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Abstract 

Behavioral and Neural Mechanisms of Decision-Making in Drosophila 

By Alexander Koeppel 

 

Decision-making is a crucial cognitive process that allows humans and animals to enact  

behavioral responses appropriate to environmental stimuli. This thesis investigates how 

Drosophila melanogaster make value-based decisions during foraging by examining stimulus 

memorization, stimulus comparison, and the underlying neural mechanisms of decision-making. 

Food-choice behavioral assays partially support a reinforcement learning-based model of 

memory-informed decision-making and show that flies compare and integrate stimuli using 

divisive rather than subtractive differences. Optogenetic silencing of PAM dopaminergic neurons 

yielded inconclusive results, likely due to experimental limitations. By offering support for 

reinforcement learning-based and divisive models of foraging, as a whole, our findings shed light 

on the complex decision-making behaviors of Drosophila, and lay the groundwork for future 

studies on the neural circuitry of decision-making. 
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Introduction 
 

1.1 Background 

 The ability to make informed decisions is crucial for the survival and efficient function of 

both humans and non-human animals. In humans, abnormal decision-making is a core feature of 

various neuropsychiatric disorders.[1] This includes conditions of increasing medical interest, 

such as Substance Abuse Disorders, which reflect impaired decision-making that stems from an 

inability to accurately compare the reward versus harm caused by inappropriate drug 

self-administration.[1][2] Abnormal decision-making is also prevalent in other conditions, such as 

Schizophrenia and Alzheimer’s disease, where decision-making involving trade-offs between 

effort and reward is significantly impaired, which may explain diminished goal-directed 

behavior, a typical presentation of these conditions.[3] [4] In the same vein, impaired 

decision-making may limit the survival of many other organisms, as decision-making is a key 

feature of foraging — the process of locating, detecting, and comparing various food sources. To 

optimize this process, it is essential for any individual to combine memory and sensory cues into 

a decision-making process that identifies nutrient-rich substances while avoiding nutrient-poor or 

otherwise harmful substances. This link between sensory integration, memory, and 

decision-making ability is well documented in animal models. In mammals, recent literature 

highlights the medial prefrontal cortex as a specific region that facilitates the incorporation of 

memory and physical stimuli into decision-making.[5] 

 

1.2 Drosophila and Drosophila Foraging as a Model System 

Despite broad-stroke progress in our understanding of the general mechanistic basis of 

decision-making, the cellular-level neural circuitry that underlies the integration of memory and 

sensory information is still unknown. Drosophila melanogaster, the common fruit fly, provides 

an ideal model to study these neural circuits, especially since the comprehensive mapping of the 

Drosophila brain, known as the Drosophila connectome, was recently achieved.[6][7] The 

approximately 140,000 neurons detailed in the connectome will allow for the precise tracing and 

study of neurons and synaptic connections that underlie sensory-memory integration, particularly 

within the mushroom body — Drosophila’s primary center for memory and sensory 

integration.[8] Furthermore, Drosophila also exhibit foraging behavior similar to many other 

advanced organisms. 
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Figure 1. Stages of Drosophila Foraging and Associated Chemosensory Receptors 

(a) Components of food search and feeding initiation — the two initial stages of Drosophila foraging 
behavior. 

(b) Olfactory chemosensory receptors in Drosophila involved in long-range foraging behavior. 
(c) Gustatory chemosensory receptors in Drosophila involved in short-range foraging behavior, as 

well as feeding initiation. 
Adapted from Mahishi & Huetteroth (2019)[9], Jefferis & Luo (2005)[10], and Montell (2010).[11] 
 

Accurately modeling foraging behavior in Drosophila is the first step to elucidating the 

neural circuitry underlying foraging decision-making in these flies. At its core, foraging in 

Drosophila, like other organisms, is a series of decisions dependent on the integration of sensory 

stimuli, memory, and internal state.[12] Drosophila contain a diverse array of chemoreceptors that 

can detect odors and tastants, which play different roles at various points within the foraging 

process. Long-range “food search” behaviors are initially driven by olfactory receptors located 

on the antenna and maxillary palps. However, during short-range foraging and feeding initiation, 

gustatory receptors take over as the primary source of chemosensation.[9] These receptors, or 

Gustatory Receptor Neurons (GRNs), respond to the five basic tastes present across the taste 
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systems of many organisms: sweet, sour, salty, bitter, and umami.[13] Individual taste signals 

modulate feeding behavior differently, but sugar-sensing (sweet) GRNs generally create 

dopaminergic appetitive signals that reinforce feeding behavior.[14] While it is important for 

GRNs to identify sucrose-containing food patches for foraging via these signals, in this project, 

we examine how Drosophila remember sugar signals from food patches and integrate them for 

comparison to one another. This allows flies to modulate their decision-making behaviors to 

support efficient foraging. 

 

1.3 Memory of Gustatory Stimuli in Drosophila 

As Drosophila explore an environment with various attractive food patches, their ability to 

modulate behavior solely based on encountered gustatory stimuli allows them to choose between 

food sources and ensure optimal nutrient uptake. This also requires memory — the ability to 

remember temporally distinct gustatory stimuli. Previous literature suggests that memory is 

present and does influence behavior in Drosophila foraging. Using optogenetic stimulation of 

sugar-sensing neurons, Seidenbacher et al. demonstrated that flies consistently returned to sites 

of sugar-neuron stimulation, indicating memory for the sites based exclusively on gustatory 

information.[15]  Furthermore, in a study that demonstrated a similar “looping search” behavior, 

where flies repeatedly return to the same food source, it was demonstrated that this behavior 

depends on internal cues (i.e. memory), rather than newly encountered external stimuli.[16] These 

studies suggest that Drosophila may use memory of past gustatory stimuli to inform food-search 

foraging behavior. Previous work from our lab also demonstrates the role of memory in feeding 

initiation — flies briefly exposed to sugar were more likely to exhibit feeding behavior when 

presented with a less attractive stimulus, such as water, for a short period afterward.[17] 

 

1.4 Models of Memory in Drosophila 

 The precise mechanisms by which chemosensory stimuli are encoded to memory are not 

known, and different models can influence decision-making behavior differently. For example, in 

this project, we consider the interactions of a fly moving in an environment with sucrose food 

patches of various discrete concentrations. Logically, it is possible that Drosophila remember 

each past gustatory stimulus independently. In other words, they may memorize as many past 

stimuli as different concentrations of sucrose that they have encountered. This is the core 
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principle of an input retention model of memory. Although these models do not predict 

precisely how these stimuli inform behavior, in broad terms, flies will feed in proportion to how 

a new gustatory stimulus compares to memorized previous stimuli. One possibility for the 

connection between a range retention model and behavior is that a fly individually compares a 

current stimulus to memorized previous stimuli. Then, the fly may feed if this new stimulus is 

“sweeter” than most previous stimuli, but continue exploring its environment if it is not.   

