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Abstract

Machine Learning Methods for Quantification of Depression Severity and Prediction
of Recovery Trajectory using Longitudinal Video and Audio Data, with

Applications to Deep Brain Stimulation Treatment Optimization
By Sahar Harati

Predictive analytics and computational phenotyping techniques have shown promis-
ing results in several areas of medicine, including automated classification of radiology
imaging, survival analysis in cancer patients, and prediction of life-threatening events
in hospitalized patients. In recent years, computational psychiatry has emerged as
a field that combines multiple levels and types of data and computational model-
ing to improve understanding, prediction, and treatment of mental illness. Mental
health patients often undergo a variety of non-invasive (e.g., cognitive counseling)
and invasive (e.g., surgery) therapies before finding an e↵ective treatment plan. Im-
proved prediction of treatment response can shorten the duration of clinical trials
and improve patient experience and outcomes. A key challenge of applying predic-
tive modeling to this problem is that often, the e↵ectiveness of a treatment regimen
remains unknown for several weeks. In this thesis, we propose Machine Learning
approaches to extracting audio-visual features for predicting the likely outcome of
Deep Brain Stimulation (DBS) treatment several weeks in advance for patients suf-
fering from major depressive disorder, a common psychiatric illness for which there
are no objective, non-verbal, automated markers that can reliably track treatment
response. We first explore the use of video analysis of facial expressivity in a cohort
of severely depressed patients before and after DBS. We introduce a set of variabil-
ity measurements to obtain unsupervised features from muted video recordings. We
then leverage the link between short-term emotions and long-term depressed mood
states and use a neural network model on the top of emotion-based audio features.
The results show that unsupervised features extracted from these audio and video
recordings, when incorporated in classification models, can discriminate di↵erent lev-
els of depression severity during ongoing DBS treatment. Moreover, for the long
term prediction and in the absence of immediate treatment-response feedback, we
utilize a joint state-estimation and temporal di↵erence learning approach to model
both the trajectory of a patient’s response and the delayed nature of feedbacks using
deep neural networks. The results based on longitudinal recordings of patients with
depression show that the learned state values are predictive of the long-term success
of DBS treatments. Our findings suggest that Machine Learning models can discover
objective biomarkers of depression and patient response to treatments, which have
the potential to standardize treatment protocols and enhance the design of future
clinical trials.
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Chapter 1

Introduction

1.1 Machine Learning and Applications in Mental

Health

With the rapid advancements of technology, medical devices and wearable sensors are

collecting a variety of signals and a vast amount of data in the field of psychology and

mental health. Some examples are functional and structural MRIs, behavioral data,

video and speech recordings, survey responses, and psychological assessments. Ana-

lyzing this volume of data is not feasible by traditional statistics with formal tests for

group di↵erences in small samples [1]. Machine learning that has emerged as a robust

tool to analyze rapidly growing data has been recently used as a solution for analyzing

mental health data. Bzdok et al. [1] have reviewed certain benefits and significances

of choosing machine learning approaches over conventional statistical techniques in

the field of psychiatry. Availability of such data enables machine learning, and data-

driven methods join forces with traditional clinical analysis to bring new insights

and techniques in helping people with a mental health condition during the course of

treatment. On the other hand, the challenge of subjectivity in the measurements that

are used for assessing, diagnosis, monitoring, and predicting mental health disorders,
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has not yet been appropriately addressed. Thus, it’s important to have an automated

mechanism to identify, learn, and predict patterns in mental health data.

As stated by Tom Mitchell, machine learning is to study and develop algorithms

that allow computer programs to automatically improve through experience [2]. Con-

ventional programs have their capability hard-coded and implanted by the program-

mer. All the cases need to be foreseen by the programmer because the program

can not generalize to unseen data. In contrast, machine learning programs improve

their performance through new experiences. They learn through examples. They

seek general principles and common patterns underlying in data without explicit in-

structions [3, 4] and generalize them to new and unseen cases. Shatte et al. [5] have

performed a systematic review on machine learning and big data applications for

mental health. They identified di↵erent categories of mental health applications for

machine learning techniques such as detection and diagnosis of mental health con-

ditions including depression, Alzheimers disease, and schizophrenia, and prognosis

and treatment of mental disorders. Detecting and monitoring depression and an-

tidepressant treatment, particularly, have been of growing interest in recent years.

Researchers have studied applications of machine learning in this area by exploiting a

wide range of collected and stored data such as neuroimaging data (e.g., fMRI) [6, 7],

sensor data (e.g., wearables, phone) [8, 9], and speech and video data [10, 11]. Audio

and video data, in particular, have been shown to have high potential in detecting

and assessing depression in a more automated and less subjective way.

1.1.1 Machine Learning Methods

Machine learning algorithms are broadly divided into three major categories. Su-

pervised Learning, Unsupervised Learning, and Reinforcement Learning 1. In the

following each type will be explained separately.

1There are other related types of machine learning methods such as semi-supervised learning,
deep learning, active learning, meta-learning, transfer learning, and zero-shot learning
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Supervised learning: In supervised learning, a set of input data X with known

labels Y is used to learn the function that maps the input to the output. This mapping

is called a trained model that can predict the label for new data. Supervised learning

can be thought of as a teacher supervising the learning process by providing the target

Y for each input X. The training works by the learning algorithm iteratively making

predictions on the training data and being corrected by the teacher and learning stops

when the algorithm performs su�ciently well. For example, in the case of video data,

input X can be a video recording or an image of a patient’s face with Y to be the

depression score. After the training process, the mapping function will be able to

predict depression score for new patients given their video recordings or images of

their faces.

Supervised learning problems can be further grouped into regression, classification,

and forecasting problems:

• Classification: Here the output variable is a category or a discrete value. For

example depression severity level (low, medium, high).

• Regression: In this problem the output variable is a continuous value, such as

depression score.

• Forecasting: In this type of learning the output variable is a prediction about

the future according to the past and present data. It is mostly used to analyze

trends. For example, given the changes in patients depression score over the

past weeks, what would be their depression scores in the following weeks.

In chapters 3 and 4 we formulate a supervised classification problem and train a

predictive model for the depression severity.

Unsupervised Learning: Unsupervised learning applies mathematical methods

to identify the structure that is coherently available in data to provide new insights.

In this type of learning there is no target variable Y . Examples of unsupervised
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learning are categorizing patients into groups for targeted and specialized treatment

(Clustering), or representing the high dimensional data such as video recordings in a

lower-dimensional space (Dimensionality reduction)

Reinforcement Learning: This type of learning tries to optimize a sequence

of decisions for the best possible outcome by forcing a reward for positive outcomes

and a penalty for negative outcomes. For example, the decision of what type and

what dosage of antidepressant medications should be administered at each visit over

a course of treatment and therapy can be best modeled and identified by applying

reinforcement learning techniques.

1.2 Major Depressive Disorder

Mental health disorders a↵ect a notable portion of the population at any given time.

According to the World Health Organization (WHO), depression (Major Depressive

Disorder or clinical depression) alone is one of the leading causes of disability around

the world, a✏icting approximately 300 million people. Major Depressive Disorder

impairs functioning at home, at work, and in relationships [12]. It a↵ects how a

person thinks, feels, and performs his/her daily activities such as sleeping, eating,

and working. Diagnosis of MDD is characterized by a collection of symptoms and

signs that last for at least two weeks [13].

1.2.1 Assessment

Evaluating the presence or severity of depressive symptoms is currently performed by

a clinician with special training in mental health in a clinical interview setting and is

usually supported by self-report scales.

Depression severity can be measured with the Hamilton Depression Rating Scale

(HDRS) [14], a standardized measure and the current gold standard for measuring
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treatment response in psychiatric studies. A score of 7 or less is within the normal

range (or in clinical remission), and a score of 20 or higher is usually considered

severely depressed. The original version contains 17 scored items (HDRS17) cor-

responding to 17 severity symptoms of depression experienced over the past week.

Symptoms include, but are not limited to, depressed mood, suicidal ideation, and psy-

chomotor retardation. Psychomotor slowing is a well-established symptom of MDD

and contributes to the severity score in a number of depression rating scales, including

the 17-item HDRS. While psychomotor slowing is one of the best clinical predictors

of the melancholic subtype of MDD, it is defined using clinical observation rather

than any standardized quantitative measurement. Nonetheless, it has relatively high

discriminative power, as it is rarely endorsed in patients who do not meet criteria

for a depressive episode. Psychomotor changes observed in depression include gross

motor speed, head, face, trunk, and limb movements. Specific facial behaviors in-

cluding eye contact, smiling, and eyebrow movement have been shown to distinguish

depressed from non-depressed subjects. Such changes are relevant to biological hy-

potheses about abnormalities in the thalamocortical basal ganglia circuit, as well as

psychological hypotheses about the way in which depression symptoms influence in-

terpersonal interactions and predispose to social rejection in a way that reinforces

depression [15, 16].

Self-reported measures, such as Beck Depression Inventory (BDI) [17] and PHQ-

9 [18], are used as complementary to clinical assessments although they are also

subject to response bias [19].

1.2.2 Treatment and Recovery

The most common treatments available for MDD are antidepressant medications and

psychotherapy, which may take weeks to months to have a therapeutic e↵ect. Many

patients respond to these treatments, however according to Rush et al. more than
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30% fail to reach complete and sustained remission [20]. Patients with MDD who

have no response or poor response to multiple antidepressant treatments are diagnosed

with treatment-resistant depression (TRD). These patients have more severe disability

and a higher risk of relapse [21].

In the past three decades, new approaches have been discovered for TRD treat-

ment. Among them Deep Brain Stimulation (DBS) of the subcallosal cingulate cortex

has shown promising results [21]. DBS is a neurosurgical procedure in which two

electrodes are implanted into a specific brain region referred to as Cg25 or Brodmann

area 25 in each hemisphere; these electrodes are connected to a pulse generator that

is implanted underneath the collarbone and controls stimulation and provides the

power source for the DBS system.

As described by Crowell et al, patients with MDD who have participated in a DBS

trial exhibit significant psychomotor slowing and blunting of facial expressivity [22]

While some progressive improvement in depression is observed with DBS initiation, af-

ter several weeks of DBS, patients often experience a transitional phase distinguished

by a return of subjective depressive symptoms, but with preserved emotional reac-

tivity and relatively increased negative emotions and a↵ect. Oftentimes this phase

resolves and patients proceed toward subjective improvement and stabilized treat-

ment response. Hence, this recovery course is non-linear, with transient subjective

worsening interrupting the improvement trajectory. It is also the case that DBS

parameters are sometimes adjusted during the course of treatment, suggesting that

clinicians suspect depressive relapse and make treatment adjustments accordingly.

Thus, worsening depression rating scores may represent a transient subjective re-

sponse that does not require treatment changes, or a disease relapse that does require

treatment changes.

A more objective biological marker of depression that could discriminate depres-

sion severity levels and distinguish recovery phases would guide treatment decisions.
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1.3 Automatic Depression Assessment from Visual

Cues and Audio

Depression is a clinical syndrome that is assumed to have a core underlying emotional

state that defines the clinical illness. Many studies have attempted to automatically

classify emotional states and to classify and predict depressive states and treatment

outcome.

