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Abstract

Analysis of Simultaneous Eye-tracking and fMRI Data Collected in Children with ASD
By Xucheng (Fred) Huang

Functional magnetic resonance imaging (fMRI) is a useful tool for understanding the
complexities of brain activity, particularly in children with autism spectrum disorder (ASD).
While recent studies have examined dynamic connectivity in ASD using resting-state fMRI,
analyzing dynamic connectivity of task-based fMRI may offer novel insights. To enhance
our understanding of brain connectivity in ASD, this thesis has two aims: 1) analyze the
relationship between eye-tracking data and movie-watching tasks in children with and with-
out ASD using the general linear model; 2) develop a novel model for analyzing dynamic
connectivity during a task. For aim 1, we develop an analytic pipeline for convolving eye-
blink and eye-fixation events with the Hemodynamic Response Function (HRF), which is
then analyzed using conventional task-based modeling approach. For aim 2, we propose a
novel covariance regression in which we estimate the association between time-varying corre-
lations between brain regions and the eye-tracking data. We analyzed 12 ASD children and
22 non-ASD children collected in the Brain Connectivity Study at Emory University. Brain
activation was significantly lower in ASD during eye-fixation events in regions associated
with sensory processing, attention networks, auditory processing, executive functions, and
language processing. The covariance regression analysis further identified large individual
variability in functional connectivity among the ASD group. Our two-stage modeling ap-
proach extends beyond studies of ASD, providing an analytical framework to complement
traditional task-based fMRI analyses with dynamic connectivity modeling.

Keywords: covariance regression, dynamic connectivity, functional connectivity analysis,
naturalistic movie watching
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1 Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by so-
cial and communication deficits and repetitive behaviors, which affects approximately one
in 36 children in the United States (Maenner, 2023). Functional MRI (fMRI) has been a
traditional tool in ASD research. It measures the blood-oxygen-level-dependent (BOLD)
signal over time, which is an indirect indicator of neural activity. This technique enables
researchers to study brain functional connectivity (Friston et al., 1993), or the correlations in
BOLD signals between different brain regions (Biswal et al., 2010), offering insights into how
different areas of the brain interact during various tasks or at resting state. Studies using
resting-state fMRI (rs-fMRI), where participants are instructed to lie motionless and focus
on a crosshair, have identified differences in functional connectivity between ASD and non-
ASD participants (Hull et al., 2017). However, task-based fMRI studies are considered by
some investigators to be more relevant for understanding the neural mechanisms in patient
populations (Huijbers et al., 2017; Greene et al., 2018; Elliott et al., 2019; Zhao et al., 2023).
Previous task-based fMRI studies of ASD suggest that individuals with ASD show atypi-
cal activation in language and working memory networks, including stronger activation in
Broca’s area, altered deactivation in the cerebellum and temporal areas, alongside evidence
of compensatory mechanisms for maintaining performance, visual processing, auditory pro-
cessing, language processing, executive function, and working memory. (Knaus et al., 2008;
Braden et al., 2017; Eack et al., 2017; Rahko et al., 2016). Event-based task fMRI experi-
ments reveal distinct brain activation related to object inspection and task context in ASD
(Marsman et al., 2012).

Although these previous results are promising, there are limitations in the current method-
ologies, especially concerning functional connectivity analysis in fMRI studies. First, the
analysis of dynamic connectivity in task fMRI has received little attention. Current task-
based fMRI studies tend to overlook the investigation of dynamic interactions between brain
regions. Such interactions are essential for a comprehensive understanding of ASD. Al-
though some traditional approaches such as psychophysiological interaction (PPI) models
(McLaren et al., 2012) and dynamic causal modeling (DCM) can be employed to examine
task functional connectivity, they have challenges in either providing imprecise estimates (Di
and Biswal, 2017) or are too complex for brain-wide studies (Friston et al., 2003). Second,
participant motion is a significant issue in functional connectivity studies using resting-state
fMRI, which has been shown to introduce bias (Satterthwaite et al., 2013). Additionally,
current task activation studies primarily centers on static’ tasks, like text reading and ob-
ject recognitionmost (Park et al., 2020; Marsman et al., 2012), and they do not incorporate
crucial task-related covariates in their models. Therefore, new approaches are needed for
task-based fMRI studies.

To address experimental design limitations, this fMRI study employed movie-watching
tasks with simultaneous eye-tracking. Children tend to move less when engaged in such
tasks (Vanderwal et al., 2019; Rajagopal et al., 2014), reducing motion-related biases. Con-
sequently, movie-watching tasks may be a more reliable alternative to traditional rs-fMRI
studies (Huijbers et al., 2017; Meissner et al., 2020). The integration of brain activation and
functional connectivity analyses during movie-watching tasks may provide insights into the
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neural mechanisms underlying ASD.
Eye-tracking during a movie-watching task may provide insight into the brain regions that

interact during engagement. Notably, previous studies outside the scanner have indicated
that eye-blink rate patterns provide a reliable measure of individual engagement (Ranti
et al., 2020), and eye-fixation events are closely linked to brain language processing areas
and frontal control regions (Henderson et al., 2015). Eye-blinking has been used to define
ASD subtypes prior to collecting rs-fMRI data, and these subtypes differed in their functional
connectivity patterns (Lombardo et al., 2019). By incorporating eye-tracking information
during the fMRI scan, we aim to gain insight into how engagement during movie watching
is associated with brain activity and connectivity.

We propose a two-step approach to gain insight into the association between engagement
during movie watching and brain activity. In aim 1, we model brain activation using the
traditional general linear model (Friston et al., 1994). In our application, we construct our
task covariates from eye-blink and eye-fixation events collected during the movie-watching
tasks. In aim 2, we complement the brain activation study with a novel approach to covari-
ance regression. This method facilitates the examination of dynamic functional connectivity
through the residuals of task activation, modeling the residual covariance matrix time se-
ries as a linear function of both task-specific covariates and nuisance variables. Similar to
covariance regression (Hoff and Niu, 2012), our outcome in this second aim is the condi-
tional covariance matrix given covariates. However, the covariance model in Hoff and Niu
(2012) is hard to interpret and possibly biologically implausible. It involves a quadratic
form where negative and positive values of a covariate modify the covariance in the same
way, rather than a simpler approach where covariances can increase with an increase in the
covariate. Predicting covariance matrices is a goal in multivarate generalized autoregressive
conditional heteroskedasticity models (MGARCH) (Lindquist et al., 2014; Engle, 2002), but
these time-series models don’t incorporate the effect of covariates.

