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Abstract

Dynamics in Confined Brownian Systems

By Gary Lavelle Hunter

We use experiments and simulations to study two phenomena related to the glass

transition: the effects of confinement and the phenomenon of cage breaking. Hard sphere

colloidal suspensions are used as model glass formers and are visualized using confocal

microscopy. Brownian dynamics simulations are used to study a minimalist system of cage

breaking hard disks. We also present computational techniques that accurately track the

rotational motion of rigid clusters of colloidal particles.

In experiments, we confine colloidal suspensions within emulsion droplets to probe

how properties of the external surrounding medium affect internal dynamics. We find

dynamics are sensitive to the viscosity of the confining medium and observe a gradient in

dynamics as a function of distance from the confining interface. These results are analogous

to previous observations in confined polymers and small molecule glass formers, where

dynamical properties strongly depend on the interactions present at the confining interface.

Via simulations, we investigate cage breaking in dense hard disk systems using

a model of three Brownian disks confined within a circular corral. The exact free energy

landscape for this system can be calculated as a function of system size. We find the average

time between cage breaking events follows an Arrhenius scaling when the energy barrier is

large. We also discuss some of the consequences of using a one-dimensional representation

to understand dynamics in a multi-dimensional space, such as diffusion acquiring spatial

dependencies and discontinuities in spatial derivatives of free energy.

Finally, we describe a method of tracking the rotational motion of clusters of

colloidal particles. Using rigid body transformations to determine the rotations of a cluster,

we extend conventional proven particle tracking techniques in a simple way, thus facilitating

the study of rotational dynamics in systems containing or composed of colloidal clusters.

We test our method by measuring dynamical properties of simulated Brownian clusters

under conditions relevant to microscopy experiments. We then use the technique to track

and describe the motions of a real colloidal cluster imaged with confocal microscopy.
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Chapter 1

Introduction

My graduate studies have focused on answering two questions related to the be-

havior of systems approaching the glass transition: 1) Do dynamics in confined colloidal

suspensions depend on properties at the confining interface? 2) Can one understand dy-

namics in dense hard-disk systems in terms of free energy landscapes? What follows in

this dissertation are my efforts to show that the answer to both of the above questions

is “yes”. Though seemingly unrelated, these projects illuminate the similarities between

different types of glass forming systems – small molecules, polymers, and colloids – and will

hopefully further efforts to understand the glass transition as a “universal” phenomenon.

The main body of the dissertation will discuss the methods, observations, and conclusions

related to each of these projects. Also covered are computational algorithms I developed

to accurately track the rotational motion of colloidal clusters, which have since been used

to study the decoupling of translational and rotational diffusion in colloidal glasses. Here,

I begin with a brief introduction to general topics discussed throughout this dissertation,

providing the context for my work along the way. This is followed by a summary of my

experimental and simulational results, and an overview to the structure of the dissertation.

1
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1.1 The Glass Transition

Upon cooling or compression, many liquids freeze – that is, the molecules consti-

tuting the liquid rearrange to form some type of ordered crystalline structure. However,

some liquids can be cooled below their freezing point without crystallizing – in these cases,

the liquid is termed super-cooled. In general, creating a super-cooled liquid (SCL) requires

cooling to be sufficiently rapid that crystals do not have time to nucleate. If rapid cooling of

an SCL continues, the material can become a glass: the amorphous liquid-like structure is

retained, but the microscopic dynamics all but cease. This sudden arrest is the glass tran-

sition, and the temperature at which it occurs is the glass transition temperature, Tg. As

the liquid is cooled toward Tg, its viscosity rises smoothly and rapidly [1, 2], and below Tg

the sample’s viscosity becomes very high – the material can bear some degree of stress and

over most practical experimental time scales can be considered solid [3–9]. Thus, a working

definition of a glass might be a material which structurally resembles a dense liquid, but

over short time scales behaves mechanically as a solid.

The illustration given in Fig. 1.1 shows the cooling of a system initially in a dis-

ordered liquid-like state. Along the top branch of the figure, cooling is slow and allows

the components of the liquid sufficient time to nucleate crystals, eventually resulting in

crystallization of the entire system. Along the bottom branch however, the rate of cooling

is much higher, i.e. the system is thermally quenched. In this scenario, the density of the

system increases more quickly than the individual components can order into the thermo-

dynamically preferred crystalline structure, resulting in a dense amorphous or disordered

state.

Calling a glassy material a “solid” depends on the time scale one considers [10].

Window glass, a vitreous form of silicon dioxide, is of course the quintessential example
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T

∆Tfast

∆Tslowliquid 

(disordered)

crystal + liquid crystal (ordered)

dense liquid glass 

(disordered)

Figure 1.1: Cooling of a glass forming liquid. Top: The rate of cooling is slow and permits
the nucleation of crystals. Continued cooling results in crystallization of the system. Bot-
tom: High cooling rate. Here, insufficient time is given for the system to nucleate crystals
and upon continued cooling, the system forms a disordered glassy phase.

of a glass. It is sometimes claimed that very old windows are thicker at the bottom due

to flow of glass. However, the thickness variations in antique windows are the result of a

particular manufacturing method rather than the result of the glass flowing over long times

[11, 12]. A more instructive example of glassy behavior and time scales can be seen in pitch,

a bituminous tar. Like window glass, pitch is unmistakably solid to the touch – if struck

with a hammer, it will shatter. However, for over 80 years a funnel filled with pitch has

been dripping at a rate of roughly one drop every 100 months, yielding a very approximate

viscosity of 1011 times that of water. The so-called “Pitch Drop Experiment” has been

housed at the University of Queensland in Brisbane, Australia since 1927 [13].

Glass transitions occur in systems with a variety of compositions: small molecules

such as water and SiO2; short- and long-chain polymers; metal alloys; and suspensions of
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colloidal particles. While the details of these systems may be very different, there are qual-

itative similarities in the behavior of these materials as the glass transition is approached.

Independent of composition, a glass former retains an amorphous, liquid-like structure upon

cooling into the glassy phase. Relative to its liquid state, the viscosity of a glass former

increases dramatically, > 13 orders of magnitude for some materials [14–16].

For this dissertation, the glass forming materials are suspensions of rigid colloidal

microspheres. Important differences between these particles and other glass forming systems

will be highlighted in Sec. 1.2, and other relevant similarities between colloids and other

glass formers will be discussed in Sec. 1.3.

1.2 Hard Sphere Colloids as Model Glass Formers

Perhaps the simplest interaction between two particles is that of hard spheres [17].

If r defines the distance between two sphere centers, and σ is the sum of the two sphere

radii, the hard sphere potential is given by

U(r) =


∞, if r ≤ σ

0, otherwise,

(1.1)

which is to say that the only restriction placed upon the system is that particles cannot

interpenetrate (sometimes described as excluded volume interactions). Hence, all allowable

configurations have identically zero potential energy. From a viewpoint of statistical me-

chanics, this implies that the free energy, F = −TS, is governed entirely by entropy to

within an additive constant [18, 19], which for monodisperse systems (systems of a single

particle size) means that the only control parameter is volume fraction [20–23]. Volume

fraction, φ = NVp/V , is a dimensionless analogue of particle number density, where N is

the number of particles in the system, Vp is the single particle volume, and V is the total

system volume.
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~0.640.494 0.545 ~0.58

Supercooled

Liquid

Glass

Liquid-Crystal 
Coexistence Crystal

~0.74

Figure 1.2: Top: phase diagram as a function of volume fraction for monodisperse hard
spheres. Solid and dashed arrows indicate equilibrium and non-equilibrium phases, respec-
tively. Bottom: analogous phases in nearly monodisperse (diameter ≈ 2 µm) colloidal
systems.

The phase diagram for hard spheres is shown in Fig. 1.2, as a function of φ.

Below φ = 0.494, the suspension is a liquid. To force the system into a supercooled or

glassy state, one must increase φ fast enough to avoid crystallization. The supercooled

region persists between 0.494 ≤ φ < φg ≈ 0.58, whereas the glassy region lies between

φg < φ < φrcp ≈ 0.64. The existence of the glass for hard spheres requires that the sample

be somewhat polydisperse, that is, the spheres must have a distribution of sizes [24–28]. The

upper bound of the glassy region is the volume fraction at random close packing, φrcp, the

maximum density of a completely random sphere packing [29–31]; the precise value of φrcp

depends on the polydispersity [32]. Above φrcp, samples must have domains of crystalline

structure, or, preferably from the thermodynamic point of view, the sample may be entirely

crystallized. Density can be further increased up to the limit of hexagonal close packing,

φhcp =
π

3
√

2
≈ 0.74.

In many cases, colloidal particles can be considered to be simple hard spheres [33–

36]. By the late 1960’s and early 1970’s, experimental evidence was demonstrating that
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the structures in colloidal suspensions can be analogous to those in atomic systems [37–39],

leading to the extensive use of colloids over the next decade as model liquids and crystals

[1, 33, 40–46]. In 1982, Lindsay and Chaikin mixed together two different sizes of charged

colloidal particles, and observed a glassy phase (amorphous structure, finite rigidity) [10] in

agreement with subsequent simulations [47]. Later in 1986-87, experiments performed by

Pusey and van Megen demonstrated a hard sphere colloidal glass transition in a concentrated

sample of uncharged colloids [33, 34, 48].

It is important to note that colloidal systems differ from their atomic counterparts

in several ways [49, 50]. First, while motions on the shortest time scales are ballistic in

both cases, viscous drag very quickly dissipates momentum in colloids, and motions are

best thought of as diffusive rather than ballistic. Second, hydrodynamic effects couple

particle motions in complex ways [51]. Simulations suggest that these two differences are

unimportant for studying the glass transition [52–57]. A third difference is that colloidal

particles are most typically spherically symmetric, and so the geometry of a molecule is

usually not replicated in the colloid (see Chap. 4 for recent exceptions). Again, for many

cases of interest, this difference is immaterial when studying long-time dynamics; certainly

many glass transition simulations study particles with spherically symmetric potentials. A

fourth difference is that colloidal suspensions are always slightly polydisperse. This shifts

the phase transitions shown in Fig. 1.2 to higher values of φ [24, 58, 59], and also in general

frustrates crystallization [25, 27, 28, 60, 61]. While this is a distinction in comparison

to simple molecular glass-formers, it is less of a distinction with simulations, which often

purposefully add polydispersity to frustrate crystallization [62, 63]. Indeed, as noted in

the caption of Fig. 1.2, polydispersity appears necessary for a hard sphere glass transition;

monodisperse samples always eventually crystallize [27, 28].
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1.3 Confinement Effects

Phase transitions are usually investigated in the context of macroscopically large

systems. However, confining samples so that one or more dimensions are microscopic leads

to new physics, including confinement-driven phases [64]. As relevant to industrial applica-

tions, confinement has been shown to modify the mechanical properites of materials; exam-

ples include nanolubrication by liquids [65, 66] , and weakening of thin polymer films [67–70],

both of which have strong implications for controlling the behavior of miniaturized compo-

nents. In the context of this dissertation, “confinement” is meant to describe systems which

are of limited spatial extent in one, two, or three dimensions while “confinement effect” is

meant to highlight generally the difference in a property measured in a confined system

relative to the same property measured in bulk.

For amorphous phases, the glass transition temperature Tg is often changed by

confinement [69, 71–79]. In some experiments, the glass transition temperature is decreased

upon confinement (as compared with the transition temperature in bulk) [69, 74, 75, 80, 81],

whereas in others, the glass transition temperature increases [72, 81]. The glass transition

temperature has also been seen to increase or decrease for the same material, depending

on the experiment [69, 75, 79, 81]; this is likely due to differing boundary conditions [69,

71, 82, 83]. In polymer glass experiments, important differences are found when studying

confined samples supported by substrates, as compared with free-standing films [69, 77–

79], although recent work demonstrates that multiple mechanisms may be at work for

high molecular weight polymers [84]. In other experiments, results depend on whether the

confining surface is hydrophobic or hydrophilic, or whether the boundary can be classified

as “hard” or “soft” [74, 85]. Computer simulations indicate that confinement influences

the arrangement of atoms [80, 81, 86, 87], which might in turn relate to the change of the
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glass transition temperature. However, it is difficult to probe the structure and dynamics

of nano-confined materials.

Colloids thus can serve as an excellent model system for studying confinement

effects. To date, experiments have been performed by two groups who confined colloidal

samples between parallel glass plates [88, 89]. Nugent et al. used a binary sample to prevent

crystallization [88], while Sarangapani and Zhu studied a monodisperse sample [89]. Both

experiments used confocal microscopy to observe a dramatic slowing down of particle motion

in samples that were very confined. This suggests that the glass plates act analogously to

“sticky” boundaries in the molecular glass experiments conducted on substrates, which

also find a slowing down of particle motion [69]. Follow-up work by one of these groups

observed that rough confining surfaces induced a weak secondary decrease in dynamics [90].

The experiments show a clear connection between layering of particles against the walls

and their mobility [88], which has also been studied by simulation [80, 91, 92]. To date,

the effect of different boundary conditions on confined colloidal samples has been studied

experimentally only as a function of the roughness of the confining surface [90]. Beyond this

experimental study, how a confined suspension responds to variation in boundary conditions

or properties of the confining medium has not been previously explored.

Presented in Chap. 3 is a series of experiments designed to study how dynamics

in a confined colloidal suspension depend on material properties of the confining medium.

Results of these experiments demonstrate that, like molecular and polymeric glass formers,

observed dynamics can vary significantly depending on the medium in which the suspension

is confined. As an example, particle motions decrease more strongly when the viscosity of

the external medium is larger.
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1.4 Summary of Results and Overview of Dissertation

While each project I worked on during my graduate work relates to understanding

some aspect of the glass transition in colloidal systems, each is sufficiently independent

enough to warrant its own chapter. Chapter 2 covers relevant background material for

the experimental portion of the dissertation. Background material for the two remaining

portions of the dissertation are covered in the introductions of their respective chapters.

Chapter 3 covers experimental work relating to the behavior of colloidal suspen-

sions confined within different media. In that chapter, I present the results of these exper-

iments and the methods I used/developed to study such systems. The goal of this project

was to demonstrate that the confinement effects observed for polymeric and molecular glass

formers discussed in Sec. 1.3 are also present in confined colloidal suspensions, provided

that the boundary conditions are modified in appropriate ways. A large advantage of us-

ing confocal microscopy coupled with particle tracking techniques is having the ability to

directly observe individual particle motions within a sample. Given this ability, I was able

to directly observe a dynamical gradient (i.e. particle motions depend on distance from a

confining interface), as well as show that the strength of the gradient depends on material

properties of the interface and confining medium.

The concepts of potential and free energy landscapes have been widely used in

attempts to understand properties of the glass transition in condensed matter systems.

The conventional picture of such a landscape is one with hills (energy maxima) and valleys

(energy minima), where a system’s evolution is related to how it traverses topographical

features on the landscape. However, for systems with hard core potentials, such as hard

disks or spheres, this picture is incorrect – the landscape is completely flat and the system

is governed entirely by entropy. In chapter 4, we introduce a model system, confined
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2D Brownian disks, and demonstrate that one can (exactly) obtain an undulating energy

landscape by projecting the phase space to a lower dimension. From this point, we relate

dynamical properties found in simulations, such as cage breaking, to features on the energy

landscape. For example in highly confined systems, the mean time the system spends in a

caged state scales Arrheniusly with the height of the free energy barrier.

During my experimental work with confinement, the need very quickly arose for

an accurate method of removing collective solid-body-like rotational motions of particles

within droplets. With some effort, I was able to refashion an existing numerical technique

for this purpose. During this time, Kazem Edmond began experimental work on under-

standing rotational diffusion of clusters of colloidal particles and was in need of an accurate

method for tracking their rotational motions over time. Fortuitously, the method I used to

remove the bulk rotations of my droplets is immediately applicable to measuring the rota-

tions of Kazem’s clusters. This collaboration, combined with the writing of some supporting

algorithms, led to a methods paper and is covered in chapter 5. The method is computa-

tionally very fast and applicable to any 2D or 3D system of ≥ 3 non-colinear particles. The

technique is able to resolve rotations to ≤ 1.6◦ with moderately noisy confocal data, and to

the best of my knowledge is the most accurate of its type found in the literature.



Chapter 2

Experimental Background

This chapter describes information relevant to the experimental portion of this dis-

sertation concerning confinement of colloidal suspensions, as described in Chap. 3. Included

are brief overviews of the types of particles used, the techniques of confocal microscopy and

particle tracking, and a description of how dynamics are analyzed using mean-square dis-

placements, as related to dilute and dense colloidal suspensions. While these topics are

essential for the experimental work, they are somewhat general and best presented here so

as to avoid distracting and unnecessary digression in what follows.

2.1 Fluorescent Microspheres

Colloidal particles used here are composed of poly(methyl methacryalate) (PMMA)

and are sterically stabilized by a thin surface layer (≈ 20 nm) of poly-(12 hydroxystearic

acid) (PHSA), which prevents aggregation due to van der Waals forces. It is this steric

stabilization layer that allows particles to be considered as hard spheres [93]. Particles are

dispersed in a mixture [85/15 (w/w)] of cyclohexyl bromide (CXB) and decahydronaph-

thalene (decalin, DCL), which closely matches both the density and refractive index of the

11
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particles. This minimizes gravitational effects and van der Waals attractions, and allows

for visualization via confocal microscopy.

Particles are made fluorescent by the addition of Nile Red dye during synthesis.

