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Abstract 

Synthesis of Core-Substituted Naphthalene Diimide-Based Polymers for High Charge Transport  

By Shelly Saini 

This thesis is primarily aimed at the development of synthetic strategies for n-type 

semiconducting polymers based on the two important building blocks, namely, 

naphthalenediimide as electron acceptor material, and BODIPY as an electron donor material. 

NDI-based monomers and BODIPY donor monomers have demonstrated large implications in 

the field of organic semiconductors. When polymerized, these monomers have the potential to 

absorb light in the visible range, unlike other organic semiconducting materials that absorb 

mostly in the UV range. By decreasing the amount of high energy light entering the system for 

excitation, there should be an increase in efficiency in exciting from the HOMO to LUMO 

energy levels. We were able to successfully synthesize both the NDI and BODIPY monomers, as 

well as measure their absorption and emission spectra. Two polymers were synthesized, one in 

which the NDI monomers were copolymerized with thiophene units, and the other in which NDI 

and BODIPY monomers were copolymerized. While pNDI-BODIPY formed successfully, 

pNDI-bithiophene only formed oligomers due to a short polymerization time and dilute solution. 

The pNDI-BODIPY showed a notable red shift in absorption from the individual monomers. The 

NDI monomer and BODIPY monomers originally absorbed in the 390nm and 540nm range, 

respectively. After polymerization, the absorption shifted to the 400-580nm range of visible 

light, eliminating the absorption of high-energy UV light, due to an increase in conjugation of 

the polymer versus the monomer alone. In addition to the polymerization, previously reported 

synthetic methods were evaluated and modified to produce higher synthetic yields. In many 

cases, the modified synthetic protocols were efficient in producing high monomer yields.  
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1. Background 

As society becomes more industrialized, there is an increase in energy demand. 

Traditional forms of nonrenewable energy, such as crude oil, not only harm the environment, but 

also are not sustainable energy sources. However, issues arise when trying to create an efficient, 

cost-effective alternative to nonrenewable energy sources. One such alternative is high-

efficiency organic solar cells as a form of renewable energy. 

Traditional inorganic solar cells are composed of donor and acceptor atoms. The donor 

atoms, or pentavalent impurities, have five valence electrons, allowing them to contribute extra 

electrons.10 Examples of such atoms include antimony, arsenic, and phosphorous. The acceptor 

atoms, or trivalent impurities, have three valence electrons, allowing them to accept extra 

electrons since they are electron deficient.10 Examples of such atoms include boron, aluminum, 

and gallium.  

In n-type semiconductors, there is an excess of pentavalent impurities.9.10 These donor 

atoms have extra electron levels close to the conduction band.9.10 The electrons close to the 

conduction band act as free electrons, allowing them to be harnessed to produce current. In p-type 

semiconductors, however, there is an excess of trivalent impurities. These acceptor atoms have a 

deficiency in electrons, and have electron levels close to the valence band.9,10 The deficiency of 

valence electrons creates “holes” that allow for the production of current when electrons are 

transferred from one hole to the next (Figure 1).9,10  
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Figure 1 The diagram above shows the influence of the p-n junction on the production of 

current. The n-type material has an excess of electrons that try to fill the holes of the p-type 

material. This movement of charge generates current in semiconductors. 

 

 In a traditional solar cell, n-type and p-type semiconductors are silicon-based and are 

doped with various impurities.9,10 For n-type semiconductors, the silicon is doped with 

pentavalent phosphorous atoms. When energy in the form of light comes in, some of the 

electrons in the doped material are excited and become free electrons. On the other hand, for p-

type semiconductors, the silicon is doped with trivalent boron atoms. When light strikes the p-

type material, the electrons in the doped material are both excited into the conduction band as 

free electrons, and move to fill electron holes.9,10 Both processes can be successfully used to 

produce current. When we place the n-type and p-type materials together, the extra electrons in 

the pentavalent atom will fill the holes in the trivalent atom when photons are absorbed. This 



 

3 

 

action creates an electric field at the p-n junction since the n-type material is now positively 

charged while the p-type is negatively charged (Figure 1).10 The field created drives the 

movement of electrons across the semiconductor, producing current. 

