, & Garcia Rodriguez, 2006). More recent studies have tried to 

evaluate the link in more defined populations, with one study reporting no association between 

PD risk and NSAID use in an elderly population, while another study claims no links between PD 

risk and incremental increase use of NSAIDs despite finding an association between non-aspirin 

use and PD risk (Poly, Islam, Yang, & Li, 2019; Ren et al., 2018). While not all studies have been 

able to demonstrate positive findings linking incidence of PD and NSAID use, they have 
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suggested that patients with PD have a higher rate of immediate-type hypersensitivity (asthma, 

hay fever, or allergic rhinitis), thus providing further evidence for an inflammatory link in the 

pathogenesis of PD and the need to effectively evaluate the effects of NSAID on the development 

of PD (Bower, Maraganore, Peterson, Ahlskog, & Rocca, 2006; Ton et al., 2006).   

 

1.4.2.3: Autoimmune disorders 

With overwhelming evidence for a role of inflammation in PD pathogenesis, 

epidemiological studies have focused on identifying genetic overlap or pleiotropic loci between 

PD and autoimmune disorders to identify a potential common genetic pathway. PD has been 

epidemiologically linked to several autoimmune disorders, ranging from organ-specific to multi-

organ autoimmune disorders. These disorders include but are not limited to multiple sclerosis, 

psoriasis, amyotrophic lateral sclerosis, Graves's disease (hyperthyroidism), lupus, Hashimoto's 

disease (hypothyroidism), and the grouped autoimmune rheumatic diseases that affect joints and 

muscles. Patients with one of the following autoimmune disorders, multiple sclerosis, amyotrophic 

lateral sclerosis, Graves's disease (hyperthyroidism), Hashimoto's disease (hypothyroidism), 

pernicious anemia, or polymyalgia rheumatica have a 33% increased incidence of PD and risk 

appears to increase after hospitalization due to the autoimmune disorder (X. Li, Sundquist, & 

Sundquist, 2012). Those with autoimmune rheumatic diseases have a 30% greater incidence of 

PD relative to those without an autoimmune disease (Chang et al., 2018). More specifically, those 

with rheumatoid arthritis or psoriasis appear to have a significantly higher risk of developing PD 

(C. C. Chang et al., 2018; Ertan, Fresko, Apaydin, Ozekmekci, & Yazici, 1999; Kogure, Tatsumi, 

Kaneko, & Okamoto, 2008; Sheu, Wang, Lin, & Huang, 2013). However, one study has noted no 

association between autoimmune disease and risk for PD and also noted that those with 

rheumatoid arthritis had a 30% decreased risk for PD (Rugbjerg et al., 2009), which may be due 

to chronic use of anti-inflammatory regimens. These discrepancies may be due to differences in 

study design and analysis or inaccuracy of diagnoses. Regardless of the reason, there are even 



 16 

more studies that have linked autoimmune diseases and PD risk with a recent GWAS identifying 

17 shared loci between PD and 7 autoimmune diseases, including type 1 diabetes, Crohn’s 

disease (CD), ulcerative colitis (UC), rheumatoid arthritis, celiac disease, psoriasis, and multiple 

sclerosis (Witoelar et al., 2017). Collectively the autoimmune diseases represent a group of 

disorders in which the peripheral immune system is activated and increases peripheral 

inflammatory mediators in circulation that could trigger neuroinflammation in vulnerable brain 

regions to promote PD pathogenesis. Therefore, these studies support the idea that PD 

pathogenesis may evolve from a combination of several immunological challenges and/or 

environmental exposures with the immune system under attack and awry as individuals age. 

 

1.5: Leucine-Rich Repeat Kinase 2 (LRRK2) in PD 

The LRRK2 gene has been implicated in both sporadic and familial PD. Monogenic forms 

of the gene are associated with high risk, but low incidence whereas LRRK2 SNPs are associated 

with low risk, but high incidence for PD. In 2002, the PARK8 locus on chromosome 12 was 

identified in a Japanese family with autosomal dominant PD (Funayama et al., 2002). In 2004, 

missense autosomal dominant mutations in LRRK2 were identified as a causative form of 

dominantly inherited PD (Paisan-Ruiz et al., 2004; Zimprich et al., 2004). Since then, it has been 

shown that mutations in LRRK2 account for 1-2% of idiopathic and 5-6% of familial PD cases 

worldwide (Gilks et al., 2005). They are particularly prevalent in individuals of Ashkenazi Jewish 

(29.7%) and North African Arab ancestry (41%) (Lesage et al., 2005; Ozelius et al., 2006; Thaler, 

Ash, Gan-Or, Orr-Urtreger, & Giladi, 2009). The most prevalent LRRK2 mutation, G2019S, results 

in a glycine to serine substitution at position 2019 that causes a 2-3-fold increase in kinase activity, 

suggesting that gain-of-function LRRK2 kinase activity may be involved in PD pathogenesis 

(Greggio et al., 2006; A. B. West et al., 2005; A. B. West et al., 2007). While hard to exactly 

pinpoint, penetrance of the G2019S mutation is extremely low with estimations of penetrance to 

be 28% at 59 years, 51% at 69 years, and 74% at 79 years, further supporting the hypothesis that 
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environmental factors are critical determinants of risk for PD (Healy et al., 2008). Interestingly, 

LRRK2 mutation carriers develop similar clinical symptoms as non-LRRK2 mutation carriers with 

PD (Aasly et al., 2005; Haugarvoll et al., 2008; O. A. Ross et al., 2006). This suggests that there 

are likely to be common mechanisms between inherited and idiopathic PD and highlights the 

importance of understanding LRRK2 both in the context of immune responses and inflammation 

and in the context of PD. The current understanding of LRRK2 in the neurodegeneration field is 

reviewed below. 

 

1.5.1: LRRK2 structure, function, and expression 

Containing 51 exons that encode a 2527-amino acid protein (~286kDa), LRRK2 is a rather 

large protein (Guo et al., 2007; Mata, Wedemeyer, Farrer, Taylor, & Gallo, 2006). As a member 

of the ROCO protein family of G proteins, LRRK2 contains two functional domains – a Ras of 

complex (ROC) with intrinsic GTPase domain and a serine/threonine kinase domain (Figure 1.2). 

Many of the pathogenic mutations reside in these functional domains, including N1437H, 

R1441G/C/H, and Y1699C in the ROC and COR (C-terminal of Roc) domains and I2012T, 

G2019S, and I2020T in the kinase domain (Figure 1.2), and generally result in decreased GTPase 

activity or increased kinase activity, respectively. This suggests that PD pathogenesis may be 

closely linked to various LRRK2 functions. Beside functional domains, LRRK2 also contains 

several different protein-protein interacting domains, including a leucine-rich repeat (LRR) 

domain, a C-terminal WD40 repeat domain, and armadillo and ankyrin repeat domains, all of 

which contribute to its ability to act as a signaling scaffold protein (Gilsbach et al., 2012; Guo et 

al., 2007). Interestingly, genetic variants in both the functional and protein-interacting domains 

have been associated with increased incidence of PD (R1628P, N2081D, and G2385R) or 

decreased incidence of PD (N551K and R1398H) (Figure 1.2) (Farrer et al., 2007; Heckman et 

al., 2013; K. Li et al., 2015; O. A. Ross et al., 2011; O. A. Ross et al., 2008; Tan et al., 2010). 
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Figure 1.2: LRRK2 structure and phosphorylation activity. The LRRK2 structure 

encompasses several functional (ROC/COR, and kinase) and protein-protein interacting domains 

(armadillo, ankyrin, leucine-rich repeats, and WD40). Many of the pathogenic mutations 

associated with PD, indicated in red, fall in the functional domains. Although less studied, variants 

associated with increased incidence of PD are denoted in black. Variants associated with 

decreased incidence of PD (brain) and Crohn’s disease (CD) are denoted in green. N2081D and 

M2397T variants are associated with increased incidence of CD (intestine). LRRK2 is 

phosphorylated by upstream kinases at s910, 935, 955, and 973 (indirect readouts of kinase 

activity) or autophosphorylated at s1292 (direct kinase activity readout). The kinase domain 

phosphorylates the bona fide substrates of LRRK2, the Rab GTPases. 

 

Based on the close homology of its protein kinase domain to that of the mixed-lineage 

kinases, LRRK2 is classified as a mixed-lineage kinase (MLK), belonging in particular to the 

subfamily mitogen-activated protein kinase kinase kinases (MAPKKKs) (Marin, 2006; Mata et al., 

2006). Although its structure resembles both tyrosine kinase and serine/threonine kinases, 
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LRRK2 has largely been shown to function as a serine/threonine kinase that can 

autophosphorylate and to be devoid of tyrosine kinase activity (Manning, Whyte, Martinez, Hunter, 

& Sudarsanam, 2002; A. B. West et al., 2005; A. B. West et al., 2007). Insight into the structure 

of the LRRK2 kinase domain has been gained from its similarity to Roco4, another 

serine/threonine kinase that belongs to the ROCO family. Like most conserved kinases, the 

LRRK2 kinase consists of a two-lobed structure with an adenine nucleotide bound in the binding 

pocket (Gilsbach & Kortholt, 2014). Classically in ROCO proteins, the C-terminal lobe contains 

the activation loop with a conserved DFG (aspartic acid, phenylalanine, glycine) motif that is 

responsible for catalysis; however, in LRRK2 this motif is changed to DYG (aspartic acid, tyrosine, 

glycine) in the activation loop (ADYGIAQYCC), and this is where the most pathogenic LRRK2 

mutation, G2019S, resides (Ray & Liu, 2012). While not fully understood, the DYG conformation 

is apparently more flexible which allows for easy switching between the active and inactive states 

of the kinase (Ray & Liu, 2012). The G2019S mutation causes a shift in the DYG motif to DYS 

(aspartic acid, tyrosine, serine) and promotes an active kinase resulting in a substantial increase 

in kinase activity that has been shown to be cytotoxic (Greggio et al., 2006; M. Liu et al., 2011; 

Plowey, Cherra, Liu, & Chu, 2008; Ray & Liu, 2012; A. B. West et al., 2005; Yao et al., 2010).  

Aside from autophosphorylation, a number of other mechanisms have been proposed to 

regulate LRRK2 kinase activity including intramolecular regulation and phosphorylation by 

upstream regulators. Recent insight into the structural model suggests LRRK2 dimerizes into a 

compact structure that is hypothesized to be responsible for the intramolecular mechanism 

controlling LRRK2 enzymatic activity, in particular LRRK2 kinase activity (Berger, Smith, & Lavoie, 

2010; Greggio et al., 2008; Guaitoli et al., 2016; Leandrou et al., 2019; P. Zhang et al., 2019). The 

kinase and GTPase domains are considered to be intrinsically regulated with the ability of the 

kinase domain to phosphorylate the ROC domain and alter GTPase activity and vice versa  

(Gloeckner et al., 2010; Greggio et al., 2009; A. B. West et al., 2007). In an inactive state, with 

GDP bound, the GTPase is inactive and results in decreased kinase activity, while an active state 



 20 

with GTP bound results in increased kinase activity (Ray & Liu, 2012). Furthermore, pathogenic 

mutations in the ROC/COR domains, R1441C/G and Y1699C, have been shown to increase GTP 

binding resulting in increased kinase activity while the opposite effect is observed with the T1348N 

variant that decreases GTP binding (Guo et al., 2007; Ito et al., 2007; Lewis et al., 2007; A. B. 

West et al., 2007). Given that all currently identified pathogenic mutations localize to the kinase 

or GTPase domains, LRRK2 kinase inhibitors or GTP modulators have been the focus of 

therapeutic development for the PD clinic (A. B. West, 2017).  

A number of constitutive sites (ser910, ser935, ser955, ser973 to name a few) mainly in 

the LRR domain have been identified to be phosphorylated by other kinases as an indirect readout 

of LRRK2 kinase activity; however, an increase in available resources has recently allowed the 

identification of the ser1292 site as the bona fide autophosphorylation site of LRRK2 and a direct 

readout of LRRK2 kinase activity (Figure 1.2) (Dzamko et al., 2010; Gloeckner et al., 2010; 

Nichols et al., 2009; Sheng et al., 2012). Several upstream regulators, including casein kinase 

1a, inhibitor of nuclear factor kB kinase subunits (IKKa and b), and protein kinase A (PKA) to 

name a few, have been identified to alter LRRK2 kinase activity via ser910 and/or ser935 indirect 

readouts (De Wit, Baekelandt, & Lobbestael, 2018; Lobbestael, Baekelandt, & Taymans, 2012). 

Numerous additional upstream regulators have been proposed; however confirmation of their 

activity has yielded conflicting results and needs further study (Lobbestael et al., 2012).  

LRRK2 has been shown to phosphorylate a number of substrates including  the mixed-

lineage kinases MKK3/6, MKK 4/7, 4E-BP1, moesin, and myelin basic protein (MBP) (Gloeckner, 

Schumacher, Boldt, & Ueffing, 2009; Hsu et al., 2010; Imai et al., 2008; Jaleel et al., 2007; A. B. 

West et al., 2005; J. Yang, Zhang, Yu, Yang, & Wang, 2014). However, recent studies have 

officially identified the bona fide substrates of LRRK2 as several members of the Rab GTPase 

family, that regulate vesicle trafficking (Steger et al., 2017; Steger et al., 2016). LRRK2 

phosphorylates Rab3, Rab5, Rab8, Rab10, Rab12, Rab29, Rab35 and Rab43 at a conserved 

serine or threonine in the switch II domain, and pathogenic LRRK2 mutations have been 
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associated with increased Rab phosphorylation, while LRRK2 kinase inhibition results in 

dampened Rab phosphorylation (Bonet-Ponce & Cookson, 2019). While it is unclear how 

dysregulated LRRK2 phosphorylation of Rab proteins contributes to PD associated 

neuropathology, hypotheses can be made from our current knowledge of Rab cellular dysfunction 

in the context of asyn and LRRK2. Rab29 physically interacts with LRRK2 and recruits LRRK2 to 

the trans-golgi network resulting in increased LRRK2 kinase activity, which consequently causes 

LRRK2 to phosphorylate other Rab substrates (Z. Liu et al., 2018; Purlyte et al., 2019). This 

suggests LRRK2 phosphorylation of Rab substrates happens in a Rab29-dependent mechanism. 

LRRK2 phosphorylation of Rab10 has been implicated in blocking ciliogenesis, while 

phosphorylation of Rab8A disrupts centrosome positioning, both of which may decrease 

neurotrophic support (Dhekne et al., 2018; Madero-Perez, Fdez, et al., 2018; Madero-Perez, 

Fernandez, et al., 2018; Steger et al., 2017). Furthermore, LRRK2 can recruit both Rab8A and 

Rab10 into lysosomes, promoting premature exocytosis of undegraded materials (Eguchi et al., 

2018). Interestingly, phosphorylation of Rab35 by LRRK2 has been shown to increase asyn 

propagation, while Rab7A, Rab8B, Rab11A and Rab13 have been reported to block asyn 

aggregation and propagation or to promote asyn clearance (Dinter et al., 2016; Goncalves et al., 

2016; Griffin, Yan, Caldwell, & Caldwell, 2018; Steger et al., 2016). While most of the 

abovementioned studies occurred in cell and rodent models, a recent report suggests 

phosphorylated Rab10 and LRRK2 kinase activity levels are increased in dopaminergic neurons 

from the SN of idiopathic PD patients (Di Maio et al., 2018). Collectively, these studies provide a 

glimpse of the interactions between LRRK2 and Rab proteins and their effects on vesicular 

trafficking and the autophagy pathway, with more detailed investigations needed, including the 

possibility of therapeutically targeting this pathway to delay, mitigate or prevent PD.  

Given its multiple, highly diverse domains, LRRK2 has been shown to influence several 

cellular processes although the exact mechanism(s) by which LRRK2 contributes to PD 
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pathogenesis still remain to be elucidated. Some of the processes dysregulated by LRRK2 include 

mitochondrial function, autophagy regulation, neurite outgrowth, vesicular trafficking, cytoskeletal 

maintenance, and immune cell signaling pathways (Berwick & Harvey, 2012; Hongge, Kexin, 

Xiaojie, Nian, & Jinsha, 2015; Plowey et al., 2008; Ramonet et al., 2011; Schapansky, Nardozzi, 

Felizia, & LaVoie, 2014). Many of these processes are disrupted by LRRK2 due to physical 

interactions and changes in LRRK2 localization. Under homeostatic conditions, endogenous 

LRRK2 typically localizes to the cytoplasm. LRRK2 membrane localization is dependent on its 

conformation as a dimer, which increases kinase activity of membrane associated LRRK2 relative 

to that of cytosolic, monomeric LRRK2  (Berger et al., 2010).  

One of the first findings to implicate LRRK2 in dysregulation of autophagy resulted from 

studies in which LRRK2 knockout rodent models were found to exhibit impaired protein 

degradation and accumulation of lipofuscin in the kidney and lung due to decreased 

macroautophagy (Baptista et al., 2013; Herzig et al., 2011; Ness et al., 2013; Tong et al., 2010). 

The effects of LRRK2 on the autophagy pathway are often cell- and context-dependent. Recent 

studies have shown that lysosomes, with increased LRRK2 kinase activity, increase in size, 

decrease in number and exhibit lower pH levels, resulting in impaired autophagy in neurons, 

astrocytes, and fibroblasts (Dehay et al., 2012; Henry et al., 2015). In immune cells, toll like 

receptor 4 (TLR4) stimulation or target of rapamycin (mTOR) inhibition causes LRRK2 to 

colocalize with autophagosome membranes resulting in decreased autophagy (Schapansky et 

al., 2014). Overexpression of wildtype LRRK2 or pathogenic LRRK2 has been associated with 

induction of autophagy albeit with variable and inconsistent results as G2019S-mediated kinase 

activity dysregulates autophagy in a neuronal cell line resulting in neurite shortening and 

neurotoxicity (Gomez-Suaga et al., 2012; Manzoni et al., 2013; Plowey et al., 2008; Schapansky 

et al., 2018). Interestingly, wildtype LRRK2 protein has been localized to the autophagy pathway 

in neurons in brains of patients with neurodegenerative diseases and is increased in PD patients, 
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highlighting the importance of studying LRRK2 in the context of the autophagy pathway as it may 

be of relevance beyond PD (Higashi et al., 2009).  

With mitochondria heavily implicated in PD pathology, there is ample evidence that has 

supported a link between LRRK2 and mitochondria, often with detrimental effects in the context 

of pathogenic LRRK2. In both animal models and human tissue, LRRK2 has been shown to 

contribute to a number of mitochondrial dysfunctions including increased oxidative stress, 

abnormal fission and fusion, impaired mitophagy, reduced mitochondrial trafficking, decreased 

ATP production and increased mitochondrial DNA damage (Cherra, Steer, Gusdon, Kiselyov, & 

Chu, 2013; Cooper et al., 2012; Mortiboys, Johansen, Aasly, & Bandmann, 2010; Niu, Yu, Wang, 

& Xu, 2012; Sanders et al., 2014; Su & Qi, 2013; X. Wang et al., 2012; Yue et al., 2015). Like 

many of the situations described above, LRRK2 localizes to a membrane and in the context of 

mitochondria, specifically the outer mitochondrial membrane. Under normal conditions, LRRK2 

forms a complex with the protein Miro, which regulates mitochondria movement and mitophagy, 

but pathogenic G2019S LRRK2 disrupts this process and delays mitophagy (Hsieh et al., 2016). 

Rotenone, a pesticide that inhibits mitochondrial complex 1, has been shown to increase reactive 

oxidative species and decrease mitochondrial membrane potential in G2019S neurons which can 

be reversed with LRRK2 kinase inhibition (Mendivil-Perez, Velez-Pardo, & Jimenez-Del-Rio, 

2016).  

In addition to mitochondria, LRRK2 can interact and colocalize with microtubules by 

binding to b-tubulin, resulting in decreased stability (Caesar et al., 2013; Gandhi, Wang, Zhu, 

Chen, & Wilson-Delfosse, 2008; Law et al., 2014). Overexpression of LRRK2 or LRRK2 kinase 

inhibition have also been shown to induce LRRK2 colocalization with filamentous structures on a 

subset of microtubules (Dzamko et al., 2010; Sheng et al., 2012). Pathogenic mutations altering 

the GTPase activity enhance LRRK2 microtubule colocalization and impair axonal vesicular 

transport of mitochondria (Blanca Ramirez et al., 2017; Godena et al., 2014; Kett et al., 2012; 

Thomas et al., 2016). 
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LRRK2 is widely expressed in a variety of tissues, including the brain, kidney, lung, 

intestine, lymph node, prostate gland and ovary (Figure 1.3) (A. B. West, 2017). Within the brain, 

LRRK2 is expressed in multiple regions with relatively high expression levels in the axons and 

dendrites of the striatum relative to other brain regions, further linking LRRK2 and the vulnerability 

of the dopaminergic nigrostriatal pathway to PD pathogenesis, albeit recent research has shown 

these levels to be lower than peripheral tissues. (Giesert et al., 2013; Higashi et al., 2007; H. 

Melrose, Lincoln, Tyndall, Dickson, & Farrer, 2006; Simon-Sanchez, Herranz-Perez, Olucha-

Bordonau, & Perez-Tur, 2006; A. B. West et al., 2014). Interestingly, LRRK2 expression has been 

found to be the highest in lymphocytes, most notably neutrophils and monocytes (Fan et al., 

2018). LRRK2 in the context of immune cells and the immune system is reviewed in detail below.  

 

 

Figure 1.3: Relative human LRRK2 expression. LRRK2 expression is highest in neutrophils 

and monocytes and relatively low in the brain (adapted from (A. B. West, 2017)).  

 

1.5.2: LRRK2 animal models 

Ever since the identification of LRRK2 mutations in idiopathic and familial PD, researchers 

have developed and utilized several cellular and animal models to elucidate the role of LRRK2 

and these have been extensively reviewed (Volta & Melrose, 2017; Xiong, Dawson, & Dawson, 

2017). These include but are not limited to Drosophila, Caenorhabditis elegans, zebrafish, and 
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BAC transgenic, viral-mediated, knockout and knock-in mouse and rat models. However, none of 

these models fully recapitulate the phenotypes associated with PD, both behaviorally and 

neuropathologically. LRRK2 knockout models generally demonstrate a normal nigrostriatal 

pathway but abnormal peripheral pathology in the lung and kidney due to autophagy defects 

(Andres-Mateos et al., 2009; Hinkle et al., 2012; Tong et al., 2012; Tong et al., 2010). These 

effects, while unexpected, are informative given LRRK2 expression is relatively high in the kidney 

and lung. Early therapeutic interventions targeting LRRK2 levels or kinase activity have also 

caused on-target effects in the periphery that would not necessarily have been noted without 

findings from the LRRK2 KO models. Several transgenic LRRK2 rodent models were developed 

using bacterial artificial chromosome (BAC), knock-in, or tet-inducible technology to express 

wildtype LRRK2 or pathogenic LRRK2 (G2019S, R1441G/C, I2020T). Using BAC technology, 

mouse models with human or mouse wildtype, G2019S, or R1441G have been shown to have 

alterations in extracellular dopamine release, while rat models have been shown to have age-

dependent reductions in dopamine release or no differences (Beccano-Kelly et al., 2015; X. Li et 

al., 2010; Y. Li et al., 2009; H. L. Melrose et al., 2010; Sanchez et al., 2014; Sloan et al., 2016; 

Volta et al., 2015; Walker et al., 2014). Of those with alterations in dopamine release, behavioral 

phenotypes ranged from none to mild motor and cognitive deficits (Beccano-Kelly et al., 2015; X. 

Li et al., 2010; Y. Li et al., 2009; H. L. Melrose et al., 2010; Sanchez et al., 2014; Sloan et al., 

2016; Volta et al., 2015; Walker et al., 2014). Some of the rat models with pathogenic LRRK2 

mutations have reported to display responsiveness to levodopa (L-Dopa) (Sloan et al., 2016). 

Knock-in models harboring R1441C/G or G2019S mutations rarely exhibit alterations in the 

dopamine system or behavioral phenotypes (Herzig et al., 2011; H. F. Liu et al., 2014; Longo, 

Russo, Shimshek, Greggio, & Morari, 2014; Parisiadou et al., 2014; Tong et al., 2009; Yue et al., 

2015). Rodent models using tet-inducible technology under different promoters and enhancers 

are some of the few models to exhibit locomotor changes and reductions in striatal dopamine or 

decreased dopamine release (G. Liu et al., 2015; Maekawa et al., 2012; Zhou et al., 2011). Of 



 26 

note, mutant G2019S mice using the PDGF-B promoter have been shown to develop 

degeneration at 12 or 20 months of age (C. Y. Chen et al., 2012; Chou et al., 2014). Perhaps 

some of the most promising models to induce nigrostriatal neurodegenerative phenotypes are 

from the use of Herpes simplex and adeno-associated viral-mediated gene transfer, in which 

pathogenic LRRK2 is packed into the viral vectors and is retrogradely transported to the SN after 

striatal injections, whereby it promotes neurodegeneration (Dusonchet et al., 2011; B. D. Lee et 

al., 2010; Tsika et al., 2015). These models have been shown to be LRRK2 kinase dependent as 

LRRK2 kinase-dead mutants did not induce neurodegeneration (B. D. Lee et al., 2010; Tsika et 

al., 2015).  

The use of these different models has permitted the exploration of different questions in 

the context of LRRK2 biology and provided novel insight into LRRK2 mechanisms regulating 

inflammation and neurodegeneration. BACs overexpress mutant or wildtype LRRK2 in all tissues 

that express LRRK2; however, the relevance of these models may be limited as only levels of 

LRRK2 (not G2019S LRRK2) have been shown to be elevated in subjects with PD (Cook et al., 

2017). Knock-in models are thought to more accurately represent LRRK2 PD with point mutations 

expressed at endogenous levels. However, several differences have been noted between lines, 

which could be explained by a number of things including genetic background strain effects or 

vivarium/housing conditions. Given that these models do not fully recapitulate PD phenotypes 

and LRRK2 mutations have low penetrance, scientists hypothesize that additional factors, such 

as environmental contributions, are required to promote PD pathology in these animal models, 

just as is hypothesized to occur in development of sporadic PD and to influence age-at-onset in 

individuals from the same family with LRRK2 G2019S mutations. 

 

1.5.3: LRRK2 and the immune system  

Since the identification of pathogenic mutations in PD, most research has focused on 

LRRK2 in neurons as LRRK2 gain-of-function kinase activity has been shown to affect neurite 
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outgrowth (Plowey et al., 2008; Ramonet et al., 2011). However, recent advances into the function 

of LRRK2 in the context of the immune system have garnered considerable attention, especially 

given that neuroinflammation is considered a major component of PD pathogenesis. Here the 

current status of our knowledge of LRRK2 in the context of the immune system and inflammation 

will be reviewed. 

 

1.5.3.1: LRRK2 expression in brain-resident and peripheral blood immune cells 

LRRK2 is most highly expressed in peripheral blood immune cells. In fact, LRRK2 

expression in leukocytes has been shown to be much higher than that in neurons (A. B. West, 

2017). CD14+ monocytes, neutrophils, CD19+ B cells, CD4+ T cells and CD8+ T cells from 

healthy control peripheral blood mononuclear cells (PBMCs) have all been shown to express 

LRRK2; however, expression is highest in CD14+,CD16+ monocytes and neutrophils (Figure 1.3) 

(Atashrazm et al., 2019; Fan et al., 2018; Hakimi et al., 2011; Thevenet, Pescini Gobert, Hooft 

van Huijsduijnen, Wiessner, & Sagot, 2011). Following stimulation with lipopolysaccharide (LPS) 

or IFNg, LRRK2 expression is increased in myeloid cells from primary monocytes (Gardet et al., 

2010; Hakimi et al., 2011), bone-marrow derived macrophages (Hakimi et al., 2011), or human 

THP-1 monocytic leukemia cell lines (Kuss, Adamopoulou, & Kahle, 2014). Stimulation with IFNg 

induces LRRK2 expression in CD14+, CD16- monocytes, which causes them transition to CD14+ 

CD16+ cells, but LRRK2 kinase inhibition attenuates this process (Thevenet et al., 2011). While 

LRRK2 expression is relatively low in T cells compared to other immune cell types in peripheral 

blood, its expression can still be induced by IFNg stimulation (Gardet et al., 2010; Thevenet et al., 

2011). Furthermore, LRRK2 expression at baseline in B cells, T cells and CD16+ monocytes from 

PBMCs of sporadic PD patients is higher relative to healthy controls, and the relationship between 

monocyte LRRK2 levels and inflammatory activity is significantly different in PD patients as 

compared to healthy controls (Cook et al., 2017).  
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The expression of LRRK2 in microglia is variable and often debated. Mouse and rat 

microglia under homeostatic conditions express very low to no LRRK2 protein; however, 

expression is increased after stimulation with LPS or TLR4 agonism and restored to basal levels 

with LRRK2 kinase inhibition, suggesting LRRK2 microglial expression is stimulation-dependent 

similar to that in peripheral immune cells albeit to lower levels (Moehle et al., 2012). Furthermore, 

in humans one study suggests LRRK2 expression in microglia is weak; and analyses need to be 

conducted to ascertain its levels in microglia in idiopathic PD or LRRK2 PD patients (Miklossy et 

al., 2006). The fact that LRRK2 expression is high in peripheral blood immune cells under 

homeostatic conditions and further increased upon stimulation suggests its induction is likely to 

play a regulatory role in their effector functions; therefore, caution should be exercised when 

targeting LRRK2 as a potential therapeutic intervention in PD as it is still unclear whether the high 

LRRK2 levels in immune cells are a protective or deleterious mechanism in the immune system. 