The excitation and emission spectra of Nile Red in general depends on solvent, but for the

particles used here excitation and emission are maximum at 532nm and 582nm, respectively.

2.2 Confocal Microscopy

Conventional optical microscopes are not well-suited for three-dimensional mi-

croscopy. In order to see deep within a sample, it is necessary to minimize the scattering

of light by closely matching the refractive indices of the particles and solvent. However,

this means that distinguishing between particles and solvent becomes more difficult; con-

ventional optical microscopy relies on differences in index of refraction between parts of the

sample to produce an image. Fluorescence microscopy overcomes this by using the contrast

between dyed and undyed portions of the sample to produce an image. This works well

for dilute samples, but is poorly suited for dense systems such as colloidal glasses. Because

the sample is nearly transparent, objects outside of the focal plane are fluoresced, and this

stray background light passes readily through the optics and can severely muddle an image:

it is hard to distinguish bright particles on a bright background. Confocal microscopes use

fluorescence as well, but overcome this limitation with special optics (described below) and

are much better suited for studying dense colloidal systems.

The functioning of a confocal microscope hinges on two principles: illumination

of a small sample volume (≤ 10−15L) and rejection of out-of-focus light [94]. A schematic

of a confocal microscope is shown in Fig. 2.1. Laser light, shown in black (blue in color),

passes through a dichroic (dichromatic) mirror and onto rotating mirrors that scan the light
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Figure 2.1: Schematic of a confocal microscope. Rotating mirrors scan the incoming laser
light over the region of interest in the sample. The emitted light follows the reverse optical
path until arriving at the dichroic mirror, where it passes through the pinhole and into the
detector. A dichroic mirror reflects light below a certain wavelength and transmits light
above it. Reprinted with permission from [94].

in the horizontal planes. The light then passes through the microscope optics and excites

the fluorescent sample. The emitted light, shown in dark gray (green in color), follows the

reverse optical path back to the dichroic mirror, where it is reflected onto a screen with a

pinhole. The pinhole is placed in the conjugate focal plane of the sample (hence the term

confocal), rejecting the vast majority of out-of-focus light and limiting the depth of field

[95]. The remaining in-focus light is finally collected by a detector, such as a photomultiplier

tube.

Confocal microscopy allows for direct imaging of a sample in two or three dimen-

sions. In 2D, the pixels of an image are constructed by scanning individual points (point

scanning microscopes) or lines of points (line scanning microscopes) over a sample. The

highest rates of scanning are achieved with use of an acousto-optical device (AOD), in which

one of the mirrors in Fig. 2.1 is replaced with a crystal that acts as a diffraction grating
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Figure 2.2: Left: Confocal micrograph of a monodisperse colloidal system at volume fraction
φ ≈ 0.63. The particles have diameter 2a = 2.1 µm and the image is taken at the coverslip,
where the particles layer against the wall. Right: 3d reconstruction of boxed region on the
left. Here, the image dimensions are 15× 15× 10 µm3.

whose grating spacing can be tuned with high frequency mechanical vibrations [96, 97].

To obtain 3D images, such as shown in Fig. 2.2, the 2D scanning procedure is

quickly repeated while the focal plane is advanced through different depths in the sample.

In the fastest modern confocals, 2D images can be collected at rates ≈ 100 frames/s, and

depending on the scanning depth 3D images can be collected in around 1 s.

2.3 Particle Tracking

Particle tracking incorporates various image processing and computational tech-

niques to identify the centroid positions of particles in a given image [95, 98, 99]. The

image shown in Fig. 2.3(a) is a raw 2D image of a binary (two particle sizes) suspension

confined within an emulsion droplet. Here, both large and small particles are visible. By

applying a spatial bandpass filter, one can enhance contrast for the large particles while

almost completely filtering out the small, as shown in Fig. 2.3(b). From this point, one

uses computational algorithms to locate local maxima within in image, which correspond

to the centers of individual large particles. Fig. 2.3(c) shows the locations of the local max-

ima plotted on top of the original image in Fig. 2.3(a). If desired, the small particles can
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Figure 2.3: (a) Raw confocal image of a binary colloid-filled emulsion droplet. Scale bar is
5 µm. (b) The confocal image after a spatial bandpass filter is applied. (c) Centers of the
large particles identified from tracking algorithms overplotted with the original image.

be located in a similar way by using a different spatial filter and repeating the search for

local maxima. The image in Fig. 2.3 is a two-dimensional example, but images can also

be three-dimensional. Repeating the centroiding procedures for consecutive images yields a

list of coordinates at subsequent times. The coordinates can be used immediately to obtain

structural information about a sample, or if dynamic information is desired, the coordinates

can be linked together in time to form individual particle trajectories.

In general, the larger a particle is in an image, and the more it contrasts with

the background, the more accurate the particle tracking. For many experiments, particle

centers can be located with a resolution of ≈ 20 nm in the focal plane, while the out-of-plane

resolution is typically no better than 50 nm.

In dilute samples, accurately identifying particles is relatively easy because bright

and well-separated particles contrast well with the dark background. In dense samples like

colloidal glasses, there are many bright particles in an image and so contrast is usually

poorer. Additionally, optical effects such as diffraction can make it difficult to distinguish

individual particles when they are very close together. These effects are important to

understand and correct, especially when particle motions are very small [100, 101]. To
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illustrate, in a sample of 2.4 µm PMMA spheres at φ = 0.52, Weeks and Weitz observed the

majority of particles to move less than 0.2 µm over 600 s [102]. The influence of diffraction

can be weakened by increasing the optical resolution by using fancier lenses [103], by using

confocal microscopy, or with computational techniques [100, 104]. Hence, with some care

as far as optics are concerned, and some fine tuning of particle tracking parameters, it is

often straightforward to study dilute and dense systems with the same techniques.

Combined with video microscopy, particle tracking offers a powerful method to

probe the local properties of a sample, which is especially important for understanding struc-

turally or dynamically heterogeneous systems like colloidal glasses. With this technique,

one can discuss behaviors of individual particles up to a collection of several thousand.

2.4 Brownian Motion and Diffusion

The size of colloidal particles is such that they execute Brownian motion due to

frequent, random collisions with solvent molecules. These collisions are random in magni-

tude and orientation and so the average particle displacement in a particular direction 〈∆x〉

is zero. Instead, motion is often quantified by the mean square displacement (MSD), which

in one dimension is given by

〈∆x2〉 = 〈[x(t+ ∆t)− x(t)]2〉 = 2D∆t. (2.1)

The angle brackets 〈〉 indicate an average over all particles and all initial times t for a

particular lag time ∆t, and D is the diffusion coefficient. In three dimensions, Eqn. (2.1)

becomes

〈∆r2〉 = 6D∆t. (2.2)

The diffusion coefficient is a function of temperature T , solvent viscosity η, and

particle size a. In the limit of infinite dilution (φ→ 0), D is given by the Stokes-Einstein-
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Figure 2.4: Mean square displacements for large particles in binary colloidal suspensions at
various volume fractions. The data here is from 2D particle tracking of a 3D sample. Small
and large particles have radii 0.532 µm and 1.08 µm, respectively, and are at a number ratio
(small/large) of ≈ 0.9. Dashed lines indicate a slope of one.

Sutherland relation,

D =
kBT

6πηa
, (2.3)

where kB is Boltzmann’s constant [105, 106]. This equation implies that T , η, and a do

not play a direct role in the colloidal glass transition; they only influence D, which sets the

time scale for particle motion.

For purely diffusive motion, such as in a dilute suspension, the MSD scales with

∆t. Thus, on a log-log plot of 〈∆r2〉 vs. ∆t, one expects a straight line with a slope

of unity. Shown in Fig. 2.4 are MSDs for a colloidal samples from φ = 0.10 to φ =

0.51. For these data, φ = 0.10 exhibits purely diffusive behavior over the duration of the

experiment (indicated by a slope of one), whereas the data for larger φ show quantitatively

and qualitatively much different behavior. While in general an increase in φ corresponds

to a slowing of dynamics, the mechanism behind the slowing at larger φ is fundamentally

different than for lower volume fractions.



Chapter 2: Experimental Background 18

The difference arises because of the presence of neighboring particles. At the

smallest ∆t, particles are effectively unaware of their neighbors and so MSDs show diffusive

behavior (see for example φ = 0.41 in Fig. 2.4). Note that for φ > 0 that the diffusion

constant obtained from short time-scale motion, DS , differs from that of Eqn. (2.3) due to

hydrodynamic interactions between the particles [107–111]. By around φ ≈ 0.3, DS drops

to approximately 50% of the value from Eqn. (2.3) [2].

For larger φ at moderate lag times, a plateau develops in the data of Fig. 2.4 which

is indicative of particles being trapped in cages formed by their neighbors. At these time

scales, particles are localized and large cumulative motions are suppressed [3, 112–117]. At

sufficiently long ∆t, particle rearrangements do occur, and so the MSD again increases,

eventually recovering diffusive behavior. As φ increases from left to right, one observes a

lengthening of the plateau and thus increasingly slowed dynamics, indicating that longer

and longer time scales are needed for significant particle rearrangements to occur. The

overall shapes of the MSDs in Fig. 2.4 are typical of dense suspensions.



Chapter 3

Boundary Effects in Confined

Colloidal Suspensions

3.1 Introduction

The behavior of confined materials has attracted considerable scientific interest

due to the relevance for technological and industrial applications. As discussed in Sec. 1.3,

materials confined to sufficiently small length scales can exhibit changes in mechanical

properties, such as moduli or stiffness, relative to the same properties measured in a bulk

sample [65–70]. Such changes in characteristic behaviors of materials have strong impli-

cation for the miniaturization of mechanical and electronic components. While significant

progress has been made to understand confinement effects in many different systems, much

of the underlying physics remains obscure.

As noted in Sec. 1.3, how a material responds to confinement is not only dependent

on length scale but also depends quite strongly on the interactions between the material and

the confining interface. Indeed, the measured properties of a confined material, such as the

19
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change in Tg, may shift from one extreme to the other by varying the boundary conditions

of confinement [82, 83].

c)

b)

a)

Figure 3.1: Confinement effects in various systems. (a) Binary colloidal suspension confined
between hard glass walls. Here, the MSD (see Sec. 2.4) at t = 100 s is plotted as a function
of the confinement height. (b) Supported ultra-thin film polymers with one free surface.
The change in glass transition temperature ∆Tg is plotted as a function of film thickness.
(c) Molecular liquids in hard (top) and soft (bottom) 3D confinement. The relaxation time
τ relative to the bulk is plotted as a function of distance to the nearest confining boundary.
Data for figures (a,c) are taken respectively from [88], [83]. Panel (b) is reprinted with
permission from [79]. Copyright 2007 American Chemical Society.

To illustrate the variety of confinement effects in different systems, we show in



Chapter 3: Boundary Effects in Confined Colloidal Suspensions 21

Fig. 3.1 data from confined glassy colloidal, polymeric, and molecular systems. The results

from a system of confined binary colloids are given in Fig. 3.1(a). Here, the value 〈∆r2(t =

100s)〉 (see Sec. 2.4) was chosen as a measure of dynamics [88]. The system is confined

in 1D within hard glass walls separated by a distance H on the order of microns, while

the other dimensions extend to macroscopic distances. At large H, these systems have

dynamics similar to an unconfined bulk sample. However, as the size of the confined system

shrinks, one finds an abrupt decrease in MSD for φ = 0.42 and φ = 0.46 within the

supercooled regime. Data for φ = 0.23 is unaffected by confinement except at the smallest

values of H, which is likely the result of hydrodynamic interactions with the wall. The

decrease in dynamics for larger φ shows that confinement effects are important for colloidal

systems, and the values of H where dynamics begin to slow indicate important length scales

associated with confinement; above these H, the systems are essentially unaware of the

confining boundaries and behave as bulk samples. One sees in Fig. 3.1(a) that an increase

in φ corresponds to dynamical slowing at larger values of H, and one may conclude that

important length scales associated with confinement are also a function of φ. For confined

colloids then, the effect of confinement seems consistently to be a reduction in dynamics.

For polymeric and molecular systems shown in Fig. 3.1(b) and (c), the effect

of confinement is richer. The systems in Fig. 3.1(b) are ultra-thin supported polymer

films with one free surface. Here, one finds that, depending on the polymer in question,

confinement may lead to an increase or decrease in Tg [Poly(2-vinylpyridine) (P2VP) and

Polystyrene (PS)], respectively, or confinement may have little effect [Poly(methyl methacry-

late) (PMMA)]. In polymer systems, it has been observed that mobility is enhanced at free

surfaces relative to bulk measurements [79, 118]. It is believed that a thin liquid-like layer

exists at the free surface and that a dynamical gradient exists between the free surface

and the bulk [71, 119–121]. Indeed, very strong evidence exists for a gradient in dynam-
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ics [77, 78, 121, 122]. How strongly the free surface affects dynamics depends on the chemical

structure of the polymer [79, 123, 124]. However, the key difference between the systems in

Fig. 3.1(b) are the interactions with the polymers at the substrate. For P2VP and PMMA,

hydrogen bonding occurs at the polymer-substrate interface, whereas this is not the case

for PS. These attractive interactions lead to a decrease in mobility near the interface, and

as with the free surface, it is believed that this effect propagates into the rest of the sample.

Hence, strong interactions with the substrate can oppose the enhancement of dynamics due

to a free surface [79]. Overall, this demonstrates that confining a system to small spatial

scales does not specifically lead to enhancement or suppression of dynamics, but is strongly

dependent on how the confined material interacts with the external confining medium. As

well, if boundary conditions are neutral, confinement can have no appreciable effect [118].

For molecular glassformers, results are analogous to those from polymer measure-

ments. Shown in Fig. 3.1(c) are relaxation times (relative to bulk measurements) plotted

as a function of size of the confined sample. This graph distinguishes “hard” and “soft”

confinement: here, hard refers to the sample being confined within a hard glass (SiO2)

pore with solid immobile walls; soft confinement refers to samples being confined within

microemulsion droplets with a liquid-like mobile boundary. For the case of hard confine-

ment, relaxation times are observed to increase as system size is decreased. Presumably,

the molecules near the boundary are less mobile near an immobile boundary than in a bulk

material due to dynamical restrictions associated with being near a hard wall. In smaller

confinement, a greater proportion of the sample is exposed to the interface, leading to an

increase in the average relaxation time. In contrast for soft confinement, average relaxation

times decrease relative to the bulk because the mobile liquid-like boundary poses less of a

dynamical constraint than in bulk or near an immobile boundary [74, 82, 83, 85]. As with

polymers, it is believed that in confined molecular liquids, a dynamical gradient exists as
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a function of distance to the confining boundary [82, 83]. Recent experiments with poly-

mers have explored similar notions of hard and soft confinement and have found similar

results [125, 126].

The effect of different boundary conditions on confined colloidal samples has been

studied experimentally only as a function of the roughness of the confining surface [90].

Beyond this experimental study, the response of a confined colloidal suspension to vary-

ing material properties of the confining media has not been explored. Thus, one cannot

immediately compare the behaviors of confined molecular and polymeric systems to that

of colloids. Here, we present a series of experiments that probe how dynamics in confined

suspensions are influenced by material properties of the external confining medium. We will

show that confined colloids behave analogously to confined polymers and molecular liquids,

with similar dependence on boundary conditions under confinement. Further, we will show

that a dynamical gradient exists as a function of distance to the confining boundary, and

that the strength of this gradient is a function of the material properties of the confining

medium.

3.2 Methods

3.2.1 Sample Preparation

We use a binary colloidal suspension of small and large PMMA microspheres with

radii aS = 0.532 µm and aL = 1.08 µm, respectively. A binary, rather than monodisperse,

system is chosen to frustrate crystallization. The microspheres are dispersed in a solvent

mixture of CXB and DCL oils, as described in Sec. 2.1. The density of the colloidal sus-

pension is approximately 1.19 g/mL and the index of refraction is 1.492. The solvent is

saturated with tetrabutylammonium bromide salt (TBAB) to minimize electrical repulsion
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between particles and produce near hard sphere behavior [127, 128].

Two separate mixtures of glycerol and deionized water, 50/50 (w/w) and 65/35

(w/w), are used as external phases to vary the boundary conditions of confinement. The

50/50 and 65/35 external phases have viscosities ηx of 5.7 mPa·s and 15.2 mPa·s, respec-

tively. Though the viscosities of the external phases only differ by a factor of 2.7, this

amount is sufficient to produce a significant difference in the motions of particles within the

oil droplets. These particular mixtures lie near the extremes of what can be successfully

used to encapsulate and still observe the colloidal suspension using confocal microscopy.

The density of the external phase must be smaller than the density of the suspension so

that the droplets sediment to the coverslip, enabling visualization with an inverted confocal

microscope. This places an upper limit on amount of glycerol in the mixture at ≈ 74%.

However, the viscosity of a 74/26 mixture is ≈ 34 mPa·s, and creating the droplets by gentle

shaking is unreliable for ηx & 20 mPa·s. Additionally, the index of refraction of the external

phase must be relatively close to that of the suspension. The index of the 50/50 mix-

ture (1.398) is approximately the smallest that can be used while allowing reliable particle

tracking. Material properties of the 50/50 and 65/35 mixtures are summarized in Tab. 3.1.

A small amount (3mM) of sodium dodecyl sulfate (SDS) surfactant is added to

the glycerol+water mixture to prevent coalescence of the emulsion droplets with each other

and the walls of sample chamber. The SDS has the added effect of minimizing protrusion

of colloidal particles into the glycerol+water phase [129]. Once the individual components

are correctly weighed, they are mixed and stirred thoroughly over a period of ≈ 24 hrs.