While inorganic solar cells have a high efficiency rate, reaching power conversion 

efficiencies up to 30%, they prove to be inflexible to change and quite costly.11 To have highly 

efficient inorganic solar cells, they must be thoroughly purified.  The purification process is quite 

costly and high in energy consumption, limiting their use as an eco-friendly energy source.11 In 

addition, inorganic solar cells are inflexible. They are mostly found as thick, flat panels, limiting 

their applications in many electronic materials due to their bulky nature.11 A possible solution to 

these issues lie in the generation and development of organic-based semiconducting materials 

instead of inorganic semiconducting materials.  

Organic semiconductors, unlike inorganic ones, can be functionally modified by tuning 

the molecular structures, are less costly when it comes to manufacturing materials, and can be 

produced in large-scale.11 Chemical modification of the materials allows chemists to choose 

well-defined nanomaterials that will absorb sunlight efficiently, and then incorporate those 

materials into polymer systems. The flexibility of these polymers also allows for the production 

of ultra-thin, flexible solar cells. The flexibility of the solar cells allows them to be easily 

incorporated into electrical devices. Currently, a major use of organic semiconductors is for 

OLED devices. These devices are used in things such as televisions, phones, and tablets to create 

digital displays.11 The rise in demand of organic solar cells has led material chemists to 

synthesize polymers with higher charge-transport efficiencies, with current efficiencies near 

5%.11 
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A major difference between the inorganic and organic semiconductors is the energy band 

gap between the valence, LUMO, and conduction band, HOMO (Figure 2). The inorganic 

semiconductors have a much smaller bad gap, allowing them to incorporate most of the visible 

light spectrum. On the other hand, organic semiconductors have a larger band gap, leading to the 

absorption of high energy light, such as UV. The smaller the band gap, the higher the efficiency 

in exciting electrons into the conduction band. In addition, the high-energy UV light can cause 

the polymers to degrade over time, leading to a low lifetime. Such obstacles must to overcome to 

produce more efficient organic semiconductors. 

 

 

 

 

 

 

 

Naphthalenediimide (NDI) monomers are increasingly being studied for organic 

semiconducting polymers (Figure 3). NDI monomers are attractive for organic electronics due to 

their electron accepting ability, thermal, chemical, and photochemical stability, as well as their 

high electron affinities and charge-carrier mobility.3 Their molecular structure allows them to 

have such noteworthy properties. The imide substituents, for instance, have a strong electron-

withdrawing tendency.2 This allows the NDI monomers to act as acceptor materials. The 

naphthalene core of the NDI monomer decreases the HOMO-LUMO band gap due to its 

E
g

 

LUMO 

HOMO 

E
 

Density of States 

 

 

Figure 2 The diagram above represents the energy band gap (Eg) between the HOMO and 

LUMO of a polymer. Electrons must escape the HOMO and enter the LUMO to be 

harnessed for current. 
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conjugation. The higher the conjugation, the smaller the band gap, so NDI derivatives can be 

utilized in polymers to shift away from UV absorption for excitation and towards visible light 

absorption. The R-groups on the NDI are usually branched or unbranched alkyl chains. These 

alkyl chains do not directly influence the electronic and optical properties of the NDI, but rather 

are used to control solubility, aggregation, and intermolecular packing.3  

 

Figure 2 The figure above shows the structures of the NDI and PDI monomers. While PDI 

monomers are heavily used in organic semiconductors, NDI monomers have gained attention for 

their desirable electronic and synthetic properties. 

 

Prior to the research of NDI monomers as possible monomers in organic semiconductors, 

PDI was more extensively studied and used (Figure 3).5 PDI derivatives were utilized in 

semiconductors because of their high photostability and electron mobility, ability to absorb in the 

visible spectrum, and low production cost.5 The issue with the PDI monomers is that they tend to 

aggregate into columnar superstructures, limiting charge transport ability, and are difficult to 

obtain in a regioisomerically pure form.2,5 NDI monomers, on the other hand, are readily 
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obtained in their dibrominated form. In addition, the NDI has a smaller naphthalene unit, so it 

will likely have greater solubility and lower chances of forming aggregates.2  

Along with NDI acceptor monomers, 4,4-difluoro-4-borata-3a-azonia-4a-aza-s -indacene 