 

1.5.3.2: LRRK2 regulation of immune cell function 

Beyond the ROCO proteins, LRRK2 is also a member of the receptor-interacting protein 

kinases (RIPK), a class of serine/threonine kinases that modulate inflammatory responses 

through apoptosis, necrosis, or direct regulation of intracellular signaling pathways. Given its close 

structural relation to RIPKs, LRRK2 is also known as RIP7 (Meylan & Tschopp, 2005). RIPKs are 

involved in the extrinsic pathway of programmed cell death that is initiated by death signals 

triggered by TNF or Fas ligand (FasL) via binding to their respective receptors (TNFR1 or Fas) 

and promoting activation of downstream executioner caspases and the nuclear factor kappa-light-

chain-enhancer of activated B cells (NFkB) signaling pathway. LRRK2 interaction with the Fas-

associated protein with death domain (FADD) induces neuronal death via caspase-8 activation, 

and this is LRRK2 kinase dependent, with pathogenic LRRK2 mutations increasing the interaction 

while LRRK2 kinase inhibition decreasing binding and ensuing neuronal death (C. C. Ho, Rideout, 

Ribe, Troy, & Dauer, 2009). HEK293T cells expressing green fluorescent protein (GFP)-tagged 
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LRRK2 I2020T (a mutation that stabilizes the active state conformation and leads to higher 

LRRK2 kinase activity) display higher cytotoxicity due to enhanced LRRK2 interaction with FADD, 

further supporting the notion that enhanced TNF signaling downstream by LRRK2 mutations is 

dependent on its kinase activity (Melachroinou et al., 2016). Further analysis of this interaction, 

suggests that the armadillo-repeat domain of LRRK2 is specifically responsible for interacting with 

FADD (Antoniou et al., 2018). In the SH-SY5Y human neuronal cell line, LRRK2 has been shown 

to phosphorylate p53, a tumor suppressor gene that when activated can induce apoptosis or cell 

growth arrest and result in enhanced neuroblastoma cell death (D. H. Ho et al., 2015). This has 

been recapitulated in microglia, showing that LRRK2 can phosphorylate p53 in the BV2 microglial 

cell line after LPS stimulation, which in turn increases microglia TNF secretion (D. H. Ho, Seol, 

Eun, & Son, 2017).   

A number of functional consequences have been associated with mutant LRRK2 in 

myeloid cells and microglia, including motility, phagocytosis, and cytokine release. LRRK2 

G2019S mouse microglia and bone-marrow derived macrophages display increased phagocytic 

responses to latex beads or Escherichia coli bioparticles, while LRRK2 deficiency decreased 

phagocytosis in the same cell types (K. S. Kim et al., 2018). However, stimulation of monocytic 

RAW264.7 and microglial BV2 cell lines with TLR4 agonists results in increased LRRK2 

dimerization and translocation to autophagosome membranes with minimal effects on 

phagocytosis of beads (Schapansky et al., 2014). LRRK2 knockdown results in autophagic 

deficits, implicating LRRK2 in autophagy regulation. Myeloid cells expressing LRRK2 G2019S 

exhibit increased chemotaxis due to enhanced association between LRRK2 and actin-regulatory 

proteins which can be blocked by LRRK2 kinase inhibition (Moehle et al., 2015). On the contrary, 

LRRK2 G2019S microglia show impaired ADP-induced motility that can be rescued with LRRK2 

kinase inhibition (I. Choi et al., 2015). Interestingly, LRRK2-deficient microglia are not only highly 

motile but exhibit increased CX3CR1, resulting in increased migration towards its ligand 

fractalkine (CX3CL1). CX3CR1 deficiency restored LRRK2-deficient microglia migration activity 
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to basal levels (I. Choi et al., 2015; B. Ma et al., 2016). LRRK2 has also been linked to trafficking 

of monocytes across the BBB as overexpression of wildtype or LRRK2 G2019S increased 

monocyte attachment to endothelial cells through an upregulation of VCAM-1, a membrane 

protein that mediates leukocyte-endothelial adhesion and transmigration across the BBB (Hongge 

et al., 2015). The effects of LRRK2 on motility and migration are opposite in peripheral monocytes 

versus microglia, further supporting the notion the LRRK2 functions in a cell type-specific and 

kinase-dependent manner. 

In addition to affecting migration, motility, and phagocytosis in myeloid cells, LRRK2 also 

influences immune cell cytokine production. Primary mouse microglia expressing the LRRK2 

R1441G pathogenic mutation exhibit increased expression and secretion of pro-inflammatory 

cytokines in sera that induced cell death when placed on neuronal cultures (Gillardon, Schmid, & 

Draheim, 2012). On the contrary, knockdown of LRRK2 in mouse microglia decreased pro-

inflammatory gene expression and NFkB transcriptional activity, but wildtype LRRK2 and LRRK2 

mutants increased NFkB transcriptional activity, suggesting LRRK2 positively regulates 

inflammation and cytokine production (B. Kim et al., 2012). This idea is supported by another 

study that confirmed and extended these findings, suggesting that LRRK2 deficiency or kinase 

inhibition causes increased phosphorylation of the p50 subunit in the NFkB pathway, resulting in 

accumulation of p50 in the nucleus, shifting the ratio of p65:p50 subunits, and decreasing the 

transcription of cytokines (Russo et al., 2015). Furthermore, LRRK2 G2019S-mediated gain-of-

function kinase activity in microglia decreases PKA activity leading to a decrease in NFkB 

transcription (Russo et al., 2018). Several studies suggest that LRRK2 kinase inhibition dampens 

microglia cytokine production, thus providing rationale that therapeutically targeting LRRK2 

kinase activity in immune cells may dampen PD-associated neuroinflammation (B. Kim et al., 

2012; Marker et al., 2012; Moehle et al., 2012; Puccini et al., 2015). 
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Beyond LRRK2 regulation of signaling pathways in myeloid cells and microglia, LRRK2 

has also been implicated in the nuclear factor of activated T cells (NFAT) signaling pathway as a 

negative regulator. It has been shown that NFAT translocation to the nucleus is blocked through 

LRRK2 interactions with non-coding repressor of NFAT (NRON). LRRK2-deficient mice showed 

increased translocation of NFAT to the nucleus in a NRON-dependent manner, thereby resulting 

in increased NFAT activity (Z. Liu et al., 2011). Additionally, Aspergillus fumigatus, an 

opportunistic fungal pathogen, decreases LRRK2 mRNA and protein levels resulting in 

upregulation of NFAT translocation, and similar findings have been observed in LRRK2-deficient 

dendritic cells (Wong et al., 2018). The role of LRRK2 in NFAT signaling in the context of colitis 

will be detailed in the next chapter. 

Collectively, these studies suggest that LRRK2 regulation of immune cell function is cell 

type-, stimulus-specific and dependent on LRRK2 kinase activity, thereby providing possible 

explanations for the contrasting reports on its role from various groups. Additional translational 

studies are needed to fully understand the normal function of LRRK2 in the context of human 

immune cells, as well as the potential pathogenic role of LRRK2 mutations in immune cells, both 

of which should be possible with greater access to LRRK2 PD patient blood samples and/or via 

utilization of human induced pluripotent stem cell-derived macrophages, monocytes and microglia 

from LRRK2 PD patients (H. Lee, James, & Cowley, 2017; van Wilgenburg, Browne, Vowles, & 

Cowley, 2013).  

 

1.5.3.3: LRRK2 in inflammation  

Given the low penetrance of LRRK2 mutations and low availability of LRRK2 PD samples, 

human studies examining differences between pathogenic LRRK2 PD patients and sporadic 

patients have been limited. Nevertheless, one study reports that serum levels of IL-1b can 

discriminate between asymptomatic G2019S carriers and controls, while G2019S PD patients 

have higher levels of serum platelet-derived growth factor (PDGF) and IL-8 and vascular 
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endothelial growth factor (VEGF) in the CSF relative to sporadic patients (Dzamko, Rowe, & 

Halliday, 2016). Interestingly, while total LRRK2 levels were not found to be different between 

G2019S PD, carriers, idiopathic PD and healthy control PBMCs, levels of LRRK2 phosphorylation 

at ser935 were reduced in G2019S PD patients compared to sporadic PD patients, suggesting 

that pSer935 may be a potential biomarker for G2019S PD patients (Padmanabhan et al., 2020).  

Given that several mutant LRRK2 animal models do not exhibit neurodegenerative 

phenotypes, studies have examined the effects of LRRK2 mutations in the context of 

environmental toxins. Mice overexpressing G2019S or wildtype LRRK2 were subjected to the 

neurotoxin, MPTP, whereby MPTP-treated G2019S mice exhibited greater loss of striatal 

dopamine and TH neurons in the SN than mice overexpressing wildtype LRRK2 (Karuppagounder 

et al., 2016). Similar findings were observed in mice overexpressing LRRK2 R1441G mutations 

subjected to peripheral acute LPS administration, in which mice exhibited neuronal loss in the SN 

accompanied by neuroinflammation promoted by an immune response from the periphery (Kozina 

et al., 2018). In yet another studying using LPS as a peripheral immune stimulus in aged mice, 

LRRK2 G2019S mice exhibited similar inflammatory phenotypes relative to wildtype mice with 

increased glial fibrillary acidic protein (GFAP) positive astrocytes and ionized calcium binding 

adaptor molecule 1 (Iba1)-positive microglia that were restored to baseline levels with inhibition 

of matrix metalloproteinase-8 (MMP8), a proteinase responsible for degradation of the 

extracellular matrix (J. Kim et al., 2017). Using manganese as a stimulus, LRRK2 expression was 

shown to be upregulated in vivo and in vitro in conjunction with autophagy dysfunction, which was 

reversed with LRRK2 kinase inhibition or LRRK2 deletion (J. Chen, Su, Luo, & Chen, 2018; J. 

Kim et al., 2019). Longitudinal studies in LRRK2 G2019S rats with microglial PET imaging suggest 

that neuroinflammation increases with age similarly to non-transgenic rats (Walker et al., 2015). 

Another longitudinal study following LPS-treated G2019S rats with [11C]PBR28 PET imaging 

showed increased neuroinflammation relative to saline-treated controls, but no dopaminergic 

neuron degeneration, suggesting that multiple peripheral insults may be necessary for 
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nigrostriatal neurodegeneration (Schildt et al., 2019). LRRK2 deficiency protects against the toxic 

herbicide paraquat-induced sickness and inflammation as well as neuronal loss and activated 

myeloid cells in rats injected with AAV-human asyn (Daher, Volpicelli-Daley, Blackburn, Moehle, 

& West, 2014; Rudyk, Dwyer, Hayley, & membership, 2019). Collectively, these findings suggest 

that LRRK2 may regulate inflammatory responses in animal models subjected to environmental 

factors but in a stimulus-dependent manner.  

 

1.5.3.4: LRRK2 epidemiologically linked to inflammatory diseases 

Beyond PD, LRRK2 has been linked to several inflammatory diseases. A recent study 

identified LRRK2 as one gene of 17 that overlap between PD and autoimmune diseases (Witoelar 

et al., 2017). In 2009, a SNP in LRRK2 was identified to be in weak association for leprosy, an 

infectious disease caused by Mycobacterium leprae that can progressively lead to nerve damage 

(F. R. Zhang et al., 2009). In 2015, 13 LRRK2 variants were significantly associated with leprosy 

in the Han Chinese population (D. Wang et al., 2015). A follow up study identified that 18 LRRK2 

variants were associated with type-1 reactions, excessive pro-inflammatory responses associated 

with leprosy (Fava et al., 2016). Interestingly, the R1628P genetic variant that is located in the 

COR domain, exhibits pleiotropic effects with protective association against type-1 reactions but 

increased incidence of PD (Fava et al., 2019). LRRK2 protein levels have been correlated with 

the autoimmune disease, systemic lupus erythematosus, disease index and elevated in B cells 

(M. Zhang et al., 2019). Several GWAS have identified LRRK2 mutations associated with 

increased incidence of CD (Hui et al., 2018; Michail, Bultron, & Depaolo, 2013; Umeno et al., 

2011). The newly identified N2081D variant in LRRK2 has been reported to be associated with 

increased incidence of both CD and PD while the N551K variant with reduced incidence of both 

diseases, suggesting a pleotropic link between PD and autoimmune disease (Hui et al., 2018; 

Witoelar et al., 2017). Given these associations and several genetic links between LRRK2, PD, 
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and inflammatory diseases, therapeutic interventions targeting common mechanisms underlying 

pathogenesis may help delay onset or mitigate disease progression.  

 

1.5.3.5: LRRK2 association with bacterial infection models 

 LRRK2 has been linked to several infections by epidemiological studies and in animal and 

cellular models. Analysis of gene expression from tuberculosis infections identified LRRK2 as 

being significantly enriched during active infections (Z. Wang, Arat, Magid-Slav, & Brown, 2018). 

LRRK2 knockout mice showed decreased Mycobacterium tuberculosis (MTB) burden early in 

infection, perhaps with exacerbated inflammation as LRRK2 knockout macrophages treated with 

MTB exhibited altered innate immune gene expression induced by various mitochondrial stresses 

(Hartlova et al., 2018; Weindel et al., 2020). Phagosome maturation and bacterial control were 

increased in human and mouse macrophages treated with LRRK2 kinase inhibitors, suggesting 

that a lack of LRRK2 kinase activity is protective against  MTB (Hartlova et al., 2018). On the 

other hand, LRRK2 knockout mice infected with Salmonella typhimurium exhibited reduced 

caspase-1 activation and IL-1b secretion due to inflammasome activation in macrophages, which 

ultimately impaired clearance of pathogens (W. Liu et al., 2017). A recent study suggested that 

wildtype LRRK2 is protective from S. typhimurium and reovirus infection in a sex-dependent 

manner with females exhibiting impaired ability to control infection (Shutinoski et al., 2019). 

Interestingly, LRRK2 G2019S mice controlled S. typhimurium infection better, but were more 

susceptible to reovirus in a LRRK2 kinase-dependent manner (Shutinoski et al., 2019). In another 

bacterial model, LRRK2 deficiency promotes susceptibility to intestinal but not systemic Listeria 

monocytogenes infection through lysozyme defects and failed recruitment of Rab2a in Paneth 

cells, a secretory immune cell in the gut responsible for controlling intestinal bacteria (Q. Zhang 

et al., 2015). Lastly, Aspergillus fumigatus, an opportunistic fungal pathogen, decreases LRRK2 

mRNA and protein levels, which results in upregulation of NFAT translocation to the nucleus and 

increased transcription of inflammatory cytokines (Wong et al., 2018). Collectively, these studies 
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suggest a role for LRRK2 in immunity to control infection burden; however, the mechanism by 

which LRRK2 controls or contributes to infection is sex-, genotype- and infection-specific which 

underscores the complexity of LRRK2 signaling and function. 

 

1.5.3.6: LRRK2 and a-synuclein 

asyn accumulation is a hallmark of PD pathology and has been shown to promote 

inflammatory responses, as extracellular asyn can activate microglia and promote NFkB 

activation. Given LRRK2 has been associated with phagocytosis and autophagy, recent studies 

have investigated the interaction between LRRK2 and asyn, particularly in the context of 

clearance of asyn by immune cells. LRRK2-deficient microglia have dampened cytokine release 

after exposure to asyn fibrils, while LRRK2 knockout rats exhibited reduced activated microglia 

after AAV2/1 asyn injection into the SN (Daher et al., 2014; Russo et al., 2015). Furthermore, 

LRRK2-deficient microglia more effectively take up asyn and in larger amounts relative to wildtype 

controls due in part to an increase in Rab5 positive endosomes (Maekawa et al., 2016). On the 

contrary, LRRK2 G2019S transgenic mice subjected to pre-formed fibril (PFF) injection in the 

striatum displayed increased asyn aggregation, dopaminergic degeneration, and 

neuroinflammation relative to controls (non-transgenic mice injected with PFFs) (Bieri et al., 

2019). G2019S knock-in mice injected with AAV2/9 human A53T synuclein in the SN displayed 

significantly more dopaminergic loss and higher loads of pSer129 asyn aggregates at 12 months 

of age relative to wildtype controls injected with AAV2/9 human A53T synuclein (Maekawa et al., 

2016; Novello et al., 2018). LRRK2 kinase inhibition is insufficient to attenuate motor defects or 

reduce asyn accumulation and neuronal loss after PFF injection into the dorsal striatum of 

wildtype mice (Henderson et al., 2019). These disparate results from studies could be due to 

differences in asyn PFF batches, asyn conformation (strains) and/or experimental treatment 

conditions. While the exact mechanism by which LRRK2 interacts with asyn in immune cells still 
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remains unknown, it could be hypothesized that LRRK2 via its kinase activity alters the autophagy 

pathway, thereby impairing degradation of asyn, and contributing to its accumulation. This is of 

particular interest given that the autophagy related proteins p62 and LAMP1 display alterations in 

post mortem SN tissue from LRRK2 G2019S PD patients relative to idiopathic PD patients, and 

neurons from mice with the LRRK2 G2019S knock-in mutation exhibit altered lysosomal 

morphology and acidification that result in accumulation of asyn (Mamais et al., 2018; 

Schapansky et al., 2018). Future investigations need to explore this hypothesis in the context of 

immune cells as the role of LRRK2 is highly likely to be cell- and context-specific in nature. 

 

1.6: Parkinson’s disease and the gastrointestinal system 

It is becoming increasingly evident that there are several links between PD 

pathophysiology and dysfunction in the GI system, a hypothesis first proposed by Braak and 

colleagues based on asyn staining which he used to stage PD pathology from the periphery to 

the brain (Braak et al., 2003). Evidence in support of this hypothesis include alterations in gut 

permeability, gut dysbiosis, and epidemiological evidence linking PD with inflammatory bowel 

diseases (IBD) which are discussed in detail below.  

 

1.6.1: Non-motor symptoms linked to GI dysfunction 

As discussed previously, PD often manifests with several non-motor symptoms that 

appear earlier than motor impairments, the most prevalent of which includes GI dysfunction. PD 

patients exhibit more GI-related non-motor symptoms relative to healthy controls (H. Chen et al., 

2015; Edwards, Pfeiffer, Quigley, Hofman, & Balluff, 1991). PD-related GI dysfunction includes, 

but is not limited to dysphagia, early satiety, nausea, vomiting, bloating, fecal incontinence and 

constipation, which is one of the most common GI symptoms in PD patients (Houser et al., 2018; 

H. Park et al., 2015). While reports vary depending on population-related demographic variables, 
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constipation has been reported in as low as 24.6% and as high as 78.7% of PD patients (Edwards 

et al., 1991; Martinez-Martin et al., 2007; Ueki & Otsuka, 2004). It has also been estimated that 

constipation can precede the stereotypical clinical PD motor symptoms by decades (Abbott et al., 

2003). Furthermore, constipation is associated with a higher incidence of PD, as men with less 

than one bowel movement per day have over a four-fold increased risk for developing PD relative 

to men with at least 2 bowel movements per day (Abbott et al., 2001). In conjunction, the severity 

of constipation has been associated with increased future PD diagnosis in a laxative dose-

dependent manner (C. H. Lin, Lin, Liu, Chang, & Wu, 2014). 

 

1.6.2: GI dysbiosis in PD 

Changes in intestinal homeostasis and gut microbiota composition have also been linked 

to increased risk for PD. The relative abundance of certain families of bacteria are notably different 

between PD patients and healthy controls. While several studies have noted different patterns of 

changes, fecal levels of Bifidobacteriaceae, Bacteroides, Prevotellaceae, Christensenellaceae, 

Tissierellaceae, Lachnospiraceae, Enterobacteriaceae, Lactobacillaceae, Pasteurellaceae, 

and Verrucomicrobiaceae amongst others have all been shown to be significantly altered in PD 

patients relative to healthy controls (Hasegawa et al., 2015; Hill-Burns et al., 2017; Pietrucci et 

al., 2019). Some of these changes have been shown to be associated with motor symptoms and 

gut inflammation. The fecal abundance of the family, Enterobacteriaceae was positively 

associated with gait difficulty and postural instability, while decreased levels of Lachnospiraceae 

correlated with motor impairment and disease severity, signifying that alterations in gut 

composition may be linked to motor symptoms associated with PD (Pietrucci et al., 2019; 

Scheperjans et al., 2015). Classifying PD patients even further based on constipation symptoms, 

the abundance of Prevotellaceae was found to be reduced in constipated patients relative to non-

constipated patients, while diversity of the family Firmicutes was increased in constipated patients 

(L. Zhu et al., 2014). Patients with tremors exhibited relatively higher abundances of fecal 
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Bacteroides relative to patients without tremors (C. H. Lin et al., 2019). Levels of the anti-

inflammatory bacteria from the genera Blautia, Coprococcus, and Roseburia were reduced in the 

colons of PD patients relative to healthy controls, while levels of the pro-inflammatory bacteria of 

the genus Ralstonia were elevated in PD patients (Keshavarzian et al., 2015). In accordance with 

these bacterial changes promoting an inflammatory environment in the GI system of PD patients, 

levels of immune factors, such as Flt1, IL-1a, and CXCL8 have been shown to be elevated in PD 

patient stool, (Houser et al., 2018) while levels of Bacteriodes and Verrucomicrobia have been 

positively correlated with plasma levels of TNF and IFNg, respectively (C. H. Lin et al., 2019). 

Thus, changes in microbiome could potentially be used as biomarkers for disease state or risk. 

Despite noting several differences in the gut microbiota composition of PD patients relative to 

healthy controls, the mechanism by which these changes occur or how to effectively target these 

bacteria as a potential therapeutic to delay or mitigate the pathogenesis of PD still remain 

unknown. However, this data support the hypothesis that gut dysbiosis could be one of many 

peripheral perturbations that could promote GI inflammation, which may be one of the key 

initiating events in PD pathogenesis (Houser & Tansey, 2017).  

 

1.6.3: GI a-synuclein pathology in PD 

In 2003, on the basis of asyn immunohistochemistry in post-mortem brain tissue, Braak 

and colleagues proposed a staging scheme for PD in which pathology in lower brainstem regions 

occurred first and pathology in higher cortical regions occurred later. This staging scheme formed 

the basis for the Braak hypothesis which proposes that asyn PD pathology begins in the periphery 

with an immunogenic antigen entering the nasal or oral cavity that somehow promotes asyn 

aggregation in the oral and GI systems, upon which asyn can then propagate along the vagus or 

olfactory nerves to the brainstem and progress to other anterior and dorsal areas of the brain 

associated with PD neuropathology (Braak et al., 2003; Rietdijk, Perez-Pardo, Garssen, van 
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Wezel, & Kraneveld, 2017).  Consistent with this hypothesis, asyn pathology has been observed 

throughout the entire GI system of PD patients, with the first study identifying asyn in the 

myenteric plexus of the colon (Braak, de Vos, Bohl, & Del Tredici, 2006; Kupsky, Grimes, 

Sweeting, Bertsch, & Cote, 1987; Wakabayashi, Takahashi, Ohama, & Ikuta, 1990; Wakabayashi, 

Takahashi, Takeda, Ohama, & Ikuta, 1988). More recently, asyn and phosphorylated asyn 

(pasyn), a proxy for pathological asyn, has been reported in the GI system of nearly all PD 

patients examined (Beach et al., 2010). In a longitudinal study with routinely obtained biopsies, 

asyn pathology, pasyn in particular, was present in the GI tract up to 8 years prior to the patient’s 

clinical diagnosis of PD, suggesting GI asyn accumulation may be a potential early biomarker for 

PD (Hilton et al., 2014). These findings have also been reported in PD patients with pathogenic 

LRRK2 mutations. Specifically, a small study has shown LRRK2 G2019S patients exhibit asyn 

pathology in enteric neurons similarly to idiopathic PD patients (Rouaud et al., 2017) promoting 

the idea that LRRK2 PD patients are clinically indistinguishable from idiopathic PD patients 

(Kestenbaum & Alcalay, 2017) and supporting the hypothesis that it is the combination of age, 

genetics and environmental factors that lead to PD pathogenesis. Interestingly, vagotomy at least 

5 years prior to a PD clinical diagnosis has been associated with reduced incidence of PD (Gray, 

Munoz, Schlossmacher, Gray, & Woulfe, 2015; B. Liu et al., 2017).  

 

1.6.4: Epidemiolocal evidence linking PD and IBD 

IBD refers to a group of diseases that include Crohn’s disease (CD) or ulcerative colitis 

(UC), which are collectively characterized by chronic inflammation in the GI tract. Similar to PD, 

causes of CD and UC are unknown but environmental and genetic factors are hypothesized to 

contribute to disease pathogenesis. Both diseases seem to affect men and women equally as 

they present with similar symptoms. CD can affect the entire GI tract, while ulcerative colitis is 

generally limited to the colon and rectum. Continuous inflammation is common throughout the 



 40 

colon in UC with the inner most lining of the colon affected. Inflamed areas of the intestine are 

interspersed between uninflamed, healthy areas in CD. While IBD shares similar symptoms with 

irritable bowel syndrome (IBS), it is important to note they are very distinct. IBS is defined as a GI 

condition that affects intestinal behavior and function commonly associated with recurrent 

abdominal pain and alterations in bowel movements. Furthermore, there is no damage or 

inflammation in the GI system with IBS.  

There are several epidemiological studies that have linked PD and IBD, a group of 

disorders that exhibit chronic inflammation of the GI tract. Some of the first studies from 

Taiwanese groups, identified that patients with IBD have a 35% increased incidence of PD (Lai, 

Liao, Lin, & Sung, 2014; J. C. Lin, Lin, Hsu, Lin, & Kao, 2016). Subsequent studies in the US 

(Peter et al., 2018), Korea (S. Park et al., 2019) and Sweden (Weimers et al., 2019) looking at 

associations for the diseases in their respective populations, identified that patients with either 

CD or UC had increased risk for PD relative to healthy controls; however, a study from Denmark 

only found an association between UC and PD (Villumsen, Aznar, Pakkenberg, Jess, & Brudek, 

2019). Conversely, another study examining this association in Medicare beneficiaries found the 

opposite association between IBD and PD whereby having IBD was associated with lower 

incidence of PD (potentially resulting from chronic anti-inflammatory regimens), highlighting how 

differences between populations and analysis methods are important determinants of how the 

associations are determined and interpreted  (Camacho-Soto, Searles Nielsen, & Racette, 2018). 

Given these seemingly contradictory results, a systemic review and meta-analysis looking at all 

studies to date found overall that IBD patients had a 46% increased risk of PD and this increased 

risk remained when examining patients with CD (28% increased risk) and UC (30% increased 

risk) separately (F. Zhu et al., 2019). Interestingly, two of the studies that found a positive 

association between IBD and risk for PD also found that anti-TNF therapy reduced the risk of 

developing PD, further supporting the hypothesis that inflammation and an awry immune system 

contribute to PD pathogenesis (S. Park et al., 2019; Peter et al., 2018). Furthermore, these studies 
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have raised the interesting possibility that anti-TNF therapies used to treat IBD, may be of 

potential therapeutic benefit to reduce risk for PD or slow its progression. However, additional 

research is needed to identify causal links between these associations as well as the best 

therapeutic windows for these and other immunomodulatory drugs, and importantly to determine 

whether they should be given prophylactically to reduce risk for PD later in life or shortly after the 

onset of non-motor symptoms to delay or prevent progression of disease and the onset of the 

disabling motor symptoms typically associated with clinical stages of the disease. 

 

1.6.5: Similar phenotypes associated with PD and IBD  

PD and IBD patients exhibit similar peripheral immune phenotypes especially in the 

context of inflammation and gut permeability. Pro-inflammatory cytokines, including IL-1b, TNF, 

IFNg, IL-2, IL-6, IL-8, are associated with initiation and progression of IBD (Muzes, Molnar, 

Tulassay, & Sipos, 2012), and many of these are the same cytokines found to be increased in the 

sera, CSF, and brain of PD patients relative to age-matched healthy controls (Blum-Degen et al., 

1995; Eidson et al., 2017; Imamura et al., 2003; Mogi, Harada, Kondo, et al., 1994; Mogi, Harada, 

Riederer, et al., 1994; Nagatsu et al., 2000). One of the major cytokines increased in PD, TNF, is 

considered a major contributor to IBD pathogenesis through its pleotropic effects in a number of 

signaling cascades (Murch, Braegger, Walker-Smith, & MacDonald, 1993). Similar to IBD 

patients, PD patients exhibit increased mRNA levels of pro-inflammatory cytokines in the 

ascending colon relative to healthy controls (Devos et al., 2013). Interestingly, cytokine levels 

negatively correlated with disease duration, suggesting intestinal inflammation may be a 

precursor or contribute to initiation of PD pathogenesis but may not remain at high levels 

throughout the progression of disease (Devos et al., 2013). In addition to similarities in immune 

cell and inflammatory changes, PD and IBD patients exhibit similar gut permeability phenotypes 

with both exhibiting increased intestinal permeability due to disruptions and decreased expression 
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of tight junction proteins (Forsyth et al., 2011; Michielan & D'Inca, 2015). As noted above, these 

associations should not be taken as proof of a causal association, but as the basis for more 

mechanism-based studies in animal models (such as those developed for this doctoral thesis) 

that can interrogate a functional and causal relationship between the two conditions.  

 

1.6.6: LRRK2: linking PD and CD 

Several GWAS have identified that the LRRK2 gene, one of the most common genetic 

contributors to PD, is a common susceptibility locus for both PD and CD, with some LRRK2 

mutations associated with increased incidence of CD (Barrett et al., 2008; Franke et al., 2010; 

Hugot et al., 2001; Hui et al., 2018; Michail et al., 2013; Umeno et al., 2011). The M2397T mutation 

has been associated with increased incidence of CD and type-1 inflammatory reactions 

associated with leprosy, suggesting that LRRK2 in the context of the immune system may be the 

common thread behind these two distinct inflammatory diseases (Fava et al., 2016). Furthermore, 

the newly identified N2081D variant in the LRRK2 gene has been shown to be in association with 

increased risk for both CD and PD while the N551K variant is associated with reduced risk for 

both diseases (Hui et al., 2018). Similar to PD, LRRK2 is present in immune cells from CD patients 

and that expression is upregulated with IFNg stimulation (Gardet et al., 2010). Additionally, LRRK2 

mRNA is upregulated in inflamed CD tissue relative to uninflamed tissue from the same patient 

and this was particularly localized to the lamina propria (Gardet et al., 2010). Paneth cells are 

specialized secretory cells in the small intestine that regulate intestinal microbiome and innate 

immune response. Interestingly, LRRK2 M2397T is associated with Paneth cell defects in 

Japanese CD patients as the number of M2397T alleles negatively correlates with number of 

normal Paneth cells and pathway analysis suggests this is due to defects in autophagy (T. C. Liu 

et al., 2017). Interestingly, LRRK2 shares many similarities with NOD2, one of the genes with 

variants found to be associated with increased incidence of CD. Like LRRK2, NOD2 is expressed 

in peripheral leukocytes, with highest expression in myeloid cells and is upregulated with bacterial 
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exposure (Biswas, Petnicki-Ocwieja, & Kobayashi, 2012). NOD2 drives several inflammatory 

signaling cascades, such as NFkB and MAPK, and has been shown to play a role in autophagy, 

yet another similarity with LRRK2 (Cario, 2005; Travassos et al., 2010).  

