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Abstract 
 

Elucidating the role of dopamine in vocal learning in the Bengalese finch  

 

By Varun Saravanan 
 

All living organisms must learn to produce certain motor behaviors appropriate to the sensory stimuli 

encountered in their environment in order to survive. In complex organisms, such motor behavior produced 

is evaluated through further sensory feedback and is refined for future performance. This learning is referred 

to as sensorimotor learning. Sensorimotor learning can be distinguished into two broad categories – 

reinforcement learning that relies on external appetitive or aversive cues and sensorimotor adaptation in 

which the only feedback available to the organism is its own evaluation of the motor behavior performed. 

We have previously shown a role for dopamine in vocal reinforcement learning in Bengalese finches 

(Lonchura striata var. domestica). This dissertation again uses Bengalese finches, a highly accessible 

sensorimotor learner, to study the role of dopamine in sensorimotor adaptation. 

 

We discovered, as we were analyzing data for a previous experiment, that some of the assumptions 

underlying the statistical tests we had used in the past were being violated due to the hierarchical nature of 

our data. When variability exists at multiple levels, as is the case with hierarchical data, the error has to be 

propagated appropriately in order to account for the total uncertainty in the measurement. We had 

previously been treating each data point independently in spite of the hierarchical structure which 

underestimates the total error. We show that using hierarchical bootstrapping, we can accurately quantify 

the uncertainty in the measurement. In addition, we show real world applications of the hierarchical 

bootstrap and demonstrate how it provides more accurate results than traditional statistical tests on 

hierarchical datasets. We then used hierarchical bootstrapping to show that birds displayed severe 

sensorimotor adaptation deficits following a dopamine lesion of Area X, a song-specific basal ganglia 

nucleus. Specifically, birds showed both an inability to shift their pitch adaptively to induced auditory 

feedback errors and a tendency to reduce pitch regardless of auditory error post-lesion. By building on the 

involvement of dopamine in reinforcement learning and showing its necessity for sensorimotor adaptation, 

this dissertation lays the foundation for uncovering the role of dopamine in sensorimotor learning. 
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1 CHAPTER I: INTRODUCTION AND LITERATURE REVIEW 
 

Sensorimotor learning refers to all types of learning in which organisms refine the motor behaviors 

they produce by using the sensory feedback received during motor production (Krakauer and 

Mazzoni 2011). It is the process by which Roger Federer learns to serve either down the T or out-

wide through almost imperceptible variations in racquet angle as well as how human babies learn 

to use utensils over months of practice by first getting food all over their face and clothes. As such, 

understanding sensorimotor learning is an extraordinarily broad field of study and is usually 

addressed by subdividing sensorimotor learning into distinct categories. For the purpose of this 

dissertation, I will be classifying sensorimotor learning into two overarching types, namely 

reinforcement learning and sensorimotor adaptation (Wolpert, Diedrichsen, and Flanagan 2011). 

Any sensorimotor learning in which the feedback signal is an external and explicit appetitive or 

aversive cue is referred to as reinforcement learning. On the other hand, if the only feedback 

available to the organism is evaluation of its own sensory feedback then I will refer to such learning 

as sensorimotor adaptation. This dissertation builds on previous work that has shown that 

dopamine is involved in reinforcement learning in both primates (Ljungberg, Apicella, and Schultz 

1992) and songbirds (Hoffmann et al. 2016, Ljungberg, Apicella, and Schultz 1992). The scientific 

question at the heart of this dissertation is therefore the following: “Is dopamine involved in 

sensorimotor adaptation? If yes, how?” 

  This introduction is structured into the following sections. I will first give an overview of 

reinforcement learning and sensorimotor adaptation as well as a brief survey of some of the other 

ways sensorimotor learning has been classified. I will then discuss explicitly the role of dopamine 

in each prefacing it with a short history of dopamine research prior to work implicating it in 

learning. Third, I will talk about the songbird as a model system in which to study the role of 
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dopamine in sensorimotor learning. Finally, I will talk about the hierarchical structure of the data 

we obtain and analyze from songbirds, the history of how this structure was discovered to be a 

problem for statistical tests and improved statistical approaches currently implemented to address 

this problem. 

1.1 Sensorimotor Learning 

1.1.1 Reinforcement Learning 

In this sub-section, I will provide a brief overview of reinforcement learning as it relates to the 

work in this dissertation. First, I will outline the mathematical theory underlying reinforcement 

learning from a historical perspective culminating with the most recent advances in deep 

reinforcement learning technology in section 1.1.1.1. Second, I will provide examples of how 

reinforcement learning theory has driven experiments and discoveries in biology in section 1.1.1.2 

and how those results motivated the experiments presented in this dissertation. 

1.1.1.1  Mathematical Framework underlying Reinforcement Learning 

Reinforcement learning has been studied independently (with some convergence) in biological 

contexts as well as mathematical frameworks. While biologists think of reinforcement learning in 

terms of psychological tasks and Pavlovian conditioning, largely initialized by the seminal work 

by Rescorla and Wagner (Rescorla and Wagner 1972, Rescorla 1969, Rescorla 1968, Wagner 

1969, Wagner, Logan, and Haberlandt 1968), reinforcement learning has primarily been 

understood in the context of mathematical theory and computer science algorithms (Sutton and 

Barto 1998, Kaelbling, Littman, and Moore 1996). Broadly speaking, reinforcement learning 

involves the process of converging upon an optimal policy to follow for an agent in an environment 

using the cues (positive or negative) provided by the environment so as to maximize the positive 

feedback received over time. When the agent is in the environment, the agent is in a particular 
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state from which the agent may choose among a set of actions available to transition to a new state. 

Based on the action chosen, the state of the environment changes and as per a probability 

distribution unknown to the agent, a reward (or punishment) is delivered. The agent must use the 

knowledge so obtained over time to decide on a policy that controls which action to select for each 

state the agent visits. The optimal policy should maximize rewards and minimize punishments. 

 A historically significant example of reinforcement learning that has been analyzed in 

detail is the multi-arm bandit task (Berry and Fristedt 1985). Briefly, the one-arm bandit task is a 

single step environment where a single action results in a reward with a fixed probability unknown 

to the agent. The multi-arm bandit extends this by having multiple possible actions each with 

different probabilities of reward. The agent gets a fixed number of actions it may take in total. This 

task therefore delivers instant reward, or lack thereof, following the action and the environment is 

reset.  However, typical tasks do not reset the environment following every action nor does every 

action lead to reward. In fact, most cases require multiple actions in a particular sequence to obtain 

a reward such as navigating a maze. In this case, it becomes necessary to assign credit temporally 

to the various actions taken along the way that resulted in the eventual delivery of the reward 

(Sutton 1984, Bradtke and Barto 1996, Tesauro 1992, Tsitsiklis and Van Roy 1997) and the 

framework of the multi-arm bandit is insufficient to solve such problems.  

 Markov Decision Processes (MDPs) have been widely used to model and study 

reinforcement learning with temporal credit assignment as described above (Bellman 1966, 

Howard 1960, Puterman 2014). An MDP is a process in which the transitions underlying the model 

are Markovian in nature (or a Markov chain). A Markov chain, in turn, is a process in which the 

probability of transitions from a given state are independent of the history of transitions made to 

reach that state. MDPs are extensions of Markov chains in that they allow the agent in the 
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environment to choose an action to perform in order to transition to the next state. Therefore, the 

outcome is partially random and partially under the control of the agent. MDPs have been studied 

extensively in a variety of contexts. Some of the properties that made MDPs particularly useful to 

study and model reinforcement learning are the following: 

1. MDPs can be shown to have an optimal deterministic stationary policy (Bellman 1966). 

This means that there exists an optimal policy solution for the agent to follow if found. 

2. The optimal policy can be determined by finding the optimal value function. The value 

function in turn refers to the maximal temporally discounted reward the agent can obtain 

from the environment if the agent follows the optimal policy. The optimal value function 

can in turn be found by initializing randomly and updating it iteratively based on inputs 

from the environment until convergence (Bellman 1966, Bertsekas 1987). 

3. The greedy policy, i.e., the policy that takes the best known value at a given point in time 

is shown to be optimal in a finite number of steps (Bertsekas 1987). Additionally, the 

greedy policy is shown to have an easy to evaluate stopping criterion based on the maximal 

difference between two successive value functions obtained through greedy iteration 

(Williams and Baird 1993). 

However, as powerful as MDPs were, they were found to be prohibitively expensive to compute. 

In practice, solving MDPs requires a linear order of time on the number of actions and a polynomial 

order of time on the number of states per iteration or time step. As the number of states grows, 

MDPs become practically impossible to solve very quickly. 

The computational cost of MDPs as described above stems from the fact that one may not 

know when a reward will be delivered. As a result, one has to hold in memory all the actions taken 

to reach the “final” state when reward is delivered. However, a way to reduce the computational 
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cost of MDPs is to simply retain the immediate reward associated with a particular action and the 

expected value of the new state being transitioned into (or more concretely, the difference between 

them which is called the reward prediction error). The agent can then use the prediction error to 

update the value function for all previous states with an active eligibility trace defined by a 

parameter λ. When λ = 0, the value of only the most recent state is updated. When λ = 1, the values 

of all previous states are updated. The algorithms that implement this type of learning are referred 

to as “model-free” learning methods and primarily take on forms such as TD(λ) learning where 

TD refers to Temporal Difference (Sutton 1984, Sutton 1988, Dayan and Sejnowski 1994) and Q-

learning (Watkins and Dayan 1992, Peng and Williams 1994). Since I introduced the term “model-

free”, I note that I will briefly discuss model-free versus model-based methods in Section 1.1.3.1. 

The popularity of the temporal difference type of reinforcement learning received a further 

boost from studies in neuroscience that discovered a role for dopamine as the potential prediction 

error signal (Ljungberg, Apicella, and Schultz 1992, Schultz, Dayan, and Montague 1997, Schultz 

1998). I will discuss these studies in detail in section 1.2.2. However reinforcement learning itself, 

following the efficiency of the above mentioned model-free methods and the advent of improved 

memory and computing capacities of modern day computers, underwent an explosion in capability 

and the range of problems such algorithms could solve. Reinforcement algorithms were used to 

solve common games such as Backgammon (Tesauro 1992, Tesauro 1995) as well as to explain 

behaviors in economic games as in those related to game theory (Erev and Roth 1998). 

Improvements were also made in the algorithms’ speed and efficiency (Sutton et al. 2000, Sutton, 

Precup, and Singh 1999, Crites and Barto 1996). Other notable improvements involved developing 

inverse reinforcement learning, i.e., the ability to predict the reward schedule by observing the 

assumed optimal behavioral policy (Abbeel and Ng 2004, Ng and Russell 2000, Ziebart et al. 2008) 
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and the extension of reinforcement algorithms to effectively handle multiple agents interacting 

with the same environment (Hu and Wellman 1998, Claus and Boutilier 1998, Bu, Babu, and De 

Schutter 2008). This was particularly relevant since animal subjects have been shown to not just 

learn from their own experiences but also by observing the experiences of others (Dawson and 

Foss 1965, Tomasello et al. 1987, Fiorito and Scotto 1992). 

The most recent major advance in reinforcement learning algorithms came with the advent 

of “deep learning” in which a multi-layered neural network with several hundreds of thousands of 

artificial “neurons” and several tens of millions of parameters was trained to essentially halve the 

error rate as compared to then state-of-the-art algorithms for image classification (Krizhevsky, 

Sutskever, and Hinton 2012, LeCun, Bengio, and Hinton 2015). From its introduction in computer 

vision, deep learning has since found success in fields such as speech recognition (Hinton et al. 

2012), sentence recognition for language translation (Sutskever, Vinyals, and Le 2014) and 

reinforcement learning (Mnih et al. 2015). Deep reinforcement learning has been used to train a 

system to successfully complete Atari 2600 games which have a much higher dimensional sensory 

input than tasks traditionally solvable by reinforcement learning algorithms (Mnih et al. 2015). 

One of the most visible successes of deep reinforcement learning was the successful ability of an 

algorithm to learn to beat both the European champion and the World champion in a game of Go, 

a game thought to be too complex for an algorithm to successfully master since the game has such 

a vast search space (Silver et al. 2016). The researchers then advanced this algorithm further by 

showing that they could train a new algorithm to teach itself to play Go simply using reinforcement 

learning without any external human input (Silver et al. 2017). As impressive as the recent exploits 

of deep reinforcement learning are, it is worth keeping in mind that these are very specific advances 

and are still vulnerable to adversarial attacks requiring incremental improvements such as the 
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algorithm that could complete the Atari 2600 games being unable to do so if the games screenplay 

was shifted laterally (Mnih et al. 2016, Van Hasselt, Guez, and Silver 2016, Marcus 2018). 

Additionally, while TD(λ) reinforcement learning may reveal insights into how the brain performs 

similar computations such as the need for an eligibility trace or the role of a temporal difference 

signal in learning (see section 1.2.2 for details), deep networks are more akin to a black box. As 

mentioned previously, deep networks have hundreds of thousands of computational units and 

several millions of parameters making interpretability of the algorithm/model inaccessible. Hence 

deep networks are currently of limited interest in neuroscience though there is some work 

attempting to change this (Shwartz-Ziv and Tishby 2017, Koh and Liang 2017). 

1.1.1.2 Reinforcement Learning in Biology 

Sensorimotor learning in the form of reinforcement learning has been studied in animals since the 

days of classical conditioning (Pavlov and Gantt 1928). However, as mentioned briefly above, it 

was the work of Rescorla, Wagner, and colleagues (Rescorla 1969, Rescorla 1968, Wagner 1969, 

Wagner, Logan, and Haberlandt 1968, Rescorla and Wagner 1972) that put a mathematical theory 

behind Pavlovian conditioning and contributed to refined experimentation to understand how 

reinforcement learning is implemented in organisms. Furthermore, operant conditioning was found 

to be a powerful tool to study the mechanisms underlying reinforcement learning (Skinner 1963). 

As mentioned briefly above, reinforcement learning in biology got its next big advance following 

the discovery of dopamine as a potential reward prediction error signal matching its use in 

mathematical algorithms (Ljungberg, Apicella, and Schultz 1992, Schultz 1998, Schultz, Dayan, 

and Montague 1997). I will elaborate on these studies in section 1.2.2. 
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1.1.2 Sensorimotor Adaptation 

I refer to adaptive behavioral changes that result from evaluation of sensory feedback arising from 

one’s own motor performance as “sensorimotor adaptation.” Here, as opposed to an external 

reward signal in the case of reinforcement learning, the organism has to compute an error signal 

by comparing the produced motor output to the desired or ideal motor output. Due to the fact that 

the error signal is produced internally, studying sensorimotor adaptation in a laboratory setting can 

be challenging. However, a few paradigms have been developed in which the error signal can be 

controlled and I will expand on the results from those studies in this section. 

 One of the first and most intensively studied sensorimotor adaptation paradigms involves 

saccadic eye movements (McLaughlin 1967, Pélisson et al. 2010). Saccadic eye movements refer 

to the ability of the eye to make quick movements to stabilize at a point of interest in a visual field 

and bring it to focus. Sensorimotor adaptation in eye saccade movements was introduced by using 

the double-step target paradigm (McLaughlin 1967). Briefly, a target is presented to which the 

subject must make an eye saccade and while the subject is moving, the target is shifted either closer 

or further away. If trained repeatedly, the subject learns to saccade to the shifted position given the 

original position of the target. Saccades are fast movements happening on the time scale of 

hundreds of milliseconds (Fischer and Weber 1993, Fischer et al. 1993) and as such are too fast 

for error correction mid-flight either from visual information though some have reported small 

changes in trajectory (Gaveau et al. 2003) or input from proprioceptive feedback (Guthrie, Porter, 

and Sparks 1983, Lewis et al. 2001). Hence, almost all error correction is thought to happen upon 

completion of the saccade from the resulting sensory feedback that the movement made did not 

reach the intended target. A classic manifestation of adaptation is the after-effect, i.e., after the end 

of the task where the target had been shifted, subjects still compensate for an anticipated shift and 
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result in overshooting the target in the opposite direction (Gibson 1933). Saccade eye movements 

have been used to fit computational models of sensorimotor learning (Ethier, Zee, and Shadmehr 

2008b, a, Findlay and Walker 1999, Robinson 1973) as well as to study the neural mechanisms 

underlying sensorimotor adaptation (Optican and Robinson 1980, Sparks 1986, Munoz 2002, 

Munoz et al. 2000).  

 Another experimental paradigm that has been used to study sensorimotor adaptation 

extensively is the prism goggles adaptation paradigm (Stratton 1897, 1896). Briefly, prism goggles 

are used over a subject’s eyes to cause some manipulation of the visual input the subject receives. 

Typically these manipulations can take the form of image inversion (Stratton 1897, 1896, Foley Jr 

1940), rotation or manipulation of curvature (Gibson 1933, 1937, Gibson and Radner 1937). 

However, it was following the study that showed that adult human subjects required active 

movement to completely adapt to a rotation in visual field, an adaptation absent without active 

movement that prism goggles began to be used extensively to study sensorimotor adaptation (Held 

and Bossom 1961, Held and Gottlieb 1958). Through studies on inter-manual transfer, i.e., learning 

on one arm generalizing to behavior for the other arm (Hamilton 1964) and effects of telling 

subjects about the manipulation beforehand (Welch 1972), a hypothesis formed that sensorimotor 

adaptation occurred due to comparison with an internal model of relationships between visual 

feedback and proprioception. As research on prism goggles adaptation continued (Rossetti et al. 

1998, Welch et al. 1993), it became clear that the cerebellum was involved in this task since human 

patients with damage to cerebellar nuclei and non-human primates with cerebellar lesions showed 

deficits in adapting to the prism goggles rotational shift (Weiner, Hallett, and Funkenstein 1983, 

Martin et al. 1996, Baizer, Kralj-Hans, and Glickstein 1999, Morton and Bastian 2004). These 

studies led to the hypothesis that the cerebellum is responsible for generating internal models of 
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movement with which to compare to realize sensorimotor adaptation (Wolpert, Miall, and Kawato 

1998, Blakemore, Frith, and Wolpert 2001, Ito 2008). 

 A task that has some of the same structure as the prism goggles adaptation task but comes 

with greater degree of experimental control is the center out reaching task in the presence of a 

rotational force-field. Georgopoulos popularized the concept of having subjects reach out to 

different directions from a central point (Georgopoulos et al. 1982) and further showed that 

neurons in the motor cortex were tuned for direction of the movement (Georgopoulos et al. 1983, 

Georgopoulos, Schwartz, and Kettner 1986). Following the development of the manipulandum 

(Shadmehr, Mussa-Ivaldi, and Bizzi 1993), it became possible to study how subjects responded to 

rotational challenges in a reaching task and that paradigm became a popular and reliable one to 

study sensorimotor adaptation (Brashers-Krug, Shadmehr, and Bizzi 1996, Caithness et al. 2004). 

Neural correlates underlying such learning strengthened the evidence for internal models built by 

the cerebellum (Diedrichsen et al. 2005, Tseng et al. 2007). Finally, while such tasks have formerly 

been limited to human and non-human primate subjects, it has recently been successfully 

demonstrated in rodents allowing for more specific investigations into the neural circuitry 

underlying learning of the task (Mathis, Mathis, and Uchida 2017) leveraging genetic tools 

available for rodent models. In all these tasks though, it seems as if an internal model is necessary 

to observe learning. I will discuss this in some detail in section 1.1.3.1. 

 The final paradigm I must mention that has been used to study sensorimotor adaptation 

relates to using shifted auditory feedback to affect changes in vocal output among organisms. 

Following the success of observing sensorimotor adaptation in response to altered visual feedback, 

there was an open question as to whether this was a uniquely visual phenomenon or other senses 

could also be similarly manipulated to drive adaptation. By using headphones to deliver altered 
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auditory feedback to humans, it was shown that the vowel sounds subjects made could be altered 

systemically (Houde and Jordan 1998, 2002). Since non-human primates do not have an extensive 

vocal repertoire, studies of altered auditory feedback was restricted to human subjects (Guenther 

2006, Villacorta, Perkell, and Guenther 2007, Shum et al. 2011, Tremblay, Shiller, and Ostry 2003) 

until it was shown that songbirds are capable of adapting to pitch shifted auditory feedback of their 

songs in a similar manner (Hoffmann et al. 2012, Kelly and Sober 2014, Sober and Brainard 2012, 

2009). As I will detail in Chapter 2, I used this paradigm to study the central question of my thesis: 

the role of dopamine in sensorimotor adaptation. 

1.1.3 Other classifications of Sensorimotor Learning 

While I have focused on reinforcement learning and sensorimotor adaptation above, there are 

many other ways by which one can classify different forms of learning. In the next section, I will 

discuss two other classifications that are relevant to my experiments. Note however that these 

classification schemes are not mutually exclusive and do not encompass all the ways in which one 

may break sensorimotor learning into smaller categories. This is represented diagrammatically in 

Figure 1.1. 

1.1.3.1 Model-free versus Model-based learning 

A theme that may have emerged from my discussion of the previous two sections is that 

reinforcement learning tends to primarily be discussed in terms of model-free algorithms while 

sensorimotor adaptation is primarily thought to be model-based. However, in order to fully classify 

algorithms as model-free or model-based, we must first understand the difference between the two 

categories. 
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 The primary difference between a model-free and a model-based algorithm lies in whether 

or not the underlying structure of the environment (the model), the transition probabilities between 

states for example, is learned or not. If one considers a reinforcement learning algorithm, a model-

free algorithm will track only the received rewards and the estimated value function (i.e., the time-

discounted sum of all future rewards from that state) at each state, updating said estimate each time 

it visits a particular state. A model-based algorithm on the other hand will also learn the structure 

of the environment such as the probabilities of reward at certain states as well as the new states 

 
Figure 1.1: Classifications of sensorimotor learning.  

Various classifications of sensorimotor learning discussed in Section 1.1. I primarily focus on the distinction 
between reinforcement learning and sensorimotor adaptation for the purpose of this dissertation (elaborated in 
section 1.1.1 and 1.1.2 respectively). Alternative classifications discussed briefly are model-free and model-based 
learning as well as exploration versus exploitation (see section 1.1.3). As the figure shows, all these 
classifications are of sensorimotor learning itself and therefore, all overlap with each other. 
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that each action among those available will lead to from the present state. Hence on the surface, 

model-free algorithms are very quick to compute but are slow to react to small changes in the 

environment such as cutting off of the most direct path in a maze. Model-based algorithms on the 

other hand are computationally expensive and take a long time to train but once trained, can adapt 

to such small changes very flexibly. In practice however, efficient and commonly implemented 

reinforcement learning algorithms are neither entirely model-free nor completely model-based but 

lie on a spectrum between the two extremes so as to minimize the weaknesses of each of the 

extremes (Watkins and Dayan 1992, Sutton 1991, Peng and Williams 1994, 1993). 

 While I described the difference between model-based and model-free algorithms using 

reinforcement learning algorithms, the definition can be applied to reinforcement learning as well 

as sensorimotor adaptation. As much as the cerebellum has been implicated in producing internal 

models necessary for sensorimotor adaptation, there have been experimental results observed that 

cannot be explained by model-based learning alone (Haith and Krakauer 2013). It has also been 

observed in animal reinforcement learning tasks that when attempting to model animal behavior, 

a purely model-free approach or a purely model-based approach work and fail according to 

context. There is an ongoing debate as to the usefulness of classifying behaviors as model-free or 

model-based but there is accumulating evidence that animals vary their strategies depending on 

the context (Dayan and Berridge 2014, Lee, Shimojo, and O’Doherty 2014, Russek et al. 2017, 

McDannald et al. 2012). 

1.1.3.2 Exploration versus Exploitation 

I wanted to conclude this section with a brief overview of another distinction often talked about in 

sensorimotor learning and reinforcement learning in particular – exploration versus exploitation. 