 A related model is a range retention model, where a fly memorizes only the highest and 

lowest sucrose concentrations it has encountered. This confers one specific advantage over an 

input retention model — it is less computationally intensive. Rather than memorizing a value for 

each encountered sucrose concentration, it only retains two values. In terms of this model’s 

behavioral implications, a fly may feed if a new stimulus is at least as “sweet” as the highest 

previous concentration encountered, or continue exploring if the stimulus is less sweet than the 

lowest previous concentration. If the value lies between the two extremes, a less predictable 

behavioral response may occur as other factors, such as nutritional needs, may come into play.  

 
Figure 2. Input retention and range retention models of memory in Drosophila. 

(a) Schematic of input retention model. 
(b) Schematic of range retention model. 
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Overall, both of these models can be described as “limited context” models, as while 

behavior may be affected by the relative concentrations of sucrose patches according to these 

models, behavior would not be affected by how often the fly encounters each patch. This 

inability to consider the frequency of encountering different food types may be problematic, as 

the relative prevalence of various food sources should be an important consideration in foraging 

behavior. Indeed, literature concerning Drosophila and non-Drosophila models of foraging 

suggests more complex behavioral models, that can consider patch prevalence, may be at 

play.[18][19][20]  

 Reinforcement Learning is a model of decision-making that enables animals to update 

their behavior based on outcome feedback. In the context of Drosophila foraging, a 

Reinforcement Learning-based (RL-based) model of memory may manifest as storing a 

“reward prediction” for a newly encountered sucrose patch, based on the average sugar 

concentration of all previous sucrose encounters. Within this sucrose foraging paradigm, we may 

consider the patches’ relative sucrose concentrations to be equivalent to “reward.”. To inform 

behavior, Drosophila compare the discrepancy between the predicted reward for the newly 

encountered stimulus and its actual reward. This is termed a reward prediction error (RPE). If the 

actual reward is greater than the expected reward, a fly may opt to forage on the new patch, and 

vice versa. After the encounter, this new stimulus is also integrated into a fly’s “reward 

prediction” for subsequent stimuli. Complex RL-based models may also contain additional 

stipulations for encounter memorization — such as more recent encounters being weighted more 

heavily to account for the process of “forgetting.”  

RL-based models of decision-making have been well-studied in the behavior of other 

advanced organisms. For example, pertinent research finds an RL-based model, including RPE 

principles, to be consistent with decision-making observed within a sucrose preference test given 

to mice.[18]  Within Drosophila, a theoretical study has proposed that certain dopaminergic 

neurons in the fly brain likely encode RPEs within the RL-based model.[21] Unlike the 

aforementioned “limited context” models, in an RL-based model, the relative prevalence of 

different sucrose patches does impact memory and behavior in an RL-based model due to the 

mechanism by which reward prediction is calculated using past sucrose encounters.  
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Figure 3. Reinforcement Learning and Drift Diffusion-based models of foraging.  

(a) The Reinforcement Learning-based Model of foraging proposes that an expected reward, 
equivalent to sucrose concentration, is computed based on the values of previous encounters. This 
is then compared to the actual reward of a new gustatory encounter to form a reward prediction 
error, which then informs decision-making behavior. Depending on this RPE, this behavior can be 
either to feed, or continue exploration. 

(b)  The Drift Diffusion-based Model of foraging proposes an evidence accumulation framework, 
whereby the value of one class of gustatory stimulus is learned more accurately with successive 
encounters. The learned value of a new gustatory encounter (based on its class) is compared to the 
learned value of other classes of gustatory stimuli to inform behavior. If the value of comparison 
surpasses a pre-determined threshold, this behavior may be feeding, otherwise the fly may 
continue exploration. 

Note: Learned values in Figure 3b are used only as an example. They are not necessarily accurate to the 
rate of learning in Drosophila.  
 

The Drift-Diffusion Model (DDM) of foraging-based decision-making is an alternate 

model that can also consider the relative prevalence of patches. This model is related to the 

concept of “evidence accumulation” present in traditional DDM models — decisions are based 

on a given amount of evidence that has been obtained. In an environment with various sucrose 

patches, as previously described, Drosophila exhibiting a DDM-based model of behavior will 
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compute a “learned value” for categories of patches with distinct sucrose concentrations, which 

becomes more accurate to the actual value as encounters of the given concentration accumulate. 

For example, the more a fly interacts with a sucrose patch of a given sweetness x, the more this 

“learned value” increases, and the more it is accurate to the actual value of x. These “learned 

values” are then compared to gustatory stimuli from new patch encounters, and if this 

comparison surpasses a pre-determined threshold, a behavior — the decision to feed — can 

occur. Although the Drift-Diffusion Model was not developed specifically to explain foraging 

behaviors, simulation studies have applied DDM-based models to foraging.[19] [20]  

A DDM-based memory model may outperform an RL-based model in specific 

cases—such as when a fly mostly encounters low-concentration sucrose patches and rarely finds 

high-concentration ones. In this scenario, an RL model may cause the fly to overlook 

low-concentration patches in search of an unlikely high-reward, reducing nutrient intake. A 

DDM model avoids this by relying on learned values rather than a single reward expectation. 

However, this advantage only arises under specific conditions, and a DDM-based model is 

always computationally intensive. Like an input retention model, a DDM-based model stores one 

value per category of encountered sucrose concentrations. Thus, compared to an RL-based 

model, which only stores one “reward expectation” value, it is relatively intensive. 