Droplets are prepared by first adding ≈ 200µL of the external phase into a vial,

then gently pipetting ≈ 40µL of colloid on top. A gentle shaking by hand shears the two

fluids and creates colloid-filled droplets in a glycerol+water phase. Prior research on similar

polar+non-polar mixtures has demonstrated that dissolved ions may migrate from the non-
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polar to polar phases [128]. The migration takes place over a period of ≈ 24 hrs., after

which the electrical properties of the mixtures stop evolving. For this reason, droplets are

allowed to quiesce in the external phase for a period of 24 hrs. before taking data.

This procedure produces droplets with a wide range of radii R, internal volume

fraction φ, and number ratio nS/nL. For the data presented here, the number ratio within

droplets ranges from 0.78 to 1.83, but we stress that over this range, we observe no depen-

dence of results on number ratio. We do, however, observe a strong dependence on droplet

size and volume fraction, hence R and φ will be used as control parameters.

Table 3.1: Properties of External Glycerol/Water Phases

Composition (w/w) ρ [g/mL] ηx [mPa·s] n

50/50 1.124 5.7 1.398
65/35 1.165 15.2 1.420

3.2.2 Sample Chambers

Simple sample chambers, illustrated in Fig. 3.2(a), are fabricated using standard

glass microscope slides, coverslips, and UV epoxy. Sample chambers are filled with the

glycerol+water+droplet mixture, sealed with UV epoxy, inverted and placed on a confocal

microscope. A 100× oil objective is coupled to the sample chamber via a small amount of

immersion oil.

3.2.3 Visualization of Droplets and Data Collection

After sample chambers have been filled and sealed, they are placed inverted on

the confocal microscope, as indicated in Fig. 3.2(b). At this point, droplets are dispersed

throughout the sample chamber. The working distance of the 100× objective lens is 100

µm, which is to say that only objects within this distance of the coverslip can be viewed.
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100X oil objective

immersion oilcover slip

epoxy
spacer

microscope slide Sedimented Droplets

(a) (b)

Figure 3.2: (a) Fabrication of sample chamber. Spacers ≈ 200 µm thick are sandwiched
between a microscope slide and coverslip and fixed in place with UV epoxy. (b) Colloid-
filled emulsion droplets sediment to the bottom of the sample chamber and are visualized
with a confocal microscope.

In practice, the difference between the indices of refraction for the suspension and external

phases further limit this distance to . 25 µm, which places an upper bound on the size of

droplet which can be studied.

Figure 3.3: (a) Slice through the center of a 16.4 µm diameter emulsion droplet filled
with a binary colloidal suspension. Here, φ = 0.465. The scale bar indicates 5 µm. (b)
3D volumetric rendering of the droplet in (a). Shading has been performed to enhance
visualization.

Shown in Fig. 3.3(a) is a 2D slice through the center of a colloid-filled emulsion

droplet. Both large and small particles are visible, however we only use the motions of
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the large particles when discussing dynamics. This is done for three reasons. First, small

particles are included in the suspension in small quantities only to frustrate crystallization.

As can be seen in Fig. 3.3(b), large particles occupy the majority of the volume. Second,

larger particles move slower and are easier to identify, which results in more precise particle

tracking. Finally, to track the small particles, one needs to image the sample more frequently

which increases the rate of photobleaching and limits the duration of experiments.

Data sets used in the following analyses are primarily 2D, but 3D sets are also

included. While the droplets are of course 3D objects, observations through the central

cross section of a droplet are considered 2D data. For each 2D data set, 3D images are also

taken of the droplet so that volume fraction can be measured, as discussed in Sec. 3.2.7.

In the present studies, 2D data is preferable because it allows for motions to be

tracked over longer periods of time before photobleaching the sample and yields slightly

better particle tracking resolution. As will be shown in Sec. 3.3, observed behaviors are

independent of the dimensionality of the data set.

3.2.4 Removing Bulk Translational Motion

Over the course of an experiment, droplets are sometimes observed to translate

in the x- and y-directions. This drift can be due to weak fluid flows present in the sample

chamber or, for long experiments, Brownian motion of the droplets themselves. Shown in

Fig. 3.4(a) are trajectories of particles within a droplet over 300 s. During this period, the

entire drop translates toward the upper left of the figure. The trajectory of the droplet

center is shown in the inset of Fig. 3.4(a).

It is necessary to remove this bulk drift from the particle trajectories to determine

particle motions within the droplet. After some small time interval ∆t, the x-coordinate of

a particle i can be described by
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Figure 3.4: (a) Raw trajectories of particles within a 23.4 µm diameter droplet showing
drift over time. Here, φ = 0.457. Inset: Trajectory of the droplet center of mass, beginning
at the filled circle and ending at the star. (b) Droplet center trajectories in each direction
over 300 s. Open circles are the calculated center positions X(t) and Y (t) and solid lines
are the average motions subtracted from the particle trajectories. (c) Particle trajectories
in (a) after drift is subtracted.
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xi(∆t) = xi(0) + ∆xi,

xi(∆t) = xi(0) + δi + ∆x̄, (3.1)

∆x̄ =
1

N

N∑
j=0

∆xi, (3.2)

where ∆xi is the total displacement of i during the time interval. The total displacement can

be separated into the sum of δi, which represents a Brownian displacement of an individual

particle, and ∆x̄, which is the average displacement of all particles within a droplet, given

by Eqn. (3.2). Analogous expressions can be used to describe motions in the y-direction.

For a stationary droplet, ∆x̄ is zero, and all motion is due to diffusion. In a system with

drift, the x-coordinate of the droplet center is given by

X(t) =
t∑

t′=0

∆x̄(t′). (3.3)

The x- and y- trajectories of the droplet center are shown in Fig. 3.4(b) as open

points. As can be seen, there can be significant fluctuations in position from one time

to the next. These fluctuations are due to a combination of true motions and particle

tracking noise. Rather than immediately subtract these raw trajectories and possibly remove

interesting motions, the trajectories at each t are “smoothed” by averaging over a small

window, [t− δt, t+ δt]. This produces the solid curves shown in Fig. 3.4(b). The smoothed

droplet center trajectories are finally subtracted from the individual particle trajectories,

yielding motions such as shown in Fig. 3.4(c).

3.2.5 Removing Bulk Droplet Rotational Motion

The emulsion droplets used here are in some cases small enough to show significant

amounts of rotational diffusion over the duration of an experiment. Shown in Figs. 3.5(a)
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and (c) are particle trajectories within two droplets of different sizes after bulk translational

motions have been subtracted. As with translational drift, in these cases it is necessary to

subtract bulk rotational motions in order to accurately determine the relative motions of

particles within a droplet. Shown in Figs. 3.5(b) and (d) are particle trajectories after

removing bulk rotational diffusion for the two droplets. As can be seen, subtracting bulk

rotational motions is much more important for smaller droplets, but these diffusive motions

can be significant for even the largest droplets studied here. The method for subtracting

bulk rotational diffusion is identical to the matrix methods described in detail in Chap. 5

and in [130]. Using this technique, we estimate the uncertainty in resolving an angular

displacement as ≈ 0.1◦.

Figure 3.5: (a),(b) Trajectories of particles within a 16.4 µm diameter droplet before (a) and
after (b) removing rotational diffusion. Here, φ = 0.466. (c), (d) Trajectories of particles
within a 28.8 µm diameter droplet, with φ = 0.458, before (c) and after (d) removing
rotational motions. Trajectories in all panels cover a period of 600 s.
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3.2.6 Measuring Droplet Size

Due to diffraction, images such as the one shown in Fig. 3.3(a) cannot be used

to accurately determine the radius R of a droplet. Instead, after bulk translational and

rotational diffusive motions have been subtracted, the size of the droplet can be measured

using the positions of the tracked particles. Specifically, this is done by creating radial

histograms of the particle positions. For a d-dimensional data set, the number of observed

particles n at a distance r from the center of the droplet grows as

n(r) ∝ rd−1ρ(r). (3.4)

In Eqn. (3.4) , ρ(r) is a density with units [µm−d]. Shown in Figs. 3.6(b) and (d) are radial

histograms from 2D data sets, plotted as rρ(r), for two different droplets. Both histograms

exhibit oscillations related to the layering of particles within the droplet, which has also been

seen in 1D confinement experiments with hard walls [90, 131, 132], simulations [92, 133–135]

and seems to be a generic feature of confined particle systems. Both histograms are also

strongly peaked around particular values of r. Ideally, no large particles should exist closer

than a distance aL from the physical boundary of the droplet, and therefore histograms

should peak at r = R− aL and then decrease sharply to zero. However, due to small levels

of tracking noise, the peaks of the histograms are slightly broadened, as can be seen in

Figs. 3.6(b),(d).

To determine the size of a droplet, we perform a local Gaussian fit of the form

A exp

[
(r − rp)2

2σ2
R

]
(3.5)

to data in the vicinity of the maximum in ρ(r), which yields the location of the peak rp.

The true size of the droplet is then taken to be R = rp + aL. The quantity σR provides

a convenient estimate of the experimental uncertainty in droplet radius. For the data
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Figure 3.6: Measurements of droplet size: R = 11.76 µm for (a),(b) and R = 8.18 µm
for (c),(d). Panels (a),(c) show trajectories of particles overplotted with droplet size mea-
surements. The solid line represents rp, the calculated position of the peak in the radial
histogram, and the dashed line represents the physical boundary of the droplet R. Panels
(b),(d) show the radial histograms used to calculate the droplet sizes. The solid and dashed
vertical lines have the same meaning as in (a) and (c).
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presented here, σR ≈ 0.1 µm for 2D data sets and σR ≈ 0.15 µm for 3D data sets.

3.2.7 Measuring Volume Fraction

The volume fraction for a suspension of small and large spheres within a spherical

droplet is given by

φ =
nSa

3
S + nLa

3
L

R3
. (3.6)

Figure 3.7: (a) Volume fractions for droplets of radius R for φ = 0.330 ± 0.025. (b)
φ = 0.460 ± 0.015. Color indicates the viscosity of the external phase: ηx =5.7 mPa·s
(gold), ηx = 15.2 mPa·s (navy). Dotted lines indicate the center of the φ range and dashed
lines indicate the edges of the range.

Therefore, once R is known, one only needs an accurate count of particles within the droplet.

Particles within a droplet are counted using a combination of spatial filters and centroiding,

as described in Sec. 2.3 and illustrated in Fig. 2.3. Each image is highly scrutinized (by

hand and by eye) to ensure an accurate count. The uncertainty σR in droplet radius leads
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to an uncertainty in volume fraction

σφ ≈ φ
σR
R
, (3.7)

for each droplet. Shown in Fig. 3.7 are the measured volume fractions and droplet radii for

data sets with moderate volume fractions, φ ≈ 0.330, and high volume fractions, φ ≈ 0.460.

As described in Sec. 3.2.1, φ within a droplet is not precisely controllable, hence for this

work we will compare droplets over two ranges of volume fraction: φ = 0.330 ± 0.025;

φ = 0.460 ± 0.015. For the data presented here, slight variations in φ between data sets

seem to be unimportant. Likewise, any systematic uncertainty due to polydispersity in

particle size, σa/a ≈ 0.05, appears unimportant for the results that follow.

3.3 Results

3.3.1 Slowing of Dynamics in Confinement

The effect of varying ηx is immediately apparent from inspecting particle trajecto-

ries, such as those shown in Fig. 3.8. The droplets in both panels have similar radii, volume

fractions, and the shown trajectories are over an equal 600 s duration. The most significant

difference between these systems is the viscosity of the external phase: 5.7 mPa·s in (a);

15.2 mPa·s in (b).

As shown, particles within a droplet exposed to a lower viscosity external phase are

much more mobile than when the external viscosity is larger. To quantify these differences

in dynamics, we compare the MSDs (see Sec. 2.4) of particles within different sized droplets

exposed to different external phase viscosities. Panels (a),(b) of Fig. 3.9 are from 3D data

sets and show the MSDs of systems at φ = 0.330 ± 0.025 and different ηx [5.7 mPa·s in

(a),(c) and 15.2 mPa·s in (b),(d)]. The curves in each panel are particle MSDs within
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Figure 3.8: (a) Trajectories of particles within a 14.4 µm radius droplet with ηx = 5.7 mPa·s
and φ = 0.458. (b) Trajectories within a 14 µm droplet with ηx = 15.2 mPa·s and φ =
0.459. The elapsed time in both panels is 600 s.

droplets of different radii, with size decreasing from blue to red. In Fig. 3.9(a), the MSDs

are very similar, but do indeed exhibit a slight slowing of dynamics when droplet size is

decreased. When ηx is larger, as in Fig. 3.9(b), a decrease in dynamics with smaller R is

much more apparent. At this volume fraction, φ = 0.330± 0.025, the samples are colloidal

fluids [14]. From the linearity of the MSDs in Fig. 3.9(a,b), these samples do indeed appear

nominally diffusive (see Sec. 2.4), with no obvious indications of the dynamical plateaux seen

in supercooled liquids or glasses. However, it is apparent from these data that in addition

to a change in droplet size, a variation in the external confining medium also causes changes

of particle dynamics within the droplets.

The slowing of dynamics is more pronounced in droplets with larger internal vol-

ume fractions, as can be seen in Figs. 3.9(c),(d) with φ = 0.460±0.015. Here, the MSDs for

both ηx are well-separated and again, as droplet size decreases so does the MSD. Directly

comparing panels (c) and (d), one sees that decreasing droplet size does not cause an equal

decrease in motion between droplets in different external phases. Examining the top curves
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Figure 3.9: Particle mean square displacements in droplets of different sizes with different
boundary conditions: (a),(c) ηx = 5.7 mPa·s, (b),(d) ηx = 15.2 mPa·s. For (a),(b) φ =
0.330 ± 0.025 and for (c),(d) φ = 0.460 ± 0.015. (a) Here, the effect of droplet size R can
be seen but is difficult to distinguish. See Tab. 3.2 for values of R. For (b-c), droplet radii
from top to bottom (b) 8.86, 17.37, 7.76, 7.13, 5.4 µm. (c) 14.40, 11.76, 9.57, 8.18 µm. (d)
15.32, 13.26, 14.06, 11.63, 8.20 µm. Dashed lines indicate a slope of one. Dotted lines are
placed at ∆t = 30 s.
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in these panels [R = 14.40 µm in (a) and 15.32 µm in (d)], systems exposed to a higher ηx

are initially offset toward smaller 〈∆r2〉.

Colloidal systems at these φ are near the phase boundary of the liquid and super-

cooled regimes shown in Fig. 1.2 for monodisperse systems. However, MSDs in Fig. 3.9(c),(d)

show subdiffusive behavior typical of supercooled liquids. These types colloids are typically

found to possess a slight electrical charge, which shifts the supercooled regime to lower φ.

As can be seen in Fig. 2.4, unconfined data at φ = 0.46 exhibit slightly subdiffusive behavior

in-line with data in Fig. 3.9(c),(d). While the data in Fig. 3.9(c) appear to be in the pro-

cess of recovering diffusive behavior at large ∆t, data in (d) remain strongly subdiffusive at

similar times, implying that the time scales necessary to recover diffusive behavior increase

with ηx.

Figure 3.10: Mobility [measured as 〈∆r2(t = 30s)〉] versus droplet size for φ = 0.330±0.025
(squares) and φ = 0.460± 0.015 (circles). Here, color indicates the viscosity of the external
phase with ηx = 5.7 mPa·s (gold) and ηx = 15.2 mPa·s (navy), and the dashed line shows
〈∆r2(30 s)〉 measured in a bulk, unconfined sample.

To see more clearly how confinement effects vary with droplet size R and boundary

conditions, we show in Fig. 3.10 values of 〈∆r2(t = 30s)〉 from Fig. 3.9 as a function of
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droplet radius. In Fig. 3.10 for φ = 0.330 ± 0.025, we find no difference in 〈∆r2(30s)〉

between the two external phases for systems confined R & 9 µm, indicating that dynamics

are independent of both R and ηx at these length scales. The onset of confinement effects

occurs at R ≈ 9 µm for systems in both external phases. However for larger ηx, the decrease

in dynamics is more significant as R decreases, dropping by more than half of its value over

a change from R ≈ 9 µm to R ≈ 5 µm.

For the cases φ = 0.460±0.015 in Fig. 3.10, one again sees that dynamics decrease

with decreasing R. While this trend is qualitatively the same for both ηx, we find a signif-

icant quantitative difference between the two. In the largest droplets here, the difference

between 〈∆r2(30s)〉 is more than a factor of 4 between the two external phases. Due to ex-

perimental limitations, larger droplets could not be successfully studied in this case, hence

we cannot say at what value of R dynamics between droplets in the two external phases

become indistinguishable. Presumably for large enough R, the two curves will merge, as in

does data at lower φ, with dynamics becoming unaffected by confinement. Previous work

in a 1D confined system implies that confinement effects begin at a length scale of ≈ 50 µm

for similar φ, which would correspond in our systems to droplets with R ≈ 25 µm [131]. In

the smallest droplets, the ratio of 〈∆r2(30s)〉 between systems exposed to the two external

phases drops to a factor of ≈ 1.5. Again, due to experimental limitations, smaller droplets

could not be successfully studied, so we cannot determine how dynamics differ between

external phases for these length scales. The data used in Fig. 3.10, including φ and nS/nL

for the different droplets, are listed in Tabs. 3.2 and 3.3.