It makes the most sense to understand this distinction in terms of the classic multi-armed bandit 
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problem as discussed in section 1.1.1.1 above. Consider an agent in an environment where there 

are k gambling machines each with a different probability of payoff unknown to the agent. The 

agent is allowed to gamble N times. At the end of each gamble, the agent collects the payoff, if 

any, and chooses another machine to play till they reach their limit. What is the optimal strategy 

to pursue to maximize payoff? Since the probabilities are unknown, the agent must explore to get 

some sense of the payoff probabilities of some of the machines. But as the agent nears the limit N, 

the better strategy would be to continually play the machine with the current best estimate of 

payoff. So where does one decide to make the switch? 

 There have been in-depth mathematical formulations made to address this problem (Berry 

and Fristedt 1985, Kaelbling, Littman, and Moore 1996). However, in practice, ad-hoc methods 

such as a greedy algorithm (Edmonds 1971), random exploration or Boltzmann exploration (a 

weighted random exploration where the “temperature” can be reduced later to result in 

exploitation) are easier to implement in algorithms and seem to work as well as other methods.  

Exploration and exploitation have been studied in animal behavior as well (Watkins 1989, Harley 

1981) though in recent times, the distinction has been characterized more as habitual (like 

exploitation) versus goal-seeking behavior which is closer to exploration (Balleine and O'doherty 

2010, Keramati, Dezfouli, and Piray 2011, Schwabe and Wolf 2011, de Wit et al. 2012). I will also 

note that while I have discussed this exploration-exploitation trade-off in terms of reinforcement 

learning, one can imagine it occurring constantly in sensorimotor adaptation as one explores a lot 

initially when learning a new skill but as one gets better, starts exploiting learned tricks to perform 

at their best. Hence, the classifications expressed in both sections 1.1.3.1 and 1.1.3.2 are applicable 

to both reinforcement learning and sensorimotor adaptation. This point is made explicit in Figure 

1.1. 



21 

 

 

1.2  A role for Dopamine in Sensorimotor Learning 

Learning is an extraordinarily broad topic and there have been numerous brain structures, 

neuromodulators and neurotrophic factors that have been and are still actively studied in the 

context of various types of learning. For the purpose of this dissertation however, I will largely 

restrict myself to the role dopamine plays in sensorimotor learning. This section is divided into the 

following subsections. I will first provide a brief overview of the roles of dopamine prior to its 

discovery as a potential reward prediction error signal. I will then discuss its role in reinforcement 

learning and some other posited theories since. I will end the section with a brief overview of the 

potential role for dopamine in sensorimotor adaptation which forms the core of my dissertation. 

1.2.1 Dopamine before Reward Prediction Error (RPE) 

Parkinson’s disease was first characterized by James Parkinson in 1817, over 200 years ago 

(Parkinson 1817, 2002). It was also one of the first major hypothesized roles for dopamine in the 

brain as researchers discovered that a common symptomology underlying Parkinson’s disease was 

the loss of dopaminergic cells from the Substantia Nigra pars compacta (SNc) (Barbeau 1962, 

Bernheimer et al. 1973). Additionally, it was reported that manipulations of the nigro-striatal 

dopamine pathway caused movement deficits in both non-human primate and rodent models 

(Andén et al. 1966, Ungerstedt 1971, Ungerstedt and Arbuthnott 1970, Poirier and Sourkes 1965, 

Poirier et al. 1966). This first led to a hypothesis that dopamine was involved in the control of 

movement. However, studies were also reported that dopamine depleted rodents could still swim 

in a water maze task (Marshall, Levitan, and Stricker 1976) which was likened to the paradoxical 

kinesia seen in Parkinson’s disease (Jarkowski 1925). 

 Another major role of dopamine stemmed from studies that linked it to reward and hedonia, 

(the feeling of liking or enjoying something). Rodents were found to be willing to press a lever for 
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intracranial direct current stimulation or self-administration of amphetamines. This process in turn 

could be blocked by dopamine blockers or antagonists administered to the subject (Lippa et al. 

1973, Yokel and Wise 1975). Further experimentation also suggested a role for dopamine that 

acknowledged the contributions to both reward and movement (Stellar, Kelley, and Corbett 1983). 

However, as popular as the dopamine reward hypothesis became (Hernandez and Hoebel 1988, 

Wise and Rompre 1989), problems emerged in that dopamine depleted rats still seemed to enjoy 

eating their food (Berridge, Venier, and Robinson 1989). So, the terminology shifted to saying 

dopamine signaled the value of the reward which differed from hedonia in that what was now 

being tracked was not the fact that the subject enjoyed the reward but the degree to which the 

reward or other stimulus carried a positive or negative association. It was in this context that a role 

for dopamine as an RPE signal was discovered as I will discuss in section 1.2.2.  

1.2.2 Dopamine in Reinforcement Learning 

1.2.2.1 The Dopamine RPE hypothesis 

Using electrophysiological recordings of neurons in the SNc of non-human primates, Schultz and 

colleagues investigated the role of dopamine and found that it was correlated with attention and 

arousal (Romo and Schultz 1990, Schultz 1986, Schultz and Romo 1990). However, two key 

studies in 1992 were most important for codifying the role of dopamine and the basal ganglia, with 

the ventral striatum in particular, in reward processing and reinforcement learning. Specifically, 

one study found that dopaminergic neurons in the VTA showed responses that would later be 

recognized as reward prediction error (RPE) like (Ljungberg, Apicella, and Schultz 1992) while 

the other found that neurons in the ventral striatum seemed to track expected value of future 

rewards in predictable contexts (Schultz et al. 1992). Separately, work in bees also implicated the 

dopamine system in reward processing (Montague, Dayan, and Sejnowski 1996). The researchers 



23 

 

 

who worked on bees collaborated with the Schultz group and designed an experiment to test the 

role of dopamine in reward processing. Dopamine was found to respond in a very particular fashion 

  
Figure 1.2: Response of dopamine neurons to rewards and reward predictions.  

CS refers to a conditioned stimulus that is predictive of the reward and R refers to reward. The panels show the 
raster plots of dopaminergic neuron activity across several trials and the histograms of binned firing rates are at the 
top of each panel. (Top panel) Dopamine neurons fire in response to an unexpected reward without a preceding 
CS. (Middle panel) Dopamine neurons respond to the CS when it occurs but do not respond noticeably to the actual 
reward delivery. (Bottom panel) Dopamine neurons respond to the CS as before but there is no reward delivered. 
The dopamine neurons show a dip in firing rate around the time the reward would have otherwise been delivered. 
From Schultz, Wolfram, Peter Dayan, and P. Read Montague. "A neural substrate of prediction and reward." 

Science 275, no. 5306 (1997): 1593-1599. Reprinted with permission from AAAS.  
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to reward presentation (see Fig. 1.2). Specifically, dopamine neurons were found to respond to an 

unexpected reward (Fig. 1.2 top panel). If the reward was paired reliably with a predictive stimulus, 

over time dopamine neurons began responding to the stimulus and responding less to the actual 

reward (Fig. 1.2 middle panel). Finally, if the reward was not delivered following the predictive 

stimulus, a drop in dopamine neuron firing was observed around the time the reward should have 

been delivered (Fig. 1.2 bottom panel). This led to a hypothesis that the phasic activity of 

dopaminergic neurons in the VTA closely tracked the reward prediction error signal in 

reinforcement learning (Schultz 1998, Schultz, Dayan, and Montague 1997, Glimcher 2011). As 

was being detailed in reinforcement learning algorithms, model-free reinforcement learning 

required the tracking of a reward prediction error (RPE) signal (Sutton 1984, Sutton 1988, Sutton 

and Barto 1998). Due to the nature of dopamine neuron firing described above, changes in 

dopamine concentration were hypothesized to convey that RPE signal and the basal ganglia was 

proposed to be the neural circuit that performed the required computations with that signal to 

realize reinforcement learning in biological systems. 

 Following the above breakthrough, extensive research was carried out to better characterize 

the dopamine signaling in reinforcement learning. Prior research had looked at predictive stimuli 

that always preceded a reward. A naturally open question to follow that finding was if the reward 

associated with a predictive stimulus was probabilistic, how does dopamine neuron firing encode 

uncertainty of future reward? It was found that dopamine neurons do indeed track reward 

probabilities and that they shifted their firing rates with the expected value of the reward and their 

gains with the uncertainty in reward delivery (Fiorillo, Tobler, and Schultz 2003, Tobler, Fiorillo, 

and Schultz 2005). Neural correlates for reinforcement learning were discovered using rodent 

models and human subjects (Pessiglione et al. 2006, Valentin, Dickinson, and O'Doherty 2007, 
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Samejima and Doya 2007) implicating several areas of cortex such as the orbitofrontal cortex, 

anterior cingulate cortex and medial prefrontal cortex in addition to the basal ganglia. These results 

further spurred interest in the neural basis of decision making (Körding and Wolpert 2006, Gold 

and Shadlen 2007). 

 With the advent of optogenetics (Boyden et al. 2005), i.e., genetic manipulations of 

targeted neuronal populations to insert a light-sensitive ion channel into neurons so as to 

manipulate their electrical activity with light pulses, it became possible to target dopaminergic 

cells and their targets in the striatum precisely both in time and in genetically targeted cell sub-

populations in space. Early work showed results consistent with the RPE hypothesis for dopamine 

along with roles in movement control associated with Parkinsonism (Kravitz and Kreitzer 2012, 

Kravitz, Tye, and Kreitzer 2012). It was also shown that direct optical stimulation of dopaminergic 

neurons in an RPE-like fashion was sufficient to cause a learned association between an otherwise 

neutral cue and both a rewarding outcome (Steinberg et al. 2013) and an aversive outcome (Chang 

et al. 2016). Optogenetics was also capable of solving the long-standing criticism that most prior 

studies of dopamine in RPE were based on waveform identification of dopamine neurons which 

were not always reliable (Margolis et al. 2006, Lammel et al. 2008). By expressing the light-

sensitive channels only in the dopaminergic neurons of interest, Uchida and colleagues were able 

to ensure they were characterizing dopaminergic cell firing and reported that the cells did indeed 

fire RPE-like signals (Cohen et al. 2012) and that the firing across the population of VTA 

dopaminergic neurons was fairly homogenous, i.e., both individual and population activity of the 

dopamine neurons could be explained using just two parameters (Eshel et al. 2016). 
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1.2.2.2 Problems with the Dopamine RPE hypothesis 

As compelling as the RPE hypothesis of dopamine was, it was not without its flaws and 

complications (Dayan and Niv 2008, Berridge 2007, Watabe-Uchida, Eshel, and Uchida 2017). 

One of the primary sources of concern was the fact that dopamine neurons have a baseline firing 

rate of 3 to 5 Hz. They are capable of signaling positive RPE by increasing their firing rate up to 

30 Hz or so but for negative RPE, they can only reduce it to zero. Hence, there seemed to be an 

inherent asymmetry in the level of signal between positive and negative RPE (Fiorillo 2013). 

However, whether this asymmetry is a problem is still an ongoing debate since there has been 

evidence that even if dopamine neurons cannot modulate their firing symmetrically, the amount of 

dopamine present in the ventral striatum still varies symmetrically between rewarding and aversive 

stimuli (Hart et al. 2014). It has also been proposed that a separate nucleus, the lateral habenula, is 

the one responsible for coding the negative RPE signal (Matsumoto and Hikosaka 2007, Tian and 

Uchida 2015).  

 Another common criticism of the dopamine RPE hypothesis is that not all dopamine 

neurons exhibit RPE-like responses. Several studies have reported that subsets of dopaminergic 

neurons show activation responses to both rewarding and aversive stimuli and the cues that predict 

them (Joshua et al. 2008, Fiorillo, Song, and Yun 2013, Matsumoto and Hikosaka 2009, Lerner et 

al. 2015). Since such neurons are found primarily in the SNc, it has been argued that such neurons 

are coding for behaviorally important stimuli and are not actually involved in updates to the 

estimate of the value function (Matsumoto and Hikosaka 2009, Watabe-Uchida, Eshel, and Uchida 

2017, Berridge 2007). It has also been argued that the responses of the dopaminergic neurons 

actually have multiple phases one of which encodes for novelty or salience of the stimulus as 
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described above while another encodes for the RPE signal (Fiorillo, Song, and Yun 2013, Schultz 

2016). 

 A related criticism arises from studies of mice that have a genetic mutation such that they 

do not produce dopamine in their brains from birth (Zhou and Palmiter 1995). Cannon and Palmiter 

showed that such mice were capable of developing a preference ratio for sucrose solution over 

plain water to the same degree as unmanipulated controls even though they had no dopamine in 

their brains at the time (Cannon and Palmiter 2003). It was also shown that such mice, if pre-

treated with caffeine, were capable of learning a conditioned place preference for obtaining 

morphine (Hnasko, Sotak, and Palmiter 2005) and successfully navigating a T-maze (Robinson et 

al. 2005). It has been argued that these results call into question whether dopamine is necessary 

for reinforcement learning, thereby questioning the validity of the RPE hypothesis (Berridge 

2007). 

 There have been several other criticisms of the dopamine RPE hypothesis. I have described 

previously how dopamine signals are correlated with movements and several studies have argued 

that the RPE signals observed are derived correlations from movement artifacts (Jin and Costa 

2010) or that separate populations encode for RPE and movement (Howe and Dombeck 2016). 

Others have argued that since reinforcement learning in organisms seems to be neither purely 

model-free nor model-based (see section 1.1.3.1), RPE may be but one component of a larger error 

signal referred to as sensory prediction errors and that it is the sensory prediction errors that 

dopamine truly encodes (Gardner, Schoenbaum, and Gershman 2018, Momennejad et al. 2017). 

A final major criticism is that most of the studies in which the role of dopamine as an RPE signal 

is studied are highly artificial and not reflective of natural behavior (I will discuss in section 1.3.2 

how songbird research has attempted to circumvent this problem). In addition, the subjects taking 
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part in the study are usually overtrained on the task and so the dopamine responses may not reflect 

learning. Coddington and Dudman reported recently that when dopamine responses were recorded 

as a rodent learned a novel association between sensory cues and appetitive rewards, the neurons 

showed both sensory-cue related responses and movement-initiation responses that resulted in 

apparent RPE correlates (Coddington and Dudman 2018). Further experiments will be required to 

contextualize these results in the larger RPE framework. 

 In spite of all these criticisms of the dopamine RPE hypothesis, there is a preponderance 

of evidence of dopamine conveying RPE-like signals in the ventral striatum of the basal ganglia 

in simple tasks (Watabe-Uchida, Eshel, and Uchida 2017). It is also being recognized that 

dopamine performs multiple other functions that will not be discussed in detail here including 

control of movement vigor (Beierholm et al. 2013, Niv et al. 2007, Panigrahi et al. 2015, Turner 

and Desmurget 2010), modulation of attention and manifestation of Attention Deficit Hyperactive 

Disorder (Cook Jr et al. 1995, Huang et al. 2015, Nieoullon 2002) as well as sleep (Monti and 

Monti 2007) and regulation of circadian rhythms (Korshunov, Blakemore, and Trombley 2017). 

Smart experimental designs will be required to study the interactions between these various 

proposed functions for dopamine to uncover a unified theory for the role of dopamine in the brain, 

if one exists. 

1.2.3 Dopamine in Sensorimotor Adaptation 

While there is an extensive literature on the role of dopamine in reinforcement learning as 

discussed in section 1.2.2, the role of dopamine in sensorimotor adaptation has been characterized 

much less. Dopaminergic neurons in the brain have been found to decrease their activity with age 

in humans and such a decline has been correlated with declines in motor function (Volkow et al. 

1998). Furthermore, in prism goggles adaptation tasks (see Section 1.1.2), elderly subjects show a 
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distinct deficit in adaptation as compared to younger subjects (Bock 2005, Seidler 2006) though 

they did not show a deficit in recovering from the after-effect of the adaptation (Bock 2005). 

Furthermore, the deficit in sensorimotor adaptation was specific to adaptation tasks and did not 

extend to sequence learning tasks resulting in the hypothesis that there were age-related deficits in 

cerebellar mediated motor skills (Seidler 2006).  

 A study conducted in patients with Parkinson’s disease (PD) revealed that patients not on 

L-DOPA treatment, therefore with less dopamine, showed stronger adaptation deficits than when 

on their L-DOPA treatment or against age-matched controls for a task in which participants were 

required to point directly ahead with rotational manipulation of their visual field using prism 

goggles (Paquet et al. 2008). A similar reduction in adaptation among PD patients was observed 

when adapting vocal motor behavior to an induced change in pitch of auditory feedback (Mollaei, 

Shiller, and Gracco 2013, Abur et al. 2018). A more finely controlled experiment involving a 

reaching task in a force-field through virtual reality reported that PD patients had trouble adapting 

to large perceivable sensory feedback errors but could adapt as well as controls to small gradually 

introduced errors even if the final error magnitude was quite large (Mongeon, Blanchet, and 

Messier 2013). 

 Hence, while there have been some studies linking dopamine to sensorimotor adaptation, 

they have largely been restricted to studies in PD patient populations. PD patients have a host of 

co-morbid conditions such as cognitive and executive deficits in addition to large motor deficits 

(Jankovic 2008, Dubois and Pillon 1996, Lees and Smith 1983, Cooper et al. 1991). In addition, 

PD patients also suffer other neuropathologies in addition to dopaminergic loss such as 

accumulation of Lewy bodies composed of aggregated α-synuclein and degeneration of several 

other nuclei such as the dorsal raphe, the locus ceruleus and motor vagal nucleus among others 
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(Jellinger 1991, Dickson 2012). As a result, the role of dopamine specifically in sensorimotor 

adaptation has been difficult to isolate. This question therefore forms the core of this dissertation 

and I detail my results in Chapter 2. 

1.3 Songbirds as a model system 

The experiments reported in this dissertation all used male Bengalese finches (Lonchura striata 

var. domestica), a type of songbird, as a model system in which to study sensorimotor learning. 

The qualities of the songbird as a model system in which to study sensorimotor learning are 

discussed below. This section is divided into the following subsections. In section 1.3.1, I will give 

a brief overview about the advantages of the songbird as a model system. In section 1.3.2, I will 

discuss the advances made in understanding reinforcement learning using songbirds and in section 

1.3.3, I will discuss the same for sensorimotor adaptation in songbirds. 

1.3.1 Overview 

Human infants learn speech from their parents or other adults around them by the process of vocal 

imitation (Kuhl and Meltzoff 1996, Meltzoff and Moore 1983). Songbirds are among a select 

number of other organisms that similarly learn their vocalizations via vocal imitation (Price 1979, 

Doupe and Kuhl 1999, Lipkind et al. 2013). Furthermore, the song is actively maintained by 

auditory feedback such that deafening the birds causes song to deteriorate over time (Nordeen and 

Nordeen 1992, Sohrabji, Nordeen, and Nordeen 1990). Since song is a male-specific courtship 

behavior in Bengalese finches, only the males sing and so all experiments for this dissertation have 

been limited to male Bengalese finches. Songbirds have been found to have an extensive network 

of brain nuclei that are exclusively involved in song production and learning (Nottebohm, Stokes, 

and Leonard 1976, Scharff and Nottebohm 1991). As detailed in Figure 1.3 a), the song system 

has two major pathways for song control. One pathway which involves the HVC (used as a proper 
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name; see (Reiner et al. 2004) for current nomenclature in avian neuroscience) and the RA (Robust 

nucleus of the Acropallium) projects to the brainstem nucleus nXIIts which in turn projects to the 

muscles controlling the syrinx that produces song. Lesions of HVC or RA either severely impair 

or abolish song production (Nottebohm, Stokes, and Leonard 1976). Hence, this pathway is 

referred to as the motor production pathway with RA being considered the motor cortex analog 

and HVC being equated to the premotor cortex. The other major pathway is the Anterior Forebrain 

Pathway (AFP) which is thought to be involved in song learning and maintenance in adulthood 

but not production. The AFP includes the basal ganglia nucleus Area X, a part of the songbird 

thalamus DLM and a cortical nucleus LMAN, considered the output nucleus of the AFP. Lesions 

of LMAN were found to impair song learning in juveniles but not affect adult song production 

(Bottjer, Miesner, and Arnold 1984). Similarly, lesions of Area X were found to selectively impair 

song learning and prevent degradation of song following deafening (Sohrabji, Nordeen, and 

Nordeen 1990, Brainard and Doupe 2000). This dissociation of functional pathways in addition to 

the fact that invasive manipulations of these brain nuclei do not cause any other gross motor 

deficits in songbirds (Feenders et al. 2008) has made songbirds an excellent model system with 

which to study the neural mechanisms underlying sensorimotor learning. 

1.3.2 Reinforcement Learning in Songbirds 

As I mentioned in section 1.2.2.2, one of the major criticisms of the dopamine RPE hypothesis 

was the fact that the tasks that organisms performed in order to study RPE were highly simplistic. 

Specifically, such tasks were either not indicative of the organism’s behavior in a natural 

environment or the organisms had been overtrained in the task prior to recording dopamine 

activity. Research in songbirds can sidestep that issue to a certain extent. For one, the data we 

analyze in songbirds consists of bird song which is a spontaneously produced natural behavior. 
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Birds vocalize spontaneously hundreds of times per day. We capture the complexity of their vocal 

repertoire by recording their song and analyzing the frequency components in the song over time 

as shown in a sample spectrogram in Figure 1.3 b). Furthermore, adult songbirds maintain their 

song through auditory feedback and change their songs in responses to auditory perturbations 

(Sakata and Brainard 2006, 2008). However, it was the development of the white noise (WN) 

learning paradigm that saw an explosion of research into the mechanisms underlying 

reinforcement learning in songbirds (Tumer and Brainard 2007). 

 Even though birds have a large degree of stereotypy in their songs and repeat it several 

hundreds of times per day, if one were to compute the pitch of each syllable every time they sang, 

one would find a fair degree of variability in the exact pitch sung. Tumer and Brainard showed 

that birds could learn actively on this variability. Specifically, they showed that if a portion of this 

variability, say the lower 50% of pitches produced, were to be targeted with an aversive stimulus 

in the form of a blast of WN, the birds would shift their pitch upwards over time so as to reduce 

 
Figure 1.3: Neural pathways involved in and example spectrogram of birdsong.  

a) A schematic of the bird brain showing the major song nuclei and their connectivity. Also shown are the 
classifications into the vocal motor pathway involved in song production and the anterior forebrain pathway (AFP) 
involved in song learning. b) An example spectrogram of a bird’s song. The plot shows the frequency content in 
the bird’s song over time. We can distinguish 5 syllables from the spectrogram shown and assign labels A through 
E to them. In this example, the pitch of syllables B, D and E can be quantified cleanly while those of A and C 
cannot. We restrict our analysis to data from syllables whose pitch can be quantified cleanly. 
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the proportion of pitches being targeted by WN (Tumer and Brainard 2007). This shift was 

bidirectional in nature and one could also make the birds shift further from their baseline pitch by 

systemically changing the threshold of pitches targeted with WN as the birds shifted their pitch 

(Andalman and Fee 2009, Warren et al. 2011). Furthermore it was showed that the AFP played a 

role in this learning since inactivation of the AFP resulted in a regression of the shifted pitch 

(Andalman and Fee 2009). When WN was introduced, it was originally meant for targeting 

changes in pitch. However, it was found to be effective in targeting durations of intersyllable gaps 

as well. Manipulations of the basal ganglia (Area X) impacted the changes in pitch but not the 

changes in temporal gaps (Ali et al. 2013). There was a lot of interest in uncovering the sensory 

nuclei involved in such reinforcement learning as well (Canopoli, Herbst, and Hahnloser 2014). 

 The connection to dopamine in reinforcement learning in songbirds was made when we 

showed that birds that had dopamine depleted in Area X, the basal ganglia nucleus involved in 

song learning, showed a deficit in successfully shifting their pitch away from those targeted by 

WN as compared to unlesioned or saline injected controls (Hoffmann et al. 2016). It was also 

shown that dopaminergic neurons in the VTA showed RPE like responses to avoiding the WN 

stimulus much like dopaminergic neurons in rodents or non-human primates in other situations 

(Gadagkar et al. 2016). Finally, it was also verified using optogenetics that direct optical 

stimulation or inhibition of VTA/SNc neurons projecting to Area X was sufficient to induce pitch 

shifts either towards or away from the range of pitches being targeted respectively (Xiao et al. 