A few studies have focused on static facial appearance and have shown that infor-

mation in facial cues plays an important role in distinguishing subjects who exhibit

relatively high psychiatric symptoms from those with few or no symptoms [23, 24].

Increasingly, dynamic facial expression from video is being used in an attempt to

predict or classify MDD, as reviewed recently by Pampouchidou et al. [25]. Cohn et

al. [26] compared clinical diagnosis of major depression with automatically-measured

facial actions and vocal prosody in patients undergoing treatment for depression. Us-

ing a support vector machine (SVM) classifier and logistic regression, they achieved

an accuracy of 79% in detecting depression, defined as HDRS � 15. Others have used

facial expressivity or other features to predict depression severity by partitioning the

HDRS into multiple classes for prediction purposes, with various levels of success.

For instance, Pampouchidou et al. [27] achieved 55% accuracy, Ramasubbu et al. [28]

reported 52-66% accuracy, Kacem et al. [29] achieved an accuracy of 66%, and Dibek-

liouglu et al. [30] reached an accuracy of 66-84%.

Classification of facial movements has been studied extensively by psychologists,

with the most common method being manual coding using the Facial Action Coding

System [31]. Manual FACS coding is the gold standard for analysis of facial expres-

sions, but is very time consuming and impractical for large datasets. Automated

FACS analysis represents a supervised approach to facial expression analysis that has

shown promise in structured and semi-structured interviews [26, 32, 33, 34, 35, 36].
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These analytical methods focus on specific action units of facial movement as-

sociated with emotional expressions. Alternative approaches, such as convolutional

neural networks (CNNs) [37], consider the full range of facial expression dynamics

without the constraint of pre-defined (action unit) changes, including non-discrete or

not consciously observable features of facial expressivity.

In recent years, automatically identifying and monitoring depression from behav-

ioral signals has been extensively studied [38]. Hall et al. have shown that decreased

verbal activity and monotonous and lifeless sounding speech can be an objective in-

dicator of depression [39]. Moreover, according to Darby et al., there is a perceptible

change in the pitch, speaking rate, loudness, and articulation of depressed patients

before and after treatment [40]. Deriving biomarkers of depression directly from a

speech signal, both at the formant and spectral level, has been explored, and is shown

to be useful for classifying presence or severity of depression [41, 42, 43]. However,

since speech signals form a complex feature space, despite strong ability of classifica-

tion methods such as Support Vector Machine (SVM) and Gaussian Mixture Model

(GMM), which have been successfully used for robustly classifying small and sparse

datasets, relatively low accuracy was achieved by these studies.

To improve the depression severity classification from audio, other researchers

invested in the connection between continuous a↵ective measures and depression [44].

Vocal a↵ect, i.e., emotional expression of speech and its relationship to the overall

mood of the patient, has been explored in the domain of a↵ective computing and

social signal processing [45]. In a successful e↵ort, Stasak et al. [46] improved the

accuracy of their automatic depression classification method by 5% by incorporating

emotion ratings.

However, utilizing emotion information is not always straightforward in many

depression classification tasks. The first step is to extract emotion from audio which

needs su�ciently large annotated data to be used in model training. Unfortunately,
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manually labeling audio from MDD patients is expensive and time consuming, and

requires human supervision. Another concern in incorporating speech emotion is

the human bias due to patients’ speech content. Looking at the quality of speech

signal (i.e. audio) without attention to its content is a challenge even for expert

psychiatrists.

1.4 Contributions

In order to find novel quantitative biomarkers to supplement classical measurements

of antidepressant response, we first use several metrics of variability to extract unsu-

pervised features from weekly video recordings of patients before and throughout the

first six months of DBS treatment for MDD [47]. Our goal is to quantify the e↵ect

of treatment on facial expressivity. A dynamic latent variable model is used to learn

a low dimensional representation of factors that describe the relationship between

high-dimensional pixels in each video frame and over time. Our work is similarly

based on video feature extraction, but di↵ers from previous works in that we utilize

an unsupervised dynamical systems approach to extracting predictive features from

video recordings of a highly homogeneous population of severely depressed patients

undergoing DBS treatment who are followed on a weekly basis for several months.

Our unsupervised approach does not assume that depressed state changes in facial

expressivity are limited to discrete motor units in the face or even previously defined

emotional expressions (i.e., sad, happy, angry). By remaining open to a broader

range of dynamic changes in expressivity, we may capture elements of facial expres-

sivity that are missed by supervised approaches, which may come at some cost to

interpretability.

To address the aforementioned challenge in using audio to assess depression and

recovery, we propose a predictive model built on the top of emotion-based features.
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Because acquiring emotion labels of MDD patients is a challenging task, we train

an emotion recognition model on an auxiliary annotated dataset. Then, inspired by

transfer learning [48], we utilize the trained model to extract emotion features of MDD

patients to be used in the classification algorithm. In the last step of our approach, we

feed the emotion features into a SVM classifier, which is especially robust in clinical

settings where the number of samples is small. Our preliminary results show that our

approach to extract emotion features using previously trained neural networks, when

combined with SVM, can outperform alternative baselines

As our main contribution, we propose a Machine Learning approach to extracting

audio-visual features for predicting the likely outcome of Deep Brain Stimulation

(DBS) treatment several weeks in advance. In the absence of immediate treatment-

response feedback, we utilize a joint state-estimation and temporal di↵erence learning

approach to model both the trajectory of a patients response and the delayed nature

of feedbacks.

1.5 Data

1.5.1 Subjects and Clinical Assessment

Videos of subjects were collected as part of an ongoing DBS for Treatment Resistant

Depression (TRD) study performed at Emory University2. Subjects in this study were

evaluated weekly by study psychiatrists for eight months, starting before DBS surgery

and throughout the first six months of chronic stimulation. Interviews continued with

less frequency throughout a subject’s participation in this long-term study. Twelve

subjects were included in this analysis (ages 35-68) who were primarily Caucasian

(with the exception of one African-American patient) and female (with the excep-

tion of two male patients). Ten subjects included in this analysis were considered

2www.clinicaltrials.gov, Identifier: NCT00367003, NCT01984710
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treatment-responders after 6 months of stimulation. Clinical response was defined as

a 50% decrease from pre-surgical baseline in the HDRS-17 [14], given at every time

point included in this analysis.

Interview Videos: All interviews for all subjects were conducted by the same

two psychiatrists for the duration of the subjects’ participation in the study. Inter-

views typically started with very open ended questions (e.g. How are you?), asked the

patient to describe events and feelings from the prior week, and were increasingly spe-

cific to an individual patients specific concerns/responses as the interview progressed.

These unstructured clinical interviews were videotaped, capturing spontaneous con-

versation and unscripted responses to typical psychiatric assessment questions. Thus,

these videos documented the evolution of DBS treatment and clinical response. The

interview videos of 12 subjects were collected starting from 4 weeks before surgery

and continuing up to seven months after surgery, for a total of 305 videos, roughly

25 videos per subject. Videos were typically about 30 minutes long.

Smile Videos: A collection of videos has also been captured as a control for

any software that will be used to detect activation/movement of particular groups

of facial muscles called action units. In this type of video, patients are asked to

keep their baseline facial expression and then smile for 20-30 seconds then resume

a neutral/baseline expression. The goal of recording this type of videos is to test a

software with an obvious observable facial movement.

1.5.2 Video Collection

All videos were recorded using a Canon Vixia HF R600 digital video camera mounted

on a tripod under conditions typical of a clinical psychiatric o�ce. The subjects were

facing generally in the direction of the camera seated in front of a plain white wall.

The camera and chair where the subject was seated remained constant across videos.

The interview was conducted in a standard psychiatric o�ce room with the chair
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approximately 5 feet from the camera.

All of the data gathering and analytic procedures were reviewed and approved by

the Emory University Institutional Review Board (IRB). Collected dataset is not pub-

licly available, since the corresponding agreement on confidentiality of the Protected

Health Information (PHI) does not allow us to share the collected videos.
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Chapter 2

Visual Feature Extraction and

Analysis

2.1 Introduction

During the course of treatment patients usually undergo a series of phases. These

knowledge of these phases and their dynamics could be a useful way to track and

oversee the treatment process. Moreover, they are helpful in characterizing the e↵ec-

tiveness of a treatment and how to manage clinical resources. Being able to quantify

their wellness and predicting what stage the patient subjects undergo will equip them

with a personalized biomarker for the treatment process.

These phases were determined clinically by a study psychiatrist, and videos se-

lected for analysis were those considered to be representative of each clinical phase.

As described by Crowell et al, patients with MDD who have participated in a DBS

trial exhibit significant psychomotor slowing and blunting of facial expressivity [22].

While some progressive improvement in depression is observed with DBS initiation,

after several weeks of DBS, patients often experience a transitional phase distin-

guished based on a return of subjective depressive symptoms, but with preserved
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emotional reactivity and fairly increased negative emotions and a↵ect. Oftentimes

this phase resolves and patients proceed on a way of subjective improvement and

stabilize in remission from depression (figure 2.1). Hence, this recovery course is non-

linear, with transient subjective worsening interrupting the improvement trajectory.

It is also the case that DBS parameters are sometimes adjusted during the course of

treatment, suggesting that clinicians suspect depressive relapse and make treatment

adjustments accordingly. Thus, worsening depression rating scores may represent a

transient subjective response that does not require treatment changes, or a disease

relapse that does require treatment changes. A more objective biological marker that

could di↵erentiate between these two states would guide treatment decisions. Thus,

in order to establish more refined clinical markers for depression severity, we focus

here on classifying facial expressivity utilizing computational video analysis.

In order to find novel quantitative biomarkers to supplement classical measure-

ments of antidepressant response, in this chapter, we first use several metrics of

variability to extract unsupervised features from weekly video recordings of patients

before and throughout the first six months of DBS treatment for MDD [47]. Our goal

is to quantify the e↵ect of treatment on facial expressivity. A dynamic latent variable

model is used to learn a low dimensional representation of factors that describe the

relationship between high-dimensional pixels in each video frame and over time.

For the purpose of this study clinical response is defined as a 50% decrease from

pre-surgical baseline in the Hamilton Depression Rating Scale-17, given at every time

point included in this analysis. Three clinical phases are defined for the purpose of

this analysis: depressed, transitional (the putative ”rough patch”), and improved.
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Figure 2.1: The trajectory of HDRS for one DBS patient starting from one week
pre-surgery. The highlighted area represents the transitional phase.

2.2 Preprocessing

Figure 2.2 illustrates the preprocessing steps utilized in this thesis including 1) face

detection, 2) contrast normalization, and 3) image registration, as described next.

2.2.1 Face detection

We use the Viola-Jones [49] and Kanade-Lucas-Tomasi (KLT) [50] algorithms im-

plemented in the Computer Vision System Toolbox of MATLAB to automatically

detect the patient’s face in each video frame. We extract the area limited to the face,

eliminating the hair and the background.

It’s notable that failing to detect the face in a frame could happen when there was

no face in the frame, for example when the patient covered her/his face or something

blocked the camera (the average percentage of missing frames was 0.07% per video

with standard deviation of 0.002).