3.3.2 Structure within Droplets

We turn our attention to examining particle-structure within the droplets, which

would arguably be the most intuitive cause of differences in dynamics seen in Fig 3.10. The
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Table 3.2: Results of Confinement Experiments: ηx = 5.7 mPas

R [µm] nS/nL φ 〈∆r2(30s)〉 [µm2]

5.35 0.97 0.331 3.47
7.03 0.98 0.336 3.39
8.60 0.78 0.318 3.61

11.24 1.00 0.327 3.83
17.00 0.81 0.327 3.65

8.18 1.21 0.459 0.048
9.57 0.90 0.455 0.078

11.76 1.31 0.457 0.166
14.40 1.08 0.458 0.238

Table 3.3: Results of Confinement Experiments: ηx = 15.2 mPas

R [µm] nS/nL φ 〈∆r2(30s)〉 [µm2]

5.40 0.89 0.327 1.80
7.13 0.76 0.338 2.43
7.76 0.87 0.345 3.13
8.86 0.75 0.315 3.88

17.37 0.97 0.334 3.78

8.20 1.00 0.466 0.031
11.63 1.11 0.470 0.041
13.26 1.54 0.455 0.051
14.06 1.04 0.459 0.046
15.32 1.25 0.463 0.058
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structure of fluids is often described with the pair correlation function (or radial distribution

funtion), g(r). Essentially, g(r) expresses the likelihood of finding a particle at a distance r

from some test particle, relative to the average density of the sample. Shown in Figs. 3.11

and 3.12 are calculated g(r) curves comparing the internal particle-structures for droplets

of similar volume fraction and radii in the two different external phases.

In Fig. 3.11, g(r) is shown for data sets with both external viscosities where φ =

0.330 ± 0.025. The location of the peak, rp, in the pair correlation function expresses the

average nearest-neighbor distance between particles. For these data, the peak occurs at

rp ≈ 2.43 µm. This is larger than the average particle diameter 2a = 2.16 µm and indicates

that the particles within the droplets are slightly charged. However, as shown in the inset,

rp fluctuates only slightly (by ≈ 25 nm) between droplets of different sizes and droplets

with different external phases. Furthermore, the fluctuations exhibit no obvious trend with

R or ηx. Thus, we conclude that the variations in 〈∆r2(30s)〉 for these data are not due to

differences in particle electrostatic interactions inside the droplets.

The shapes of the curves in Fig. 3.11 are also very similar. In addition to the

primary peaks at rp, there are small secondary peaks at ≈ 4.5 µm, which correspond to

second-nearest neighbor shells. Beyond these points, g(r) flattens for all curves, indicating

that there are no significant long range structural correlations. These g(r) demonstrate for

these data that internal particle-structures within these droplets at φ = 0.330 ± 0.025 are

very similar and likely not the cause for the differences seen in Fig. 3.10.

Fig. 3.12 shows g(r) for data with φ = 0.460±0.015, again for both external phases.

Here, rp ≈ 2.36 µm, which is smaller than seen for φ = 0.330 ± 0.025, but is consistent

with an overall in φ. Between droplets of different radii and in different external phases,

there is no significant variation in rp. As was the case for the lower φ data, electrostatic

interactions are most likely not the cause of the differences in 〈∆r2(30s)〉.
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Figure 3.11: Pair correlation functions for droplets with φ = 0.330 ± 0.025, with ηx = 5.7
mPa·s (gold) and ηx = 15.2 mPa·s (navy). Approximate droplet radii are given in the upper
left of each panel. The inset to (a) shows the location of the peak, rp, in g(r) for droplets
of different radii.

These g(r) show secondary peaks at ≈ 4 µm, but are here broader and more

pronounced than for data with lower φ. This is consistent with an increase in φ for a binary

sample. While these curves do exhibit slight differences between the different external
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Figure 3.12: Pair correlation functions for droplets with φ = 0.460 ± 0.015, with ηx = 5.7
mPa·s (gold) and ηx = 15.2 mPa·s (navy). Approximate droplet radii are given in the upper
left of each panel. The inset to (a) shows the location of the peak, rp, in g(r) for droplets
of different radii.
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phases, these variations are attributable to small differences in φ and number ratio. Overall,

g(r) for these data show that particle-structure in droplets at the higher φ studied are

extremely similar and likely not the source of differences in dynamics.

3.3.3 Particle Mobility and Distance from Interface

To investigate how a particle’s motion is affected by its distance s from the bound-

ary, we calculate a local average particle mobility 〈∆r(s)〉, defined by

〈∆r(s)〉 =

s+δs∫
s−δs
|∆~r(s)| n(s)ds

s+δs∫
s−δs

n(s)ds

, (3.8)

where n(s) is the particle number density and |∆~r| is the magnitude of a particle’s vector

displacement. For consistency with previous results, we calculate 〈∆r(s)〉 at a lag time of

∆t = 30 s. As with data in Fig. 3.10, no qualitative difference is found using different ∆t.

A value of δs = 0.5 µm is used for all data sets and is sufficiently small to reveal significant

qualitative and quantitative trends, as will be discussed shortly. Thus, 〈∆r〉 is a number-

weighted average of the size of particle displacements over a radial bin with a width of ≈ 1

large particle radius.

In Fig. 3.13, we show 〈∆r(s)〉 for droplets with φ = 0.330 ± 0.025 for the lower

(a) and higher (b) external viscosities. These two graphs are strikingly different. Curves

in Fig. 3.13(a) show similar trends with s: particle motions are slightly slowed nearer to

the boundary than farther away, i.e. there exists a dynamical gradient as a function of

s. There are slight offsets for these curves which decrease with decreasing R. Here, we

note two things. First, the oscillations seen in these curves are out of phase with particle

layers, such as those shown in Fig. 3.6. The increase in mobility between layers arises

from packing constraints and layering described in Sec. 3.2.6. Second, large deviations at
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Figure 3.13: Particle mobility as a function of distance from the interface. (a) ηx = 5.7
mPa·s. (b) ηx = 15.2 mPa·s. For all droplets, φ = 0.330 ± 0.025. In general, droplet size
increases from red to blue.

larger s are due to low statistics in the centers of the droplets. Mobilities in Fig. 3.13(b)

are again self-similar, but show much stronger offsets as R decreases. The differences in

dynamical gradients appear to be the cause of the decrease in 〈∆r2〉 shown in Fig. 3.10 for

φ = 0.330± 0.025.

Shown in Fig. 3.14 are 〈∆r(s)〉 for droplets with φ = 0.460± 0.015. Here, we find

for both ηx that decreasing droplet size offsets the mobility toward lower values, though the

offsets are much more pronounced when ηx is smaller. Also, data for smaller ηx show well-

defined dynamical gradients, whereas when ηx is larger, the mobilities appear approximately

constant throughout the droplet. As with data at lower φ, the differences in 〈∆r(s)〉 are at

the source of the decrease in dynamics with decreasing droplet size, shown in Fig. 3.10.

We are also able to observe how directional motions within the droplets vary with

s. To do so, we decompose 〈∆r〉 into components perpendicular and parallel to the inter-

face. Radial (perpendicular) and tangential (parallel) mobilities, 〈∆r⊥(s)〉 and 〈∆r||(s)〉,

respectively are defined according to



Chapter 3: Boundary Effects in Confined Colloidal Suspensions 45

Figure 3.14: Particle mobility as a function of distance from the interface. (a) ηx = 5.7
mPa·s. (b) ηx = 15.2 mPa·s. For all droplets, φ = 0.460 ± 0.015. In general, droplet size
increases from red to blue.

〈∆r⊥(s)〉 =

s+δs∫
s−δs
|∆~r(s) · r̂| n(s)ds

s+δs∫
s−δs

n(s)ds

, (3.9)

〈∆r||(s)〉 =

s+δs∫
s−δs
|∆~r(s) · θ̂| n(s)ds

s+δs∫
s−δs

n(s)ds

. (3.10)

Shown in Fig. 3.15 are components of mobility for droplets with φ = 0.330± 0.025

in both external phases. We find that radial components behave similarly between the

phases, with both exhibiting out-of-phase oscillations related to layering, but with offsets

strongly affected by R occurring with larger ηx. Parallel components for these φ are more

distinct between phases, but also show similarities. In both ηx, parallel mobility appears

fastest for s . 2 µm. Mobility decreases sharply at s ≈ 2 µm and essentially plateaus for

larger s. For decreasing R in both ηx, we observe decreases in the plateau values as well as

the mobilities near the boundary, though for larger ηx the decrease is again stronger.

Mobility components for droplets with φ = 0.460±0.015 are shown in Fig. 3.16. In
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Figure 3.15: Radial (a),(b) and tangential (c),(d) components of particle mobility as a
function of distance from the droplet interface for φ = 0.330± 0.025. Panels (a),(c) are for
droplets with ηx = 5.7 mPa·s and (b),(d) for ηx = 15.2 mPa·s. In general for each panel,
droplet size increases from red to blue.
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Figure 3.16: Radial (a),(b) and tangential (c),(d) components of particle mobility as a
function of distance from ther droplet interface for φ = 0.460± 0.015. Panels (a),(c) are for
droplets with ηx = 5.7 mPa·s and (b),(d) for ηx = 15.2 mPa·s. In general for each panel,
droplet size increases from red to blue.
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panel (a), we find that 〈∆r⊥〉 shows dramatic dependence on s and R. Here, particle motions

are slowest for s . 2 µm, and grow larger as the center of the droplet is approached. As R

decreases, mobility curves flatten significantly, though even for the smallest R, a gradient in

dynamics can be seen. Indeed, the same trend is found for the droplets in higher viscosity

external phase, shown in panel (b), though the magnitude of the mobility is everywhere

smaller. The tangential mobilities shown in Fig. 3.16(c,d) are again quite distinct, but

demonstrate similar trends as with droplets with lower φ. Motions are again the fastest

for s . 2 µm and seem to plateau for larger values of s. For the smaller ηx, 〈∆r||〉 shifts

strongly to smaller values as R decreases. The same trend is apparent for the larger ηx,

though as with the radial component, the mobility is everywhere smaller.

3.4 Ansatz for Radial Mobility

Because the radial components of mobility in Fig. 3.16(a,b) display the most inter-

esting behavior as a function of s and R, we now focus our attention on better understanding

the behavior of the radial mobilities for both φ studied. To do so, we apply an ansatz to

describe the s-dependence of 〈∆r⊥〉,

〈∆r⊥(s)〉 = A [1− β exp (−s/λ)] . (3.11)

The above equation is a simple exponential decay, modified from a form introduced by

Scheidler et al. for describing the dependence of relaxation times in simulations of super-

cooled liquids confined in 1D [136]. As can be seen in Fig. 3.17, a fit of the type given

in Eqn. (3.11) roughly captures of the behavior of 〈∆r⊥〉, though it is clearly imperfect.

Mobilities are only well-fit at the smallest values of s. Oscillations in the data are not

accounted for with Eqn. (3.11) and are very likely contributing error to the fit. We are
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unaware of a more appropriate fitting form. Furthermore, if one were available, the signal-

to-noise ratio apparent in Fig. 3.16 is likely too large for this type of analysis to be much

improved. We thus proceed with analysis of 〈∆r⊥〉 in terms of Eqn. (3.11) with the goal of

only approximately capturing the behavior of radial mobility.

Figure 3.17: Example fits of radial mobility to Eqn. (3.11) for two droplets. The blue line
is for R = 14.40 µm, and the red for R = 8.18 µm. In these examples, ηx = 5.7 mPa · s and
φ = 0.460± 0.015. a) Double linear plot of 〈∆r⊥〉 with fits. b) Log-linear plots with fits.

The results of fitting 〈∆r⊥〉 for both φ are given in Fig. 3.18. Here, we plot

the obtained parameters for each data set as a function of droplet radius. Inspection of

Eqn. (3.11) shows that the parameter A is the value of 〈∆r⊥〉 extrapolated to s→∞, i.e.

for particles very far from the boundary. In Fig. 3.18(a,b), we find that A behaves in the

same qualitative way as 〈∆r2〉 shown in Fig. 3.10. For R & 9 µm in panel (a), values of A

approximately collapse and show no variation with R. For R . 9 µm, however, A acquires

a dependence on ηx. Thus at this φ, for confinement length scales of R . 9 µm, the sample
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is aware of a variation in the boundary conditions. At the larger φ in panel (b), we again

find a dependence on ηx and R, which implies that droplet radii are already below the

confinement length scale relevant for this φ.

Figure 3.18: Parameters resulting from fits of radial mobility to Eqn. (3.11) for ηx =
5.7mPa·s (gold symbols) and ηx = 15.2mPa·s (navy symbols). Left panels: φ = 0.330 ±
0.025. Right panels: φ = 0.460± 0.015.

Perhaps the most interesting of the fitting parameters is β, which from Eqn. (3.11)

can be considered the amplitude of the exponential decay. Shown in Fig. 3.18(c,d) are β

for data sets at both φ. Intriguingly, β does not appear to depend on ηx as data from both

external phases appear to collapse onto the same curve for a given φ (except perhaps at
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the smallest R in panel (d)). Along with φ, there is also a clear dependence on R. In panel

(c) for the lower φ, β is roughly constant, with perhaps a slight downturn near R ≈ 9 µm.

For the larger φ, there is a clear decrease in β as R decreases. Thus, β seems to capture

only the effect of finite system size. It is possible that if larger droplets could be studied,

one could observe a plateau in the value of β for φ = 0.460 ± 0.015, in the same way as β

plateaus for φ = 0.330± 0.025.

The parameter λ in Eqn. (3.11) characterizes the length scale over which inter-

actions with the confining boundary decay and are shown in Fig. 3.18(e,f). Here we note

there is significant scatter and uncertainty in our measurements of λ for both ηx and for

both φ studied. Given this degree of uncertainty, the interpretation of how such a length

scale is affected either by confinement or by the external phase is somewhat inconclusive.

There is perhaps a decrease in λ with growing R for higher ηx relative to lower ηx, but this

conclusion is tenuous. Overall, however, λ falls within a range 0.5aL . λ . 2aL, which is

on par with length scales typically measured in dense colloidal suspensions [137, 138].

3.5 Discussion and Conclusions

We have confined colloidal suspensions within emulsion droplets to probe how

particle dynamics are affected by the material properties of the external medium. Our

experiments have shown that, as in systems of glassy polymers and supercooled molecular

liquids, the response of a dense colloidal suspension to confinement depends in a sensitive

way on properties of the medium to which it is confined. For liquid-like suspensions, we find

that above a droplet radius of R ≈ 9 µm, internal particle dynamics are indistinguishable

between systems with external phases of ηx = 5.7 mPa·s and ηx = 15.2 mPa·s. For droplets

with smaller R, this is not the case. There is a clear distinction in dynamics between the
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two external phases, with more rapid dynamics occurring in systems with smaller ηx. In

both ηx, a decrease in system size corresponds to a decrease in dynamics, though the rate

of the decrease with R depends on ηx.

For suspensions in the supercooled regime, we find a significant difference in dy-

namics for droplets with R . 15.3 µm, which is the largest droplet size that could be

successfully studied. The larger ηx is associated with strongly decreased particle motions

relative to lower ηx. As with suspensions at lower φ, a decrease in the system size cor-

responds to a decrease in overall particle dynamics, again with a rate that depends on

ηx.

The differences in dynamics for the samples studied does not appear to be due to

structural changes or variations in electrical interactions between samples: for droplets with

similar R and φ, the internal particle structure, as measured by g(r), are indistinguishable

as shown in Figs. 3.11 and 3.12.

We have directly observed that the magnitude of a particle’s motions depends on its

distance from the confining boundary. Indeed, the contrast in average dynamics described

above arises due to differences in these gradients. We find that decreasing the system size

generally results in smaller particle displacements, however the rate at which dynamics

decrease is a function of ηx. We applied the ansatz in Eqn. (3.11) to the radial components

of particle mobility, as these showed the most intriguing trends. While Eqn. (3.11) captures

some of the qualitative aspects of 〈∆r⊥(s)〉, it is likely not the most appropriate functional

form with which to interpret our data. This could be true for two reasons. First, when used

previously in [136], the ansatz was applied to simulations of supercooled systems confined

in 1D, whereas our data is 3D. It’s entirely likely that the boundary effects combine in some

nontrivial way for systems confined in 3D. Second, Scheidler et al. measured relaxation

times instead of mobility. Relaxation times in colloids are often associated with time scales
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Figure 3.19: Rendering of particles in a colloid-filled emulsion droplet color-coded by a)
radial mobility and b) tangential mobility. For this data, R = 11.76 µm, φ = 0.460± 0.015,
and ηx = 5.7 mPa·s.

needed for dynamics to recover diffusive behavior [137]. For lower φ data, the ansatz may

fail because the system is in a liquid-like state, whereas for higher φ data, the recovery of

diffusivity could not be observed over the experimental time window (see Fig. 3.9). However,

whether or not the mobility gradient is of exponential or some other form, the existence

and behavior of dynamical gradients is quite clear in Figs. 3.13 and 3.14.