 

1.5 Comparative Integration of Gustatory Stimuli in Drosophila 

In addition to remembering previously encountered gustatory stimuli, a second 

component of ensuring efficient foraging is comparing chemosensory stimuli that are 

encountered. Our understanding of how the brain integrates chemosensory stimuli to compute 

absolute valence (i.e. “good” or “bad”) is relatively robust.[22][23]  However, literature suggests 

that decisions are formed based on relative values — comparing relatively how “good” or “bad” 

a stimulus is relative to other stimuli.[24] It is not entirely clear how these relative values are 

computed or integrated to inform behavior. If we consider the previously discussed context — a 

fly in an environment with sucrose food patches of various concentrations — two main 

possibilities exist for the computation of relative value. A subtractive model would compare the 

subtractive difference between concentrations of sucrose patches. That is, forming a relative 

value based on the idea that “there is a 100 mM difference in sucrose concentration between 

patch x and patch y.” Alternatively, a divisive model would compare the divisive difference 
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between sucrose concentrations — a relative value based on the idea that “patch x is two times as 

sweet as patch y.”  

A divisive model may offer Drosophila more flexibility in dynamic environments with 

many food patches. Given that this model inherently emphasizes sensitivity to proportional 

differences, even small subtractive differences at lower concentrations become behaviorally 

significant using a divisive model. Simultaneously, when operating with concentration values in 

very different ranges (i.e. large subtractive difference), proportional normalization via a divisive 

model can lead to more comparable values. For instance, the subtractive difference between a 

200 mM sucrose patch and a 100 mM context is numerically large (100 mM), whereas the 

divisive difference (1.5x) maintains proportional comparability. Due to its mechanism of 

comparison, a subtractive model may remain equally sensitive (or insensitive) across 

concentration ranges. It potentially undervalues meaningful proportional differences at lower 

concentrations, while overvaluing large differences at high concentrations. 

Ultimately, understanding the model with which Drosophila compare and integrate 

gustatory information would help create a framework to guide future examination of the neural 

mechanisms underlying decision-making. 

 

1.6 Neural Mechanisms of Decision-Making in Drosophila 

 The ultimate purpose of developing behavioral models of decision-making in Drosophila 

is to identify the neural pathways and mechanisms underlying these behaviors. Relevant 

literature suggests RL models of behavior are mediated by dopaminergic neurons within the 

Mushroom Body, Drosophila’s primary structure responsible for learning, sensory integration, 

and memory.[8] [21] While specific cellular-level neural mechanisms for decision-making processes 

of Drosophila foraging are not known, optogenetic techniques used to identify neurons that play 

a role in such processes would make it possible to propose mechanisms. Dopaminergic 

Protocerebral Anterior Medial (PAM) neurons are of particular interest in this regard — these 

neurons project to lobes of the Mushroom Body, where they release dopamine signals which 

subsequently modulate Kenyon cell (KC) — Mushroom Body Output Neuron (MBON) 

synapses.[25] KCs process and encode sensory input that is transmitted to MBONs through the 

synapses that are modulated by PAM activity.[26] Thus, it is possible that PAM Neurons are 

implicated in the modulation of decision-making behaviors. This has been suggested by research 
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 demonstrating that constitutive activation of PAM neurons disrupts the calculation of reward 

 expectation, a core component of the RL model of decision-making.  [27] 

 1.7 Aims and Hypotheses 

 To accomplish this project’s objective of examining behavioral and neural 

 mechanisms of decision-making in  Drosophila  , this  project encompasses three primary 

 aims. 

 Aim 1 

 How do  Drosophila  remember gustatory stimuli to inform  behavioral decision-making? 

 Multiple computational models have been proposed for decision-making in foraging, including 

 the aforementioned four models:  input retention model,  range retention model, 

 Reinforcement Learning-based model, and Drift-Diffusion-based model. 

 Considering the potential advantages and drawbacks of each model, as well as data from 

 previous literature, we propose that the memory component of decision-making in  Drosophila 

 can be modeled using a Reinforcement Learning-based paradigm. As described above, past 

 research used a Reinforcement Learning-based model to understand murine behavior in a similar 

 food-choice assay, suggesting that a similar behavioral model could also be applied to 

 Drosophila  .  [18] 

 Aim 2 

 How do  Drosophila  integrate gustatory stimuli to  inform decision-making? Because the 

 literature suggests that decision-making is based on the computation of a “relative value” related 

 to the memory-based context, we propose two frameworks of how this comparative value may 

 be computed — the aforementioned  divisive  and  subtractive  models  . As previously illustrated, 

 a  divisive  model may better inform behavior in a dynamic  foraging environment representative 

 of  Drosophila  ’s natural environment — with both large  differences at high sucrose 

 concentrations and small differences at low concentrations. Thus, we hypothesize that the 

 computation of relative value will follow a  divisive  model. 

9



 Aim 3 

 Lastly, are PAM dopaminergic neurons involved in the neural mechanisms underlying 

 decision-making behaviors in  Drosophila  ? Previous  studies have implicated PAM Neurons in a 

 Reinforcement Learning-model of decision-making, using constitutive activation to disrupt 

 normal behavior. In this project, we also aim to explore the role of PAM Neurons in 

 decision-making, but through optogenetic silencing of these neurons. Furthermore, we hope to 

 connect this aim to Aim 1 and elucidate how PAM neurons might implement certain models of 

 behavior, even if it is not the RL-based model suggested by previous literature. Ultimately, we 

 hypothesize that PAM neuron silencing will result in a lack of context-dependent preference for 

 “sweeter” gustatory stimuli, thus implicating PAM neurons in the neural mechanisms of 

 decision-making. 

10



 Materials and Methods 

 This project contained two main experimental approaches. One approach assessed 

 behavior in wildtype 2U  Drosophila  when presented with sucrose patches of varying 

 concentrations; the other assessed behavior after optogenetic silencing of PAM reward neurons 

 in genetically modified  Drosophila  when presented with sucrose patches of varying 

 concentrations. 