In these situations, we simply ignore those frames and continue extracting faces.
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2.2.2 Normalization

We applied histogram equalization [51] on each video frame to improve contrast. This

allowed for areas of image with lower local contrast to achieve a higher contrast, and

to improve details in frames that were under or over-exposed.

2.2.3 Face Alignment and Registration

To minimize the di↵erences caused by di↵erent lighting conditions and variations

in movement of the head, we utilize the intensity-based automatic image registra-

tion technique [51], implemented in imregister from MATLAB Image Processing

Toolbox. For each video, we select the first frame with the whole face captured as

the reference (fixed) image. We visually investigate the faces to make sure they are

aligned after the automatic registration process, and make video clips from registered

frame to make sure all pose variations and di↵erent zooming levels are eliminated.

Face Detection 
& 

Extraction

Normalization RegistrationVideo frames

Figure 2.2: Preprocessing steps: video in demonstration is an Advanced Motivational
Interviewing sample for education uploaded by Dr. R.W. Watkins, which is publicly
available on YouTube: https://www.youtube.com/watch?v=3rSt4KIaN8I.

https://www.youtube.com/watch?v=3rSt4KIaN8I
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2.2.4 Downsampling

Videos are captured at a rate of 30 frames per second and are downsampled to 3

frames per second to reduce computational cost without compromising detection of

facial expressions. Evolution of facial expressions occurs in much coarser resolution

of 0.5 to 4 seconds [52].

2.3 Methods

2.3.1 Multi-scale Entropy

Entropy is a measure of the unpredictability or randomness of a sequence of numbers

(the higher the more unpredictable). Assume a scenario in which the outcome of the

sensor is relatively unpredictable, and actually performing the sensing in the next

frame and learning the results gives some new information; this is a way of saying

that the entropy of that pixel is large. In contrast, consider another scenario where

we measure the value of the pixel in the next frame after the first one. Since the

result of the former is already known, the outcome of the later can be predicted well

and the results should not contain much new information; in this case we say that

the entropy of the pixel value is small. Sample entropy is a an approximate entropy,

used broadly for measuring the complexity of a time-series. For a given embedding

dimension m and tolerance r, sample entropy is defined as the negative logarithm of

the probability that if two sets of simultaneous data points of length m have distance

smaller than r, then two sets of simultaneous data points of length m + 1 also have

distance smaller than r. Multi-scale Entropy (MSE) is defined as the entropy of a time

series at di↵erent time-scales [53]. In practice, it’s calculated by repeatedly applying

sample entropy to a time series after coarse-graining by a factor �.

We extract MSE from the preprocessed video frames by calculating the sample
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entropy of pixels along di↵erent scales (� = {1, . . . , 12}), corresponding to time-scales

of 1/3 second to 4 seconds. Considering an embedding dimension of m = 2, this

corresponds to templates of length up to 8 seconds. The MSE coe�cients resulted

from this procedure capture variability across a single pixel and are thus a monovariate

measure of variability. For the purpose of feature engineering, we averaged the MSE

coe�cients across all pixels, resulting in a set of 12 features.

2.3.2 Switching Linear Dynamical Systems

Dynamical systems are typically used to describe the evolution of a multivariate time

series. The state of a dynamical system is defined as a set of observed or latent fac-

tors, that summarize all the information required to predict the future evolution of the

system. In a Linear Dynamical System (LDS), a set of linear equations describes the

evolution of the system. However, most real-world time series exhibit nonlinear dy-

namics. This includes head movements and face occlusion events in video recordings

of DBS patients, which results in a nonlinear evolution of pixel values. Nonlinear dy-

namical systems are generally intractable and computationally expensive to model.

One approach to describing such complex dynamics is through a Switching Linear

Dynamical System (SLDS) that describes the evolution of a nonlinear dynamical sys-

tem as the superposition of simpler linear systems. The key parameters of a linear

dynamical system are the state transition matrix A and the observation matrix C,

describing the evolution of the system state (here, a lower dimensional latent repre-

sentation of the observed pixel values) and the relationship between the state and the

observations (here, the pixel values within a frame), respectively (See Appendix A for

more information). In the context of a SLDS model, we have a set of J such model

parameters. Assuming that the most persistent mode corresponds to the period that

the patient is still, we extract the following dynamical features from the matrices A

and C of such mode.
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The top 10 largest eigenvalues (in magnitude) of A are used as a representation

of the dynamical properties of the latent state, with eigenvalues with higher absolute

real values (closer to 1) indicating smoother state transitions and more similarity

across subsequent video frames, while smaller values indicate significant variations.

In essence, these features capture the dynamics of the lower dimensional latent rep-

resentations of the observed pixel values. Additionally, we extract the following 5

features: 1) the slope of eigenvalues attenuation curve (see Fig. 2.5(b)), 2) the dif-

ference between the first and the tenth eigenvalue, 3) the di↵erence between the first

and the fifth eigenvalues, 4) sum of all 10 eigenvalues, and 5) the product of all 10

eigenvalues.

The Singular Values (SVs) of the Observability matrix [54] (constructed from both

A and C matrices) are another comprehensive measure of variability that capture

the characteristics of the output subspaces (corresponding to the observed pixel-level

dynamics) defined by the dynamical system. Similar to the analysis of dynamical

properties, we use the most dominant mode of the inferred model for each video

to construct the Observability matrix and extract its 10 most significant SVs. In

addition, we extract 5 more features: 1) the slope of SVs attenuation curve (see

Fig. 2.5(c)), 2) the gap between the first and the tenth SV, 3) the gap between the

first and the fifth SV, 4) sum of all top 10 SVs, and 5) product of all top 10 SVs.

(For more information about the SLDS approach and the corresponding features see

Appendix A.)

2.4 Results

2.4.1 Visualization of Features

Figure 2.3 shows the switching dynamics in a video recording corresponding to 20

seconds of baseline facial expressions followed by another 25 seconds of smiling, ending



20

in a period of free-style recording. The inference algorithm accurately separates the

neutral expressions from the smiling phase. The last 15 seconds of this video includes

a typical conversation. As this example illustrates, the SLDS method is capable of

segmenting the video recording into distinct dynamical modes of facial expression.

Figure 2.4 shows a spontaneous recording during a psychiatric interview for another

patient. The models are learned separately on each video and therefore there is no

direct correspondence between the modes in figure 2.3 versus figure 2.4. While the

SLDS models are fit to each video individually and therefore the meaning of a mode

is video-specific, the method allows us to find the longest contiguous segments of the

same dynamical mode within each video, which we then use for extracting predictive

features.
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Figure 2.3: Inferred modes for one subject during instructed alternating neutral and
smile expressions. Lighter colors indicate higher probabilities.

Clinical response was defined as a 50% decrease from pre-surgical baseline in the

HDRS, given at every time point included in this analysis. Three clinical phases are

defined for the purpose of this analysis: depressed, transitional (the putative ”rough

patch”), and improved. These phases were determined clinically by a study psychi-

atrist, and videos selected for analysis were those considered to be representative of

each clinical phase.
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Figure 2.4: Inferred modes for another subject during spontaneous response during
psychiatric interview. Lighter colors indicate higher probabilities.

Entropy Analysis

Figure 2.5 column (a) shows the average sample entropy of pixels along di↵erent

scales for 7 sample patients in 3 clinical states. To save space we don’t replicate

these figures for all the 12 patients, however, we observed similar patterns across all

patients. Given that entropy separates di↵erent clinical states in almost all subjects,

it’s useful in characterizing these states. The fact that entropy being usually higher

in the improved state compared to other two states (transitional and depressed) is in

line with clinical observations, which report a flattened a↵ect and limited reactivity in

the depressed state. Conversely, in the improved state, higher entropy suggests more

emotional reactivity and/or higher expressiveness across multiple time-scales. In most

cases, the transitional state lies somewhere between these two states. Sometimes

closer to depressed and sometimes closer to the improved.

Dynamical Analysis

Figure 2.5 column b demonstrates the spectral properties of the same three patients

in depressed, improved, and transitional phases. We took the 10 largest eigenvalues

(in absolute value) of state evolution matrix (A) in the most dominant mode and

draw them in the figure.
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Here we observe a few interesting patterns. For example, for all subjects, there is

a notable discrimination between the improved and depressed phases. Furthermore,

the eigenvalues of the improved state are usually further away from 1 (corresponding

to flat dynamics) compared to the corresponding ones in the depressed state. This

is expected due to loss of emotional expressiveness or reactivity in depressed states.

Accordingly, the behavior of the transitional phase is sometimes more similar to

depressed and sometimes more similar to improved states.

Observability Analysis

Figure 2.5-c demonstrates the spectral properties of observability by drawing 10 sig-

nificant SVs of the observability matrix. It’s interesting to note that the depressed,

improved, and transitional phases can be distinguished using these features. In the

improved phase, SVs usually have a lower magnitude compared to two other phases

(depressed and transitional) . This pattern is consistent across all patients. Interest-

ingly, the transitional phase often lies somewhere in between the other two (improved

and depressed) in the most of the cases.

2.5 Conclusion

In summary, we have proposed three unsupervised features to analyze the clinical

phases of recovery from MDD. Experimental validation on video recordings of 7 sub-

jects confirms their power to discriminate between di↵erent clinical phases. Multi-

scale Entropy is a very simple yet e↵ective feature that can be computed without

much computational burden. Dynamical analysis is e↵ective when the subject facial

dynamic is itself subject to change due to movement and variations in pose. Observ-

ability features, on the other hand, are more consistent compared to the first two. It

seems that by increasing complexity the features can capture the discrimination more
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consistently, albeit with a computational cost.

These early results suggest that computational and quantitative approaches may

lead to biomarkers for clinical state changes during treatment of depression. These

techniques may be useful for both monitoring outcomes and justifying treatment

interventions. These interventions could include changing DBS parameters, making

a medication adjustment, or initiating psychotherapy.

One limitation of the data presented here is that our unsupervised features are

used in an exploratory setting. A more systematic way that, for example, can ef-

fectively weight all the features according to their discriminatory power and classify

the phases or subjects may be of more practical value. Applying these techniques to

all of a subject’s videos over time may show evidence of transition points in the re-

covery process that precede or predict subjective mood improvement. Further, while

the features presented here can reliably discriminate between clinical phases in each

subject, the pattern distinguishing the phases varies to some extent between subjects.

This may be related to the reliance on each subject’s dominant mode for analysis,

which may be di↵erent across videos and across subjects. Development of a predictive

marker based on video analysis would have to address this source of variability.
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Figure 2.5: Quantification of facial characteristics of three phases of recovery from
MDD (depressed, transitional, and improved) using three di↵erent measures of vari-
ability. Results of applying MSE, absolute value of the eigenvalues of the latent
dynamics matrix (A), and singular values of the observability matrix, are shown in
columns (a), (b), and (c), respectively. Each row represents the variability features
for one of the 3 representative subjects based on 5min video recordings during each
phase of recovery. Note that a large value of MSE indicates improved variability, ver-
sus a smaller value of the other two metrics indicates improved co-variability across
the face.
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Chapter 3

Depression Classification via

Visual Features

3.1 Introduction

In this chapter, we use the extracted features introduced in chapter 2 to predict

depression severity, corresponding to low, moderate, and high severity according to

the HDRS. E↵ective antidepressant response is defined as a 50% improvement in

this score and a score of less than 8 indicates remission from MDD. We formulate

a classification problem to identify the severity of depression using the extracted

features. The naive multinomial regression approach to classification ignores the

natural ordering of depression severity levels. Therefore, we propose to utilize an

ordinal modeling of severity classes. Classification methods are typically sensitive

to noise and tend to overfit when the number of training examples compared to the

number of features is small. Therefore, we augment our ordinal regression modeling

to incorporate regularization to make the classification less prone to overfitting. To

this end, we develop an elastic net [55] ordinal regression method to classify the

severity of depression into three ordinal classes and substantiate the e↵ectiveness of
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the proposed method on this dataset. To summarize, the major contributions of this

chapter are:

• Formulation of response to treatment as an ordinal classification problem, with

labels defined as low, moderate and high depression ratings, and development of

an ordinal regression method regularized via L1-L2 regularization (also known

as an Elastic Net).