Collectively, these data provide overwhelming evidence for links between PD and 

pathologies in the GI system. Understanding the similarities in phenotypes between PD and these 

inflammatory diseases previously not believed to be risk factors for PD may provide insight into 

PD pathogenesis and underlying disease mechanisms for potential therapeutic intervention that 

could mitigate risk for multiple inflammatory diseases that increase risk for age-related 

neuroinflammatory diseases like PD and AD. 
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Figure 1.4: LRRK2 immune cell expression at the interface of PD and CD. PD and CD exhibit 

very similar intestinal phenotypes with altered microbiome, increased intestinal permeability, 

cytokine secretion, and immune cell infiltration. While LRRK2 expression is increased in specific 

immune cells in the inflamed intestine in CD, LRRK2 expression in intestinal immune cells from 

PD patients has not been assessed, but LRRK2 expression is increased in sporadic PD patient 

PBMCs. We posit that LRRK2 has an important role in regulating inflammatory responses and 

this is the reason its levels are increased in chronic inflammatory conditions. 
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1.6.7: Modeling colitis in animal models 

The gold standard for studying colitis in rodent models is the use of dextran sodium sulfate 

salt (DSS) or trinitrobenzenesulfonic acid (TNSB), both of which have been heavily used in the 

GI field due to their simplicity and reproducibility (Okayasu et al., 1990; Wirtz, Neufert, Weigmann, 

& Neurath, 2007). The exact molecular mechanisms by which these chemicals induce colitis 

phenotypes remain unknown, but they basically induce epithelial injury followed by inflammation. 

While these are particularly useful models, it is important to note they differ in phenotypic 

presentation order from actual IBD with rodent models subjected to DSS developing intestinal 

inflammation after destruction of the epithelial lining and increased intestinal permeability whereas 

the human IBDs result from an imbalance of the immune system in the intestine followed by 

ensuing microbial dysbiosis and gut alterations (Eichele & Kharbanda, 2017; Kiesler, Fuss, & 

Strober, 2015). Characteristically included in the drinking water of rodents, DSS paradigms can 

vary greatly with colitogenic properties dependent on dosage, molecular weight of DSS, and 

administration length (acute vs chronic). Length of DSS administration should be taken into 

careful consideration when designing a treatment paradigm as different regimens will answer 

different questions. Acute paradigms are helpful to assess the peak of inflammation (which is 

typically 4-7 days after DSS commencement) or recovery rate. Chronic models based on 

continuous low doses of DSS over a month-long period or relapsing/remitting bouts of colitis more 

closely mimic the human disease and are helpful to assess overall susceptibility or resilience to 

colitis (Chassaing, Aitken, Malleshappa, & Vijay-Kumar, 2014; Perse & Cerar, 2012). All of these 

factors should be considered when assessing and interpreting effects of colitis models on the gut-

brain axis and asyn pathology along the Braak highway and in the CNS. 

 

1.6.8: Evidence linking colitis and PD-associated neuropathology in animal models 

Although DSS has been comprehensively used to study colitis in terms of the gut and 

immune cell alterations, there has been some evidence suggesting that intestinal inflammation 
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induced by DSS can cause alterations in the brain, with even more studies examining this link in 

recent years. Some of the earliest reports showed that experimental colitis increases the 

permeability of the BBB evinced by increased leakage of sodium fluorescein in a rabbit model 

(Hathaway, Appleyard, Percy, & Williams, 1999) and 1-2 days after colitis induction in the 

hypothalamus of a rat model (Natah, Mouihate, Pittman, & Sharkey, 2005). More specifically, 

occludin and claudin-5, tight junction proteins that connect epithelial cells to create a closely 

regulated barrier site, were reduced in the hippocampus of mouse brains after acute colitis, further 

suggesting impairment of BBB integrity after colitis (Y. Han et al., 2018).  

Beyond changes in BBB integrity induced by colitis, changes related to inflammatory 

cytokines and cytokines associated with peripheral immune cell trafficking to the CNS have been 

shown to be altered in the brain after colitis induction. Inflammatory IL-6, a pleotropic cytokine 

with both pro- and anti-inflammatory properties depending on the physiological state that is highly 

upregulated in the periphery after colitis, has also been shown to be increased in the brain after 

DSS- or TNBS-induced colitis, albeit in a temporal manner with increased IL-6 in the cerebral 

cortex and hypothalamus of rats following colitis induction (Y. Han et al., 2018; K. Wang et al., 

2010). Similarly TNF has been shown to be increased in the cortex, while COX-2 mRNA was 

increased in the hippocampus and hypothalamus but reduced in the amygdala, again suggesting 

brain region-specific spatiotemporal alterations of inflammatory markers after colitis (Do & Woo, 

2018; Y. Han et al., 2018). IL-1b another pro-inflammatory cytokine that is associated with 

initiation and progression of colitis, has been shown to be upregulated in the SN of mice after 

acute and sub-chronic DSS-induced colitis (Garrido-Gil, Rodriguez-Perez, Dominguez-Meijide, 

Guerra, & Labandeira-Garcia, 2018). Furthermore, endothelial vascular cell adhesion molecule 1 

(V-CAM1), a cytokine-inducible molecule that mediates lymphocyte adhesion, is upregulated in 

the brain of rats and mice after TNSB- or DSS-induced colitis, and this upregulation has been 

positively correlated with colonic inflammation and colonic V-CAM1 levels (Sans et al., 2001). 

While V-CAM1 upregulation was not associated with leukocyte infiltration into the brain in the 
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latter study, it could be hypothesized that it was examined too early in the process and leukocyte 

infiltration might have been detectable only at a later time point.  

 More recently, studies have examined other effects of colitis on the brain, specifically in 

relation to glial cells and specific brain regions. Astrogliosis has been in observed in DSS-treated 

animals, as GFAP mRNA and protein levels were increased in the hippocampus (Do & Woo, 

2018). Alterations in microglia phenotypes have been noted in the prefrontal cortex with a shift to 

a more pro-inflammatory and damage-associated microglia phenotype and this was concomitant 

with increased peripheral monocyte infiltration in the CNS (Sroor et al., 2019). Similarly, acute 

DSS increased peripheral monocyte infiltration into the hippocampus of wildtype mice in 

conjunction with increased peripheral and brain pro-inflammatory cytokine levels (Gampierakis et 

al., 2020).  

Importantly, a few recent studies have reported that colitis is sufficient to induce alterations 

in the dopaminergic nigrostriatal pathway. A reduction in expression of tyrosine hydroxylase (TH), 

the rate limiting enzyme in dopamine synthesis, in the SN was observed in a study using acute 

DSS alone (Gil-Martinez et al., 2019); however, DSS in conjunction with the neurotoxin, MPTP, 

resulted in enhanced reduction of TH expression in the SN, as well as increases in Iba1+ cells 

and GFAP+ cells, suggestive of a degenerative phenotype with astrogliosis and increased 

microglial activation (Gil-Martinez et al., 2019). In a separate study examining different paradigms 

of DSS induction, it has been reported that an acute model is sufficient to increase nigral IL-1b 

suggesting alterations in the inflammatory state of the SN, but insufficient to produce nigrostriatal 

degenerative phenotypes. Similarly, a sub-chronic paradigm also induced nigral IL-1b increases; 

however, unlike the acute paradigm, the sub-chronic induction was sufficient to alter the 

nigrostriatal pathway with reduced TH expression in the SN and decreased striatal dopamine, 

suggestive of a neurodegenerative phenotype (Garrido-Gil et al., 2018). A study examining a 

double-hit model with LPS injected in the SN of rats in conjunction with acute colitis resulted in 
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exacerbated BBB permeability, peripheral and neuroinflammation, and dopaminergic neuronal 

loss; and these features were ameliorated with depletion of peripheral macrophages, promoting 

the idea that brain neuropathology and neuroinflammation are modulated by peripheral 

inflammation (Villaran et al., 2010). 

Finally, this concept has also been explored in animal models subjected to colitis to further 

explore the Braak hypothesis that asyn pathology can propagate along the vagus nerve from the 

intestine to the brain. A recent study showed that mice overexpressing A53T human asyn were 

more susceptible to a low-dose chronic colitis paradigm than wildtype mice and exhibited 

increased asyn and phosphorylated asyn levels in both the brain and colon after DSS as well as 

decreased TH+ neuron counts in the SN (Kishimoto, Zhu, Hosoda, Sen, & Mattson, 2019).  Similar 

peripheral phenotypes have been observed in nonhuman primates whereby colitis induced 

increased inflammatory markers, oxidative stress and phosphorylated asyn in the myenteric 

plexus, albeit overall levels of asyn were reduced (Resnikoff et al., 2019). This reduction in asyn 

has also been observed in mice that were treated with acute, but not chronic colitis (Prigent et al., 

2019).   

Collectively, these data strengthen the links between the gut-brain axis and peripheral 

circulation and provide evidence that intestinal inflammation or GI perturbations may promote PD 

pathogenesis. 

 

1.6.9: LRRK2 in colitis models 

Although a plethora of evidence suggests a link between PD and IBD with LRRK2 

seemingly at the interface between the two diseases, very limited studies have examined LRRK2 

in the scope of both diseases. To date, a few studies have been published examining colitis in 

LRRK2 animal models. In 2011, Liu and colleagues induced colitis in LRRK2 knockout mice using 

an acute DSS model and reported that LRRK2 knockout mice were more susceptible to DSS-
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induced colitis relative to wildtype controls (Z. Liu et al., 2011). The authors hypothesized that 

there was an exacerbated inflammatory response in the context of LRRK2 deficiency due to 

increased NFAT activation in macrophages (Z. Liu et al., 2011). In the presence of LRRK2, NFAT 

transport to the nucleus is blocked by LRRK2 interacting with the NRON scaffolding complex 

(Jabri & Barreiro, 2011; Z. Liu et al., 2011). On the contrary, LRRK2 deficiency promotes NFAT 

translocation to the nucleus and triggers IFNg transcription (Jabri & Barreiro, 2011; X. Shen, Yang, 

Wu, Zhang, & Jiang, 2017). However, a 2018 study by Takagawa et al. could not replicate these 

findings, but extended the findings and suggested BAC transgenic mice overexpressing wildtype 

LRRK2 are more susceptible to acute DSS-induced colitis than wildtype mice due in part to 

Dectin-1 stimulation in dendritic cells that leads to dysregulated inflammatory signaling through 

the NFkB pathway (Takagawa et al., 2018). It was hypothesized that LRRK2 dephosphorylates 

Beclin-1, preventing the degradation of Beclin-1, thus blocking autophagy and increasing LRRK2 

expression, all of which was ameliorated with LRRK2 kinase inhibitors (Takagawa et al., 2018).  

While the mechanism by which LRRK2 alters inflammation in the context of colitis models 

is still being explored, additional studies have suggested other hypotheses related to LRRK2 

expression and its kinase activity. LRRK2 phosphorylation has been shown to increase in 

inflamed colonic mucosa concomitant with IFNg production after acute colitis, promoting the idea 

that LRRK2 expression is regulated in an IFNg-dependent manner (Rodrigues-Sousa et al., 

2014). Additionally, LRRK2 may disrupt T-helper 17 (Th17) levels and function. Present in the 

lamina propria of the intestine, Th17 cells are key orchestrators in mucosal homeostasis and 

responses to gut pathogens that when dysfunctional are hypothesized to contribute to LRRK2-

dependent intestinal inflammation. It is hypothesized that LRRK2 G2019S may suppress Th17 

activity and differentiation in the gut due to an increase in immature myeloid cells, which is 

reversed with LRRK2 kinase inhibition (J. Park et al., 2017). Collectively, studies examining 

LRRK2 in colitis models have been limited in scope and do not examine the effects of intestinal 



 50 

inflammation on PD-associated pathology in both the nigrostriatal pathway and GI system as 

other studies have done in wildtype animal models reviewed above. Given that intestinal 

inflammation is common in both PD and CD and that intestinal inflammation is hypothesized to 

contribute to GI pathology (that precedes a PD clinical diagnosis) and PD-like neuropathology, 

more in-depth studies need to be conducted to further examine the causal links between the two 

diseases.  

 

1.7: Discussion 

 Extensive research has shown that PD is a multifactorial disease with age, genetics, and 

environmental factors all contributing to risk for development of PD over an individual’s lifespan. 

The perfect combination of factors creates an environment in which peripheral and brain 

inflammation shift from protective to deleterious roles and promote PD pathogenesis. However, 

models exploring the multifaceted components of PD, especially in the context of LRRK2 in the 

immune system are vastly underexplored given that most PD LRRK2-related research has 

focused on the neuron. With the knowledge that LRRK2 is highly expressed in immune cells, the 

question of whether LRRK2 expression and phosphorylation regulates immune cell effector 

functions that then promote the peripheral inflammation associated with PD and other immune 

diseases has now been brought to the forefront of the PD field.  

We hypothesize that LRRK2 functions in immune cells to regulate effector functions and 

responses to inflammatory stress; but whether LRRK2 activation hastens protective or deleterious 

inflammatory responses when its levels increase in cells during inflammation remains to be 

determined, as do the effects of pathogenic LRRK2 mutations that increase risk for PD. To 

address this knowledge gap, in this doctoral dissertation we have utilized BAC transgenic LRRK2 

mouse models overexpressing mouse wildtype LRRK2 or LRRK2 G2019S in all cells that 

endogenously express LRRK2. The aims of this research were to examine how 1) increased 

LRRK2 protein and/or G2019S-mediated kinase activity affects immune cell profiles in vivo as a 
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function of age; and 2) to investigate the extent to which specific environmental factors implicated 

in PD (bacterial and viral infections, colitis, and pesticides) act as second hits in the LRRK2 

wildtype or G2019S BAC mice to promote PD-associated neuroinflammation and neuropathology. 

If our hypothesis is correct, we expect to find that increased LRRK2 protein or G2019S-dependent 

gain-of-function kinase activity will alter immune cell profiles with aging and that second hits in 

mice with increased protein levels of wildtype or mutant LRRK2 will enhance neuroinflammation  

to promote neurotoxicity in the nigrostriatal pathway, resulting in PD-like neuropathology. 

Completion of the studies in this doctoral thesis will advance our understanding of the role of 

LRRK2 in immune cells and alterations in the latter as a consequence of pathogenic mutations; 

such knowledge is a prerequisite to development of LRRK2-targeted therapeutics that will protect 

the brain without detrimental or untoward effects on immune system function in the fight against 

idiopathic and familial forms of PD. 
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CHAPTER 2: LONGITUDINAL DEEP-IMMUNOPROFILING OF PERIPHERAL IMMUNE CELL 
SUBSETS IN WILDTYPE AND G2019S MUTANT LRRK2 BAC TRANSGENIC MICE 
 
2.1: Abstract 

Mutations in Leucine-Rich Repeat Kinase 2 (LRRK2) are known as one of the greatest 

contributors to inherited Parkinson’s disease (PD) and are linked to sporadic PD. PD is classified 

as a neurodegenerative disease with loss of dopaminergic neurons in the substantia nigra pars 

compacta (SNpc); therefore, most research has focused on the role of gain-of-function LRRK2 

mutations in neuronal toxicity. However, PD is also associated with neuroinflammation and 

LRRK2 is expressed in immune cells, albeit at higher levels than neurons, warranting further 

investigation into the role of LRRK2 in immune cells. Recent work from our group revealed that 

LRRK2 levels are increased in peripheral immune cell subsets of PD patients relative to healthy 

controls. Given that aging is the number one risk factor for PD, the effects of LRRK2 and LRRK2 

kinase activity levels on the immune system within the context of aging have been vastly 

underexplored. Here we report bacterial artificial chromosome (BAC) transgenic mice 

overexpressing wildtype LRRK2 or mutant G2019S LRRK2 exhibit normal characteristics of 

inflammaging, immunosenescence and cytokine production across time as they age. 

Overexpression of wildtype LRRK2 or mutant G2019S LRRK2 alone is insufficient to alter immune 

cell profiles in aging mouse models. These data support a “multiple-hit” model in which a complex 

interaction between genetics, aging, and environmental exposures may contribute to PD-like 

neurodegeneration.  
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2.2: Introduction 
 

Parkinson’s disease (PD) is believed to be a multifactorial disease resulting from a 

complex interaction of genetics, aging, and environmental exposures all thought to contribute to 

pathogenesis. Interestingly, the greatest risk factor for PD is age, with PD affecting 1% of those 

over the age of 60 and 5% of those over the age of 85 (Bennett et al., 1996; de Lau & Breteler, 

2006; Nussbaum & Ellis, 2003; Tanner & Goldman, 1996; Wood-Kaczmar, Gandhi, & Wood, 

2006). Aging is considered the most important determinant of clinical worsening in PD patients 

(Collier, Kanaan, & Kordower, 2011; Levy, 2007). Initial studies showing neurodegeneration in 

the substantia nigra (SN) of patients with PD also reported neuronal loss in the SN of healthy 

control subjects (McGeer, Itagaki, Akiyama, et al., 1988; Mortera & Herculano-Houzel, 2012; 

Stark & Pakkenberg, 2004). Studies have shown that aging can contribute to a decrease in striatal 

dopamine, which is similarly observed before degeneration in PD (Carlsson & Winblad, 1976; 

Kish et al., 1992; Riederer & Wuketich, 1976).  

It is well established that as individuals age, so does their immune system. Immune aging 

is characterized by two primary concepts: immunosenescence, the loss of effector function; and 

inflammaging, the low-level chronic inflammation that persists with age. Inflammaging is 

characterized by excess production of circulating inflammatory mediators or cytokines, most 

notably C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor (TNF) derived 

from chronically stimulated innate and adaptive immune cells (Bruunsgaard et al., 2003; Frasca 

& Blomberg, 2016). Both the innate and adaptive immune systems are affected by aging as 

respective immune responses become impaired with age. An aging adaptive immune system is 

impaired as naïve T and B cell populations as well as T and B cell receptor diversity are reduced 

(Franceschi et al., 2000; Franceschi et al., 1999). Furthermore, T cell receptor sensitivity is 

decreased in response to stimuli (Goronzy et al., 2013). Collectively, these deficiencies contribute 

to an increase in susceptibility to infection and autoimmunity and a continuous remodeling cycle 

of the immune system.   
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In conjunction with aging, genetic mutations contribute to 10-15% of PD cases (K. R. 

Kumar, Djarmati-Westenberger, & Grunewald, 2011). One of the genes identified as causative 

for PD, Leucine-Rich Repeat Kinase 2 (LRRK2), results in autosomal dominant PD. While 

mutations in LRRK2 are one of the most common genetic contributors to familial PD, LRRK2 

mutations are also implicated in sporadic PD (Johnson et al., 2007; N. L. Khan et al., 2005; Lesage 

et al., 2009; Lesage, Durr, & Brice, 2006; Paisan-Ruiz, Nath, Washecka, Gibbs, & Singleton, 

2008). This suggests that a common underlying mechanism may link non-LRRK2 PD and LRRK2 

PD. Therefore, understanding the role of LRRK2 will not only affect PD patients with a LRRK2 

mutation but will also shed light on PD in subjects not carrying a LRRK2 mutation.  

The G2019S mutation is the most common pathogenic LRRK2 mutation shown to be 

causative of PD (Biskup & West, 2009; Monfrini & Di Fonzo, 2017; Paisan-Ruiz et al., 2004; 

Zimprich et al., 2004). Residing in the kinase domain, the G2019S mutation has been shown to 

increase LRRK2 kinase activity, which results in neuronal toxicity (Greggio et al., 2006; Jeong et 

al., 2018; Smith et al., 2006; A. B. West et al., 2005; A. B. West et al., 2007). Given the well-

characterized pathological hallmark of PD, dopaminergic neurodegeneration that gives rise to PD 

motor symptoms, research has heavily focused on the role of LRRK2 and LRRK2-mediated 

kinase activity in neurons. While the precise physiological function of LRRK2 in cells remains 

unknown, recent attention has been focused on its role in immune cells. LRRK2 is expressed in 

all immune cell subsets and in some subsets its expression is increased upon stimulation (Gardet 

et al., 2010; Gillardon et al., 2012; Kuss et al., 2014; Thevenet et al., 2011). Our group recently 

identified that LRRK2 levels are increased in peripheral immune cell subsets of sporadic PD 

patients relative to healthy controls (Cook et al., 2017). While the mechanisms to explain these 

findings still remain elusive, we are forging forward to investigate the effects of LRRK2 levels and 

LRRK2 kinase activity in immune cells within the context of an aging immune system.  

To examine how increased LRRK2 protein or G2019S-mediated LRRK2 kinase activity 

affects aging immune cell populations and cytokine production, we immunophenotyped peripheral 
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blood mononuclear cells (PBMCs) from bacterial artificial chromosome (BAC) transgenic mice 

overexpressing mutant G2019S LRRK2 or wildtype LRRK2. Mice underwent submandibular 

bleeds every 2 months until the age of 24 months to assess PBMC immunophenotypes and 

plasma cytokine and chemokine levels. Here we report on normal age related immunophenotypes 

observed in mice overexpressing wildtype LRRK2 or G2019S LRRK2. 

 

2.3: Materials and Methods 

Animals. Homozygous male Lrrk2-G2019S (B6.Cg-Tg(Lrrk2*G2019S)2Yue/J; stock number 

012467) and Lrrk2-WT (B6.Cg-Tg(Lrrk2)6Yue/J; stock number 012466) mice were purchased 

from the Jackson Laboratory and bred to hemizygosity at Emory University. Hemizygous male 

and female BAC transgenic mouse strains overexpressing either mouse mutant G2019S LRRK2 

(G2019S) or mouse wildtype LRRK2 (WTOE) were used for experimental procedures with non-

transgenic littermates (B6) serving as controls. Genotypes were determined by tail-snip PCR with 

two sets of primers: Transgene: Forward 5’ GAC TAC AAA GAC GAT GAC GAC AAG 3’ Reverse 

5’ CTA CCA CCA CCC AGA TAA TGT C 3’; Internal positive control: Forward 5’ CAA ATG TTG 

CTT GTC TGG TG 3’ Reverse 5’ GTC AGT CGA GTG CAC AGT TT 3’. Animals were group-

housed (maximum 5 mice per cage) and maintained on a 12h/12h light/dark cycle with ad libitum 

access to standard rodent chow and water. Experimental procedures involving use of animals 

were performed in accordance with the National Institutes of Health Guidelines for Animal Care 

and Use and approved by the Institutional Animal Care and Use Committee at Emory University 

School of Medicine. 

 

Plasma and Peripheral blood mononuclear cell (PBMC) isolation. Whole blood was collected 

from mice via submandibular bleeds with an approximate volume of 200μl per mouse collected 

for each time point. Blood samples were collected beginning at 4 months of age and every 2 

months thereafter until mice reached 24 months. Whole blood was collected in 
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ethylenediaminetetraacetic acid (EDTA) coated tubes (Covidien 8881311248). 50μl of whole 

blood was treated with 1x red blood cell (RBC) lysis buffer (BioLegend 420301) to lyse RBCs as 

per the manufacturer’s instructions prior to staining PBMCs for flow cytometry. The remaining 

150μl of whole blood was centrifuged after which plasma was removed and promptly frozen on 

dry ice then subsequently stored at -80°C until processing. 

 

Multi-color Flow Cytometry. 50μl of PBMCs were stained for 30 minutes with the following 

panel: Live/Dead Fixable Aqua (1:2000, Invitrogen L34957), anti-mouse CD16/CD32 (1:100, 

eBioscience 14-0161-085), anti-mouse CD45 AF700 (1:100, BD Biosciences 560510), anti-

mouse CD19 BV785 (1:50, Biolegend 115542), anti-mouse CD3 BV421 (1:50, Biolegend 

100227), anti-mouse CD4 BV711 (1:200, Biolegend 100447), anti-mouse CD8 PerCP_Cy5.5 

(1:200, Biolegend 100734), anti-mouse CD11b FITC (1:50, eBioscience 11-0112), anti-mouse 

MHCII PE-eFluor610 (1:100, eBioscience 61-5321-82), anti-mouse Ly6c APC_Cy7 (1:100, 

Biolegend 128026), anti-mouse CD44 PE (1:200, Biolegend 103007), anti-mouse CD62L 

PE_Cy7 (1:100, eBioscience 25-0621-81), and anti-mouse CD25 APC (1:50, BD Biosciences 

561048) in FACS buffer. Samples were fixed in 1% PFA for 30 minutes. 10μl of counting beads 

(AccuCheck Counting Beads, Invitrogen PCB100) were added to each sample. Samples were 

then run on an LSRII (BD Biosciences) and analyzed with FlowJo_V10.  

Leukocytes were gated on Side Scatter Area (SSC-A) (granularity) by Forward Scatter 

Area (FSC-A) (size) and then with Forward Scatter Height (FSC-H) by FSC-A to identify single 

leukocytes. To identify live, CD45+ cells, the Fixable Aqua negative population was selected 

followed by the CD45+ population against FSC-H. CD45+ cells were then gated on CD3 by C19, 

with CD3+ cells denoting T cells and CD19+ cells denoting B cells. CD3+ T cells were then gated 

for CD4+ and CD8+ T cells to differentiate T helper cells vs cytotoxic T cells, respectively. CD4+ 

T cells were then gated by CD25 with CD25+, CD4+ cells signifying regulatory T cells. The CD19 

B cell population was then examined for MHCII expression by histogram and geometric mean 
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fluorescent intensity. The CD3-, CD19- population was gated on CD8 vs CD11b. The CD11b+, 

CD8- population was then gated for SSC-A by Ly6C. SSC-A high, Ly6C intermediate cells were 

identified as neutrophils. The remaining non-neutrophil population was gated on Ly6C and MHCII 

to differentiate Ly6C+, MHCII- monocytes, Ly6C+, MHCII+ monocytes, Ly6C-, MHCII+ 

macrophages, and Ly6C-, MHCII- monocytes (Figure 2.1).  

 

 

Figure 2.1: Flow cytometry gating strategy used to analyze mouse PBMC immune cell 

subsets. 

 

Multiplexed Immunoassays. Levels of inflammatory protein were measured in plasma by the 

Emory Multiplexed Immunoassay Core (EMIC) using a commercially available V-plex Pro-

inflammatory Panel 1 Mouse Kit per the manufacturer’s instructions on the Meso Scale Discovery 
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QuickPlex imager (Meso-Scale Discovery, Gaithersburg, MD). Plasma samples were analyzed 

for cytokines and chemokines (IFNg, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, KC/GRO, and 

TNF) that play key roles in the inflammation response and immune system. Samples were run in 

replicates of 30μl by an experimenter blinded to treatment history and genotype.  

 

Immunoblotting. Immunoblotting was conducted as previously described (Kelly et al., 2018). 

Splenocytes were sonicated in RIPA lysis buffer (1% Triton-X 100, 50 mM Tris (pH 7.4), 100mM 

NaCl, 0.1% sodium dodecyl sulfate, 40mM sodium fluoride (NaF), and 1x phosphatase (Roche, 

4906845001) and protease inhibitors (Roche, 11697498001)). The bicinchoninic acid (BCA) 

protein assay (Pierce Scientific, 23225) was used to determine protein concentrations, after 

which lysates were further diluted 1:1 with 2x Laemmli buffer (BioRad, 1610737) 

supplemented with 10% DTT and 40mM NaF. Samples were electrophoresed using 4-20% 

gels (BioRad, 4561096) and transferred to nitrocellulose membranes using a wet transfer 

system. Membranes were incubated in 5% powdered milk blocking buffer (BioRad, 1706404) 

for 1 hour before applying primary antibody overnight at 4°C. Primary antibodies included: 

rabbit anti-LRRK2 antibody MJFF2 (Abcam, ab133474), rabbit anti-Ser(P)-1292 (Abcam, 

ab203181), or goat anti-GAPDH (Santa Cruz, sc-31915). The following morning, membranes 

were briefly washed and incubated at room temperature with HRP-conjugated secondary 

antibodies for 1 hour. Membranes were imaged using Azure Biosystems and analyzed by 

ImageStudio Lite software. Protein expression was normalized to GAPDH expression or total 

protein on a Li-Cor Odyssey instrument (Li-Cor #926-11015). 

 

Statistical Analysis. Data from immunophenotyping studies (flow cytometry analysis) and 

cytokine protein values (Mesoscale analysis) were compared across genotypes and age using a 

mixed-effects model with GraphPad Prism 8 software. Tukey’s multiple comparisons was used 
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for post hoc comparisons within each age. Data from immunoblots were compared across 

genotypes with a one-way analysis of variance (ANOVA) with Tukey’s multiple comparisons for 

post hoc comparisons between genotypes. Significance for all statistical comparisons was set at 

p£0.05. All data are presented as mean ± SEM. 