Shown in Fig. 3.19 are computer renderings from real particle coordinates in one

of our data sets. Here, small and large particles are visible and are color-coded based on

their mobility over a duration of 30 s. Panel (a) shows the radial mobility of particles,

while panel (b) shows the tangential mobility. While a complete quantitative picture of the

observed mobility gradients could not be found, Fig. 3.19 shows qualitatively the behavior

of all samples studied. Radially, particles are slowest near the boundary, but the magnitude

of their motions increase toward the center of the droplet. Tangentially, particles are fastest

near the boundary, with a sharp decrease in mobility after approximately one large particle

radius. The direct observation of a dynamical gradient in our systems, we believe, provides

strong evidence for the existence of such gradients in confined polymeric and molecular
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glassformers.



Chapter 4

A Free Energy Landscape for Cage

Breaking of Three Hard Disks

4.1 Introduction

The concepts of potential and free energy landscapes for condensed matter systems

are appealing ones [23, 139, 140], and their use to understand the glass transitions in

various materials has received considerable attention [141–150]. Each spatial configuration

of a system can be assigned a potential energy based on how individual elements interact.

By incorporating other thermodynamic variables, such as entropy, one can associate free

energies with all points in phase space, which then constitute a free energy surface or

“landscape”. The temporal evolution of a system can be thought of as an exploration of

various topographical features on the energy surface, with relaxation events understood

as motions between adjacent energy minima [140, 151–153]. As the glass transition is

approached, the system finds itself in progressively deeper local minima on the landscape

until thermal energy is unable to excite the system over a barrier and into a lower energy

55
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state.

A complete energy landscape accounts for all degrees of freedom within a system,

each of which contributes two dimensions to the phase space (position, momentum). For

many body systems then, the complete energy landscape can be extraordinarily complex.

A central problem in using the energy landscape approach is minimizing the number of

“reaction coordinates” (likewise “order parameters”) while still adequately describing the

surface [153–161]. Studies often choose one or two coordinates of interest and examine

how the system evolves on representative 1D or 2D landscapes, though in some cases such

low dimensional projections may introduce artifacts or occlude important features of the

landscape [158–160].

These complexities aside, the typical picture of an energy landscape is one of a

surface containing hills and valleys. However, for the case of a purely hard core potential,

such as that of hard disks or hard spheres, this picture is incorrect. In a hard disk or hard

sphere system, the Helmholtz free energy is governed entirely by entropy,

F = −TS, (4.1)

to within an additive constant [18, 19]. All allowable configurations have identically zero

potential energy and are therefore equiprobable. Thus, in terms of the total configuration

space, the energy landscape is completely flat. Upon projection into a lower dimensional

space, however, hills and valleys related to entropic minima and maxima can arise [142,

143, 149, 162–164]. In this chapter, we will introduce a simple model system in order to

better understand how dynamics in glassy systems with hard core potentials relate to an

underlying free energy landscape.
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Figure 4.1: (a). Three distinguishable hard disks are confined within a circular corral of
fixed size. The variables h and θ are macrostate variables, to be defined later. Dashed
lines are lines of constant h and θ. (b). A 2D slice through the 6D configuration space
with constant (~r1, ~r2). The yellow region is accessible to the center of disk 3, whereas the
dark gray region is energetically forbidden. Upper and lower dashed lines represent possible
system macrostates at fixed h, where the length of the line determines the entropy of the
state.

4.2 Model System

Consider a system of N = 3 distinguishable hard disks confined within a hard-

walled circular corral, as illustrated in Fig. 4.1(a). The configuration space of this system is

six-dimensional (6D) and is completely described by all allowable combinations of (~r1, ~r2, ~r3).

However, as stated previously, the energy landscape is flat because each configuration is as

probable as any other. Now, we consider a 2D slice though the landscape examining all

configurations of ~r3 while (~r1, ~r2) are held at constant values, such as shown in Fig. 4.1(b).

All allowed configurations are again equiprobable and are indicated by the yellow region.

The landscape in this scenario remains flat. However, there are more configurations where

disk 3 exists along the upper dashed line than on the line between disks 1 and 2. If we

interpret these two lines as macrostates of the system, the entropy of the upper line is larger

and therefore the free energy in Eqn. (4.1) is lower. By considering all macrostates, that

is all lines parallel to those in Fig. 4.1(b), we obtain a 1D representative landscape with

variations in free energy.
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We can immediately relate these ideas to a dynamic version of the system in

Fig. 4.1(a), where all disks wander around the corral by means of Brownian motion. Here,

we may ignore degrees of freedom associated with momentum and focus only on the six

spatial components. As the system explores its 6D configuration space, disk 3 spends more

time in configurations with high entropy on the 1D landscape, such as along the upper

dashed line in Fig. 4.1(b). To transition into the lower cusped region, it must pass through

an entropic bottleneck. Of course, this behavior is not unique to disk 3 but applies to

all disks in our system. Hence, the transition of any single disk corresponds to the entire

system crossing a free energy barrier.

Prior to a barrier crossing event, the motion of each disk is localized by the presence

of other disks and the wall. As with individual molecules in dense liquids or particles

in a dense colloidal suspension, the disks can then be described as “caged” [102, 112–

114, 149, 165–171]. Deviations from strongly localized behavior, such as those during a

crossing event, are considered “cage breaking” [136, 168, 169, 172–176]. One can consider

both caging and cage breaking from the point of view of an energy landscape, where caging

is the motion of the system around some local minimum and cage breaking is the relaxation

over an energy barrier [164, 177–182].

In the spirit of [162, 163, 171, 172, 183], we introduce the minimal model system

illustrated in Fig. 4.1(a) in order to explore the relationship between caging and the free

energy landscape of a system with hard core potentials. Here, the free energy landscape

can be calculated by a direct enumeration of states, while a cage breaking event can be

simply described as one disk passing between the other two. One can imagine for a very

large corral, the motions of any disk would only rarely be influenced by the other disks or

the boundary, and so dynamics would be similar to those in a dilute colloidal suspension.

However, this picture changes for smaller corral sizes, or similarly higher packing fractions,
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where interactions between the disks or with the wall are more frequent and dynamically

restrictive. Though somewhat contrived, these purely geometric constraints are of similar

character to those encountered by real particles in a densely packed system, such as colloidal

supercooled liquids or glasses [184–187].

4.3 Simulation Details

Three hard-disks of radius r = d/2 = 1 are confined to a hard-walled, circular

corral of radius RC = 3 + ε. Choosing r = 1, we note that all lengths are by definition

in units of a particle radius. The minimum system size that permits cage breaking occurs

at ε = 0, where the three particles exactly fit across the diameter of the corral. During

each simulational run, we fix the value of ε and allow particles to execute Brownian motion,

described below. Each run consists of 108 Monte Carlo steps (mcs) for a particular value of

ε, during which each particle has the opportunity to make a displacement. Values of ε are

chosen within a range of ε ∈ [0.037, 10.0].

To simulate Brownian dynamics, displacements for each particle at every time

step in the x− and y−directions are sampled from a Gaussian distribution with variance

σ2 = 2D = 1× 10−3. A displacement is accepted if it does not result in particle-particle or

particle-wall overlap, otherwise the offending particle remains fixed for that time step. This

results in an RMS displacement of approximately ≈ 2% of a particle diameter at each time

step. The value of D, and therefore the temperature, is constant across all simulations. The

order in which particles are sampled is randomized at each time step and satisfies detailed

balance [188]. For the stated value of D, the fraction of accepted displacements range from

0.954 at ε = 0.037 to 0.997 at ε = 10.0.
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Figure 4.2: Trajectories through h-space for (top-bottom): ε = 0.10, 0.20, and 0.61. Dotted
lines pass through h = 0 and dashed lines pass through h = ±2. The length of time between
crossing events is clearly a sensitive function of ε. Small fluctuations about h = 0 (such as
those in the boxed regions for ε = 0.20) are not considered as true cage breaking events.

4.4 Dynamics in 1D

To study the dynamics of this system, we first simplify the 6D configuration

space by projecting down to one dimension. We define a macrostate variable h, shown

in Fig. 4.1(a), as the distance of the center of disk 3 normal to a line segment drawn from

the center of disk 1 to that of disk 2. Put another way, if a line drawn from the center of

disk 1 to that of disk 2 defines the positive x-axis of a coordinate system, h is given by

the y-coordinate of disk 3. Therefore, h can take positive or negative values, which from

geometry are limited to the range [−hmax, hmax], where hmax = 2 + ε+
√

3 + 4ε+ ε2. This

definition allows for a cage rearrangement to be described as the system passing through

h = 0, regardless of which particle passes between the others. Finally, we note that this

definition maps all rotationally symmetric states to the same value of h.

Shown in Fig. 4.2 are trajectories in h-space for three values of ε. As ε increases

from top to bottom, the length of time between cage breaking events decreases, as one
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Figure 4.3: Mean-square displacement in h-space for systems with (bottom to top, dark
blue to light blue) ε = 0.045, 0.06, 0.10, 0.15, 0.25, 0.40, 0.61, 1.0, 2.0, and 4.0. Dashed
line has a slope of one.

would expect. For these and all other trajectories, we find systems spend the majority of

time localized around h = ±2, commensurate with a particle diameter. The strength of

the localization can be inferred from the fluctuations about h = ±2, which increase with

increasing ε. Hence, as the system size increases, the strength of the localization decreases

and cage breaking events become more frequent.

To quantify motions in h-space, we define a one-dimensional mean-square displace-

ment (MSD), 〈∆h2(∆t)〉 = 〈[h(t+ ∆t)− h(t)]2〉, where the average extends over all initial

times t. Shown in Fig. 4.3 are 〈∆h2(∆t)〉 for various ε. For all system sizes, we observe

diffusive behavior on short time scales such that 〈∆h2(∆t)〉 ∝ ∆t, however effects of finite

system size are apparent from differences in the intercept at ∆t = 1, as will be discussed

shortly.

For the largest ε, 〈∆h2(∆t)〉 retains diffusive behavior until finally plateauing due

to the finite size of the system. However, the onset of distinctly subdiffusive behavior and

development of increasingly long plateaus are apparent as ε is decreased. For the smallest

values of ε in Fig. 4.3, 〈∆h2(∆t)〉 is qualitatively similar to the MSDs of supercooled liquids
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and glass formers, where the plateau indicates timescales over which caging occurs. The

upturn of 〈∆h2(∆t)〉 indicates that cage breaking eventually occurs for all systems.
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Figure 4.4: (a) Short time diffusion coefficient. (b) Short time diffusion coefficient scaled
by squared system size. (c) Average time between cage breaking events. Error bars are
calculated from the statistical uncertainty based on the number of events. Where not visible,
error bars are smaller than the symbol. (d) Height of the free energy barrier as a function
of ε. Circles are the results from simulations and the solid line is from the calculations
described in Sec. 4.5. Dashed line grows as ln [ε−7/2] and shows scaling behavior as ε→ 0.

Shown in Fig. 4.4(a) are the short time diffusion coefficients in h-space, defined

as,

Dh =
〈∆h2(∆t = 1)〉

2
. (4.2)

In Cartesian space, the short time diffusion coefficient is a constant with no spatial or

system size dependence. In our 1D coordinate system, however, the diffusion coefficient

becomes a function of space (discussed in Sec. 4.5) and system size. For small systems, Dh

is relatively constant, though we do find a weak linear dependence on hmax (not shown).
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As ε increases, however, Dh increases without bound as a consequence of our definition of

h. To illustrate why Dh increases with ε, consider a large system where two particles are

near to each other, while the other is an appreciable distance away. In this case, a small

displacement of one of the proximal particles in Cartesian space can translate into a very

large change in h. Hence, the unbounded increase of Dh with ε is not surprising. If the

diffusion coefficient is normalized by the squared system size, however, as in Fig. 4.4(b),

we find a trend opposite to that seen in (a). These values at small ε are again relatively

constant, but decrease significantly as the system size increases. Thus, as ε increases, the

system explores h-space more quickly, but relative to the size of the system, the exploration

of space occurs slower.

To quantify a relaxation time scale, or the time the system spends caged, we

define a transition time scale τ as the average time needed to cross h = 0 from positive

h to negative h, or vice versa. As highlighted in Fig. 4.2, there can be small fluctuations

about h = 0 that are not true cage breaking events. To minimize biasing τ toward lower

timescales due to this sort of rattling, we stipulate that once h = 0 is crossed, the system

must move a further distance l∗ before returning. Otherwise, no crossing event is registered.

If F (h) defines the free energy landscape (see Sec. 4.5 for more details), the distance l∗ is

calculated as

l∗ =


2∫
−2

h2 F (h) dh

2∫
−2

F (h) dh


1/2

. (4.3)

As will be discussed in Sec. 4.5, the height of the energy barrier decreases with system size

but extends over a domain of [−2, 2] for all systems. Hence, Eqn. (4.3) provides a consistent

length scale for where the energy barrier drops to ≈ 3/5 of its peak value (further details

of calculating FB are given in Sec. 4.5). Shown in Fig. 4.4(c), as ε decreases from 1 toward
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0.1, the relaxation time increases, by approximately two orders of magnitude, and continues

to grow dramatically as the system becomes smaller. The smallest relaxation time occurs

when ε ≈ 3.0. For ε > 3.0, relaxation times increase with increasing system size. Here,

the motion through the landscape is limited only by diffusion, which shown in Fig. 4.4(b),

decreases with increasing ε.

4.5 Energy Landscape

From Eqn. (4.1), determining the energy landscape is only a matter of calculating

the entropy for each macrostate h. For simplicity, we set kBT ≡ 1 and write the free energy

of a state relative to the ground state as,

F (h) = −T [S(h)− S0]

= − ln [n(h)/n0], (4.4)

where 0 subscripts refer to the ground state at a given ε, and n(h) is the number of states that

map to the same h. We calculate the number of states or multiplicity n(h) by integrating

over the space of allowed configurations Ω of the three disks while maintaining a fixed h.

In general, this can be written

n(h) =

∫
Ω

d~r1 d~r2 d~r3 δ[h−H(~r1, ~r2, ~r3)]. (4.5)

where the function H(~r1, ~r2, ~r3) calculates the value of h given the coordinates of the three

disks, and δ(h) is the Dirac delta function. The expression in Eqn. (4.5) can be reduced

to a 1D integral which we integrate numerically. We then calculate F (h) using Eqn. (4.4).

Further details of calculating n(h) are given in Sec. 7.1.

To determine the distribution n(h) from simulations, we directly count the number
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Figure 4.5: Comparison between theoretical energy landscapes (solid lines) and results from
simulations (symbols). Circles: ε = 0.06, squares: ε = 0.25, triangles: ε = 1.00.

of states by constructing histograms of h with small bins [189]. At this point, F (h) can be

computed directly using Eqn (4.4).

In Fig. 4.5, we compare analytical calculations of energy landscapes (solid lines)

to those resulting from simulations (symbols). In all cases, the agreement between theory

and simulation is excellent and so we are confident that the number of simulation steps ade-

quately samples the configuration space. Energy landscapes for all values of ε are symmetric

about h = 0 and are double-welled, with infinitely high barriers at h = hmax, corresponding

to particles being unable to escape the corral. The height of the energy barrier FB, shown

in Fig. 4.4(d), increases as ε decreases and diverges as ε → 0. As ε → 0, the height of the

barrier grows as ln
[
ε−7/2

]
, which can be predicted analytically and is described in Sec. 7.1.

The most probable h for any corral size occurs at h = ±2, as indicated by locations

of the minima in Fig. 4.5. Inspecting Fig. 4.1(b), we see that there are more ways to place

disk 3 at a value of h corresponding the cusp of the allowed region than anywhere else. For

|h| < 2, the number of states is limited by configurations where particles overlap, whereas

this constraint disappears for |h| ≥ 2.

Given the energy landscape, we can now ascribe the localization about h = ±2 seen
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Figure 4.6: Symbols: Measured relaxation time as a function of theoretical free energy
barrier height. Solid line is 378 exp (βFB), with β = 0.98± .04, and comes from a weighted
fit to data where FB & 7.0. To within statistical error, transition times grow Arrheniusly
at these larger FB.

in Fig. 4.2 to the system being trapped in one of two local energy minima. Furthermore,

we see in Fig. 4.5 that the landscape broadens outward as ε increases, which explains the

increase in fluctuations shown in Fig. 4.2. Inspecting Fig. 4.3, we see that a longer plateau

in 〈∆h2〉 equates to a larger free energy barrier, and thus corresponds to the system being

constrained at low ε and short times to explore only those regions near a minimum in the

energy landscape. Given enough time, a large thermal fluctuation allows the system to

cross the energy barrier, producing the upturn in 〈∆h2(∆t)〉.

We are also now in a position to relate the energy landscape to the previously

measured relaxation times. Shown in Fig. 4.6, we find that these relaxation times scale

Arrheniusly with barrier height, to within statistical error, when FB & 7.0 (ε . 0.15).

Large FB correspond to small ε, and as shown in Fig. 4.2, fluctuations about |h| = 2

decrease with decreasing ε. Hence, for large values of FB, the system finds it difficult to

explore large values of |h| and the dominating factor in relaxation is the height of the energy

barrier.
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Figure 4.7: First derivatives of F (h) for ε = 0.10 (solid line), 0.31 (dotted line), and 0.62
(dashed line). Discontinuities exist at h = ±2. Additionally, a discontinuity exists in the
second derivative at h = ±

√
3, as indicated by the arrow.

When FB is smaller, ε is larger and fluctuations about |h| = 2 are much more

significant. In these cases, the system finds it easier to wander to larger values of |h|

and must first diffuse toward the barrier before crossing. This accounts for the deviation

from Arrhenius behavior toward longer relaxation times at smaller FB. When FB . 1.0,

relaxation becomes essentially independent of the barrier height and instead depends only

on diffusion and system size.