 2.1 Fly Stocks and Husbandry 

 All flies were raised at 25° on cornmeal-molasses food. Experiments were performed on 

 2 to 5-day-old mated females. Additionally, all flies were food-deprived with water for 24 hours 

 before behavioral assays. Flies used in optogenetic experiments were maintained in darkness, in 

 order to prevent inadvertent activation of optogenetic pathways by ambient light. For optogenetic 

 experiments, three days prior to behavioral assays, flies were switched from normal food to food 

 containing 1 mM all trans-retinal. All-trans-retinal is an important cofactor necessary for the 

 activation of the anion channelrhodopsin used for optogenetic silencing.  [28]  After two days of 

 feeding on all trans-retinal containing food, optogenetic flies were food-deprived with an 

 aqueous 1 mM trans-retinal solution for 24 hours before behavioral assays. 

 2.2 Genetic Crosses for Optogenetics 

 We used the Gal4-UAS system in  Drosophila  melanogaster to optogenetically silence 

 PAM neurons with green light. Gal4, a transcriptional activator, is only transcribed in the neurons 

 of interest (PAM neurons) when expressed using the transgene 58E02-Gal4.  [26]  When combined 

 with UAS-GTACR1, Gal4 binds to an upstream activation sequence (UAS) that initiates 

 transcription of the gene encoding GTACR1, a green light-sensitive anion channelrhodopsin. 

 When stimulated by 525nm green light, GTACR1 allows an influx of anions to the interior of the 

 cell membrane, hyperpolarizing and thereby inhibiting the cells in which it is activated.  [29] 

 Thus overall, by using a 58E02-Gal4 x UAS-GTACR1 cross, we can generate progeny in which 

 we can inhibit PAM neuron activity via exposure to 525nm green light. In this experimental 

 cross, UAS-GTACR1 virgin females are crossed with 58E02-Gal4 males. In addition to the 
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experimental group, we developed a control group by crossing 2U wild-type females with 

58E02-Gal4 males, resulting in progeny that do not express GTACR1. 

 

2.3 Preparation of Sucrose Solutions for Patches 

 All sucrose solutions were prepared by dissolving 1% agarose and a calculated amount of 

sucrose in water to create a given concentration of sucrose — 25 mM, 50 mM, 75 mM, 100 mM 

or 150 mM. 0 mM sucrose solutions were created with 1% agarose per volume water, but no 

sucrose. Milli-Q highly purified water was used to create all solutions. Solutions were stored at 

4˚C and remade at minimum around once every two months to ensure freshness. 

 

2.4 Behavioral Assays 

For all behavioral assays, we heated sucrose-agarose solutions to 120˚C to liquefy them 

for pipetting We plated eighteen sucrose patches per fly “arena” in equidistant to one another and 

in a concentric manner within the circular arena. (Figure 4) 

In order to test Aims 2 and 3, we used “regular choice” assays, following a one-to-one 

ratio of food types, where sucrose patches of concentration A alternated with patches of 

concentration B (Figure 4). In total, there were nine patches of concentration A and nine patches 

of concentration B. For Aim 2, we conducted regular choice behavioral assays in 75 mM vs.     

25 mM, 150 mM vs. 100 mM, and 150 mM vs. 50 mM sucrose conditions, as well as non-choice 

(NC) controls for each of the aforementioned concentrations (25 NC, 50 NC, 75 NC, 100 NC, 

150 NC). For optogenetic experiments in Aim 3, we conducted non-skewed behavioral assays in 

50 mM vs. 25 mM sucrose conditions, as well as 50 mM and 25 mM NC controls. 

In order to test Aim 1, we used “skewed choice” assays, where there were two patches of 

concentration A for every one patch of concentration B. (Figure 4) We conducted these skewed 

behavioral assays in 50 mM vs. 25 mM (2:1 and 1:2) sucrose conditions, as well as in 50 mM 

and 25 mM non-choice controls.  
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Figure 4. Sucrose patch plating scheme for “regular choice” and “skewed choice” assays 
In regular choice assays, two alternating concentrations of sucrose patches are plated in an equidistant 
manner along two concentric circles within the circular arena. This ensures there is no location bias for 
any given concentration. Skewed choice assays also aim to eliminate location bias by selecting the same 
locations for patch plating. However, different concentrations are plated in these locations, due to the fact 
that the overall distribution is skewed towards one concentration (in this case, 50 mM). 
 

The experimental setup (Figure 5) contained an overhead video camera positioned to 

record fly behavior in four arenas simultaneously. We limited potentially confounding variables 

for fly behavior by conducting video recordings in an enclosed environment to limit ambient 

light, with little or no ambient noise. Aim 1 and Aim 2 experiments recorded fly behavior in 

arenas for a 30-minute interval. Optogenetic experiments (Aim 3) recorded fly behavior for a 

30-minute interval, but only 20 minutes were used to generate data, due to behavioral 

complications as detailed in results. Furthermore, for optogenetic experiments, we programmed 

light-emitting diodes (LEDs) to emit 525 nm green light were controlled by an Arduino and 

located 6cm beneath the platform supporting behavior arenas. We chose 525 nm green light in 

order to activate GTACR1 channels expressed in PAM neurons. Additionally, we used fans on 

either end of the platform to limit the thermal effects of intense LED light. 
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Figure 5. Experimental setup for behavioral assays. 
Includes (a) suspended overhead video camera, (b) behavioral assays with Drosophila subjects, and        
(c) Arduino board with 525 nm green LEDs, used for optogenetics only.  
 
2.5 Data Processing and Statistical Analysis 

 We initially processed all raw videos by removing the video background, so that each 

frame contained only the Drosophila subject. This allows for accurate tracking of the fly. We also 

recorded the locations of all sucrose patches within arenas using an X-Y coordinate system. We 

used ToxTrac software to track the fly’s X-Y position at each frame. These outputs were further 

processed via custom Python code, in order to identify when each fly was on a patch, calculate 

the fly’s trajectory through the arena, and extract other behavioral parameters. In this project, we 

chose to analyze median visit duration per fly, where visits are considered encounters with 

sucrose patches that last longer than 0.7s. We developed 0.7s as a threshold based on the 

minimum time it takes a fly to complete a feeding “burst,” which is indicative of feeding 

behavior.[30] In addition to visit duration, we also considered “trajectory fit,” which measures the 

similarity of a fly’s path through a sucrose patch to a straight line. This is another quantification 
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of how flies interact with individual sucrose patches, beyond how long they spend on them. See 

Figure 5 for a detailed explanation of trajectory fit calculation and interpretation. 