 

2.4: Results 

Confirmation of LRRK2 overexpression and LRRK2 kinase activity levels in LRRK2 BAC 

transgenics 

Overexpression of wildtype LRRK2 or mutant G2019S LRRK2 was confirmed in splenocyte 

samples from WTOE and G2019S BACs by immunoblot (Figure 2.2A). By measuring the 

phosphorylation state at the autophosphorylation site of LRRK2 (pSer1292), G2019S BACs 

expressed high kinase activity levels associated with the gain-of-function kinase activity promoted 

by the point mutation, while WTOE mice expressed an intermediary level of kinase activity driven 

by increased levels of LRRK2 (Figure 2.2B). 
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Figure 2.2: Overexpression of WT and G2019S LRRK2 increases LRRK2 levels and LRRK2 

autophosphorylation (pSer1292). A) Immunoblot of splenocyte protein with an antibody against 

LRRK2 confirms elevated levels of LRRK2. B) LRRK2 autophosphorylation as measured by 

pSer1292 protein expression reveals WTOE mice have an intermediate level of kinase activity 

while mice with mutant G2019S LRRK2 have gain-of-function kinase activity. C) 

Immunophenotyping experimental paradigm used to assess immune cell profiles across 

genotypes as a function of age. One-way ANOVA with Tukey’s multiple comparisons. Asterisks 

(*) signify significant differences between groups (p<0.05). 
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WTOE and G2019S non-Tg littermate controls exhibit similar immune cell profiles as they 

age 

To determine whether non-Tg littermate controls from WTOE and G2019S strains exhibited 

different baseline phenotypes, immune cell profiles were analyzed using flow cytometry every two 

months until 24 months of age (experimental paradigm outlined in Figure 2.2C). Frequencies of 

CD45+ immune cells decreased with age (F(4.365, 113.1)=7.097; p<0.0001) but did not differ between 

the two non-Tg littermate controls (Figure 2.3A). Similarly, frequencies of CD19+ B cells (F(5.159, 

118.7)=3.757; p=0.0031), all T cell populations (CD3+ T cells: F(4.171, 98.02)=33.31; p<0.0001, CD4+ 

T cells: F(5.391, 122.9)=16.97; p<0.0001, CD8+ T cells: F(5.494, 124.7)=9.562; p<0.0001, CD25+, CD4+ 

T cells F(5.345, 124)=14.72; p<0.0001), and two monocyte populations (Ly6C+, MHCII+ monocytes: 

F(4.72, 118)=3.85; p=0.0035, Ly6C-, MHCII- monocytes F(5.074, 117.7)=6.176; p<0.0001) exhibited an 

effect with age but no genotype effect (Figure 2.3B-D). Frequencies of CD3+ T cells and the 

subset CD4+ T cells were reduced with age; while CD8+ T cells and regulatory T cells (CD25+, 

CD4+) were increased with age (Figure 2.3C). An interaction between age and genotype was 

identified for Ly6C+, MHCII- (F(10, 228)=2.310; p=0.0133) and Ly6C-, MHCII+ (F(10, 227)=3.282; 

p=0.0005) cells, but post hoc analysis revealed no significant differences (Figure 2.3D). 
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Figure 2.3: Similar immune cell profiles in aging WTOE and G2019S non-Tg littermate 

controls. By flow cytometry, PBMC populations were measured every two months until 24 

months of age. A) Frequencies of CD45+ immune cells reduced with age. B) Alterations in 

frequencies of B cell populations with age. C) Reduction in frequencies of CD3+ and CD4+ T cells 

but increases in frequencies of CD8+ and CD25+, CD4+ regulatory T cells with age. D) Alterations 

in frequencies of monocyte and macrophage populations with age (n=14 per genotype). Data 

were compared across genotypes and age using a mixed-effects model. Tukey’s multiple 

comparisons was used for post hoc comparisons within each age group. 
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decreased with age (F(4.219, 220.2)=18.26; p<0.0001) but did not differ between genotypes (Figure 

2.4A). Similarly, frequencies of CD19+ B cells (F(6.976, 375.3)=12.12; p<0.0001), T cell populations 

(CD3+ T cells: F(5.742, 311.9)=69.7; p<0.0001 and CD25+, CD4+ regulatory T cells: F(6.111, 331.2)=28.25; 

p<0.0001), Ly6C+, MHCII- monocytes (F(4.614, 246.4)=14.32; p<0.0001) and Ly6C-, MHCII+ 

macrophages (F(6.378, 345.7)=12.02; p<0.0001) exhibited alterations with age but no genotype 

differences (Figure 2.4B-D). Frequencies of total CD3+ T cells and the subset CD4+ T cells were 

reduced with age; while frequencies of CD8+ T cells and regulatory T cells (CD25+, CD4+) were 

increased with age. An interaction between age and genotype was found for the MHCII geometric 

mean of MHCII+ B cells (F(20, 516)=2.805; p<0.0001), CD4+ T cells (F(20, 541)=2.200; p=0.0020), 

CD8+ T cells (F(20, 530)=2.180; p=0.0023), Ly6C+, MHCII+ monocytes (F(20, 516)=1.901; p=0.0107), 

Ly6C-, MHCII- monocytes (F(20, 539)=1.969; p=0.0074), but post hoc analysis revealed no 

significant differences.  

 

 

Figure 2.4: LRRK2 expression levels and LRRK2 kinase activity levels do not affect aging 

immune cell profiles. By flow cytometry, PBMC populations were measured every two months 

A B

4 6 8 10 12 14 16 18 20 22 24
60

70

80

90

100

Months

%
 o

f L
iv

e 
C

el
ls

CD45

Fixed effects (type III)
Age
Genotype
Age x Genotype

P value
<0.0001
0.2769
0.0583

P value summary
****
ns
ns

Statistically significant (P < 0.05)?
Yes
No
No

FINAL

4 6 8 10 12 14 16 18 20 22 24
35

40

45

50

55

60

65

Months

%
 o

f C
D

45

CD19+ B Cells

B6

WTOE

G2019S

Age
Genotype
Age x Genotype

<0.0001
0.1047
0.3248

****
ns
ns

Yes
No
No

FINAL

4 6 8 10 12 14 16 18 20 22 24
0

10

20

30

40

Months

%
 o

f C
D

45

CD3+ T Cells

B6

WTOE

G2019S

FINAL

Fixed effects (type III)
Age
Genotype
Age x Genotype

P value
<0.0001
0.5834
0.5322

P value summary
****
ns
ns

Statistically significant (P < 0.05)?
Yes
No
No

4 6 8 10 12 14 16 18 20 22 24
0

20

40

60

Months

%
 o

f C
D

3

CD4 T cells

B6

WTOE

G2019S

Fixed effects (type III)
Age
Genotype
Age x Genotype

P value
<0.0001
0.6374
0.0020

P value summary
****
ns
**

Statistically significant (P < 0.05)?
Yes
No
Yes

FINAL

4 6 8 10 12 14 16 18 20 22 24
0

20

40

60

Months

%
 o

f C
D

3

CD8 T cells

B6

WTOE

G2019S

Fixed effects (type III)
Age
Genotype
Age x Genotype

P value
<0.0001
0.2115
0.0023

P value summary
****
ns
**

Statistically significant (P < 0.05)?
Yes
No
Yes

4 6 8 10 12 14 16 18 20 22 24
0.0

0.2

0.4

0.6

0.8

Months

%
 o

f C
D

45

Ly6C-, MHCII+ macrophages

B6

WTOE

G2019S

Fixed effects (type III)
Age
Genotype
Age x Genotype

P value
<0.0001
0.8479
0.0944

P value summary
****
ns
ns

Statistically significant (P < 0.05)?
Yes
No
No

4 6 8 10 12 14 16 18 20 22 24
0

2

4

6

Months

%
 o

f C
D

45

Ly6C- MHCII- monocytes

B6

WTOE

G2019S

Fixed effects (type III)
Age
Genotype
Age x Genotype

P value
<0.0001
0.4305
0.0074

P value summary
****
ns
**

Statistically significant (P < 0.05)?
Yes
No
Yes

4 6 8 10 12 14 16 18 20 22 24
0.0

0.5

1.0

1.5

Months

%
 o

f C
D

45

Ly6C+ MHCII+ monocytes

B6

WTOE

G2019S

Fixed effects (type III)
Age
Genotype
Age x Genotype

P value
<0.0001
0.0523
0.0107

P value summary
****
ns
*

4 6 8 10 12 14 16 18 20 22 24
0

2

4

6

8

Months

%
 o

f C
D

4

CD25+ CD4+ T CELLS 

B6

WTOE

G2019S

Fixed effects (type III)
Age
Genotype
Age x Genotype

P value
<0.0001
0.1887
0.7081

P value summary
****
ns
ns

Statistically significant (P < 0.05)?
Yes
No
No

FINAL

4 6 8 10 12 14 16 18 20 22 24
0.0

0.2

0.4

0.6

0.8

Months

%
 o

f C
D

45

Ly6C-, MHCII+ macrophages

B6

WTOE

G2019S

Fixed effects (type III)
Age
Genotype
Age x Genotype

P value
<0.0001
0.8479
0.0944

P value summary
****
ns
ns

Statistically significant (P < 0.05)?
Yes
No
No

4 6 8 10 12 14 16 18 20 22 24
7000

8000

9000

10000

11000

12000

Months

M
H

C
II 

G
eo

m
et

ric
 M

ea
n 

Fl
uo

re
sc

en
ce

 In
te

ns
ity

MHCII+ B cells 

B6

WTOE

G2019S

C D

4 6 8 10 12 14 16 18 20 22 24
0

2

4

6

8

Months

%
 o

f C
D

45

Ly6C+ MHCII- monocytes

B6

WTOE

G2019S

CD45+ cells CD19+ cells MHCII+ B cells

CD3+ T cells CD4+ T cells Ly6C+ MHCII- monocytes Ly6C+ MHCII+ monocytes

Ly6C- MHCII- monocytes Ly6C- MHCII+ macrophagesCD8+ T cells CD25+ CD4+ T cells



 64 

until 24 months of age to determine if LRRK2 or LRRK2 kinase activity levels alter immune cell 

profiles. No differences were observed between genotypes, but alterations in immune cell 

frequencies were observed as a result of age alone. A) Frequencies of CD45+ immune cells 

reduced with age. B) Alterations in frequencies of B cell populations with age. C) Reduction in 

frequencies of CD3+ and CD4+ T cells but increases in frequencies of CD8+ and CD25+, CD4+ 

regulatory T cells with age. D) Alterations in frequencies of monocyte and macrophage 

populations with age (n=20-28 per genotype). Data were compared across genotypes and age 

using a mixed-effects model. Tukey’s multiple comparisons was used for post hoc comparisons 

within each age. Significance for all statistical comparisons was set at p£0.05. 

 

Age-dependent increase in cytokine expression in LRRK2 WTOE and G2019S mice 

To further examine the immune system of aging WTOE and G2019S mice, plasma cytokines and 

chemokines that play major roles in inflammation and immune system function were measured 

by multiplexed immunoassays. Cytokine levels did not significantly differ between genotypes; 

however, plasma TNF (F(1.834, 51.35) = 5.404; p=0.0089), IL-10 (F(2.435, 67.44) = 5.520; p=0.0036) and 

KC/GRO (F(4.358, 122) = 5.082; p=0.0006) expression increased with age in all three genotypes 

(Figure 2.5 A-C). There were no statistically significant differences observed in IFNg, IL-2, IL-5, 

and IL-6 (data not shown), while IL-4, IL-12p70, and IL-1b were below the detection limits. 

 

 

Figure 2.5: Plasma cytokine levels increase as a function of age. There was a main effect of 

age on A) TNF B) IL-10 and C) KC/GRO plasma levels with aged mice having higher levels of 
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plasma cytokines regardless of genotype (n=13-18 per genotype). Data was analyzed across 

genotypes and age using a mixed-effects model. Tukey’s multiple comparisons was used for post 

hoc comparisons within each age. Significance for all statistical comparisons was set at p£0.05. 

 

2.5: Discussion 

Knowledge regarding the effects of increased LRRK2 protein or kinase activity on aging 

immune cells and inflammation is lacking; and to our knowledge, this is the first in-depth 

immunoprofiling study of LRRK2 BAC transgenic mice. Given our group’s recent finding that 

LRRK2 protein levels are elevated in peripheral blood immune cell subsets in sporadic PD 

patients, we posited that LRRK2 regulates inflammatory responses to curb neuroinflammation 

and reduce the risk for neurodegeneration of vulnerable neuronal populations affected in sporadic 

PD. To this end, we immunophenotyped PBMCs and measured cytokine and chemokine levels 

from BAC transgenic mice overexpressing mouse wildtype LRRK2 or mutated G2019S LRRK2 

over the course of 24 months.  

The transgenic animals were generated using a BAC containing the entire mouse LRRK2 

gene, with the G2019S strain modified to include the G2019S mutation (X. Li et al., 2010). The 

BACs utilized the mouse LRRK2 promoter so that mouse LRRK2 is overexpressed in all cells that 

endogenously express LRRK2, which is of importance given our interest in investigating LRRK2 

in the context of immune cells. Other LRRK2 animal models exist using the human LRRK2 protein; 

however, using a human protein in a mouse can potentially create unforeseen complications due 

to interactions. Specifically, mouse immune cells may recognize the human protein as foreign, 

thus stimulating an unwanted immune response. Importantly, these models do not exhibit the 

classical hallmarks of PD with no reported evidence of a-synuclein inclusions, motor impairment, 

or cell loss, thus allowing their use as a tool to examine the effects of increased LRRK2 protein 
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and G2019S-mediated gain-of-function kinase activity on peripheral and central inflammation as 

well as brain neurodegenerative phenotypes that may result from second-hit exposures.  

According to the 2010 publication from the Yue group reporting the generation and 

characterization of the LRRK2 BACs, each strain expresses its respective LRRK2 protein 6-fold 

higher than its non-Tg control (X. Li et al., 2010). To confirm these findings and ensure the BAC 

transgene was successfully passed through the germline, LRRK2 protein levels were detected by 

immunoblot in splenocytes, revealing similar overexpression of LRRK2 protein levels in WTOE 

and G2019S mice. Given that LRRK2 autophosphorylates itself as well as other substrates 

(Lobbestael et al., 2012), an increase in LRRK2 protein would yield an increase in LRRK2 

phosphorylation, which was observed by immunoblot of pSer1292 in the WTOE strain. The 

G2019S mutation is well known for its gain-of-function kinase activity (Greggio et al., 2006; Jeong 

et al., 2018; Smith et al., 2006; West et al., 2005; West et al., 2007), which was observed through 

immunoblot of pSer1292 with higher levels of kinase activity relative to WTOE and B6. These 

findings support the use of these models as an appropriate tool to examine the effects of LRRK2 

protein and kinase activity on immune cells. 

 To determine whether non-Tg littermate controls from WTOE and G2019S strains were 

similar and could potentially be grouped as a single control, immune cell subsets were profiled 

using flow cytometry over 24 months. As expected, changes in immune cell population 

frequencies were observed with age; but no genotype differences between non-Tg littermate 

controls from WTOE and G2019S were observed, thus providing rationale for grouping the two 

non-Tg littermate controls into a single control group (B6) for the remaining analyses.  

 Similar age-related immunoprofiling results were obtained when comparing all three 

genotypes and exploring the effects of increased LRRK2 protein levels and G2019S-mediated 

kinase activity on aging immune cell populations. Despite no genotype differences, changes in 

frequencies of immune cell populations did occur with age as a factor. Mirroring what is seen in 

humans, all three genotypes exhibited characteristics of immunosenescence with a reduction in 
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T cells (CD3 and CD4), a slight increase in CD8 T cells, and a robust increase in regulatory T 

cells. Given that thymic involution leads to a reduction in output of T cells, it was not surprising to 

see an overall decrease in the total T cells with age. The reduction in CD4+ T cells and slight 

increase in CD8+ T cells resulted in a shift in the ratio of T helper subsets relative to cytotoxic T 

cells. While specific T cell subsets (naïve, effector, and memory) were not measured in the current 

study, the slight increase in CD8 T cells could be driven largely by an increase in antigen-

experienced T cells, while the reduction in CD4 T cells could be largely attributed to a reduction 

in naïve CD4 T cells (Vescovini et al., 2014). Regulatory T cells (CD25+, CD4+), an immune cell 

subset that act to suppress an immune response, were increased in all three genotypes with age 

in accordance with other reports in the literature (Lages et al., 2008; Raynor, Lages, Shehata, 

Hildeman, & Chougnet, 2012; Rosenkranz et al., 2007). IL-10, which was found to be increased 

in aged plasma, is an anti-inflammatory cytokine that is responsible for limiting immune cell 

responses to pathogens. IL-10 dysregulation has been noted in aging, albeit studies have 

reported opposite findings to ours with age-related decline in expression (Ye & Johnson, 2001). 

However, overexpression of IL-10 has been shown to induce regulatory T cells, thus the increase 

in IL-10 seen in the current study could contribute to the observed increase in regulatory T cells 

(Goudy et al., 2003). This increase in regulatory T cells results in an increase in intensity of 

immune response, which can also contribute to immune dysfunction (Jagger, Shimojima, 

Goronzy, & Weyand, 2014).  

 Monocyte to macrophage transition is commonly referred to as a phase in which 

monocytes lose Ly6C expression as they enter tissue and upregulate MHCII expression (J. Yang 

et al., 2014). This transition and cascade were examined in the current study through the gating 

strategy of the monocyte population, in which we observed an increase in inflammatory 

monocytes (Ly6C+, MHCII-) with age. The increase in inflammatory monocytes could be one 

factor contributing to the increase TNF plasma levels, a characteristic of inflammaging.  
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Collectively, this data supports the idea that inflammaging and immunosenescence are 

occurring in the LRRK2 BACs and warrants further investigation of aging immune cell function as 

a risk factor in neurodegeneration as well as further characterization of specific T cell subsets. 

From these data, we can conclude that increases in LRRK2 protein or G2019S-mediated gain-of-

function kinase activity alone are insufficient to alter aging immune cell profiles. In accordance 

with observations in humans with LRRK2 PD patients presenting clinically with the same features 

as non-LRRK2 PD patients, we do not see genotype differences in the immune system of these 

mice that could be dependent on LRRK2 protein levels or G2019S-mediated gain-of-function 

kinase activity. These data support rationale for a “multiple-hit” model in which a complex 

interaction between genetics, aging, and environmental exposures contributes to PD 

pathophysiology. 
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CHAPTER 3: INTESTINAL INFLAMMATION IN LRRK2 G2019S BAC TRANSGENIC MICE 
PROMOTES NEUROINFLAMMATION AND PD-ASSOCIATED NIGROSTRIATAL 
PATHOLOGY 
 
3.1: Abstract 

Links between Parkinson’s disease (PD) and the gastrointestinal system have become 

increasingly common. Mutations in Leucine-Rich Repeat Kinase 2 (LRRK2) are one of the 

greatest genetic contributors to PD and associated with sporadic PD. Interestingly, variants in 

LRRK2 have also been associated with increased incidence of Crohn’s disease (CD). G2019S, 

the most common LRRK2 pathogenic PD mutation, results in an increased toxic gain-of-function 

kinase activity. Similarly, the newly identified LRRK2 N2081D SNP that is associated with higher 

incidence of CD also results in a gain-of-function increase in kinase activity, highlighting the need 

to further understand the role of LRRK2 in PD and CD. Given LRRK2 apparently sits at the 

interface between PD and CD, we sought to directly investigate the role of increased LRRK2 

protein and increased G2019S-mediated kinase activity on the gut-brain axis. To investigate this, 

bacterial artificial chromosome (BAC) transgenic mice overexpressing mouse wildtype or G2019S 

LRRK2 were subjected to acute or chronic DSS-induced colitis and monitored daily for weight 

loss and disease activity indexes. Data suggest G2019S mice are more susceptible to acute DSS-

induced colitis with alterations in peripheral and neuroinflammation. While inflammatory changes 

were not as profound after chronic colitis compared to acute colitis, changes in the nigrostriatal 

pathway associated with PD pathology were observed in all three genotypes. In summary, we 

show that G2019S mice are more susceptible to acute intestinal inflammation thereby resulting in 

increased neuroinflammation, while chronic colitis is necessary to induce deficits in the 

nigrostriatal pathway. These studies will advance our understanding of how increased LRRK2 

levels and increased gain-of-toxic function kinase activity disrupts the gut-brain axis and may 

reveal therapeutic opportunities to delay or mitigate gastrointestinal inflammation to lower the risk 

of brain inflammation and age-related neurodegeneration. 
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3.2: Introduction 

Parkinson’s disease (PD) is a progressive movement disorder affecting more than one 

million Americans and over 10 million people worldwide, making it the second most common 

neurodegenerative disorder. PD is characterized by aggregation of a-synuclein (asyn) leading to 

Lewy Body formation and progressive loss of dopaminergic (DA) neurons in the substantia nigra 

pars compacta (SNpc) (Fahn, 2003). Loss of DA in the nigrostriatal pathway results in stereotypic 

motor symptoms associated with PD (von Campenhausen et al., 2005; Wirdefeldt, Adami, Cole, 

Trichopoulos, & Mandel, 2011). Several studies implicate inflammation in the pathophysiology of 

PD. Late-onset PD has been associated with variations in the human leukocyte antigen (HLA) 

gene that encodes major histocompatibility complex (MHC) proteins necessary for antigen 

presentation (Hamza et al., 2010). Reduced CD4:CD8 T cell ratios are present in PD patient blood 

while T cell infiltration and activated microglia have been identified in the SNpc in PD patients and 

PD animal models (Baba et al., 2005; McGeer, Itagaki, Boyes, et al., 1988; Saunders et al., 2012; 

Whitton, 2007). Furthermore, increased inflammatory cytokines (TNF, IFNg, IL-1b) have been 

associated with increased oxidative stress and accelerated DA neurodegeneration in PD (Blum-

Degen et al., 1995; Brodacki et al., 2008; Mogi, Harada, Kondo, et al., 1994; Reale, Greig, & 

Kamal, 2009). 

In addition to the stereotypical motor symptoms, PD patients also exhibit non-motor 

symptoms, with one of the most common identified as gastrointestinal (GI) dysfunction. An 

estimated 60-80% of PD patients experience GI symptoms (H. Chen et al., 2015; Siddiqui, Rast, 

Lynn, Auchus, & Pfeiffer, 2002; Ueki & Otsuka, 2004). Moreover, studies suggest chronic 

constipation manifests in PD patients at least 15 years before diagnosis, making it one of the 

earliest possible indicators of PD (Abbott et al., 2001; H. Chen et al., 2015; Postuma, Gagnon, 

Pelletier, & Montplaisir, 2013; Savica et al., 2009). In addition, PD patients exhibit increased 

intestinal permeability or “leaky gut”, with the level of permeability associated with increased 
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intestinal pro-inflammatory cytokines (Devos et al., 2013; Forsyth et al., 2011). This may be in 

part due to an infection or sustained exposure to substances resulting in intestinal inflammation 

(Houser & Tansey, 2017; Mulak & Bonaz, 2015). Therefore, we and others have proposed that 

intestinal inflammation and altered intestinal permeability contribute to systemic inflammation that 

in turn promotes neuroinflammation and neurodegeneration associated with PD pathogenesis 

(Houser & Tansey, 2017; Mulak & Bonaz, 2015). 

Interestingly, PD shares several similarities with Crohn’s disease (CD), an inflammatory 

bowel disease characterized by chronic relapsing inflammation of the GI tract. CD risk has been 

associated with over 160 genetic loci, several of which are related to inflammatory genes (NOD2, 

TLR4, IL-23R, HLA, and TNF) (Barrett et al., 2008; Cario & Podolsky, 2000; Duerr et al., 2006; 

Hugot et al., 2001; Ogura et al., 2001; Wellcome Trust Case Control, 2007). CD results from 

impaired epithelial barriers and altered immune responses and microbiome. Similar to PD, CD 

patients exhibit increased levels of circulating pro-inflammatory cytokines (TNF, IFNg, IL-12) (Daig 

et al., 1996; Fuss et al., 1996; Murch et al., 1993; Nielsen, Kirman, Rudiger, Hendel, & Vainer, 

2003) and altered intestinal permeability that can contribute to intestinal inflammation (Bischoff et 

al., 2014; Gerova, Stoynov, Katsarov, & Svinarov, 2011; Petit et al., 2012). Interestingly, patients 

with CD have a 28% increased risk of PD (F. Zhu et al., 2019). In 2008, studies identified Leucine-

Rich Repeat Kinase 2 (LRRK2) as a susceptibility locus for CD (Barrett et al., 2008; Franke et al., 

2010). LRRK2 is known as one of the greatest genetic contributors to PD, with the LRRK2 

G2019S mutation known as the most prevalent one residing in the kinase domain and resulting 

in a 2-3-fold increase in toxic gain-of-function kinase activity (Greggio et al., 2006; A. B. West et 

al., 2005; A. B. West et al., 2007). A recent genome-wide association study (GWAS) identified 

new LRRK2 variants, N2081D and N551K/R1398H as risk and protective genetic variants, 

respectively, for both CD and PD (Hui et al., 2018). The N2081D variant resides in the same 

kinase domain as the G2019S mutation and results in an increase in kinase activity albeit not to 

the same extent as the G2019S mutation (Hui et al., 2018). LRRK2 protein is expressed in a 
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variety of tissues and cell types, including immune cells and neurons (A. B. West, 2017). While 

pathogenic mechanisms underlying LRRK2 mutations are not well understood, LRRK2 has been 

shown to regulate inflammatory processes, and our group has shown its expression is increased 

in peripheral blood immune cells from PD patients relative to age- and sex-matched controls 

(Cook et al., 2017). Interestingly, another group has shown that LRRK2 levels are increased in 

immune cells in inflamed tissue from CD patients (Gardet et al., 2010). Increased LRRK2 kinase 

activity due to increased protein expression or the G2019S mutation drives dysregulation resulting 

in increased inflammatory cytokines (H. Lee et al., 2017; Moehle et al., 2015; Moehle et al., 2012). 

A handful of studies have examined the role of LRRK2 in experimental models of intestinal 

inflammation. A recent report suggests bacterial artificial chromosome (BAC) transgenic mice 

overexpressing wildtype LRRK2 are more susceptible to dextran sodium sulfate (DSS)-induced 

colitis than wildtype mice, due in part to increases in kinase activity that lead to dysregulated 

inflammatory signaling (Takagawa et al., 2018). However, studies of LRRK2 in colitis models have 

been limited in scope and do not examine the effects of intestinal inflammation on PD-like 

pathology in either the nigrostriatal pathway or GI system. Given that intestinal inflammation is 

common in both PD and CD and that we hypothesize that intestinal inflammation contributes to 

GI pathology (that precedes a PD diagnosis) and PD-like neuropathology (Houser & Tansey, 

2017), we aimed to explore the effects of increased LRRK2 protein and increased G2019S-

mediated kinase activity on the GI system and central nervous system (CNS) in a murine model 

of intestinal inflammation. We hypothesized that G2019S-mediated kinase activity synergizes with 

intestinal inflammation to promote GI dysfunction and PD-like neuroinflammation and 

neuropathology in the CNS. Understanding the effects of LRRK2 and its kinase activity in a model 

of intestinal inflammation on the CNS and GI system will be critical for development of 

immunomodulatory neuroprotective therapies to prevent, delay or slow progression of PD 

pathologies. 
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3.3: Materials and Methods 

Animals. Homozygous male Lrrk2-G2019S (B6.Cg-Tg(Lrrk2*G2019S)2Yue/J; stock number 

012467) and Lrrk2-WT (B6.Cg-Tg(Lrrk2)6Yue/J; stock number 012466) mice were purchased 

from the Jackson Laboratory and bred to hemizygosity at Emory University. Hemizygous male 

and female BAC transgenic mouse strains overexpressing either mouse mutant G2019S LRRK2 

(G2019S) or mouse wildtype LRRK2 (WTOE) were used for experimental procedures with non-

transgenic littermates (B6) serving as controls. Genotypes were determined by tail-snip PCR with 

two sets of primers: Transgene: Forward 5’ GAC TAC AAA GAC GAT GAC GAC AAG 3’ Reverse 

5’ CTA CCA CCA CCC AGA TAA TGT C 3’; Internal positive control: Forward 5’ CAA ATG TTG 

CTT GTC TGG TG 3’ Reverse 5’ GTC AGT CGA GTG CAC AGT TT 3’. Animals were group-

housed (maximum 5 mice per cage) and maintained on a 12h/12h light/dark cycle with ad libitum 

access to standard rodent chow and water. Experimental procedures involving use of animals 

were performed in accordance with the National Institutes of Health Guidelines for Animal Care 

and Use and approved by the Institutional Animal Care and Use Committee at Emory University 

School of Medicine. 

 

Experimental Timeline. Male and female B6, WTOE, and G2019S mice were subjected to 

different DSS-induction paradigms. For extended acute DSS-induced colitis, 2-3-month-old male 

and female WTOE and G2019S mice were subjected to 9 days of 2% DSS (Affymetrix 14489) 

followed by 2 days of autoclaved tap water ad libitum (n=6 per genotype) (Figure 3.1A). For acute 

DSS-induced colitis and recovery, 2-3-month-old male and female B6, WTOE, and G2019S mice 

were subjected to 5 days of 2% DSS followed by 5 days of autoclaved tap water ad libitum (n=18-

26 per genotype) (Figure 3.1B). 16-18-month-old B6 and G2019S mice were subjected to the 

same acute DSS-induced colitis paradigm (n=12-19 per genotype) (Figure 3.1C). For chronic 

DSS-induced colitis 2-3-month-old male and female B6, WTOE, and G2019S mice were 
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subjected to 1.5% DSS for 5 days followed by autoclaved tap water for 5 days. This was repeated 

two consecutive times for a total 30 days (n=19-22 per genotype) (Figure 3.1D). Water controls 

were placed on autoclaved tap water for their respective study durations. Mice were weighed and 

assessed for disease activity indexes (DAI) daily for acute paradigms or every other day for the 

chronic paradigm. DAI scores were calculated based on the sum of weight loss, fecal consistency, 

and fecal blood scores according to the criteria in Table 3.1. Fecal blood presence was detected 

using Hemoccult II SENSA kits (Beckman Coulter 64152) according to the manufacture’s 

protocol. Mice were coded so that researchers conducting the experiment were blinded to 

genotype and treatment groups until after data analyses were completed.  

 

 

Figure 3.1: Study designs of DSS-induced colitis models.  
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Score Weight Loss (% Baseline) Feces Consistency  Fecal Blood 

0 Gain – 1.99% Firm, dry, well-formed 
pellets No blood detected 

1 2.0-7.99% Soft, moist, loose pellets  

2 8-13.99% Semi-liquid feces, no rectal 
adherence 

Positive hemoccult 
test 

3 14-19.99%  Visible blood in fecal 
smear 

4 Over 20% Liquid feces, rectal 
adherence 

Visible bleeding from 
the rectum 

Table 3.1: Criteria for calculation of disease activity index (DAI) for colitis studies. 

 

Tissue collection. At the end of the paradigm, mice were sacrificed by decapitation. Brain tissue 

was removed, with the right hemisphere designated for flow cytometry. From the left hemisphere, 

the striatum, SN, and cortex were dissected, flash frozen and stored in -80°C until processing. 

For the acute paradigm, caudal tissue from the left hemisphere containing the SN was post-fixed 

in 4% paraformaldehyde for 24 hours at 4°C for immunohistochemistry. 

 

Plasma and Peripheral blood mononuclear cell (PBMC) isolation. Immediately prior to 

sacrifice, whole blood was collected by submandibular bleeds with approximately 200μl per 

mouse collected. Whole blood was collected in ethylenediaminetetraacetic acid (EDTA) coated 

tubes (Covidien 8881311248). 50μl of whole blood was treated with 1x red blood cell (RBC) lysis 

buffer (BioLegend 420301) to lyse RBCs as per the manufacturer’s instructions prior to staining 

PBMCs for flow cytometry. The remaining 150μl of whole blood was centrifuged after which 

plasma was removed and promptly frozen on dry ice then subsequently stored at -80°C until 

processing. 