In the overdamped limit of Brownian motion, Kramers rate theory [190] states

that the time scale for crossing an energy barrier behaves as [191, 192]

τ ∝ (Dωmωb)
−1 exp (∆E/kBT ), (4.6)

where D is the diffusion constant, ωm and ωb are the curvature at the minimum and barrier,

respectively, and ∆E � kBT is the height of the energy barrier. In our case, ωm is not

defined. The energy landscapes shown in Fig. 4.5 are everywhere continuous, however they

are not everywhere differentiable. In Fig. 4.7, we show the first derivative of F (h) for

ε = 0.10, 0.31, and 0.62. As a consequence of confinement and the projection in h-space,
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Figure 4.8: Spatially dependent diffusion coefficients for (bottom to top) ε =
0.31, 0.70, and 1.40 for h > 0. Inset: a closer view of region near the kink in F (h).

a kink in the free energy curve arises for all systems at h = ±2, and thus the first spatial

derivative of free energy is discontinuous. The origins of the discontinuities are discussed

in the appendix. Though the curves are steep, we point out that all values of dF/dh in

Fig. 4.7 are finite. The discontinuity in dF/dh shows that ωm is not defined and so the

minimum cannot be approximated as harmonic. Thus, simple expressions from Kramers

rate theory are not able to predict the transition times shown in Fig. 4.6. Additionally for

all systems, we observe a kink in dF/dh at h = ±
√

3, and therefore the second derivative

of the free energy d2F/dh2 is discontinuous at these points.

Shown in Fig. 4.8 for ε = 0.31, 0.70, and 1.40, the diffusion coefficient in h-space

is spatially dependent. We calculate a spatial diffusion coefficient, Dh(h) as in Eqn. (4.2),

over a range [h− δh, h+ δh], where δh is hmax/100. Near h = ±2, we measure the limiting

value of the variance up to but not including these points. The spatially dependent diffusion

coefficients appear to be continuous over all permitted values of h. To within our resolution,

however, we cannot discern whether or not Dh(h) is everywhere differentiable.

Our focus thus far has used h as a means of capturing the relevant cage breaking

dynamics, but of course, one can imagine many options when reducing the configuration
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space from six dimensions down to one. For consistency, it is worth checking that the results

shown above are not dependent on the choice of variable. We thus define a second variable

θ, shown in Fig. 4.1, that describes the angle between vectors ~r21 = ~r2−~r1 and ~r31 = ~r3−~r1.

A cage breaking event can then be defined when the system crosses θ = 0 or θ = ±π. Free

energy landscapes in θ-space are shown in Fig. 4.9(a) for ε = 0.10, 0.31, and 0.62 [193]. We

find the energy landscape is again double-welled, reflecting the two possible caged states,

and has even symmetry about θ = 0 between [−π, π]. Here, unlike F (h), we find that the

locations of the minima in the energy landscape are not constant but move to smaller values

of θ as ε increases. For example in Fig. 4.9(a), minima shift from θ = ±.245π at ε = 0.10

to θ = ±0.225π at ε = 0.62.

As shown in Fig. 4.9(a), there are two energy barriers in θ-space as opposed to

the single barrier in h-space. While the representation has changed from variable h to θ,

the fundamental problem of caging has not, i.e. cage breaking is equally difficult or equally

easy independent of the representation. Hence, for these measurements of energy to be

consistent, there must be a relationship between the energy barriers measured in the two

different coordinate systems.

In Fig. 4.9(b), we show the height of the free energy barriers θ-space ε as a function

of the previously measured barrier heights in h-space. The heights of the barriers are

determined from the same simulation data that was used to calculate F (h). To calculate

FB(θ), we consider the probability that the system is poised to cage break, either at θ = 0

or θ = π. This yields an average barrier height

FB(θ) = − log {[n(0) + n(π)]/[2n0]}. (4.7)

As shown in Sec. 7.1, n(0) = 4n(π). Using this fact, we only measure n(0) and n0 to compute

FB(θ) in Eqn. (4.7). The heights of the energy barriers in θ-space shown in Fig. 4.9(b) are



Chapter 4: A Free Energy Landscape for Cage Breaking of Three Hard Disks 70

0 2 4 6 8 10 12
0

2

4

6

8

10

12

-1.0 -0.5 0.0 0.5 1.0
0

2

4

6

8

 

F
(θ

 )

θ/π

(b)

F
B
(θ

 )

 F
B
(h)

(a)

Figure 4.9: (a) Free energy landscape in terms of θ for ε = 0.10 (solid line), 0.31 (dotted
line), and 0.62 (dashed line). (b) Heights of energy barriers for all ε in θ-space versus
the barrier height in h-space, calculated as described in the text. Error bars indicate the
uncertainty in local quadratic fits of n(0) and n0. Dotted line is FB(θ) = FB(h).
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Figure 4.10: First derivative of F (θ) for ε = 0.10 (solid line), 0.31 (dotted line), and 0.62
(dashed line). All first derivatives exhibit a subtle kink at θ = ±π/3 indicated by the arrow.
Horizontal dashed-dotted line is at dF/dθ = 0, and helps illustrate the gradual movement
of the minimum to smaller values of θ for increasing ε.

in excellent agreement with those using h as a coordinate. The consistency between these

two measurements demonstrate that both coordinates adequately describe caging and that

the measured free energies are indeed those relevant to cage breaking in our system.

As in the case of F (h), F (θ) is everywhere continuous. We show in Fig. 4.10 the

first derivative of F (θ). Here, curves are obtained by numerically differentiating those in

Fig. 4.9(a). In contrast to F (h), dF/dθ is everywhere continuous, and so F (θ) is also every-

where differentiable. Without an analytical calculation of F (θ) we cannot draw definitive

conclusions about the continuity of d2F/dθ2. However, we do find for each ε the hint of a

subtle kink in dF/dθ located at θ = ±π/3, as well as a second ε-dependent region where the

slope of dF/dθ changes sharply, e.g. at approximately θ = 0.16π for ε = 0.10 in Fig. 4.10. As

in h-space, diffusion in θ-space also exhibits a complicated spatial dependence (not shown).

One assumption underlying Eqn. (4.6) is that D is spatially independent. Predictions for τ

which incorporate spatially dependent diffusion are highly non-trivial [192].
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4.6 Discussion and Conclusions

We have introduced a model system composed of three hard disks confined to a

circular corral. Though simple, this system exhibits caging and cage breaking behaviors,

reminiscent of dense liquids, and allows us to exactly calculate a free energy landscape in

terms of a single system coordinate. Respectively, caging and cage breaking can then be

understood as the system becoming trapped in local energy minima and eventually being

thermally excited over an energy barrier.

As the size of the system decreases, exploration of the configuration space is in-

creasingly hindered by disk-wall and disk-disk interactions, though cage rearrangements do

eventually occur for all ε > 0. Arrhenius scaling describes the transition time τ between

wells when the energy barrier is large and the system is small. However, this scaling fails

for smaller energy barriers, when diffusion becomes the limiting factor in relaxation.

The coordinate(s) one uses to express the energy landscape must capture the

behavior one is studying [153–161]. Those used in the text successfully describe motion

from one cage to the other, however, there are any number of coordinates one could use

that bear no relevance to caging. For example, the collective radius of gyration of the disks

for configurations near and far from cage breaking may be equal. In the same respect, a

particular value of h tells one very little about the actual configuration or spatial location

of the disks. Furthermore, that caging can be described successfully in h-space or θ-space

demonstrates that such projections of the landscape to a lower dimension are not necessarily

unique.

Depending on the choice of coordinates, the energy landscape of hard disk and hard

sphere systems may be locally non-differentiable. This observation highlights the notion that

projection of a many dimensional landscape down to a lower dimensional representation may
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introduce artifacts [158–160]. For systems with N > 3, it is probable that discontinuities

in spatial derivatives of free energy disappear completely, or perhaps are only present for

higher order derivatives.

For any purely soft core potential, the observed discontinuities will disappear. For

a potential more representative of colloidal suspensions, such as a hard core potential with

short ranged repulsion [35, 194], we expect the essence of our results to be valid, but in need

of some modification. For example, a short range repulsion characterized by a length λ will

not significantly affect the free energy when cage breaking occurs at particle separations

larger than λ. In these cases, the free energy will be governed essentially by entropy and

our results should apply. For more confined systems, i.e. when particle separations are

. λ during a cage break, whether or not the free energy is dominated by entropy or the

potential will depend entirely on the details of the potential. We are currently investigating

these scenarios.

It is conceivable that one could construct macrostate variables analogous to h to

describe 3D systems. In a system of N = 4 hard spheres confined to a spherical corral, the

12D configuration space again leads to a tortuous but flat energy landscape. One possibility

in this case is to calculate h3D as the height of one particle above the plane formed by the

remaining three, thus reducing the 12D configuration space to 1D. A cage break could then

be identified as h3D crossing 0, similar to our present study.

For systems where N � 4, one can imagine a projection to a lower dimensional

space where the free energy landscape becomes nontrivial and meaningful, in the same

manner as the projection from 6D to 1D in our model. Such a projection would reduce the

dimensionality of the space to some fraction of 3N , however, we suspect that any useful

projection would remain O(N). Given that cage rearrangements in real systems near the

glass transition can involve many more than 3 or 4 particles [102, 137, 174, 176, 182, 195],
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the variables describing these systems are likely to be complex functions of many particle

coordinates, and we do not foresee that such an approach would be tractable in practice.

Our present work with a model system is meant to demonstrate that such projections are

conceptually possible and in fact necessary for a simple picture of free energy landscapes to

be applicable to systems with hard core potentials.



Chapter 5

Tracking Rotational Diffusion of

Colloidal Clusters

The following chapter describes a computational method that can be used to com-

pute and/or remove 2D and 3D rotational motions of groups of tracked particles. The

technique was developed initially to remove rotational drift/diffusion of colloidal particles

confined within emulsion droplets, as described in Chap. 3. During the same time I began

work on confinement, Kazem Edmond began research on rotational diffusion of colloidal

clusters in glassy systems and, at the time, the Weeks Lab did not have tracking algorithms

for that purpose. However, at its core, the method I’d used to remove rotational motion

for my project was precisely what Kazem required to study rotational diffusion. This col-

laboration led to thorough study and publication of the technique I’d developed [130] and

two subsequent publications where the technique was used [196, 197]. All figures shown in

this chapter appeared originally in [130] and are reproduced here with permission.

75
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5.1 Introduction

Suspensions of spherical colloidal particles have proven a valuable model system for

understanding many complex phenomena. Perhaps most notably, the model has provided

insight into dynamical processes within different phases of matter [34, 39, 41, 43, 44, 137,

198, 199], as well as various mechanisms involved during phase transitions [42, 45, 200–203].

A combination of digital video microscopy and computerized particle tracking algorithms

[204, 205] has allowed for the direct visualization of such colloidal systems and measurement

of static and dynamical properties under many experimental conditions [131, 206–209].

Given the spherical symmetry of the particles, most previous studies have understandably

focused only on understanding translational dynamics, though there have been a few studies

on rotational dynamics in dilute systems of spheres [210, 211], and on the translational and

rotational dynamics of anisotropic colloidal particles [212–215].

Within the past decade, researchers have developed a variety of techniques for

synthesizing clusters of colloidal particles with a wide range of reproducible morphologies

[216, 217], several of which are shown in Fig. 5.1. Colloidal clusters have the potential to

extend the colloidal model past one of simple spherical particles and into a realm where the

collective dynamics of particles with complex shapes, more representative of molecules, can

be studied [218–220].

Conventional particle tracking methods [204, 205] are designed to follow the trans-

lational motions of individual particles, and so are immediately applicable to colloidal clus-

ters, provided the particles can be reliably distinguished. However, a description of dynamics

within systems composed of or including clusters is incomplete without knowledge of how

rotational degrees of freedom are explored. Such an understanding could provide further

insight into fundamental behaviors of systems with orientational order, such as liquid crys-
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3 µm

n = 4 n = 5 n = 6

Figure 5.1: Top: Volumetric images of colloidal clusters with n = 4, 5, and 6 from 3D
confocal micrographs. Images have been filtered and enhanced to allow easy visualization
of the 3-dimensional structures. Individual particles are approximately 2 µm in diameter.
Bottom: Ball-and-stick models of the clusters above. The cases n = 4 and n = 5 are
accurate representations of the simulated tetrahedra and pentahedra discussed in the text.

tals, or systems subjected to external fields and anisotropic flows [215]. To our knowledge,

there has been only one study that combined video microscopy with particle tracking to

measure the rotational motion of colloidal clusters [221], using different methods than those

described in this work. That study focused on dilute systems of planar clusters undergoing

two-dimensional diffusion near a boundary, and revealed a decoupling of translational and

rotational diffusion due to hydrodynamic effects.

We present here a simple and generalized method to track and calculate the two-

or three-dimensional rotational motions of clusters of colloidal particles. Our method uses

existing particle tracking routines and rigid body transformations to measure the changes

in orientation of a cluster over time. To demonstrate the effectiveness and accuracy of the

method, we simulate the motion of colloidal clusters under conditions that are relevant
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to microscopy experiments. We then use our method to measure the rotational diffusion

coefficient of a real colloidal cluster.

5.2 Calculating rotations

Our procedure for calculating rotational displacements of clusters is based on a

method by Challis for determining rigid body transformations between reference frames

[222]. Challis’ procedure was originally intended for comparing osteometric measurements

in biomechanical analyses. As we will show, the method can be intuitively adapted to

measure rotational dynamics. First, we give a brief reprise of Challis’ method, and then

describe how it is used to study the systems mentioned here.

5.2.1 Challis’ procedure for coordinate transformations

Given a set of points which have coordinates {xi} measured in one reference frame

and coordinates {yi} measured in a second frame, there exists a transformation

yi = sRxi + v, (5.1)

where subscript i refers to the i-th point in the set, s is a scale factor, R is a 3×3 rotation

matrix, and v is the vector separation of the two reference frames. For our purposes, we

may set the scale factor to unity and assume that both coordinate frames share a common

origin, thereby setting all elements of v to zero.

We are therefore left with

yi = Rxi, (5.2)

and only the rotation matrix to describe the transformation between coordinate frames.
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The rotation matrix is an orthonormal matrix with the properties

RR−1 = RRT = RTR = E, (5.3)

det (R) = +1, (5.4)

where E is the identity matrix and det () denotes the determinant.

For a set of n points, R can be calculated using a least squares approach. This

method minimizes the quantity

1

n

n∑
i=1

[yi −Rxi]
T [yi −Rxi] . (5.5)

Ignoring the factor of 1/n, expansion of Eq. (5.5) yields

n∑
i=1

(yi)
Tyi + (xi)

Txi − 2(yi)
TRxi. (5.6)

Given that all xi and yi are fixed, minimizing Eq. (5.6) is therefore equivalent to maximizing

n∑
i=1

(yi)
TRxi = Tr

(
RT

n∑
i=1

yi(xi)
T

)
= Tr(RTC), (5.7)

where C is the cross-dispersion matrix calculated from the sum of the outer products of yi

and xT
i

C =
n∑
i=1

yi(xi)
T. (5.8)

At this point, a singular value decomposition (SVD) is performed on C such that

C = UWVT, (5.9)

where W is a diagonal matrix containing the singular values of C, and U and V are
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orthogonal matrices. As was shown in [222], upon maximizing Eq. (5.7), R is given by

R = U


1 0 0

0 1 0

0 0 det(UVT)

VT. (5.10)

This procedure is applicable to all non-colinear sets of points with n ≥ 3.

5.2.2 Application to colloidal clusters

Particle tracking [204, 205] yields vector coordinates x′i for every particle i over

a distinct set of times. Hence, the first step in tracking rotational motion of a cluster is

to track the translational motion of each particle within the cluster. For each cluster, we

first determine the center of mass xCM at a given time and subtract this quantity from

the coordinates of particles belonging to the cluster, thereby removing any translational

motion. We are left with new coordinates xi in the center of mass frame,

xi = x′i − xCM . (5.11)

This step is equivalent to setting the elements of v to zero in Eq. (5.1). With translational

motion removed, we may apply Eq. (5.2) with a slightly different interpretation. Rather

than representing a transformation between coordinate frames, we may understand R as

describing the rotational trajectory of a particle with inital position x0
i to a final position

xi such that

xi = Rx0
i . (5.12)

Therefore, given the coordinates from a particle tracking experiment, we may use

Challis’ procedure, starting from Eq. (5.8), to calculate a cross dispersion matrix C and

subsequently perform a singular value decomposition to calculate a rotation matrix for each

pair of successive times [t, t+ ∆t]. With the complete set of rotation matrices, {Rk}, we
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may reconstruct the entire trajectory of a particle about the cluster center of mass by

computing the product of successive rotations. Given x0
i , the position of a particle at some

later time t can be calculated as

xi(t) = Rt−∆tRt−2∆t... R0x0
i =

∏
k

Rkx0
i , (5.13)

where the index k enumerates the rotation between successive times.

The advantage of calculating {Rk} is that it describes the collective behaviors of

particles within a cluster, rather than a property of any individual particle. For example,

knowledge of {Rk} for a cluster allows for immediate calculation of the motions of any

particular particle about the center of mass, or the motion of the cluster about any arbitrary

axis of rotation. Diffusive anisotropic clusters with large aspect ratios rotate more freely

about a long axis than about a short axis. Given {Rk}, however, one needs only the initial

orientation of these axes to compute and compare the motions around them. An additional

advantage of this procedure is that it is computationally fast, and the necessary linear

algebra routines are standardly included in most mathematical software suites.