(BODIPY) donor monomers have also recently been researched for their applications in organic 

semiconductors. BODIPY dyes are promising monomers for organic semiconducting polymers 

because of their high absorption coefficients, fluorescence quantum yields, and photostability.1,8 

Since BODIPY is a weak donor, however, bithiophene is highly utilized as a strong donor 

molecule, often alongside other donor molecules.2,7 The bridge created by the bithiophene also 

helps limit the steric interactions of monomers such as NDI and BODIPY when polymerized.1  

This research incorporates NDI and BODIPY into polymers for use in organic 

semiconductors. Two types of donor-acceptor polymers are synthesized for testing charge 

transport. The first polymer is a NDI-bithophene copolymer in which the NDI acts as an acceptor 

while the bithiophene acts as a donor. The second polymer is a NDI-BODIPY copolymer where 

the NDI acts as an acceptor and the BODIPY acts as a weak donor. The BODIPY is modified 

from previous research by incorporating a new branched R group, bithiophene units, and a new 

polymerization method. Once the monomers and polymers were synthesized, their absorption 

and emission spectra were obtained. The resulting polymers will be used as organic n-type 

materials for semiconductors. The synthetic methods of these polymers were evaluated and 

modified to produce higher yields. 

 

2. Synthesis and Characterization of NDI-thiophene Polymers 
 

 To assess the efficiency of organic semiconductors, first we started by synthesizing di-

brominated naphthalene diimide monomers for Stille cross-coupling with 2,2’-bithiophene 
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monomers to produce a conjugated NDI-bithiophene polymer (Figure 4). Procedures for the 

synthesis of the di-brominated naphthalene diimide monomers were adopted from S. 

Thayumanavan et al., and were slightly modified to produce the products in high yields.1 

 

Figure 4 Proposed NDI-bithiophene polymer synthesized via Stille Coupling. 

 

 After di-brominated NDI monomer was synthesized, the NMR and LC-MS were used to 

determine product formation and possible byproducts in the reaction. Gas phase chromatography 

(GCP) was run on the polymer to see its molecular weight distribution and to determine whether 

a polymer or oligomer was synthesized.  

 

i. Short-Chain NDI Monomer Synthesis 

 

 The first step for the synthesis of the NDI-bithiophene polymer shown in Figure 4 

involved the bromination of naphthalenedianhydride (NDA) 1 to form di-brominated NDA 2 

using dibromoisocyanuric acid as brominating reagent (Scheme 1).  
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Scheme 1 Reaction scheme for the bromination of starting material NDA to obtain desired di-

brominated naphthalene core  

 After completion of the reaction, as predicted, the crude product contained mono-, di-, 

and non-brominated NDA product, which was confirmed by mass spectroscopy (Figure 5).  The 

products were not separated, so the non-, mono-, and di- brominated products were used for 

further reactions. The di-brominated product was used for the core of the polymer to promote the 

addition of bithiophene specifically at the 2,6-positions.   

 

5a 
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5b 

  

5c 

  

Figure 5 The products after the bromination reaction shown in Scheme 1 were analyzed using 

LC-MS and NMR spectroscopy. The mass spectroscopy results are shown above, and the highest 

fragment peak corresponds to the molecule displayed.  

 The next step of the polymer synthesis required di-brominated NDA monomer 4 to 

undergo a condensation reaction with 2-ethylhexan-1-amine 3 to form the final di-brominated 

NDI monomer 6 under high temperature (Scheme 2).  
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Scheme 1 Reaction scheme for the condensation reaction of 3, 4, and 5 to yield final monomer 

product 6. 

  

 Separation of the crude product revealed three monomers after column chromatography 

using DCM, confirmed by NMR, containing non-, mono-, and di- brominated NDI. The di-

brominated product was isolated as an orange solid, and was used for further reaction with 2,2’-

bithiophene. The percent yield, however, was originally only 22% for the di-brominated product 
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when following literature1 procedures that used 2:1 naphthalene dianhydride/DBI. The mono-

brominated and di-brominated NDI monomers had the highest percent yields, while the non-

brominated product was minimal. In order to increase the bromination from mono- to di-

brominated product, a 1:1 ratio of naphthalene dianhydride/DBI was used. After the 

modification, the percent yield increased from 22% to 40%. Further increase in the moles of DBI 

used, however, did not significantly increase the di-brominated product.  