2018, Hisey, Kearney, and Mooney 2018). Active research in this area involves verifying whether 

the actor-critic framework of the basal ganglia as observed in other species is also applicable to 

songbirds (Chen et al. 2018). 
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1.3.3 Sensorimotor Adaptation in Songbirds 

As I had mentioned briefly in section 1.1.2, Sober and Brainard developed a technique to implant 

customized miniature headphones onto songbirds through which one could provide almost real-

time feedback (delay of 10 to 15 ms) of auditory inputs (Sober and Brainard 2009, Hoffmann et 

al. 2012). These headphones were intended to replace the auditory feedback of the bird and relay 

a pitch shifted feedback to the bird. Birds learned to correct for this introduced error in pitch by 

lowering their pitch in response to an upwards pitch shift and by raising their pitch in response to 

a downwards pitch shift. The birds also displayed the classical after-effect of the headphones or 

washout of the learned pitch after the pitch shift through the headphones was set back to zero. 

Hence, this headphones learning paradigm became a useful paradigm to use to study the neural 

mechanisms underlying sensorimotor adaptation in songbirds. 

 A curious effect of the headphones learning paradigm was that compensation scaled 

negatively with the size of the error (Sober and Brainard 2012). Specifically, in terms of percentage 

compensation, birds compensated most for a 0.5 semitone shift and the least for a 3 semitones 

shift. Speed of learning was also maximal for the smaller shifts. It was hypothesized that the degree 

of overlap between the history of produced pitches and the currently heard pitches through the 

shifted auditory feedback dictated the percent compensation and speed of learning (Sober and 

Brainard 2012). This was verified through a study of juvenile song birds who had learned most of 

their song but had a greater degree of variability than fully grown adults (Kelly and Sober 2014). 

Additionally, computational models using Bayesian inference could successfully capture the 

dynamics of the learning in response to various error sizes (Zhou et al. 2018, Hahnloser and Narula 

2017). 
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 For this dissertation, I am primarily interested in the role dopamine plays, if any, in 

sensorimotor adaptation. In order to address this question, I replicated the dopamine depletion 

paradigm of Area X described for reinforcement learning (Hoffmann et al. 2016) and measured 

the adaptation the birds showed in response to pitch shifted auditory feedback through headphones 

(Hoffmann et al. 2012, Sober and Brainard 2009). The results of my experiments are discussed in 

detail in Chapter 2. 

1.4 Error Propagation in Hierarchical Data 

Before I conclude this introduction, I must give some importance to the problem of error 

 
Figure 1.4: An extreme example of pseudoreplication.  

Left panel: The true distribution of weight in a population. This sample was generated by assuming a normal 

distribution with mean 160 and standard deviation of 50 (the negative weights are because of the symmetric 
simulation). Middle panel: An independent samples draw from the distribution of 1000 points. As is evident from 
comparing to the true distribution, the sample is a close approximation to the true distribution. Right panel: An 
example of extreme pseudoreplication. Two samples were drawn from the original population at random and 
those samples were then resampled 500 times (simulated as drawing from a normal distribution with standard 
deviation of 5 around the true value as the mean) and combined to be presented as 1000 individual draws. As is 
evident from comparing to the left panel, it is not a good approximation of the true distribution and cannot be fixed 
simply by resampling the two points again. 
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propagation in hierarchical datasets. Statistical tests and analyses of hierarchical data have been a 

long-standing problem in several scientific domains, since one of the fundamental assumptions of 

such tests is violated, namely the assumption that all data points are independent. By the very 

nature of being hierarchical, data within a particular level are often not independent from each 

other. If one observes a typical songbird study, the study contains order of 10 birds, each bird sings 

order of 10 types of syllables and each syllable is repeated tens to thousands of times per day. The 

covariance one could expect between the pitch of one particular syllable of one particular bird at 

two different time points is very different from that expected if the syllables were different or if 

the birds themselves were different. Hence, propagating errors through the various levels and 

computing statistical tests correctly is of utmost importance. In this section, I will discuss how this 

problem was first identified as well as the early approaches made to address it. I will then discuss 

Linear Mixed Models (LMMs) and their applications in addressing these issues. I will conclude 

with a discussion of bootstrapping and how I used it to address error propagation in hierarchical 

data.  

1.4.1 Problem Identification and Early Solutions 

One of the earliest identifications of such a problem and the statistical inferences being made about 

the data from such experiments came from an article detailing pseudoreplication in ecological field 

experiments (Hurlbert 1984). Replication or repeated measures means that one draws independent 

samples from an unknown underlying probability distribution several times. If the samples are 

independent, then as the number of samples increases, the distribution of samples approaches that 

of the true underlying distribution. However, if the samples are not independent, then the previous 

statement about approaching the underlying distribution with increasing number of samples need 

not be true. An extreme example where the assumption is demonstrably false is shown in Figure 
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1.4 where the weight of two individuals is sampled repeatedly and therefore cannot approximate 

the true distribution of weight of individuals in the population regardless of the number of samples.  

 While the problem of pseudoreplication in ecological studies was not as extreme as 

described above, it could take on several forms and identifying these accurately and accounting 

for them accordingly was challenging. Hulbert in his 1984 review classified pseudoreplication in 

ecological studies under 4 major categories that are briefly discussed below (Hurlbert 1984, 

Heffner, Butler, and Reilly 1996).  

1. Simple pseudoreplication: This was the most common form of pseudoreplication observed 

at the time. This involved samples from a single experimental “unit” where a unit could be 

a single sampling location in a study comparing samples of fish across several water bodies, 

for example, being analyzed as if they had been replicated across multiple experimental 

units.  

2. Temporal pseudoreplication: This is when a single experimental unit is sampled repeatedly 

through time and each individual sample is treated as an independent unit. The forms of 

pseudoreplication discussed above and some aspects of the data I analyze for my results 

fall under this category. However, as I will detail later, due to the nature of my analysis, I 

mostly do not address this category. 

3. Sacrificial pseudoreplication: This happens when multiple samples under multiple 

experimental units are pooled together prior to analysis and treated as if they were all 

collected as part of a single experiment. This ignores the fact that there are two levels of 

variance in this dataset, namely, variance within a single experimental unit and variance 

between experimental units. This deals with the hierarchical nature of data which is what I 

will primarily address in my results in Chapter 3. 
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4. Implicit pseudoreplication: This is where studies present subsampled treatments within a 

single experimental unit which were not intended to be tested for differences originally as 

different groups and present graphs depicting non-overlap between the standard errors or 

confidence intervals. Additionally, statistical tests are typically not applied but 

“significance” is nevertheless discussed. 

Since the identification of pseudoreplication, several methods have been proposed for addressing 

it (Stewart-Oaten, Murdoch, and Parker 1986, Millar and Anderson 2004) including resampling 

methods (Crowley 1992) which I will detail in section 1.4.3. Additionally, while pseudoreplication 

was first identified in ecological studies, it has been recognized in many other fields including 

neuroscience (Lazic 2010) and is part of the reason journals have been pushing for reporting exact 

p-values in addition to degrees of freedom and test statistic values. Furthermore, while there has 

been pushback against pseudoreplication (Oksanen 2001, Schank and Koehnle 2009), the fields at 

large have recognized and embraced it and are reducing the incidence of pseudoreplication in their 

studies (Heffner, Butler, and Reilly 1996, Kroodsma et al. 2001). It is still the case however that 

in neuroscience many studies that should be correcting for this are not doing so. 

1.4.2 Linear Mixed Models (LMMs) as a Solution 

Multilevel analysis (Snijders 2011, Hox, Moerbeek, and Van de Schoot 2017) emerged as a prime 

solution to the problem of pseudoreplication, particularly to problems in the categories of temporal 

and sacrificial pseudoreplication. Multilevel analysis acknowledges the fact that data, and 

therefore variance, exist at various levels that each must be treated separately. In order to do so, 

multilevel analysis typically takes the form of linear regressions where the contributions of 

different levels are regressed as “random” effects while the factor of interest is accounted for as 

the “fixed” effect (see (Roux 2002) for a full glossary of terms). The most popular form used in 
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biological sciences and in neuroscience in particular is the LMM (Aarts et al. 2015, Aarts et al. 

2014). 

 While LMMs had been actively researched and used in various settings for decades before, 

it was only in the 1990s that computational hardware and software made large scale 

implementation of LMMs feasible for the vast majority of biological experiments. Even then, its 

popularity did not catch on much till the early 2000s when it was proposed as a potential fix for 

the pseudoreplication problem in studies involving fisheries (Millar and Anderson 2004). Since 

then, LMMs have been used regularly in biological sciences including neuroscience when dealing 

with time series data which would otherwise fall under temporal pseudoreplication (Wykes et al. 

2012, Howe et al. 2013) and when dealing with hierarchical data collecting a large number of trials 

from a small number of subjects which would otherwise be a form of sacrificial pseudoreplication 

(Arlet et al. 2015, Pleil et al. 2016, Liang et al. 2015).  

 In spite of the numerous examples of studies that do use LMMs, they are still not widely 

used in a large number of areas where pseudoreplication may still be occurring, including the 

analysis of songbird vocal behavior. A potential reason for this is that in spite of the availability 

of software that can build LMMs relatively easily (fitlme in MATLAB; mixedlm from the 

Statsmodels library in Python), LMMs can be quite tricky to build accurately for testing a complex 

hypothesis from a hierarchical dataset and often times require the help of a statistician to accurately 

build and compute the appropriate LMM. However, more importantly, LMMs also assume that all 

hierarchical structure present in the dataset is linear in nature. In practice, this is often not the case 

and therefore the LMMs may not fit the data as well as one would like. A model that makes less 

assumptions about the structure of the data is therefore more desirable. 
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1.4.3 Bootstrapping and other Resampling methods as a solution 

The bootstrap is a resampling method that has been popular since the 1980s (Efron 1981, 1992, 

Efron and Tibshirani 1994) and was in fact proposed as a viable fix to the problem of 

pseudoreplication as early as 1992 by Crowley’s seminal review (Crowley 1992). The bootstrap 

as a statistical method has fallen in and out of popularity over the years since. It has been used in 

fields as wide ranging as meta-analysis of ecological studies (Adams, Gurevitch, and Rosenberg 

1997), phylogenetic analyses (Garland Jr et al. 1993, Garland Jr, Midford, and Ives 1999) and 

analysis of genetic diversity among crops (Mohammadi and Prasanna 2003) for example. 

However, its relative simplicity and lack of an explicit hypothesis testing step have made it less 

preferable to alternatives such as the multi-factor ANOVA which claim to also perform hypothesis 

testing in addition to accurately dealing with hierarchical data (Anderson and Braak 2003, 

Anderson 2001). Additionally, the bootstrap was shown to be more conservative, i.e., produce 

larger error bars, than standard methods and is therefore less likely to result in a positive result 

(Adams, Gurevitch, and Rosenberg 1997). These factors may have contributed to the bootstrap not 

gaining as widespread use as LMMs in tackling pseudoreplication, particularly in the biological 

sciences. 

 However, the bootstrap did find widespread use in statistics. Following work by Efron and 

Tibshirani in popularizing the bootstrap, several algorithms were developed for the bootstrap to 

apply to various contexts. Some of them, such as residual bootstrap models resembled LMMs in 

many aspects (Davison and Hinkley 1997, Carpenter, Goldstein, and Rasbash 2003). Non-

parametric and multi-layered sampling techniques were developed for dealing with hierarchical 

data and were shown to be more accurate in estimating uncertainty and confidence intervals than 

other commonly used methods (Field and Welsh 2007, Harden 2011, Thai et al. 2013, Huang 
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2018). Given its successful application to a wide variety of other fields, I argue in Chapter 3 that 

its use in neuroscience is most warranted. 

 Bootstrapping is a very simple and easy to understand, yet powerful resampling procedure. 

In essence, bootstrapping involves resampling with replacement among the given population and 

computing a metric of interest (as long as it obeys the central limit theorem) from that resampled 

data. This process is repeated N times so that at the end, one has N values for the metric of interest. 

If N is sufficiently large, the mean of these N values will be very close to the true value for the 

metric of interest in the original population and the 67% confidence interval gives an accurate 

estimate for the error in measurement of said metric (Efron and Tibshirani 1994). Building on 

previous work on hierarchical bootstrapping (Efron, Halloran, and Holmes 1996, Shimodaira 

2004, 2002), I detail in Chapter 3 how I used bootstrapping to account for the error in songbird 

data accurately and show how a result published previously from our lab (Hoffmann and Sober 

2014) did not have the statistical power required to state one of its conclusions if pseudoreplication 

is appropriately accounted for in addition to its utility for a second example in behavioral 

experiments with flies (Cande et al. 2018). I also use the same technique to quantify my own 

experimental results presented in Chapter 2. 

1.5 Dissertation Overview 

As I hope to have conveyed through this introduction, it is still an open question as to whether 

dopamine plays a role in sensorimotor adaptation and if it does, how it does so. Furthermore, 

neuroscience is an area of study that is highly susceptible to pseudoreplication due to the 

hierarchical nature of the data analyzed. Therefore, the studies in this dissertation are arranged into 

the following chapters. 



42 

 

 

1. Chapter 1 provides an introduction and review of the literature identifying specific gaps in 

the scientific knowledge that this dissertation hopes to address. 

2. Chapter 2 details results from an experiment designed to test the role of dopamine in 

sensorimotor adaptation in songbirds. I found that dopamine depletion produces two not 

mutually exclusive effects in songbirds. First, there is an effect on song production in that 

the average pitch of the song reduces over time following dopamine depletion. Second, 

there is a clear deficit in sensorimotor adaptation since songbirds are unable to respond 

adaptively to an induced shift in pitch through the headphones following dopamine 

depletion. A full discussion of the interpretation of these results is detailed in section 2.5. 

3. Chapter 3 details the use of hierarchical bootstrapping to solve the problem of 

pseudoreplication in songbird neuroscience due to the hierarchical nature of the data. I also 

detail false positive rates of various previous approaches in a simulation example and 

provide a couple of examples of the utility of the hierarchical bootstrap in analyzing 

hierarchical datasets in neuroscience. 

4. Chapter 4 provides an overarching discussion for the entire dissertation and concludes with 

some future lines of research that have been opened as a result of this dissertation. 

5. A comprehensive list of references cited in this dissertation is provided at the end.  
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2 CHAPTER II: DOPAMINE DEPLETION AFFECTS VOCAL 

ACOUSTICS AND DISRUPTS SENSORIMOTOR 

ADAPTATION IN SONGBIRDS1 

2.1 Abstract 

Dopamine is hypothesized to convey error information in reinforcement learning tasks with 

explicit appetitive or aversive cues. However, during motor skill learning feedback signals arise 

from an animal’s evaluation of sensory feedback resulting from its own behavior, rather than any 

external reward or punishment. It has previously been shown that intact dopaminergic signaling 

from the ventral tegmental area – substantia nigra compacta complex (VTA/SNc) is necessary for 

vocal learning when songbirds modify their vocalizations to avoid hearing distorted auditory 

feedback (playbacks of white noise). However, it remains unclear whether dopaminergic signaling 

underlies vocal learning in response to more naturalistic errors (pitch-shifted feedback delivered 

via headphones).  We used male Bengalese finches (Lonchura striata var. domestica) to test the 

hypothesis that the necessity of dopamine signaling is shared between the two types of learning. 

We combined 6-hydroxydopamine (6-OHDA) lesions of dopaminergic terminals within Area X, 

a basal ganglia nucleus critical for song learning, with a headphones learning paradigm that shifted 

the pitch of auditory feedback and compared their learning to that of unlesioned controls. We found 

that 6-OHDA lesions affected song behavior in two ways. First, over a period of days lesioned 

birds systematically lowered their pitch regardless of the presence or absence of auditory errors. 

Second, 6-OHDA lesioned birds also displayed severe deficits in sensorimotor learning in response 

to pitch-shifted feedback. Our results suggest roles for dopamine in both motor production and 

                                                 
1 A version of this Chapter has been published in eNeuro (Saravanan et al. 2019b). 
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auditory error processing, and a shared mechanism underlying vocal learning in response to both 

distorted and pitch-shifted auditory feedback. 

2.2 Introduction 

Complex organisms perform sensorimotor learning to modulate behavior in response to sensory 

feedback. This process uses feedback from past performances arising from either explicit 

reward/punishment cues (e.g. food reward, electric shocks) or from self-evaluation of the 

performance (e.g. hearing one’s own voice during speech or song). While prior work has taken a 

number of approaches to taxonomizing different forms of sensorimotor learning, including 

distinguishing model-based and model-free learning (Mohan, Morasso, and Metta 2011, Wolpert, 

Ghahramani, and Jordan 1995, Haith and Krakauer 2013) and habitual versus goal-directed 

behavior (Balleine and O'doherty 2010, Redgrave et al. 2010), here we focus on an orthogonal 

distinction into two broad components: error-based learning that relies on self-evaluation and 

reinforcement learning that relies on cues from the environment (Wolpert, Diedrichsen, and 

Flanagan 2011). Classic studies have linked dopamine to reinforcement learning as a reward 

prediction error signal that conveys information about explicit rewards and punishments (Schultz, 

Dayan, and Montague 1997, Glimcher 2011). However, the question of whether dopamine is also 

involved in error-based learning in the absence of external rewarding or aversive cues has been 

harder to address. Some studies have reported deficits in error-based learning in patients with 

Parkinson’s disease (Paquet et al. 2008, Mollaei, Shiller, and Gracco 2013), but since Parkinson’s 

disease is associated with cognitive and executive deficits in addition to larger motor deficits 

(Jankovic 2008, Dubois and Pillon 1996, Lees and Smith 1983, Cooper et al. 1991), the specific 

role of dopamine has been difficult to isolate. 
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 Songbirds have emerged as an effective model system in which to study the role of 

dopamine in sensorimotor learning. Songbirds spontaneously produce songs hundreds of times per 

day. Like human speech, song is learned during development (Lipkind et al. 2013, Wilbrecht and 

Nottebohm 2003) and actively maintained by auditory feedback through adulthood (Sakata and 

Brainard 2006, 2008, Sober and Brainard 2009, Kuebrich and Sober 2015). Additionally, 

songbirds have a well-defined neural circuitry dedicated to song production and song learning 

(Sohrabji, Nordeen, and Nordeen 1990, Brainard and Doupe 2000, Scharff and Nottebohm 1991). 

Dopaminergic neurons from the ventral tegmental area/substantia nigra pars compacta (VTA/SNc) 

complex innervate Area X, a basal ganglia nucleus essential for song learning, and have been 

hypothesized as a way for auditory error information to enter the song system (Mandelblat-Cerf et 

al. 2014, Peh, Roberts, and Mooney 2015, Bottjer 1993, Soha, Shimizu, and Doupe 1996) (see Fig. 

2.1). Researchers examining vocal control employ two primary methods to induce song learning 

in adult songbirds: through distorted auditory feedback (Tumer and Brainard 2007) and through 

pitch shifts played through custom-made headphones (Sober and Brainard 2009). It remains 

unclear to what extent the two paradigms share underlying neural mechanisms. Dopamine has 

been shown to be involved in changing the pitch of the song in response to distorted auditory 

feedback. Specifically, birds display deficits in learning to avoid distorted feedback under 

dopamine depleted conditions (Hoffmann et al. 2016, Hisey, Kearney, and Mooney 2018). Neural 

recordings of dopaminergic neurons revealed prediction error type responses when birds were 

required to avoid such auditory distortions while singing (Gadagkar et al. 2016), and pitch-

contingent optical stimulation of dopaminergic terminals in Area X evoked changes in the pitch of 

the birds’ song (Xiao et al. 2018, Hisey, Kearney, and Mooney 2018). Here, we tested the 

hypothesis that there are common neural mechanisms underlying both learning paradigms by 
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studying the role of dopamine in birds when they respond to a pitch shifted version of their own 

auditory feedback (Sober and Brainard 2009). 

 We tested the role of dopamine in error-based learning by selectively lesioning 

dopaminergic terminals in Area X using 6-hydroxydopamine (6-OHDA). Since the cell bodies of 

dopaminergic neurons in VTA/SNc that innervate Area X are intermingled with those projecting 

to the rest of the songbird basal ganglia (Person et al. 2008), we injected 6-OHDA directly into 

Area X to avoid introducing general motor or song production deficits. We fitted the birds with 

custom-built headphones through which we introduced a shift in pitch (either upwards or 

downwards) of the bird’s auditory feedback (Hoffmann et al. 2012, Sober and Brainard 2009) to 

measure how birds changed their pitch over time in response to this induced sensory error and how 

self-guided error correction was affected by dopamine manipulations. 

2.3 Materials and Methods 

All 16 animals used for this study were adult (range of ages: 105 to 217 days post hatch; median 

age: 141 days post hatch) male Bengalese finches (Lonchura striata var. domestica). Throughout 

the study, the animals were housed in isolated sound attenuating chambers (referred to as sound 

boxes) on a 14-10 hour light-dark cycle. All singing analyzed for this paper was undirected song, 

i.e., songs sung in the absence of a female. All procedures were approved by Emory University’s 

Institutional Animal Care and Use Committee. 

2.3.1 Experimental design and Statistical Analysis  

Songbirds display significant bird-by-bird variability in the amount of learning displayed, and so 

most experimental designs include a within-bird control to measure the amount of learning within 

a bird before and after a manipulation of interest (Hoffmann et al. 2016, Hisey, Kearney, and 

Mooney 2018). However, in the case of headphones as we use here (described in Headphones 
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Attachment and Assembly below), the only way to secure the headphones to the birds for the 

duration of the experiment is to cement them to the skull. Although this method ensures that the 

headphones fit comfortably around the ear canals and remain in place for the duration of the 

experiment, cementing the headphones to the skull prevents access to the brain, thereby preventing 

us from examining learning in the same animals pre- and post-lesion. As a result, we designed a 

group comparison study to test the role of dopamine in sensorimotor adaptation. We performed 

pitch shift experiments on 6 unlesioned birds (3 each for upward shifts and downward shifts) and 

8 lesioned birds (4 for upward pitch shift and 4 for downward pitch shift). As detailed below, 

virtual auditory feedback through the headphones was delivered almost in real time and was meant 

to replace the natural auditory feedback that birds would otherwise receive. All pitch shifts were 

1 semitone in magnitude (equally split between +1 and -1 semitone shifts). Each experiment 

consisted of 3 days of baseline (unshifted auditory feedback through headphones) followed by 14 

days of pitch shifted auditory feedback. At the end of the shift period, we turned off the shift in 

pitch (i.e. set the pitch shift to zero semitones as in the baseline epoch) and recorded the birds’ 

activity for 6 to 7 days. During this period, unlesioned birds typically reverse the effects of the 

pitch shift (Sober and Brainard 2009). We refer to this period as “washout.” Washout data were 

collected for all 6 unlesioned birds. Due to technical difficulties associated with keeping the 

headphones attached for extended periods of time, washout data was collected for only 4 out of 

the 8 lesioned birds (2 for upward pitch shifts and 2 for downward). In addition, we performed 

control experiments with 2 unlesioned birds fitted with headphones and no pitch shift and 8 

lesioned birds without any pitch shifts (5 with headphones and zero pitch shift throughout; 3 with 

no headphones). To minimize the number of animals we used, our unlesioned bird group consisted 

of data reanalyzed from Sober and Brainard, 2009. All data that have not been labeled explicitly 
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as “Data reanalyzed from a previous study” are new data collected for the purpose of this study. 