We conducted an analysis of thirty-two participants (12 ASD) collected as part of the
Brain Connectivity Study at Emory University, after removing those with low-quality eye-
tracking data. Our approach involved convolving eye-blink and eye-fixation events with the
hemodynamic response function (HRF) and analyzing them with an autoregressive model.
This model helped us understand how individual brain regions respond to these eye move-
ments. Then, we applied a novel covariance regression to further model the residuals left
over from the first level autoregresive model. We employed log-Euclidean transformation
on residual convariance matrices and fitting ordinary least squares (OLS) models for each
brain connection edge. We utlized brain maps to visually present our findings. Finally, we
discussed the results and limitations of our study in the concluding sections.

2 Dataset

2.1 MRI data and movie-watching task

This study was approved by Emory IRB 00003827. Participants were recruited from
the Atlanta metropolitan area, including patients from the Marcus Autism Center. All
participants received training in a mock MRI scanner using MoTrak software (Psychology
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Software Tools, Pittsburgh, USA). The goal of the training session is to move < 3 mm
in 6 minutes. Children completed up to five mock scan training sessions. Children were
scanned when the team determined they were 1) able to tolerate being in the scanner for
35 minutes; 2) no safety concerns for participants, staff members, or equipment (e.g., elope
risk, self-injurious behaviors, aggression, disruptive behavior). Movie-watching task fMRI
was collected as part of a larger study including resting-state fMRI. Scan sessions included
a T1 MPRAGE (1x1x1 mm3 resolution, with TR/TE=2300/2.96 ms, and IPA (GRAPPA)
factor of 2 with acquisition time 5:11 minutes), an AP and PA spin echo sequence, followed
by rs-fMRI (3:36), a movie watching task (5:45), rs-fMRI (3:36), an optional break, repeated
AP and PA spin echoes, rs-fMRI (3:36), movie watching task 2 (6:42), and rs-fMRI (3:36).
All fMRI sequences were conducted using T2*-weighted runs with TR=1127 ms, 2.5 mm
isotropic voxels, 60 slices, TE=32.2 ms, FA=51◦, multiband factor=4, which a previous
study found to be optimal for brain-wide functional connectivity (Risk et al., 2021). In
some cases, children requested additional breaks, and additional AP and PA spin echoes
were collected. Data were processed using fMRIPrep 21.0.2 with the cifti option for cortical
surface representation of fMRI signals (Esteban et al., 2019). A “session” was defined by
whether the participant left the scanner, with data organized in BIDS format such that the
spin echoes from a session were used in the fMRIPrep distortion correction of fMRI data.

The movie-watching tasks were split into three segments for Task 1 and two for Task 2.
The movie segments included excerpts from “The Sandlot” and “Welcome to the Dollhouse.”
For Task 1, the 0021 SAND clip lasts 127 seconds, the 0023 DOLL clip lasts 107 seconds,
and the 0024 DOLL clip lasts 66 seconds. Task 2 includes the 0022 SAND clip, which lasts
238 seconds, and the 0025 DOLL clip, lasting 134 seconds. Specifically, the 0021 SAND and
0022 SAND clips are sequential scenes showing children playing baseball from the film “The
Sandlot.” 0023 DOLL is about a girl who is alone trying to find a seat in the cafeteria, 0024
DOLL shows the same girl standing up to a boy cheating during an in-class exam, and 0025
DOLL depicts the boy’s reaction after being reported for attempting to cheat post-exam.
Each watching task is preceded by a crosshair displayed for 3 seconds at the center of the
screen, followed by a 15 seconds crosshair displayed between video clips, and ended with 12
seconds of the crosshair.

2.2 Eye-tracking data

We used EyeLink 1000 Plus (Version 5.03, SR Research Lnon-ASD. Ottawa, Ontario,
Canada) as an eye-tracking tool, specifically designed without ferromagnetic materials, to
record ocular movements with a high temporal resolution of 500 Hz. This equipment is
fully compatible with fMRI technology. The EyeLink 1000 Plus software calculates the
onsets and durations of eyeblinks, fixations, and saccades. Participants watched a total of
five videos across two task sessions (Section 2.1) inside the scanner, which were delivered
through professional edition of E-Prime software (E-Studio Version 2.0.10.252 for experiment
design and Runtime Version 2.0.10.356 for execution).

Throughout the eye-tracking process, we recorded the task-specific quality of the data
for each individual, based on the eye-tracking details such as calibration accuracy, validation
results, and whether the participant’s movement caused the head coil to cover the eyes. Based
on these criteria, we categorized the eye-tracking data into three quality tiers: low, medium,
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and high. Participants with low-quality eye-tracking data were excluded from our study. If
an individual’s eye-tracking data was of low quality during one of the movie-watching tasks,
we only removed the data from that specific task session, while retaining and analyzing data
from the other task session.

After completing the eye-tracking quality control procedures, our analysis encompassed
data from 34 participants. Within this cohort, we had 12 children diagnosed with ASD and
22 non-ASD individuals. In the ASD group, 4 out of 12 participants are female, whereas the
non-ASD group has 12 females out of 22 participants. For each participant, we computed
the percentage duration of eye-blink and eye-fixation events across five video clips within two
movie-watching tasks. Table 1 presents a detailed breakdown of these eye-tracking metrics
for 34 participants, categorized by ASD group and gender.

Table 1: Demographic table and summary of Eye-Blink and Eye-Fixation Measurements:
the median percentages for the duration of eye-blink and eye-fixation, along with the first
and third quartile ranges, for each video clip across different sexes and ASD and non-ASD
groups.

3 Methods

3.1 Notation

Let i ∈ {1, . . . , N} represent the subject, v ∈ {1, . . . , V } denote the brain region, and t ∈
{1, . . . , T} index time within the fMRI time series. Let yivt represent the blood oxygenation
level-dependent (BOLD) signals from fMRI. The scalar value of covariate j for j = 1, ..., J
at time t is denoted by xijt. Define xit ∈ RJ = [xi1t,xi2t, . . . ,xiJt]

T as covariates at time t,
where xi1t and xi2t are the eye-blink and eye-fixation covariates of interest, xi3t, . . . ,xiJt are
nuisance covariates controlling for motion artifacts. These covariates remain constant across
different brain regions. Let βiv denote the subject-level coefficient matrix. Let eivt denote
the error term.
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3.2 Task activation model

3.2.1 Mean model: Autoregressive modeling of regional neural
dynamics

At the single-subject level, define the first-level model as follows:

yivt = xT
itβiv + eivt, (1)

where eiv ∼ N (0, ξ2ivΨiv) with eiv = [eiv1, . . . , eivT ]
T , ξ2iv is the variance, which is constant

across time, and Ψiv captures autocorrelation. There is empirical support for the use of a
stationary autoregressive (AR) model for the errors in Equation (1) (Worsley et al., 2002).
Further investigations have determined that an AR(3) model is preferred in many locations
within a task-based fMRI context (Mejia et al., 2019). Consequently, we applied an AR(3)
model across all brain regions.