 

ii. NDI-Bithiophene Polymer Synthesis  
 

 The final step involved polymerization of the di-brominated NDI with 2,2’-bithiophene 

(Scheme 3). A C-H-type polymerization reaction was performed for the polymerization 

technique, and the reaction was left for one day to allow polymerization to occur.  

 

Scheme 2 Stille coupling reaction to obtain the polymerization of di-brominated NDI with 2,2’-

bithiophene monomers. 

 The formation of polymer was confirmed by using gel permeation chromatography 

(GPC) (Figure 6). The largest molecular weight peak had an Mw value of 3664, and a PD value 

of 2.0356 (Table 1). This indicates that small oligomers were formed rather than the polymers. 

The formation of oligomers instead of polymers can be attributed to either the reaction mixture 
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being too dilute, or the reaction time being too short. In the future, both the reaction time and 

concentration of the solution can be tested to see whether a change in those factors leads to the 

formation of polymers. 

 

Figure 6 Shown above is the GPC measurement of the NDI-bithiophene polymer.  

 

Table 1 The largest molecular weight peak had a Mw value of 3664 and a PD value of 2.0356, 

indicating the formation of oligomers instead of polymers. 

 

3. Synthesis and Characterization of NDI-BODIPY Polymers 
 

 In addition to NDI-bithiophene polymers, NDI-BODIPY polymers were synthesized to 

test whether BODIPY-thiophene donors increase charge transport compared to just using 

bithiophene (Figure 7). Procedures for the synthesis of the BODIPY monomers were obtained 

from S. Thayumanavan et al. and procedures for the synthesis of the di-brominated naphthalene 
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diimide monomers were obtained from Mark Watson et al.1,2 Both procedures were modified to 

produce higher yields of products. 

Preparation of the NDI and BODIPY monomers were confirmed using NMR, and 

production of the NDI-BODIPY precursor was confirmed using GPC. The absorption and 

emission spectra of the monomers and polymers were obtained using UV-Vis and fluorescence 

spectroscopy.  

 

Figure 7 Proposed NDI-BODIPY polymer synthesized via Stille Coupling. 

 

i. Long-Chain NDI Monomer Synthesis 

 

 The NDI core was synthesized using the reaction shown in Scheme 1. The R-group on 

the NDI was modified from 2-ethyl-hexyl to 2-decyl-tetradecyl (Scheme 4). To synthesize the R-

group, 2-decyltetradecan-1-ol 10 underwent an Appel reaction to produce the brominated 

branched alkyl chain 2-decyl-1-tetradecylbromide 11. The brominated product was converted 

into a branched amine 2-decyltetradecan-1-amine 13 using Gabriel synthesis. A condensation 
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reaction ensued, resulting in the branched, di-brominated NDI monomer 14. The final 

stannylated product is formed through stannlyation of monomer 14. During the synthesis of the 

di-brominated NDI monomer 14, three products formed according to TLC. Originally, the three 

spots were separated using column chromatography after the reaction. However, the spots were 

very close, and some product could not be fully separated, resulting in a lower percent yield. 

Previous research has shown that the stannylated NDI 15 has better separation than the non-, 

mono-, and di- brominated products since the spots are farther apart.4 Thus in future 

experiments, the separation method can be changed from running a separation technique on 

reaction 14 to reaction 15 to increase overall yields. The resulting stannylated NDI 15 was used 

for further polymerization. 
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Scheme 4 Reaction scheme for the synthesis of 2-decyl-tetradecyl NDI monomer.  
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 The absorption and emission spectra of the branched NDI monomer 14 was obtained in 

chloroform (Figure 8 & 9). The maximum absorbance has a peak at ~390nm, while the 

maximum intensity emission has a peak at ~494nm. The maximum absorbance is between the 

UV and visible range, while the maximum emission is in the visible range. The polymer had high 

solubility in chloroform. 