Furthermore, since we showed previously (Hoffmann et al. 2016) that animals injected with saline 

instead of 6-OHDA were statistically indistinguishable from unlesioned birds, we did not include 

a saline injected control group in this study. Note that of the 8 birds whose data were reanalyzed 

from Sober and Brainard (2009), the raw data for 2 animals – the unlesioned birds with no 

headphones shift – were unavailable. However, we were able to extract the daily mean pitch values 

from each animal’s data from an eps version of the original figure summarizing the data. The 

resulting figure that shows the mean change in pitch and error bars for the group was produced 

from the 2 data points for each day.  

 For our lesioned group, we reduced the dopaminergic innervation of Area X (Fig. 2.1), a 

song specific nucleus of the basal ganglia, using 6-hydroxydopamine (6-OHDA) microinjections 

as described in detail previously (Hoffmann et al. 2016). Briefly, we used stereotactic surgeries to 

target Area X with a 4 x 3 grid of microinjections of 6-OHDA (see 6-OHDA lesions below). 

Following 6-OHDA surgery, the birds were allowed to recover in their sound boxes for 4 to 5 days 

which also served as a period to allow the 6-OHDA to cause degeneration of striatal innervation 

(Jeon, Jackson-Lewis, and Burke 1995). Subsequently, the headphones (Hoffmann et al. 2012) 

were fitted to the birds and set to initially provide unshifted auditory feedback (zero pitch shift). 

Following headphones attachment, the birds typically did not sing for 2 to 4 days (see Fig. 2.1c 

for a timeline schematic). Once they started singing again (defined as at least 30 song bouts 

produced over the entire day), we began recording a 3 day baseline period. Following the 3 days 

of baseline, the birds were recorded for 14 days during a period of shift. As described previously 

(Sober and Brainard 2009, Kelly and Sober 2014), the pitch shift was a 1 semitone shift (either 

upwards or downwards) played back to the bird through the headphones. The auditory feedback 
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through the headphones was almost real-time (delay of around 10 ms) and was intended to replace 

the bird’s natural auditory feedback. In order to do so, the volume is set to be at least 2 log units 

greater in sound intensity than the bird’s own feedback. For the birds that had no pitch shift through 

the headphones, they continued with zero shift as they were in baseline for the equivalent 14 days. 

Following this 14 day period, we recorded the birds’ activity for 6 to 7 days of washout. Owing to 

the difficulties of keeping the headphones attached and functional for long periods of time, we 

were not able to collect washout data for every animal. Analysis of washout data was therefore 

necessarily limited to data from birds that did have data collected for the washout period.  

 Note that one of our 6-OHDA lesioned birds in the -1 semitone shift group was subjected 

to an extended baseline period of 6 days rather than the 3-day period used for all other animals. 

Excluding data from this bird did not change any of our results significantly. Therefore all results 

reported include this bird, treating the last three days of baseline equivalent to days 1 through 3 of 

baseline for every other bird. 

 Birds with lesions that were not fitted with headphones were returned to their sound boxes 

post-surgery and were recorded for the duration of the experiment. In this case, since they did not 

have a break in singing due to placement of fully assembled headphones, the baseline was defined 

as days 6 through 8 post lesion and the “shift” period was defined as day 9 through 22 post lesion 

to keep the timelines comparable between groups.  
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Figure 2.1: Songbird neuroanatomy and experimental design.  

a) A theory for the role of dopamine in sensorimotor learning in songbirds. The left panel shows the brain nuclei in 

the songbird primarily involved in song production and learning. Area X, a songbird basal ganglia nucleus critical 

for song learning, receives dense dopaminergic projections from the VTA/SNc complex. The right panel shows 

the nuclei involved in auditory processing in the songbird. There are other inputs (not shown) to the VTA/SNc 

complex from auditory areas and the ventral basal ganglia (vBG). One of the known pathways for auditory 

information to influence song learning is through the dopaminergic projections to Area X. We target these 

projections when we perform 6 hydroxydopamine (6-OHDA) lesions into Area X as depicted. b) A schematic for 

how the custom-built headphones introduce a pitch shifted auditory error to the birds. Briefly, a cage microphone 

records all sounds made within the cage and sends it through a pitch shifting program which is subsequently 

played back to the bird through miniature speakers attached to the headphones. The headphones also have an 

internal microphone to record output from the headphones speakers and to calibrate sound intensity. c) A detailed 

timeline for each of our experiments (see Materials and Methods).  
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2.3.2 6-OHDA Lesions: 

We performed the lesions using stereotactic surgeries as described in detail previously 

(Hoffmann et al. 2016). Briefly, birds were anesthetized using ketamine and midazolam and 

positioned at a beak angle of 20 degrees below horizontal. Isoflurane was used to sustain 

anesthesia following the first hour of surgery. All stereotactic coordinates were relative to the 

landmark Y0, the posterior border to the divergence of the central sinus in songbirds. Small 

craniotomies were performed above the coordinates AP 4.75 to 6.4; ML 0.75 to 2.3 on both sides 

(all coordinates are in mm). 6-OHDA (Tocris; conjugated with HBr) was injected bilaterally in a 

4 x 3 grid at AP coordinates 5.1, 5.5, 5.9 and 6.3 and ML coordinates 0.9, 1.55 and 2.2 with a 

DV coordinate between 3.08 and 3.18 from the surface of the brain. For each injection, the glass 

pipette was lowered into the brain slowly allowing for time for rebounding of tissue, and 

following the injection, the electrode was left in place for at least 30 seconds before withdrawal 

at a similarly slow pace. Additionally, we initially performed one final injection at AP 4.8, ML 

0.8 and DV 2.6 from the surface of the brain targeting the tail portion of Area X but dropped this 

injection in later birds as the targeting was not reliable and the injection required a larger 

craniotomy to perform. 13.8 nL of 6-OHDA was injected in the slow setting (23 nL/s) at each 

injection site using a Drummond Scientific (Broomall, PA) Nanoject II auto-nanoliter injector. 

2.3.3 Headphones attachment and assembly:  

The methodology is described in detail in (Hoffmann et al. 2012). Briefly, each set of headphones 

was custom-fit to an individual bird under anesthesia. If attached on a bird that also had a 6-OHDA 

lesion, both lesion and headphones fit adjustment were performed back-to-back in the same 

surgery. Once the headphones had been successfully fitted for the bird, the electronics (a speaker 

on each side and a miniature microphone on one side to record headphones output and calibrate 
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volume) were assembled offline. The fully assembled headphones were then refitted to the bird 4-

5 days post-surgery. We used a flexible tether with a commutator to power the headphones and 

read the electronic signals. 

2.3.4 Histology:  

Following the end of the experiment, headphones were removed and the birds were deeply 

anesthetized with ketamine and midazolam before performing perfusions using 10% formalin. The 

brains were postfixed overnight in formalin and then cryoprotected in 30% sucrose for 1 to 4 days 

prior to slicing into 40 µm sections on a freezing sliding microtome. Alternating sections were 

either immunoreacted with tyrosine hydroxylase antibody and visualized with diaminobenzidine 

(TH-DAB) or Nissl stained. TH-DAB was used to quantify the extent of lesions in the 6-OHDA 

birds, while Nissl was used to verify that there had been no necrosis and to assist in identifying 

boundaries of Area X in adjacent TH-DAB sections. For the TH-DAB reaction, all incubations 

were carried out on a shaker at room temperature and all chemicals were dissolved in 0.1M 

phosphate buffer (PB) unless otherwise noted. Fixed sections were treated sequentially with 0.3% 

hydrogen peroxide to suppress endogenous peroxidases and 1% sodium borohydride to reduce 

exposed aldehydes and improve background staining before incubating overnight in a tyrosine 

hydroxylase antibody solution (Millipore Cat# MAB318, RRID:AB_2201528, 1:4000; 0.3% 

Triton X-100; and 5% normal horse serum). Tissue was then incubated in biotinylated anti-mouse 

secondary antibody (Vector Laboratories Cat# BA-2000, RRID:AB_2313581, 1:200 and 0.3% 

Triton X-100) followed by avidin-biotin-complex (ABC) solution (Vector Laboratories Cat# PK-

4000, RRID:AB_2336818). Tissue was exposed to DAB solution (Amresco E733; 5 mg DAB per 

tablet; 2 tablets in 20 ml of purified water) for approximately 5 min. Sections were mounted, air-

dried, delipidized with ethanol and citrisolv, and coverslipped with Permount (Fisher scientific, 
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SP15-500). For the Nissl stained sections, Nissl stain was applied on mounted, air-dried tissue, 

which was delipidized with ethanol and citrisolv, and coverslipped with Permount. Stained 

sections were imaged using a slide scanner (Meyer Instruments PathScan Enabler IV; 24 bit color, 

7200 dpi, “sharpen more” filter, brightness, and contrast level 50) and the resulting images were 

analyzed using ImageJ (RRID:SCR_003070). 

2.3.5 Image and Lesion Analysis:  

TH-DAB stained sections were used for lesion quantification by analysis through a custom 

written macro in ImageJ. The analysis was based on a metric of optical density described in 

detail in (Hoffmann et al. 2016). Briefly, the macro allowed us to demarcate the boundary of 

Area X in every section that it is present. We also used a circle of diameter 0.5 mm to mark a 

section of representative striatum outside of Area X in the same section. We then defined the 

optical density ratio (OD ratio) as the ratio between the optical density of Area X in the section 

to that of striatum in the section as follows: 

𝑂𝐷 𝑟𝑎𝑡𝑖𝑜 =  
𝑂𝐷𝐴𝑟𝑒𝑎 𝑋

𝑂𝐷𝑠𝑡𝑟𝑖𝑎𝑡𝑢𝑚
 

One of the established ways of identifying Area X in songbirds has been that Area X is darker than 

the surrounding striatum when stained with TH-DAB (Soha, Shimizu, and Doupe 1996, Hoffmann 

et al. 2016, Bottjer 1993). Due to this property, we used the cumulative distribution of the optical 

density ratio in saline injected birds to define our threshold for lesions. Any section in our group 

of 6-OHDA lesioned birds with an OD ratio less than the 5th percentile of the saline injected birds 

sections counted towards the overall proportion of lesioned sections. Additionally, we used a two-

sample Kolmogorov-Smirnov test to test whether the lesioned and saline populations were indeed 

drawn from separate distributions. We also used the threshold procedure described above to 

quantify lesion extent for individual animals. We then asked whether lesion extent was 
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significantly correlated with vocal behavior metrics such as baseline variance, change in variance 

from baseline to end of shift and change in pitch at the end of shift.   

2.3.6 Pitch Quantification:  

All our analysis was performed using an extracted value of pitch for every instance in which a bird 

sings a particular syllable. Briefly, birds have multiple syllables within their song and they 

typically repeat their song hundreds of times per day during the course of the experiment. We call 

each time they sing a particular syllable an iteration of that syllable. We restricted our analysis to 

roughly 30 song files per day between 10 am to 12 pm and have shown earlier that the choice of 

time window does not qualitatively affect our results (Hoffmann and Sober 2014, Kelly and Sober 

2014, Sober and Brainard 2009). To quantify pitch, for each syllable we specify a time during the 

syllable (relative to syllable onset) during which the syllable is relatively flat and clear in the 

frequency vs time space and can be reliably quantified across iterations across days. The pitch we 

extract represents a weighted average of the frequencies with the highest power in the lowest 

harmonic of the syllable. In order to make comparisons between different syllables whose base 

frequency can vary widely, we convert the pitches into semitones as shown below: 

𝑠 = 12 ∗ 𝑙𝑜𝑔2 (
𝑝𝑖𝑡𝑐ℎ

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
⁄ ) 

where s is the change in pitch in semitones, pitch is the observed pitch and baseline is the average 

pitch across the 3 days of baseline for that particular syllable. For all group analysis, the means 

reported are the means over all birds and over all syllables weighted by the proportion of times 

they sang each syllable. This was chosen to account for the fact that syllables that are sung more 

often are exposed a greater number of times to the shifted auditory feedback. Pitch quantification 

was performed using custom-written scripts in MATLAB (RRID:SCR_001622). 
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2.3.7 Error quantification:  

For each of our groups, we had between 4 to 8 birds, each bird performed between 4 to 12 different 

syllables whose pitch could be quantified, and each syllable was repeated between 40 to 600 times 

per day. As a result, while we have several thousands of data points towards establishing the 

position of the mean pitch change per group for each day, the structure of the data is hierarchical 

and error accumulates at different levels (birds, syllables and iterations). Grouping all the data 

together and estimating the standard error of the mean underestimates the error by ignoring the 

non-independence between data points due to the hierarchical structure. On the other extreme, 

aggregating points and simply using individual birds or syllables does not allow us to use all of 

our data effectively. This is a complex problem that different studies, including our own prior 

efforts have used varying methods to address (Tian and Brainard 2017, Aarts et al. 2014, Galbraith, 

Daniel, and Vissel 2010, Sober and Brainard 2012). To more accurately quantify the error in our 

groups and better account for the variance arising from finite data samples, we use a hierarchical 

bootstrapping approach (Efron and Tibshirani 1994, Crowley 1992). In its simplest form, 

bootstrapping involves generating N (N = 104 throughout this paper) random subsamples of the 

dataset by sampling with replacement from the original data and computing a metric of interest for 

each subsample. This results in having a distribution of the metric of interest, the 67% confidence 

interval of which provides an accurate estimate of the uncertainty in measurement of that metric 

in the original dataset (Efron 1981, 1992, Efron and Tibshirani 1994). For example, if one wanted 

to obtain the uncertainty in measuring the kurtosis of the data, one would generate bootstrap 

subsamples and calculate the kurtosis for each subsample. The standard deviation of the population 

of kurtosis values so obtained gives an accurate estimate of the uncertainty of the kurtosis in the 

original data. In the special case of estimating a population of means (which is the metric of interest 
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in all instances in this paper), the uncertainty in measurement referred to above corresponds to the 

standard error of the mean of the dataset. However, bootstrapping by itself does not solve the 

problem of non-independence in hierarchical data. Crucially, to address this issue the resampling 

described above has to be done separately over each level of the hierarchy. This means that to 

generate a single subsample, we first resampled among the birds, then for each selected bird, we 

resampled among its syllables and finally for each syllable, we resampled among its iterations. 

Finally, we acknowledged that Bengalese finches can vary greatly in their syllable repertoires from 

one bird to the next. While all birds typically have an order of 10 syllables, some birds repeat one 

or two syllables with a much higher frequency than any other syllable while others represent each 

syllable equally. Since the bootstrapping procedure was used to calculate uncertainty of 

measurement due to sampling from a limited number of birds, we posited that each syllable would 

be equally likely in hypothetical new birds. Therefore, we set the number of iterations of a 

particular syllable that could occur in a bootstrapped subsample to be independent of the frequency 

of occurrence of that syllable in the actual data. All the data for the subsample were then combined 

and their mean was calculated for the subsample. Note that this procedure only applies to our 

estimate of measurement uncertainty (not the mean pitch values), since the means reported in the 

results are calculated from the actual data collected. This process was then repeated N times. In 

order to also account for the error in estimation of the mean of each syllable during baseline, the 

resampling was performed on pitch measurements recorded in hertz (Hz) and the measurements 

were converted to semitones just prior to calculating the mean pitch for each subsample. A similar 

procedure was followed for quantifying error during washout. To account for the error in 

estimation of pitch on the last day of pitch shift, the subtraction of the mean pitch on the final day 

of shift through the washout period was performed following the resampling. Our error 
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quantification was performed using custom written scripts in MATLAB (available at 

https://github.com/soberlab/Dopamine_Headphones_Paper_code).  

2.3.8 Hypothesis testing with Bootstrap:  

In addition to using bootstrapping to compute error estimates as described above, we also used a 

bootstrapping approach to test whether vocal pitches were significantly different across time or 

experimental conditions by computing direct posterior probabilities for individual hypotheses. 

Hence, we report our results in terms of direct probabilities of a sample being greater than or equal 

to another sample or fixed value in lieu of p-values. Specifically, we resample the distribution for 

each group and calculate the mean 104 times to produce a distribution of resampled means to 

calculate the variance associated with having a finite number of samples.  

 These resampled distributions were used to compute whether the two distributions of vocal 

pitches were significantly different. For all instances in this paper, we use two-way tests with α = 

0.05. This means that a probability is significant if the probability supporting the hypothesis, p < 

α/2 or if p > (1 – α/2), i.e., if p < 0.025 or if p > 0.975. In the case of computing the probability of 

the mean of a group being different from a constant, one can calculate the proportion of the 

population of bootstrapped means (as defined in Error quantification above) being greater than or 

equal to said constant. For example to compute the probability that the mean shift in pitch of a 

particular group is significantly different from zero, one would compute the proportion of the 

population of bootstrapped means that are greater than or equal to zero. If this proportion is less 

than 0.025 then the pitch of the group of interest is significantly below zero while if the proportion 

is greater than 0.975 then the pitch of the group is significantly above zero. 

 We used a similar approach to compute significant differences between two groups of 

interest. In this case, we compute a population of bootstrapped means for each group. From these 
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two bootstrapped populations, we compute a joint probability distribution between the 

bootstrapped means of the two groups. The null hypothesis representing no difference between the 

two groups would correspond to a circle centered about the unity line. Therefore, to test the 

difference between the two groups, we compute the volume of the joint probability distribution on 

one side of the unity line (including the unity line itself) to quantify the probability of one group 

being greater than or equal to the other group. If the probability computed is greater than 0.975, 

then the first group is statistically greater than the second group. Alternatively, if the probability 

computed is less than 0.025, then the first group is statistically less than the second group. We 

computed multiple comparisons between groups by computing differences between 2 groups at a 

time and applied a Bonferroni correction to the threshold for significance. Our statistical tests were 

performed using custom scripts written in MATLAB which have been made available at 

https://github.com/soberlab/Dopamine_Headphones_Paper_code. 

2.3.9 Validating our Results with Linear Mixed Models:  

To ensure that our results were robust to our choice of error quantification and design, we also 

separately reported frequentist statistical tests on our results. Since our data are hierarchical (see 

Error quantification above), the recommended way to perform frequentist statistics on our data is 

through linear mixed models (Aarts et al. 2014, Aarts et al. 2015). Specifically, we built linear 

mixed models by using bird identity and syllable identity within a bird as variable effects and 

tested for significance of fixed effect factors. Concretely, our linear mixed models were of the 

form: 

𝑃𝑖𝑡𝑐ℎ𝑖𝑗𝑘 = 𝛽0𝑗𝑘 + 𝛽1 ∗ 𝑥𝑖𝑗 + 𝜀𝑖𝑗 

𝛽0𝑗𝑘 = 𝛽00𝑘 + 𝑏0𝑗𝑘 

𝛽00𝑘 = 𝛽000 + 𝑐00𝑘 
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where xij refers to the condition of the shift (± 1 semitone or 0 semitone) and is the fixed effect 

while b0jk accounts for the bird identity and c00k accounts for syllable identities within a bird which 

are both variable effects. The code for hypothesis testing using LMMs was also done in MATLAB 

and are available at https://github.com/soberlab/Dopamine_Headphones_Paper_code. 

2.4 Results 

We performed pitch shift experiments on 6 unlesioned birds (3 each for upward shifts and 

downward shifts) and 8 lesioned birds (4 for upward pitch shift and 4 for downward pitch shift). 

Following the end of the pitch shift, we also collected data during the “washout” period, i.e., when 

the pitch shift is set back to zero and the bird typically reverts its pitch back to baseline. All 6 

unlesioned birds had washout data collected for 6 days following the end of shift. Of the 8 6-OHDA 

lesioned birds, 4 had data for washout for 7 days each (we were unable to record washout data for 

the other 4 lesioned animals due to technical problems associated with long-term use of the 

headphones). In addition, we performed control experiments with 2 unlesioned birds fitted with 

headphones who heard unshifted (zero pitch shift) auditory feedback and 8 birds who received 6-

OHDA lesions but did not undergo any pitch shifts (see Materials and Methods for complete 

details).  

2.4.1 6-OHDA lesions reduce dopaminergic innervation of Area X:  

We quantified the lesion extent using a metric developed as part of our prior work (Hoffmann et 

al, 2016). Specifically, we used sections of Area X stained with diaminobenzidine (DAB), a 

chromogen that conjugates to antibodies specific for tyrosine hydroxylase (TH), the rate limiting 

enzyme involved in catecholamine synthesis and a reliable marker for dopaminergic and 

noradrenergic innervation (Figure 2.2). TH-DAB does not follow the Beer-Lambert law and varies 

in stain intensity even within the same animal (Van Eycke et al. 2017). As a result, quantification 
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Figure 2.2: Metric for quantifying the extent of our lesions in our population of birds.  

We used an optical density ratio (OD ratio) between Area X and the surrounding basal ganglia (see Materials and 

Methods) and compared the cumulative ratios between a saline injected population (N = 4 birds) and our 6-OHDA 

lesioned population (N = 16 birds). a) Examples of 6-OHDA lesioned (left) and saline injected (right) sections. The 

red trace demarcates the Area X boundary. The blue circle is chosen to represent a uniformly stained section of 

the rest of the striatum. The ratio for each section is calculated as the OD ratio between these two regions. b) 

Cumulative distribution plots for the saline injected birds (black trace) and the 6-OHDA lesioned birds (red trace). 

The shaded portion represents ratios that are greater than the 5th percentile for the saline injected birds. By this 

metric, 37.5% of all 6-OHDA lesioned sections have a smaller OD ratio. The black and red symbols correspond to 

the examples shown in a). The * represents a statistically significant difference between the red trace and the black 

trace (KS test; p<0.05; see Results for full description). 
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is typically performed between hemispheres within one section comparing a lesioned to an 

unlesioned hemisphere. However, we had to perform bilateral lesions for our experiments since 

song learning is not known to be lateralized in Bengalese finches. To quantify lesion extent, we 

used the fact that Area X has denser dopaminergic innervation and thus stains darker by TH-DAB 

than the surrounding striatum (Soha, Shimizu, and Doupe 1996, Bottjer 1993). Specifically, we 

quantified an optical density ratio (OD ratio) for a batch of birds that had been injected with saline 

into Area X (N = 4 birds; data reanalyzed from Hoffmann et al, 2016) and produced a cumulative 

distribution plot of the ratio across all sections for these birds. We then defined the 5th percentile 

of that distribution as the threshold for defining lesioned sections (see Materials and Methods). 

When we produced a similar cumulative distribution plot of the OD ratio for all 16 of our 6-OHDA 

lesioned birds, around 37.5% of all sections were below the threshold defined above (Fig. 2.2b). 

This was somewhat smaller than the lesion extent for the cohort of birds in (Hoffmann et al. 2016) 

in which 50% of lesioned sections were below the threshold. However, the lesions were 

qualitatively similar between the two groups. In addition, the population of OD ratios for the 6-

OHDA lesioned birds was consistently below that for the saline injected birds as verified by a two-

sample Kolmogorov-Smirnov test (K = 0.3467; p = 5.75*10-9). We have also previously shown 

through High Performance Liquid Chromatography (HPLC) analysis that such 6-OHDA lesions 

have no discernible effect on the existing low levels of noradrenergic innervation of Area X 

(Hoffmann et al. 2016). 

2.4.2 6-OHDA lesioned birds reduce pitch even in the absence of auditory error:  

We showed earlier that in unlesioned animals, the headphones do not cause changes in vocal pitch 

in the absence of any shifts in feedback pitch (Sober and Brainard 2009). As shown in Figure 2.3a, 

the mean pitch across days 12 through 14 of the experiment for these birds was found to be 0.02 ± 
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0.07 semitones (all measures of mean pitch reported are mean ± SEM). Since this particular dataset 

 

Figure 2.3: Quantifying the effect of headphones without any pitch shifts on the average change in pitch of the bird 

with or without lesions.  

a) Mean change in pitch of song for 2 unlesioned birds with headphones but no shifts through the headphones 

(analyzed from data extracted from Supp. Fig. 6 from Sober and Brainard, 2009). b) Mean change in pitch for 6-

OHDA lesioned birds combining both birds with headphones but no shift in pitch (N = 5 birds) or without headphones 

(N = 3 birds) for a total of 8 birds. The group averages for the two groups and the individual traces for all 8 birds is 

shown in Figure 2.4b. N.S. represents “not significantly different from zero” while the * represents a significant 

difference when comparing the last 3 days of shift combined from zero (p<0.05). 