Let B denote the back-shift operator, where Bl ∗ yivt = yiv,t−l. The AR(3) model is

(1− ϕiv1B − ϕiv2B
2 − ϕiv3B

3)(yivt − xT
itβiv) = ϵivt, (2)

where ϵivt
i.i.d.∼ N(0, τ 2iv). Equation (2) indicates that ϵivt are independent and identically

distributed errors with innovation variance τ 2iv. This contrasts with eivt in Equation (1),
which are the correlated errors. In our dynamic connectivity analysis in Section 3.3.1, we
will model the spatial covariance structure of ϵivt across regions v = 1, . . . , V . We employed
the ‘ARIMA’ function (Ripley, 2002) from the ‘stats’ package (R Core Team, 2024), included
in the base R environment, to fit the AR(3) modelEquation (2).

3.2.2 Population-level Effects

To quantify the population-level effects on brain activation in response to eye-blink and
eye-fixation events, we used the general linear model for fMRI task activation, which is a
hierarchical model with population slopes and subject deviations (Friston et al., 1994). Let
Ai denote the presence of ASD, with Ai = 1 for ASD participants and Ai = 0 for non-ASD
participants. We defined three parameters for the group-stage analysis:

βiv1 = αv1 + γv1Ai + νiv1, (Model 1) (3)

βiv2 = αv2 + γv2Ai + νiv2, (Model 2) (4)

βiv2 − βiv1 = (αv2 − αv1) + (γv2 − γv1)Ai + (νiv2 − νiv1). (Model 3) (5)

In the hierarchical formulation, βiv1 is the subject-specific slope from Equation (2) for eye-
blink, which equals the population slope of eye-blink, αv1, plus the population-modification
of this slope by ASD, γv1, plus random subject slopes, νiv1. These values are similarly
defined for eye-fixation in Model 2. Model 3 captures the contrast between eye-fixation and
eye-blink. Since people blink less when they are paying attention, the contrast between
eye-fixation and eye-blink events contains information on engagement. This contrast also
captures physiological processes that differ between eye-fixation and eye-blink events. These
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physiological processes are generally of less interest than engagement, but still of potential
use in understanding brain activity.

To estimate αv1 and γv1 in Model 1, we began by acquiring the estimated β̂iv1 from
the AR(3) model, as specified in Equation (2), for each participant across all V brain re-
gions. Subsequently, we fitted a general linear model to these β̂iv1 estimates, incorporating
the indicator variable Ai. The methodology for Models 2 and Model 3 followed a similar
procedure.

3.3 Dynamic functional connectivity

3.3.1 Covariance regression model

To quantify the relationship between dynamic functional connectivity and eye-tracking
events, we proposed the below covariance regression model at the single-subject level:

Σit = Cov(ϵit|xit) = Bi0 +
∑

j=1,..,J

Bijxijt, (6)

where Σit denotes the time-varying V × V covariance matrix, reflecting the task-based dy-
namic connectivity; ϵit denote the V × 1 vector of residuals at time point t, derived from the
mean model as detailed in Equation (2). Specifically,

• The termBi0 captures the static functional connectivity between pairs of brain regions,
represented as a time-invariant V × V matrix.

• Bij, j = 1, . . . , J , denotes a symmetric V ×V matrix of the effect of task and nuisance
covariates on the conditional covariance, remaining constant over time.

• ηit is defined as a V × V matrix of residuals, capturing the variation not explained by
the conditional covariance model.

From the covariance regression model, the estimated matrices B̂ij, j = 1, . . . , J can be
used to interpret the dynamic functional connectivity in response to task predictors and
nuisance covariates. Specifically for this study, B̂i1 represents the influence of eye-blink,
while B̂i2 corresponds to the impact of eye-fixation on the changing patterns of dynamic
brain functional connectivity. Let b̂ij(vv′) represent the estimated effect within the vv′ cell of

B̂ij. The estimation process for these estimators is detailed in Section 3.3.2.

3.3.2 Estimation using Least Squares

We propose to use univariate Ordinary Least Squares (OLS) to estimate the parameters
in (6) for each edge (vv′). Analytically, we first obtained a V ×V ×T array by constructing:

Ĉov(ϵ̂it) = ϵ̂itϵ̂
T
it (7)

where ϵ̂it is residuals from Equation (2).

To obtain the estimations, define Ĉov(ϵ̂i)vv′ = [ϵ̂iv1ϵ̂iv′1, ϵ̂iv2ϵ̂iv′2, . . . , ϵ̂ivT ϵ̂iv′T ]
T as T × 1

vector for region pair vv′, derived from Equation (7). Let Xi = [1T ,xT
i1,x

T
i2, ...,x

T
iJ ], a



7

T × (J + 1) matrix, denote the design matrix. There are total V (V+1)
2

OLS regression
models for a single subject with V brain regions. Let η̃it(vv′) denote the error component

corresponding to the vv′ edge in ηit. Consequently, each edge’s estimated effects b̂i(vv′) and
residuals η̃i(vv′) can be obtained from their respective OLS models:

b̂i(vv′) =
(
XT

i Xi

)−1
XT

i Ĉov(ϵ̂i)vv′ , (8)

η̃i(vv′) = Xib̂i(vv′) − Ĉov(ϵ̂i)vv′ , (9)

In Section 3.4, we apply the log-Euclidean transformation to V × V × T array constructed
in Equation (7), resulting in the updated forms of Equation (8) and Equation (9). Further,
in Section 4.4.1, we employ η̃it(vv′) from Equation 9 to conduct model diagnostics.

3.3.3 Statistical considerations in the covariance regression model

At the individual level, we calculated Z-statistics to measure the differential estimated
effects of eye-fixation (B̂i2) versus eye-blink (B̂i1) described in Section 3.3.1. Consequently,
the V × V Z-statistics matrix Zi reflects the distinct effects of eye-fixation in contrast to
eye-blink on the brain’s dynamic functional connectivity.

Let Zi,(vv′) denote the Z-statistics for vv′ region. For a single edge vv′:

Zi,(vv′) =
B̂i2,(vv′) − B̂i1,(vv′)√

V̂ar(B̂i2,(vv′)) + V̂ar(B̂i1,(vv′))− 2 · Ĉov(B̂i2,(vv′), B̂i1,(vv′))
(10)

A positive value in Zi,(vv′) indicates a stronger influence from eye-fixation, whereas a
negative value suggests that eye-blink has a more substantial effect on the evolving covariance
pattern. In other words, a positive value signifies that engagement events have a greater
impact on brain dynamic functional connectivity. For each participant and each edge, we
generated the subject-specific V × V Zi,B̂i2−B̂i1

matrices based on Equation (10). These
matrices will be extensively presented and discussed in Section 5.3.

3.3.4 Population-level effects

To quantify the population effects in V × V matrices Zi,B̂i2−B̂i1
between ASD and non-

ASD group, we applied the following linear model for each edge to assess the difference in
Z-statistics between eye-fixation versus eye-blink effects in two groups.