• Evaluation of the performance of the proposed recovery prediction method on

12 DBS patients, and comparison to baseline methods (e.g. multinomial logistic

regression).

3.2 Methods

3.2.1 Evaluation Methods and Statistical Analysis

Prediction Problem Formulation

For the purpose of severity classification, we consider three classes of depression sever-

ity (according to their clinical utility), namely low, moderate, and high, corresponding

to the HDRS score of 7 or less, 8 to 14, and greater than or equal to 15, respec-

tively. A number of previous studies also have considered similar 3-class categories

[56, 57, 28]. Moreover, clinical teams commonly utilize these categories to describe a

patient’s illness severity and make treatment decisions accordingly. Since all subjects

scored in the high severity class in the weeks before DBS surgery, the moderate and

low depression scores can also be thought of as partial and full response to treat-

ment, respectively. Table 3.1 summarizes the number of videos in each of these three

classes, for each patient. A total of 305 videos are classified according to these sever-

ity categories. The number of videos in each class is almost the same, allowing for

a balanced supervised classification approach. It’s important to emphasize that the
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Table 3.1: HDRS class distribution over patients

Patient 1 2 3 4 5 6 7 8 9 10 11 12 total

low* 9 11 8 14 1 15 3 0 14 5 12 11 103

mid* 9 12 12 2 17 5 11 4 4 7 7 16 106

high* 5 3 4 14 12 9 18 13 4 2 5 7 96

# videos 23 26 24 30 30 29 32 17 22 14 24 34 305

*low:HDRS=[0� 8), *mid:HDRS=[8� 15), *high:HDRS=[15� 29]

extracted features do not contain any patient identifiers, i.e. there is no hint in the

features that videos (e.g. video 1 and 2 of patient 1) come from a single patient.

We took this strategy to have the model generalize over patients and predict the

depression phase via only facial and timing features.

All statistical evaluation methods are performed subject-wise [58]. Accuracy is

reported via leave-one-subject-out, such that in each run, videos of only one patient

are used for test and those of the rest are used for training. In other words, training

and test sets do not share patients. This is in contrast to leave-one-video-out that

uses videos from the same patient in both train and test set, which may lead to an

unrealistically high accuracy. The results in the following subsections are reported by

finding the mean and standard deviation of classification accuracy over 12 possible

test patients and all corresponding video recordings.

Ordinal Regression

The HDRS classification problem consists of predicting a hidden class label y 2 Y

based on features x 2 X using a classifier h : X ! Y . Here Y is the depression

severity levels {low,moderate, high}. Any classification method can be utilized to

learn function h [59]. However, to properly account for the ordinal nature of the class

labels, we utilize an ordinal regression framework. Ordinal regression is di↵erent from

conventional regression such that it fits both a coe�cient vector and a set of thresholds
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that allows for separating the output of the regression model into distinct classes. In

this chapter, we propose a Regularized Ordinal Linear Regression (ROLR) method

to predict the severity classes (low, moderate, high) given the dynamical features

extracted from the patients’ videos. To make the method robust with respect to noise

and overfiting we add L1 and L2 losses and formulate it as an elastic net regularization

(see Appendix B for more information and a link to the ROLR source code).

Multinomial Logistic Regression (MLR) is one of the most basic yet e↵ective and

popular method for multi-class classification tasks [60]. MLR can also be regularized

to reduce overfitting. Therefore, we utilize an L1-L2 Regularized Multinomial Logistic

Regression (RMLR; also known as an elastic net) model for benchmarking purposes.

Finally, we utilize a simple Ordinal Logistic Regression (OLR) model to assess the

utility of regularization as a means to improve model generalizability.

The Matlab implementation codes can be found online1. Similar to our work,

the authors in [61, 62] have proposed ordinal regression techniques for the case of

extremely high dimensional data specialized to be used in genomics implemented

in R. Of note, the elastic net coe�cients were learned in a subject-naive way via

leave-one-out cross validation.

Our ROLR method is now ready to predict the severity classes (low, moderate,

high) given the dynamical features extracted from the patients’ videos.

3.2.2 Feature Selection

Our feature extraction methods resulted in 42 features, which with the addition of

the video session week number (explicitly accounting for the potential e↵ect of time

on recovery), yielded our final set of 43 features. To avoid overfitting, we utilized a

Bayesian Optimization (BO) approach to features selection [63]. BO is a highly com-

petitive global optimization method for hyperparameter optimization [64]. We used

1https://github.com/Saharati90/DBS Project
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the internal (within the training set) cross-validated accuracy cost as the objective

function for BO, with a binary vector of size 43 as the hyperparameter (with 1 indi-

cating presence of a feature, and 0 indicating exclusion of a feature). Next, Bayesian

Optimization was used to find the optimal hyperparameter values that resulted in

optimizing the objective function. In contrast to the method of greedy step-wise

variable selection and elimination, the BO method is not sensitive to the ordering of

features, and can be used to perform feature selection concurrently with optimization

of other model hyperparameters [63].

3.3 Results

Our feature selection method yields 25 out of the 43 features discussed in the previous

section as the most predictive features. We next report the performance of the ROLR

method against other competing methods using these 25 features. We report average

accuracy (and interquartiles) using bootstrap sampling.

Overall classification

As reported in Table 3.2, we observe that the proposed ROLR method outperforms

the other methods in average accuracy, although our estimation of model accuracy is

imprecise due to our small sample size of 12 patients (The p-values for ROLR against

MLR, RMLR, and OLR, using exact permutation test, are equal to 0.13, 0.12, and

0.40 respectively).

These results suggest that utilizing an ordinal model (ROLR versus RMLR) and

performing regularization (ROLR versus OLR) is likely to result in a better per-

forming model. The video recording week number was observed to be an important

feature, as the accuracy of the ROLR model without this feature is 48% in contrast

to the 51% accuracy with all features.
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Table 3.2: Comparison of accuracy of the proposed method and the baselines

Classification Method Average(train) Range(train) Average(test) Range(test)

Multi. Logistic Regress. (MLR) 0.64 [0.63,0.65] 0.44 [0.34,0.54]

Regul. Multi. Logistic. Regress. (RMLR) 0.59 [0.57,0.61] 0.45 [0.35,0.55]

Ordinal Logistic Regress. (OLR) 0.57 [0.56,0.58] 0.49 [0.39,0.59]

Regul. Ordinal Logistic Regress. (ROLR) 0.56 [0.54,0.58] 0.51 [0.41,0.61]

Sensitivity Analysis

Figure 3.1 shows the confusion matrix where the diagonal cells show the number of

cases that were correctly classified for each class. The o↵-diagonal cells show the

number of cases that were misclassified. The bottom right cell shows the total per-

centage of correctly predicted cases (in green) and the total percentage of incorrectly

predicted cases (in red). White cells at the bottom of the matrix show sensitivity or

recall of each target class (in green). For example, the number in row 3 and column

2 represents that 14 videos with actual moderate HDRS are incorrectly classified as

high HDRS and this corresponds to 4.6 % of all 305 videos. Similarly, the number

in row 2 and column 3 represents that 38 of the high HDRS videos are incorrectly

classified as moderate HDRS and this corresponds to 12.5% of all 305 videos.

Cells in the forth column of confusion matrices represent the precision or positive

predictive value (PPV) (in green). The higher precision of class ”High” shows there

is less tendency of cases to be misclassified into this class rather than the other two

classes. Furthermore, cells with highest misclassification belong to either ”Moderate”

row or ”Moderate” column, which suggests that there might not be a clear distinction

between ”Moderate” and ”Low”, and ”Moderate” and ”High”.

Prediction Performance

Figure 3.2 shows the prediction accuracy varying by the number of training data. The

test accuracy is reported over videos of one patient which is held out separately from

the training patients. The corresponding number of training patients are selected
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Figure 3.1: Confusion matrix for the prediction results using ROLR. Numbers repre-
sent number of videos and percentages are percentages of videos. The rows represent
the predicted class and the columns represented the actual class.

randomly from the remaining 11 patients uniformly and the results are averaged over

the 10 such random draws. This procedure is repeated for any of the 12 patients as

test patient and averaged. As shown in the figure, the accuracy over test data has an

increasing overall trend. As expected, the accuracy over the training data is decreased

constantly and matches the accuracy of test data as the number of training patients

increases. Note that the accuracy on training data is not a value of interest as it

does not reflect the generalization or learning capability. To elaborate, an algorithm

that memorizes all training data can achieve 100% accuracy on training set while no

generalizable learning has taken place.

3.4 Conclusion

In this chapter, we leveraged the extracted features to build predictive models that

can generalize from limited observed labeled data, i.e. patient videos and associ-
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Figure 3.2: Training and testing accuracy of predicting low, moderate, and high levels
of depression severity, as a function of varying number of patients for training.

ated depression severity score, and predict the depression severity level of unseen new

patients. The ROLR method outperformed the alternatives in prediction accuracy.

This shows the significance of ordinal modeling of the severity classes and importance

of regularizing the space of feasible solutions. The former holds because the severity

levels are actually ordered classes of depression rating scores, while the latter is ef-

fective because of the small number of data points compared to the dimensionality of

the feature space.

Our classification model results suggest there may not be a clear distinction be-

tween moderate and low severity depression classes, nor between moderate and high

severity depression classes. Taken together, a more parsimonious explanation is that

there are only two distinct states (depressed, improved) marked by high or low HDRS

scores. The apparent third transitional phase, initially described clinically, may not

be a true independent state, but rather a period of oscillation between sick and well

presenting an unstable treatment response.
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Chapter 4

Depression Classification via Audio

Features

4.1 Introduction

To improve the depression severity classification from audio, other researchers invested

in the connection between continuous a↵ective measures and depression [44]. Vocal

a↵ect, i.e., emotional expression of speech and its relationship to the overall mood of

the patient, has been explored in the domain of a↵ective computing and social signal

processing [45]. In a successful e↵ort, Stasak et al. [46] improved the accuracy of their

automatic depression classification method by 5% by incorporating emotion ratings.

However, utilizing emotion information is not always straightforward in many

depression classification tasks. The first step is to extract emotion from audio which

needs su�ciently large annotated data to be used in model training. Unfortunately,

manually labeling audios from MDD patients is expensive and time consuming, and

requires human supervision. Another concern in incorporating speech emotion is

the human bias due to patients’ speech content. Looking at the quality of speech

signal (i.e. audio) without attention to its content is a challenge even for expert
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psychiatrists.