 
Figure 6. Schematic of Trajectory Fit for a Sucrose Patch 
Trajectory Fit quantifies the similarity of a fly’s path through a sucrose patch to a straight line. Our 
previous unpublished results show that when flies encounter a low-concentration sucrose patch, they tend 
to show a straighter path through the patch. This could be due to reduced feeding on the patch, which 
usually causes flies to make rotational movements during patch visits.[31] Conversely, interactions with 
high-concentration patches cause flies to take a path less similar to a straight line. These associations have 
been demonstrated by unpublished data from our lab (Peña Garcia, Unpublished). A high trajectory fit 
represents high similarity to a straight line, whereas a low score represents the opposite. Thus, a lower 
trajectory fit may be associated with more attractive gustatory stimuli. 
 
 We performed statistical analyses using Microsoft Excel 2021 and generated graphs using 

GraphPad Prism. We used Mann-Whitney U-Tests to compare between groups, given the 

non-parametric nature of the data. P ≤ 0.05 is set as the threshold for significance. Error bars 

represent 1.5 times the interquartile range. 
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2.6 Resource Table 

Reagent Type (Species) or Resource Designation Reference/Source 

Genetic Reagent,  
D. melanogaster 

R58E02-Gal4 Liu et al. (2012)[26] 

Genetic Reagent,  
D. melanogaster 

UAS-GTACR1 Deere et al. (2022)[17] 

Genetic Reagent,  
D. melanogaster 

Wild-Type Control 2U 
(isoCJ1) 

Dubnau et al. (2001)[32] 

Chemical Compound, Drug Sucrose Sigma-Aldrich 

Chemical Compound, Drug Agarose Sigma-Aldrich 

Chemical Compound, Drug All-trans-retinal Sigma-Aldrich 

Chemical Compound, Drug MilliQ Water Emory University 

Hardware Arduino LED Board Arduino 

Software: Programming Python 3.12 Anaconda 

Software: Analysis Excel 2021 Microsoft 

Software: Graphing Prism 10 GraphPad 
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Results 
 

3.1 [Aim 1] Modulation of Drosophila foraging in response to altered sucrose patch 

prevalence does not support any one model of memory-informed decision-making.  

 

 After Drosophila encounter a patch, the decision to stay and feed, or leave and explore, 

depends upon knowing the prevalence of other options, which in turn depends on how it 

remembers previous encounters. Therefore, to differentiate between our proposed models for 

how Drosophila memorize gustatory stimuli and subsequently adjust foraging decisions, we 

assessed Drosophila behavior in skewed-choice assays. Within these skewed-choice assays, we 

distributed patches in ratios of either 2-50 mM : 1-25 mM (skewed pro-50 mM) or  

1-50 mM : 2-25 mM (skewed anti-50 mM), and extracted data for the median visit duration per 

fly. 

 If we consider only 50 mM patch visits, both of the proposed “limited-context” models, 

input retention and range retention, predict that visit duration on 50 mM patches in a NC 

condition is equal to visit duration in both skewed conditions. This reflects the idea that these 

models do not consider the relative prevalence of 50 mM and 25 mM patches. For instance, if a 

fly memorizes each encounter of a binary sucrose-choice assay — and only feeds if a given 

stimulus is “as sweet” or “sweeter” than most other encountered stimuli — it will feed equal 

amounts on 50 mM patches regardless of whether it only encounters 50 mM patches (50NC) or 

encounters both 50 mM and 25 mM patches (skewed assays). 

 In contrast, both the RL-based and DDM-based models do predict differences in median 

visit durations across all assays. However, distinguishing between these models hinges on the 

difference between skewed pro-50 mM and skewed anti-50 mM conditions. The RL-based model 

memorizes context as an "expected value"—a running average compared against newly 

encountered sucrose patches to inform foraging. When there are more 25 mM patches (skewed 

anti-50 mM), the running average is low (near 25 mM), and the RL model predicts longer 

median visit durations. Conversely, the DDM-based model anticipates longer median visit 

durations when there are more 50 mM patches (skewed pro-50 mM), where increased interaction 

with 50 mM patches allows the fly to establish a "learned value" closer to the actual patch value, 

resulting in longer visits. 
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 If we consider 25 mM patch visits, RL-based and DDM-based models predict the 

opposite of their predictions for 50 mM patch visits. RL-based model predicts that 

engagement on 25 mM patches should be lower in a skewed pro-50 mM condition — the 

memorized “expected value” is higher due to the increased prevalence of 50 mM patches, so a 

fly should know to reject a 25 mM patch quicker. Similar to above, a DDM-based model 

suggests the opposite: that engagement on 25 mM patches should be higher in a skewed 

pro-50 mM condition, and lower in an anti-50 mM condition. 

 Ultimately, these hypotheses are all also predicated on the notion that Drosophila have a 

baseline preference for, and exhibit higher median visit duration on “sweeter” patches. Previous 

research from our lab demonstrates this preference in regular-choice assays (Peña Garcia, 

Unpublished). However, we thought it important to recreate this baseline preference in 

skewed-choice assays to reinforce the applicability of this conclusion to our subsequent 

experiments. 

 

 
Figure 7. Drosophila spend more time on higher-concentration patches, regardless of the 
environmental context. 