 

Figure 8 UV/Vis spectrum of branched NDI Monomer in chloroform. Maximum absorbance 

peak seen at 390nm. 

 

Figure 9 Emission spectrum of branched NDI monomer in chloroform. Maximum emission peak 

seen at 494nm. 
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ii. BODIPY Monomer Synthesis 
 

The BODIPY monomer was synthesized using the reactions shown in Scheme 5. The 

starting materials 4-(octyloxy)benzaldehyde 16 and 2,4-dimethyl-1H-pyrrole 17 underwent a 

condensation followed by a cyclization reaction to produce the BODIPY starting material 18. A 

halogenation reaction on 18 yielded the iodo-BODIPY monomer 19. The BODIPY starting 

material 18 had a very low yield of 20% when using a one-pot synthesis. However, an even 

lower yield was obtained when separating out the synthetic steps and purifying before 

subsequent reactions instead of using one-pot synthesis. The lower yields seen when separating 

synthetic steps may be due to small amounts of product being lost when running column 

chromatography, or reactions not being carried out over enough time to allow for the molecules 

to react. To analyze the effects of time in the one-pot synthesis, the reactions were allowed to 

react for longer periods of time before adding the next step. However, this solution had 

negligible effects on the yield. Thus, perhaps new synthetic routes need to be found for the 

formation of 18 to decrease the amount of wasted chemicals and increase yields.  

 The iodo-BODIPY monomer 19 was then converted into the BODIPY-thiophene 

monomer 21 through Stille cross-coupling reaction. The original reaction used 1:2 equivalents of 

BODIPY/thiophene, but this resulted in a yield of <30%. To increase the yield, the equivalents of 

thiophene were increased to 1:3.5 BODIPY/thiophene, resulting in a yield of 39%. Subsequent 

increase in the equivalents of thiophene had minimal effects on the yield. The BODIPY-

thiophene monomer 21 was then brominated using NBS, resulting in the formation of 22. 

Multiple products were found after running TLC because of varying amounts of bromination. 



 

18 

 

The products were extremely close on TLC, resulting in the need to use prep TLC to get pure 

compound instead of column chromatography.  

 

Scheme 5 Reaction scheme for the synthesis of BODIPY monomer. 
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 The absorption and emission spectra of the BODIPY monomer (3) was obtained in 

chloroform (Figure 10 & 11). The maximum absorbance has a peak at ~540nm, while the 

maximum intensity emission has a peak at ~614nm. The maximum absorbance and maximum 

emission are in the visible light range. The polymer had high solubility in chloroform. 

 

Figure 10 UV/Vis spectrum of BODIPY monomer in chloroform. Maximum absorbance peak 

seen at 540nm. 

 

Figure 11 Emission spectrum of BODIPY monomer in chloroform. Maximum emission peak 

seen at 614nm. 

iii. NDI-BODIPY Polymer Synthesis 
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 Stille coupling was used for the polymerization technique, and the reaction was left for 

three days to allow successful polymerization to occur (Scheme 6).  

 

Scheme 6 Stille coupling reaction to obtain the polymerization of long-chain di-brominated NDI 

with BODIPY. 
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 The formation of polymer was confirmed by gel permeation chromatography (GPC) 

(Figure 12). The largest molecular weight peak had an Mw value of 23228, and a PD value of 

1.8. These values indicate that the polymerization reaction was successful, and the NDI-

BODIPY polymer formed.    

 

Figure 12 Shown above is the GPC measurement of the NDI-bithiophene polymer.  

 

Table 2 The largest molecular weight peak had a Mw value of 23228 and a PD value of 1.8252, 

indicating the formation of polymers. 

  

 The absorption and emission spectra of NDI-BODIPY polymer (5) was obtained (Figure 

13 & 14). The two absorbance peaks have maximums at ~400nm and 580nm, while the 

maximum intensity emission has a peak at ~678nm. Both the maximum absorbance and 

maximum emission values are in the visible light range. The maximum emission intensity is 

nearing the infrared region of light.  