 

Brain immune cell isolation. Brain immune cell isolation was performed as previously described 

with minor modifications (MacPherson et al., 2017). The right hemisphere was minced in 1xHBSS 

(without calcium, magnesium, and phenol red, Invitrogen, 14175) and transferred to an enzymatic 
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digestion solution consisting of 1.4U/ml collagenase, type VIII (Sigma, C2139), 1mg/ml DNase 1 

(Sigma, DN25) in RPMI1640 medium (ThermoFisher, 11875085). The tissue and enzymatic 

solution were incubated at 37°C for 15 minutes with shaking every 5 minutes. The solution was 

then neutralized with 10% FBS (heat inactivated, Atlanta Biologicals, S11150) in RPMI1640 

medium and centrifuged to pellet tissue. The remaining tissue pellet was homogenized with glass 

pipets in ice cold 1x HBSS and then filtered through a 70μM cell strainer. After centrifugation, the 

remaining pellet was resuspended in 37% Percoll (Sigma, P1644). 70% Percoll was layered 

below the resuspended pellet while 30% Percoll was layered above. The Percoll gradient was 

centrifuged for 30 minutes at room temperature without a brake. Immune cells were isolated from 

the interface between the 37% and 70% layers, washed with 1x HBSS and then stained for flow 

cytometric analysis. 

 

Multi-color Flow Cytometry. 50μl of PBMCs were stained with BMV109 (1μM, Vergent 

Bioscience, 40200-100) for 1 hour at 37°C. After a brief wash, PBMCs were then stained for 20 

minutes with the following panel: Live/Dead Fixable Red Dead Cell Stain (1:2000, Invitrogen, 

23102), anti-mouse CD16/CD32 (1:100, eBioscience, 14-0161-085), anti-mouse CD45 

PerCP_Cy5.5 (1:100, eBioscience, 45-0451-80), anti-mouse CD19 BV650 (1:100, Biolegend, 

115541), anti-mouse CD3 BV421 (1:50, Biolegend 100227), anti-mouse CD4 V500 (1:100, BD 

Biosciences, 560783), anti-mouse CD8 BV785 (1:100, Biolegend 100749), anti-mouse CD11b 

PE_Cy7 (1:200, Biolegend, 101215), anti-mouse MHCII APC_Cy7 (1:200, Biolegend, 107627), 

anti-mouse CD44 PE (1:200, Biolegend, 103007), anti-mouse Ly6G AF700 (1:100, eBioscience, 

56-5931-80), anti-mouse CD11C BV711 (1:200, Biolegend, 117349), and anti-mouse Ly6C 

AF488 (1:100,  Biolegend, 53-5932) in FACS buffer. Samples were fixed in 1% PFA for 30 

minutes. 10μl of counting beads (AccuCheck Counting Beads, Invitrogen PCB100) were added 
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to each sample. Samples were then run on an LSRII cytometer (BD Biosciences) and analyzed 

with FlowJo_V10 software.  

Brain immune cells were stained with BMV109 (1μM, Vergent Bioscience, 40200-100) and 

Pepstatin A, BODIPY FL Conjugate (1ug/mL, ThermoFisher Scientific, P12271) for 1 hour at 

37°C. After a brief wash, brain immune cells were then stained for 20 minutes with the following 

panel: Live/Dead Fixable Red Dead Cell Stain (1:2000, Invitrogen, 23102), anti-mouse 

CD16/CD32 (1:100, eBioscience, 14-0161-085), anti-mouse CD45 PerCP_Cy5.5 (1:100, 

eBioscience, 45-0451-80), anti-mouse CD3 BV421 (1:50, Biolegend 100227), anti-mouse CD4 

V500 (1:100, BD Biosciences, 560783), anti-mouse CD8 PE (1:100, eBioscience, 12-0083-81), 

anti-mouse CD11b PE_Cy7 (1:200, Biolegend, 101215), anti-mouse MHCII APC_Cy7 (1:200, 

Biolegend, 107627), anti-mouse Ly6C BV785 (1:100, Biolegend 128041), anti-mouse CD86 

BV605 (1:50, Biolegend, 105037), anti-mouse Ly6G AF700 (1:100, eBioscience, 56-5931-80), 

and anti-mouse CD11C BV711 (1:200, Biolegend, 117349) in FACS buffer. Samples were fixed 

in 1% PFA for 30 minutes. 10μl of counting beads (AccuCheck Counting Beads, Invitrogen 

PCB100) were added to each sample. Samples were then run on an LSRII cytometer (BD 

Biosciences) and analyzed with FlowJo_V10 software. 

For PBMCs, leukocytes were gated on Side Scatter Area (SSC-A) (granularity) by Forward 

Scatter Area (FSC-A) (size) and then with Forward Scatter Height (FSC-H) by FSC-A to identify 

single leukocytes. To identify live CD45+ cells, the Fixable Red negative population was selected 

followed by the CD45+ population against FSC-H. CD45+ cells were then gated on CD19 by CD3, 

with CD3+ cells denoting T cells. T cells were then gated for CD4+ and CD8+ T cells to 

differentiate T helper cells vs cytotoxic T cells, respectively. The CD19 B cell population was 

examined for MHCII expression by histogram and geometric mean fluorescent intensity. The 

CD19-, CD3- population was gated on CD11b by CD19 to select CD11b+ positive cells. That 

population was then selected and gated for CD11b vs Ly6G to identify neutrophils (CD11b+, 

Ly6G+). The non-neutrophil population was then gated for the Ly6C by MHCII cascade that 
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distinguishes monocyte and macrophage populations (Ly6C+, MHCII- monocytes, Ly6C+, 

MHCII+ monocytes, Ly6C-, MHCII+ macrophages, and Ly6C-, MHCII- monocytes). In each 

immune subset, the pan-cathepsin probe, BMV109, were examined for positive cells and 

geometric mean fluorescent intensity. 

For brain immune cells, leukocytes were gated on SSC-A (granularity) by FSC-A (size) 

and then with FSC-H by FSC-A to identify single leukocytes. To identify live cells, the Fixable Red 

negative population was selected against FSC-H. From a CD45 by CD11b gate, lymphocytes and 

mixed monocytes/macrophages were distinguished from microglia populations. The microglia 

population was further analyzed for MHCII+ microglia and CD86+ microglia. The geometric mean 

fluorescent intensity of MHCII+ microglia or CD86+ microglia was also identified based on the 

respective antibody. The lymphocyte population was gated on CD3+ T cells followed by CD4+ 

and CD8+ T cells to differentiate T helper cells vs cytotoxic T cells, respectively. The mixed 

monocyte/macrophage population was then examined with CD11b by Ly6G to distinguish 

neutrophils. The non-neutrophil gate was then gated with the Ly6C by MHCII cascade that 

distinguishes monocyte and macrophage populations (Ly6C+, MHCII- monocytes, Ly6C+, 

MHCII+ monocytes, Ly6C-, MHCII+ macrophages, and Ly6C-, MHCII- monocytes). In each 

immune subset, cathepsin probes, BMV109 and Pepstatin A, BODIPY, were examined for 

positive cells and geometric mean fluorescent intensity (MFI). 

 

Multiplexed Immunoassays. Levels of inflammatory protein were measured in plasma by the 

Emory Multiplexed Immunoassay Core (EMIC) using a commercially available V-plex Pro-

inflammatory Panel 1 Mouse Kit per the manufacturer’s instructions on the Meso Scale Discovery 

QuickPlex (Meso-Scale Discovery, Gaithersburg, MD). Plasma samples were analyzed for 

cytokines and chemokines (IFNg, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, KC/GRO, and TNF) 

that play key roles in the inflammation response and immune system. Samples were run in 

replicates of 30μl by an experimenter blinded to treatment history and genotype. 
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RNA extraction and protein isolation. RNA extraction and protein isolation were performed as 

previously described (de Sousa Rodrigues et al., 2017). Tissue was homogenized in ice-cold 

TRIzol (Life Technologies, 15596018) using a stainless-steel bead (Qiagen, 69989) and a 

TissueLyser II (Qiagen, 85300). RNA was then isolated using QIAshredder columns (Qiagen, 

79656) and RNeasy mini kits (Qiagen, 74106) according to the manufacturer’s protocol. RNA was 

quantified and purity assessed using a NanoDrop 2000 spectrophotometer (Thermo Fisher 

Scientific). Protein was isolated from the organic layer of the TRIzol separation method by 

methanol precipitation. Protein was resuspended in 1% SDS, quantified using a BCA protein 

assay and then used for immunoblotting.  

 

cDNA synthesis. Following the manufacturer’s protocol, RNA was reverse transcribed using 

SuperScript II Reverse Transcriptase (Life Technologies, 18064014), random hexamers 

(Integrated DNA Technologies, 51-01-18-25), and dNTPs (Life Technologies, 18427013). 

 

Quantitative real-time polymerase chain reaction (qPCR). qPCR was performed as previously 

described (de Sousa Rodrigues et al., 2017). Using an ABI Prism 7900 HT Fast Real-time PCR 

System (Applied Biosystems), 25ng cDNA was analyzed in triplicate with SYBR Green PCR 

Master Mix and 150nM validated forward and reverse oligonucleotide primers (Integrated DNA 

Technologies). Cycle of threshold (Ct) values were normalized to the averaged values of the two 

housekeeping genes, Gapdh and cyclophilin (Ppia). Relative mRNA expression was obtained by 

subtracting normalized Ct values from a standard number. Primers used: Gapdh – Forward 5‘ 

CAA GGT CAT CCA TGA CAA CTT TG 3’ Reverse 5‘GGC CAT CCA CAG TCT TCT GG 3’; Tnf 

– Forward 5‘ CTG AGG TCA ATC TGC CCA AGT AC 3’ Reverse 5‘ CTT CAC AGA GCA ATG 

ACT CCA AAG 3’; IL-1β – Forward 5‘ CAA CCA ACA AGT GAT ATT CTC CAT G 3’ Reverse 5‘ 

GAT CCA CAC TCT CCA GCT GCA 3’; Ptprc – Forward 5‘ TCA TGG TCA CAC GAT GTG AAG 
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A 3’ Reverse 5‘AGC CCG AGT GCC TTC CT 3’; Ppia – Forward 5‘ TGG AGA GCA CCA AGA 

CAG ACA 3’ Reverse 5‘ TGC CGG AGT CGA CAA TGA T 3’; Lcn2 – Forward 5’ TGG AAG AAC 

CAA GGA GCT GT 3’ Reverse 5’ GGT GGG GAC AGA GAA GAT GA3’, Cd4 – Forward 5’ GTG 

AGC TGG AGA ACA GGA AAG AG 3’ Reverse 5’ GGC TGG TAC CCG GAC TGA 3’; Cd8b – 

Forward 5’ GCT GTC CTT GAT CAT CAC TCT CA 3’ Reverse 5’ ACT AGC GGC CTG GGA CAT 

T 3’; IA-b – Forward 5’ CAG GAG TCA GAA AGG ACC TC 3’ Reverse 5’ AGT CTG AGA CAG 

TCA ACT GAG 3’; Snca – Forward 5’ AAA TGT TGG AGG AGC AGT GG 3’ Reverse 5’ GAA 

GGC ATT TCA TAA GCC TCA 3’; Tjp1 – Forward 5’ CCT GAA GGA ATT GAG CAA GA 3’ 

Reverse 5’ GCA GAG TTT CAC CTT TCT CT 3’; Ocln – Forward 5’ GAT TAG GTG ACC AGT 

GAC ATC 3’ Reverse 5’ GAT TGG GTT TGA ATT CAT CAG G 3’; Cldn1 – Forward 5’ ATG ATG 

AGG TGC AGA AGA TG 3’ Reverse 5’ TCG CCA GAC CTG AAA TTA AA 3’; and Cldn2 – Forward 

5’ CAC CCA CAG ATA CTT GTA AGG 3’ Reverse 5’ AGC CTC TAA TCC CTT ATT TCA C 3’. 

 
 
Immunoblotting. Immunoblotting was performed as previously described (de Sousa Rodrigues 

et al., 2017). The bicinchoninic acid (BCA) protein assay (Pierce Scientific, 23225) was used to 

determine protein concentrations, after which lysates were further diluted 1:1 with 2x Laemmli 

buffer (BioRad, 1610737) and boiled at 90°C for 5 minutes. Samples (10μg) were electrophoresed 

using 4-20% Mini-PROTEAN TGX precast gels (BioRad, 4561096) and transferred to 0.45μm 

PVDF membranes using the Trans-Blot Turbo System (BioRad, 1704150EDU) according to the 

manufacturer’s protocol. Membranes were washed and then incubated in 5% powdered milk 

blocking buffer (BioRad, 1706404) for 1 hour before applying primary antibody overnight at 4°C. 

The following morning, membranes were briefly washed and incubated at room temperature with 

HRP-conjugated secondary antibodies for 1 hour. Membranes were briefly washed and imaged 

using Azure Biosystems C400 system or a Li-Cor Odyssey Imaging system to detect 

chemiluminescent signal. Bands were quantified by densitometry using ImageStudio Lite 
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software. Protein expression was normalized to total protein on a Li-Cor Odyssey instrument (Li-

Cor #926-11015). 

 

High-performance liquid chromatography (HPLC). Levels of dopamine and related analytes 

in the striatum were measured with electrochemical detection by the Emory HPLC Bioanalytical 

Core (EHBC) as previously published (Song, Fan, Exeter, Hess, & Jinnah, 2012). Analytes were 

identified by matching retention time and sensor ratio measures to known standards. Levels of 

dopamine, DOPAC, HVA, L-Dopa, and 3-MT were quantified by comparing peak areas to 

standards.  

 

RNA sequencing. Total RNA from samples containing the SN was extracted using TRIzol as 

detailed above. RNA quality, purity, degradation and contamination were assessed by Novogene 

Corporation (Beijing, China) using a NanoDrop, Agilent 2100, and agarose gel electrophoresis, 

respectively. cDNA libraries were constructed from RNA samples following the Illumina protocols. 

Library preparations were sequenced on an Illumina HiSeq 4000 platform at Novogene 

Corporation. 

 

Immunohistochemistry. Immunohistochemistry was performed as previously published (Caudle 

et al., 2007; Kline et al., 2019). Upon 24 hours of post-fixation in 4% paraformaldehyde, brain 

tissue was equilibrated in 30% sucrose in PBS at 4°C. 40μm coronal sections were obtained using 

a sliding microtome. Floating sections were blocked with 5% normal goat serum (Jackson 

ImmunoResearch, 005-000-021) for 1 hour at room temperature and then incubated with a goat 

anti-ionized calcium binding adaptor molecule 1 (Iba1) antibody (Abcam, AB5076) overnight at 

4°C. Iba1 signal was amplified using an ABC Elite Kit (Vector Laboratories, PK-6100). Sections 

were incubated with a biotinylated rabbit anti-goat secondary antibody for 1 hour at 4 °C and then 
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developed with 3,3′-diaminobenzedine (DAB) tablets (Sigma, D4293) followed by ethanol and 

xylene dehydration. Tissue was then transferred to microscopy slides. Images were obtained 

using a THUNDER microscope (Leica) with a DMC4500 digital camera and LAS X 3D analysis 

and 3D visualization advanced software. 

 

Hematoxylin and eosin (H&E) staining. For histological analysis, colons were removed, cut 

longitudinally, swiss-rolled and flash frozen in optimal cutting temperature (OCT, Tissue-Tek, 

4583) embedding medium. 5µM sections were cut on the cryostat and placed on charged glass 

microscopy slides. H&E staining was performed, and tissue was dehydrated with ethanol and 

xylene. Images were obtained using a THUNDER microscope (Leica) with a DMC4500 digital 

camera and LAS X 3D analysis and 3D visualization advanced software. Images were scored in 

quadrants. Quadrant scores were calculated based on the sum of inflammatory cell infiltration, 

epithelial changes, and mucosa architecture, fecal consistency, and fecal blood scores according 

to the criteria in Table 3.2 (adapted from (Erben et al., 2014)). The average of each quadrant 

score represents the final histological score for each sample. 

 

Score Inflammatory cell 
infiltration 

Epithelial changes Mucosa 
architecture 

1 Minimal in the mucosa Minimal hyperplasia  

2 Mild in the mucosa and 
sometimes in the submucosa 

Mild hyperplasia and goblet 
cell loss; possible cryptitis 

and erosion 
 

3 Moderate in the mucosa and 
submucosa 

Moderate hyperplasia and 
goblet cell loss; cryptitis and 

possible crypt abscesses  
Ulcerations 

4 Marked in the mucosa and 
submucosa; often transmural 

Marked hyperplasia and 
goblet cell loss; multiple 

crypt abscesses 
Extended ulcerations 

Table 3.2: Criteria for calculation of histological score of colon tissue. 
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Statistical Analysis. Percent body weight changes were analyzed using two-way analysis of 

variance (ANOVA) or mixed-effects model with repeated measures on GraphPad Prism 8 

software. Data were compared across genotype using an unpaired student t-test or one-way 

ANOVA with Tukey’s post hoc for multiple comparisons. Data compared across genotype and 

treatment were analyzed using a two-way ANOVA with Tukey’s post hoc for multiple comparisons. 

Significance for all statistical comparisons was set at p£0.05. All data are presented as mean ± 

SEM. Letters above groups indicate post hoc results. Groups sharing the same letter are not 

significantly different.  

 

3.4: Results 

G2019S mice are more susceptible to extended acute DSS 

This study utilized several different time courses of DSS induction to assess different 

questions and parameters. The extended acute DSS model assesses peak inflammation and 

disease status. From this paradigm, we showed that G2019S mice are more susceptible to 

intestinal inflammation induced by DSS with a significant loss in body weight and increase in DAI 

(Figure 3.3B). This was further supported by a reduction in colon weight and length in G2019S 

mice (Figure 3.3D), as DSS causes the colon to shrink due to loss and damage of epithelial cells. 

Evidence of alterations in tight junction proteins that may contribute to increased intestinal 

permeability was also observed. While differences in claudin-1 were not significant (data not 

shown), G2019S mice exhibited lower levels of claudin-2 and ZO-1 (Figure 3.3F), and evaluation 

of colonic histology revealed poor crypt health and high levels of ulceration in colons of G2019S 

mice (Figure 3.3E). Levels of several pro-inflammatory cytokines (TNF, IL-6, IL-1b, IL-10 (Figure 
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3.3C) and IL-5 (data not shown)) were increased in the plasma of G2019S mice relative to WTOE, 

while no significant differences were found in IFNg, IL-2, IL-4, KC/GRO (data not shown) and IL-

12p70 was below detection limits (data not shown). 

 

 

Figure 3.2: B6, WTOE, and G2019S water controls exhibit the same peripheral blood, 

spleen, colon, and brain immunophenotypes. A) Percent body weight of water controls from 

acute and chronic paradigms. Data were compared across genotypes and time using a two-way 

ANOVA with repeated measures. B) Spleen weight (g), colon length (cm), and colon weight (g) 

from water control samples. C) PBMC and D) brain immunophenotypes (n=18-27 per genotype). 

Data were compared across genotypes using a one-way ANOVA. Significance for all statistical 

comparisons was set at p£0.05. 
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Figure 3.3: G2019S mice are more susceptible to extended acute DSS. A) Experimental 

design. B) Percent body weight and DAI. Data were compared across genotypes and time using 

a two-way ANOVA with repeated measures. Asterisks (*) signify differences between WTOE and 

G2019S groups at that specific time point (**p<0.01, ****p<0.0001). C) Plasma cytokine levels of 

TNF, IL-6, IL1b and IL-10. D) Colon weight (g) and colon length (cm). E) Representative H&E 

colon images visually showing changes in crypt health (white arrow) and levels of ulceration (black 

arrow). F) Immunoblot and quantification of the tight junction proteins, ZO-1 and Claudin-2, 

normalized to b-actin (n=6 per genotype). Data were compared across genotypes with an 

unpaired student t-test. Significance for all statistical comparisons was set at p£0.05. Groups with 

the same letter are not significantly different. 
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G2019S mice exhibit peripheral deficits after acute and chronic colitis with greater 

inflammatory alterations after acute colitis  

Given G2019S mice were severely affected after extended acute DSS, we sought to 

determine if G2019S mice could recover at the same rate as WTOE; therefore, we assessed mice 

on an acute paradigm with recovery (Figure 3.4A) as well as a chronic paradigm that resembles 

the repeated bouts of colitis humans with CD exhibit (Figure 3.4B). No differences were observed 

between genotypes on water controls in several peripheral and central immunophenotype 

assessments (Figure 3.2A-D) suggesting that all phenotypes observed are due to DSS-induced 

colitis. Similar to the extended acute paradigm, G2019S mice exhibited increased susceptibility 

to the acute and recovery paradigm by body weight loss (Figure 3.4C); however, no differences 

in body weight (Figure 3.4D) or DAI (data not shown) were observed in mice on the chronic 

paradigm. Spleen weight was increased in G2019S mice after acute DSS (Figure 3.4C) 

suggesting that G2019S mice have more inflammation, but no differences in colon weight or colon 

length were observed (data not shown). While no differences between genotypes were observed 

in spleen and colon weight after chronic DSS (data not shown), G2019S mice exhibited shorter 

colons (Figure 3.4D) as DSS causes the colon to shrink due to loss and damage of epithelial cells.  

Given that DSS destroys epithelial layers in the colon leading to inflammation, colon 

integrity and inflammatory status were evaluated. Histological analysis of the colon revealed a 

higher histological score in G2019S mice relative to WTOE mice after acute DSS (Figure 3.4E) 

but no differences after chronic DSS (Figure 3.4F). Evaluation of gene expression in the colon 

after acute DSS revealed elevated levels of Snca (which encodes asyn) and Ptprc (which 

encodes CD45, an immune cell marker) in G2019S colons (Figure 3.4G) suggesting that 

increased inflammation in the colon promotes increased colonic Snca levels. Interestingly, Snca 

levels were not significantly different after chronic DSS (Figure 3.4H); however, levels of gene 

expression related to tight junction proteins, Cldn1 and Tjp1, were significantly lower in G2019S 

colons (Figure 3.4H) suggestive of an impaired epithelial barrier. No significant differences in 
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inflammatory gene expression of Tnf, Il1b, Lcn2, or IA-b were noted in the colon after acute or 

chronic DSS (data not shown).  

 To further assess the systemic inflammatory state of mice after acute and chronic DSS, 

PBMCs were immunophenotyped by flow cytometry and plasma assessed by multiplexed 

immunoassays for cytokines and chemokines at sacrifice. No significant differences were 

observed in frequencies of total CD45+ immune cells, T cells, B cells or monocyte and 

macrophage populations in the peripheral blood after acute or chronic DSS (data not shown).  

However, G2019S mice exhibited a shift in T cell ratios relative to WTOE mice with higher 

frequencies of CD8 cytotoxic T cells and lower frequencies of CD4 T helper cells after acute DSS 

(Figure 3.5B), but these differences were not observed after chronic DSS (Figure 3.5C). Levels 

of plasma IL-10 and IL-2 were significantly lower in G2019S mice relative to WTOE mice after 

acute DSS (Figure 3.5D), but no differences were observed in levels of IFNg, IL-1β, IL-4, IL-5, IL-

6, KC/GRO, and TNF (data not shown). On the contrary, levels of IFNg, TNF, and IL-10 were 

increased in the plasma of G2019S mice relative to WTOE mice after chronic DSS (Figure 3.5E). 

No significant differences were found in levels of IL-1β, IL-2, IL-4, IL-5, IL-6, and KC/GRO (data 

not shown). 
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Figure 3.4: G2019S mice are more susceptible to acute DSS with a slowed recovery. A) 

Experimental design for acute DSS-induced colitis and recovery. B) Experimental design for 

chronic DSS-induced colitis. C) Percent body weight and spleen weight (g) after acute DSS-

induced colitis and recovery (n=14-23 per genotype). D) Percent body weight and colon length 

(cm) after chronic DSS-induced colitis (n=21-26 per genotype). Representative H&E colon images 

and histological scoring of colon tissue from samples subjected to E) acute DSS-induced colitis 

and recovery or F) chronic DSS-induced colitis (n=3-5 per genotype). Relative colonic gene 

expression of G) Snca and Ptprc after acute DSS-induced colitis and recovery (n=8 per genotype) 

or H) Cldn1, Cldn2, Tjp1, and Snca after chronic DSS-induced colitis (n=10-15 per genotype). For 

percent body weight analyses, data were compared across genotypes and time using a mixed-

effects model with repeated measures. Asterisks (*) signify differences between WTOE and 

G2019S groups at that specific time point (*p<0.05, **p<0.01). For all remaining analyses, one-
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way ANOVA with Tukey’s post hoc for multiple comparisons was used to compare across 

genotypes. Significance for all statistical comparisons was set at p£0.05. Letters above groups 

indicate post hoc results. Groups with the same letter are not significantly different. 

 

 

Figure 3.5: G2019S mice exhibit altered T cell PBMC populations relative to WTOE mice 

after acute DSS-induced colitis and recovery. A) Flow cytometry gating strategy used to 

identify T cell subsets. Quantification of T cells in PBMCs after B) acute DSS-induced colitis and 

recovery (n=18-26 per genotype) or C) chronic DSS-induced colitis (n=19-22 per genotype). 

Plasma cytokine levels of D) IL-10 and IL-2 after acute DSS-induced colitis and recovery (n=8-11 
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per genotype) or E) IFNg, TNF, and IL-10 after chronic DSS-induced colitis (n=12-17 per 

genotype). One-way ANOVA with Tukey’s post hoc for multiple comparisons was used to 

compare across genotypes. Significance for all statistical comparisons was set at p£0.05. Letters 

above groups indicate post hoc results. Groups with the same letter are not significantly different. 

 

Greater signs of neuroinflammation in brains of G2019S mice after colitis 

To assess how LRRK2 expression and G2019S-mediated kinase activity might synergize 

with colitis to impact neuroinflammation, we assessed brain immunophenotypes by flow cytometry 

and brain region-specific inflammatory gene expression. While no differences in the overall 

number of microglia were observed between genotypes by flow cytometry (Figure 3.6B) and 

confirmed by Iba1 immunohistochemical staining (data not shown), a significant increase in the 

number of MHCII+ microglia was observed in the brains of G2019S mice after both acute and 

chronic DSS. No differences were observed in infiltrating monocytes, macrophages, and overall 

T cell populations after acute and chronic DSS (data not shown). Similar to phenotypes observed 

in PBMCs, G2019S mice exhibited a shift in T cell ratios in the brain relative to WTOE mice with 

higher frequencies of CD8 cytotoxic T cells and lower frequencies of CD4 T helper cells after 

acute DSS (Figure 3.6D), but these differences were not observed after chronic DSS (Figure 

3.6D). These findings were further corroborated in the striatum with G2019S mice exhibiting 

higher levels of Cd8b gene expression but no differences in Cd4 after acute DSS (Figure 3.6F). 

Analysis of RNA sequencing data (adjusted p-value <0.05, |fold change| >0.1) from SN samples 
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of mice treated with chronic DSS compared to water controls revealed no differentially expressed 

genes (DEGs) between B6 water and chronic DSS-treated mice (data not shown). However, 28 

DEGs were identified between WTOE water and chronic DSS-treated mice, and 13 DEGs were 

identified between G2019S water and chronic DSS-treated mice, some of which are implicated in 

inflammatory pathways (Figure 3.6E, red and green dots). 

Figure 3.6: Acute DSS causes T cell infiltration in the brain, while both acute and chronic 

DSS are associated with increased MHCII+ microglia in the brains of G2019S mice. A) Flow 
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cytometry gating strategy used to identify microglia and MHCII+ microglia. B) Quantification of 

microglia and MHCII+ microglia after acute DSS-induced colitis and recovery (n=18-26 per 

genotype) and chronic DSS-induced colitis (n=19-22 per genotype). C) Flow cytometry gating 

strategy used to identify T cell populations in the brain. D) Quantification of T cell populations in 

the brain after acute DSS-induced colitis and recovery (n=18-26 per genotype) and chronic DSS-

induced colitis (n=19-22 per genotype). E) Volcano plot showing DEGs in the SN between water 

and chronic DSS-treated WTOE or G2019S mice (n=5-15 per genotype per treatment). F) 

Relative striatal gene expression of Cd4 and Cd8b after acute DSS-induced colitis and recovery 

(n=6-8 per genotype). One-way ANOVA with Tukey’s post hoc for multiple comparisons was used 

to compare across genotypes. Significance for all statistical comparisons was set at p£0.05. 

Letters above groups indicate post hoc results. Groups with the same letter are not significantly 

different. 

 

Chronic DSS, but not acute DSS, is sufficient to alter dopaminergic integrity consistent 

with an impaired nigrostriatal pathway 

To evaluate the effects of colitis on the nigrostriatal pathway, immunoblots of proteins 

associated with the dopaminergic pathway and HPLC to evaluate dopamine metabolites were 

performed. No differences were identified between genotypes; however, several treatment effects 

were observed. Analysis of tyrosine hydroxylase (TH), the enzyme that is the rate-limiting step in 

dopamine synthesis, in the striatum of water controls relative to acute DSS-treated mice revealed 

no treatment or genotype differences (Figure 3.7A). Furthermore, no differences were noted in 
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NeuN protein levels, a pan-neuronal marker (data not shown). Interestingly, a trend for a 

treatment effect for increased asyn protein was noted in the striatum, whereby acute DSS trends 

to increase asyn levels relative to water controls (Figure 3.7A).  

Analysis of the nigrostriatal pathway after chronic DSS revealed several significant 

treatment effects suggesting that chronic DSS impairs the integrity of dopaminergic neurons. 

Chronic DSS caused a significant reduction in SN TH protein and an increase in the ratio of 

phosphorylated TH (pTH) at serine 40 (pSer40) to TH relative to water controls (Figure 3.7B). 

Phosphorylation of TH at serine 40 is commonly used to assess TH enzymatic activity with the 

ratio of pTH:TH used as indication of the proportion of active to inactive TH enzyme. In 

accordance, chronic DSS increased levels of striatal L-3,4-dihydroxyphenylalanine (L-Dopa) the 

precursor to dopamine, relative to water controls (Figure 3.7C). No treatment or genotype 

differences were noted in total dopamine levels, but a trend for DSS to increase 3,4-

dihydrozyphenylacetic acid (DOPAC, p=0.0794), one of the metabolites of dopamine, was noted 

(Figure 3.7C). No other treatment or genotype differences were observed in other dopaminergic 

metabolites (homovanillic acid (HVA) or 3-methoxytyramine (3-MT), data not shown). 

Furthermore, no treatment or genotype differences in levels of asyn, GFAP (a marker of 

astrocytes), or NeuN levels were noted after chronic DSS (data not shown). 
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Figure 3.7: Chronic DSS compromises nigrostriatal pathway integrity. A) Immunoblot and 

quantification of striatal TH and asyn protein levels after acute DSS or water (n=4-8 per genotype 

per treatment). B) Immunoblot and quantification of nigral pSer40 and TH protein levels after 

chronic DSS or water (n=5-15 per genotype per treatment). C) Levels of dopamine and its 

metabolites as measured by HPLC from the striatum of mice treated with chronic DSS or water 

(n=5-15 per genotype per treatment). Two-way ANOVA with Tukey’s post hoc for multiple 

comparisons was used to compare across genotypes and treatments. Significance for all 

statistical comparisons was set at p£0.05.  