5.3 Tests of the prescribed method

For simplicity and to better reproduce the data collection process in typical mi-

croscopy experiments, we adopt a length scale of microns and a time scale measured in

timesteps (ts), which is equivalent in microscopy to video frames or image stacks.

In conventional particle tracking experiments, it is important to minimize and un-

derstand the uncertainty, i.e. the noise, inherent in locating a particle. Typical microscopy

experiments combine high magnification optics with CCD cameras to record raw digital

images. In the absence of other sources of noise, the uncertainty in particle position, i.e.

the minimum noise level, depends on the optical resolution [pixels/distance] of the instru-
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mentation and the size [pixels] of the object being tracked. Standard image processing and

particle tracking techniques can locate the centers of particles to within ≈ 1/N of a pixel,

where N is the width of the object in pixels. Camera resolution varies between experi-

mental set-ups but is typically in the range of 0.2 µm/pixel. The minimum uncertainty in

particle position is the product of these factors. For example, observing a 10 pixel wide

object with a resolution of 0.2 µm/pixel leads to a lower limit of ≈ 20 nm uncertainty in

particle position. Other sources of noise, such as stray light entering the microscope, noise

within the CCD camera itself, etc., slightly increase the uncertainty in particle position and

further limit particle tracking resolution.

To test our method, we simulate the rotational Brownian motion of tetra- and

pentahedral clusters with different rotational diffusion coefficients, DR, and different levels

of noise, σx. We first generate noise-free cluster trajectories. For tetrehedra, we place

particles at initial coordinates

(R/
√

3) · (1,±1,±1),

(R/
√

3) · (−1,±1,∓1),

(5.14)

where R is the distance from a particle center to the cluster center of mass. In this work,

we study a range of R ∈ [
√

2,
√

10] µm. For pentahedra, we use initial coordinates

R · (1, 0, 0),

(R/2) · (−1,±
√

3, 0),

R · (0, 0,±1).

(5.15)

Once initialized, we evolve each simulation for 104 time steps.

At each time step, we select three random angles, α, β, γ, from a Gaussian distri-

bution with a standard deviation of
√

2DR. This distribution ensures that the simulated

dynamics will be in agreement with the Stokes-Einstein-Debye relation discussed later [Eq.
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(5.20)]. Each particle in a tetrahedron is rotated by an angle γ about the z-axis, then by an

angle β about the y-axis, and finally by angle α about the x-axis to produce the tetrahedron

at the subsequent time. The rotation matrices used are

Rx(α) =


1 0 0

0 cosα − sinα

0 sinα cosα

 , Ry(β) =


cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ

 ,

Rz(γ) =


cos γ − sin γ 0

sin γ cos γ 0

0 0 1

 . (5.16)

Thus, given an initial position vector x0, the subsequent position vector is x = RxRyRzx
0.

This method of generating rotational Brownian motion is not strictly correct for

the given pentahedral geometry as its motions cannot be generally characterized by a single

DR. However, using the publicly available package HYDRO++, we calculate the difference

in DR between long and short axes to be ≈ 2%. Given this small variation, the use of a

single DR to describe a pentahedron is a more than sufficient approximation for the purpose

of testing our algorithm, which after all does not require that the motions agree with the

laws of diffusion.

Trajectories generated in this way are noise-free in the sense that they are absent

of uncertainty in particle position to within machine precision. To mimic the type of exper-

imental noise previously mentioned, we post-process the trajectories by adding Gaussian

random numbers, with standard deviation σx, to the particle coordinates. The levels of

noise presented here correspond to uncertainties of σx ∈ {10, 30, 50, 70, 100} nm in the

x-, y-, and z-directions. Experimental uncertainties are typically within the range of 20-60
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nm, and so the levels studied here are relevant to microscopy experiments. After the noise

is added, we apply our method of measuring rotational motion in order to gauge the effect

of experimental noise on results.

5.4 Analysis of rotational motion

In this section, we calculate the rotational motions of simulated colloidal clusters

using the matrix methods described above. We focus on a method that uses the rotation

matrices to determine the motion of a fictional orientation vector attached to the cluster.

The rotational displacements of one or more such vectors about the center of mass can be

used to compare and contrast motions about different axes, which is especially useful when

the objects studied are anisotropic and motions about axes are expected to differ [223, 224].

We note that a second method exists to calculate rotational displacements using

solely the rotation matrix. This method determines the rotational axis from R and can then

be used to calculate the magnitude of an angular displacement. While a mathematically

direct and general approach, it describes only the average cluster dynamics and can provide

no insight into how motions about different axes vary. Given these limitations, we relegate

a description of this method to the appendix.

To analyze the rotations of a cluster, we consider the motions of an initial orien-

tational unit vector p̂0 fixed to the cluster. We determine its orientation at a later time t

by applying the set of rotations such that

p̂(t) =
∏
k

Rkp̂0, (5.17)

in a similar way as in Eq. (5.13). Although there are no constraints on what one may

select p̂0 to be, some choices may be more enlightening than others. For example, the

cluster n = 5 shown in Fig. 5.1 has distinct long and short axes, and so one expects slower
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diffusion about the short axis. To quantify how rotational dynamics about these axes differ,

one could choose two p̂0 to study separately: one choice of p̂0 perpendicular to the long axis;

a second perpendicular to the short. Such a procedure would yield information relating to

motions about the long and short axes, respectively.

In line with [223–225], we define a vector rotational displacement

~ϕ(t) =

∫ t

0
~ω(t′)dt′ (5.18)

in the time interval [0, t]. The vector ~ω(t′)dt′ has a direction given by p̂(t′)× p̂(t′+dt′) and

magnitude |~ω(t′)dt′| = cos−1 [p̂(t′) · p̂(t′ + dt′)], which is the angle subtended by p̂ during

this time interval.

To illustrate the meaning of ~ϕ(t), consider an object with constant angular ve-

locity ~ω = ωẑ. Over a time ∆t, the rotational vector displacement is given by ~ϕ(∆t) =

~ω∆t = (0, 0, ω∆t). Therefore in general, ~ϕ(t) has components in each of the Cartesian axes,

(ϕx,ϕy,ϕz), corresponding to cumulative rotations about those axes.

In Fig. 5.2(a), we show the orientational trajectories of particles within a simulated

tetrahedron projected onto the surface of a unit sphere. Fig. 5.2(b) shows 2D projections

of trajectories for two p̂0 through the rotation space described above. As shown in Fig.

5.2, even though the cluster is a solid body, trajectories of individual particles differ due to

rotations of the cluster about random axes.

Given the definition of ~ϕ(t) in Eq. (5.18), we may define an unbounded mean

square angular displacement (MSAD), akin to a translational mean square displacement,

as

〈∆~ϕ2(∆t)〉 = 〈[~ϕ(t+ ∆t)− ~ϕ(t)]2〉, (5.19)

where the angle brackets indicate an average over all equivalent lag times ∆t. In three
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(a) (b)

Figure 5.2: (a) Trajectories of particles within a simulated Brownian tetrahedral cluster
projected onto the surface of a unit sphere. Colors represent different particles, i.e. different
choices for p̂0. (b) 2d projection of two trajectories through rotation space (ϕx,ϕy). Colors
correspond to the same particles in (a). Both trajectories in (b) begin at (0, 0) and end at
open circles.

dimensions the Stokes-Einstein-Debye relation states that the MSAD grows as

〈∆~ϕ2(∆t)〉 = 4DR∆t, (5.20)

where DR is the rotational diffusion coefficient. In this paper, we focus on measuring the

MSADs of clusters, but we point out that other techniques exist to quantify rotational

dynamics. For example, by observing the decay of an orientational correlation function

〈p̂(t+ ∆t) · p̂(t)〉 one can measure DR [226, 227]. Our method can be applied, in this case,

to compute p̂(t) as in Eq. (5.17).

In Fig. 5.3(a) & (b), we show the MSAD of two simulated tetrahedral clusters

with diffusion constants 10−4 rad2/ts and 10−3 rad2/ts respectively and different levels of

noise. The influence of noise is apparent in Fig. 5.3 as deviations from linearity at small ∆t.

Eventually, the MSAD recovers the true diffusive behavior because the cluster has made

rotations large enough to distinguish from the noise.
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Figure 5.3: Mean square angular displacements of simulated tetrahedral clusters (R =√
3 µm) for different noise levels σx and diffusion coefficients of (a) 10−4 rad2/ts and (b)

10−3 rad2/ts. Open circles are the theoretical MSAD based on Eq. (5.20). Deviations
from linearity at small ∆t demonstrate the effect of noise when resolving small rotations.
Deviations at large ∆t, however, are the result of low statistics at these lag times.
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With no experimental noise, a log-log plot of MSAD as a function of ∆t will be

a straight line with a slope of unity, as indicated by the open circles in Figs. 5.3(a) &

(b). However, in the presence of noise in particle positions, rotations cannot be accurately

resolved below a certain threshold, Φ. For example, a stationary cluster will appear to make

small, but fictional, rotations as a result of this noise, and measurements of the MSAD will

yield

〈∆~ϕ2(∆t)〉 = Φ2, (5.21)

where Φ2 is independent of ∆t due of the lack of correlations in noise.

In the case of translational diffusion, one expects that the noise in each direction

will contribute an error of 2σ2
x to the mean-square displacement [204]. In terms of an angular

uncertainty, this contribution is diminished by a factor of R2, where R is the average distance

from a particle to the cluster center of mass. Our matrix method reduces this uncertainty

further by a factor of n. Thus, when only static noise is present, one expects for a diffusing

cluster

〈∆~ϕ2(∆t)〉 = 4DR∆t+ Φ2, (5.22)

where

Φ2 = 6σ2
x/nR

2. (5.23)

To test this assertion, we add noise to simulations of stationary (DR = 0) tetra-

hedral clusters and calculate the MSADs. As in Eq. (5.21), the MSADs are constant over

time. We take Φ2 to be the value of the MSAD as ∆t→ 0. Shown in Fig. 5.4(a), Eq. (5.23)

accurately describes the static angular uncertainty for a wide range of tetra- and penta-

hedral cluster sizes, R, and noise levels. Fig. 5.4(b) shows all of the previously measured

MSADs in Fig. 5.3 plotted with the noise subtracted. This precisely collapses the MSADs

to the true values in each case.



Chapter 5: Tracking Rotational Diffusion of Colloidal Clusters 89

10
-3

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
0

10
1

10
2

10
3

10
-4

10
-3

10
-2

10
-1

10
0

10
1

(b)σ
x
 (nm)

   10

   30

   50

   70

  100

 Φ
2

σ
x
/R

R
2
 (µm

2
)

(a)

 2

 3

 5

 7

 10

D R
 = 10

-4  ra
d
2  ts

-1  

 �
∆

ϕ
2
� 

- 
Φ

2

∆t (ts)

D R
 = 10

-3  ra
d
2  ts

-1

Figure 5.4: (a) Measured values of Φ2 for non-diffusing tetrahedral (solid symbols) and
pentahedral (open symbols) clusters. Colors indicate noise levels and symbols indicate
cluster size. Solid lines are the prediction Φ2 = 6σ2

x/nR
2. (b) Same data in Fig. 5.3 with

the appropriate Φ2 for each noise level subtracted.

Knowing how uncertainty in particle positions affects measurements of dynamics

quantities, such as the MSAD, is clearly important. However, one is typically unable to

define the noise level so precisely in experiments. As stated earlier, particle tracking reso-

lution depends on various experimental factors including particle size, optics, and the type

of camera used to record images. As shown in Fig. 5.3(a), for slowly diffusing clusters and

moderate-to-high noise levels, the measurements of the MSAD may not be representative

of the true dynamics until fairly large lag times.

In microscopy experiments, one can effectively increase the rotational signal-to-

noise ratio between each time step by imaging less frequently. Determining the appropriate

sampling rates in experiments can be done by estimating the noise level σx, the diffusion

constant DR and calculating an approximate Φ2. Diffusive motion will begin exceeding noise

when Φ2 ≈ 4DR∆t. Solving for ∆t then yields a reasonable sampling lag time. It is also

important to avoid undersampling, that is, too long a lag time. Doing so will make diffusive
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motion between images appear erroneously slow. We find that a good rule of thumb for the

upper limit on sampling time should be the time when the cluster has diffused ≈1 radian2.

Thus, an estimate for the upper limit is ≈ 1/4DR. However, as in all particle tracking

experiments, the time between images must be small enough that individual particles can

be confidently identified. This typically means that particles must be imaged before moving

a distance of one interparticle spacing [204].

5.5 Experimental application

Measurements of rotational motion of diffusive tetrahedral clusters have been per-

formed using the described method [217]. Real fluorescent tetrahedral clusters are synthe-

sized as in [217]. A cluster is composed of individual poly(methyl methacrylate) (PMMA)

spheres, each with a diameter 2.45 µm as measured by static light scattering (SLS). The

particles within a cluster are irreversibly bound together, but are sterically stabilized to

prevent the possibility of aggregation to other clusters. Dilute suspensions of clusters are

prepared in a mixture of cyclohexyl bromide (CXB) and cis-decalin (DCL) at a ratio of

85/15 (w/w) that closely matches both the density and index of refraction of the particles.

Clusters are imaged in 3D over time with a Leica TCS SP5 confocal microscope. We track

locations of the individual particles within a tetrahedron using standard particle tracking

routines [204, 205]. The uncertainties in particle position for these experiments are ≈ 30 nm

in the x- and y-directions, and ≈ 40 nm in the z-direction. Given these tracking resolutions

and assuming a maximally packed tetrahedron, from Eq. (5.23) we estimate the angular

resolution in this experiment as Φ ≈ 0.028 radians (1.6◦).

Once tracked, we calculate the translational MSD and the MSAD and determine

the translational and rotational diffusion coefficients, DT and DR, respectively. In three
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dimensions, the translational MSD is described by the Stokes-Einstein-Sutherland equation

〈∆r2〉 = 6DT∆t, (5.24)

while the MSAD is described by Eq. (5.20).

Hydrodynamically, tetrahedral clusters can be accurately modeled as spheres [228]

given the relation

dtetra = 1.844× dsphere, (5.25)

where dtetra is the effective hydrodynamic diameter of the cluster, and dsphere is the diam-

eter of the particles within the cluster. Theoretical translational and rotational diffusion

coefficients, DT and DR respectively, can be calculated using

DT =
kBT

3πηdtetra
(5.26)

DR =
kBT

πηd3
tetra

, (5.27)

where kB is Boltzmann’s constant, T is the temperature, and η is the viscosity of the

suspending solvent. The viscosity of the CXB/DCL mixture was measured at η = 2.18

mPas and experiments were performed at T = 295 K.

In Fig. 5.5, we show the MSD and MSAD of a diffusing tetradedral cluster. The

MSD corresponds to motions of the center of mass of the cluster, and the MSAD is an

average over the individual particle MSADs (i.e., using the initial orientations of the particles

as four separate p̂0). Solid lines are fits to the data over the indicated range 3 s ≤ ∆t ≤ 22 s

. As can be seen, both the MSD and MSAD are approximately linear only at small lag

times. This is because the data set used to make these measurements consists of only a
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Figure 5.5: Calculated MSD (blue squares) and MSAD (red circles) of a diffusing experi-
mental tetrahedral cluster. Solid lines are best fit lines over range of data used to determine
the respective diffusion coefficients.

single cluster for less than 300 timesteps (≈ 220 s). Diffusion coefficients are measured by

performing linear fits to the MSD and MSAD shown in Fig. 5.5 over the indicated range

and extracting the slopes of the lines.

Table 5.1: Measurements from Tracking a Tetrahedral Cluster

Diffusion Coefficient dtetra (µm) dsphere (µm)

Trans. (3.85± 0.49)× 10−2 µm2/s 5.12± 0.67 2.78± 0.36
Rot. (4.93± 0.49)× 10−3 rad2/s 4.94± 0.16 2.68± 0.09

Shown in Table 5.1 are the measured translational and rotational diffusion coeffi-

cients. Values of dtetra are calculated from Eqs. (5.26) & (5.27) using known experimental

conditions, and values for dsphere then follow trivially using Eq. (5.25). Ideally, the sizes

calculated from translational motions would be identical to those calculated from rotational

motions. As shown, these values agree to within 4%. Such good agreement between these

two measurements demonstrates our ability to track translational and rotational motions
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of clusters simultaneously.

Previous work using standard particle tracking and our matrix method reported

particle diameters ≈ 14% larger than the 2.45 µm measured by SLS [217] . A reanalysis

of the data with improved particle tracking, presented above, increases the accuracy of

the particle diameter measured using our matrix method to within ≈ 9%. The remaining

disagreement is likely due to multiple factors, including the fitting routines used in SLS and

swelling of particles when in a solvent of CXB/DCL. SLS measurements were performed

with suspensions in pure DCL, which is not known to swell particles.

5.6 Discussion and Conclusions

We have presented a simple method of tracking the rotational motions of colloidal

clusters. Our method implements conventional particle tracking routines to determine the

locations of individual particles within a cluster and uses this information to compute rigid

body transformations that describe changes in a cluster’s orientation over time. The set

of matrix transformations constitutes a global description of a cluster’s motion during the

course of an experiment or simulation and allows one to calculate rotational dynamics

about any arbitrary axis. The least squares minimization used in this method considers

the motions of each individual particle in calculating the rotation matrix, and therefore

measurements of rotational displacements are less sensitive to tracking noise. Addition-

ally, precision in determining angular displacements increases with cluster size R. When

combined, the resolution of measuring angular displacements scales with 1/nR2.