(a) Median visit duration per fly on 50 mM and 25 mM patches, in a skewed pro-50 mM assay. N=32 
flies. Error bars represent 1.5  IQR. P-values calculated using pairwise Mann-Whitney U-Tests. ×

(b)  Median visit duration per fly on 50 mM and 25 mM patches, in a skewed anti-50 mM assay. 
N=29 flies. Error bars represent 1.5  IQR. P-values calculated using pairwise Mann-Whitney ×
U-Tests. 
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 Indeed, our results suggest that Drosophila also exhibit a baseline preference for 

higher-concentration sucrose patches in skewed-choice assays (Figure 7). Next, comparing 

median visit duration among 50 mM patch visits, we observe significantly longer visit duration 

in both skewed assays, as compared to the 50NC assay (Figure 8a). According to our predictions 

for how input retention and range retention models inform behavior, this directly contradicts both 

models. Therefore, the data suggest that these “limited context” models may not be accurate in 

explaining stimulus memory in Drosophila. Yet, we do not observe a statistically significant 

difference between the two skewed choice assays — skewed pro-50 mM and skewed  

anti-50 mM.  

 We do, however, observe a statistically significant difference between the two skewed 

assays among 25 mM patch visits: visits are significantly shorter within the skewed pro-50 mM 

condition (Figure 8b). This data aligns with the predictions of the RL-based model. Thus, while 

the 25 mM patch data suggests the validity of an RL-based model over a DDM-based model, we 

cannot conclusively support an RL-based model, due to the non-significance observed in the  

50 mM patch data. Still, the 50 mM patch data suggests that neither the input retention nor range 

retention models provide an adequate framework to model the role of memory in Drosophila 

decision-making. 

 However, visit duration is admittedly an imperfect proxy for active feeding behavior, and 

additional metrics may be useful to differentiate between models. Therefore, we also extracted 

and analyzed the “trajectory fit” metric from the behavioral data, which measures the path flies 

take across a patch, relative to a straight line. As previously outlined, in past preliminary data, we 

have shown that trajectory fit is inversely correlated to encounter duration (Peña Garcia, 

Unpublished).  This is supported by literature, as rotational movements that may cause a fly to 

deviate from a straight-line path are associated with feeding-initiated local search behavior in 

Drosophila.[31] Feeding behavior and patch “engagement” increase on higher-concetration 

sucrose patches, thus these path deviations manifest as reduced trajectory fit scores on 

higher-concentration patches. 

 Because it predicts flies engage more with 50 mM sucrose patches in a skewed  

anti-50 mM assay, an RL-based model also predicts that the average adjustment score will 

be closer to zero within this assay. Furthermore, for 25 mM encounters, an RL-based model 

predicts the opposite — that average trajectory fit is significantly higher in an anti-50 mM 
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assay, as the flies will “know” to avoid these patches, and thus follow a straight path across the 

patch. 

 
Figure 8. Median visit duration per fly under various skewed and non-choice assays. 

(a) Median visit duration of 50 mM patches under skewed pro-50 mM (n=32 flies), skewed  
anti-50 mM (n=29), and 50 mM non-choice (n=32) conditions. Error bars are represented as 

 above/below Q3 or Q1, respectively. P-values were calculated using pairwise 1. 5 × 𝐼𝑄𝑅
Mann-Whitney U-tests. 

(b) Median visit duration of 25 mM patches under skewed pro-50 mM (n=30), skewed anti-50 mM 
(n=29 flies), and 50 mM non-choice (n=36) conditions. Note: Outliers of 19.5 in pro-50mM and 
13.5 in anti-50 mM groups are not shown in graph. Error bars and p-value calculations follow the 
same conventions as in Figure 6a. 

(c) Schematic representation of skewed pro-50 mM, skewed anti-50 mM, and non-choice assays. 
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Among 50 mM patch encounters, average trajectory fit was significantly lower when  

50 mM patches were less prevalent, in the anti-50 mM condition (Figure 9a). This lends support 

to a RL-based model of memory-informed decision-making as opposed to a DDM-based model 

because the data align with RL-based predictions. Additionally, we observed that average 

trajectory fit in the anti-50 mM condition was also significantly lower than in the 50 mM 

non-choice condition, further suggesting that “limited context” models may not be sufficient to 

explain the memorization process in Drosophila.  

 

Figure 9. Average trajectory fit per fly under various skewed and non-choice assays. 
(a)   Average trajectory fit per fly for 50 mM encounters, i.e. adjustment to a straight line, under 
skewed pro-50 mM (n=32 flies), skewed anti-50 mM (n=30), and 50 mM non-choice (n=32) 
conditions. Data includes all patch encounters. 
(b)   Average trajectory fit per fly for 25 mM encounters, i.e. adjustment to a straight line, under 
skewed pro-50 mM (n=32 flies), skewed anti-50 mM (n=30), and 50 mM non-choice (n=36) 
conditions. Data includes all patch encounters. 

Note: For both subfigures, encounters refer to any interaction with a patch — does not consider 0.7s 
threshold for visits. P-values were calculated using pairwise Mann-Whitney U-tests. 

 

Unlike the 50 mM patch encounter data, our data within 25 mM patches does not directly 

follow the predictions of an RL-based model. The data trends in a direction that would support 
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the RL hypothesis, but no significant difference is observed between when 25 mM patches are 

more prevalent and when they are less prevalent (Figure 9b). It is, however, worth noting that 

among 25 mM encounters, the average trajectory fit was significantly higher when 25 mM 

patches were less prevalent (skewed pro-50 mM) than the 25NC condition, while there is no 

difference between when 25 mM patches were more prevalent (skewed anti-50 mM) and the 

25NC condition. This may be construed as weak support for the RL-based model. 

Ultimately, like the “visit duration” data, these data provide limited support for the 

RL-based model of memory-informed decision-making, but taken as a whole, we cannot say that 

these data conclusively suggest the validity of an RL-based model over a DDM-based model.  

 
3.2 [Aim 2] In a two-choice assay, Drosophila use a divisive model of comparison to 
integrate stimuli and inform decision-making. 
 
 Having investigated models of memory-informed decision-making via the previous 

experiments, we next chose to examine how Drosophila compare and subsequently integrate 

gustatory stimuli. To study the validity of the two proposed models, a divisive model, and a 

subtractive model, we used a new series of regular-choice assays (1:1 ratio of sucrose patches), 

as well as their respective non-choice control groups. In order to study these models, we used 

three separate regular-choice assays of varying sucrose patch concentrations: 75 mM vs. 25 mM, 

75 mM vs. 50 mM, and 150 mM vs. 100 mM.  