Let Zi,(vv′) denote the Z-statistics for a single vv′ region:

E(Zi,(vv′)) = ρi0,(vv′) + ρi1,(vv′)Ai (11)

Here, ρi0,(vv′) denotes the population effects on edge vv′, while ρi1,(vv′) indivates the effects
modifications within ASD group. Ultimately, we derived a V × V matrix for the mean Z-
statistics in the non-ASD group (Z̄non-ASD) and for the effects modifications in participants
of the ASD group (Z̄ASD). The results of the visualization of these two matrices will be
shown in Section 5.3.2.
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3.4 Log-Euclidean transformation

We utilized a log-Euclidean framework, akin to working with log-transformed univariate
responses (Schwartzman, 2016) on Equation (7). To obtain the log-Euclidean transformed
form, we first conducted the eigenvalue decomposition on Cov(ϵ̂it) as follows: Cov(ϵ̂it) =
UitΛitU

T
it . Here, Uit is the matrix of eigenvectors, and Λit is a diagonal matrix comprising

only one non-negative eigenvalues of Σit. We retain only the non-negative eigenvalue, setting
all other eigenvalues to 0. By taking the logarithm of Λit, denoted as logΛit, we reformulate
the model in the log space, where the covariance structure can be expressed in terms of the
log-transformed variables:

log Ĉov(ϵ̂it) = log(ϵ̂itϵ̂
T
it) = Uit logΛitU

T
it

This logarithmic representation ensures that the covariates remain within the space of
symmetric matrices, and the results obtained can subsequently be back-transformed to the
original scale. In this framework, the log transformed forms of Equation (8) and Equation (9)
can be updated to as follows:

b̂∗i(vv′) =
(
XT

i Xi

)−1
XT

i log Ĉov(ϵ̂i)vv′ , (12)

η̃∗
i(vv′) = Xib̂

∗
i(vv′) − log Ĉov(ϵ̂i)vv′ , (13)

We investigated both the untransformed (Equations 8 and 9) and log-transformed (Equa-
tions 12 and 13) versions of the model, focusing particularly on addressing heteroscedasticity
issues in Section 3.5 and verifying normality assumptions in Section 4.4.1.

3.5 Robust estimation

Within the Ordinary Least Squares (OLS) estimation framework, the residuals η̃it(vv′) in
Equation Equation (9) and η̃∗

it(vv′) from Equation Equation (13) are assumed to be indepen-
dent, satisfying the assumptions of homoscedasticity, linearity, and normality.

To address the potential heteroscedasticity issue, and ensure an accurate statistical in-
ference process, we employed a heteroscedasticity consistent covariance matrix estimation
(Long and Ervin, 2000). For each vv′’:

Ĉov(b̂i,(vv′)) = (X ′
iXi)

−1X ′
iDiXi(X

′
iXi)

−1.

Di is the diagonal matrix in which each diagonal element is
η̃2
i,(vv′),t

(1−hi,tt)2
, where hi,tt is the tth

diagonal element of the hat matrix Xi(X
′
iXi)

−1X ′
i and η̃i,(vv′),t is the residual from Equa-

tion (9). The similar approach was employed to log-Euclidean transformed forms described
in Section 3.5 and the residual from Equation (13). This robust estimation approach effec-
tively mitigates heteroscedasticity, ensuring reliable inference for B̂ij.



9

4 Data processing and analysis

4.1 Overview of estimation steps

1. Eye-tracking Data Processing: We performed the convolution of eye-blink and eye-
fixation signals with the Hemodynamic Response Function (HRF). This step involves
aligning the sampling rates in the eye-tracking convolution data with the fMRI time
series.

2. fMRI Time Series Processing: We adopted the Schaefer 100 parcellation scheme
(Schaefer et al., 2018) in this thesis. This approach divides the cerebral cortex into
100 regions, and each region is labeled with one of seventeen functional networks. The
Schaefer100 parcels are accessible for use within the R package ciftiTools (Pham et al.,
2022).

3. Autoregressive modeling: We applied the AR(3) model, as detailed in Section 3.2.1,
to examine fMRI time series data across 100 brain regions for each participant. This
analysis estimated the region-specific impacts of eye-blink and eye-fixation events on
brain activation using the ‘ARIMA’ function (Ripley, 2002) in the base R environment,
producing residuals unique to each region.

4. Log-Euclidean Transformation: We applied the log-Euclidean transformation to
the V ×V ×T array as discussed in Section 3.4, which constructs the T×5050 response
matrix for least squares analysis.

5. Least Squares Regression: We estimated the coefficient matrices, B̂i1 and B̂i2, by
fitting 5050 linear models, then estimated the standard errors for the coefficients using
the heteroscedastic consistent errors (see Section 3.5).

4.2 Processing the eye-tracking data

4.2.1 Convolution of eye-tracking events with the HRF function

During two movie-watching tasks, we recorded eye-blink and eye-fixation events for each
participant. We extracted onset times and durations from the eye-tracking raw data, with
onset times marking the start of each event and durations indicating their length. By
leveraging the onset, duration, sampling rate (500 Hz), and the overall task duration, we
constructed boxcar functions for both eye-blink and eye-fixation events within each task.
Subsequently, we performed convolution (Zumer et al., 2010) of these eye-tracking events
with the Double-gamma Hemodynamic Response Function (HRF) (Welvaert et al., 2011).
This process generated the BOLD signals corresponding to eye-blink (j = 1) and eye-fixation
(j = 2), which served as the two task predictors and main effects in this study.

Let f denote the time series of the eye-tracking onset boxcar function and let h denote
the HRF,

(h ∗ f)t =
∫ t

0

h(τ)f(t− τ) dτ.
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We employed Fast Fourier Transform (FFT) techniques to make the convolution process
computationally efficient.

Convolution Operation in Frequency Domain: Sconv(f) = F{s(t)} · F{hrf(t)}

Resulting Convolved Signal in Time Domain: sconv(t) = ℜ
{
F−1{Sconv(f)}

}
× 1

N

where F denotes the Fourier transform, F−1 represents the inverse Fourier transform, N is
the normalization factor corresponding to the number of eye-tracking data points, and ℜ
indicates the real part of the complex inverse Fourier transform result.

4.2.2 Alignment with fMRI Time Series

Eye-tracking data were collected at a sampling rate of 500 Hz, resulting in a total of
T × 500 data points for each task. To match the convolved time series of eye-tracking events
with the sampling rate of the fMRI time series, we extracted the time points of the convolved
data points that corresponding to the sampling time points of the fMRI acquisition (every
1.127 seconds, with a precision of +/- 0.001 seconds), generating the T -length time series for
the convolved signals. Subsequently, we normalized these time series so that the peak value
of the convolution signals reached 1, denoted as xi1 and xi2 for eye-blink and eye-fixation
events, respectively.
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Figure 1: Convolution of Eye-Tracking Metrics with the HRF Function for a Single Subject.
These signals are later used as predictors in the general linear model of fMRI task activation
Top: Eye-blinking. Bottom: Eye-fixation.