To address the aforementioned challenge, we propose to train an emotion recogni-

tion model on an auxiliary annotated dataset. Then, inspired by transfer learning [48],

we utilize the trained model to extract emotion features of MDD patients. For the

emotion recognition model, we propose to take a deep learning approach [65] that

can e↵ectively learn the dynamics in audio signals.

Deep neural networks have been previously applied to recognize emotion from

speech. For example, Trigeorgis et al. [66] performed representation learning for

end-to-end speech emotion recognition. Lee et al. proposed a Recurrent Neural Net-

work (RNN) based speech emotion recognition framework with an e�cient learning

approach, in which the label of each frame is modeled as a sequence of random vari-

ables [67]. In the last step of our approach, we feed the emotion features into an SVM

classifier, which is especially robust in clinical settings where the number of samples

is small.

4.2 Methods

4.2.1 Preprocessing

We first extract audio signals from video recordings. Then, we use SpeakerDiarization

[68] method implemented in Matlab AudioAnalysis [69] library to first, partition the

extracted audio to utterances and then select those that only contain the voice of the

patient. It is noteworthy that in this study utterances refer to characteristics of the

sound or speech quality not its content. Therefore, each interview session is parti-

tioned into consecutive utterances which form our feature space with binary labels of

”depressed” or ”improved”.
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4.2.2 Basic Features

We extract short-term features (audio frames) using pyAudioAnalysis library. The

feature vector extracted from each 0.2 second frame (time window) of each utterance

consists of time-domain variables, (e.g. energy and entropy), and frequency-domain

ones (e.g. Spectral Entropy and MFCCs), resulting in a vector of size 34 per frame

per utterance. The complete list is explained in [70].
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Figure 4.1: Preprocessing steps and network architecture of the stacked LSTM model

4.2.3 Emotion Features

We propose to use the utterances and apply an emotion recognition model to extract

a low dimensional representation of the whole utterance. Due to the lack of training

data we first train a deep neural network model on an auxiliary emotion dataset.

Interactive emotional dyadic motion capture (IEMOCAP) [71] dataset is one of

the most commonly used datasets in emotion classification, collected by the Speech

Analysis and Interpretation Laboratory (SAIL) at the University of Southern Califor-

nia. This dataset contains 12 hours of audio-visual data recorded from five male and

five female actors. Sessions of the dataset are manually segmented into utterances

and each utterance is annotated by humans. We consider only the utterances that

more than one annotator have agreed on the same emotion over the emotion classes
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of: angry, happy+excited, sad, and neutral. These classes represent the majority of

the emotion categories in this database. We combine excitement and happiness ut-

terances to create the excitement category, as in [71]. The final dataset contains 4886

utterances (1083 angry, 1041 excited, 1678 neutral, 1084 sad). We use this dataset

to train a replicated model proposed in previous studies that have been thoroughly

reviewed by Swain et al. [72] for an emotion recognition task and use this model to

predict emotions on the depression dataset.

Di↵erent advanced machine learning models including Deep Neural Networks

(DNNs) [73], Long Short-Term Memory (LSTM) Networks [74], and Recurrent Neural

Networks (RNNs) [75, 76], have been competing to achieve higher accuracy in predict-

ing emotions from speech. Many of them have used IEMOCAP dataset to indicate

the superiority of their performance. They have reported 52% � 59% unweighted

accuracy for classifying mentioned emotions using speech.

For this thesis, we replicate the LSTM network architecture that has been used

in other studies and has been shown to have a comparable performance to the more

advanced ones but less complicated implementation.

By looking at the training data our neural network learns how an utterance is

transformed into a useful representation for the classification task. Then, we feed

the clinical audio utterances into the trained network in order to extract similar

conceptual features for prediction.

In our architecture shown in Fig. 4.1, we use a stacked LSTM network [65] that

has two hidden LSTM layers and each layer contains multiple memory cells. The

added LSTM layers learn higher-level temporal representations. The first LSTM

layer provides a sequence output rather than a single value to the second one.

Furthermore, the hidden state output of the second LTSM is carried to a fully

connected layer (with softmax activation) to predict the probability of each emotion.

After training the network on the labeled dataset, we feed the unlabeled utterances



37

of the DBS patient interviews to the network and use the output of the softmax layer

to get the probability of emotions. We use these probabilities to create a new feature

set of size 4 (corresponding to proportion of being angry, excited, neutral, and sad).

The LSTM model is as follows

ht = H(Wxhxt +Whhht�1 + bh) (4.1)

yt = Whyht + by (4.2)

where the W ’s denote weight matrices, the b’s denote bias vectors and H is the

recurrent hidden layer function implemented as in follows,

it = �(Wxixt +Whiht�1 +Wcict�1 + bi) (4.3)

ft = �(Wxfxt +Whfht�1 +Wcfct�1 + bf ) (4.4)

ct = ftct�1 + itat (4.5)

ot = �(Wxoxt +Whoht�1 +Wcoct + bo) (4.6)

ht = ot✓(ct) (4.7)

Here, � is the logistic sigmoid function, and i, f , o, a and c are respectively the input

gate, forget gate, output gate, and cell state vectors, and all of which are the same

size as the hidden vector h. Wci, Wcf , Wco are diagonal weight matrices for peephole

connections. ⌧ and ✓ are the cell input and cell output non-linear activation functions;

tanh in our architecture.

The loss function is categorical cross entropy and the optimizer is root square

RMSprop. The batch size is set to 320 and number of epochs is 25.
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4.2.4 Aggregation

Using our proposed neural network we reduce each utterance to 4 emotions. Then,

per emotion, we extract 6 statistics over all utterances in each interview session. The

statistics include Minimum, Maximum, Mean, Variance, Skewness, and Kurtosis.

Therefore, we end up with a 24 dimensional representation as a distillation of emotion

features of an interview.

4.2.5 Prediction

We apply the well known Support Vector Machines (SVM) method using the libsvm

library [77] in order to classify videos. SVM is a discriminative classifier formally

defined by a separating hyperplane that represents the largest separation, or margin,

between the two classes.

4.2.6 Baselines

Here we introduce alternative ways to extract features and build predictors that are

used for comparison.

Features

We have used 2 alternative feature sets.

• Basic Features: To show the e↵ectiveness of the emotion features we experi-

mented with the basic features as well.

• SLDS Features: A switching linear dynamic system (SLDS) describes the dy-

namics of a complex physical process by switching between a set of linear dy-

namic systems (LDS) whose characteristic are determined by latent transition

matrices A(1)
, . . . ,A(J). SLDS has been previously utilized for analyzing the re-

covery of DBS patients from facial dynamics [47]. Using SLDS, we learn a low
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dimensional set of dynamic factors that explain the observed covariance across

the basic features within each utterance of the video clip and across time. The

SLDS is evolving over time as

xt = A
(st)xt�1 + vt

for latent space and

yt = C
(st)xt + wt

for observations, where xt is latent state, vt and wt are zero mean Gaussian

noise processes and yt is the basic features. The details can be found in [47].

As a high-level feature set, we use the statistics of the state sequence xt of each

interview session for classification. Similar to the proposed model, the same six

aggregated statistics are extracted form these features are computed over all

utterances of each video, leading to a D ⇥ 6 dimensional feature set D = 20 is

the state variable dimension.

Predictors

We have used three alternative prediction algorithms to substantiate our decision to

use SVM as predictor. The first one is a simple non-sequential model just to show the

benefit of a robust model like SVM. The next two models are sequence classification

models that can operate over time-series and dynamical data.

• KNN: A simple k-nearest neighbor model is trained via the data with k chosen

by a 10-fold cross validation.

• HMM-GMM: This a sequential model comprised of a Hidden Markov Model

with Gaussian mixture emissions. The HMM is a generative probabilistic model,
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in which a sequence of observable yt is generated by a sequence of internal hidden

states xt. The transitions between hidden states are assumed to have the form

of a Markov chain. Given just the observed training data, we build one ergodic

HMM model for each of the depressed and improved class with 4 hidden states

and we estimate the parameters for each model1. Then, given the parameters

and observed data, we calculate the likelihood of the test data and assign the

sequence to a class with higher probability.

• RNN: We also, train a Gated Recurrent Unit (GRU)-based recurrent neural

network. We use the final hidden state of the RNN as input to a hidden (fully

connected) layer with Sigmoid activation to predict the probability of recovery

phase. We used Keras, a standard Python library, for implementing RNN [78].

4.3 Results

Here, we study the proposed approach experimentally and compare its e↵ectiveness

in classifying depression severity.

• Fig. 4.2 shows the extracted emotion features for a patient in a depressed state

(4 weeks before DBS surgery) and non-depressed state (1 year after surgery).

The proportion of each of the 4 a↵ective states during the interview is plotted.

In the depressed state sadness dominates, while the excited and neutral states

become prevalent after treatment.

• Then we study the combination of the proposed emotion-based feature with

SVM and compare it with other mixtures in Table 4.1. Reported performance

measures are Area Under the Curve (AUC) and Positive Predictive Value (PPV)

on test data using leave-one-patient-out cross validation. I.e., in each run,

1refer to http://hmmlearn.readthedocs.io for details.
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Figure 4.2: The extracted emotion representation of an interview for a patient in two
phases. Top panel: while being depressed; Bottom panel: while improved

videos of one patient are used for the test and those of the rest are used for

the training. This way we are confident that the performance measure is over

unseen data and representative of the generalization ability of the model.

The first 3 rows show the performance when we fix the predictor (SVM) and

vary the features (basic, SLDS, and emotions). It is already apparent that ba-

sic features which are composed of short-term frames have lower representative

ability compared to emotion features. Moreover, SLDS, which extracts fea-

tures by viewing the whole interview as dynamical systems, fails to successfully

represent the audio in di↵erent phases.

• Next, we study the e↵ectiveness of SVM compared to a conventional simple

predictor (KNN), a flexible sequential model (GMM-HMM), and a recurrent

neural network model. We fix the feature set (Emotion) among these classifiers
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Table 4.1: Performance Comparison

Model Performance

Feature Predictor AUC PPV

Basic SVM 0.64 0.57
SLDS SVM 0.73 0.59

Emotion SVM 0.80 0.70
Emotion KNN 0.62 0.5
Emotion GMM-HMM 0.57 0.5
Emotion RNN-GRU 0.64 0.58

and observe that too-complex models are not e↵ective on small datasets unless

we use knowledge transfer from available labeled datasets. Furthermore, too-

simple models like KNN are also unable to e↵ectively capture the underlying

concept. The model with SVM as classifier on the emotion features significantly

(i.e. with p-value < 0.05) outperforms others. Finally, we plot the Receiver

Operating characteristic (ROC) curve that allows one to study the sensitivity

and specificity of the proposed feature set. The emotion feature consistently

outperforms the other two (figure 4.3).
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Figure 4.3: ROC curve of di↵erent features

Our preliminary results show that our approach to extract emotion features us-
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ing previously trained neural networks, when combined with SVM, can outperform

alternative baselines.