 

Acute colitis in aged mice triggers neuroinflammation and compromises nigrostriatal 

integrity 

Given age is the number one risk factor for PD, we sought to assess how G2019S-

mediated kinase activity might synergize with colitis in aged mice. We assessed the same 
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peripheral and CNS parameters as described above in 16-18-month old B6 and G2019S mice 

treated with acute DSS. While no differences between genotypes were observed in body weight 

(Figure 3.8A) or DAI (data not shown), a time effect was observed. Spleen weight was increased 

in aged G2019S mice after acute DSS (Figure 3.8A), but no differences were observed in colon 

weight or colon length (data not shown). Levels of plasma IL-6 and KC/GRO were significantly 

higher in aged G2019S mice relative to B6 mice (Figure 3.8B), but no differences were observed 

in levels of IFNg, IL-1β, IL-2, IL-4, IL-5, and TNF (data not shown). A trend for increased plasma 

IL-10 (p=0.0531) levels was determined in aged G2019S mice relative to B6 (Figure 3.8B). 

Interestingly, TNF, IL-6, or IL-10 plasma levels significantly correlated with disease severity 

(percent body weight at day 10) in acute DSS-treated groups independent of genotype (Figure 

3.8C).  

Similar to observations in young mice after acute DSS, aged mice exhibited a treatment 

effect with acute DSS increasing the frequency of MHCII+ microglia independent of genotype 

(Figure 3.9A). However, unlike young mice, aged mice exhibited increased infiltrating 

macrophages and monocytes after acute DSS independent of genotype as measured by flow 

cytometry (Figure 3.9A). No differences between genotype or treatment were noted in T cell 

populations or total microglia (data not shown).  

In accordance with these findings of acute DSS inducing neuroinflammation in aged mice, 

we also observed alterations in the nigrostriatal pathway. Acute DSS caused a significant 

reduction in TH and pTH protein levels relative to water controls in the SN of aged mice (Figure 

3.9B). This resulted in an increase in the ratio of pTH:TH of DSS-treated mice relative to water 
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controls (Figure 3.9B). While no differences in dopamine levels were observed, acute DSS 

decreased the striatal dopamine metabolites, DOPAC and HVA, relative to water controls (Figure 

3.9C). Alterations in dopamine turnover were noted with both genotype and treatment effects 

(Figure 3.9C). Interestingly, dopamine turnover and the DOPAC:dopamine ratio significantly 

correlated with disease severity (percent body weight at day 10) in acute DSS-treated groups 

independent of genotype (Figure 3.9D). Levels of 3-MT were not significantly different (data not 

shown), while levels of L-Dopa were below detection limits.  

 

 

Figure 3.8: Disease severity in aged mice treated with acute DSS correlates with peripheral 

inflammation levels. A) Experimental design, percent body weight and spleen weight (g) of aged 

mice on acute DSS. Data were compared across genotypes and time using a two-way ANOVA 

with repeated measures or across genotypes with an unpaired student t-test (n=12-19 per 
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genotype). B) Plasma cytokine levels of IL-6, IL-10, and KC/GRO of aged mice after acute DSS 

(n=12-19 per genotype). Data were compared across genotypes with an unpaired student t-test. 

C) Significant correlation between percent body weight at day 10 as an indication of disease 

severity and TNF (p=0.0029, R=-0.52), IL-6 (p=0.0004, R=-0.59), and KC/GRO (p<0.0001, R=-

0.68) plasma levels in acute DSS-treated groups (peach symbols) but not water controls (teal 

symbols) (n=22-31 per treatment, Pearson’s correlation). 

 

 

Figure 3.9: Acute colitis in aged mice causes neuroinflammation and compromises 

nigrostriatal pathway integrity. A) Flow cytometry gating strategy and quantification of MHCII+ 

microglia and infiltrating monocytes and macrophages (n=12-19 per genotype per treatment). B) 

Immunoblot and quantification of nigral pSer40 and TH protein levels (8-11 per genotype per 
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treatment). C) Levels of dopamine, HVA, DOPAC and dopamine turnover, as measured by HPLC 

from the striatum of aged mice treated with acute DSS or water (n=7 per genotype per treatment). 

Two-way ANOVA with Tukey’s post hoc for multiple comparisons was used to compare across 

genotypes and treatments. Significance for all statistical comparisons was set at p£0.05. Letters 

above groups indicate post hoc results. Groups with the same letter are not significantly different. 

D) Significant correlation between percent body weight at day 10 as an indication of disease 

severity and DOPAC:DA ratio (p=0.023, R=-0.6) or DA turnover (p=0.045, R=-0.54) in acute DSS-

treated groups (peach symbols) but not water controls (teal symbols) (n=14 per treatment, 

Pearson’s correlation). 

 

3.5: Discussion 

Given that epidemiologically LRRK2 sits at the interface between PD and CD and that 

studies have shown increased LRRK2 levels in peripheral immune cells of PD patients (Cook et 

al., 2017) or in inflamed colonic tissue of CD patients (Gardet et al., 2010), this study directly 

investigates the role of increased LRRK2 protein and increased G2019S-mediated kinase activity 

in the gut-brain axis on brain inflammation and nigrostriatal pathway integrity. We sought to 

confirm and extend previous studies investigating how LRRK2 synergizes with intestinal 

inflammation to promote neuroinflammation and neuropathology associated with PD.  

While previous studies have examined the role of LRRK2 deficiency (Z. Liu et al., 2011) 

and overexpression of wildtype LRRK2 (Takagawa et al., 2018) in colitis models, to our 
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knowledge this is the first study to describe the role of G2019S-mediated kinase activity in the 

context of colitis. Mice overexpressing wildtype LRRK2 have been shown to be more susceptible 

to acute colitis relative to non-transgenic controls (Takagawa et al., 2018); however, G2019S mice 

were not employed in those studies and the effects of colitis on peripheral and neuropathology 

were not fully examined in the context of PD. In the current study, we show that mice 

overexpressing G2019S LRRK2 are more susceptible to extended acute and acute DSS-induced 

colitis, while mice overexpressing wildtype LRRK2 are protected against colitis-induced 

phenotypes. Consistent with previous findings from our group showing that overexpression of 

G2019S or wildtype LRRK2 does not affect immune cell subsets with age, we show here that 

control WTOE and G2019S mice on autoclaved tap water exhibit similar colon, spleen, and 

peripheral and neuroinflammatory phenotypes as B6 mice. No differences were observed 

between genotypes on water controls suggesting that all phenotypes observed are due to DSS-

induced colitis.  

DSS induces colitis by injuring and stripping away the epithelial barrier and causing a 

massive inflammatory response with infiltrating immune cells and upregulation of cytokine 

secretion (Kiesler et al., 2015). We observed that G2019S mice were more susceptible to 

extended acute and acute DSS paradigms relative to WTOE mice. These findings were supported 

by examination of the integrity of the colon in which G2019S mice exhibited reductions of tight 

junction proteins (ZO-1 and Claudin-2) important for maintaining barrier integrity and a worse 

histological score of the colon after acute DSS. While not directly assessed in the current study, 

defects observed in tight junction proteins suggest increased intestinal permeability in the G2019S 
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mice after acute DSS. Interestingly, G2019S mice were not as susceptible to chronic DSS by 

body weight with no differences observed between genotypes; however, they still exhibited 

defects in gene expression of tight junction proteins (Tjp1 and Cldn1) further supporting the idea 

that G2019S mice exhibit increased intestinal permeability after DSS-induced colitis. 

With evidence suggestive of a breached colonic epithelial barrier, the chances for elevated 

systemic inflammation and cytokine signaling in the blood are increased. To examine this, we 

used flow cytometry and multiplexed immunoassay to measure systemic inflammation. Given the 

extended acute DSS model assesses peak inflammation levels, G2019S mice exhibited much 

higher levels of several pro-inflammatory cytokines including TNF, IL-6, IL-10, IL-5, and IL-1b 

relative to WTOE mice. However, fewer differences in cytokines were noted after acute DSS and 

recovery with G2019S mice exhibiting reduced IL-10 and IL-2 plasma levels relative to WTOE 

mice. IL-10 is a known as an anti-inflammatory cytokine that limits inflammatory responses 

(Couper, Blount, & Riley, 2008). A reduction in IL-10 may be a contributing factor in the dampened 

recovery rate of G2019S mice. IL-2 regulates immunostimulatory and immunosuppressive 

responses to inflammation, but is most widely known for its role in T cell growth and CD4 T cell 

differentiation (Kalia & Sarkar, 2018; Nelson, 2004). The reduction in IL-2 plasma levels in 

G2019S mice after acute DSS may contribute to the reduced frequency of CD4 T cells in the 

blood of G2019S mice. The IL-2 levels present may be the driving force in differentiating CD8 T 

cells, which were increased in the blood of G2019S mice after acute DSS. We did not observe 

similar cytokine levels or T cell populations after chronic DSS. In fact, levels of IFNg, TNF, and IL-
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10 were all increased in G2019S plasma after chronic DSS suggestive of an exacerbated 

inflammatory response without alterations in PBMC T cell populations. This is in accordance with 

studies suggesting that CD8+ T cells may act as initiators of the inflammatory process and 

contribute to epithelial damage early on in CD but not in remitting bouts of colitis (Cheroutre, 2006; 

Nancey et al., 2006).  

asyn is normally expressed in the human enteric nervous system (Bottner et al., 2012; 

Gray, Munoz, Gray, Schlossmacher, & Woulfe, 2014). Pathological forms (aggregated and 

phosphorylated) of asyn has been observed throughout the entire GI system of PD patients 

(Beach et al., 2010) with higher levels of pathological asyn noted in PD patients relative to healthy 

controls (Gold, Turkalp, & Munoz, 2013; Hilton et al., 2014). Interestingly, we noted an increase 

in colonic Snca gene expression (the gene that encodes asyn) in the colon of G2019S mice after 

acute DSS but no differences in Snca levels between genotypes after chronic DSS. The acute 

DSS paradigm examines pathology during the recovery phase immediately after the peak of 

inflammation. Therefore, the increase in Snca gene expression in G2019S mice may be a 

consequence of activation of the peripheral immune system as asyn levels are shown to increase 

in the mouse colon after intestinal inflammation (J. G. Choi et al., 2018). However, given mouse 

asyn lacks the aggregation and pathological properties associated with human asyn (Cookson, 

2009; Volles & Lansbury, 2007), future studies should explore the effects of LRRK2 in colitis 

models that can report on human asyn phenotypes.  
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Our group and others have hypothesized that intestinal perturbations contribute to 

systemic inflammation and promote neuroinflammation and neurodegeneration associated with 

PD pathogenesis (Houser & Tansey, 2017). Therefore, we examined the effects of intestinal 

inflammation induced by DSS on neuroinflammation and neurodegeneration phenotypes in the 

LRRK2 BACs. Microglia are the brain-resident immune cells. Their activation is measured by 

upregulation of MHCII expression (Wyss-Coray & Mucke, 2002), which is a common 

neuroinflammatory response after infection, trauma, or chronic neurodegenerative diseases 

(McGeer, Itagaki, Boyes, et al., 1988; Schetters, Gomez-Nicola, Garcia-Vallejo, & Van Kooyk, 

2017). In the current study, we did not observe differences between genotypes in the number of 

microglia after acute and chronic DSS. However, we did note that G2019S mice after acute and 

chronic DSS exhibited an increase in the number of MHCII+ microglia indicating greater levels of 

neuroinflammation in G2019S brains. Similar to observations in peripheral immune cells, we 

noted a shift in the ratio of CD4:CD8 T cells in the brain with a higher frequency of CD8 T cells 

and reduction of CD4 T cells in G2019S mice after acute DSS. However, no genotype differences 

in T cell populations were noted after chronic DSS. Infiltration of CD8 T cells has been noted in 

PD patient brains (Brochard et al., 2009). This infiltration of CD8 T cells is associated with 

dopaminergic neuronal death. However, we did not detect impairments of the nigrostriatal 

pathway in the acute paradigm. To assess nigrostriatal integrity, key proteins in dopamine 

synthesis (TH, pTH) were evaluated by immunoblot in conjunction with HPLC analysis to assess 

striatal levels of dopamine and its metabolites (L-Dopa, 3-MT, HVA, and DOPAC). We did not 

observe genotype differences after acute or chronic DSS when assessing the nigrostriatal 
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pathway which is in accordance with the fact that LRRK2 PD patients are clinically 

indistinguishable from non-LRRK2 PD patients (Kestenbaum & Alcalay, 2017). However, we did 

observe a treatment effect, whereby chronic, but not acute, DSS impairs dopaminergic neuronal 

integrity. This is evident by increased pTH:TH ratios after chronic DSS indicative of higher levels 

of active TH converting tyrosine to L-Dopa, as turnover of active TH controls L-Dopa production 

(Meiser, Weindl, & Hiller, 2013). These changes at this current time point are not sufficient to 

decrease dopamine levels, but they are suggestive of the beginning stages of dysfunction and 

impairment. 

Because PD is a multifactorial disease, with age, genetics, and environmental exposures 

contributing to pathogenesis, we examined the synergistic effects of G2019S-mediated kinase 

activity on intestinal inflammation in aged mice. Interestingly, we observed several of the same 

peripheral inflammatory phenotypes as seen in young G2019S mice after acute DSS. These 

include upregulation of pro-inflammatory cytokines and an increased spleen weight in G2019S 

mice. Plasma cytokine levels correlated with disease severity as measured by percent of body 

weight at the end of the paradigm. The more body weight lost (lower percent of initial body weight), 

the higher the level of plasma cytokines. DSS in aged mice caused an increase in infiltrating 

monocytes and macrophages and MHCII+ microglia independent of genotype suggesting that 

acute DSS causes increased neuroinflammation. Unlike acute DSS in young mice, aged mice 

exhibited signs of nigrostriatal impairment independent of genotype, and this correlated with 

disease severity. The more body weight lost (lower percent of initial body weight), the more DA 

turnover. While dopamine mechanisms are not fully understood, biochemical data suggests that 
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increased dopamine turnover might be an early compensatory mechanism in PD (Barrio et al., 

1990; Sossi et al., 2002). This suggests that while acute DSS in young mice causes peripheral 

and neuroinflammatory changes without impairing the nigrostriatal pathway, the changes in aged 

mice are sufficient to induce impairment in the nigrostriatal pathway.  

In conclusion, we have presented a novel study showing that G2019S mice are more 

susceptible to acute colitis with colonic epithelial destruction, altered T cell ratios in the periphery, 

and increased MHCII+ microglia relative to WTOE mice. Chronic DSS-induced colitis, but not 

acute DSS-induced colitis, is sufficient to induce impairment in the nigrostriatal pathway 

independent of genotype. However, in aged mice, acute DSS causes peripheral and 

neuroinflammation sufficient to induce impairment in the nigrostriatal pathway. Future studies will 

explore the extent to which G2019S phenotypes are rescued by LRRK2 kinase inhibition and/or 

TNF inhibition, based on the reports that anti-TNF therapy reduces the risk of PD in IBD patients 

by 78% (Peter et al., 2018). 
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CHAPTER 4: THE EFFECTS OF LRRK2 AND CHRONIC PESTICIDE EXPOSURE IN WT OR 
G2019S OVEREXPRESSING MICE 
 
4.1: Abstract 

 Parkinson’s disease (PD) is considered a multifactorial disease with an individual’s age, 

genetics, environmental exposures and lifestyle collectively hypothesized to contribute to disease 

pathogenesis. Exposure to pesticides has been associated with increased incidence of PD. 

Interestingly, animal models studying the effects of LRRK2, one of the greatest genetic 

contributors to PD, have found increased susceptibility to toxin exposure especially in the context 

of LRRK2 G2019S, supporting the idea that genetic predisposition for PD has a complex interplay 

with environmental interactions to contribute to disease pathogenesis. Cypermethrin is one of the 

most widely used pyrethroids, a class of pesticides used in homes and agricultural areas to control 

insects. Studies have shown that long-term exposure to cypermethrin has several health risks for 

humans and promotes neurotoxicity in animal models. Recent unpublished data from our lab 

suggests that chronic cypermethrin modifies peripheral T cells to a cytotoxic phenotype and 

disrupts the nigrostriatal pathway in wildtype mice. Thus, we hypothesized that mice 

overexpressing mutant G2019S LRRK2 would be more susceptible to chronic cypermethrin 

exposure with shifts in peripheral and central immunophenotypes that would promote 

neurodegenerative phenotypes associated with PD. Here we report that BAC transgenic mice 

overexpressing wildtype LRRK2 or mutant G2019S LRRK2 subjected to chronic cypermethrin 

exhibit time-dependent peripheral blood immune cell profile changes independent of genotype 

but no effects on neuroinflammation or enhanced neurodegenerative phenotypes. These data 

support a model in which several exposures over a lifetime in a genetically susceptible 

background contributes to PD pathophysiology.  
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4.2: Introduction 
 
 Parkinson’s disease (PD) is a progressive movement disorder affecting more than one 

million Americans and over 10 million people worldwide, making it the second most common 

neurodegenerative disorder in the US. Characterized by aggregation of a-synuclein leading to 

Lewy Body formation, the neuropathological hallmark of PD is a loss of nigral dopaminergic 

neurons in the substantia nigra pars compacta (SNpc) and concomitant reductions in dopamine. 

This loss of dopamine results in the stereotypic motor symptoms associated with PD. While the 

exact etiology still remains unknown, PD is considered a multifactorial disease with a complex 

interaction of genetics, aging, and environmental exposures all thought to contribute to PD 

pathogenesis. In the 1980s, reports in California surfaced that several patients were presenting 

with motor symptoms associated with PD but were extremely young for a PD diagnosis (Langston, 

2017; Langston, Ballard, Tetrud, & Irwin, 1983). The cause was traced back to the patients’ use 

of “synthetic heroin” which contained the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP), a byproduct of the synthesis of 1-methyl-4-phenyl-4-

propionoxypiperidine (MPPP) (Langston et al., 1983; Langston, Forno, Rebert, & Irwin, 1984; 

Langston, Irwin, Langston, & Forno, 1984). Since then, MPTP has been used as the gold standard 

to induce selective degeneration of dopaminergic neurons in animal (rodent and non-human 

primate) models. Additional toxicants have been identified, including rotenone, a pesticide, and 

paraquat, an herbicide that shares high structural similarity with MPTP (Fei, McCormack, Di 

Monte, & Ethell, 2008; Langston, 2017). Given the similarities and wide use of these toxicants, a 

number of GWAS have found associations between pesticide exposure and incidence of PD, with 

increased pesticide exposure generally associated with increased incidence of PD (Ascherio et 

al., 2006; Frigerio et al., 2006; Kamel et al., 2007; Le Couteur, McLean, Taylor, Woodham, & 

Board, 1999). Collectively, this provides rationale supporting the hypothesis that PD pathogenesis 

manifests through multiple hits mediated by environmental exposures. 
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Numerous studies have used the aforementioned toxicants in genetic animal models of 

PD to study the mechanisms by which these toxicants act and to gain insight into the hypothesis 

that gene by environment synergistic effects contribute to PD pathogenesis. Several of these 

studies have used LRRK2 animal models, as LRRK2 is one of the greatest genetic contributors 

to PD and G2019S mediated kinase activity has been shown to be neurotoxic. A mouse model 

expressing the human LRRK2 G2019S mutation treated with MPTP resulted in increased 

neuronal susceptibility and neurotoxicity compared to WT controls (Karuppagounder et al., 2016). 

Similarly, a recent study identified severe motor impairment and loss of dopaminergic neurons in 

MPTP-treated mice overexpressing LRRK2 G2019S relative to non-transgenic mice treated with 

the same dose of MPTP (Arbez et al., 2019). On the other hand, LRRK2 deficiency protects 

against paraquat-induced sickness and inflammation as well as neuronal loss, suggesting that 

the presence of LRRK2 may contribute to inflammatory and neurodegenerative phenotypes 

associated with PD (Rudyk et al., 2019). 

Cypermethrin is a class-II synthetic pyrethroid pesticide that is commonly used to control 

insects in agricultural and household areas and has been associated with a number of human 

health risks (Azmi et al., 2009; H. Choi et al., 2006; Eadsforth & Baldwin, 1983; Keenan, Vega, & 

Krieger, 2009; D. A. Khan, Hashmi, Mahjabeen, & Naqvi, 2010). Cypermethrin acts on a number 

of different pathways but is most commonly known for extending the open time of voltage gated 

sodium channels leading to neuronal hypopolarization, cell death, insect paralysis and death of 

the organism (Singh, Tiwari, Prakash, & Singh, 2012). Given that cypermethrin crosses the blood-

brain barrier (BBB), it has been shown to affect microglia among other immune cells and several 

types of neurons, with a preference for dopaminergic neurons, suggesting cypermethrin as an 

intriguing model for studying PD pathogenesis (Mun, Lee, & Han, 2005; Singh et al., 2011; Singh, 

Tiwari, Prakash, et al., 2012). A few studies have examined the use of cypermethrin in rats 

showing that long term exposure in adulthood contributes to nigrostriatal alterations suggestive 

of a neurodegenerative phenotype (Singh et al., 2011; Singh, Tiwari, Upadhyay, et al., 2012; 
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Tiwari et al., 2010). Interestingly, cypermethrin has been shown to alter lysosomal homeostasis 

through activation of autophagosome formation and inhibition of autophagy (Mishra et al., 2018). 

LRRK2 has also been shown to alter autophagy, thus the convergence of chronic cypermethrin 

treatment in a LRRK2 context presents as a novel and appealing model in which to study PD 

pathogenesis.  

Furthermore, unpublished data from our lab suggests that chronic cypermethrin promotes 

peripheral T cells to a cytotoxic phenotype and alters the nigrostriatal pathway in adult wildtype 

mice. Therefore, we sought to confirm and extend these findings in the context of LRRK2 and its 

kinase activity. We sought to investigate the extent to which increased mouse LRRK2 protein or 

increased G2019S-mediated kinase activity in immune cells affects neuronal survival in a chronic 

cypermethrin model. We hypothesized that when exposed to chronic cypermethrin, LRRK2 

G2019S mice would exhibit higher levels of pro-inflammatory and activated central and peripheral 

immune cells as well as increased infiltrating immune cells to the brain, compared to B6 mice, 

which will promote dopaminergic cell loss. Here we report that chronic cypermethrin alters 

peripheral immune cell subsets in a time-dependent manner independent of genotype, but does 

not contribute to neuroinflammation or neurodegenerative phenotypes associated with PD. 

 

4.3: Materials and Methods 

Animals. Homozygous male Lrrk2-G2019S (B6.Cg-Tg(Lrrk2*G2019S)2Yue/J; stock number 

012467) and Lrrk2-WT (B6.Cg-Tg(Lrrk2)6Yue/J; stock number 012466) mice were purchased 

from the Jackson Laboratory and bred to hemizygosity at Emory University. Hemizygous male 

and female bacterial artificial chromosome (BAC) transgenic mouse strains overexpressing either 

mouse mutant G2019S LRRK2 (G2019S) or mouse wildtype LRRK2 (WTOE) were used for 

experimental procedures with non-transgenic littermates (B6) serving as controls. Genotypes 

were determined by tail-snip PCR with two sets of primers: Transgene: Forward 5’ GAC TAC AAA 

GAC GAT GAC GAC AAG 3’ Reverse 5’ CTA CCA CCA CCC AGA TAA TGT C 3’; Internal 
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positive control: Forward 5’ CAA ATG TTG CTT GTC TGG TG 3’ Reverse 5’ GTC AGT CGA GTG 

CAC AGT TT 3’. Animals were group housed (maximum 5 mice per cage) and maintained on a 

12h/12h light/dark cycle with ad libitum access to standard rodent chow and water. Experimental 

procedures involving use of animals were performed in accordance with the National Institutes of 

Health Guidelines for Animal Care and Use and approved by the Institutional Animal Care and 

Use Committee at Emory University School of Medicine. 

 

Experimental Timeline. Male and female B6, WTOE, and G2019S mice were randomly assigned 

to two treatment groups (vehicle or cypermethrin, n=6-12 per group). As illustrated in figure 4.1A, 

7-9-month-old mice were treated with chronic cypermethrin (20mg/kg; Chem Service Inc, N-

11545) or vehicle (corn oil) by intraperitoneal injection twice a week for 12 weeks. Every other 

week mice underwent submandibular bleeds to assess PBMCs and plasma cytokines and 

chemokines.  

 

Tissue collection. At 12 weeks, animals were sacrificed by decapitation. Brain tissue was 

removed, with the right hemisphere designated for flow cytometry. From the left hemisphere, the 

striatum was dissected, flash frozen and stored in -80°C until processing. The remaining caudal 

tissue from the left hemisphere was post-fixed in 4% paraformaldehyde for 24 hours at 4°C for 

immunohistochemistry and stereology. 

 

Plasma and Peripheral blood mononuclear cell (PBMC) isolation. Whole blood was collected 

by submandibular bleeds with approximately 200μl per mouse collected for each time point. 

Whole blood was collected in ethylenediaminetetraacetic acid (EDTA) coated tubes (Covidien 

8881311248). 50μl of whole blood was treated with 1x red blood cell (RBC) lysis buffer 

(BioLegend 420301) to lyse RBCs as per the manufacturer’s instructions prior to staining PBMCs 
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for flow cytometry. The remaining 150μl of whole blood was centrifuged after which plasma was 

removed and promptly frozen on dry ice then subsequently stored at -80°C until processing. 

 

Brain immune cell isolation. Brain immune cell isolation was performed as previously described 

with minor modifications (MacPherson et al., 2017). The right hemisphere was minced in 1xHBSS 

(without calcium, magnesium, and phenol red, Invitrogen, 14175) and transferred to an enzymatic 

digestion solution consisting of 1.4U/ml collagenase, type VIII (Sigma, C2139), 1mg/ml DNase 1 

(Sigma, DN25) in RPMI1640 medium (ThermoFisher, 11875085). The tissue and enzymatic 

solution were incubated at 37°C for 15 minutes with shaking every 5 minutes. The solution was 

then neutralized with 10% FBS (heat inactivated, Atlanta Biologicals, S11150) in RPMI1640 

medium and centrifuged to pellet tissue. The remaining tissue pellet was homogenized with glass 

pipets in ice cold 1x HBSS and then filtered through a 70μM cell strainer. After centrifugation, the 

remaining pellet was resuspended in 37% Percoll (Sigma, P1644). 70% Percoll was layered 

below the resuspended pellet while 30% was Percoll layered above. The Percoll gradient was 

centrifuged for 30 minutes at room temperature without a brake. Immune cells were isolated from 

the interface between the 37% and 70% layers, washed with 1x HBSS and then stained for flow 

cytometric analysis. 

 

Multi-color Flow Cytometry. 50μl of PBMCs were stained with BMV109 (1μM, Vergent 

Bioscience, 40200-100) and Pepstatin A, BODIPY FL Conjugate (1ug/mL, ThermoFisher 

Scientific, P12271) for 1 hour at 37°C. After a brief wash, PBMCs were then stained for 20 minutes 

with the following panel: Live/Dead Fixable Red Dead Cell Stain (1:2000, Invitrogen, 23102), anti-

mouse CD16/CD32 (1:100, eBioscience, 14-0161-085), anti-mouse CD45 PerCP_Cy5.5 (1:100, 

eBioscience, 45-0451-80), anti-mouse CD19 BV650 (1:100, Biolegend, 115541), anti-mouse CD3 

BV421 (1:50, Biolegend 100227), anti-mouse CD4 V500 (1:100, BD Biosciences, 560783), anti-
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mouse CD8 BV785 (1:100, Biolegend 100749), anti-mouse CD11b PE_Cy7 (1:200, Biolegend, 

101215), anti-mouse MHCII APC_Cy7 (1:200, Biolegend, 107627), anti-mouse CD44 PE (1:200, 

Biolegend, 103007), anti-mouse Ly6G AF700 (1:100, eBioscience, 56-5931-80), and anti-mouse 

CD11c BV711 (1:200, Biolegend, 117349) in FACS buffer. Samples were fixed in 1% PFA for 30 

minutes. 10μl of counting beads (AccuCheck Counting Beads, Invitrogen PCB100) were added 

to each sample. Samples were then run on an LSRII cytometer (BD Biosciences) and analyzed 

with FlowJo_V10 software.  

Brain immune cells were stained with BMV109 (1μM, Vergent Bioscience, 40200-100) and 

Pepstatin A, BODIPY FL Conjugate (1ug/mL, ThermoFisher Scientific, P12271) for 1 hour at 

37°C. After a brief wash, brain immune cells were then stained for 20 minutes with the following 

panel: Live/Dead Fixable Red Dead Cell Stain (1:2000, Invitrogen, 23102), anti-mouse 

CD16/CD32 (1:100, eBioscience, 14-0161-085), anti-mouse CD45 PerCP_Cy5.5 (1:100, 

eBioscience, 45-0451-80), anti-mouse CD3 BV421 (1:50, Biolegend 100227), anti-mouse CD4 

V500 (1:100, BD Biosciences, 560783), anti-mouse CD8 PE (1:100, eBioscience, 12-0083-81), 

anti-mouse CD11b PE_Cy7 (1:200, Biolegend, 101215), anti-mouse MHCII APC_Cy7 (1:200, 

Biolegend, 107627), anti-mouse Ly6c BV785 (1:100, Biolegend 128041), anti-mouse CD86 PE 

(1:50, Biolegend, 105037), anti-mouse Ly6G AF700 (1:100, eBioscience, 56-5931-80), and anti-

mouse CD11c BV711 (1:200, Biolegend, 117349) in FACS buffer. Samples were fixed in 1% PFA 

for 30 minutes. 10μl of counting beads (AccuCheck Counting Beads, Invitrogen PCB100) were 

added to each sample. Samples were then run on an LSRII cytometer (BD Biosciences) and 

analyzed with FlowJo_V10 software. 