Figure 1 illustrates an example of one subject’s standardized convolved HRF and eye-
blink (top) and eye-fixation (bottom) events during movie-watching task 1. The blue lines
depict the standardized convolved signals for eye-tracking events, while the orange vertical
lines mark the boxcar function for eye-tracking events. The green boxes at the top of the fig-
ure represent the sequence comprising a three-second crosshair, three video clips interspersed
with 15-second crosshairs, and ending with a 12-second crosshair for validation.

4.3 Task activation analysis

4.3.1 Model covariates

In addition to the two eye-blink and eye-fixation convolved signals (xi1,xi2) presented
in 4.2, our model included six motion parameters—translational movements along the x,
y, and z axes (trans x, trans y, trans z ) and rotational movements around the x, y, and z
axes (rot x, rot y, rot z )—and the quadratic terms of these head movement parameters as
covariates (xi3, ...xi,14). These covariates help control for potential confounding effects due
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to head motion during the fMRI scanning process. Additionally, we utilized an indicator
variable xi,15 to differentiate between the two task sessions, with an indicator value of 1 for
movie-watching task two and 0 for task one. The index of time points (from 1 to T ) and
a quadratic term of the time index (xi,16,xi,17) were also included in our model to account
for possible scanner drift. Additionally, to account for the varying effects of these covariates
across different task sessions, we introduced 14 interaction terms xi,18, ...,xi,31 ( interaction
between task session indicator and the other nuisance variables, i.e., the 12 head motion
parameters and the 2 time variables).

All covariates were standardized except for xi1 and xi2. This was done to optimize
the parameter estimation process in the ARIMA function (Ripley, 2002) in R, which utilizes
general-purpose optimization and tends to perform best when regressors are centered around
zero mean and scaled to unit variance. Consequently, these 31 covariates constituted the
design matrix in the final model.

4.3.2 Single subject autoregressive modeling process

Using 31 covariates, we fit the AR(3) model in Equation (2) for each of the 100 brain
regions separately for each subject. The effectiveness of the AR(3) model was validated
by examining the Autocorrelation Function (ACF) and Partial Autocorrelation Function
(PACF) plots of the residuals.

To evaluate potential multicollinearity between eye-blink and eye-fixation events, we
revisited the linear model using the same covariates set and examined the variance inflation
factor (VIF) values. The results showed no significant multicollinearity issues, with VIF
values around 1.5 for the convolved eye-blink and eye-fixation signals across all subjects.

4.3.3 Population-level effects

To quantify the population effects in ASD and non-ASD, we applied the three linear
models as detailed in Section 3.2.2. The β̂iv1 and β̂iv2 were estimated form Equation (2). As
a result, we obtained γ̂v1, γ̂v2, α̂v1, and α̂v2, respectively. Specifically, α̂v1 and α̂v2 represent
the global population effects of eye-blink and eye-fixation on brain activity. γ̂v1 and γ̂v2
quantify how the eye-blink and eye-fixation effects differ from the global population effects,
respectively. These estimators are visualized and detailed in Section 5.2.

4.4 Covariance regression modeling process

For each individual, we utilized the same set of J = 31 covariates as in the AR(3) model
to model the covariance of residuals, ϵ̂it · ϵ̂Tit, a 100×100×T array, where the ϵ̂it were derived
from the 100’s AR(3) models in Equation (2). Additionally, for each OLS model, an updated
T × (31 + 1) design matrix Xi = [1T ,xT

i1,x
T
i2, ...,x

T
iJ ] were constructed for each participant.

Next, V ·(V+1)
2

= 100·(101)
2

= 5050 OLS models were fitted to examine the dynamics of

functional connectivity Ĉov(ϵ̂it) within the brain for each individual. We applied both

the untransformed Ĉov(ϵ̂it) and the log-Euclidean transformation logĈov(ϵ̂it) methods as
detailed in Section 3.4. A comprehensive comparison of these two approaches (untransformed
vs. log-Euclidean transformation) and their diagnostics is presented in the following section.
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4.4.1 Comparison between untransformed vs. log-transformed

We examined the residuals for both untransformed (η̃i,(vv′)) and log-Euclidean trans-
formed (η̃∗

i,(vv′)) methods. Extensive diagnostics on randomly chosen brain region pairs
indicate the log-Euclidean transformation improves normality. For illustration purposes, we
depict 4 brain region pairs (vv′) from 4 randomly selected participants (2 ASD and 2 non-
ASD). Figure 2 presents a comparison of residuals before and after the application of the
log-Euclidean transformation.

Participant 1 (non-ASD) Participant 2 (non-ASD)
Before Log-Trans. After Log-Trans. Before Log-Trans. After Log-Trans.

Participant 3 (ASD) Participant 4 (ASD)
Before Log-Trans. After Log-Trans. Before Log-Trans. After Log-Trans.

Figure 2: Quantile-Quantile (Q-Q) Plot Analysis for OLS Model Residuals was conducted on
brain region pairs vv′, which were randomly selected from two participants diagnosed with
Autism Spectrum Disorder (ASD) and two Typically Developing (non-ASD) participants,
with the pairs themselves also chosen at random.

Prior to log-transformation, the Q-Q plots for participants exhibit deviations from the
line of normality, particularly with a skewness that suggests a non-normal distribution of
the residuals in both ASD and non-ASD participants’ brain region pairs (Figure 2).

After the log-transformation, the Q-Q plots align more closely with the line of normality,
indicating that the transformation reduces skewness. Thus, we use the log-Euclidean trans-
formation. To further address deviations from normality, we use heteroscedasticity consistent
standard errors for inference as described in Section 3.5.
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4.5 Assessment of autocorrelation

To evaluate possible autocorrelation concerns on covariance regression, we analyzed the
residuals (η̃∗

i ) from 5050 OLS models with ACF and PACF plots. These diagnostics showed
no significant autocorrelation issues within the OLS framework, as autocorrelation for initial
lags remained within acceptable threshold.

4.5.1 Covariance estimation

We derived V ×V matrices of coefficients B̂ij, j = 1, 2, ..., 32 for each participant through
the 5050 OLS models. These estimated V × V matrices capture the influence of the task
predictors and other nuisance covariates on brain functional connectivity over time in a
linear fashion. Particularly, this study focused on B̂i1 and B̂i2, which represent the effects
of eye-blink and eye-fixation on dynamics of functional connectivity, respectively.

Finally, to compare the association between brain dynamic of functional connectivity
and eye-tracking events. We derived the subject-specific V × V Zi matrices based on Equa-
tion (10) for each participant. These matrices will be presented and discussed in Section 5.3.