 After polymerization, there is a shift in the absorption of the NDI and BODIPY 

monomers. The NDI monomer before polymerization had an absorption value of 390nm, while 

after polymerization it has an absorption value of 400nm. Similarly, the BODIPY monomer 

before polymerization had an absorption value of 540nm, while after polymerization it had an 
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absorption value of 580nm. The increase in the wavelength of the absorbed light indicates that 

the band gap between the HOMO-LUMO levels has decreased after polymerization, most likely 

resulting from the increased conjugation of the polymer versus just the monomers alone. In 

addition, the emission intensity has shifted to a higher wavelength for the polymer than both the 

BODIPY and NDI monomers alone. 

 

 

 

 

 

 

 

 

 

 

Figure 14 Emission spectrum of NDI-BODIPY polymer in chloroform. Maximum emission 

peak seen at 678nm. 

Figure 13 UV/Vis spectrum of NDI-BODIPY polymer in chloroform. Maximum absorbance 

peaks seen at 400nm and 580nm. 
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4. Conclusion 

The polymerization of just the short-chained NDI monomers failed to yield any 

polymers, but rather just oligomers. In the future, we will optimize the polymerization time 

and concentration to obtain polymers, and then take UV-Vis and fluorescence measurements, 

as well as test the polymer’s charge transport properties. On the other hand, the 

polymerization of the long-chained NDI and BODIPY monomers was successful. 

Copolymerization of the NDI and BODIPY monomers gave a noticeable red shift in the 

absorbance wavelengths of the polymer compared to the individual monomers due to the 

increased conjugation of the polymer. While we were unable to test the charge transport, the 

polymer shows promise as a possible candidate for n-type organic semiconductors. Its shift 

away from absorption in the UV range, common of many organic semiconductors, and 

towards the visible range may indicate that the polymer will have a higher efficiency in 

successfully exciting electrons into the conduction band. In future experiments, we will test 

this theory by measuring the polymer’s charge transport.  

 

5. Experimental Methods 

5.1 Synthesis of 4,9-bromoisochromeno[6,5,4-def]isochromene-1,3,6,8-tetraone (2) 

Commercially available isochromeno[6,5,4-def]isochromene-1,3,6,8-tetraone (10mmol, 2.86g) 

was dissolved in 100mL of oleum (20% SO3). In a separate solution, dibromoisocyanuric acid 

(10mmol) was dissolved in 50mL of oleum (20% SO3). The second solution was added into the 

first solution dropwise over 4 hours at 0oC over an ice bath. After 4 hours, the solution was left 

to stir for an additional 1 hour at room temperature, and then poured onto 500g of ice. The 

mixture was left for 3 hours, and then the yellow-green precipitate was collected using vacuum 
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filtration. The solid was washed with dilute HCl and dried without further purification to afford 

2,3 as a brown-green solid (3.41g, 80%). 1H NMR was confirmed by literature.4 

 

5.2 Synthesis of 4,9-dibromo-2,7-bis(2-ethylhexyl)benzo[lmn][3,8]phenanthroline-

1,3,6,8(2H,7H)-tetraone (6) 

2 (3g, 7.04mmol), 2-ethyl-hexylamine (3.64g, 28.16mmol), and 80mL of glacial acetic acid were 

stirred under argon at 120oC overnight. The concentrate was added to 200mL methanol, and the 

resulting precipitate was collected by filtration, washed with methanol and dried under reduced 

pressure. The product was purified using a silica gel column run in 100% DCM, followed by 

recrystallization from hexanes to afford 4 as a red solid (1.83g, 40%). 1H NMR was confirmed 

by literature.1 

 

5.3 Synthesis of PNDIT2 (9) 

Commercially available 2,2’-bithiophene (6.73mg, 0.0405mmol), 6 (28mg, 0.0432mmol), 

potassium carbonate (59.94mg, 0.4337mmol), and pivalic acid (4.41mg, 0.032mmol) were 

weighed into a dry vial with stir bar added. 0.203mL of degassed dry toluene was added under 

argon, and the solution was stirred for 5min at room temperature to dissolve monomers. 