 In analysis of the collected data, we are specifically interested in how engagement on the 

higher sucrose concentration patches compares between the regular-choice assays. For example, 

we can examine how visit duration on 75 mM patches in a 75 mM vs. 25 mM assay compares to 

visit duration on 150 mM patches in a 150 mM vs. 100 mM assay. Here, it is important to 

understand that the subtractive difference of concentrations in both assays is equal — a 50 mM 

difference. However, the divisive difference of concentrations is not equal — a 3x and 1.5x 

difference, respectively. In this context, a divisive model predicts that median visit duration is 

significantly higher in the 75 mM vs. 25 mM assay, as compared to the 150 mM vs. 100 mM 

assay. Meanwhile, a subtractive model predicts no difference in median visit duration. 

 It is also important to compare visit duration on 75 mM patches in a 75 mM vs. 50 mM 

assay to visit duration on 150 mM patches in a 150 mM vs. 100 mM assay. Here, the divisive 

difference is equal, while the subtractive difference is not. Thus, a subtractive model would 
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predict a significant difference in visit duration, while a divisive model would predict no 

difference.  

 In our first comparison, the median visit duration of higher-concentration patches is 

significantly higher in the 75 mM vs. 25 mM assay, as compared to the 150 mM vs. 100 mM 

assay (Figure 10a). Furthermore, our second comparison shows no significant differences in 

higher-concentration patch visit duration, between the 75 mM vs. 50 mM and 150 mM vs.  

100 mM assays (Figure 10b). As previously outlined, both of these predictions align precisely 

with the predictions of a divisive model of comparison. Thus, overall, our data provide support 

for the validity of this model. 

 

Figure 10. Modulations in sucrose patch engagement support a divisive model of comparison in 
Drosophila. 

(a) Engagement, quantified as median duration visit per fly, is compared in four assays — 75 mM vs. 
25 mM (n=8), 75NC (n=7), 150 mM vs. 100 mM (n=8), and 150 mM NC (n=8). Regular choice 
conditions share a subtractive difference in concentration, but have varying divisive differences.  

(b) Engagement, quantified as median duration visit per fly, is compared in four assays — 75 mM vs. 
50 mM (n=8), 75NC (n=7), 150 mM vs. 100 mM (n=8), and 150 mM NC (n=8). Regular choice 
conditions share a divisive difference in concentration, but have varying subtractive differences.  

Note: For both subfigures — visits are defined as any interaction with a sucrose patch for greater than 
0.7s. Error bars represented as 1.5 x IQR above/below Q3 or Q1, respectively. P-values were calculated 
using pairwise Mann-Whtitney U-Tests. 
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 Furthermore, the data shown in Figure 10B exhibits no significant differences between 

either regular-choice assay and their respective non-choice controls. At first glance, this may 

appear to contradict literature that emphasizes the importance of relative values, created through 

the presence of alternative patch options, in decision-making.[24] However, it is also plausible that 

in order for alternative patch options to affect decision-making, a “threshold” of divisive 

difference must exist. That is, regular-choice assays of Figure 10B may not vary from the 

non-choice assays because the divisive difference — 1.5x — is too low. Thus, understanding 

whether such a “threshold” exists, and elucidating its value may be a compelling line of future 

inquiry. 

 

3.3 [Aim 3] The role of Protocerebral Anterior Medial (PAM) neurons within the neural 

mechanisms of decision-making in Drosophila is unclear. 

 

 Our first aim found partial support for an RL-based model of memory-informed 

decision-making, and prior work identifies PAM neurons as key components in RL-driven neural 

mechanisms.[27] Thus, having explored the behavioral mechanisms of decision-making in our 

first two aims, we focused on examining PAM neurons as a potential component of the neural 

mechanism underlying decision-making in Drosophila foraging. 

 58E02-Gal4/UAS-GTACR1 flies contain an anion-conducting channelrhodopsin 

localized to dopaminergic PAM neurons. Thus, when activated by 525 nm green light, this 

channelrhodopsin silences PAM neuron activity by preventing depolarization. These PAM 

neuron-silenced flies were compared to 58E02-Gal4/+ controls in 50 mM vs. 25 mM and  

100 mM vs. 50 mM assays. Thus, considering visits of only one given concentration, it stands to 

reason that median visit duration will be longer among controls if our hypothesis regarding PAM 

neurons’ involvement in decision-making is correct. As with aim one, our first step was to 

determine whether a baseline preference for sweeter options exists in both controls and PAM 

neuron-silenced flies. While PAM neuron-silenced flies were hypothesized to lose 

context-dependent preference, they still should exhibit longer visit duration on 

high-concentration patches, as innate preference will likely mediate some portion of behavior. 
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 Counterintuitively, only 58E02-Gal4/UAS-GTACR flies in the 50 mM vs. 25 mM assay 

demonstrate this baseline preference in our data (Figure 11a). This unexpected result renders it 

impossible to draw conclusions from comparisons across visits of one concentration, so they 

were not included for intepretation. Ultimately, we are unable to make any substantive claims 

about the role of PAM neurons in the neural mechanisms of decision-making. 

 

 
Figure 11. Drosophila do not demonstrate a baseline preference for high-concentration surcrose 
patches across optogenetically manipulated experimental and control groups. 

(a) Graph shows median visit duration on both 50 mM and 25 mM sucrose patches in 
58E02-Gal4/UAS-GTACR (n=8) flies and 58E02-Gal4/+ (n=7) control flies. PAM neurons are 
silenced in 58E02-Gal4/UAS-GTACR flies. 

(b) Graph shows median visit duration on both 100 mM and 50 mM sucrose patches in 
58E02-Gal4/UAS-GTACR (n=8) flies and 58E02-Gal4/+ (n=7) control flies. PAM neurons are 
silenced in 58E02-Gal4/UAS-GTACR flies. 

Note: Fly behavior was recorded over a twenty, rather than thirty-minute period. For both assays, visits 
are defined as sucrose patch encounters greater than 0.7s. Error bars represent minimum and maximum 
visit duration values per group. Significance was analyzed via pairwise Mann-Whitney U Tests. 
 