5 Results

5.1 Summary statistics of eye movement measurements

The exploration of raw eye-tracking data for current data cohort reveals distinct patterns
in the visual engagement of participants (Table 1). Females with ASD demonstrated a decline
in median eye-fixation percentages, from 85.56% (Q1: 83.98, Q3: 87.13) in the initial video
of Movie 1 (0021 SAND) to 64.58% (Q1: 59.12, Q3: 77.46) by the final video of Movie
2 (0025 DOLL), suggesting a potential decrease in attention to the visual stimuli as the
task progressed. Conversely, ASD males, while exhibiting an overall decline, maintained a
relatively higher eye-fixation percentage throughout the series of videos compared to female
participants.

Conversely, non-ASD participants showed more consistent eye-fixation percentages across
the duration of the task. Non-ASD females consistently had slightly higher eye-fixation
percentages than non-ASD males, with numbers displaying minimal variation—from 90.43%
(Q1: 88.41, Q3: 93.75) in the first video clip to 90.15% (Q1: 83.31, Q3: 91.50) by the fifth
video clip for females, and from 89.46% (Q1: 87.38, Q3: 92.35) to 88.45% (Q1: 86.06, Q3:
89.79) for males. This points to a stable level of visual attention throughout the session.

The summary of median eye-blink percentages revealed that ASD females exhibited an
increase in eye-blink rates, increasing from 2.81% (Q1: 2.59, Q3: 3.03) in the initial video
to 19.91% (Q1: 10.98, Q3: 30.47) by the final video, suggesting a decrease in visual task
engagement over time. Conversely, ASD males showed lower median eye-blink percentages,
reflecting less frequent blinking during the tasks. In contrast, non-ASD children, regardless
of sex, maintained stable eye-blink rates across the videos, indicating a consistent level of
visual attention.
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The observed patterns reveal differences in attentional engagement among ASD and non-
ASD groups. ASD individuals, particularly females, demonstrate decreasing attention over
time in prolonged visual tasks. Meanwhile, non-ASD children maintain consistent attention
levels, highlighted by stable eye-tracking measurements. An interesting point is the reduced
fixation percentages in videos 0023 DOLL and 0022 SAND across all participants, possibly
due to the segments’ less engaging visual content.

These preliminary findings are based on a limited sample size, currently comprising only
four females in the ASD group, and may be subject to change as more data are collected.

5.2 Group-level analysis: Eye-fixation and eye-blink Effects

5.2.1 Mean effects of non-ASD group : α̂v1, α̂v2, α̂v2 − α̂v1

Figure 3 presents a series of brain activation maps based on analyses from three linear
models as outlined in Section 3.2.2, mapping out the brain’s activation associated with eye-
blink and eye-fixation events within non-ASD cohort. The left column reveals baseline brain
activation impacts across 100 regions due to eye-blink events (Model 1) and eye-fixation
events (Model 2), alongside the comparative impacts between eye-fixation and eye-blink
events (Model 3). The intensity of colors on these maps signifies the magnitude of effects,
showcasing the regions activated by each eye movement type. The middle and right columns
highlight the brain regions surpassing the False Discovery Rate (FDR) adjusted p-value
significance levels of 0.05 and 0.2, visualized using − log10(FDR-adjusted p-value).
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Figure 3: Left: Global brain activation (Mean effects in non-ASD group) from three models
for 100 brain regions, representing the effects of eye-blink, eye-fixation, and the differential
effects between eye-fixation and eye-blink. Middle: Brain regions surpassing the False
Discovery Rate (FDR) adjusted p-value threshold of 0.05. Right: Brain regions surpassing
the FDR adjusted p-value threshold of 0.2.

Figure 3 revealed distinct patterns in the association between brain activity and eye-blink
and eye-fixation events while watching movies. When applying a significance level adjusted
for false discovery rate (FDR) of 0.05, we found that eye-blink events were significantly
associated with the brain activation in right hemisphere’s (RH) Default Mode Network C,
Visual Area B, and the left hemisphere’s (LH) Salience/Ventral Attention Network A and
Control Network C.

Eye-fixation events, on the other hand, showed a strong association with brain activity
in different areas, including the RH Visual Cortex A, Visual Cortex C, as well as both hemi-
spheres’ Salience/Ventral Attention, Default Mode, Control, and Dorsal Attention Networks,
and Language Processing Areas.

Furthermore, we observed significant differences in the association between brain ac-
tivation with eye-fixation compared to eye-blink events during the movie-watching tasks.
Notably, the LH Auditory cortex, Visual Areas A & B, part of the Dorsal Attention Net-
work, Salience/Ventral Attention Network A, and Control Network C responded differently
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to eye-fixation compared to eye-blink events. In the right hemisphere, the Default Mode Net-
work C, Visual Areas A and B, Salience/Ventral Attention Networks A and B, and Language
Processing Areas showed varied brain activation during these visual tasks.

5.2.2 Mean differential effects in ASD vs. non-ASD group : γ̂v1,
γ̂v2, γ̂v2 − γ̂v1

Figure 4 depicts how brain activation patterns differ between ASD and non-ASD children
during eye-tracking events. (estimated coefficients of Ai described in Section Section 3.2.2).
Specifically, it visualizes the contrasting brain activation responses to blinking events (Model
1), eye fixation events (Model 2) in the ASD group compared to the non-ASD group. Ad-
ditionally, it highlights the difference in brain activation in response to eye-fixation versus
eye-blink in ASD compared to non-ASD children (Model 3). Regions with significantly al-
tered activity at a false discovery rate of 0.2 are shown in the right column through the
visualization of − log10(FDR-adjusted p-value).
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Figure 4: Left: Mean differential effects modifications in ASD versus non-ASD in brain
activation during eye-blink events, eye-fixation events, and when comparing the effects during
eye-fixation versus eye-blink events. Right: Brain regions selected using an FDR adjusted
p-value threshold of 0.2.

At a significance threshold of 0.2, brain activations during eye-blink events did not show
significant differences between ASD and non-ASD participants. However, the study identi-
fied several brain regions in the ASD group that exhibited significantly different activation
during eye-fixation events compared to the non-ASD group. Notably, the LH Somatomotor
Areas A and B, Default Mode Network B, Auditory Cortex, and Control Network B, along
with the RH Salience/Ventral Attention Network A, Default Mode Network A, Language
Processing Areas, Salience/Ventral Attention Network B, and Somatomotor Area B, demon-
strated distinctive activation during eye-fixation events. Importantly, all of these significant
regions have negative coefficients, indicating decreased brain activation during eye-fixation
events among ASD participants.

Moreover, a comparison of brain activation during eye-fixation versus eye-blink events
between ASD and non-ASD groups revealed that only the right hemisphere Language Pro-
cessing Area showed a significant difference, with the observed value being negative. This
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suggests that the right hemisphere Language Processing Area in ASD participants had a
smaller difference in activation between eye-fixation and eye-blink events than in the non-
ASD group. Essentially, brain activation in ASD participants was more similar for eye-
fixation and eye-blink events compared to that of non-ASD participants. This implies that
the Language Processing Area exhibits lower sensitivity to engagement in individuals with
ASD compared to those without ASD.