Commercially available Pd2dba3 (1.324mg, 0.001446mmol) was added under argon to the 

solution. The vial was heated to 100oC and stirred for 14 hours in an oil bath. The solution was 

cooled to room temperature, and then dissolved in 6.77mL of chloroform. The polymer was 

precipitated into 70mL of methanol, filtered, and purified using Soxhlet extraction with acetone, 

ethyl acetate, and hexanes. The resulting product was collected using chloroform, and filtered 
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through a silica gel plug. Gas phase chromatography was used to confirm the formation of 

polymer (Figure 3). 

 

5.4 Synthesis of 2-decyl-1-tetradecylbromide (11) 

Triphenylphosphine (18.7g, 0.0712mol) was sparged in 115mL of DCM with argon at 0oC for 15 

minutes. 3.66mL of bromine was added dropwise into the solution. Commercially available 2-

decyltetradecan-1-ol (30mL, 0.0712mol) was then added dropwise via addition funnel over 30 

minutes. The reaction was stirred overnight under argon at room temperature. The DCM was 

evaporated and then resulting concentrate was filtered with pentane wash to yield a cruse yellow 

oil. The resulting crude product was purified using a silica gel column run in 4:1 hexane/DCM to 

yield 2 as a yellow oil (16.946g, 57%). 1H NMR was confirmed by literature.2 

 

5.5 Synthesis of 2-(2-decyltetradecyl)isoinodoline-1,3-dione (12) 

Potassium phthalimide (7.5g, 0.0404mol) was added to a solution of 2-decyl-1-

tetradecylbromide (15.7g, 0.0376mol) in 45mL of dry DMF. The reaction was stirred overnight 

at 90oC and then cooled to room temperature. The reaction was poured into 150mL of water and 

extracted with DCM. The combined organic layers were washed with 200mL of 0.2M KOH, 

water, saturated ammonium chloride, and then dried over Na2SO4. Concentration yielded a crude 

yellow oil, which was purified using a silica gel column run in 100% DCM to yield 3 as a clear 

oil (15.8g, 87%). 1H NMR was confirmed by literature.2 

 

5.5 Synthesis of 2-decyltetradecan-1-amine (13) 
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N-(2-decyltetradecyl) phthalimide (10g, 0.021mol), 4mL of hydrazine hydrate (0.021mol), and 

100mL of methanol were stirred at 95oC and monitored by TLC for completion. Once the 

starting imide disappeared, the methanol was evaporated and the residue was diluted with 100mL 

of DCM and washed with 10% KOH solution. The aqueous layers were combined and extracted 

with DCM. The resulting organic layers were washed with brine and dried with Na2SO4. The 

DCM was evaporated, yielding a yellow oil without further purification (5.346g, 73%). 1H NMR 

was confirmed by literature.2 

 

5.6 Synthesis of 4,9-dibromo-2,7-bis(2-decyltetradecyl)benzo[lmn][3,8]phenanthroline-

1,3,6,8(2H,7H)-tetraone (14) 

Di-brominated naphthalene dianhydride (0.20g, 0.469mmol), 2-decyl-tetradecylamine (0.24g, 

0.678mmol), and 6mL of glacial acetic acid were stirred under argon at 120oC. The acetic acid 

was evaporated once all the solids were dissolved, and the concentrate was added to 15mL of 

methanol. The resulting red solid was collected by filtration, washed with methanol, and dried. 

The solid was not purified further to yield 5 as an orange solid mixture (0.213g, 41%). 1H NMR 

was confirmed by literature.2 

 

5.7 Synthesis of 2,7-bis(2-decyltetradecyl)-4,9-

bis(tributylstannyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (15) 

Di-brominated NDI mixture 14 (300mg, 0.295mmol), commercially available tributyltin 

(344mg, 0.59mmol), tri(o-tolyl)phosphine (18mg, 0.059mmol), and 

tris(dibenzylideneacetone)diipalladium(0) (13.5mg, 0.01475mmol) were added to 4mL of dry 

toluene and refluxed overnight at 90oC under argon. The reaction was precipitated in methanol 
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and the solid was filtered using vacuum filtration. The crude orange product was purified using a 

silica gel column run in 100% DCM to yield 6 as an orange-yellow solid (203mg, 56%). 1H 

NMR was confirmed by literature.12 

 

5.8 Synthesis of 5,5-difluoro-2,8-diiodo-1,3,7,9-tetramethyl-10-(4-(octyloxy)phenyl)-5H-

4λ4,5λ4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinine (18) 