That said, there are multiple limitations of the above data. Firstly, while the sample size 

(seven or eight flies per condition) is appropriate for a pilot study, in order to gain a more robust 
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understanding of the statistical differences between groups, a larger sample size is needed. Even 

more importantly, fly behavior may have been impacted by heat conducted from the green-light 

LEDs to the fly behavior arenas (see discussion for further qualification). As a result of these 

limitations, there is a strong possibility that these data may be inconclusive.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26



 

Discussion 

 

4.1 Discussion of Results 

In this project, we sought to investigate the behavioral and neural mechanisms of 

decision-making in Drosophila during sucrose patch foraging tasks. Specifically, we investigated 

(1) how Drosophila use memory of gustatory stimuli to inform decision-making, (2) how they 

compare these stimuli, and (3) whether dopaminergic PAM neurons are implicated in the neural 

mechanisms underlying behavior within the studied sucrose patch foraging tasks. 

 To investigate the behavioral mechanisms of decision-making in Aim 1, we proposed 

four potential models for memory-informed decision-making rooted in previous literature. These 

included two “limited context models” — input retention and range retention — as well as a 

Reinforcement Learning-based and Drift Diffusion-based model. Overall, we found partial 

support for a RL-based model of memory-informed decision-making. Data for median visit 

duration on 25 mM sucrose patches closely follow the predictions of an RL-based model across 

all three assays, as does data for trajectory fit on 50 mM sucrose. That said, taken in their 

entirety, the data do not comprehensively support any one specific model. This is due to the 

trends in visit duration among 50 mM sucrose patches, and the trends in trajectory fit on 25 mM 

patches. Additional inquiries may be useful in better distinguishing the Reinforcement 

Learning-based models from other models of memory-informed decision-making. 

 Nonetheless, the partial support demonstrated for an RL-based model is significant on 

multiple levels. If memory in Drosophila were governed by an RL-based model, this would 

suggest that flies use expected-value-based decision strategies — as literature supports is present 

in many other complex organisms, including humans.[33] This result supports the idea that key 

elements of decision-making are evolutionarily conserved, which could possibly allow for neural 

findings collected using the Drosophila connectome to be investigated and applied to more 

complex animal models. Furthermore, since previous research implicates PAM neurons in 

RL-based decision-making processes, behavioral alignment with an RL-based model would lend 

functional support for PAM neuron involvement in the neural circuitry thought to underlie 

memory-informed decision-making. This could help bridge the gap between behavior and the 

cellular-level mechanisms driving it. 
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 In Aim 2, the data holistically support a divisive model of comparison and subsequent 

integration. Ultimately, this result underlines the importance of the advantages conferred by a 

divisive model, as previously discussed. A productive line of future research could explore how 

neural mechanisms in the Drosophila brain support this computation — it is possible that the 

activity of various second-order neurons known to integrate gustatory stimuli is proportional to 

divisive differences in these stimuli.[34] This conclusion is also important for the research design 

and hypotheses of future food-choice experiments in Drosophila. Hypotheses and design 

principles should consider that the degree of preference for higher-concentration food patches is 

dependent on the concentration ratios for options presented. 

Additionally, no significant difference in median visit duration was observed between the 

assays conducted in Figure 10b. It is possible that these data are a false negative result due to the 

small sample size (seven or eight flies per condition), and they missed a significant difference 

that should have been present. However, assuming the validity of this data, this experiment 

suggests a  

certain divisive threshold must be surpassed for the comparison of options to affect 

decision-making behavior. Because 75 mM vs. 50 mM and 150 mM vs. 100 mM assays — 

divisive differences of 1.5x — yielded no differences in visit duration from 75NC and 150NC 

assays — divisive differences of 1x — it stands to reason that this potential threshold must be at 

least a 1.5x difference. 

 Our third line of inquiry, focusing on dopaminergic PAM neurons, provided 

counterintuitive yet inconclusive results. We were unable to observe a significant baseline 

preference for high-concentration sucrose patches across the conditions tested. This lack of 

signficance would conflate any further comparisons made between groups, thus we are unable to 

interpret the behavior of the PAM neuron-silenced flies. However, the limitations of this study 

put these unusual results into context. As previously outlined, arenas conducted residual heat 

from the green-light LEDs, raising arena surface temperatures by as much as 10˚C. This likely 

impacted fly behavior, despite the installation of electronic fans to provide convection cooling. 

Furthermore, while only twenty minutes of each behavioral video was analyzed to compensate 

for irregular movement, this may have impacted our interpretation of the data. 
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4.2 Future Directions 

 The limitations inherent in our PAM-silencing experiment also create immediate possible 

lines of future experimentation. Alternative means of cooling, reduced green-light intensity, and 

constitutive activation of PAM neuron-localized channelrhodopsins are all possible methods of 

working around this undesirable heat effect. Additionally, experiments in both Aim 2 and Aim 3 

may benefit from continued data collection involving larger sample sizes. This, in turn, could 

generate more robust statistical conclusions. A second major limitation of this project is the use 

of various metrics — including visit duration and adjustment score — as imperfect proxies for 

feeding. The only apparent method to remedy these imperfect comparison metrics is using a 

computationally intensive method, which involves labeling proboscis extension (a more direct 

measure of feeding) frame by frame. Our lab has begun the foundational work necessary to 

implement such a method.  

 The primary line of future questioning following this project should broadly concern 

cellular-level neural mechanisms underlying decision-making in Drosophila, as the availability 

of the connectome offers us the potential to elucidate a precise neural circuit responsible for 

these behaviors.[6] [7] This may include examining the effect of silencing PPL1 neurons or other 

dopaminergic neurons innervating the Mushroom Body, given that past research implicates such 

dopaminergic neurons in modulating the valence of gustatory stimuli.[35] Alternatively, Kenyon 

Cells are also an intriguing target for neuromanipulation, as they are the primary neurons 

responsible for encoding and processing sensory input within the Mushroom Body.[36] 

Nonetheless, our findings within this project lay the groundwork for further exploration into the 

behavioral mechanisms and cell-level circuitry of value-based decision-making behaviors in 

Drosophila, a high-potential model system. 
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