 
Figure 2.4: Individual traces for unshifted birds. 

a) Mean change in pitch for 6-OHDA lesioned birds either with headphones but no shift in pitch (black trace; N = 5 

birds) or without headphones (gray trace; N = 3 birds). b) Mean change in pitch for individual lesioned birds 

subjected to zero pitch shift either with or without headphones. 
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only consists of the 6 data points shown in Figure 2.3a, it did not make sense to perform a bootstrap 

analysis (here SEM is measured across 6 data points; see Materials and Methods). Instead we used 

a one sample t-test and found that this distribution was not significantly different from zero (t = 

0.35; df = 5; p = 0.74). 

 Data from 8 birds with 6-OHDA lesions but without any pitch shift revealed an unexpected 

systematic lowering of vocal pitch after dopamine depletion. Of those, 5 birds had headphones that 

conveyed unshifted auditory feedback (i.e. no pitch shift) and 3 birds had no headphones attached. 

When we analyzed the mean pitch change for each day for these two groups, we found them within 

error bars of each other for all 14 days of the experiment, and their pitch change across days 12 

through 14 (-0.20 ± 0.14 with headphones; -0.16 ± 0.06 without headphones) were statistically 

indistinguishable (probability of resampled mean pitch with headphones greater than that without 

headphones was p = 0.098; see Hypothesis testing with Bootstrap in Materials and Methods). As 

a result, we combined the data from the 2 groups for the remainder of our analyses (the means for 

individual groups and traces for individual birds are shown in Fig. 2.4). The resulting mean shift 

in pitch during the course of the experiment is shown in Figure 2.3b. The overall shift in pitch over 

days 12 through 14 for this combined group was -0.19 ± 0.08 semitones. This decrease in pitch 

was statistically significant (probability of resampled mean pitch greater than or equal to zero was 

p = 0.0029), demonstrating, unexpectedly, that 6-OHDA lesions of Area X impacted song 

production by reducing the average pitch over time even in the absence of pitch-shifted auditory 

feedback. 

2.4.3 6-OHDA lesioned birds do not respond adaptively to pitch-shifted auditory error:  

In unlesioned animals, birds respond to a pitch shift through the headphones in an adaptive manner. 

Specifically, when subjected to a +1 semitone pitch shift through the headphones, the unlesioned 
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birds compensated adaptively by lowering their pitch (mean pitch change over days 12 to 14 for 

N = 3 birds was -0.40 ± 0.07 semitones; blue trace, Fig. 2.5a; probability of resampled mean pitch 

greater than or equal to zero was p < 10-4; limit due to resampling 104 times) and when subjected 

to a -1 semitone shift in pitch, the unlesioned birds increase their pitch (mean pitch change over 

days 12 to 14 for N = 3 birds was 0.36 ± 0.11 semitones; red trace, Fig. 2.5a; probability of 

resampled mean pitch greater than or equal to zero was p = 0.9996, recall that in our bootstrapping 

analysis we conclude that distributions are significantly different if the probability that one is 

greater than or equal to the other is less than 0.025 or greater than 0.975; see Methods; traces for 

individual birds are shown in Fig. 2.6a). The result of plotting adaptive change in pitch (inverting 

y-axis for +1 semitone shift birds) for unlesioned birds is shown in Figure 2.5c (black trace). A 

direct comparison between the populations of -1 semitone shift and +1 semitone shift birds 

revealed a complete non-overlap among posterior distributions of sampled means (probability of  

resampled mean pitch for +1 semitone shift greater than or equal to that for -1 semitone shift was 

p < 10-4; limit due to resampling 104 times). This resampling-based analysis reaffirms our initial 

finding (Sober and Brainard 2009) that unlesioned birds respond adaptively to pitch-shifted 

auditory errors and compensate accordingly for them, despite the fact that this earlier paper did 

not take into account the hierarchical nature of the data and the resulting propagation of uncertainty 

when computing statistical significance. 

 For 6-OHDA lesioned birds however, all birds decreased their pitch over time regardless 

of the direction of pitch shift through the headphones (Fig. 2.5b), similar to what we observed in 

lesioned birds with no pitch shifts (Fig. 2.3b). The +1 semitone shift group had a final pitch change 

of -0.38 ± 0.16 semitones (probability of resampled mean pitch greater than or equal to zero was 

p = 0.0040) while the -1 semitone shift group changed to a final pitch of -0.46 ± 0.19 semitones 
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Figure 2.5: Change in pitch in response to pitch shift errors through the headphones in unlesioned and 6-OHDA 

lesioned birds.  

a) Change in pitch from baseline over the period of pitch shift for unlesioned birds broken up by the direction of 

introduced shift in pitch (data reanalyzed from Sober and Brainard, 2009). The graph shows that birds increase 

their pitch over time in response to a downward pitch shift (red trace; N = 3 birds) and decrease their pitch to an 

upwards pitch shift (blue trace; N = 3 birds). Traces for individual birds are shown in Figure 4-1a. b) Same graph 

as in a) quantified for 6-OHDA lesioned birds (N = 4 birds for each trace). Individual birds are shown in Figure 4-1b. 

c) Adaptive change in pitch (see Results) for unlesioned birds (black trace; N = 6 birds) and 6-OHDA lesioned birds 

(gray trace; N = 8 birds). For a) and b), the * and N.S. in black represent significant and not significant differences 

respectively between the two shift conditions while the color coded differences check difference of each group from 

zero (see Results and Table 1). 
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(probability of resampled mean pitch greater than or equal to zero was p = 0.0747) relative to the 

baseline (traces for individual birds are shown in Fig. 2.6b). The two groups were not statistically 

different from each other (probability of resampled mean pitch of +1 semitone shift group being 

greater than or equal to that of -1 semitone shift group was p = 0.26). We also compared each 

group to the no shift group and did not find statistically significant results (probability of resampled 

mean pitch of no shift group being greater than or equal to that of -1 semitone shift group was p = 

0.62; probability of resampled mean pitch of no shift group being greater than or equal to that of 

+1 semitone shift group was p = 0.91). All statistical comparisons have been summarized in Table 

1. Furthermore, when we quantified the adaptive change in pitch for this group, the final change 

in pitch was close to zero (gray trace, Fig. 2.5c). This suggests that following 6-OHDA lesions, 

birds do not respond adaptively to the auditory error. Instead, the birds seem to reduce their pitch 

 

Figure 2.6: Individual traces for shifted birds. 

a) Mean change in pitch for individual unlesioned birds subjected to a ± 1 semitone pitch shift. b) Mean change in 

pitch for individual lesioned birds subjected to a ± 1 semitone pitch shift. Note that one bird subjected to a +1 semitone 

shift has a discontinuity at shift day 12 since the bird did not sing at all that day. Also note how one bird in the -1 

semitone shift group is at or slightly above zero by the end of the shift. This bird is the reason for the group not being 

statistically significantly below zero (this bird also had an extended baseline of 6 days; see Materials and Methods). 
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over time regardless of the direction or presence of pitch-shifted auditory error. Note that as was 

mentioned above and shown in Table 1, there was not a statistically significant difference between 

the Lesioned -1 semitone shift group and zero. This was due to the fact that while birds subjected 

to the -1 semitone shift did reduce their pitch on average, a few syllables for each bird increased 

their pitch, resulting in a group effect that fell short of significance. Since our error quantification 

treats the contribution from each syllable equally, the effects of individual syllables add up 

resulting in a not statistically significant difference (see Error Quantification under Materials and 

Methods). 

Table 1: Statistical tests summary 

Hypothesis tested - Bayesian Probability of group on left 
being >= column heading (see Hypothesis testing with 
Bootstrap in Materials and Methods) 

Groups 
Compared Zero 

Lesioned +1 
semitone 
shift 

Lesioned -1 
semitone shift 

Lesioned 0 
shift 0.0029 0.91 0.62 

Lesioned +1 
semitone 
shift 0.0040  0.26 

Lesioned -1 
semitone 
shift 0.0747   

 

 Since the hierarchical bootstrapping as we have performed here to calculate statistical tests 

and standard errors has not been widely applied to such datasets in neuroscience previously, we 

also analyzed our data using hierarchical linear mixed models (LMMs) (Aarts et al. 2015, Aarts et 

al. 2014). LMMs have been widely applied to datasets involving large numbers of samples from a 

small number of subjects such as non-human primate studies (Pleil et al. 2016, Arlet et al. 2015) 

and rodent studies (Liang et al. 2015) or to analyze repeated measures or time series data (Wykes 
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et al. 2012, Howe et al. 2013). Specifically, we built LMMs to test the effects of the shift condition 

while controlling bird identity and specific syllables within each bird as variable effects (see 

section 2.3.9). For the unlesioned birds the linear mixed model revealed a strong effect of the shift 

condition (t = 7.17; p = 7.92 * 10-13) on final pitch at the end of the shift period. For the 6-OHDA 

lesioned birds, the effect of the shift condition (+1 semitone shift vs -1 semitone shift vs no shift) 

was not significant (t = 1.91; p = 0.056). Also, when we combined the shift groups and compared 

them to the no shift groups, the effect was not statistically significant (t = 1.47; p = 0.14). That 

these models give us the same statistically significant results as our bootstrapping procedure gives 

us an independent verification of our error calculation and statistics. 

2.4.4 No correlations between lesion extent and changes in pitch:  

We measured the extent of 6-OHDA lesions by quantifying the proportion of histological sections 

that fell below the 5th percentile of section OD ratio for saline injected birds (see Methods). We 

can use this same threshold to obtain a rough metric of the lesion extent for each bird. Using this 

lesion extent, we computed correlations between the lesion extent and a variety of metrics of 

changes in pitch during the experiment (Table 1). However, we saw no significant correlations. 

Table 2: Correlations between lesion extent and changes in song metrics 

Lesion extent versus: Pearson’s correlation, r Correlation significance, p 

Final pitch change 0.4261 0.1466 

Baseline variance 0.296 0.3261 

Final variance -0.0498 0.8716 

Percent increase in variance -0.4272 0.1454 
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2.4.5 Washout is impaired by dopamine depletion:  

Following the end of the shift period, we turned the pitch shift through the headphones back to 

zero and recorded the birds’ songs for an additional 6-7 days. During this period, birds without 

lesions typically revert their pitch back towards baseline levels (Sober and Brainard 2009). Hence, 

we refer to this period as washout. We first collected washout data from the birds that had 6-OHDA 

lesions and headphones but no shifts. As stated earlier, by days 12 through 14 of the shift period, 

these birds had a mean pitch of -0.20 ± 0.13 semitones. By days 6 and 7 of the washout period, 

their pitch had changed to -0.34 ± 0.15 semitones (Fig. 2.7a; traces for individual birds are shown 

in Fig. 2.8a). The probability of the resampled mean pitch during the end of the shift period being 

greater than or equal to that during the end of the washout period was p = 0.67. Therefore, although 

the change was not statistically significant, the mean pitch did drop further during washout. In 

order to quantify how much the pitch changes in response to the end of the sensory perturbation 

(pitch shift), we subtracted the mean pitch for each syllable on the last day of pitch shift throughout 

the entire washout period and quantified the resulting deviation in pitch (Fig. 2.9a). This 

emphasizes the dynamics of how the pitch changes or Δ(Pitch) over time during washout in 

response to the end of the shift. The resulting change in pitch was found to be -0.12 ± 0.11 

semitones (probability of resampled mean pitch greater than or equal to zero was p = 0.22). 

 Unlesioned birds displayed a robust return to baseline following the end of the pitch shift 

period as shown in Figure 2.7b (see traces for individual birds in Fig. 2.8b). For birds subjected to 

a -1 semitone shift, they reduced their pitch from 0.36 ± 0.11 semitones at the end of shift to 0.17 

± 0.08 semitones during the last 2 days of washout (probability of mean resampled pitch during 

washout being greater than or equal to that at the end of shift was p = 0.08). Equivalently, birds 

subjected to a +1 semitone shift increased their pitch from -0.40 ± 0.07 semitones at the end of the 
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shift period to -0.20 ± 0.05 semitones by the end of the washout period (probability of mean 

resampled pitch during washout being greater than or equal to that at the end of shift was p = 0.98). 

We also computed the dynamics underlying the Δ(Pitch) over time during the washout period by 

subtracting the pitch for each syllable on the last day of shift through the washout period (Fig. 

2.9b). Birds subjected to a +1 semitone shift, having reduced their pitch during the shift increased 

their pitch during washout. The last 2 days of washout had a mean change relative to the last day 

of shift of 0.17 ± 0.07 semitones (probability of resampled mean pitch lesser than or equal to zero 

was p = 0.0003). Similarly, birds subjected to a -1 semitone shift reduced their pitch back towards 

baseline during washout by -0.22 ± 0.11 semitones relative to the last day of shift (probability of 

resampled mean pitch greater than or equal to zero was p = 0.0064).  

 For our 6-OHDA lesioned birds, only 4 out of 8 birds had data for 7 days of washout due 

to difficulties in keeping the headphones attached (2 each for upward and downward shifts). We 

repeated the analysis for washout for these birds as described above for lesioned no shift and 

unlesioned birds. First, the mean change in pitch from the last day of shift through the washout 

period is shown in Figure 2.7c. Birds subjected to a +1 semitone shift returned their pitch back 

towards baseline increasing their pitch from -0.31 ± 0.19 semitones at the end of the shift period 

to -0.20 ± 0.14 semitones by the end of the washout period (blue trace in Fig. 2.7c, probability of 

mean resampled pitch during washout being greater than or equal to that at the end of shift was p 

= 0.75). Contrary to expectations however, the birds subjected to a -1 semitone shift drifted further 

away from baseline reducing their pitch from -0.16 ± 0.22 semitones at the end of the shift to -0.38 

± 0.30 semitones by the end of the washout period (red trace in Fig. 2.7c, probability of mean 

resampled pitch during washout being greater than or equal to that at the end of shift was p = 0.35). 

The traces for individual birds are shown in Figure 2.8c.  
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Figure 2.7: Analysis of change in pitch during washout for lesioned and unlesioned birds.  

a) Mean change in pitch during “washout” for lesioned birds with headphones but no pitch shift (N = 5 birds). Day 0 

refers to the last day of the shift period. Pitch shift is turned off at the end of this day. Individual bird traces are shown 

in Figure 5-1a. b) Mean change in pitch during washout for unlesioned birds (N = 3 birds for each trace). Individual 

bird traces are shown in Figure 5-1b. c) Mean change in pitch during washout for 6-OHDA lesioned birds (N = 2 birds 

for each trace). The extremely large error bars are due in part to the bimodal nature of the data (see individual birds 

in Fig. 5-1c). The statistical tests check the last three days of the shift period against the last two days of washout 

with * representing a significant difference (p<0.05) and N.S. representing “not significant” (see Results for full tests). 
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Figure 2.8: Washout traces for individual birds.  

a) Individual birds that had a 6-OHDA lesion, with headphones but no pitch shift. Each color is a separate bird. b) 

Washout traces for individual birds that were unlesioned and subjected to a ±1 semitone pitch shift. c) Washout 

traces for individual 6-OHDA lesioned birds subjected to a ±1 semitone pitch shift. 
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Figure 2.9: Dynamics of the change of pitch or Δ(Pitch) during washout.  

Note that this figure shows the same data as Figure 2.7, but with pitch data plotted relative to the pitch on the final 

shift day rather than to the experiment’s baseline period as in Figure 2.7, a) Δ(Pitch) during washout for lesioned 

no shift birds (N = 5 birds). b) The same analysis as in a) for unlesioned birds subjected to ± 1 semitone shift (N = 

3 birds each). c) The same analysis as in a) for lesioned birds subjected to ± 1 semitone shift (N = 2 birds each). 

The * and N.S. refer to a significant difference versus not respectively for each group compared to zero over the 

last two days of washout. 
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 Curiously, when we quantified the change in pitch in response to the end of the sensory 

perturbation subtracting the pitch change through the last day of shift through the washout period 

as before (i.e. measured the direction of pitch changes during washout, without considering the 

magnitude or direction of the pitch changes at the end of the shift period), the dynamics of the 

change in pitch was very similar to that seen in unlesioned birds (Fig. 2.9c). Lesioned birds 

subjected to a +1 semitone shift, averaging across the last 2 days of washout, shifted their pitch 

0.24 ± 0.06 semitones with respect to the last day of shift (probability of resampled mean pitch 

lesser than or equal to zero was p = 0.0003). Lesioned birds subjected to a -1 semitone shift on the 

other hand, changed their pitch by -0.28 ± 0.11 semitones with respect to the last day of shift 

(probability of resampled mean pitch greater than or equal to zero was p = 0.0182). This result 

once again shows the dual effects we are observing following dopamine depletion. First, while not 

statistically significant, the pitch continued to drop for birds with unshifted auditory feedback. On 

the other hand, washout results between lesioned and unlesioned shift birds were very different in 

that washout was severely impaired in lesioned birds but confusingly followed the same dynamics 

for the Δ(Pitch) over time following the end of the pitch shifted auditory feedback. 

2.5 Discussion 

Our results reveal two key effects of dopamine manipulation on the control of birdsong. First, all 

birds subjected to a 6-OHDA lesion of Area X displayed a drop in average vocal pitch which 

appeared between a week and two weeks post-lesion (Fig. 2.3b and Fig. 2.5b). Second, 6-OHDA 

lesioned birds displayed a severe deficit in sensorimotor learning as is evidenced by the lack of 

difference in response to a +1 or -1 semitone shift in pitch (Fig. 2.5b and gray trace in Fig. 2.5c).  

 While our primary finding seems to be one that implicates a role for dopamine in motor 

production, i.e., ability to produce higher pitched renditions of syllables in a bird’s repertoire, there 
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is also a clear role for dopamine in learning the adaptive response to a sensory perturbation. It is 

true that when subjected to a +1 semitone pitch shift, there was no difference in mean change of 

pitch between lesioned (-0.38 ± 0.16 semitones) and unlesioned (-0.40 ± 0.07 semitones) birds 

(Fig. 2.5a and b, blue traces). However, when subjected to a -1 semitone pitch shift, while the 

adaptive response would be to raise their pitch, lesioned birds lowered their pitch (red trace in Fig. 

2.5b). In addition, even for the lesioned birds subjected to a +1 semitone shift, their final change 

in pitch was not statistically different from the pitch drift seen in lesioned birds with no pitch shift 

(compare black trace in Fig. 2.3b with blue trace in Fig. 2.5b). This impairment in sensorimotor 

learning is reminiscent of deficits in learning in persons with Parkinson’s disease (Paquet et al. 

2008, Mollaei, Shiller, and Gracco 2013) and rodent models of dopamine depletion in striatum and 

motor cortex (Hosp and Luft 2013, Hosp et al. 2011, Shiotsuki et al. 2010). Hence our results 

suggest two factors at play, namely, motor production and sensorimotor learning. Disentangling 

these has been a hard problem in neuroscience (Beninger 1983, Wise 2004) since manipulations 

that affect motor learning also degrade motor production, complicating efforts to isolate learning 

mechanisms (Ungerstedt 1968, Cenci and Lundblad 2007, Iancu et al. 2005). Here, we isolated the 

lesions’ effects on motor production by including the lesioned no shift group.  

 We have previously reported that 6-OHDA lesions of Area X do not produce any changes 

in number of songs produced or in any general motor behavior (Hoffmann et al. 2016). We 

similarly did not observe any qualitative difference in song quality or motor behavior between 

lesioned birds reported in this study and the birds reported in the 2016 study except the systematic 

drop in average pitch of songs sung post-lesion. Note however that the lesioned birds reported in 

this study were recorded from for 2 to 3 weeks longer post-lesion than those from the 2016 study 
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due to differences in time required to complete the behavioral experiments post-lesion. It therefore 

seems likely that this extended timeframe was necessary to observe the aforementioned pitch drop. 

 Vigor has been characterized as motivation (Salamone and Correa 2012, Salamone et al. 

2007), speed of movements, or both (Mazzoni, Hristova, and Krakauer 2007, Turner and 

Desmurget 2010). A reduction in motor vigor following dopamine depletion could explain the 

systematic drop in pitch we observed. Dopamine has been shown to be associated with vigor in 

humans and other mammalian systems (Beierholm et al. 2013, Niv et al. 2007, Panigrahi et al. 

2015, Berke 2018). In our experiments, we found that following 6-OHDA lesions of Area X the 

average pitch across all syllables for each bird dropped by roughly 11 to 13 days post-lesion. 

Higher pitched syllables require a combination of greater muscle activation and higher air sac 

pressure to be produced (Elemans et al. 2008, Goller and Suthers 1996, Riede, Fisher, and Goller 

2010, Elemans et al. 2015) suggesting that higher pitched renditions of a particular syllable are 

more effortful to produce than lower pitched ones. We thus hypothesize that while unlesioned 

birds are capable of flexibly changing their pitch in a bidirectional fashion, dopamine lesioned 

birds will display a deficit in raising their pitch due to the increased effort required to do so. A 

related observation supporting our interpretation of our results is that birds sing at an elevated pitch 

when singing directed songs to females (Sakata, Hampton, and Brainard 2008, Leblois, Wendel, 

and Perkel 2010). Since it has also been reported that dopamine levels in Area X are elevated 

during directed song (Sasaki et al. 2006), this fits with the overall trend in our results. 

 Studies that have targeted individual syllables for pitch changes following dopamine 

depletions have not reported a systematic drop in pitch post-lesion (Hoffmann et al. 2016, Hisey, 

Kearney, and Mooney 2018). Our study does not necessarily contradict these results since those 

studies reported a deficit in learning post-lesion by either combining upwards and downwards 
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shifts (Hoffmann et al. 2016) or only driving pitch changes in one direction (Hisey, Kearney, and 

Mooney 2018). Additionally, for the birds reported in this study, while the average pitch across all 

syllables for each bird dropped, some individual syllables did increase their pitch. Furthermore, as 

noted above the birds in the present study were recorded for a longer period of time post-lesion 

than those reported previously. 

 The results from our washout data from the 6-OHDA lesioned birds are challenging to 

interpret. It is true that the lesioned birds subjected to a +1 semitone shift did return their pitch 

towards baseline and washout seemed to be unaffected for these birds (blue trace, Fig. 2.7c). 

Previous studies have reported that washout was not affected by dopamine depletion in tasks where 

birds shifted the pitch of a single syllable to avoid distorted auditory feedback (Hoffmann et al. 

2016, Hisey, Kearney, and Mooney 2018). However, the birds subjected to a -1 semitone shift 

reduced their pitch resulting in their mean pitch moving further away from the baseline pitch (red 

trace, Fig. 2.7c). This suggests that washout is severely impaired in dopamine depleted birds. On 

the other hand, curiously, the change in pitch over time analyzed during washout in response to 

the end of the shift period was very similar between lesioned and unlesioned birds (compare Fig. 

2.9b and c). We speculate that the lesion effects reported above could reflect either an inability to 

adaptively modulate motor output in response to error signals or from miscalculations in 

computing the error in the first place. 

 Adaptive sensorimotor learning in songbirds in response to induced auditory pitch shifts 

has been an effective paradigm to study the computational principles underlying sensorimotor 

learning (Kelly and Sober 2014, Sober and Brainard 2012, 2009). Bayesian inference works well 

to explain how unlesioned birds respond to auditory errors based on their prior experience of 

singing (Zhou et al. 2018, Hahnloser and Narula 2017). However, since 6-OHDA lesioned birds 



78 

 

 

exhibit drops in vocal pitch regardless of the direction of feedback pitch shift, any model that 

performs an adaptation to an error signal will fail to replicate the data without an additional 

mathematical mechanism to drive pitch downward in the presence of a reduced dopamine signal. 

One potential modification to the model would be to add a “relaxation state” into which the system 

relaxes in the absence of dopamine (Shadmehr and Arbib 1992, Shadmehr and Mussa-Ivaldi 1994). 