4.4 Conclusion

In this chapter, we tackled a depression severity classification problem by account-

ing/adjusting for short-term emotions when assessing long-term changes in mood or

depression state. Our proposed model benefits from both complexity of recurrent

neural networks in extracting higher level representations and the robustness of SVM

in handling small and sparse training data.
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Chapter 5

Treatment Outcome Prediction

5.1 Introduction

In this chapter we propose a machine learning method that first leverages a com-

bination of both audio and visual features to achieve improved prediction accuracy,

second models the sequential nature of treatment and assessment/feedback delay over

the course of time by utilizing the framework of temporal di↵erence (TD) learning in

the field of Reinforcement Learning, third uses state estimation to infer the hidden

state (or latent representation) of the patient over time, thus exploiting the temporal

information embedded in longitudinal patient recordings, and fourth takes advantage

of a deep neural network structure for the state-estimation and outcome prediction

(via value iteration) that is trained end-to-end using gradient descent optimization.

Recently, there has been increasing interest in quantifying and predicting depres-

sion and treatment outcomes from both video and audio recordings. Biomarkers of

depression from speech signals are shown to be useful for classifying presence or sever-

ity of depression [41, 42, 43]. For example, Darby et al. [40] reported a quantifiable

change in the pitch, speaking rate, loudness, and articulation of depressed patients

before and after treatment. Harati et al. [79] used emotion-related features from
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audio recordings of TRD patients to train a deep neural network capable of predict-

ing the treatment outcomes. Moreover, facial expression features derived from video

recordings has been shown to be a good predictor of depression and recovery. For

instance, Cohn et al. [26] used a support vector machine (SVM) classifier to measure

spontaneous facial expressions in a small group of subjects. Others have used facial

expressivity to predict depression severity either empirically [80] or using accepted

clinical classification of severity: Pampouchidou et al [27] achieved 55% accuracy ,

Ramasubbu et al [28] reported 52-66% accuracy , Anis et al [29] achieved an accuracy

of 66%, and Dibekliouglu et al [30] reached an accuracy of 66-84%.

The key shortcoming of the existing methods is that their utilized learning labels

are based on short-term feedback (either subjective or clinical assessments), which

may not correspond to the long-term trajectory of the patient and its outcome.

For this chapter, a total number of 14 videos are selected for each subject, each

about 30 minutes long. Due to some missing weekly videos for all subjects (either

due to missed acquisition or unprocessable recordings), we restricted analyses to a

common dataset of 14 videos per subject covering the full 7 months (1 month pre-

surgery and 6 months post-surgery) for each patient.

According to Crowell et al. [22], stable clinical treatment response to DBS is typi-

cally not achieved until at least 12 weeks of chronic stimulation. So, two clinical phases

are considered here: depressed and improved. Treatment response for the purpose of

this outcome prediction model is defined as 30% decrease from the pre-surgical base-

line HDRS, resulting in nine improved and three depressed subjects.Temporal Credit

Assignment refers to the problem of determining how the ultimate success (or failure)

of a sequence of treatments is attributable to the various intermediate clinical states

of the patient. We demonstrate that temporal patterns in the data captured by the

proposed joint state-estimation and TD-learning framework are useful by showing

that credit assignment via back-propagation allows us to train the model without im-
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mediate feedback. We learn from the accumulated rewards rather than instantaneous

HDRS value, which is a self-reported integration of what happened over the previous

week only, thus noisy.

The proposed framework for predicting long-term success of a trial from quan-

tifiable audio/visual features is novel due to its utilization of a TD-learning method

known as Value Iteration to estimate the long-term accumulated reward associated

with a patient state, which is indicative of a patient’s long-term recovery trajectory.

5.2 Methods

5.2.1 Feature Extraction

We use both audio and visual features to test the hypothesis that fusion of multimodal

data can improve prediction accuracy.

For the visual features, we leverage facial features described in chapter 2 for MDD

subjects [47] that are shown to be e↵ective in distinguishing the recovery phases of

DBS patients during treatment. Briefly,

• The images are put through face detection, contrast normalization, and image

registration and alignment.

• Three types of dynamical features are extracted using MSE and SLDS approach.

– First, MSE measures the randomness or unpredictability exists in a se-

quence of patient’s facial expression. We use scales from 1 to 12 to get 12

features, and calculated the average entropy across all the video pixels.

– Second, an SLDS is fit to the data, which has the advantage of being

multivariate and thus capable of extracting correlated activity of facial

muscle groups. To capture the dynamical behavior of the video recordings

of facial expression, 15 eigenvalue features (or spectral properties) of the
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state transition matrix from the most dominant dynamical mode are used

as another variability feature set.

– Third, 15 observability features are used for a comprehensive coverage of

dynamical behavior of facial expression. These lead to an overall feature

set size of 42. For more details please refer to our previous chapters or

published works [47].

For the audio features we use the same technique described in chapter 4 summa-

rized as follows.

• First, audio signals are extracted from video recordings.

• Then, from each 0.2-second frame of each utterance, time-domain variables (e.g.

energy and entropy) and frequency-domain variables (e.g. Spectral Entropy

and Mel-Frequency Cepstral Coe�cients (MFCCs)) are extracted, resulting in

a vector of size 34 per frame per utterance.

• Then, on these raw features, a Long Short Term Memory (LSTM)-based emo-

tion recognition neural network is applied to get a 4-dimensional representation

corresponding to emotions: angry, happy, sad, and neutral.

• Finally, per emotion, seven statistics over all utterances in each interview session

are computed. The statistics include Minimum, Maximum, Mean, Variance,

Skewness, Kurtosis, and Variability leading to a 28-dimensional representation

as a distillation of emotion features of an interview. These audio features have

proven to be e↵ective for studying depressed subjects [79].

In summary, we extract 28 audio and 42 facial expression-related features per

video recording. ’Time since start of the trial’ and the ’HDRS from the preceding

week’ constituted two additional features, resulting in a total of 72 features per video

recording.
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5.2.2 Temporal Di↵erence Learning

We develop a TD-learning approach to predict treatment outcome, known as Value

Iteration [81]. Given the multivariate time series of features described in the previous

section, a Switching Generalized Linear Model (SGLM) [82] is utilized to identify

patient-specific clinical states, which is then fed into the value iteration network to

assess the long-term value of a given clinical state. The overall model is optimized

end-to-end as described next.

State-Estimation

In order to track the treatment process, we first identify the state (st) that the patient

is in at any given point in time, which encodes all the useful information from the past

required to predict the future state of the patient. We choose a supervised approach

to hidden state-estimation (known as the SGLM model) under the assumption of

Markovianity and a linear state transition model [82]. In the top layer, there are J

possible hidden states (or modes), and the likelihood function of states takes the form

of a softmax classifier with parameter ↵; mapping the observations to the likelihood

of the J latent states. The network uses a forward pass over the time series data

to predict the latent states using the J ⇥ J transition matrix Z and the supervised

likelihood model. To further elaborate, consider the posterior probability of the latent

state at time t given the set of observations up to that time is given by

P (st = j| {x1:t}) = 1
C · P↵ (xt|st = j) ·

PJ
i=1 Z(i, j) · P (st�1 = i| {x1:t�1}) , (5.1)

where, P (st = j| {x1:t}) denotes the probability that the latent state s at time t is

equal to j given the observations x1:t, P↵ (xt|st = j) is the likelihood function (the

computed probability of the observation xt given the latent state st is j) parameterized

by ↵, and C is a normalizing factor. The set {↵, Z} consists of model parameters to



49

be learned using training data. In our supervised setting, the likelihood function is a

softmax classifier that is trained along with the rest of the value iteration network.

Value Iteration

After decoding a patient’s mode or latent state (st) using the SGLM network, we use

the inferred latent state along with other available data to build a predictive model of

the outcome of the treatment. Given a patient in state s, this outcome is called the

value of the state or the long-term reward associated with the state, where a positive

reward corresponds to an improved HDRS score and vice versa. We leverage three

sources of information at each time step t to model the value function:

• observations (xt), including image and audio features of the patient’s interview

video;

• covariates (c), comprised of constant features of patient during the treatment

(including age, gender, and body mass index or BMI); and

• inferred state (st), which is the hidden state deriving patient’s treatment dy-

namics.

Let

yt = [xt, st, c],

then, V (yt) is the expected value of the patient treatment, corresponding to the

observations, hidden state and covariates at time t. In other words,

V (yt) = E[
TX

i=t

ri],

where, T is total number of treatment steps and ri is the instantaneous reward or

wellness of the patient at step i. From this definition it’s clear that V (yt) corresponds

to accumulated reward or long-term return. In our case, ri is the HDRS in the
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corresponding intermediate steps i < T . Moreover, we set rT = 1 if the patient is

treated and rT = 0 otherwise. In this study, we use a neural network to model the

value function parameterized with �. The value iteration algorithm tries to find the

best value network satisfying

V�(yt) = rt + �V�(yt+1). (5.2)

The 0.95 quantile of the expected return V�(y) in weeks 8-11 is then used as our

prediction of treatment outcome at the end of the 14th week, and is used to calculate

the prediction accuracy.

Optimization

Our neural network model uses a forward pass over the time series data to predict

the latent states using the transition matrix Z and the supervised likelihood model

parameterized by ↵. Learning of the model parameters is achieved by unrolling the

model into a neural network and training the resulting network to find a set of states

and parameters that gives the best value function parameterized by �. Training is

done end-to-end similar to deep reinforcement learning models.

Defining

⇥ = {Z,↵, �}

as the parameter set, our SGLM-RL network aims to minimize following loss function:

L(⇥) =
T�1X

t=1

(V�new(yt)� (rt + V�old(yt+1)))
2
, (5.3)

where the dependence yt on Z and ↵ are omitted for brevity, and the �
new and �

old

correspond to the updated and the previous values of the network parameters. The
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Figure 5.1: The proposed model. SGLM modules estimate the latent state of the
patients at di↵erent time steps while value networks predict the treatment outcome
given the patient state.

overall network parameters can be jointly optimized via gradient descent:

⇥new = ⇥old + ⌘r⇥L(⇥), (5.4)

where, ⌘ is the learning rate. With each pass through the observational data, not only

will the model learn to better predict the outcome given the patient state, but also

the SGLM model learns to better predict the hidden state of the patient at each time

point. The overall architecture of the proposed model is depicted in Figure 5.1. Due

to the relatively small sample size, we utilize a simple model that includes a 7 state

markov model for state estimation (we test 5� 10 states using grid search on a single

fold and select 7 states, although the model is not sensitive to this parameter choice)

and a single hidden layer neural network for value function approximation with (7

states + 5 covariates) 12 input to 15 hidden states, to 1 output. These parameters are

fixed across all subsequent folds to avoid overfitting. Therefore, all models (across

all folds) have the same hyperparameters. The only remaining parameter is the

regularization constant (lambda) that is also selected using grid search (1e� 5 to 0.1,

with optimal value of 1e� 4).
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5.2.3 Baselines and Performance Measure

We compare our proposed algorithms with the following baselines. To better show the

e↵ectiveness of our model we use both temporal (sequential) models and non-temporal

(classic) Machine Learning algorithms.