For PBMCs, leukocytes were gated on Side Scatter Area (SSC-A) (granularity) by Forward 

Scatter Area (FSC-A) (size) and then with Forward Scatter Height (FSC-H) by FSC-A to identify 

single leukocytes. To identify live CD45+ cells, the Fixable Red negative population was selected 

followed by the CD45+ population against FSC-H. CD45+ cells were then gated on CD19 by 

CD11b, with CD19+ cells denoting B cells and CD11b+ cells further delineated to identify 
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populations. CD19-, CD11b- cells were then gated for CD4+ and CD8+ T cells to differentiate T 

helper cells vs cytotoxic T cells, respectively. The CD19 B cell population was examined for MHCII 

expression by histogram and geometric mean fluorescent intensity. The CD11b+ population was 

gated on CD11b vs CD11c to discern dendritic cells (CD11c+ cells). The non-dendritic cell 

population was then gated for SSC-A by Ly6G. SSC-A high, Ly6G high cells were identified as 

neutrophils. The SSC-A low, Ly6G low/negative population was identified as monocytes. In each 

immune subset, cathepsin probes, BMV109 and Pepstatin Bodipy, were examined for positive 

cells and geometric mean fluorescent intensity. 

For brain immune cells, leukocytes were gated on SSC-A (granularity) by FSC-A (size) 

and then with FSC-H by FSC-A to identify single leukocytes. To identify live cells, the Fixable Red 

negative population was selected against FSC-H. From a CD45 by CD11b gate, lymphocytes, 

mixed monocytes/macrophages and microglia populations were discerned. The microglia 

population was further analyzed for MHCII+ microglia and CD86+ microglia. The geometric mean 

fluorescent intensity of MHCII+ microglia or CD86+ microglia was also identified based on the 

respective antibody. The lymphocyte population was gated on CD3+ T cells followed by CD4+ 

and CD8+ T cells to distinguish T helper cells from cytotoxic T cells, respectively. The mixed 

monocyte/macrophage population was then examined with CD11b by Ly6G to distinguish 

neutrophils. The non-neutrophil gate was then gated with the Ly6C by MHCII cascade that 

distinguishes monocyte and macrophage populations (Ly6C+, MHCII- monocytes, Ly6C+, 

MHCII+ monocytes, Ly6C-, MHCII+ macrophages, and Ly6C-, MHCII- monocytes). In each 

immune subset, cathepsin probes, BMV109 and Pepstatin Bodipy, were examined for positive 

cells and geometric mean fluorescent intensity. 

 

Multiplexed Immunoassays. Levels of inflammatory protein were measured in plasma by the 

Emory Multiplexed Immunoassay Core (EMIC) using a commercially available V-plex Pro-

inflammatory Panel 1 Mouse Kit per the manufacturer’s instructions on the Meso Scale Discovery 
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QuickPlex (Meso-Scale Discovery, Gaithersburg, MD). Plasma samples were analyzed for 

cytokines and chemokines (IFNg, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, KC/GRO, and TNF) 

that play key roles in the inflammation response and immune system. Samples were run in 

replicates of 30μl by an experimenter blinded to treatment history and genotype.  

 

RNA extraction and protein isolation. RNA extraction and protein isolation were performed as 

previously described (de Sousa Rodrigues et al., 2017). Striatal tissue was homogenized in ice 

cold TRIzol (Life Technologies, 15596018) using a stainless-steel bead (Qiagen, 69989) and a 

TissueLyser II (Qiagen, 85300). RNA was then isolated using QIAshredder columns (Qiagen, 

79656) and RNeasy mini kits (Qiagen, 74106) according to the manufacturer’s protocol. RNA was 

quantified and purity assessed using a NanoDrop 2000 spectrophotometer (Thermo Fisher 

Scientific). Protein was isolated from the organic layer of the TRIzol separation method by 

methanol precipitation. Protein was resuspended in 1% SDS, quantified using BCA protein assay 

and then used for immunoblotting.  

 

cDNA synthesis. Following the manufacturer’s protocol, RNA was reverse transcribed using 

SuperScript II Reverse Transcriptase (Life Technologies, 18064014), random hexamers 

(Integrated DNA Technologies, 51-01-18-25), and dNTPs (Life Technologies, 18427013). 

 

Quantitative real-time polymerase chain reaction (qPCR). qPCR was performed as previously 

described (de Sousa Rodrigues et al., 2017). Using an ABI Prism 7900 HT Fast Real-time PCR 

System (Applied Biosystems), 25ng cDNA was analyzed in triplicate with SYBR Green PCR 

Master Mix and 150nM validated forward and reverse oligonucleotide primers (Integrated DNA 

Technologies). Cycle of threshold (Ct) values were normalized to the averaged values of the two 

housekeeping genes, Gapdh and cyclophilin (Ppia). Relative mRNA expression was obtained by 

subtracting normalized Ct values from a standard number. Primers used: Gapdh – Forward 5‘ 
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CAA GGT CAT CCA TGA CAA CTT TG 3’ Reverse 5‘GGC CAT CCA CAG TCT TCT GG 3’; Tnf 

– Forward 5‘ CTG AGG TCA ATC TGC CCA AGT AC 3’ Reverse 5‘ CTT CAC AGA GCA ATG 

ACT CCA AAG 3’; IL-1β – Forward 5‘ CAA CCA ACA AGT GAT ATT CTC CAT G 3’ Reverse 5‘ 

GAT CCA CAC TCT CCA GCT GCA 3’; Ptprc – Forward 5‘ TCA TGG TCA CAC GAT GTG AAG 

A 3’ Reverse 5‘AGC CCG AGT GCC TTC CT 3’; Cyclo – Forward 5‘ TGG AGA GCA CCA AGA 

CAG ACA 3’ Reverse 5‘TGC CGG AGT CGA CAA TGA T 3’; Lcn2 – Forward 5’ TGG AAG AAC 

CAA GGA GCT GT 3’ Reverse 5’ GGT GGG GAC AGA GAA GAT GA3’, Cd4 – Forward 5’ GTG 

AGC TGG AGA ACA GGA AAG AG 3’ Reverse 5’ GGC TGG TAC CCG GAC TGA 3’; Cd8b – 

Forward 5’ GCT GTC CTT GAT CAT CAC TCT CA 3’ Reverse 5’ ACT AGC GGC CTG GGA CAT 

T 3’; IA-b – Forward 5’ CAG GAG TCA GAA AGG ACC TC 3’ Reverse 5’ AGT CTG AGA CAG 

TCA ACT GAG 3’. 

 

Immunoblotting. Immunoblotting was performed as previously described (de Sousa Rodrigues 

et al., 2017). Bicinchoninic acid (BCA) protein assay (Pierce Scientific, 23225) was used to 

determine protein concentrations, after which lysates were further diluted 1:1 with 2x Laemmli 

buffer (BioRad, 1610737) and boiled at 90°C for 5 minutes. Samples (10μg) were electrophoresed 

using 4-20% Mini-PROTEAN TGX precast gels (BioRad, 4561096) and transferred to 0.45μm 

PVDF membranes using the Trans-Blot Turbo System (BioRad, 1704150EDU) according to the 

manufacturer’s protocol. Membranes were washed and then incubated in 5% powdered milk 

blocking buffer (BioRad, 1706404) for 1 hour before applying primary antibody overnight at 4°C. 

The following morning, membranes were briefly washed and incubated at room temperature with 

HRP-conjugated secondary antibodies for 1 hour. Membranes were briefly washed and imaged 

using Azure Biosystems C400 system to detect chemiluminescent signal. Bands were quantified 

by densitometry using ImageStudio Lite software. Protein expression was normalized to total 

protein on a Li-Cor Odyssey instrument (Li-Cor #926-11015). 
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Immunohistochemistry. Immunohistochemistry was performed as previously published (Caudle 

et al., 2007; Kline et al., 2019). Upon 24 hours of post-fixation in 4% paraformaldehyde, brain 

tissue was equilibrated in 30% sucrose in PBS at 4°C. 40μm coronal sections were obtained using 

a sliding microtome. Floating sections were blocked with 5% normal goat serum (Jackson 

ImmunoResearch, 005-000-021) for 1 hour at room temperature and then incubated with a rabbit 

anti-tyrosine hydroxylase (TH) antibody (EMD Millipore, AB152) overnight at 4°C. TH signal was 

amplified using an ABC Elite Kit (Vector Laboratories, PK-6100). Sections were incubated with a 

biotinylated goat anti-rabbit secondary antibody for 1 hour at 4 °C and then developed with 3,3′-

diaminobenzedine (DAB) tablets (Sigma, D4293). Cresyl violet counterstain was performed on 

tissue using a 0.1% aqueous cresyl violet solution (Poly Scientific R&D, s167c) followed by de-

stain and ethanol and xylene dehydration. Tissue was then transferred to microscopy slides. 

Images were obtained using a THUNDER microscope (Leica) with a DMC4500 digital camera 

and LAS X 3D analysis and 3D visualization advanced software. 

 

Stereology. Stereology was performed as previously published with minor modifications (Caudle 

et al., 2007; Kline et al., 2019). Unbiased stereological estimates of dopamine (DA; TH+ cells) 

and total neuron (cresyl violet+ cells) numbers were performed using StereoInvestigator analysis 

software (MicroBrightField). Boundaries in the substantia nigra pars compacta (SNpc) were 

outlined using previously published criteria (M. J. West, Slomianka, & Gundersen, 1991) and cells 

were counted from 5-6 sections by a blinded investigator. 

 

Statistical Analysis. Survival curves were compared using Kaplan Meier Survival Analysis. 

Weight, multiplexed immunoassay and PMBC flow data were compared across genotypes and 

time, while immunoblot, qPCR, brain flow, and stereology data were compared across genotype 
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and treatment using two-way analysis of variance (ANOVA) or mixed-effects model with 

GraphPad Prism 8 software. Tukey’s multiple comparisons was used for post hoc comparisons. 

Significance for all statistical comparisons was set at p£0.05. All data are presented as mean ± 

SEM. 

 

4.4: Results 

G2019S mice are more susceptible to the experimental paradigm independent of treatment. 

Interestingly and unexpectedly, G2019S mice did not survive chronic intraperitoneal dosing with 

a 50-60% loss of G2019S mice treated with cypermethrin or vehicle, respectively (Figure 4.1B). 

All WTOE mice survived, while only one B6 mouse was lost during the study. Furthermore, this 

loss of mice was not contained to a certain timing but occurred throughout the paradigm. In an 

effort to understand why G2019S mice were more susceptible to the dosing paradigm 

independent of treatment, body weight was assessed throughout the dosing paradigm with no 

genotype differences observed. Vehicle-treated mice gained weight in a time-dependent manner 

similarly to cypermethrin-treated mice (Vehicle-treated mice: F(2.575, 43.34)=7.847; p=0.0005; 

cypermethrin-treated mice: F(3.745, 94.25)=9.417; p<0.0001) (Figure 4.1C). 
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Figure 4.1: G2019S mice display reduced survival in this specific experimental dosing 

paradigm. A) Experimental timeline for dosing of cypermethrin or corn oil vehicle (denoted by 

needle) and biweekly submandibular bleeds (denoted by blood drop). B) Survival curve of the 

experimental groups (p=0.0025). Data was analyzed by Kaplan Meier Survival Analysis. C) 

Percent body weight change of vehicle-treated or cypermethrin-treated mice revealed no 

genotype differences but suggested increases in weight over time. Data were compared across 

genotypes and time using a mixed-effects model. Significance for all statistical comparisons was 

set at p£0.05. 

 

Chronic cypermethrin alters peripheral immune cell subsets and plasma TNF over time 

independent of genotype. 

To evaluate the effects of chronic cypermethrin on peripheral inflammation, PBMCs were 

assessed by flow cytometry and plasma cytokine levels were assessed by multiplexed 

immunoassay every two weeks during the course of the study. Interestingly, genotype differences 

were not detected with mostly time effects observed. CD45+ immune cells (Time effect: F(4.674, 
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112.2)=11.12; p<0.0001) (Figure 4.2A), CD4+ T cells (Time effect: F(3.547, 85.12)=11.28; p<0.0001), 

and CD8+ T cells (Time effect: F(4.073, 97.75)=4.786; p=0.0013) (Figure 4.2B) showed time-

dependent population alterations with a reduction after initiation of dosing followed by an increase 

towards the end of the study in cypermethrin-treated mice relative to vehicle-treated mice. 

Cypermethrin-treated monocyte populations exhibited the opposite effects with initial subtle 

increases followed by no changes relative to vehicle-treated mice (Interaction effect: F(12, 

144)=2.458; p<0.0060) (Figure 4.2C). Other immune cell subsets (neutrophils, B cells, MHCII+ B 

cells and MHCII+ monocytes) were assessed but no significant differences were noted (data not 

shown). To evaluate functional aspects of monocytes during treatment, BMV109 was used to 

assess pan-cathepsin activity and Pepstatin Bodipy was used to assess cathepsin D, as 

cypermethrin has been shown to affect lysosomal homeostasis. Interestingly, G2019S 

cypermethrin-treated mice showed increased BMV109+ monocytes relative to WTOE 

cypermethrin-treated mice 2 weeks after the start of dosing; however, these effects were not 

sustained throughout the treatment course (Interaction effect: F(12, 144)=2.286; p=0.0109) (Figure 

4.2C). Geometric mean fluorescent intensity of BMV109 on BMV109+ monocytes increased in all 

genotypes after treatment initiation and higher intensity levels were maintained until the end of 

the treatment paradigm, again showing time dependent changes in cypermethrin-treated mice 

independent of genotype (Time effect: F(3.484, 83.62)=15.60; p<0.0001) (Figure 4.2C). No differences 

in Pepstatin Bodipy-positive cells or intensity levels as measured by geometric mean fluorescent 

intensity were noted (data not shown). Plasma TNF levels were incrementally increased 

throughout the dosing paradigm in cypermethrin-treated mice relative to vehicle-treated mice 

independent of genotype (Time effect: F(2.320, 42.33)=3.825; p=0.0244), while no significant 

differences were noted in IL-6 and IL-10 levels (Figure 4.2D). Furthermore, no significant 

differences were observed in IFNg, IL-2, IL-5, KC/GRO cytokine levels (data not shown), and IL-

4, IL-12p70, and IL-1b levels were below detection limits of the assay. 
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Figure 4.2: Chronic cypermethrin disrupts PBMC subsets and TNF cytokine levels over 

time, independent of genotype. By flow cytometry or multiplexed immunoassay, PBMC 

populations or plasma cytokines were measured every two weeks during the experimental 

paradigm.  A) CD45+ immune cells changed with time. B) Alterations in T cell and C) monocyte 

populations with time. D) TNF time-dependent changes (n=5-12 per genotype per treatment). 

Data are presented as fold change of cypermethrin-treated mice from vehicle-treated mice at 

each time point and were compared across genotypes and time using a mixed-effects model. 

Tukey’s multiple comparisons was used for post hoc comparisons within each timepoint 

(**signifies statistically significant differences between two groups at that time point).  

 

Chronic cypermethrin does not trigger neuroinflammation and alter the nigrostriatal 

pathway.  

To evaluate the effects of chronic cypermethrin on neuroinflammation, brain immune cells were 

assessed by flow cytometry and striatal gene expression assessed by qPCR. Interestingly, no 
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differences between genotype and treatment were observed in microglia, MHCII+ microglia, 

CD3+ T cells, CD4+ T cells, and CD8+ T cells (Figure 4.3A and B). No differences were observed 

in potentially brain-infiltrating immune cell populations (monocytes and neutrophils), and 

functional readouts of cathepsin activity using BMV109 or Pepstatin Bodipy to assess lysosome 

immune cell homeostasis were not different (data not shown). Given that an entire brain 

hemisphere was used for flow cytometry analysis, we sought to measure neuroinflammation in a 

more localized region of the nigrostriatal pathway; therefore, we evaluated inflammatory gene 

expression in the striatum. Again, no genotype and treatment differences were observed in 

canonical inflammatory genes in the striatum, further supporting a lack of detectable 

neuroinflammation in the brain (Figure 4.3C). Additional immune cell and inflammatory markers 

were assessed by qPCR (CD8b, CD4, Lcn2) but similarly no differences were noted (data not 

shown).  

Although we found no indications of neuroinflammatory changes, nigrostriatal integrity was 

assessed using stereology of brain sections containing the substantia nigra and protein 

expression analysis in the striatum. No differences were observed in dopaminergic (TH+) and 

total neuron (cresyl violet +) counts (Figure 4.4A). Similarly, no genotype or treatment effects were 

noted in DAT, TH, and asyn striatal protein expression (Figure 4.4B), suggesting a lack of 

nigrostriatal pathology associated with a neurodegenerative phenotype.  
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Figure 4.3: Brain immune cells and striatal inflammatory gene expression remain unaltered 

after chronic cypermethrin exposure. To evaluate immune cells and the inflammatory state in 

the brain after chronic cypermethrin, brain immune populations were assessed by flow cytometry 

and gene expression of canonical pro-inflammatory cytokines was assessed by qPCR. A) No 

differences were observed in microglia, MHCII+ microglia, B) CD3+ T cell, CD4+ T cell or CD8+ 

T cell populations within the right hemisphere of the brain (n=5-12 per genotype per treatment. C) 

No differences in Tnf, IL-1b, IA-b, and Cd45 striatal inflammatory gene expression (n=4-5 per 

group per treatment) were observed. Data were compared using a two-way ANOVA with 

genotype and treatment as factors. 

B6 WTOE G2019S
0

2

4

6

8

10

CD3+ T cells

%
 o

f L
iv

e

B6 WTOE G2019S
0

20

40

60

80

100

CD4 T cells

%
 o

f C
D

3
B6 WTOE G2019S

0

20

40

60

CD8 T cells

%
 o

f C
D

3

B6 WTOE G2019S
0

10

20

30

40

%
 o

f L
iv

e

Microglia

B6 WTOE G2019S
0

5

10

15

%
 o

f M
ic

ro
gl

ia

MHCII+ Microglia

CD
45

CD11b

CD
45

MHCII

CD3Li
ve
/D
ea
d

CD4

CD
8

A

B

C

B6 WTOE G2019S
0

1

2

3

4

5

IL
-1
b 

R
el

at
iv

e 
Ex

pr
es

si
on

 

B6 WTOE G2019S
4

5

6

7

8

TN
F 

R
el

at
iv

e 
Ex

pr
es

si
on

B6 WTOE G2019S
0

2

4

6

8
IA
-b

 R
el

at
iv

e 
Ex

pr
es

si
on

W
ho

le
 H

al
f B

ra
in

W
ho

le
 H

al
f B

ra
in

St
ria

tu
m

B6 WTOE G2019S
5

6

7

8

C
D
45

 R
el

at
iv

e 
Ex

pr
es

si
on Vehicle

Cypermethrin

Vehicle

Cypermethrin



 122 

 

Figure 4.4: The nigrostriatal pathway is unaffected by chronic cypermethrin exposure. To 

evaluate nigrostriatal integrity after chronic cypermethrin, brain sections containing the substantia 

nigra were assessed by stereology and striatal protein expression was assessed by immunoblot. 

A) No differences in dopaminergic (TH+) and total (cresyl violet+) neurons (n=3-6 per genotype 

per treatment. B) No differences in DAT, TH, and asyn striatal protein expression (n=5-11 per 

group per treatment). Data were compared using a two-way ANOVA with genotype and treatment 

as factors. 
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and neuronal survival in a chronic cypermethrin model with the hypothesis that cypermethrin-
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immune cell subsets independent of genotype but does not promote impaired nigrostriatal 
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Interestingly and unexpectedly, we observed that G2019S mice were more susceptible to 

the experimental paradigm independent of treatment type. Given that this phenotype was mainly 

observed in the G2019S strain independent of sex (data not shown) and treatment, we 

hypothesize that this may be due to an inability of G2019S mice to effectively handle the stress 

induced by biweekly submandibular bleeds and twice per week intraperitoneal injections. Studies 

examining the stress axis in LRRK2 G2019S mice are limited; however, a recent study using 

LRRK2 G2019S transgenic mice subjected to paraquat noted that G2019S mice had higher levels 

of corticosterone, a glucocorticoid steroid that plays a major role in the stress hypothalamic 

pituitary adrenal axis, while LRRK2-deficient mice treated with paraquat had reduced 

corticosterone levels (Rudyk et al., 2019). Although we did not measure stress hormones in the 

current study; the evidence from the paraquat model along with our data suggests that LRRK2 

may be involved in the stress response and warrants further investigation.  

Given the surprising lack of cypermethrin-induced changes in the periphery and brain, 

confirmation of cypermethrin metabolites in the plasma and brain could help explain the observed 

phenotypes. We did observe time-dependent changes in peripheral immune cell populations in 

cypermethrin-treated mice relative to vehicle-treated mice, but no differences in brain immune cell 

populations or inflammatory gene expression. This finding suggests that cypermethrin may not 

have crossed the BBB in large enough quantities to promote neuroinflammation and 

neurodegeneration, but this claim should be confirmed and explored in future studies.  

Interestingly, in our study we did not observe the same peripheral immune cell phenotypes 

observed in unpublished data from wildtype cypermethrin-treated mice, with a lack of increased 

CD8 T cell phenotypes. In fact, we observed the opposite with a reduction of T cell populations 

and an increase in monocyte populations in cypermethrin-treated mice independent of genotype. 

A recent report has noted that pyrethroids have high affinity for T and B cell receptors, but the 

functional consequence of this remains unknown as it hypothesized that this increased affinity 

could stimulate the immune system, suppress the immune system or cause no alteration (A. 
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Kumar, Behera, Rangra, Dey, & Kant, 2018). This may explain why we observed decreased T 

cell populations with initial cypermethrin treatment that was resolved by the end of the study. 

Furthermore, gene expression in human PBMCs treated ex vivo with cypermethrin were largely 

unchanged, potentially explaining our lack of cypermethrin-induced peripheral immune changes 

(Mandarapu & Prakhya, 2016). RAW 264.7 murine macrophages are susceptible to cypermethrin 

through increased oxidative stress and ensuing apoptosis (Huang et al., 2016). We did not 

observe a reduction of monocyte populations treated with cypermethrin as would be 

hypothesized; however, future investigations should explore cypermethrin effects on macrophage 

and monocyte function as this was not examined in-depth the present study.  

Cypermethrin has been reported to activate autophagosome formation and to inhibit 

autophagy in neurons which contributes to impaired degradation of toxic materials (Mishra et al., 

2018). Given that LRRK2 has been implicated in similar functions in a kinase-dependent manner, 

we hypothesized that G2019S mice treated with cypermethrin would have impaired autophagy 

and lysosomal pathways in neuronal and immune cells. We examined cathepsin activity levels as 

an orthogonal measure of lysosomal homeostasis in immune cells but observed a lack of changes 

in lysosomal cathepsin activity as measured by flow cytometry. Future investigations should target 

the autophagy pathway whereby more effective tools may be used to fully understand the 

mechanism by which cypermethrin synergizes with LRRK2 to act on the autophagy pathway in 

immune cells as well as other functional readouts of immune cells. 

 In conclusion, the current study aimed to examine a role for a gene (LRRK2) by 

environment (cypermethrin) synergistic effect to promote PD pathogenesis but failed to produce 

PD-related phenotypes in any genotype examined. Given that humans are typically exposed to 

pesticides dermally or through inhalation, more relevant models of cypermethrin exposure should 

be used to identify the mechanisms by which cypermethrin impairs immune cells and poses a risk 

to human health. Future studies should also examine the synergistic effects of other PD-related 
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genes, such as VPS35, that also affect the autophagy lysosomal pathway in the context of 

cypermethrin or other pyrethroid pesticides.  
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CHAPTER 5: THE EFFECTS OF VIRAL OR BACTERIAL INFECTION EXPOSURE IN WT OR 
G2019S OVEREXPRESSING MICE 
 

5.1: Abstract 

Parkinson’s disease (PD) is considered a multifactorial disease with an individual’s age, 

genetics, environmental exposures and lifestyle collectively hypothesized to contribute to disease 

pathogenesis. Increased incidence of PD has been associated with certain viral or bacterial 

infections, supporting the idea that inflammation may contribute to PD pathogenesis. Animal 

models studying the effects of LRRK2, one of the greatest genetic contributors to PD, suggest a 

role for LRRK2 in immunity to control infection burden; however, the mechanism by which LRRK2 

controls or contributes to infection remains unknown. Previous studies have examined specific 

infections in different LRRK2 rodent models with results often suggesting that LRRK2 controls or 

contributes to infection in a LRRK2 kinase-, sex- and infection-dependent manner. Therefore, we 

sought to confirm and extend these findings by utilizing viral (lymphocytic choriomeningitis virus 

(LCMV) and influenza) and bacterial (Listeria monocytogenes and Pseudomonas aeruginosa) 

infections in the presence or absence of LRRK2 kinase inhibition (PF-360) in the same BAC 

transgenic mice overexpressing mouse wildtype LRRK2 or mutated G2019S LRRK2. Utilization 

of these particular infections in the same LRRK2 mouse models enabled us to assess distinct 

arms of the immune system with a focus on the role of antibody-mediated immunity (influenza), 

CD8 T cells (LCMV), and macrophage and monocyte responses to intracellular (L. 

monocytogenes) or extracellular (P. aeruginosa) bacteria. Here, we present data that suggests 

G2019S BACs are protected from P. aeruginosa and in contrast minimal immune cell deficits 

occur after infection with LCMV, influenza, or L. monocytogenes supporting the hypothesis that 

LRRK2 regulates inflammation in a kinase-dependent and antigen-specific manner. 
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5.2: Introduction 

Parkinson’s disease (PD) is an aged-related neurodegenerative disease typically 

classified by a-synuclein aggregation in the substantia nigra (SN) and dopaminergic cell loss that 

gives rise to the stereotypical motor symptoms. As a multifactorial disease, a complex interaction 

of genetics, aging, and environmental exposures are all thought to contribute to PD pathogenesis. 

Importantly, aging is the number one risk factor for PD (Bennett et al., 1996). Humans are exposed 

to several different viral and bacterial antigens during their lifetime as dampened immune function 

and increased susceptibility to infection occur with aging. PD incidence has been associated with 

certain viral or bacterial infections. PD patients with systemic infections or fevers are shown to 

have worsened clinical motor symptoms (Brugger et al., 2015; Umemura et al., 2014). A recent 

study identified an association between tuberculosis (TB) patients and PD, as those with newly 

diagnosed TB had higher incidence of PD, suggesting that inflammation may contribute to PD 

pathogenesis (C. H. Shen et al., 2016). 

Leucine-Rich Repeat Kinase 2 (LRRK2) is one of the greatest known genetic contributors 

to Parkinson’s disease (PD). LRRK2 regulates multiple cellular processes including neurite 

outgrowth, cytoskeletal maintenance, vesicular trafficking, and autophagy, all of which are 

disrupted by mutations in LRRK2 (Berwick & Harvey, 2012; Hongge et al., 2015; Plowey et al., 

2008; Ramonet et al., 2011; Schapansky et al., 2014). The G2019S mutation within the LRRK2 

kinase domain is the most prevalent PD-associated LRRK2 mutation resulting in a gain-of-toxic 

function and 2-3-fold increase in kinase activity that drives cellular dysfunction (Greggio et al., 

2006; A. B. West et al., 2005; A. B. West et al., 2007). To date, most research has focused on 

the effect of LRRK2 mutations in neurons and the contributions of G2019S-mediated kinase 

activity to neuronal toxicity, leaving the role of LRRK2 and G2019S-mediated kinase activity in 

immune cell homeostasis unresolved. Interestingly, LRRK2 expression is higher in immune cells 

relative to neurons, suggesting LRRK2 has an important role in the immune system (A. B. West, 

2017). LRRK2 protein is expressed in adaptive (B and T cells) and innate (dendritic cells, 
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macrophages, and monocytes) immune cells, and its expression is increased upon stimulation; 

however, the exact function of LRRK2 in these cell types is unknown (Atashrazm et al., 2019; Fan 

et al., 2018; Gardet et al., 2010; Hakimi et al., 2011; Thevenet et al., 2011). Intriguingly, a recent 

study from our group revealed higher levels of LRRK2 in adaptive and innate immune cells of 

idiopathic PD patients compared with healthy controls, underscoring the importance of 

investigating the contribution of immune cell LRRK2 activity to PD (Cook et al., 2017).  

LRRK2 has been linked to several infections in animal and cellular models. Analysis of 

gene expression from tuberculosis infections identified LRRK2 as being significantly enriched 

during active infections (Z. Wang et al., 2018). LRRK2 knockout mice showed decreased 

Mycobacterium tuberculosis burden early in infection, perhaps with exacerbated inflammation as 

LRRK2 knockout macrophages treated with M. tuberculosis exhibited altered innate immune gene 

expression induced by various mitochondrial stresses (Hartlova et al., 2018; Weindel et al., 2020). 

Phagosome maturation and bacterial control were increased in human and mouse macrophages 

treated with LRRK2 kinase inhibitors, suggesting that a lack of LRRK2 kinase activity is protective 

against M. tuberculosis (Hartlova et al., 2018). On the other hand, LRRK2 knockout mice infected 

with Salmonella typhimurium exhibited reduced caspase-1 activation and IL-1b secretion due to 

inflammasome activation in macrophages, which ultimately impaired clearance of pathogens (W. 

Liu et al., 2017). A recent study suggested that wildtype LRRK2 is protective against S. 

typhimurium and reovirus infection in a sex-dependent manner with females exhibiting impaired 

ability to control infection (Shutinoski et al., 2019). Interestingly, LRRK2 G2019S mice controlled 

S. typhimurium infection better, but were more susceptible to reovirus in a LRRK2 kinase-

dependent manner (Shutinoski et al., 2019). Collectively, these studies suggest a role for LRRK2 

in immunity to control infection burden; however, the mechanism by which LRRK2 appears to 

control or contribute to infection is sex-, genotype- and infection-specific and remains to be 

elucidated, underscoring the complexity of LRRK2 signaling and function.  
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To further elucidate the role of LRRK2 in immune cell function and regulation and 

determine whether LRRK2, itself, or its gain-of-function kinase activity alters immune cell function, 

we utilized bacterial artificial chromosome (BAC) transgenic mice overexpressing mouse wildtype 

LRRK2 (WTOE) or mutated G2019S LRRK2 (G2019S) and subjected them to viral (lymphocytic 

choriomeningitis virus (LCMV) and influenza) and bacterial infections (Listeria monocytogenes 

and Pseudomonas aeruginosa) in the presence or absence LRRK2 kinase inhibition (PF-360). 

Utilization of these particular infections in the same LRRK2 mouse models permit assessment of 

specific arms of the immune system, with a focus on antibody-mediated immunity (influenza), 

CD8 T cells (LCMV), and macrophage responses to intracellular (L. monocytogenes) or 

extracellular (P. aeruginosa) bacterium. Here, we report minimal effects on immune profiles or 

responses after LCMV, influenza, or L. monocytogenes infection, but data suggest that G2019S 

mice are protected from P. aeruginosa, consistent with the hypothesis that LRRK2 regulates 

inflammation in a kinase-dependent and antigen-specific manner. 