However, apart from the mean pitch, which did drop consistently across groups following 

6-OHDA lesions, we did not find any other consistent relationships among other moments such as 

variance, skewness and kurtosis or overall probability distributions of produced pitch that could 

be used to constrain a revised Bayesian model to explain our results. Future work might therefore 

investigate the hypothesis that dopamine lesions disrupt sensorimotor learning by degrading the 

brain’s ability to perform Bayesian inference.  

 To conclude, our experiments show that dopamine plays a critical role in the brain’s ability 

to modulate vocal production in response to auditory errors. Future experiments will focus on 

disentangling specific roles for dopamine in sensorimotor learning by manipulating the dopamine 

signal at a faster temporal resolution.  Results from such experiments could help fill gaps regarding 

the roles of tonic and phasic dopamine (Grace 1991) for example and the timeline of error 

correction. Eventually, results from various such experiments can be used to impose mathematical 

constraints on a computational model detailing the quantitative role of dopamine in such 

sensorimotor learning.   
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3 CHAPTER III: APPLICATION OF THE HIERARCHICAL 

BOOTSTRAP TO MULTI-LEVEL DATA IN 

NEUROSCIENCE 

 

3.1 Abstract 

A common feature in several types of neuroscience datasets is the presence of hierarchical data 

structures (such as recording the activity of multiple neurons in multiple animals across multiple 

trials). Due to such hierarchical structure, the measurements constituting the dataset are not 

independent, even though the traditional statistical analyses often applied in such cases (e.g. 

student’s t-test) treat them as such. The hierarchical bootstrap has been shown to be an effective 

tool to accurately analyze such data and while it has been used extensively in the statistical 

literature, it is not as widespread in neuroscience despite the ubiquity of hierarchical datasets. We 

use simulated neural data to show that traditional statistical tests can result in a false positive rate 

of over 45% even if the Type-I error rate is set at 5%. While summarizing data across the non-

independent points (or lower levels) can potentially fix this problem, this methodology greatly 

reduces the statistical power of the dataset. The hierarchical bootstrap, when applied sequentially 

over the levels of the hierarchical structure, keeps the Type-I error rate within the intended bound 

and retains more statistical power than summarizing methods. We conclude by demonstrating the 

effectiveness of the method in two real-world examples, first analyzing singing data in male 

Bengalese finches (Lonchura striata var. domestica) and second quantifying changes in behavior 

under optogenetic control in flies (Drosophila melanogaster). We present the hierarchical 

bootstrap as an intuitive and powerful tool to analyze such hierarchically nested datasets. 
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3.2 Introduction 

It is commonplace for studies in neuroscience to collect multiple samples from within a category 

(e.g. multiple neurons from one animal) to boost the sample size. A recent survey found that of 

314 papers published in prominent journals covering neuroscience research over an 18 month 

period in 2013-14, roughly 53% of those studies had nested datasets featuring such hierarchical 

data (Aarts et al. 2014). When data are collected this way, the resulting data points are not 

independent. However, commonly deployed statistical tests like the Student’s t-test and ANOVA 

treat all data points as independent. This results in an underestimation of uncertainty in the dataset 

and a corresponding underestimation of the p-value (Musca et al. 2011, Hahs-Vaughn 2005, 

Arceneaux and Nickerson 2009). This arises due to the problem of intracluster correlation or ICC 

(Walsh 1947, Kish 1965) and pseudoreplication (Hurlbert 1984, Lazic 2010) in which variance 

within a cluster (or lower hierarchical level) and variance between clusters (or higher levels) are 

not propagated appropriately. To illustrate this problem, consider a hypothetical example in which 

one measures changes in dendritic spine size during learning. Since one can typically only measure 

from a few animals each in different treatment conditions, researchers usually increase sample 

sizes by measuring multiple spines from each neuron and by measuring multiple neurons within 

an animal. The hierarchical nature of such datasets can result in different samples not being 

statistically independent from each other: in the above example, spines measured from the same 

neuron may be more similar than spines measured across different neurons and even more so than 

spines measured from different animals within the same treatment condition. Such data points 

should not be treated as statistically independent but still very frequently are. 

 Linear Mixed Models (LMMs) can be used to account for the variance across different 

levels (Aarts et al. 2015, Aarts et al. 2014) and have recently been used to do so in several studies 
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(Arlet et al. 2015, Pleil et al. 2016, Liang et al. 2015, Machado et al. 2015). However, LMMs 

assume that all hierarchical structure present is linear which is often not true for typical datasets. 

Additionally, concerns have been raised about the bias and reliability of parameters returned by 

LMM fits when the number of clusters is small as is also often the case in neuroscience datasets 

(Maas and Hox 2005, Huang 2018, Gehlbach et al. 2016).  

 The hierarchical bootstrap (Efron 1981, 1992, Efron and Tibshirani 1994, Carpenter, 

Goldstein, and Rasbash 2003) is a statistical method that has been applied successfully to a wide 

variety of clustered datasets including census and polling data, education and psychology, and 

phylogenetic tree data (Efron, Halloran, and Holmes 1996, Harden 2011, Huang 2018). Unlike 

LMMs, the hierarchical bootstrap is relatively agnostic to the underlying structure present in the 

data and has consistently performed better at quantifying uncertainty and identifying signal than 

traditional statistics (Field and Welsh 2007, Harden 2011, Thai et al. 2013) though some concerns 

have been raised that the bootstrap may be excessively conservative in a limited subset of cases 

(Hillis and Bull 1993, Adams, Gurevitch, and Rosenberg 1997). However, the use of the 

hierarchical bootstrap in neuroscience is limited even though its application is increasingly 

warranted. 

 This paper is divided into two parts. In the first, we simulate a typical dataset studied in 

neuroscience and use it to illustrate how the Type-I error is inflated in hierarchical datasets when 

applying traditional statistical methods but can be averted using the hierarchical bootstrap. In the 

second, we demonstrate the use of the hierarchical bootstrap in two real-world examples using 

singing data from songbirds (Hoffmann and Sober 2014) and optogenetic control of behavior in 

flies (Cande et al. 2018). In both cases, the data have a strong hierarchical structure and our 
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analyses highlight the need to use appropriate statistical tests when analyzing hierarchical datasets 

in neuroscience. 

3.3 Materials and Methods 

The simulations for this paper were run in the Jupyter Notebooks environment using Python 

(version 3.7.2) and importing the following libraries: NumPy (version 1.15.4), SciPy (version 

1.1.0), Matplotlib (version 3.0.2) and Pandas (version 0.23.4). Reanalysis of data from Hoffmann 

and Sober (2014) was performed using MATLAB (version 2017a). The codes for both simulation 

and the data analysis will be made available on Github post-publication. 

3.3.1 Traditional vs Summarized vs Bootstrap 

Throughout this paper, we compare 3 statistical methods that we refer to by shorthand as 

“Traditional”, “Summarized” and “Bootstrap” respectively. Throughout this paper, when we refer 

to the “Bootstrap” method, we mean a hierarchical bootstrap procedure. We will detail what each 

of those terms mean here (see Fig. 3.1 for schematics of each). For the sake of clarity, let us 

consider a fictitious example. Suppose our dataset involves recording the neural activity of neurons 

in the amygdala when an individual was exposed to an aversive auditory cue either in the presence 

or absence of a drug of interest believed to reduce anxiety. Each neuron was recorded for around 

one hundred trials of exposure to the auditory cue and the process was repeated for several 

hundreds of neurons in both the presence and absence of the drug (see Fig. 3.1a). We could add a 

layer of complexity by considering that the experiment was repeated across several individuals but 

for the sake of simplicity, let us assume that all the data were collected from a single individual. 

In the “Traditional” method every data point (i.e. the firing rate of every neuron to every instance 

of the auditory cue) is treated as independent, regardless of the hierarchical structure present in the 
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Figure 3.1: Schematic of hierarchical datasets and pseudocodes for statistical methods considered. 

a) An example of a hierarchical dataset. Here the dataset is divided into 3 levels with the first level containing the 

experimental groups to be compared, the second containing the individual neurons and the third containing the 

neuronal firing rate during each trial. Each neuron is color coded and the trials per neuron are distinguished by 

the position of the colored diamond. b) In “Traditional” statistics, the means for each group is computed across all 

the trials and are then compared using a two sample t-test. c) In “Summarized” statistics, the mean for each 

neuron is computed first. These means are then used to compute an overall mean for each group and the groups 

are compared using a two-sample t-test. d) In the “Hierarchical Bootstrap” method, we create new datasets 

Nbootstrap times by resampling with replacement first at the level of neurons followed by trials within a neuron. We 

then compute the mean across all trials every time we perform resampling. The final statistic is computed on this 

population of resampled means (see Methods for details). 
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dataset (see Fig. 3.1b). All the data points are used to calculate the mean and  the uncertainty in 

the estimate of the mean, namely the standard error of the mean (SEM) and a Student’s t-test is 

used to ascertain statistically significant differences between the mean firing rate of the neurons in 

the presence versus absence of the drug of interest. The “Summarized” method, on the other hand, 

acknowledges the possibility that repeated trials within the same neuron may be more similar to 

each other than trials across neurons. As a result, the mean firing rate for each neuron is calculated 

first and the mean of the group is calculated as the mean of the population of mean firing rates for 

each neuron in the group and the SEM is computed from this population of means (see Fig. 3.1c). 

Note that the mean for each group in this case is equal to that in the “Traditional” case if and only 

if the number of trials recorded for every neuron within a group is the same, i.e., if every neuron 

is represented equally. A Student’s t-test is thus applied to the population of mean firing rates 

between the two groups. An additional complication that we circumvent in our toy example by 

considering all the data to be obtained from a single subject is the decision as to which level one 

must summarize the data. In the case of multiple subjects, one may summarize either at the level 

of individual neurons or individual subjects. While summarizing at the level of subjects is the most 

appropriate way to avoid non-independence between data points, it can seriously reduce sample 

size and therefore power. Finally in the “Bootstrap” method, we perform the hierarchical bootstrap 

on the two groups to compute posterior distributions of the range of means possible from each 

group (see Fig. 3.1d), as follows. First, we sample with replacement (i.e., we sample from the 

current distribution in such a way that replications of previously drawn samples are allowed) from 

the neurons in the group. Then, for the neurons selected, we then sample with replacement the 

individual trials for the number of times each neuron was recorded. We then compute the mean 

firing rate across the group for that resampled population and repeat the entire process Nbootstrap 
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times (Nbootstrap = 104 for all instances in this paper unless otherwise noted). The mean for each 

group  in this case is identical to that computed in the “Traditional” method. The 67% confidence 

interval (or equivalently, the standard deviation) of the population of means so obtained gives an 

accurate estimate of the uncertainty in the mean. Note that the mean is a special case where this 

uncertainty is more commonly referred to as the Standard Error of the Mean or SEM. We can then 

compute the probability of one group being different from the other using the population of 

resampled means obtained above for each group (see Hypothesis testing with Bootstrap below for 

complete details). 

3.3.2 Hypothesis testing using Bootstrap: 

We described above how bootstrap samples can be used to compute the uncertainty in measuring 

the mean of a population. However, the bootstrap can be used more broadly to measure the 

uncertainty in any metric of interest as long as it obeys the law of large numbers and scales linearly 

in the probability space. In addition, the bootstrap is used to compute posterior distributions of the 

range of values possible for the metric of interest from the data of limited sample size. As a result, 

the distribution of bootstrap samples hence computed can be used to compute probabilities that the 

data supports particular hypotheses of interest directly. We will describe below how this can be 

done with an example. Note that while this is not the only way of hypothesis testing using 

bootstrapping, we found this to be a particularly simple and effective way of doing so. 

 As will be done several times in this paper, suppose we wished to evaluate the support for 

the hypothesis that the mean of particular sample was significantly different from a fixed constant, 

zero for our example. In order to do so, we would compute the proportion of means in our 

population of bootstrapped means of the sample that were greater than or equal to zero. If we set 

the acceptable false positive (Type-I error) rate to α (α = 0.05 throughout this paper), then if the 
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computed proportion was greater than 1 – α/2 (or p>0.975 for α = 0.05) we would conclude that 

the sample of interest had a mean significantly greater than zero. Alternatively, if the computed 

proportion was less than α/2 (or p<0.025 for α = 0.05) then we would conclude that the sample of 

interest had a mean significantly less than zero. Any proportion α/2 ≤ p ≤ (1 – α/2) would indicate 

a relative lack of support for the hypothesis that the mean of the sample of interest is different from 

zero. In the case of multiple comparisons, we use the Bonferroni correction to adjust the threshold 

for significance accordingly.  

 We would also like to make a distinction between the probabilities we referred to above 

and the p-values typically associated with statistical tests. p-values refer to the probability of 

obtaining a result as extreme or more extreme than those obtained under the assumption that the 

null hypothesis is true. As such, they do not provide a direct measure of support for the hypothesis 

one truly wishes to test, i.e., the likelihood of the alternate hypothesis being true. The ‘p’ referred 

to in the bootstrapping procedure above however, provides such a direct probability of the tested 

hypothesis being true. For the rest of this paper, in order to distinguish the direct probabilities 

obtained using the bootstrapping procedure from p-values reported from traditional statistical tests, 

we will use ‘pboot’ to refer to bootstrap probabilities and ‘p’ to refer to p-values from other tests. 

 While it is not performed in this paper, the procedure described above can also be used to 

compare the means of two different groups using their respective samples. In this case, we would 

compute a joint probability distribution of the two samples with each sample forming the two axes 

of a 2-D plot. In this case, the null hypothesis would be a circle centered on the line y = x. 

Therefore, to test if the two groups are different, one would compute the total density of the joint 

probability distribution on one side of the unity line. If the volume computed is greater than 1 – 

α/2 then the first group is significantly greater than or equal to the second while if the volume 
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computed is less than α/2, the second group is significantly greater than or equal to the first with 

all other volumes indicating no significant differences between the groups. We can also extend 

this formulation to comparisons between multiple groups by performing pairwise-comparisons 

between the groups and adjusting the threshold for significance accordingly (by Bonferroni 

correction for example). 

3.3.3 Design Effect (DEFF):  

When one analyzes data from hierarchical datasets, the unique information provided by each 

additional data point at the lowest level of the hierarchy depends on the average number of 

samples in the cluster and the relative variance within and between clusters. This relationship 

was mathematically quantified using the Intra-cluster correlation (a.k.a. intra-class correlation) or 

ICC. ICC is a useful metric that provides a quantitative measure of how similar data points are to 

each other within an individual cluster in a hierarchical dataset (Walsh 1947, Kish 1965). While 

there are some differences in how it is calculated, in general it is defined as the following ratio: 

𝐼𝐶𝐶 𝑜𝑟 𝜌 =  
𝑠𝑏𝑒𝑡𝑤𝑒𝑒𝑛

2

𝑠𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 +  𝑠𝑤𝑖𝑡ℎ𝑖𝑛

2  

Where 𝑠𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2  represents the variance across cluster means while 𝑠𝑤𝑖𝑡ℎ𝑖𝑛

2  represents the 

variance within clusters. Hence, the ICC is a metric that varies from zero to one where a measure 

of zero represents no clustering of data and every data point being independent while a measure 

of one represents perfect reproduction of samples within clusters, i.e., all points within a cluster 

are exactly the same. Kish further formalized the relationship between ICC and the adjusted 

effect size that was termed the “Design Effect” or DEFF with a corresponding correction to be 

applied to the standard error of the mean computed from the dataset termed DEFT, defined as the 

square root of DEFF (Kish 1965, McCoach and Adelson 2010). Formally, DEFF was defined as: 
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𝐷𝐸𝐹𝐹 =  
𝑣𝑎𝑟(𝑑𝑎𝑡𝑎)

𝑣𝑎𝑟(𝑑𝑎𝑡𝑎 𝑖𝑓 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡)
= 1 +  𝜌 ∗ (�̅�𝑗 − 1) 

Where �̅�𝑗 represents the average sample size within each cluster and 𝜌 is the ICC. Hence, as the 

number of samples within a cluster increases, the DEFF increases resulting in a need for a larger 

correction (increase) to the standard errors for accurate quantification. Conversely, as the number 

of samples within clusters increase, the standard error of the mean is underestimated potentially 

resulting in underestimation of the p-values and inflation of the Type-I error rate. 

3.4 Results 

Our results section has been organized into two sub-sections: Simulations and Examples. In the 

Simulations sub-section, we show results from simulations that illustrate the utility of the 

hierarchical bootstrap and in the Examples sub-section, we highlight the differences in results 

when analyzing data in two examples with and without the hierarchical bootstrap. Throughout the 

results section, we will compare statistical tests we refer to by shorthand as “Traditional”, 

“Summarized” and “Bootstrap” respectively. See Traditional vs Summarized vs Bootstrap in 

Materials and Methods and Figure 3.1 for a detailed description of the differences between the 

three conditions. Also note that whenever we refer to the “Bootstrap” in this section, we mean the 

hierarchical bootstrap unless otherwise specified. 

3.4.1 Simulations 

We used simulations of neuronal firing in order to highlight the key characteristics of the 

hierarchical bootstrap as applied to nested data in neuroscience and the differences between the 

bootstrap and other more commonly used statistical tests. Specifically, we were interested in 

whether the bootstrap displayed a conservative bias for independent and non-independent datasets 

as well as in quantifying the bootstrap’s statistical power compared to other techniques. While 
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these results may be derived from other mathematical results previously published (Davison and 

Hinkley, 1997; Carpenter et al., 2003), we found them instructive to depict explicitly. 

3.4.1.1 The hierarchical bootstrap is more conservative than Traditional and Summarized 

methods for independent data points: 

It has been reported earlier that the bootstrap has a conservative bias (Adams, Gurevitch, and 

Rosenberg 1997, Hillis and Bull 1993), resulting in larger error bars than strictly necessary for the 

chosen threshold of Type-I error α (here set to 0.05). It has also been argued that this is not a bug 

or bias in the algorithm, but rather a more generic property of hypothesis testing by resampling 

(Felsenstein and Kishino 1993, Efron, Halloran, and Holmes 1996) and newer algorithms have 

claimed to reduce bias further (Shimodaira 2004, 2002). Here we tested the conservative bias of 

the bootstrap by running a simulation checking for significant differences when none existed and 

quantified the proportion of cases that returned a significant difference. Given that we set α to 0.05, 

we would expect a 5% false positive rate if there was no bias in the algorithm. 

 We simulated a situation in which we recorded the activity of 1000 neurons over 100 trials 

each. The neurons were simulated using a Poisson random number generator with an average firing 

rate of 5Hz (each trial was considered to be 1 second of activity). Note that while we have set the 

problem up as a hierarchical problem, since the average firing rate for each neuron was kept 

constant both across neurons and within a neuron, each sample in this dataset is indeed 

independent. Therefore, we would not expect differences between the Traditional and Summarized 

methods. We then split these 1000 neurons into two groups of 500 each randomly and computed 

the mean firing rate for each group. We then tested whether the means were significantly different 

from each other using the Traditional, Summarized and Bootstrap methods. We repeated this 

analysis 10000 times and plotted the proportion of trials that resulted in significant differences for 
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Figure 3.2: Results from the simulation in which there was no difference between the groups of two neurons.  

a) Proportion of significant results when comparing the 2 groups with each statistical method at α of 0.05. As 

expected, both the Traditional and Summarized methods give roughly 5% false positive results. However, the 

bootstrap gives a much smaller proportion of significant results suggesting a conservative bias. b) The size of 

SEMs computed using each of the methods. The bootstrap does give an error bar roughly 1.4 times that of the 

other two metrics.  



91 

 

 

each of the methods in Figure 3.2a. The error bars were computed by bootstrapping the results 

obtained from the simulation runs. As shown in the figure, both the Traditional and Summarized 

methods resulted in a proportion of significant results close to and not significantly different from 

5% as expected (Traditional – 4.86 ± 0.21 %; probability of proportion of significant results being 

greater than or equal to 0.05 was p = 0.26; Summarized – 4.95 ± 0.22 %; probability of proportion 

of significant results being greater than or equal to 0.05 was p = 0.42). By contrast, when using the 

bootstrap method, the proportion of significant results was significantly lower than the expected 

5% at 0.66 ± 0.08 %. Even when we increased the value of α to 0.1, the proportion of significant 

results was still only 2.19 ± 0.15 % (probability of proportion of significant results being greater 

than or equal to 0.05 was p < 10-4 in both cases; limit due to resampling 104 times).  

 We also computed the standard error of the mean (SEM) in each case and reported the 

results in Figure 3.2b. As shown, the error bars for both the Traditional and Summarized methods 

are almost identical at 1.002 ± 0.002 * 10-2 for Traditional and 0.994 ± 0.023 * 10-2 for Summarized 

respectively. The error bars computed using the Bootstrap method are roughly 1.4 times larger at 

1.407 ± 0.035 * 10-2. Since the effect size is inversely proportional to the uncertainty in the dataset 

(Coe 2002), which is captured here by the error bars, we conclude that the larger error bars do 

partially account for the drop in proportion of significant results observed and that the bootstrap 

seems to have a conservative bias for independent datasets. 

3.4.1.2 The bootstrap does not have a conservative bias in a hierarchical dataset:  

If the bootstrap does have a strong conservative bias regardless of the nature of the data 

(hierarchical or independent), it may not be the right metric with which to address the problem of 

statistical analysis in hierarchical datasets. In the first experiment, we tested a situation in which 

the variance was the same between levels resulting in all data points being independent in spite of 
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a hierarchical structure. Here, we abolished that independence by adding Gaussian noise to the 

first level creating a truly hierarchical dataset. Specifically, we used the same situation as before 

where we had 1000 neurons each with a mean firing rate of 5Hz, that were split randomly into 2 

groups. However, each neuron now had a mean firing rate of 5Hz plus Gaussian random noise of 

width 3Hz. Neurons were still drawn independently, so there should be no difference between the 

two groups. We also varied the number of trials per neuron to study its effect on the false positive 

rate. We simulated the experiment 1000 times for each value of number of trials and computed the 

false positive rate from each. As before, we used bootstrapping on the obtained results to estimate 

error bars and to test for significant differences away from 0.05. Given the relationship between 

the number of points within a cluster to the Design Effect (DEFF; see Intra-cluster correlation in 

Materials and Methods), we would expect the false positive rate to increase with the number of 

trials per neuron (Snijders 2011, Snijders and Bosker 1993, Aarts et al. 2014).  

 As shown in Figure 3.3a, the false positive rate for the traditional method does increase 

with the number of trials per neuron rising from around 46% for 10 trials to almost 96% in the 

case of 3000 trials per neuron (probability of resampled proportions being greater than or equal to 

0.05 was p > 0.9999 in all cases; limit due to resampling 104 times). On the other hand, both the 

summarized and bootstrap methods stayed remarkably similar in value and were not significantly 

different from 0.05 in all cases (adjusting for threshold of significance with Bonferroni corrections 

for 3 comparisons). This was a marked departure from Figure 3.2a where we saw that the bootstrap 

had a significant conservative bias. 

 We also computed the estimate for the SEM using all 3 cases for each number of trials 

simulated, and the result is shown in Figure 3.3b. As shown, the SEM estimate remains fairly 

constant for both the summarized and bootstrap methods but decreases with an increase in the 
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Figure 3.3: False positive rate and size of error bars quantified for the simulation in which there was again no 

difference between the groups but now the points were not independent.  

a) The proportion of significant results using each statistical method as a function of the number of trials per 

neuron. As expected, the false positive rate for the traditional method rises with increasing number of samples 

within each neuron. The Summarized and Bootstrap methods on the other hand have almost identical false 

positive rates close to the theoretical 5% in all cases. b) The size of SEMs computed for all 3 methods as a 

function of the number of trials per neuron. While those for both summarized and bootstrap stay roughly the 

same, those for the traditional method reduces with increasing number of trials. Note that for both traces, since 

the Bootstrap and Summarized almost perfectly overlap, the green trace has been thickened for visualization.  
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number of trials per neuron in the traditional case. Furthermore, the SEM estimate for the 

traditional case starts out much lower than either the summarized or bootstrap case suggesting that 

the increased false positive rate is at least partially due to the underestimation of error in the 

traditional case. 