Commercially available 4-octyloxybenzaldehyde (0.75mL, 3.137mmol) and 2,4-dimethyl-1H-

pyrrole (0.738g, 7.84mmol) were added into 80mL of dry DCM in a flask. A solution of 

trifluoroacetic acid (53.65mg, 0.47mmol) in 3.5mL of dry DCM was slowly added into the flask 

at room temperature. After 3 hours, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (0.712g-

3.137mol) was added to the solution under an ice bath and stirred for 20 minutes. The resulting 

solution was left at room temperature and stirred for another 1 hour. Triethylamine (4.57g, 

45.17mmol) was then added, followed by the slow addition of boron trifluoride diethyl etherate 

(7.57g, 53.33mmol). The reaction was left to stir overnight, and then washed with saturated 

sodium carbonate and dried with sodium sulfate. The solution was concentrated under reduced 

pressure, and the concentrate was dissolved in hexane. The product was purified using a silica 

gel column in 5:1 hexane/DCM, resulting in a red/green product with green fluorescence 

(284mg, 20%). 1H NMR was confirmed by literature.1 

 

5.9 Synthesis of 5,5-difluoro-2,8-diiodo-1,3,7,9-tetramethyl-10-(4-(octyloxy)phenyl)-5H-

4λ4,5λ4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinine (19) 

Commercially available N-iodosuccinimide (601.7mg, 2.67mmol) and previously synthesized 1 

(550mg, 1.21mmol) were added to 25mL of DCM. The solution was stirred at room temperature 
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overnight under argon and then washed with sodium thiosulfate. The product was carried to the 

next step without further purification (528mg, 62%). 1H NMR was confirmed by literature.1 

 

5.10 Synthesis of 5,5-difluoro-1,3,7,9-tetramethyl-10-(4-(octyloxy)phenyl)-2,8-di(thiophen-2-

yl)-5H-4λ4,5λ4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinine (21) 

Previously synthesized 19 (50mg, 0.071mmol), commercially available 2-

(tributylstannyl)thiophene (92.7mg, 0.249mmol), tris(dibenzylideneacetone)diipalladium(0) 

(6.5mg, 0.0071mmol), and tri(o-tolyl)phosphine (8.6mg, 0.0284mmol) were refluxed overnight 

in 5mL of toluene at 90oC under argon. The resulting crude product was purified using a silica 

gel column run in 1:4 DCM/hexane to yield (21) as a red-colored, fluorescent-pink molecule 

(17mg, 39%). 1H NMR was confirmed by literature.1 

 

5.11 Synthesis of 2,8-bis(5-bromothiophen-2-yl)-5,5-difluoro-1,3,7,9-tetramethyl-10-(4-

(octyloxy)phenyl)-5H-4λ4,5λ4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinine (22) 

Previously synthesized 21 (17mg, 0.029mmol) and commercially available N-bromosuccinimide 

(15.5mg, 0.087mmol) were added into 1mL of chloroform. The reaction was covered with foil 

and run under argon at room temperature overnight. The resulting crude product was purified 

using prep TLC run in 1:4 DCM/hexane to yield (4) as a red solid (14.21mg, 73%). 1H NMR was 

confirmed by literature.1 

 

5.12 Synthesis of NDI-BODIPY Polymer (25) 

A mixture of previously synthesized tributyltin NDI monomer 14 (9.8mg, 0.00646mmol) and di-

brominated BODIPY monomer 22 (5mg, 0.00646mmol), 
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tris(dibenzylideneacetone)diipalladium(0) (1mg, 0.0011mmol), and tri(o-tolyl)phosphine (1mg, 

0.0033mmol) was degassed using a dry ice and acetone bath. After degassing, 0.1mL of toluene 

was added to the reaction mixture and refluxed at 90oC under argon for 3 days. The polymer was 

precipitated into 50mL of methanol, filtered, and purified using Soxhlet extraction with acetone, 

ethyl acetate, and hexanes. The resulting product was collected using chloroform, and filtered 

through a silica gel plug. GPC was used to confirm the formation of polymer (Figure 4). 
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