Additionally, the majority of brain regions in Model 2 and all regions in Model 3 exhibit
negative values, suggesting reduced brain activation in the ASD group relative to the non-
ASD group during eye-fixation. Moreover, Model 3 reveals that the contrasts between eye-
fixation and eye-blink activation is generally smaller in the ASD group compared to the
non-ASD group. This could imply that the differences in brain activation associated with
eye-fixation and eye-blink are less distinct in individuals with ASD.

5.3 Covariance Regression Modeling

5.3.1 Single-subject associations between dynamic functional con-
nectivity and eye-tracking events

To understand individual patterns of brain dynamic functional connectivity obtained
through covariance regression, as discussed in Section 3.3.1, we randomly selected three
participants diagnosed with ASD and three non-ASD participants for visualization. Heatmap
plots were used to display the estimated linear associations of eye-tracking events on brain
dynamic functional connectivity patterns. Figure 5 presents these heatmap plots, visualizing
the Z-statistics (Zi) as detailed in Section 3.3.3.
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Figure 5: Subject Z-Statistics Zi,B̂i2−B̂i1
for Dynamic Brain Functional Connectivity Linear

Effects between B̂i2 versus B̂i2: Heatmap representation of Zi across 100 by 100 brain region
edge. The circle plots show the connectivity edge surpassing the 0.001 significant threshold
(P < 0.001). The circle border shows 17 brain functional networks.

.

The matrices on the left of each pair show the connectivity patterns within the brain,
where each square represents a connection between two regions. The colors in the matrix
indicate the strength of the connections. More saturated colors signify stronger connections,
while lighter colors indicate weaker connections. The circular graphs on the right, known as
connectograms, visualize connections across different brain regions. The red lines represent
the positive strength of connectivity, while the blue lines indicate negative connectivity. The
segments around the circle correspond to 17 brain functional networks.

The heatmaps demonstrate considerable variation in the associations of eye-tracking
events with dynamic functional connectivity among both ASD and non-ASD participants.
The patterns of Z-statistics suggest the connectivity associations may be unique for each
person. In the non-ASD group, most connectivity coefficients are negative, suggesting that
eye fixations have a lesser impact on the dynamics of functional connectivity compared to
eye blinks. Conversely, for the ASD group, the connectivity coefficients are a mix of nega-
tive and positive values, indicating eye fixations appear to exert a greater influence on the
patterns of functional connectivity for some regions.
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5.3.2 Population-level associations between dynamic functional
connectivity and eye-tracking events

Figure 6 illustrates the group effects Z̄non−ASD for the non-ASD group and Z̄ASD for the
ASD group. The figure depicts heatmap plots in the left column and chord diagrams in the
right column, where red lines represent Z̄vv′ > 0 and blue lines indicate Z̄vv′ < 0. Red lines
suggest that the dynamics of functional connectivity are more associated with eye-fixation
events than eye-blink events, whereas blue lines suggest that the dynamics of functional
connectivity are more influenced by eye-blink events.

Figure 6: Population level’s Z-Statistics Z̄ for Dynamic Brain Functional Connectivity Linear
Effects between B̂i2 and B̂i2 in ASD vs. non-ASD group. Left: Heatmap representation
of Z̄i across 100 by 100 brain region pairs. Right: Circle plots depict the pairs of brain
regions selected by absolute Z̄vv′ fall into the 1st quartile. Top: non-ASD group mean
effects Z̄non−ASD. Bottom: ASD group mean effects Z̄ASD. The circle border shows 17
brain functional networks.

The heatmap in Figure 6 illustrates that the brain’s dynamic functional connectivity in
the non-ASD group is more associated with eye-blink events, as evidenced by predominantly
negative Z̄non−ASD coefficients across most regions. Conversely, the ASD group exhibits a
more even distribution of Z̄ASD coefficients, spanning both negative and positive values, indi-
cating varied brain connectivity when comparing between eye-blink and eye-fixation events.
This observation aligns with the individual-specific dynamic functional connectivity patterns
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discussed in the previous section.
Filtering for the first quartile based on the absolute Z̄vv′ to visualize on the circle plot

in the right column, participants with ASD demonstrate positive connectivity within the
somatomotor network and dorsal attention network, in contrast to the non-ASD group.
Furthermore, individuals with ASD do not exhibit positive connectivity within the Default
Mode Network, diverging from general patterns observed. These insights indicate a broad
spectrum of functional connectivity dynamics within ASD. The alterations in these brain
networks, consistent with findings from previous research, will be explored further in the
discussion section.

6 Discussion

6.1 Non-ASD group: Brain activation associated with eye-tracking
events

The analysis in Figure 3 indicates that eye-blink and eye-fixation events are associated
with distinct functional activations within brain networks involved in sensory integration,
attention deployment, and language processing. Specifically, eye-blink events significantly
activate areas like the RH Default Mode Network, associated with introspective and social
cognitive processes, and parts of the Visual Area, crucial for the basic processing of visual
stimuli. These preliminary results align with previous research indicating that eye-blinking
is related to central dopamine function in Jongkees and Colzato (2016), as well as visual
stimulus processing in Crnovrsanin et al. (2014). Furthermore, the LH Salience Network,
important for distinguishing relevant from irrelevant stimuli and involved in processing re-
ward, motivation, emotion, and pain, is notably activated. Additionally, a Control Network,
responsible for high-level executive functions and goal-directed behaviors, is activated during
eye-blinks in non-ASD children.

Conversely, eye-fixation events are associated with the brain’s visual processing areas
across both hemispheres. Notably, both of the LH and RH Language Processing Areas
are involved, suggesting the integration of visual information with language and semantic
processing (Tanenhaus, 2007; Cooper, 1974). The engagement of both hemispheres’ Salience
Networks points to the ongoing assessment of visual stimuli’s significance, while the Default
Mode Networks might relate to internal narratives or daydreaming that can occur during
sustained visual fixation (Henderson et al., 2015).