3.4.1.3 The Bootstrap balances intended Type-I error rate and power better than Traditional 

and Summarized methods at low sample sizes: 

As we saw in the previous section, both the summarized and bootstrap methods bind the Type-I 

error rate at the intended 5% and the estimate of the SEM is roughly the same for both methods. 

What then is the advantage of the bootstrap method over simply using the summarized method? 

The answer lies in the fact that the summarized methods result in a loss of statistical power, i.e. 

the ability to detect a statistical difference when one truly exists, particularly for low sample sizes 

of the upper hierarchical levels and for small effect sizes. We used simulations to calculate the 

power for each of the three methods and the results are shown in Figure 3.4. 

 Since power depends on the effect size and the number of samples, we chose to study the 

change in power with respect to the number of neurons per group (𝑁) and the effect size for these 

simulations (Δ𝑚𝑒𝑎𝑛). In order to do so, we varied 𝑁 between 1 and 16, keeping the number of 

trials per neuron constant at 100 each. We kept the mean firing rates of one group of neurons at 

5Hz as before and varied the mean firing rate of the other group by Δ𝑚𝑒𝑎𝑛, adding an additional 

3Hz random Gaussian noise to each neuron in both groups. Since the previous simulations did not 

estimate the false positive rate when the number of neurons was as low, we first kept the mean 

firing rate for both groups of neurons equal at 5Hz, simulating 1000 times for each value for the 

number of neurons per group. The result is shown in Figure 3.4a. As shown, the false positive rate 

for the traditional method stays around or above 80% (blue trace in Fig. 3.4a), while that for the 
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Figure 3.4: Change of power with number of neurons and effect size.  

a) The false positive rate when there was no difference between the mean firing rates for the two groups of 

neurons. b) The proportion of significant results or power when the difference in mean firing rates (Δmean) 

between the two groups of neurons was 1.5Hz (light), 3Hz (medium) and 4.5 Hz (dark) respectively.  
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summarized method hugs the expected 5% line (red trace in Fig. 3.4a) except for the special case 

of 1 neuron per group where you can never achieve significance since you are comparing two 

points. The behavior of the bootstrap highlights the fundamental characteristic of the bootstrap and 

is therefore worth exploring in detail (green trace in Fig. 3.4a). The essence of the bootstrap is to 

provide a reliable range for your metric under the assumption that the limited dataset you have 

captures the essential dynamics of the underlying population. When there is only one neuron, the 

bootstrap assumes that trial level data is the true distribution and therefore has a false positive rate 

equal to that of the traditional method. As the number of neurons increase, one gets a better 

sampling of the true underlying distribution and correspondingly, the bootstrap tends towards a 

5% error rate with increasing number of neurons as the weight of data points shifts from individual 

trials to trials across neurons with increasing number of neurons. Therefore, if the data collected 

does not accurately represent the dynamics of the underlying distribution, the bootstrap cannot 

provide accurate estimates of population metrics. 

 We then computed the power for the three methods as a function of the number of neurons 

per group and the difference in mean firing rate between the groups. Accordingly, we repeated the 

simulations described above changing the mean firing rate of one of the groups to 6.5Hz, 8Hz and 

9.5Hz (light, medium and dark traces in Fig. 3.4b respectively). Since there is an actual difference 

between the groups in this case, the ideal plot will have a very high proportion of significant results 

barring adjustments for extremely low sample sizes. As shown, the traditional method has the most 

power, but as was seen in Figure 3.4a, also has a very high false positive rate for this type of data 

(blue traces in Fig. 3.4b). The summarized method has the lowest power among the three methods, 

but does catch up for large effect sizes and with increasing group sizes (red traces in Fig. 3.4b). 

The bootstrap is between the two extremes and has more power than the summarized metric 
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particularly for small effect sizes and small group sizes (green traces in Fig. 3.4b). As a result, we 

see that the bootstrap helps retain statistical power while also being sensitive to the Type-I error 

rate. However, as shown in Figure 3.4a, the bootstrap can weight trials within levels more heavily 

than one would expect if the number of samples in the upper levels is very low and one must 

therefore be mindful when dealing with very low sample sizes that their data collected may not 

represent the true distribution in the population. 

3.4.2 Examples 

We now present two real-world examples of the utility of the hierarchical bootstrap as applied to 

behavioral data collected from experiments in songbirds (Hoffmann and Sober 2014) and flies 

(Cande et al. 2018). These examples provide concrete instances of why one should use the 

appropriate statistical tests depending on the nature of their data and how the popular tests can 

result in more false positives or less statistical power than one desires. 

3.4.2.1 The bootstrap highlights the prevalence of false positives using traditional statistical 

methods in strongly hierarchical datasets as in vocal generalization in songbirds: 

As described above, although the bootstrap provides a better compromise between statistical power 

and false-positive rate than the Traditional or Summarized methods, its use is not widespread in 

the neuroscience literature, including in some of our own prior published work. To illustrate the 

practical importance of these issues, and to encourage other authors to critically re-evaluate their 

prior analyses, we here present a case in which we have used the bootstrap to reexamine one of 

our prior results – which used both Traditional and Summarized methods – and found the choices 

made can significantly affect the outcome of our analyses. As a reminder, when discussing 

Traditional or Summarized statistical tests, we will report a p-value denoted by ‘p’ which yields a 

significant result if p < 0.05. When talking about the Bootstrap tests however, we will report a pboot 
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which in turn yields a significant result if pboot < 0.025 or pboot > 0.975. In addition, pboot provides 

a direct probability of the hypothesis being true. 

 Our lab studies vocal behavior in songbirds, which yields datasets with an inherently 

hierarchical structure: each bird sings a variety of syllables and each syllable is repeated a different 

number of times. In many of our studys, we examine changes in the pitch of these syllables in 

response to manipulations. We performed an experiment studying generalization of vocal learning 

in songbirds in response to an induced auditory pitch shift on a particular (target) syllable 

(Hoffmann and Sober 2014). In these studies, the auditory feedback of one syllable was shifted in 

pitch and relayed to the bird through custom-built headphones with very short (~10 ms) latency, 

effectively replacing the bird’s national auditory feedback with the manipulated version 

(Hoffmann et al. 2012, Hoffmann and Sober 2014, Sober and Brainard 2009). Note that while the 

headphones provided auditory feedback throughout the song, only the feedback for the single  

syllable targeted for pitch shift was shifted in pitch. We reported that in addition to birds changing 

the pitch of the target syllable in response to the pitch shift, the birds also changed the pitch of 

other syllables that had not been shifted in pitch. Specifically, we reported that syllables of the 

same type (acoustic structure) as the target syllable changed pitch in the same direction as the 

target syllable (“generalization”) while syllables of a different type than the target syllable changed 

pitch in the direction opposite to that of the target syllable (“anti-adaptive generalization”; see Fig. 

5a). Since in Hoffmann and Sober (2014) we employed traditional and summarized (at a syllable 

level) statistics when analyzing generalization, we decided to reanalyze the data from that study to 

ask if the generalization observed was still statistically significant when statistical tests were 

computed using the hierarchical bootstrapping procedure. In order to do so, we first recapitulated 

the results reported by computing statistics on the last 3 days of the shift period using the traditional 
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Figure 3.5: Reanalysis of generalization in the headphones learning paradigm.  

a) The results when quantified using traditional statistics. As shown, both target and different type syllables differ 

significantly from zero over the last 3 days of the shift with target syllable moving adaptively and the different 

type syllables showing anti-adaptive generalization respectively. b) The results when quantified using 

summarized statistics when summarized over the syllables. In this case, the target syllable is significantly 

different from zero while the different type syllables are just over the threshold for significance. c) The results 

when bootstrap is applied over the hierarchical levels. The target syllable is significantly different from zero but 

the different type syllables are not. 
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and summarized methods as was reported earlier (Hoffmann and Sober 2014). We focus our 

reporting on changes in the target syllable and anti-adaptive generalization in different type 

syllables for the purpose of this example. 

 When we computed the change in pitch over the last 3 days of the shift period for the 

syllable targeted with auditory pitch shifts, we found that the birds compensated for the pitch shift 

of 1 semitone by 0.341 ± 0.007 (mean ± SEM in all cases) semitones with traditional statistics (one 

sampled t-test comparing to zero; t = 47.3; p < 2*10-308; limit due to smallest number in MATLAB; 

red trace in Fig. 5a) and by 0.34 ± 0.08 semitones with summarized statistics (one sampled t-test 

comparing to zero; t = 4.25; p = 0.004; red trace in Fig. 5b). We did see anti-adaptive generalization 

in different type syllables of -0.087 ± 0.003 semitones with traditional statistics (one sampled t-

test; t = 23.9; p = 4*10-125; blue trace in Fig. 5a). With summarized statistics, the different type 

syllables changed by -0.12 ± 0.06 semitones (one sampled t-test; t = 2.00; p = 0.053; blue trace in 

Fig. 5b) and was not statistically significant, though it was close to the threshold for significance.  

When we reanalyzed the data using bootstrapping over the hierarchical levels, we found that we 

did not have enough statistical power to claim that the anti-adaptive generalization was statistically 

significant. As expected, the targeted syllable shifted significantly away from zero to a final value 

of 0.34 ± 0.12 semitones (probability of resampled mean being greater than or equal to zero was 

pboot = 0.995; red trace in Fig. 5c). As a reminder, pboot gives the probability of the hypothesis tested 

being true. Therefore, a value of 0.5 indicates minimial support for either the hypothesis (or its 

opposite) while values close to 1 (or 0) represent strong support for (or for the opposite of) the 

hypothesis. Different type syllables however shifted to a final value of -0.09 ± 0.09 (probability of 

resampled mean being greater than or equal to zero was pboot = 0.25; blue trace in Fig. 5c). Hence, 

this result shows that the anti-adaptive generalization was too small an effect to detect with the 
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sample size in the original study suggesting that the generalization effects observed were driven 

largely by a couple of individual birds rather than a population wide effect.  

 We will note that we also reanalyzed generalization in same type syllables and did not find 

significant generalization there either. Therefore, it is reasonable to say that we did not perform 

the generalization experiment on sufficient number of birds to adequately power the study. 

However it is worth noting that while the results did not meet the threshold for statistical 

significance, reporting probabilities in support of the hypotheses provides more information than 

simply determining whether or not a statistical threshold was met. This is particularly relevant 

since we found that if we only looked at the last two days of shift, the probability of same type 

syllables being greater than or equal to zero increased to pboot = 0.91. While still not at the threshold 

for statistical significance, this coupled with the fact that independent studies have reported 

adaptive generalization for same type syllables in songbirds (Tian and Brainard 2017) suggests 

this may yet be a true effect. A final confound is that due to a discrepancy in our data archiving, 

our recapitulation of the old analysis for the paper yielded a slightly different p-value (p = 0.053) 

for summarized analysis of different type syllables than was originally reported in the original 

paper (p < 0.05; records indicate it was ~0.048). The point of this analysis is therefore not to 

replicate the exact findings but to highlight how choices made for statistical analyses can define 

the interpretation of one’s results. 

3.4.2.2 The hierarchical bootstrap captures the signal better than traditional or summarized 

methods in optogenetic control of behavior in flies: 

We wanted to test the utility of the hierarchical bootstrap in an independent example, and so we 

chose to analyze the data from an experiment studying the role of descending neurons in control 

of behavior in flies (Cande et al. 2018). Studies involving optogenetics are another area where 
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hierarchical datasets are the norm. Each fly, since it can be tracked over extended periods of time, 

will exhibit each behavior multiple times within the period of observation. Additionally, multiple 

flies can be tracked simultaneously, and the behavior is typically averaged across flies across trials 

for each experimental group. In this study, the authors used optogenetics to activate descending 

neurons in flies and studied the corresponding changes in behavior displayed. In order to do so, 

the authors first created a two-dimensional representation of the behavior of the flies in the absence 

of any manipulations, as has been described in detail previously (Berman et al. 2014, Cande et al. 

2018). They then mapped the behavior of experimental animals both in the presence and absence 

of light stimulation as well as control animals that were not fed retinol, a binding co-factor needed 

for functionality of the light-activated channels, both in the presence and absence of light 

stimulation onto the behavioral representation. The resulting map of behavior for one class of 

descending neurons is shown in Figure 3.6. In order to assess whether the light stimulation caused 

a statistically significant change in the frequency of behavior observed, the authors argued that the 

frequency of behavior had to be significantly greater during optical stimulation than during periods 

of no stimulation within experimental animals. In addition, the frequency of behavior during 

optical stimulation had to be greater in experimental animals than in control animals. The authors 

used Wilcoxon rank summed tests coupled with Sidak corrections (Šidák 1967) for multiple 

comparisons in order to test for statistically significant differences. This would fall under the 

category of traditional methods as we have described previously. We compared the regions 

obtained from the original analysis with regions we obtained when using summarized or bootstrap 

statistics on this dataset and the result is shown in Figure 3.6. As shown, the traditional method 

seems to overestimate the region of significant differences and includes a false positive area that 

is separate from the main region where signal is present. The summarized method, on the other 
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Figure 3.6: Hierarchical bootstrapping most accurately captures the signal in an experiment studying optogenetic 

control of behavior in flies.  

The differences in frequency of behavior mapped onto a two-dimensional space when a particular group of 

descending neurons in the experimental flies were manipulated using optogenetic control. In this particular case, 

the descending neurons targeted were controlled head grooming behavior represented at the top of the map and 

so, the animals display elevated frequencies of head grooming during light stimulation when compared to control 

flies or when the light was turned off. The magenta trace shows the statistically significant differences after 

accounting for multiple comparisons when using the traditional method. As shown, the magenta trace seems to 

overestimate the signal present and captures some false regions as well as shown in the upper right region. The 

black trace represents the areas of significant difference as defined by using the hierarchical bootstrap and it 

matches the region expected by the authors as per video analysis very well. The summarized method did not 

return any regions that were statistically different between groups even though there was a clear signal present in 

the data (see videos and other data in Cande et al., 2018). 
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hand, does not identify any regions as being statistically significant despite video evidence 

suggesting the clear presence of some signal in the data (see Cande et al., 2018). The hierarchical 

bootstrap returns a concise region tightly mapped to the region the authors would have expected 

based on analysis of behavioral videos. Hence, this is another example showing that the 

hierarchical bootstrap can be a powerful tool to accurately quantify results in neuroscience where 

a majority of datasets analyzed are hierarchical in nature and therefore the data points are not 

independent.  

3.5 Discussion 

The hierarchical bootstrap is a powerful statistical tool that was developed to quantify the 

relationship between school class sizes and achievement (Carpenter, Goldstein, and Rasbash 2003) 

and has since been used to quantify effect sizes in a wide variety of fields. The use of the 

hierarchical bootstrap in neuroscience however is still limited in spite of the need for it being 

increasingly clear. Through our simulations, we have shown the utility of the hierarchical bootstrap 

in neuroscience by examining the shortcomings of more common statistical techniques in a typical 

example one might encounter. While the results of our simulations may be inferred from other 

mathematical work on the subject (Carpenter, Goldstein, and Rasbash 2003, Davison and Hinkley 

1997, Field and Welsh 2007, Goldstein 2011), to our knowledge our results have not been shown 

explicitly in previous work. We first illustrated that the bootstrap does not have a conservative bias 

for hierarchical datasets in which the assumption of independence between data points is violated 

(Fig. 3.3). We then showed that the bootstrap performs better than summarized statistical measures 

by not sacrificing as much statistical power especially at low sample sizes and small effect sizes 

(Fig. 3.4). Finally, we showed real world applications of applying the hierarchical bootstrap to two 
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datasets from songbirds and flies to demonstrate the advantages of the hierarchical bootstrap over 

other more commonly used statistical analysis techniques in neuroscience (Figs. 3.5 and 3.6). 

 “Pseudoreplication” refers to studies in which samples were either not replicated or the 

replicated samples were not independent, yet statistical tests performed treated the data points as 

independent replicates (Hurlbert 1984). While pseudoreplication was first extensively reported on 

in ecological studies (Heffner, Butler, and Reilly 1996, Hurlbert 1984), it has since been identified 

as a common problem in other fields, including neuroscience (Lazic 2010). While resampling 

methods including bootstrapping were originally suggested as tools by which one could overcome 

the pseudoreplication problem (Crowley 1992), the bootstrap was argued to have a conservative 

bias resulting in larger error bars than necessary (Hillis and Bull 1993, Adams, Gurevitch, and 

Rosenberg 1997). Since then, however, several versions of the bootstrap algorithm have been 

developed to apply to hierarchical data and have been found to be unbiased and more robust for 

calculation of uncertainty in clustered data than other statistical methods (Field and Welsh 2007, 

Harden 2011, Huang 2018, Carpenter, Goldstein, and Rasbash 2003, Goldstein 2011, Davison and 

Hinkley 1997). In order to test the bootstrap for any potential bias in a typical example we might 

encounter in neuroscience, we produced simulations to quantify differences in mean firing rates 

between two groups of neurons when there was no difference between the groups. We illustrated 

that the bootstrap produced a false positive rate significantly below the expected 5% (Fig. 3.2a) 

and had larger error bars (Fig. 3.2b) than other statistical methods when the data were independent. 

However, when the independence between data points was abolished by introducing a hierarchical 

structure, the bootstrap was not statistically different from the expected 5% false positive rate 

(green bars in Fig. 3.3a) and the error bars computed were similar to those computed using 
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summarized statistics (red and green bars in Fig. 3.3b) suggesting that the hierarchical bootstrap 

is robust to bias for applications in neuroscience. 

 Among the reasons Linear Mixed Models (LMMs) gained in popularity for statistical 

testing was the fact that they could accommodate hierarchical datasets by controlling for various 

levels as “random” effects while still using all available data thereby minimizing loss in statistical 

power (Snijders 2011, Snijders and Bosker 1993, Hox, Moerbeek, and Van de Schoot 2017, Roux 

2002, Aarts et al. 2014). Though we did not directly compare the loss in power between 

bootstrapping and LMMs, we showed that the bootstrap also does not lose power to the degree 

that using summarized statistics does (see green traces versus red traces in Fig. 3.4b) while also 

keeping the false positive rate within the intended bound (see green trace in Fig. 3.4a). 

Additionally, unlike LMMs which assume linearity, the hierarchical bootstrap as applied in this 

paper does not make assumptions about the relationships underlying the latent variables that define 

the hierarchical structure. However, as we saw in Figure 3.4a, the bootstrap assumes that the data 

collected captures essential characteristics of the population distribution. One may have to adjust 

the resampling procedure to ensure that the distribution of resampled data points most accurately 

matches the population distribution one wishes to study. 

 We then used the hierarchical bootstrap on two independent examples to showcase its 

utility in analyzing hierarchical datasets in neuroscience. First, we reanalyzed data from Hoffmann 

and Sober, 2014 in which we used both Traditional and Summarized statistical analysis to conclude 

that songbirds generalize changes in pitch targeted on a single syllable anti-adaptively to syllables 

of a different type. When reanalyzed with the bootstrap however, we found that the anti-adaptive 

generalization of different type syllables (blue trace in Fig. 3.6c) did not meet the threshold for 

statistical significance. This was a particularly striking result as the original study did report 
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statistically significant changes from zero even while using summarized statistics (Hoffmann and 

Sober 2014). A probable reason for the differences between the summarized and bootstrap 

methods for this dataset stems from a decision point regarding the level to which one must 

summarize the data when using summarized statistics (we avoided this decision in the simulations 

by assuming all data came from a single subject). The summary statistics reported were 

summarized at the level of syllables for this dataset. However, in order to truly make sure all points 

are independent, one must summarize at the highest level, i.e., at the level of individual birds in 

the dataset. The differences in results between the summarized and bootstrap methods here suggest 

that the generalization effects were driven largely by strong effects in a subset of birds as opposed 

to a population-wide effect and that, by failing to take the hierarchical nature of the dataset into 

account, the original authors overestimated their statistical power and chose too low an N. Further 

evidence for this interpretation comes reanalysis of data from a separate study looking at learning 

birds display in response to pitch shift of their entire song through custom-built headphones (Sober 

and Brainard 2009) using the hierarchical bootstrap. Since the changes in pitch were far more 

systemic across birds in this experiment, we did not see any changes in statistically significant 

results (Saravanan et al. 2019b).  

 Second, we used the hierarchical bootstrap on an independent experiment studying the role 

of descending neurons in controlling behavior in flies using optogenetics (Cande et al. 2018). As 

shown in Figure 3.6, the hierarchical bootstrap performs better than the traditional and summarized 

statistical methods in isolating the true signal in the experiment. The traditional method includes 

areas that are likely false positives and the summarized method does not return any statistically 

significant areas. 
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 We would also like to reiterate another advantage of the direct probabilities returned by the 

bootstrap (pboot) over traditionally reported p-values. p-values represent the probability of 

obtaining results at least as extreme as the ones obtained under the assumption that the null 

hypothesis is true. It is a cumbersome definition that has led to numerous misconceptions regarding 

what it actually means (Halsey et al. 2015, Wasserstein and Lazar 2016). The value returned by 

the bootstrap however, pboot, provides a direct probability in support of a particular hypothesis. In 

the case of the generalization in songbirds example, we found that the probability of same-type 

syllables generalizing was 0.85. This means that if we measured data from more birds drawn from 

the same distribution, we will see adaptive generalization in 85% of cases which is much higher 

than chance (50%). Hence, the hierarchical bootstrap method can provide a measure of the relative 

support for the hypothesis which is both easier to understand and can be useful information for 

both positive and negative results in research. 

 To conclude, neuroscience research is at a crossroads wherein on the one hand exciting 

new technologies are being built promising bigger and more complex datasets to help understand 

brain function (Yizhar et al. 2011, Burns et al. 2013, Vogelstein et al. 2018), and on the other we 

have rising concerns over the incorrect use of statistical tests (Ioannidis 2005, Nieuwenhuis, 

Forstmann, and Wagenmakers 2011, Greenland et al. 2016) and the lack of reproducibility of a 

number of past findings (Baker 2016, Gerlai 2019, Miłkowski, Hensel, and Hohol 2018). We 

propose the hierarchical bootstrap as a powerful but easy-to-implement method that can be scaled 

to large and complicated datasets, that returns a direct probability in support of a tested hypothesis 

reducing the potential for misinterpretation of p-values and that can be checked for correct 

implementation through sharing of analysis code. As we have shown through this paper, we 
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believe that widespread use of the bootstrap will reduce the rate of false positive results and 

improve the use of appropriate statistical tests for a given type of dataset.  
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4 CHAPTER IV: CONCLUSIONS AND FUTURE DIRECTIONS 

The central question at the heart of this dissertation was: “Is dopamine involved in sensorimotor 

adaptation? If yes, how?” Through my experiments detailed in Chapter 2, I have found evidence 

that dopamine is involved in sensorimotor adaptation in that dopamine depletion caused severe 

disruptions to sensorimotor adaptation. However, the interpretation was complicated by the fact 

that we also observed a concurrent effect on motor production. Hence the question as to how 

dopamine is involved in sensorimotor adaptation has not been answered in its entirety by my 

dissertation and future experiments will be required to elucidate this. This chapter details some of 

the future experiments that could be performed to understand the computations dopamine performs 

in sensorimotor adaptation. 

4.1 Dopamine as a multiplexed signal 

As I have shown in Chapter 2, dopamine seems to perform more than one single function. 