For the baseline temporal models we use the same features fed into our model:

• LSTM [83]: This is a recurrent neural network consisting Long Short-Term

Memory (LSTM) units which are composed of a cell, an input gate, an output

gate and a forget gate. These cells provide an e↵ective way to attend to the

right historical data. Comparison with this shows how state-estimation helps

improve prediction.

• Value iteration with LSTM: This is similar to the proposed approach but

the SGLM network is replaced by an LSTM and it’s trained end-to-end. This

comparison shows how e↵ective our SGLM is compared to the state-of-the-art

recurrent modeling method, i.e. LSTM.

For non-temporal methods, we unroll the features over time and form a larger

representation.

• SVM [84]: Support Vector classifier with linear kernel and LASSO regulariza-

tion trained via stochastic gradient descent.

• Decision Tree [4]: This is a decision tree with Gini’s diversity index as split

criterion with pruning.

• Ensemble Learner [85]: This method is an ensemble method trained via

adaptive LogitBoost (Adaptive Logistic Regression) over 100 learning cycles

where the weak learners are decision trees. The learning rate for shrinkage of

the LogitBoost is set to 1.



53

For hyperparameter optimization and evaluation purposes cross-validation is typi-

cally used, however, Parker et al. [86] have shown that when considering the Area Un-

der the Curve (AUC) in small-sample studies, many commonly used cross-validation

schemes su↵er from significant negative bias. Following Airola et al.[87] we use leave-

pair-out cross-validation as an approach that provides an almost unbiased estimate

of the expected AUC performance. We report the performance of our model based

on pooled AUC from a 66-fold leave-pair-out cross-validation study, based on train-

ing the model on N � 2 patients and testing on the remaining 2, and repeating this

process 66 times (or 12 choose 2). All scores were placed in a bucket to calculate the

pooled AUC. According to Airola et al.[87], this approach leads to a robust measure

when the sample size is small.

5.3 Results

First we report the e↵ect of di↵erent features on the performance of the proposed

method. Our hypothesis is that combining vocal, facial, HDRS, and time features

provide the best performance. Figure 5.2 demonstrates the Receiver Operating Char-

acteristic (ROC) curves for the full and the individual feature sets. It’s apparent that

using all the features together outperforms using each of them individually. Using

more features leads to a better representation of patient’s state and its trajectory

over over time, which in turn results in a stronger predictive model.

In order to demonstrate the significance of each feature we iteratively remove a

single feature from our feature set and measure the accuracy of the model. As it’s

shown in figure 5.3, including each of the features that are selected by the feature

selection method is is necessary for the model to perform accurately. Moreover,

besides HDRS and time, the combination of both audio (e.g., a-03) and video features

(e.g., v-35) contribute to achieving higher performance. More details about audio
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Figure 5.2: E↵ect of feature set on performance

features can be found in table C.1.

Second, we show that using only a part of the face is not su�cient for our facial

variability analysis. More specifically, we partition each face into three areas, i.e.

upper part that includes forehead, eyebrows and eyes, middle part that includes nose

and cheeks, and lower part that covers mouth and chin. Then each time we replace

the 12 features corresponding to the MSE of the whole face with the MSE of each

part.

Table 5.1: AUC comparison when MSE is calculated only for forehead and eyes
(Upper), nose and cheeks (Middle), mouth and chin (Lower), and for the whole face

MSE Features Pooled AUC PPV

Upper 0.72 0.80
Middle 0.75 0.79
Lower 0.74 0.80
Whole 0.88 0.89
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Figure 5.3: Feature importance: The importance is calculated as the decrease in
AUC after iteratively removing one feature at a time. Last seen HDRS (lsh) from
the previous week, time (t), features in the audio feature set (a-i: ith), features in the
video feature set (v-i: ith).

Table 5.2 shows the proposed prediction method compared to the baselines in

terms of pooled AUC. We used both temporal models and non-temporal models to

show that not only the sequential nature of the data should be considered, but also

among the temporal methods our proposed approach that combines state-estimation

and value iteration outperforms the rest. The inferior performance of LSTM com-

pared to other methods that include value iteration shows that state-estimation and

modeling of long-term accumulated reward is essential to drawing a better repre-

sentation of the recovery status of the patients. Finally, the better performance of

(SGLM + value iteration) over (LSTM + value iteration) is likely due to the relative
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simplicity of the SGLM model (i.e., smaller number of model parameters) compared

to the more complex LSTM network, which tend to overfit on smaller datasets.

Table 5.2: Comparison of AUC of the proposed method and the baselines

Non-Temporal Methods Pooled AUC

SVM 0.70
Ensembled Trees 0.71
Decission Tree 0.74

Temporal Methods

LSTM 0.80
LSTM + value-iteration 0.83
SGLM + value-iteration 0.88

To further investigate the results of the prediction model, we demonstrate the

predicted state values for each subject in figure 5.4. It schematically shows how the

measures are intuitively compared against each other. The blue curve is our derived

measure, which represents the likelihood of the patient improving over the next 3

weeks. The purple horizontal line shows the 95% quantile of the expected estimated

value in weeks 8-11. The red curve represents the HDRS measure in each week. When

the blue line crosses the purple line it means that our model predicts a highly likely

successful trial. It’s worth noting that our measure is based on the value function

(or return) and the higher value shows a better state of improvement. Firstly, our

measure predicts the treatment result 3-4 weeks in advance. Moreover, it shows a

more stable and robust estimate in contrast to the HDRS that varies a lot.

5.4 Conclusion

In this chapter, we proposed a value iteration-based prediction model for treatment

outcomes, when the intermediate assessments of a patient’s progress are likely noisy

and imprecise. The framework combines the intermediate clinical feedbacks (i.e.,
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HDRS) with information from success or failure of a trial to define an aggregated and

accumulated learning signal for supervised learning. The resulting value network was

able to learn the long-term value associated with a given clinical state. We showed

that a feature derived from the learned state values over weeks 8-11 is able to predict

the outcome of a DBS trial during the week 14 (i.e., three weeks in advance) with an

AUC of 0.88. Such foresight can enable the clinical team to optimize the stimulation

parameters, to devise an updated treatment plan, or to simply ignore outlier high

HDRS values that are likely to be due to the patient just having a “bad day”; and

thus likely not to be correlated with the long-term trajectory of the patient. Our

future work includes using model-based RL (which is known to be more data e�-

cient) and multi-task learning (which leverages a correlated set of prediction tasks)

to achieve better performance. Other promising research directions include utiliza-

tion of continuous measures of patient recovery based on wearable devices, and design

of more comprehensive reward functions that take into account patient performance

metrics measured at di↵erent time scales [88].
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Figure 5.4: Trajectory of the estimated state value and HDRS for each subject. The
weekly clinical scores (red circles; higher values indicate decline) are often noisy and
may fluctuate from week to week. The proposed machine learning-based scores (blue
diamonds; higher values indicate improvement) are less prone to weekly fluctuations
and is able to predict the trajectory of a patient weeks in advance.
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Chapter 6

Conclusion

The work presented here systematically studied the potential of using machine learn-

ing methods to extract biomarkers for clinical state changes during treatment of

depression. The models developed here will be useful for both monitoring outcomes

and justifying treatment interventions, which may include DBS parameters, making

a medication adjustment, or initiating psychotherapy. While some progressive im-

provement in depression is observed with DBS initiation, after several weeks of DBS

patients often enter a transitional phase marked by a return of subjective depres-

sive symptoms, but with preserved emotional reactivity and somewhat heightened

negative emotions and a↵ect. Frequently this phase resolves and patients continue

on a path of subjective improvement, culminating in stable treatment response or

remission from depression. Hence, this recovery course is non-linear, with transient

subjective worsening interrupting the improvement trajectory. It is also the case that

DBS stimulation parameters are sometimes adjusted during the course of treatment,

suggesting that clinicians suspect depressive relapse and make treatment adjustments

accordingly. Thus, worsening depression rating scores may represent a transient sub-

jective response that does not require treatment changes, or a disease relapse that

does require treatment changes. A more objective biological marker that could dif-
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ferentiate between these two states would guide treatment decisions. To this end,

and toward the larger goal of establishing more refined clinical markers for depres-

sion severity, we focused on computational video and audio analysis for unsupervised

(Chapter 2), supervised (Chapters 3 and 4) and reinforcement learning algorithms

(Chapter 5). In what follows we review the chapters followed by discussing their

findings, implications, limitations, and potential future works.

In Chapter 2, we proposed three unsupervised feature sets to quantify clinical

recovery phases of MDD in patients participating in a DBS for depression trial. Ex-

perimental validation on video recordings of 12 subjects confirms the power of these

feature sets to discriminate between three pre-defined clinical phases. Multiscale En-

tropy is a very simple yet e↵ective feature that can be computed without much com-

putational burden. Dynamical analysis is e↵ective when the subject facial dynamic

is itself subject to change due to movement and variations in pose. Observability

features are the most consistent of the three feature sets. It seems that by increasing

complexity, the features can capture the discrimination more consistently, albeit with

a computational cost The analysis presented in that chapter was limited in the sense

that unsupervised features are used in an exploratory setting. A more systematic

way that, for example, can e↵ectively weight all the features according to their dis-

criminatory power and classify the phases or subjects may be of more practical value.

Applying these techniques to all of a subject’s videos over time may show evidence

of transition points in the recovery process that precede or predict subjective mood

improvement. Further, while the features presented here can reliably discriminate be-

tween clinical phases in each subject, the pattern distinguishing the phases varies to

some extent between subjects. This may be related to the reliance on each subject’s

dominant mode for analysis, which may be di↵erent across videos and across subjects.

Development of a predictive marker based on video analysis would have to address

this source of variability. In addition, detailed investigation of the SLDS modes and
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entropy-based features and correlation with discrete features of facial expressivity

remain as future directions of this work.

Chapter 3 leveraged the extracted features on the previous chapter to build pre-

dictive models that can generalize from limited observed labeled data, i.e. patient

videos and associated depression severity score, and predict the depression severity

level of unseen new patients. Our elastic net ordinal regression model outperforms the

alternatives in prediction accuracy. This shows the significance of ordinal modeling

of the severity classes and importance of elastic net terms on regularizing the space of

feasible solutions. The former holds because the severity levels are actually ordered

classes of depression rating scores, while the latter is e↵ective because of the small

number of data points compared to the dimensionality of the data points. Generaliz-

ing these findings to a wider clinical population is limited both by the relatively small

number of subjects included here, as well as their uniqueness as a clinical population.

For our specific target population (patients with treatment-resistant depression un-

dergoing DBS treatment) and purpose (analyzing facial expressivity) the number of

patients included here makes for a strong preliminary study that calls for including

a greater number and greater clinical variability of patients for future work. In ad-

dition, eigenvalues and eigenvectors are not convenient for clinicians for translation

into facial cues that convey information about the patients’ facial dynamics unless

they can be transformed into physical, observable phenomena. Extracting more inter-

pretable features will be an interesting future work. However, predictive models can

bridge the gap between unsupervised computer learning and clinical decision making

by showing the utility of such features within a classification system meaningful to

clinicians.

In Chapter 4, we tackled a depression severity classification problem from audio

signals by accounting/adjusting for short-term emotions when assessing long-term

changes in mood or depression state. This way we complemented the visual features
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by adding properties extracted from patient’s voice. Our proposed model benefits

from both complexity of recurrent neural networks in extracting higher level repre-

sentations and the robustness of SVM in handling small and sparse training data.