The comparison between eye-fixation and eye-blink events reveals significant differences
in the Somatomotor Areas, which are traditionally associated with body movement and
sensory information integration. This may highlight the role of motor control and sensory
integration in managing and executing eye movements. Furthermore, observed differences
in the Salience and Control Networks in response to these events hint at shifts in attention
allocation, along with the processing and prioritization of task-relevant stimuli.
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6.2 Comparative analysis: Modification in brain activation during
eye-tracking in ASD

The findings described in Figure 4 reveal no significant differences in brain functional
activities between ASD and non-ASD participants during eye-blink events, using a signifi-
cance threshold of 0.2. However, the figure highlights notable differences in specific brain
regions in response to eye-fixation events. In the Left Hemisphere, Somatomotor Areas A and
B, involved in body movement coordination and sensory information processing, show dis-
tinct activation. The Default Mode Network B, associated with self-referential thoughts and
mind-wandering, the Auditory Cortex, key for sound processing, and the Control Network B,
important for executive functions and attention regulation, also respond significantly to eye-
fixation events. In the Right Hemisphere, differences are observed in the Salience/Ventral
Attention Network A and B, crucial for detecting and filtering relevant stimuli; the Default
Mode Network A; the Language Processing Areas, essential for language comprehension and
production; and the Somatomotor Area B. These differences indicate a diminished sensi-
tivity in ASD participants to eye-tracking events, particularly eye-fixation events, which is
consistent with previous studies (Cheng et al., 2021; Orefice, 2020).

Furthermore, a notable difference is only observed in the RH Language Processing Area
when comparing neural activation associated with eye-fixation versus eye-blink between ASD
and non-ASD groups, suggesting that ASD participants exhibit a less pronounced distinction
between these events in Language Processing activation. This finding is also corresponding
to the previous studies (Knaus et al., 2008; Verly et al., 2014; Kleinhans et al., 2008). This
may reflect differences in the integration and processing of visual and linguistic information
between ASD and non-ASD individuals.

All observed differences suggest that ASD children display lower brain functional ac-
tivations during eye-tracking events compared to non-ASD children. Reduced sensitivity
(functional integration) associated with default and higher-order visual regions in ASD was
found in Rudie et al. (2013). Our finding suggests that non-ASD individuals may exhibit
greater neural activation associated with eye-fixation events during the movie watching tasks,
potentially reflecting an adaptable mechanism of sensory processing and attention. In con-
trast, the neural activity associated with eye-fixtion versus eye-blink in the ASD group shows
a more similar activation pattern during the movie wathcing tasks. In other words, there
was less variation in brain activation between different eye-tracking events within sensory
and attentional processing regions.

6.3 Initial covariance regression findings

The analysis of individual-level covariance effects reveals that brain functional connec-
tivity is unique to each individual, suggesting the necessity for customized, person-specific
interventions. This finding emphasizes the critical role of personalized approaches in com-
prehensively understanding and effectively addressing brain connectivity issues in ASD. The
significance of individual differences in fMRI studies and the call for personalized medicine
practices were also noted and advocated for in Dubois and Adolphs (2016).

The observed differences in dynamic functional connectivity alterations during eye-fixation
events between ASD and non-ASD groups may suggest underlying differences in information
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processing within the brain. Our preliminary findings indicates more pronounced effects of
eye-blink effects versus eye-fixation events in the non-ASD group, whereas there was a mix
of positive and negative coefficients in the ASD group. Although additional research is nec-
essary, this could imply an alternative utilization of neural resources for processing external
stimuli in individuals with ASD.

Notably, in the ASD group, no brain networks exclusively exhibit negative or positive
functional connectivity; rather, a balance of negative and positive values is observed across
almost all brain networks. In contrast to the non-ASD group, connectivity between regions
such as dorsal attention B, Visual B, Somatomotor B, and Default B in ASD group showed
positive linear effects when contrasting eye-fixation and eye-blink events, suggesting a bigger
difference in connectivity during eye-tracking events in these brain areas. In other words,
the connectivity between these brain areas are higher associated with eye-fixation events
compared to eye-blink events.

Conversely, in the ASD group, the difference in connectivity between eye-fixation and
eye-blink events is notably less pronounced, especially within the Default and language
regions. Specifically, connectivity between the Default and language processing areas during
eye-fixation events is reduced compared to eye-blink events in individuals with ASD.

The Somatomotor B regions, known for their role in integrating sensory input with motor
responses and orchestrating movement planning, together with the Dorsal Attention B and
Visual B areas, which are instrumental in directing attention and processing visual stimuli,
as well as the Default Mode Network B and language processing areas, play significant
roles in cognitive and sensory functions. Our group-level covariance analysis reveals obvious
variability in the connectivity of these regions in individuals with ASD, indicating altered
neural mechanisms associated with eye-tracking events during movie-watching tasks. These
preliminary findings emphasize the crucial need to consider such variability in future research
and clinical practices, particularly in the context of ASD, where these brain areas are essential
for a range of cognitive, sensory, and motor functions.

7 Conclusion

Our study demonstrates that utilizing eye-blink and eye-fixation events as predictors in
fMRI studies of ASD can reveal assocations with brain activation and connectivity. The
underlying assumption—that eye-blink events signify less engagement, whereas eye-fixation
events indicate engagement—facilitates the identification of unique brain activation regions.
Second, the association between brain functional activations and eye-blink events was sim-
ilar in ASD and non-ASD participants, but differences are significant in their response to
eye-fixation events, especially in areas of the brain responsible for sensory processing and
attention. These findings indicate a diminished association in ASD to such eye movements,
with variations in areas involved in language processing highlighting different ways of in-
tegrating visual and linguistic information. Third, we find that the relationship between
eye-fixation events and dynamic connectivity appear to vary between individuals. ASD may
engage different neural regulatory mechanisms, and sensory and cognitive processes may be
managed differently in ASD compared to non-ASD individuals.

It is worth mentioning that these findings are initial steps in understanding the differences
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in dynamic functional connectivity between ASD and non-ASD groups. These observations
will need more detailed study and confirmation through ongoing research and analysis.

8 Limitations and future directions

Our research, as detailed in this thesis, has several limitations. First, our study is based
on a limited number of participants (12 ASD and 22 non-ASD), which may affect the appli-
cability of our findings to a broader population and the reliability of our results.

Second, the use of the Schaefer 100 brain region segmentation we adopted may not be
sufficient to detect localized neural activities. Averaging data within each brain region can
reduce variance, which is helpful in studies with small sample sizes, but it also compromises
the spatial precision of our BOLD signal measurements.

Third, the statistical techniques we employed, particularly in modeling covariance, can be
further improved. Notably, the assumption of normality within OLS models does not always
hold, especially for data from adjacent brain regions. We use the log-Euclidean transforma-
tion and heteroscedasticity consistent standard errors to address normality assumptions, but
additional research should investigate this framework. Simulations to validate the accuracy
of our approach would be helpful.

Furthermore, our study assumes a simplistic model for the covariance dynamics of func-
tional connectivity, which may not fully capture the complexity of brain interactions. Inves-
tigating alternative covariance structures could provide more insightful analyses.

Additionally, future research should investigate eigenvalue decompositions of our esti-
mated coefficient matrices, B̂ij. Such decompositions could reveal patterns in the data,
offering an understanding of the components influencing brain connectivity. This analysis
could improve the interpretability and computational efficiency of models dealing with the
high-dimensional data in neuroimaging studies.
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