Specifically, dopamine seems to be involved in both processing sensory and reward prediction 

errors (Gardner, Schoenbaum, and Gershman 2018, Berke 2018, Coddington and Dudman 2018, 

Schultz 2016, Schultz, Dayan, and Montague 1997) as well as modulating motor output (Barbeau 

1962, Mazzoni, Hristova, and Krakauer 2007, Panigrahi et al. 2015, Saravanan et al. 2019a). This 

is even without considering the hypothesized roles for dopamine in sleep and wakefulness 

regulation (Monti and Monti 2007, Korshunov, Blakemore, and Trombley 2017), mood disorders 

(Nestler and Carlezon Jr 2006, Diehl and Gershon 1992), addiction (Johnson and Kenny 2010, 

Volkow et al. 2011) and other neurological disorders (Cook Jr et al. 1995, Huang et al. 2015, 

Howes, McCutcheon, and Stone 2015, Grace 2016). All this is leading to an increasing perception 

that dopamine is a multiplexed signal with multiple roles and functions that also targets several 

different regions of the brain. If we assume the assertion that dopamine is a multiplexed signal to 
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be true, that naturally leads to two follow-up questions: 1) how does the signal get multiplexed? 

and 2) how is the multiplexed signal decoded at the relevant target area? 

 There has been quite a bit of work into understanding what sort of multiplexing happens 

both at the level of the dopamine signals from the VTA themselves (Kremer et al. 2018, Lee et al. 

2019) as well as at the level of the neurons where the dopamine neurons project to like the striatum 

and the somatosensory and motor cortices (Ramakrishnan et al. 2017). However, even these 

studies observe the existence of multiplexed neuronal signals at the inputs and outputs of the 

neurons but not the mechanism of encoding and decoding a multiplexed signal in itself. One of the 

roadblocks to such studies has been methodological. Until recently, we did not have the tools 

required to even consider building an experiment capable of answering this question. However, by 

combining optogenetic stimulation of the VTA in a biologically plausible manner over a timescale 

typical of learning tasks with local field potential (LFP) recording of activity in the medial 

prefrontal cortex (mPFC), Lohani and colleagues recently showed how dopamine activity causes 

weak and heterogeneous responses at the level of individual neurons but sustained changes in 

ensemble activity, gamma-theta coupling and gamma oscillations over multiple timescales 

(Lohani et al. 2019). Further work in this direction could help understand how different target brain 

regions of the dopaminergic neurons interpret the multiplexed signal they receive specific to their 

functions. 

 One of the most commonly discussed mechanisms hypothesized to underlie dopamine 

signal decoding involves the different affinities of the D1 and D2 families of dopamine receptors. 

In general, D1 receptors are thought to have a low affinity for dopamine requiring concentrations 

in the micro-molar range to be activated while D2 receptors have a high affinity and are saturated 

at concentrations in the nano-molar range (Kebabian and Calne 1979, Gingrich and Caron 1993) 
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though this simplistic view has been challenged in recent years (Yapo et al. 2017). Yet 

fundamentally, D1 receptors belong to the family of G-protein coupled receptors that stimulate the 

production of adenylyl cyclase and are generally thought to lead to neuron excitation while D2 

receptors inhibit the same and are generally thought to lead to neuron inhibition. Hence, one could 

plausibly envision a role for these two types of receptors, combined with their differing affinities 

for dopamine, in decoding a multiplexed dopamine signal. Given the predominant separation of 

dopamine receptors in the dorsal striatum and their corresponding direct and indirect pathways, 

this hypothesis seems plausible. However, it has recently been shown that such a distinction is not 

as clear in the ventral striatum (Kupchik et al. 2015). Additionally, the picture is complicated in 

the songbird as D1 and D2 receptors are known to co-localize on the same neurons in the striatum 

making the distinction between the two pathways less clear (Farries, Ding, and Perkel 2005, 

Carrillo and Doupe 2004, Kubikova, Wada, and Jarvis 2010). We know from experiments in this 

dissertation that songbirds display as strong a role of dopamine in learning and movement as in 

many other common model systems. How then is this signal still correctly interpreted by the post-

synaptic neuron? 

 While we performed lesions for the experiments described in this dissertation, systemic 

infusion of D1 and/or D2 specific agonists and antagonists are another way to study the potential 

effects of dopamine on the two types of receptors. Recently, a study in songbirds found that while 

D1 receptor antagonists caused the birds to display deficits in reinforcement learning, D2 receptor 

antagonists caused the number of songs sung to drop precipitously so much so that most birds did 

not sing enough songs per day to be included for analysis (Hisey, Kearney, and Mooney 2018). 

Such results point to a potential for the different receptor types to be involved in disambiguating 

the multiple roles dopamine seems to perform. Future experiments in this direction would involve 
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using optogenetics (Boyden et al. 2005) or DREADDs (Armbruster et al. 2007) to specifically 

target individual types of receptors and measure their effects of activation or blocking during 

various behavioral tasks.  

 Additionally, there has been new evidence to suggest that the dopaminergic projections 

themselves may not be uniform in their function with respect to targets. The textbook version of 

the dopaminergic terminals from neurons originating in the VTA/SNc is that they spread diffusely 

to targets throughout the brain including but not limited to the ventral striatum or Nucleus 

Accumbens, the dorsal striatum and areas of the prefrontal cortex. Mohebi and colleagues have 

shown that while the underlying neural activity in the VTA/SNc seems to be the same, the release 

of dopamine at the axon terminals seems different among the various areas. In particular, they 

found that dopamine levels correlated with an animal’s motivation to engage in particular tasks in 

the Nucleus Accumbens but not in other areas. Additionally, while they observed such an increase 

in dopamine release in the Nucleus Accumbens, they did not observe a corresponding change in 

the neural activity of dopaminergic neurons projecting to the Accumbens suggesting an external 

mechanism of release (Mohebi et al. 2019). Future experiments can focus on understanding the 

cause of this observed dopamine release, one of the candidates for which is the cholinergic 

interneurons present in the striatum (Threlfell et al. 2012, Ding et al. 2010, English et al. 2012). 

 I mentioned above that one of the limitations in understanding dopamine signaling thus far 

has been methodological and that we are beginning to develop tools to address this. I will expand 

on this slightly in the following section. Another major source of problems in interpreting results 

from various studies in neuroscience involves the interconnected nature of the brain and our 

limited tools to such complex circuits with extensive feedback loops. I will expand on this idea in 

section 4.3. 
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4.2 New Techniques to understand brain function 

The majority of work into the role of dopamine so far has been performed using 

electrophysiological studies involving either recordings of single unit neurons with a single 

electrode or through single or multi-unit recordings using multi-electrode arrays. These methods 

are extraordinarily intensive and yet have an extremely small throughput in terms of the number 

of units one can simultaneously record from in relation to the population in the area being recorded 

from. Techniques such as voltammetry and microdialysis have also been used but suffer from less 

temporal resolution and in the case of microdialysis, limited spatial resolution as well. 

 Increasing the number of units from which one can simultaneously record neural activity 

has been a long standing goal in neuroscience. The hypothesis behind the goal is that increasing 

the number of units one can record from simultaneously will provide a more accurate snapshot of 

the state of the brain at various time points and therefore will lead to a better understanding of the 

computations being performed. This idea has led to several grand projects such as the Blue Brain 

project (Markram 2006), the Human connectome project (Van Essen et al. 2013) and others. In 

terms of methodological advances, one of the most prominent and quickly growing fields has been 

that of optical imaging. While electrophysiological recordings provide a temporally detailed 

account of the neural activity, the spatial extent that each electrode can cover is limited. This 

limitation can be mitigated with a little sacrifice on the temporal resolution through optical imaging 

using techniques such as voltage sensitive dye imaging and calcium based fluorescent imaging. 

While the use of voltage sensitive dyes has not been widespread due to the fact that the technique 

can only be used for a limited time on the surface of the brain, calcium based fluorescent imaging 

has been advancing rapidly. Calcium based fluorescent imaging is based on the principle that cells 

increase their intracellular calcium concentrations when they fire action potentials. By inserting 
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proteins that are sensitive to this increase in calcium concentration and go into a configuration that 

allows them to fluorescence tracking the calcium concentration, we can get a proxy for the 

electrical activity of target neurons using an optical signal. This led to the development of one-

photon based fluorescent imaging better known as fiber photometry (Guo et al. 2015, Meng et al. 

2018) as well as two-photon based fluorescent imaging (Tian et al. 2009). The disadvantage of 

fiber photometry is that it only provides as much coverage as the electrical methods mentioned 

previously since it only provides one pixel of signal. On the other hand, two photon methods 

currently require animal subjects to be head-fixed for successful recording though the technology 

is improving to allow for recording from freely behaving animals in some cases (Zong et al. 2017). 

I previously mentioned that in both cases, the temporal resolution is not quite as good as that of 

electrical signals but newer versions of the GCaMP protein promise to show better temporal 

resolution and higher signal to noise ratios (Inoue et al. 2019).  

 Techniques such as that described above could theoretically allow us to genetically target 

a subgroup of neurons, dopamine neurons from the VTA or striatal D2-receptor carrying medium 

spiny neurons for example, and record their collective neural activity over an extended period of 

time while the animal is performing a behavior of interest. Such experiments coupled with studies 

that uncover the structure of inputs and outputs to the brain regions of interest could help us 

contextualize the signals observed to their corresponding inputs and the behavioral outputs 

observed.  

 Another technological frontier has been the development of tools that can record neural 

activity for extended periods of time. Current protocols typically record neural activity on the 

timescale of days to at most months. This is due to glial scarring and other issues with long term 

recording that cause the signal to noise ratio to drop leading to a loss of viable signal (Polikov, 
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Tresco, and Reichert 2005). Carbon fiber electrodes (Huffman and Venton 2009) and other 

nanoelectronic probes (Luan et al. 2017) are being actively researched for use in chronic recording 

and stimulation paradigms. Long term recording of neural activity could allow us to quantify 

changes in neural activity in response to learning or repeated exposure to certain tasks or cues.  

4.3 The problem of Information in an Interconnected Network 

Deep neural networks are thought to be the category of machine learning algorithms that are closest 

to the structure of the brain in a nervous system. Like the brain, they receive inputs and must use 

the inputs to produce an output. Like the brain, they consist of multiple layers feeding into one 

another between the input and the output layer. Also like the brain, the inner workings of the 

network are not well understood especially as the number of layers between the input and the 

output increases. 

 One of the most frequent criticisms against deep neural networks is that they often feel like 

black boxes transforming the inputs into the required outputs with little to no understanding of 

how they do so. As the number of hidden layers increases and the number of nodes within a layer 

increases it becomes increasingly difficult to understand, even with post-hoc analysis, what the 

particular contribution of each layer (let alone each node within a layer) is in the input-output 

transformation. As complex as deep neural networks are though, there are no connections between 

nodes within a layer, no reciprocal connections or feedback loops in a simple feedforward network 

and there is a single source of input with a single category of expected output. The brain however 

has all of these in addition to the features already mentioned. 

 Everything we know about the brain has been gleaned from recording neural activity in a 

brain region of interest and correlating that activity either to sensory inputs experienced by or 

motor outputs produced by the subject. If we go back to the neural network analogy, this works 
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well to understand the activity at the input and output layers which in the case of the brain, 

correspond to the sensory and motor areas respectively. However, if we want to understand the 

activity of neurons in layers in between these two extremes, things become more complicated since 

we are probing a multi-dimensional space with a limited dimensional dataset (Ganguli and 

Sompolinsky 2012). In order to be successful in doing so, more data as described in section 4.2 

might help but in addition, we need new theories for analyzing and interpreting high dimensional 

data (Gao and Ganguli 2015). 

 Perhaps the most useful and powerful tool we currently have to assess the relationship 

between neural activity and behavior observed is through mutual information (Shannon 1948). In 

lay terms, mutual information can be thought of as the measure of the relatedness between two 

variables similar to the correlation. While the correlation measures exclusively linear relationships 

between the variables, mutual information can pick up non-linear relationships as well. Measures 

of mutual information have been used to show that sensory neurons encode information not just in 

the rate at which they fire (referred to as rate coding) but also in the precise timing of the spikes 

they produce (Bialek et al. 1991, Strong et al. 1998, van Steveninck et al. 1997) which is referred 

to as temporal coding. Following these initial discoveries, evidence for temporal coding has been 

found in encoding stimulus location (Panzeri et al. 2001) and more recently, in the motor cortex 

like areas in songbirds (Tang et al. 2014) as well as in actual muscle control of respiration 

(Srivastava et al. 2017) and flight control in moths (Conn, Putney, and Sponberg 2019). Such 

advances have required the motor studies field to rethink long-held assumptions regarding coding 

of neural activity to produce movements (Sober et al. 2018). Additionally, these advances point to 

new lines of inquiry for the role of dopamine in sensorimotor control. If motor output is controlled 

by the precise timing of spikes from motor units, is the dopamine signal that modulates and corrects 
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the output also correspondingly precise in time? If it is precise in time, how do the receptors 

involved convey precisely timed signals when the dynamics of activation of the receptor and 

subsequent downstream processes (dopamine receptors are metabotropic receptors) are much 

slower than that of action potentials? Does co-release of glutamate help navigate this since 

glutamate can activate ionotropic receptors which in turn act much faster? There has been some 

evidence for co-release of glutamate and dopamine particularly in the ventral striatum (Stuber et 

al. 2010, Fortin et al. 2012). 

 As powerful as information theory is, it still lacks the theoretical foundations for one case 

that is abundantly common in neuroscience, namely, how does one compute the amount of 

information being transmitted between two points where both points are simultaneously receivers 

and transmitters? If one considers neurons as the points in the above example, neurons receive 

inputs from hundreds to thousands of neurons while themselves projecting to hundreds to 

thousands more. Hence these neurons simultaneously receive and transmit information. Statistical 

tools have not been developed to handle such a complex network with such extensive bidirectional 

information exchange. This is the other major methodological hurdle to understanding the 

workings of neural communication. 

 There is one more often overlooked aspect of neural communication. The action potential 

is the most prominent and recognizable form of output signal of a neuron and so, has received the 

most attention and research into understanding its role. However, in focusing on the relationship 

between action potentials and behavioral outputs, less emphasis has been placed on the elaborate 

dendritic trees and the numerous synapses that are provided as inputs to each neuron with their 

own action potentials. There is evidence that the location of synapses on dendrites is much more 

precise than previously acknowledged (Bloss et al. 2016) and can cause complex relationships 
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such as direction selectivity in starburst amacrine cells (Vlasits et al. 2016) or modulate the input-

output gain of a neuron directly suggesting that studies examining action potentials arising from 

current injection into the soma may be missing crucial details regarding network function (Jarvis, 

Nikolic, and Schultz 2018). Given these factors, it becomes essential to either identify underlying 

constraints that are common among dendritic trees and synaptic placement such that inputs to all 

neurons can be appropriately adjusted or map out connections and take them into account when 

performing network level analysis relating brain activity to behavior.  

4.4 Future Experimental Proposals 

I have spent much of the previous sections in this Chapter mentioning major challenges to 

enhancing our understanding of the brain and central nervous system and proposed some 

experiments and lines of work that could help address these gaps in knowledge. In this subsection, 

I will focus on particular experiments that my experimental results will directly benefit from and 

how they may be performed. 

 As I briefly mentioned in section 2.5 as part of Chapter 2, a plausible hypothesis from our 

data is that dopamine is involved in actively elevating the pitch of syllables sung by birds and is 

required to produce higher pitched renditions of particular syllables. This could be tested both by 

dopamine antagonist infusion as well as direct dopamine or L-DOPA infusion to increase the 

concentration of dopamine in Area X. A lot of emphasis has been placed on effects of dopamine 

depletion on learning and such but less is known about dopamine infusions. This is particularly 

relevant for ties to interventions in patients affected by Parkinson’s disease since the first order of 

treatment is that of L-DOPA infusions.  

 A further direction that ultimately proved beyond the scope of this dissertation was to build 

a computational model that details a mathematical role for dopamine in sensorimotor learning. A 
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collaborator, Zhou and colleagues were able to successfully model unmanipulated songbird 

behavior in response to pitch-shifted auditory feedback as was performed in Chapter 2 using 

Bayesian Inference (Zhou et al. 2018). While it did not shed light on the role of dopamine in the 

computation, it did provide insights into how songbirds reconciled conflicting sensory feedback 

from multiple sources and integrated them optimally to produce a successful strategy for change. 

I tried to adapt this model to fit the data from the dopamine depleted birds in Chapter 2 but was 

unsuccessful since a Bayesian filter model necessarily has to change in the adaptive direction. As 

was shown, all the birds reduced their pitch over time regardless of the direction of pitch shift 

through the headphones. While this could have been explicitly built-in into the model, the lack of 

any other consistent trends in the data precluded the possibility of testing any such model for 

accuracy. Therefore, more data for additional constraints will be required before a successful 

model incorporating a role for dopamine in the computation can be built. 

 Enhancing the timescale over which dopamine is manipulated or recording the neural 

activity from the circuits of interest are among the types of additional data that could help address 

this problem. For instance, future work in our lab involves the use of fiber photometry (see section 

4.2 above) to record the activity of dopaminergic terminals in Area X during singing and other 

learning behavior. Such experiments could provide data on the types of signals provided during 

song and how they change with perceived sensory errors. By combining them with a dopamine 

depletion paradigm, we could also study how the signal changes under depleted conditions 

shedding light on how dopamine controls an upward shift in pitch of the produced syllables. 

Additionally, the use of DREADDs to control the uptake and activity of dopamine receptors could 

help understand the role dopamine plays in learning at a functionally relevant timescale. 



121 

 

 

 As was eluded to briefly in Chapter 2, there is also some controversy surrounding the nature 

of the white noise blasts used to drive reinforcement-type learning in songbirds. While some labs 

drive the pitch-contingent learning by using white noise blasts which are referred to as aversive 

(Tumer and Brainard 2007, Hoffmann et al. 2016), other labs use a version of a different syllable 

played at the same time and refer to such feedback as distorted auditory feedback (Andalman and 

Fee 2009, Gadagkar et al. 2016). Furthermore, it was shown that when birds are not singing, if a 

perch is triggered to play back such distorted auditory feedback when the bird lands and another 

perch is not, the birds seem to preferentially land on the perch that triggers the feedback suggesting 

that they may not find the feedback itself aversive (Murdoch, Chen, and Goldberg 2018). Another 

line of research in our lab is focused on using a non-auditory aversive cue to see if non-auditory 

cues may also drive pitch-contingent vocal learning. This cue is an electric stimulation delivered 

to the back of the neck muscles and is hence more clearly aversive. The discovery of similar neural 

circuits underlying such learning to both auditory and non-auditory cues would suggest that the 

cues may have been aversive in a singing context and shed light on how birds perform 

reinforcement learning. On the other hand, separate neural mechanisms for such learning may 

reveal differences in the brain for how auditory versus non-auditory cues are processed and the 

parallel systems available for effecting the same changes in motor output, namely a change in 

pitch. 

 Future experiments will also be required to dissociate motor production effects from motor 

learning effects either in songbirds or other species. As has been made clear through decades of 

research in patients with Parkinson’s disease, when patients exhibit severe motor deficits, deficits 

in motor learning can be extremely hard to identify let alone study, understand and eventually, 

treat. In the experiments conducted in Chapter 2, we once again observed concurrent effects on 
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motor production, namely lowering of the pitch sung on average, and on motor learning, namely 

the failure to change their pitch in an adaptive manner to the induced pitch shift. Future 

experiments could aim to dissociate these effects such as by waiting for the pitch to stabilize 

following dopamine depletion and then beginning the pitch shift experiments. In section 2.5, we 

argued that the motor production effect we observed could be attributed to a lack in motor vigor 

following dopamine depletion where vigor could mean motivation or speed of movement or both. 

As mentioned in section 4.1, a recent study found that while the amount of dopamine released in 

the nucleus accumbens correlated with a rodent’s state of motivation, there were no appreciable 

differences in the firing rate of dopaminergic neurons projecting there to cause such an increase 

(Mohebi et al. 2019). This suggests that while dopamine is involved in vigor or motivation, an 

external circuit may be responsible for modulating the level of dopamine and therefore the vigor 

of the subject. Future experiments could be aimed at isolating the circuit responsible for the 

modulation of dopamine in the nucleus accumbens and once identified, testing its direct 

relationship to the control of motivation or vigor. 

 Finally, as I briefly elaborated on in section 4.3, a major push going forward has to be 

centered on both discovering better mathematical tools to analyze the vast amounts of data that 

will be gathered by the new techniques being developed and developing mathematical theories 

underlying the working of the brain that can both explain past results observed and make 

predictions for how the system might behave in different circumstances which can then be tested 

through experiments. As post-Einstein physicists are acknowledging, there may not be a “Theory 

of Everything” or TOE that unifies all 4 types of forces observed in the physical world, namely 

gravitational, electromagnetic, strong and weak forces. Even the Grand Unified Theory has only 

been theorized but not observed in practice. However, the complex field of electromagnetism could 
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be adequately summarized into 4 equations through the seminal work of James Maxwell (Maxwell 

1865). Similarly, it is possible that we may not achieve a unified theory of the working of the brain. 

But that should not prevent us from attempting to summarize the vast amounts of experimental 

data obtained thus far. 

4.5 Statistics and the Bootstrap 

As I have shown in Chapter 3, a large fraction of datasets in neuroscience are hierarchical and with 

the advent of new techniques such as those mentioned in section 4.2, the datasets are about to 

become much larger and even more nested than they currently are. In this time, particularly with 

the reproducibility crisis and propagation of statistical misnomers (such as misnomers regarding 

the p-value), a comprehensive statistical training is required across the board for trainees and 

current researchers. While a robust statistical training program for new trainees may potentially 

create a new generation that knows how to perform statistical tests correctly, without concurrent 

training for current researchers this effort is bound to fail. This is because regardless of classes and 

other outside knowledge trainees bring to labs that they grow in, statistical habits of their advisors 

will be the ones they receive the most exposure to and are most likely to emulate. Additionally, 

due to the system of blinded peer-review, even if new researchers attempt to publish methods with 

updated statistical procedures, the reviewers must have the knowledge to assess the method’s 

appropriateness for the data and either approve or recommend changes correspondingly. Hence 

one of the most immediate requirements to address this issue is an academy-wide retraining on the 

use of appropriate statistical tests for the corresponding types of data. 

 As was shown in Chapter 3, when traditional statistical methods that assume independence 

between data points are applied to hierarchical datasets where the data are not independent, the 

false positive rate is much higher than the acceptable Type-I error rate that was set. As a result, the 
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onus falls on future researchers to verify whether a given study in the past was performed correctly 

and whether their results have a large enough effect size to be detected when the appropriate 

statistical tests are applied. As we saw in Chapter 3 though, the larger the effect size, the more 

likely the result is to be statistically significant even with the adjusted tests. 

 In Chapter 3, we introduced the hierarchical bootstrap as a potential alternative to 

traditional statistical tests that could handle hierarchical datasets and their non-independence 

between data points appropriately. However, we only addressed the problems of bias and other 

issues that have been raised with the bootstrap briefly (Hillis and Bull 1993, Crowley 1992). 

Further analysis of bias and other potential issues should be explored and alternatives suggested if 

the bootstrap is found to have significant problems in handling hierarchical data. Additionally, we 

presented one method of calculating statistics using the bootstrap but other methods should be 

explored and their relative strengths and weaknesses assessed. Finally, what makes the bootstrap 

as powerful as it is popular is that it is a very simple algorithm to explain and understand. 

Regardless, the use of the bootstrap will increase greatly with the advent of scripts or statistical 

packages that can perform the hierarchical bootstrapping as needed for a given dataset 

automatically as opposed to having to manually write or adapt code by oneself for their particular 

dataset. 

 In conclusion, the experiments in this dissertation revealed a role for dopamine in 

sensorimotor adaptation. Further experiments will be required to understand how dopamine 

impacts sensorimotor adaptation and across what timescales. I also showed that when dealing with 

hierarchical datasets, the non-independence between data points makes traditional statistical tests 

that assume independence between data points return extremely large false positive rates. I showed 

how using hierarchical bootstrapping can help overcome this problem and showed two real world 
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examples of applying hierarchical bootstrapping to previously published datasets, one of which 

the results did not change while for the other the results did. I propose that for future experiments 

involving hierarchical datasets, the bootstrap or other appropriate statistical tests such as LMMs 

ought to be deployed from the outset. 
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