Our preliminary results call for systematic study of using emotion features to build

depression predictors of MDD patients. We acknowledge that the experimental result

on only limited patients may not be extensible to the broader MDD patient pop-

ulation and leaves the large scale experiments for future works. Furthermore, the

imbalanced emotion dataset needs to be addressed in the future analysis. Formulat-

ing the problem as transfer learning and building an end-to-end neural network are

interesting directions for future work and explored some of them in the subsequent

chapter.

In Chapter 5, we worked with both audio and visual features and proposed a

value iteration-based prediction model for treatment outcomes, when the intermediate

assessments of a patient’s progress are likely noisy and imprecise. The framework

combines the intermediate clinical feedbacks with information from success or failure

of a trial to define an aggregated and accumulated learning signal for supervised

learning. The resulting value network was able to learn the long-term value associated

with a given clinical state. This foresight can enable the clinical team to optimize the

stimulation parameters and to devise an updated treatment plan. The future work

includes using model-based RL (which is known to be more data e�cient) and multi-

task learning (which leverages a correlated set of prediction tasks) to achieve better

performance. Other promising research directions include utilization of continuous

measures of patient recovery based on wearable devices.

Overall, we start with simple exploratory and unsupervised methods to find mean-

ingful visual features explaining and distinguishing di↵erent phases. These features

proved to be use full in building prediction models. Given these promising results on

the visual features we improved our predictive models with audio features. With the
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premise of audio-visual features on depression severity classification we expand our

study to tackle the long-term prediction problem where reinforcement learning algo-

rithms are leveraged to model the trade-o↵ between short-term reward and long-term

return of the treatment. We covered a spectrum of algorithms from unsupervised,

to supervised to reinforcement learning methods. We used simple yet e↵ective linear

regression models who are trained using least squares methods, as well as compli-

cated deep neural network models which are trained end-to-end using gradient based

methods. We also showed that a variety of data sources, such as images or audios,

may be used to build the machine learning models.

These results suggest that machine learning models may lead to quantitative

biomarkers and predictive models (both short- and long-term) of depression states

during the course of treatment. This may have a broader impact in terms of cost

e↵ectiveness, and resource allocation. The success of this work calls for more inter-

disciplinary research at the intersection of psychiatry, computer science, and machine

learning.
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Appendix A

Switching Linear Dynamical

Systems

Switching Linear Dynamical Systems (SLDSs) are powerful and expressive and are

capable of modeling physical processes governed by state equations that may switch

its behavior from time to time (ie, ”mode switching”). They model event sequences

using the evolution of 2 hidden layers of states. The top layer is governed by a Markov

Chain with J modes. It evolves according to J ⇥ J transition probability matrix Z

in discrete time steps. A J ⇥ 1 vector ⇡ specifies the initial distribution of modes.

A.1 Modeling

Let variables

st 2 {1, . . . , J}

show the mode at time step t. The bottom layer of states are D dimensional state

variables, xt 2 RD, evolving according to a LDS whose characteristic is determined

by the mode (from the top layer). Let A(1)
, . . . ,A(J) be di↵erent state dynamics
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associated to latent modes, then,

xt = A(st)xt�1 + vt (A.1)

where vt is a noise process (Gaussian with zero mean covariance Q(st)). Figure A.1

schematically demonstrates how the observations, states and modes evolve over time

steps in a SLDS.

To complete the generative model, let the latent state xt, generate observation yt

at time t. Observations are assumed to come from a M -dim space, i.e., yt 2 RM .

The dynamical system produces observed variables according to

yt = C(st)xt +wt, (A.2)

where the noise wt on observation is a Gaussian distribution with zero mean and

covariance R(st).

A.2 System Identification

The purpose of system identification is to learn the unknown parameters and latent

variables of the generative model using the observed variables, noisy images (videos)

in our case. We have two types of model parameters:

1) parameters associated to dynamical systems A(j), Q(j),C(j), and R(j) for dif-

ferent modes 1  j  J ;

2) parameters associated to mode switches Z and ⇡.

We utilized memory-e�cient and fast implementation of the expectation maxi-

mization algorithm [89] that iterates between inferring the switching parameters using

an approximate inference algorithm and learning the parameters of each dynamical

system (or modes) using another approximate algorithm. These approximation al-
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gorithms let us learn parameters and latent variables of the model on a standard

machine in a few minutes.

A.3 Experimental Setup

Here we discuss the settings of our experiments. The number of modes is set to 3.

The latent state and observation dimensions are set to 20 and 900 respectively. Note

that 900 is the number of pixels in resized images (900 = 30⇥ 30). After performing

down-sampling we used 1000 frames of the video recordings . It roughly corresponds

to the first 5 minutes of the video recordings. The inference usually converges after

3-5 iterations. The hyperparameters (e.g. number of modes) are selected based on the

best performance. SLDS with 3 modes worked better than a system with 2 modes. For

more than 3 modes, we haven’t observed a significantly di↵erent result. Regarding

to the number of significant eigenvalues, the magnitude of the eigenvalues usually

drops significantly after 10. A smaller number of eigenvalues would have insu�cient

information while a larger number could be misleading because the magnitude of the

eigenvalues drop significantly towards the size of the matrix (i.e. 20) and make the

result unstable. Finally, we have used Bayesian optimization to find the optimum

state space dimension among the values in the set {10, 20, 30, 40, 50}.

A.4 Latent Dynamical Analysis

We performed an evaluation and analysis on the most dominant mode, ie, the inferred

mode that includes the most video frames or mathematically,

argmaxj

X

t

Prob(St = j).
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Figure A.1: Graphical representation of the SLDS; Top) probability transitions be-
tween the three modes; Bottom) evolving SLDS over time

The dynamical behavior of the video recordings is determined by eigenvalues (or

spectral properties) of the state transition matrix A. The 10 largest eigenvalues

(in magnitude) are used as a representation the dynamical properties of the latent

state. Eigenvalues with higher absolute real values indicate a smoother state transi-

tions, while smaller values show significant variations, that’s why they are useful for

discriminating phases and distinguishing between them.

Observability Analysis

Linear dynamical systems are characterized by the system matrices C and A. The

linear dynamical system is said to be observable if and only if the observability matrix,

defined as

[C>(CA)>(CA
2)> . . . (CA

D�1)>],
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is full rank (i.e., of rank M) [54]. This matrix is the key criterion for success in

recovering the state sequence from the common measurement values and its spectral

properties can be used to distinguish di↵erent phases for a patient. Thus the Singular

Values (SVs) of observability matrix are more comprehensive than the eigenvalue

features (which only describe the properties of the state transition dynamics matrix

A). Similar to the analysis of dynamical properties, we used the most dominant mode

of the inferred model for each video to construct the observability matrix and extracts

its singular values.

For SLDS-based analysis, both dynamics within individual facial expressions and

the dynamics between facial expressions are utilized in our approach. First, the

dynamics between expressions is used to unroll the modes and switches between

them. Then, we use the spectral properties of the dynamics within the expression to

extract features for prediction.

Let T be the length of the time series (in our case T = 1000), J be the number of

modes (in our case J = 3), and D be the dimension of the latent space (in our case

D = 20), then the SLDS inference take O(TJ2
D

3) time complexity [89]. Computing

eigenvalues is of O(D3). For the prediction task, if d is the dimension of extracted

features (in our case d = 44) and n is the number of data points (n = 11) then every

iteration of gradient descent is of O(nd).
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Appendix B

Elastic Net Ordinal Logistic

Regression

Assume the feature space X ⇢ Rd and output space contains K classes: Y =

{1, 2, . . . , K}. In ordinal logistic regression the cumulative probability is modeled

as the logistic function:

P (y  k|x) = �(✓k � w
>
x) =

1

1 + exp(w>x� ✓k)
, (B.1)

where,

w = (w1, . . . , wd) 2 Rd

is the coe�cient vector, and

✓ = (✓1, . . . , ✓K�1) 2 RK�1

is the threshold vector, and

�(t) = 1/(1 + exp(�t))
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is the logistic function. ✓ is a non-decreasing vector i.e.,

✓1  ✓2  . . .  ✓K�1.

By defining ✓0 = �1 and ✓K = 1 we will then assign the class k if the linear

prediction model x>
w lies in the interval [✓k�1, ✓k). We are interested in a vector

w such that x
>
w generates a set of values that are well distributed in the di↵erent

classes using the di↵erent thresholds ✓.

Having observed a dataset of n samples

D = {(x1, y1), . . . , (xn, yn)}

the log-likelihood is

L(w, ✓) =
nX

i=1

log(�(✓yi � w
>
xi)� �(✓yi�1 � w

>
xi)) (B.2)

To enhance generalizability and prediction capability of the model, we extend the

ordinal logistic regression by incorporating elastic net regularization [55]. Elastic net

is a combination of LASSO (least absolute shrinkage and selection operator) and ridge

regression. Similar to LASSO regularization, elastic net results in sparse solutions,

however it also has the advantage of performing well with highly correlated variables.

Therefore we define our new objective function as

F(w, ✓) = min
w,✓

�L(w, ✓) + �1kwk1 + �2kwk22 (B.3)

where �1 and �2 are regularization parameters chosen via cross validation. The gra-
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dient of the objective function is computed as:

r✓F(w, ✓) =
nX

i=1

eyi(1� �(✓yi � x
>
i w)�

1

1� exp(✓yi�1 � ✓yi)

+eyi�1(1� �(✓yi�1 � x
>
i w)�

1

1� exp(✓yi�1 � ✓yi)

(B.4)

where ei = (0, . . . , 1, . . . , 0) is the canonical vector where only the i-th location is 1.

Also,

rwF(w, ✓) =
nX

i=1

xi(1� �(✓yi � x
>
i w)� �(✓yi�1 � x

>
i w))

+ 2�2w + �1 sign(w),

(B.5)

where in sign(w) the sign operation is performed element wise. Given the analyti-

cal form of the function and its gradient the well-known Limited-memory Broyden-

Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [90] is used to find the optimum pa-

rameter minimizing the regularized loss.
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Appendix C

Audio Features
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Table C.1: Audio features. *ANG: angry, EXC: excited, NEUT: neutral, var: vari-
ance, vrb: variability

Feature ID Feature Name

a-01 min(ANG*)
a-02 min(EXC*)
a-03 min(NEUT*)
a-04 min(SAD)
a-05 max(ANG)
a-06 max(EXC)
a-07 max(NEUT)
a-08 max(SAD)
a-09 mean(ANG)
a-10 mean(EXC)
a-11 mean(NEUT)
a-12 mean(SAD)
a-13 var*(ANG)
a-14 var(EXC)
a-15 var(NEUT)
a-16 var(SAD)
a-17 skew(ANG)
a-18 skew(EXC)
a-19 skew(NEUT)
a-20 skew(SAD)
a-21 Kurt(ANG)
a-22 Kurt(EXC)
a-23 Kurt(NEUT)
a-24 Kurt(SAD)
a-25 vrb*(ANG)
a-26 vrb(EXC)
a-27 vrb(NEUT)
a-28 vrb(SAD)
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