 

5.3: Materials and Methods 

Animals. Homozygous male Lrrk2-G2019S (B6.Cg-Tg(Lrrk2*G2019S)2Yue/J; stock number 

012467) and Lrrk2-WT (B6.Cg-Tg(Lrrk2)6Yue/J; stock number 012466) mice were purchased 

from the Jackson Laboratory and bred to hemizygosity at Emory University. Hemizygous male 

and female BAC transgenic mouse strains overexpressing either mouse mutant G2019S LRRK2 

(G2019S) or mouse wildtype LRRK2 (WTOE) were used for experimental procedures with non-

transgenic littermates (B6) serving as controls. Genotypes were determined by tail-snip PCR with 

two sets of primers: Transgene: Forward 5’ GAC TAC AAA GAC GAT GAC GAC AAG 3’ Reverse 

5’ CTA CCA CCA CCC AGA TAA TGT C 3’; Internal positive control: Forward 5’ CAA ATG TTG 

CTT GTC TGG TG 3’ Reverse 5’ GTC AGT CGA GTG CAC AGT TT 3’. Animals were group 

housed (maximum 5 mice per cage) and maintained on a 12h/12h light/dark cycle with ad libitum 

access to standard rodent chow and water. Experimental procedures involving use of animals 
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were performed in accordance with the National Institutes of Health Guidelines for Animal Care 

and Use and approved by the Institutional Animal Care and Use Committee at Emory University 

School of Medicine. 

 

Infections. Intranasal inoculation with influenza A/PR/8/34 (H1N1) at 3000 plaque-forming units 

(PFU) was performed with mice under isoflurane anesthesia (n=12-16 per genotype per 

treatment). For LCMV infections, mice were infected by intraperitoneal injection with 2x105 PFU 

(strain: Armstrong; n=12-16 per genotype per treatment). For L. monocytogenes infections, mice 

were infected by intravenous injection with 2x103 PFU (strain 45231; n=12-16 per genotype per 

treatment). For all experiments, mice were monitored with daily weighing and euthanized when 

they reached 25% weight loss. Mice inoculated with influenza, L. monocytogenes, or LCMV were 

treated twice a day by oral gavage with the selective LRRK2 kinase inhibitor, PF-360 (Pfizer, 

20mg/kg) or vehicle for 14 days post infection. Early immune cell effector responses were 

assessed in a cohort sacrificed at 8- or 10-days post infection, while memory responses to LCMV 

or influenza were assessed in a cohort sacrificed at 30- or 35-days post infection, respectively 

(Figure 5.1A). 

Stock of P. aeruginosa was prepared as previously described (Sadikot et al., 2007). For 

young mice, P. aeruginosa was administered in anaesthetized mice with a sublethal dose of 

PAO.1lux strain (1.75x106 colony forming unit (CFU)/mouse, < 0.5 LD50) via intranasal route in 

a total volume of 20ul (10ul/nostril; n=3-8 per genotype). For aged mice, a sublethal dose of 

PAO.1lux was administered (4x106 CFU/mouse) in a total volume of 20ul (10ul/nostril; n=11-13 

per genotype). Mice were scored as follows to assess health: 0-1: normal and active; 2-3: mild-

to-moderate symptoms with less activity but responsive to stimuli; 4: obvious symptoms: 

discharge on eyes and nose, hunched poster, labored breathing but responsive; 5: all symptoms 

in score 4 and non-responsive to stimuli, which required euthanasia. Young mice were subjected 

to in vivo bioluminescent imaging using the IVIS 24- and 48-hours post infection (Figure 5.1B). 
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For aged mouse colonization studies, mice were euthanized at 24 hours post-infection and whole 

lungs were collected aseptically, weighed, and homogenized in 1 mL of phosphate buffered saline 

(PBS). Tissue homogenates were serially diluted and plated. CFU determinations were made 16-

18 hours later.  

 

 

Figure 5.1: Experimental designs for infection models in LRRK2 BAC mice. Experimental 

timelines for A) L. monocytogenes, LCMV, influenza or B) P. aeruginosa in young (2-3-month-

old) or aged (20-22-month-old) mice.  

 

Tissue collection. At sacrifice, mice were euthanized with avertin (2,2,2-Tribromoethanol, 

Sigma) and exsanguinated prior to harvest of lung, spleen or mediastinal lymph node. Tissues 

were collected and single-cell immune cell populations isolated as previously described (Dunbar 

et al., 2020; Hayward et al., 2020; McMaster, Wilson, Wang, & Kohlmeier, 2015). In sum, 

bronchoalveolar lavage was performed and the airways were washed five times after which the 

lungs were harvested into HBSS. Lungs were finely minced and digested by collagenase D 
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(Roche) for 30 minutes at 37°C followed by purification with centrifugation in a Percoll gradient 

(40-80%). Splenocytes and immune cells from mediastinal lymph nodes were obtained by 

mechanical dissociation and straining through nylon mesh. Red blood cells in splenocytes were 

lysed with buffered ammonium chloride.  

 

Multi-color Flow Cytometry. Single-cell populations from lung, spleen or mediastinal lymph 

node were stained for flow cytometry to assess immune cell populations. Cells were stained with 

Live/Dead Zombie Yellow, Ultraviolet or Near Infrared (Biolegend) to differentiate live versus dead 

cells and Fc blocked with anti-mouse CD16/CD32 (eBioscience). Fluorescently labeled antibodies 

against surface markers that are commercially available were used to assess immune cell 

populations. These antibodies include anti-mouse CD11b BV711 (Biolegend), anti-mouse Ly6G 

BV510 (Biolegend), anti-mouse MHCII PE_Cy7 (Biolegend), anti-mouse Ly6C APC_Cy7 (BD 

Biosciences), anti-mouse CCR2 APC (R&D), anti-mouse B220 PE_Cy7 (Biolegend), anti-mouse 

CD3 APC (Biolegend), anti-mouse CD4 APC_Cy7 (eBiosciences), anti-mouse CD8 BV750 

(Biolegend), anti-mouse CD44 AF700 (eBiosciences), anti-mouse KLRG-1 BV605 (Biolegend), 

anti-mouse CD127 PE-CF594 (BD Biosciences), anti-mouse CD62L BV605 (Biolegend), anti-

mouse CD69 PE_Cy7 (Biolegend), and anti-mouse CXCR3 BV650 (Biolegend). Tetramers used 

for detection of antigen-specific cells included H-2Kb Listeria OVA (eBiosciences), H-

2Db Influenza A NP366-374 (ASNENMETM), and H-2Db LCMV GP33 (KAVYNFATM) with the latter 

two supplied by the NIH tetramer core at Emory. Samples were run on an LSRFortessa or LSRII 

(BD Biosciences) and analyzed with FlowJo_V10. 

 

Statistical Analysis. Immune cell populations and percent body weights were compared across 

genotype and treatment using two-way analysis of variance (ANOVA) or mixed-effects model with 

GraphPad Prism 8 software. Tukey’s multiple comparisons was used for post hoc comparisons. 

Survival curves were compared using Kaplan Meier Survival Analysis with Log-rank test to identify 
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differences in groups. Colonization was compared across genotype using one-way ANOVA with 

Tukey’s multiple comparisons for post hoc comparisons. Significance for all statistical 

comparisons was set at p£0.05. All data are presented as mean ± SEM. Letters above groups 

signify post hoc results. Groups sharing the same letter are not significantly different.  

 

5.4: Results 

Minimal immune cell changes after L. monocytogenes, LCMV, or influenza 

To evaluate the effects of L. monocytogenes, LCMV, or influenza in WTOE and G2019S 

BACs treated in the presence or absence of LRRK2 kinase inhibition (PF-360), body weight and 

certain immune cell populations were assessed. Body weight changed in a time-dependent 

manner after each infection (effect of time: p<0.0001 for each comparison), but no differences in 

body weight between genotypes or treatment were noted with the exception of LCMV-infected 

G2019S mice (Figures 5.2A-B, 5.3A-B, 5.4A-B). PF-360-treated G2019S mice exhibited a greater 

loss in body weight after infection with LCMV relative to vehicle treated mice, in particular 6-days 

post infection (Figure 5.3B).  

To assess immune cell responses, mice were sacrificed at early (8- or 10-days post 

infection) or late (30- or 35-days post infection) time points to assess immunologic memory 

against the particular viral or bacterial antigen. Immune cells were stained with infection-specific 

major histocompatibility complex (MHC) tetramers, which are effective tools used to identify 

antigen-specific T cells. LRRK2 kinase inhibition had no effect on influenza-exposed B6 or 

G2019S mice, but G2019S mice exhibited reduced FluNP366 tetramer + CD8 T cells in the spleen 

10-days post infection (genotype effect: F(1, 12)=5.274; p=0.0404) and in the mediastinal lymph 

node 35-days post infection (genotype effect: F(1, 12)=5.556; p=0.0362) (Figure 5.2D-E). A trend 

was identified for reduced FluNP366 tetramer + CD8 T cells in G2019S mediastinal lymph node 

10-days post infection although it did not reach statistical significance (Figure 5.2D). No 
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differences were observed in FluNP366 tetramer+ CD8 T cells from the lung at either time point 

(data not shown).  

While no significant differences were observed in LCMV tetramer (GP33)+ CD8 T cells in 

the spleen at 8-days post infection, an interaction between genotype and drug was identified at 

30-days post infection (interaction effect: F(1, 13)=20.70; p=0.0005) (Figure 5.3D-E). Interestingly, 

8-days post LCMV infection, PF-360 increased CD8 memory precursor effector cells (MPECs) 

independent of genotype (drug effect: F(1, 16)=6.201; p=0.0241) (Figure 5.3D). After an infection, 

naïve CD8 T cells proliferate and differentiate into effector cells to clear pathogens. MPECs 

represent a small percentage of those cells that do not undergo apoptosis and survive to form 

long-term memory cells (Yuzefpolskiy, Baumann, Kalia, & Sarkar, 2015). Unlike LCMV, no 

differences were observed in tetramer-specific CD8 T cells or MPECs after infection with L. 

monocytogenes 8-days post infection in the spleen (Figure 5.4D). However, given that L. 

monocytogenes is internalized by antigen-presenting cells such as monocytes or macrophages 

to control pathogen clearance, it was noted that G2019S mice independent of treatment exhibited 

decreased non-inflammatory (non-classical) monocytes in the spleen 8-days after L. 

monocytogenes infection (genotype effect: F(1, 15)=13.17; p=0.0025) with no genotype differences 

in inflammatory (classical) monocytes (Figure 5.4C).  
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Figure 5.2: Reduced FluNP366+ tetramer CD8 T cells in G2019S influenza-infected spleen 

and mediastinal lymph node. A) Percent body weight of vehicle (effect of time: F(8, 56)=36.44; 

p<0.0001) and PF-360-treated influenza inoculated mice compared across genotypes until 8-days 

post infection (effect of time: F(8, 64)=54.31; p<0.0001). B) Percent body weight of B6 (effect of 

time: F(8, 56)=66.50; p<0.0001) and G2019S (effect of time: F(8, 64)=31.57; p<0.0001) influenza 

inoculated mice compared across treatment until 8-days post infection. C) Gating strategy used 

to identify influenza antigen-specific T cells (FluNP366+ CD8+ T cells). Number of influenza 

antigen-specific T cells in the mediastinal lymph node and spleen at D) 10- or E) 35-days post 

infection to measure early and memory responses, respectively. 
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Figure 5.3: LRRK2 kinase inhibition alters G2019S weight after LCMV infection and 

increases early MPECs but decreases tetramer+ CD8 T cells. A) Percent body weight of 

vehicle (effect of time: F(8, 223)=18.69; p<0.0001) and PF-360-treated LCMV inoculated mice 

compared across genotypes until 8-days post infection (effect of time: F(8, 214)=20.59; p<0.0001). 

B) Percent body weight of WTOE (effect of time: F(8, 235)=14.60; p<0.0001) and G2019S 

(interaction effect: F(8, 202)=2.173; p=0.0309) LCMV-inoculated mice compared across treatment 

until 8-days post infection. Asterisk (*) signifies a statistically significant difference between 

vehicle and PF-360-treated G2019S mice at that time point (day 6). C) Gating strategy used to 

identify LCMV antigen-specific T cells (TetGP33+ CD8+ T cells) and MPECs (KLRG-1-, CD127+). 

Number of LCMV antigen-specific T cells or MPECs in spleen at D) 8- or E) 30-days post infection 

to measure early and memory responses, respectively.  
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Figure 5.4: G2019S mice treated with L. monocytogenes exhibit reduced non-inflammatory 

monocytes. A) Percent body weight of vehicle (effect of time: F(8, 169)=8.760; p<0.0001) and PF-

360-treated L. monocytogenes inoculated mice compared across genotypes until 8-days post 

infection (effect of time: F(8, 240)=14.02; p<0.0001). B) Percent body weight of WTOE (effect of 

time: F(8, 215)=8.499; p<0.0001) and G2019S (effect of time: F(8, 194)=14.58; p<0.0001) L. 

monocytogenes inoculated mice compared across treatment until 8-days post infection. Gating 

strategy and quantification of C) inflammatory and non-inflammatory monocytes or D) antigen-

specific T cells (Tet OVA+, CD8+ T cells) and MPECs (KLRG-1-, CD127+) in the spleen 8-days 

post infection.  
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lower luminescent signal intensity indicative of less bacteria at 48 hours post infection (Figure 

5.5B). In aged mice, bacterial colonization in the lungs was assessed 24 hours after infection and 

revealed that both WTOE and G2019S mice had decreased bacterial colonization levels (Figure 

5.5D).  

 

 

Figure 5.5: Young and aged G2019S mice are protected from sublethal P. aeruginosa 

infection. A) Survival analysis of 3-4-month old mice infected with 1.75x106 CFU/mouse PAO.1 

lux strain of P. aeruginosa. Mice were monitored for up to 3-days post infection. Results are 

represented by Kaplan Meier survival curves. B) In vivo bioluminescent imaging of P. aeruginosa 

bacteria in airways with the IVIS imaging system 24- and 48-hours post infection. The intensity of 

the luminescent signal is indicated by the color bar with red and blue serving as high and low 

signals, respectively. C) Survival analysis of 20-22-month old mice infected with 4x106 

CFU/mouse PAO.1 lux of P. aeruginosa. Mice were monitored for up to 3-days post infection. 

Results are represented by Kaplan Meier survival curves. Significant differences were calculated 
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by Log-rank test by comparing each group (B6 vs. G2019S, p=0.0308). D) Bacterial burden 

recovered from aged mice at 24-hours post infection. Results were analyzed by one-way ANOVA 

and Tukey’s post hoc analysis for multiple comparisons. Letters above groups signify post hoc 

results. Groups sharing the same letter are not significantly different. 

 

5.5: Discussion 

In the current study, we sought to investigate the extent to which increased mouse LRRK2 

protein (WTOE) or increased G2019S-mediated kinase activity (G2019S) affect immune cells and 

infection control in response to specific viral or bacterial infections each of which target a different 

arm of the immune system. Based on the literature, we hypothesized that LRRK2 kinase activity 

would play a role in infection burden and subsequent immune cell responses to specific infections. 

To evaluate LRRK2 kinase activity, we utilized G2019S BAC mice that have increased gain-of-

function kinase activity, WTOE mice that have an intermediate kinase activity between B6 

wildtype mice and G2019S BAC mice, and wildtype B6 with endogenous levels of mouse LRRK2. 

We then evaluated the effects of the selective LRRK2 kinase inhibitor PF-360 that has been 

shown to effectively reduce LRRK2 kinase activity without altering LRRK2 protein levels (data not 

shown). Surprisingly, robust immune cell phenotype changes were not observed after LCMV, 

influenza, or L. monocytogenes infections. 

Influenza is known to induce massive inflammation and lung damage. In the murine model, 

influenza infection initiates a substantial adaptive immune response in the lung and promotes 

antigen presenting cell migration to the draining lymph nodes of the lung (mediastinal lymph 

nodes) to induce CD8 T cell activation, proliferation, and viral clearance. CD8 T cells are critical 

for controlling infection, thus our study focused on assessing this population in secondary 

lymphoid organs. Interestingly, no difference in FluNP366 tetramer specific CD8 T cells was noted 

in the primary site of infection in the lung. However, a reduction in the number of FluNP366 

tetramer specific CD8 T cells was found in G2019S mice in the spleen and a trend was identified 
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in the mediastinal lymph node 10-days post infection but became significantly different 35-days 

post infection. This genotype difference may suggest that the immune system of G2019S mice 

failed to encounter and build a response to the influenza antigen or alternatively, that a less robust 

immune response was required to contain the virus. To further explore this, future 

immunophenoprofiling studies could examine a model in which G2019S mice are re-challenged 

with influenza infection or treated with an influenza vaccine.  

LCMV is one of the best-studied viral infection models in rodents often employed to 

understand immune responses, especially for the study of antigen-specific CD8 T cells (Miller et 

al., 2002). Similar to influenza, a host mounts an immune response to LCMV in the form of CD8 

T cells recognizing antigenic peptides from LCMV with a large memory response needed to 

prevent persistent infection (Bocharov, Argilaguet, & Meyerhans, 2015). In the current study, we 

showed that G2019S mice treated with PF-360 after inoculation of LCMV exhibited decreased 

body weight. Furthermore, LCMV infection was regulated in a kinase-dependent manner with 

kinase inhibition increasing MPECs 8-days post infection, suggesting that LRRK2 kinase inhibition 

aids in producing memory against LCMV. 

L. monocytogenes is a gram-positive intracellular bacterium that invades the cytosol of 

infected cells. Antigen presenting cells internalize the bacteria into phagosomes, and toll-like 

receptors activate NFkB and ensuing cytokine production (Pamer, 2004). The innate immune 

system is critical for response to L. monocytogenes as mice lacking T and B cell immunity are 

resistant to infection early on but unable to control it long-term (Bancroft, Schreiber, & Unanue, 

1991; Nickol & Bonventre, 1977). CD8 T cells are necessary to protect against re-infection and 

provide a memory response (Soudja, Ruiz, Marie, & Lauvau, 2012). In our study we did not detect 

any differences in tetramer-specific CD8 T cells or MPECs at 8-days post infection. However, we 

observed a decrease in non-inflammatory monocytes in G2019S mice independent of treatment 

which suggests an impaired response to L. monocytogenes that could be further explored with 

longer timepoints. We did not observe any other indication of susceptibility of the LRRK2 mice in 



 141 

our model of L. monocytogenes infection; however, this is in agreement with another study 

showing that LRRK2 deficiency promotes susceptibility to intestinal but not systemic L. 

monocytogenes infection (Q. Zhang et al., 2015). Therefore, future investigations could examine 

the differences of LRRK2-mediated kinase activity in enteric versus systemic L. monocytogenes 

infection. 

P. aeruginosa is a gram-negative extracellular bacterium that can cause both acute and 

chronic infections, with the chronic form often complicating cystic fibrosis due to compromised 

pulmonary function. The current study with P. aeruginosa yielded some of the most interesting 

data suggesting that young and aged G2019S mice are protected from infection, as they survive 

longer and have better bacterial clearance similar to G2019S mice subjected to S. typhimurium, 

another gram-negative bacterium (Shutinoski et al., 2019). Given that study suggested this was 

due to G2019S-mediated kinase activity in myeloid cells, future studies should examine LRRK2 

kinase inhibitors in the context of P. aeruginosa infection. Furthermore, effects of LRRK2 kinase 

activity should be explored in individual innate immune cell subsets by examining neutrophils and 

myeloid cells given the large innate immune system response to infection. 

Collectively, the data here supports the hypothesis that LRRK2 regulates inflammation in 

a kinase-dependent and antigen-specific manner but warrant further investigation into specific 

mechanisms of regulation. Future studies with peripheral immune cells ex vivo collected from 

individuals carrying the G2019S LRRK2 mutation plus or minus PD are expected to shed light on 

the relevance of our findings to immune function in humans.   
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CHAPTER 6: DISCUSSION AND FUTURE DIRECTIONS 
 
6.1: Summary 
 

Extensive research has shown that Parkinson’s disease (PD) is a multifactorial disease 

with age, genetics, and environmental factors all contributing to risk for development of PD over 

an individual’s lifespan. The perfect combination of factors creates an environment in which 

peripheral and brain inflammation shift from protective to deleterious roles and promote PD 

pathogenesis. However, models exploring the multifaceted components of PD, especially in the 

context of LRRK2, one of the greatest genetic contributors to PD, in the immune system are vastly 

underexplored given that most PD LRRK2-related research has focused on the neuron. With the 

knowledge that LRRK2 is highly expressed in immune cells, the question of whether LRRK2 

expression and phosphorylation regulates immune cell effector functions that then promote 

peripheral inflammation associated with PD and other immune diseases has now been brought 

to the forefront of the PD field. In the previous chapters, we described in detail the impact of 

increased LRRK2 protein and G2019S-mediated kinase activity on aging immune cells and in 

several second-hit models (colitis, pesticides, and bacterial and viral infections) implicated in PD. 

 

6.2: Discussion of results 
 

Over fifteen years after the identification of mutations in LRRK2 as causative for PD, most 

LRRK2 research has focused on the neurotoxicity of its kinase activity, especially due to its mutant 

form (Greggio et al., 2006; M. Liu et al., 2011; Plowey et al., 2008; Ray & Liu, 2012; A. B. West 

et al., 2005; Yao et al., 2010). Given the fact that inflammation plays an important role in PD 

pathogenesis and LRRK2 expression is much higher in immune cells relative to neurons, the 

importance of understanding the role of LRRK2 and its kinase activity in immune cell regulation 

should be underscored and is the focus of this doctoral thesis. Here, we have shown that 

increased wildtype LRRK2 and G2019S-mediated kinase activity do not significantly disrupt 

peripheral blood immune profiles as a function of age. While these results were a bit surprising, 
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they are consistent with the current knowledge that individuals carrying the G2019S mutation 

have not been reported to develop immunological abnormalities at a young age. If the G2019S 

mutation alone disrupted immunity, one might expect that individuals carrying this mutation would 

become immunocompromised and display increased susceptibility to infection. However, to date 

studies suggest that LRRK2 PD patients present with the same clinical features as non-LRRK2 

PD patients (Aasly et al., 2005; Haugarvoll et al., 2008; O. A. Ross et al., 2006). Yet individuals 

of Ashkenazi-Jewish ancestry do appear to have a higher incidence of CD which is an 

inflammatory autoimmune condition (Kenny et al., 2012); therefore, additional immunological 

studies are merited and are underway within our research group to look into the possibility that 

individuals with the LRRK2 G2019S mutation have alterations in immune function that could 

predispose them to development of PD .  

We have also shown a link between intestinal inflammation and PD-related phenotypes in 

a mouse model that overexpresses mutant G2019S LRRK2; whereby, G2019S mice exhibit 

increased susceptibility to intestinal inflammation and PD-associated pathology. While G2019S-

mediated kinase activity increased susceptibility to colitis, we have also shown that G2019S-

mediated kinase activity may be protective in some other environmental models (Pseudomonas 

aeruginosa). This is in accordance with another study suggesting a protective mechanism for 

LRRK2 G2019S to control infection burden (Shutinoski et al., 2019); however, the mechanism by 

which LRRK2 controls or contributes to inflammation is sex-, genotype-, and antigen-specific 

which underscores the complexity of LRRK2 signaling and function. Therefore, additional studies 

are merited and are underway to investigate the molecular pathways within cells that contribute 

to these differences.  

 

6.3: Future directions 

The data described in previous chapters further link LRRK2 in the immune system to CD 

and other autoimmune diseases with mutated LRRK2 increasing susceptibly to intestinal 
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inflammation induced by DSS and the capacity to promote PD-associated pathology. 

Interestingly, two of the epidemiological studies that found a positive association between IBD 

and incidence of PD also found that anti-TNF therapy was associated with reduced incidence of 

PD in IBD patients by at least 78%, further supporting the hypothesis that chronic inflammation 

and awry immune responses contribute to PD pathogenesis (S. Park et al., 2019; Peter et al., 

2018). Furthermore, these studies have raised the interesting possibility that anti-TNF therapies 

used to treat IBD may be of potential therapeutic benefit to reduce risk for PD or slow its 

progression. However, none of these studies have examined anti-TNF therapy in the context of 

LRRK2. Therefore, selective inhibition of soluble TNF with XPro1595 versus inhibition of both 

membrane and soluble TNF with Etanercept, which is already approved for treatment of IBD, are 

warranted and ongoing in the LRRK2 colitis models to determine if TNF inhibition rescues 

G2019S phenotypes. Completion of these studies may reveal therapeutic opportunities for the 

use of TNF inhibitors to delay or mitigate GI inflammation to lower the risk of brain inflammation 

and age-related neurodegeneration. 

Given the ability of LRRK2 to act as a GTPase and a protein kinase and that most 

pathogenic mutations identified to date localize to the kinase or GTPase domains, LRRK2 kinase 

inhibitors or GTP modulators have been the primary focus of therapeutic development for the PD 

clinic. While these functional domains are rational targets, complete LRRK2 kinase inhibition or 

GTPase modulation may cause deleterious effects such as those observed in on-target effects of 

LRRK2 kinase inhibition in the lung of non-human primates (Fuji et al., 2015). Therefore, it may 

be sensible to consider alternatives to inhibition of LRRK2 activity in future investigations, such 

as targeting LRRK2 in a cell type-specific way or some of its downstream phosphorylation 

substrates. In addition, other approaches that selectively knockdown LRRK2 levels in specific 

cells (neurons versus glia) and/or in specific compartments (brain versus peripheral immune cells) 

by using LRRK2 anti-sense oligonucleotides, would be helpful to advance our fundamental 

understanding of the biological role of LRRK2 in different tissues and cells. Our data herein 
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suggest that peripheral immune cells are infiltrating the brains of mice as a result of colitis-driven 

inflammation. Therefore, one potential question for the future is whether selective LRRK2 kinase 

inhibition or protein knockdown in the peripheral compartment can rescue colitis-induced 

phenotypes in G2019S mice; or whether a combination therapy with anti-TNF inhibition is better. 

As an orthogonal tool to investigate the role of peripheral immune cell infiltration into the CNS 

after colitis, fingolimod, a currently approved sphingosine-1 phosphate receptor modulator that 

keeps lymphocytes sequestered in the lymph node and out of the brain in individuals with multiple 

sclerosis, could be used. Furthermore, studies such as these will help determine whether 

interventions should be given prophylactically to reduce risk for PD later in life or shortly after the 

onset of non-motor symptoms to delay or prevent progression of disease and the onset of the 

disabling motor symptoms typically associated with later clinical stages of the disease. 

While PD is commonly associated with loss of dopaminergic neurons and a-synuclein 

(asyn) pathology; the LRRK2 BAC transgenic mouse models used in the studies herein express 

endogenous mouse asyn and are therefore not suitable for assessing the effects of colitis on gut 

or brain asyn aggregation, propagation, or pathology. While we did observe increased asyn 

colonic mRNA levels, unlike human asyn, mouse asyn is not prone to misfolding or aggregation 

(Cookson, 2009; Volles & Lansbury, 2007); therefore, the potential pathogenic effects of 

increased LRRK2 protein expression and/or G2019S-mediated kinase activity coupled with colitis 

should be explored in mouse models with human asyn pathology. One option would be compound 

transgenics between LRRK2 BAC mice and human asyn transgenic mice. Another would be the 

use of AAV-hAsyn or injection of pre-formed fibrils (PFFs) into the gut of LRRK2 BAC mice to 

investigate if there is propagation from the periphery and aggregation of the injected human asyn 

in response to chronic inflammation induced by colitis, gut infections, pesticides, or dysbiosis. 

Furthermore, LRRK2 BACs could be crossed with a new DBH-hSNCA mouse line developed in 

our laboratory that uses the dopamine beta-hydroxylase promoter to drive wildtype human asyn 
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in locus coeruleus neurons, the degeneration of which is associated with the non-motor symptoms 

of PD (Butkovich et al., 2019). 

Collectively, our data from infection studies in LRRK2 mice suggest that G2019S mice 

failed to encounter and build a response to a specific antigen or less of an immune response is 

required to contain the infection, consistent with the hypothesis that LRRK2 regulates 

inflammation in a protein kinase-dependent and antigen-specific manner; but further 

investigations into specific mechanisms of regulation are warranted. To further explore this, future 

studies could re-challenge the LRRK2 BAC mice, as is commonplace with humans exposed to 

infections multiple times throughout their lifespan. Such a study may advance our understanding 

of how LRRK2 and LRRK2 kinase activity affect immunologic memory. Additionally, LRRK2 

transgenic mice or humans carrying LRRK2 pathogenic mutations could be evaluated pre and 

post vaccination to viral infections, such as seasonal influenza, to further understand the role of 

LRRK2 and LRRK2 kinase activity in immune cell regulation and response to antigens. Rodent 

models are critical pre-clinical tools and have advanced our understanding of the potential 

mechanisms related to PD pathogenesis; but all of these findings should be further explored in 

human populations using primary immune cells from peripheral blood of PD and non-PD age- and 

sex-matched individuals with and without LRRK2 mutations to enable cross-correlation and 

comparison with pre-clinical model findings. Additionally, studies to measure LRRK2 expression 

and kinase activity in the periphery (PBMCs and immune cells in the GI tract) in patients with PD 

and IBD may help establish its potential as a biomarker for these diseases. 

 

6.4: Conclusions 

LRRK2 expression is relatively high in immune cells of PD patients and our knowledge of 

its role in regulation of inflammation is vastly underexplored. In the studies herein, overexpression 

of LRRK2 expression and G2019S-mediated kinase activity were explored in aging immune cells 

and second-hit models (colitis, pesticides, and bacterial and viral infections) implicated in PD 
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pathogenesis. Taken together, the results suggest that increased LRRK2 protein or LRRK2 

G2019S do not affect aging immunophenotypes, but G2019S-mediated kinase activity may be 

protective in some environmental models (Pseudomonas aeruginosa) while in others (colitis) it is 

deleterious and increases susceptibility to PD-associated pathology. The exact mechanism by 

which LRRK2 G2019S confers protection or susceptibility remains unknown and may turn out to 

be stimulus specific. Future efforts to enhance our understanding of the complexity of LRRK2 

signaling and function in immune cells will provide key insights into PD pathogenesis and 

progression. The long-term goal of the studies undertaken here and those planned for the future 

will shed light on the relationship between PD and autoimmune IBD disorders and may reveal 

therapeutic opportunities for the use of LRRK2 kinase inhibitors to delay or mitigate peripheral 

inflammation to lower the risk of brain inflammation and age-related neurodegeneration. 
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