Though constructed specifically for tracking colloidal clusters, we emphasize that

our method is not limited to these systems, but is applicable to following the rotational

motion of any body over time, providing that at least three distinct noncolinear points
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in the body can be reliably distinguished. Because the accuracy of tracking a rotation

depends on the number of particles and the size of the body, the possibility exists that this

method can be adapted to many-body systems where each particle diffuses independently

of the rest while the system itself also undergoes bulk rotations. In this scenario, diffusive

motions are random and can therefore be treated as noise while calculating {Rk} for the

system. The rotation matrices can be inverted and, in a manner similar to Eq. (5.13),

the bulk rotations can be removed, leaving only uncorrelated diffusive motion. Thus, this

method is also applicable to determining particle motions in rotating coordinate frames.
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Summary and Outlook

In this dissertation, I have presented work that explores the dynamical behavior

of Brownian systems comprised of particles with hard core potentials. While each project

is fairly distinct from another, each focuses on understanding a fundamental aspect of the

glass transition. While my research relates most immediately to colloidal suspensions, I have

discussed how this work is relevant to other glass forming materials and have (hopefully)

demonstrated that the glass transition is more “universal” than previously known.

6.1 Confinement

In the experimental portion (Chap. 3), hard sphere colloidal particles were used

as a model glass forming material and were confined within emulsion droplets. In doing so,

I was able to study how particle dynamics in the droplets varied with the viscosity of the

external medium. As in molecular liquids and polymers, it was found that these samples

respond to confinement differently depending on the material to which they are confined.

Dynamics were slowed more when the viscosity of the external phase was higher. I also

observed directly a gradient in particle mobility as a function of distance to the boundary.

95
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Features of this gradient change depending on both system size and the viscosity of the

external phase, and these variations were determined to be the origin of the differences

in dynamics between samples. For polymers and molecular glass formers, strong evidence

exists in support of dynamical gradients near interfaces [77, 78, 82, 83, 121, 122]. Fur-

thermore, it is believed that interactions between a sample and the confining material can

modify these gradients [69, 79, 82, 83]. These effects are precisely what has been observed

in my experiments and are, I believe, provide further strong evidence for the presence of

such effects in other confined glass formers.

I was limited by several experimental factors from studying these systems in further

detail. Perhaps the largest obstacle is that of difference in index of refraction between the

suspension and the external phase. Refractive indices need to be closely matched to see deep

within a sample using confocal microscopy. For my materials and samples, I was limited to

studying droplets with radii ≈ 16 µm, hence I could not determine whether or not the high

φ data given in Fig. 3.10 converge at larger R.

Future experiments of this type would benefit from finding an external phase with

a refractive index that more closely matches that of the suspension, allowing one to study

larger droplets with confocal microscopy. Additionally, external phases with both smaller

and larger viscosities would allow one to explore the viscosity dependence more fully. It

would also be beneficial to improve upon the method of making colloid-filled emulsion

droplets. As discussed, droplets were made by mixing the suspension with the external

phase in a vial and shaking by hand. Microfluidic techniques could perhaps be used to

produce droplets of uniform size and more uniform volume fraction. If the viscosity of the

external phase could be increased by say an order of magnitude, such microfluidic techniques

would likely be necessary to make droplets at all.
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6.2 Free Energy Landscapes

Chapter 4 discusses the results of simulations and theory to describe how dynamics

in a model system of three confined hard disks relate to an underlying energy landscape.

For systems of hard disks and hard spheres, the free energy landscape is flat. My approach

in this work was to project the complete 6D configuration space down to 1D, and in doing

so one obtains a representative free energy landscape with energy maxima and minima. I

found that when the disks are highly confined, the average time the system spends in a

caged state scales Arrheniusly with the height of the free energy barrier. I also showed that

as a consequence of projecting to a lower dimensional phase space, features like diffusion

become non-trivial to describe in terms of the space.

Figure 6.1: Experimental system similar to the one used in simulations in Chap. 4. Here,
3 µm diameter silica particles are sedimented to a glass coverslip. Laser tweezers are used
to approximately fix particles at the edge into a circular corral. The three particles inside
are allowed to diffuse freely. Data courtesy of Ian Williams.

In collaboration with Ian Williams and Paddy Royall at the University of Bristol,

we have recently begun work studying an experimental system similar to the one in Chap. 4.

Shown in Fig. 6.1, 3 µm silica spheres are sedimented to a glass coverslip, and outer parti-

cles are held in place using laser tweezers while the inner three particles can diffuse freely.

The spheres in this experiment approximate the disks used in simulations, and it will be

interesting to learn how accurate our simulations and theory are compared to a real phys-
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ical system. This system is clearly similar in many respects, but also contains important

differences. First, there is some degree of polydispersity in the size of the spheres. Second,

depending on the solvent, silica spheres may be able to diffuse very slightly out of plane. We

do not believe that either of these factors will contribute significant differences to the results

from simulations. Polydispersity is likely to be very small, and the solvent can be tuned

so that diffusion out of plane is slight. The most important differences are likely to arise

from electrostatic interactions between the particles, which effectively changes hard spheres

into soft ones. In that case, whether or not our results adequately describe cage breaking

in this experimental system will depend entirely upon the details of these interactions. We

are also planning to begin soon simulations with potentials more representative of colloidal

particles, which are discussed in Sec. 4.6.

6.3 Cluster Tracking

The cluster tracking algorithm presented in Chap. 5 has since been used by Kazem

Edmond to track tetrahedral colloidal clusters in a glassy sea of colloidal spheres. The goal of

that project was to observe whether or not translational and rotational diffusion constants

decouple near the glass transition. This was indeed found to be the case, as has been

observed before in simulations and experiments of molecular liquids, and is currently under

review for publication in PNAS [197]. In addition to Kazem’s experiments, Nabiha Saklayen

has begun experiments to also investigate decoupling of rotational and translational diffusion

in a 2D granular system of vibrated clusters, and is using the same algorithms to track

these clusters. The goal of this project is to understand what role (if any) cluster shape

has on the observed decoupling. One can imagine that a cluster of many disks can be

formed into a variety of shapes representative of molecules, and how decoupling depends
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on purely geometrical properties of particles is unknown. Preliminary results indicate that,

for triangular trimers at least, decoupling in the granular system is similar to that seen in

colloids (and molecular liquids).



Chapter 7

Appendices

7.1 A Free Energy Landscape for Cage Breaking of Three

Hard Disks

Here we present a derivation of n(h) based on geometric arguments. Because the

distribution n(h) has even symmetry about h = 0, we directly treat only the cases where

h ≥ 0. All three disks are distinguishable and have the same diameter d. In simulations,

we used d = 2, but for clarity of presentation here we assume no specific disk size. The true

radius of the corral is RC = 3r + ε, but for simplicity, we define R = d+ ε as the radius of

the corral accessible to the centers of the disks, as illustrated in Fig. 7.1.

While Eqn. (4.5) is general and exact, it can be further simplified for our system.

Recalling that H(~r1, ~r2, ~r3) in Eqn. (4.5) maps all rotationally equivalent states to the same

h, we may consider only a single orientation of the system, such as the one in Fig. 7.1.

We constrain disks 1 and 2 to always lie along the same horizontal line of length L12, at a

distance y above the bottom of the corral. For a given h, disk 3 may lie anywhere along a

second horizontal line, L3, at a distance y + h above the bottom of the corral. Thus, the

100
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Figure 7.1: The radius of the solid outer circle is RC = R+ r and is the physical boundary,
but the centers of the confined disks can only exist a distance ≤ R from the center, indicated
by the dashed inner circle.

number of states n(h) can be written as the product of integrals

n(h) ∝
∫
dy

∫
dx1

∫
dx2

∫
dx3, (7.1)

and the problem becomes determining the appropriate limits of integration. For a circle

centered at (0, R), we determine the lengths of chords L12 and L3 to be

L12 = 2
√

2yR− y2 (7.2)

L3 = 2
√

2(y + h)R− (y + h)2. (7.3)

There are four cases that must be considered to calculate n(h) correctly, each of which is

geometrically distinct.

7.1.1 Case A (h ≥ d)

The first of four cases that must be considered is shown in Fig. 7.1. This is the

simplest case in that disk 3 never comes into contact with disks 1 or 2. Taking that the
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chord L12 begins at x = 0, the lower and upper bounds of x2 are, respectively x1 + d and

L12. The lower and upper bounds of x1 are 0 and L12−d. Disk 3 may exist anywhere along

the chord L3 independently of x1 and x2, so the lower and upper bounds for x3 are 0 and

L3. Therefore,

nA ∝
ymax∫
ymin

dy

L3∫
0

dx3

L12−d∫
0

dx1

L12∫
x1+d

dx2

=

ymax∫
ymin

dy L3

[
(L12 − d)2

2

]
. (7.4)

The lower limit ymin corresponds to when disks 1 and 2 are in contact at the

bottom of the corral. Geometry yields that this occurs at

ymin = R−
√
R2 − d2

4
(7.5)

In this case, the upper limit ymax can correspond to L12 = d or L3 = 0. The

correct value is the one that minimizes ymax and therefore keeps all particle centers within

the allowed region. Solving Eqns. (7.2) and (7.3) with these conditions yields, respectively,

ymax = min{2R− h,R+

√
R2 − d2

4
} (7.6)

7.1.2 Case B (h < d, x3 < x1 < x2)

When h < d, disk 3 may come into contact with either disk 1 or disk 2. In these

cases, n(h) must be split into parts and computed in a slightly different manner.

Three scenarios contribute to n(h): (x3 < x1 < x2) ; (x1 < x3 < x2) ; (x1 < x2 <

x3). The first and last of these scenarios are symmetric and contribute equally to n(h). The

second scenario is presented in sections 7.1.3 and 7.1.4.
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Figure 7.2: Case B.

For now, we consider only cases where the x-coordinate of disk 3 is not between

those of disks 1 and 2. Such a case is shown in Fig. 7.2. As stated, there are equally

as many states where x3 < x1 < x2 as there are for x1 < x2 < x3. Therefore, we will

calculate the multiplicity for only the states where x3 < x1 < x2, and finally multiply by

two to obtain the contribution to n(h). We define w as the minimum horizontal separation

between disks 1 and 3, given by

w =
√
d2 − h2 (7.7)

The minimum horizontal separation between disks 1 and 2 remains d.

We also define a quantity δ = (L3 − L12) /2, as shown in Fig. 7.2. If we take the

starting point of chord L12 to be 0, then the lower and upper bounds on x3 are, respectively,

[−δ, L12 − d− w]. From Fig. 7.2, the limits of integration for x2 are found to be [x1 + d, L12]

and those of x1 are [x3 + w,L12 − d]. Including the factor of 2 from the symmetric states,

Eqn. (7.1) becomes
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nB ∝ 2

ymax∫
ymin

dy

L12−d−w∫
(L12−L3)/2

dx3

L12−d∫
x3+w

dx1

L12∫
x1+d

dx2

= 2

ymax∫
ymin

dy

(
1

6

)(
L12 + L3

2
− d− w

)3

(7.8)

The limits of integration for y in this case are found from solving the equation

L3 = w + d+ δ (7.9)

which after substitution of the various terms yields a quadratic equation in y. The limits

of integration for y are the roots of this equation, such that the minimum root is ymin and

the maximum root is ymax.

7.1.3 Case C

(√
3d

2
< h < d, x1 < x3 < x2

)

3
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w

Figure 7.3: Case C.

Complementary to Case B, we now consider the case where (x1 < x3 < x2) and

√
3d/2 < h < d. As shown in Fig. 7.3, the minimum horizontal separation between disk

3 and one of the others is again w. Also, h is large enough that disks 1 and 2 may still

contact, hence the minimum separation between disks 1 and 2 is d.
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Proceeding as before, the limits of integration for x1, x2 and x3 respectively are

[0, L12 − d], [x1 + d, L12], and [x1 + w, x2 − w]. Eqn. (7.1) becomes

nC ∝
ymax∫
ymin

dy

L12−d∫
0

dx1

L12∫
x1+d

dx2

x2−w∫
x1+w

dx3

=

ymax∫
ymin

dy (L12 − d)2

[
(L12 − d)

6
−
(
w − d

2

)]
(7.10)

The lower and upper limits of y are found in the same way as in case A.

7.1.4 Case D
(
0 ≤ h ≤

√
3d/2, x1 < x3 < x2

)
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Figure 7.4: Case D.

The final case to be considered is also complementary to case B. In Fig. 7.4, disk

3 is again kept between 1 and 2, only now h is such that disks 1 and 2 never come into

contact. The horizontal separation between 1 and 2 is always ≥ 2w. Inspection again yields

the limits for x1, x2, and x3 which are [0, L12 − 2w], [x3 + w,L12], and [x1 + w,L12 − w].

Therefore, Eqn. (7.1) becomes
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nD ∝
ymax∫
ymin

dy

L12−2w∫
0

dx1

L12−w∫
x1+w

dx3

L12∫
x3+w

dx2

=

ymax∫
ymin

dy

(
1

6

)
(L12 − 2w)3 (7.11)

The lower limit ymin comes from geometry,

ymin = R−
√
R2 − w2, (7.12)

while, similar to case A, the upper limit ymax is the minimum value corresponding to either

L3 = 0 or the maximum root of L12 = 2w,

ymax = min{2R− h,R+
√
R2 − w2}. (7.13)

Given the results of all four cases, the generalized method to compute n(h) is given

by

n(h) =


nA, h ≥ d

nB + nC ,
√

3d/2 < h < d

nB + nD, 0 ≤ h ≤
√

3d/2

(7.14)

In general, the integrand for each case above is a cumbersome function of h, thus

we calculate n(h) using numerical integration. From Eqn. (7.14), the origin of the kinks in

F (h) become more apparent as transitions from one solution regime to another. For d = 2,

transition points occur at h = ±
√

3 and h = ±2, as described in the text.

7.1.5 Behavior of FB(h) as ε→ 0

To understand the growth of the energy barrier as ε→ 0, we only need the result

of Case D. Setting h = 0 gives w = d, and in the limit of small ε, transitions occur along
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the diameter of the corral, which implies L12 ≈ 2d+ 2ε. Eqn. (7.11) then becomes

n(h) ∝
ymax∫
ymin

dy

(
4

3

)
ε3 ∝ ε3∆y (7.15)

where

∆y = 2
√
R2 − d2 = 2

√
2dε+ ε2. (7.16)

In the limit ε → 0, ∆y grows as
√
ε and so n(h) ∝ ε7/2. Therefore, the barrier

height grows as

FB ∝ − log n(h) ∝ −7

2
ln ε (7.17)

as confirmed by the data shown in Fig. 4.4(d).

7.1.6 Barrier heights in θ

Here we give an explanation as to why n(0) = 4n(π). Shown in Fig. 7.5 are

configurations where θ ≈ 0 (top and middle) and θ ≈ π (bottom). At first glance, it might

appear that n(0) = 2n(π), given that there are two configurations for θ ≈ 0 and only one

for θ ≈ π. However, one must consider how the number of states changes in the vicinity of

0 and π. Thus we are interested in

lim
δθ→0

n(δθ)

n(π − δθ)
(7.18)

In the top of Fig. 7.5, disks 1 and 2 are separated by an average distance s and disks

1 and 3 are separated by 2s. The number of states where θ ≈ 0 is proportional to the product

of the arc lengths subtended by δθ for disks 2 and 3. Therefore, for the top configuration,

ntop ∝ (sδθ)(2sδθ) = 2s2δθ2. In the same way for the middle configuration, nmid = ntop.

Therefore, n(δθ) = 2ntop ∝ 4s2δθ2. For the bottom configuration where θ ≈ π, the number
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of states is again proportional to the product of the arc lengths, but in this case the distance

between disks 1 and 3 and disks 1 and 2 is s. Therefore, n(π − δθ) = nbot ∝ s2δθ2. Thus,

the ratio in Eqn. (7.18) is equal to 4.

1 2 3

1 3 2

3 1 2

s

2s

θ ≈ 0

θ ≈ π

δθ

δθ

δθ δθ

Figure 7.5: Configurations where θ ≈ 0 (top and middle) and θ ≈ π (bottom). Arc lengths
are proportional to the number of states n(δθ) and n(π − δθ).

7.2 Tracking Rotational Diffusion of Colloidal Clusters

Given a rotation matrix R, one can calculate at each time the axis of rotation û

and angular displacement ∆ϕ. In this notation, a rotational displacement can be described

by a vector ∆~ϕ = ∆ϕû, where û has components in each of the Cartesian axes.

A single rotation will, by definition, have no effect on the direction of û, therefore,

Rû = û. (7.19)

From Eq. (7.19), we see that the axis of rotation is an eigenvector of the matrix R with an

eigenvalue of 1. For a set of rotational displacements {Rk}, one may determine the axes of

rotation by calculating the eigenvectors and eigenvalues of the rotation matrices, searching
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for the eigenvalues equal to 1, and taking the corresponding eigenvectors.

To determine the size of the displacement about the axis of rotation, one defines

an arbitrary vector ŵ perpendicular to û. For simplicity, we choose ŵ to be perpendicular

to the x-axis (denoted by î),

ŵ =
û× î

|û× î|
. (7.20)

and apply the rotation matrix,

Rŵ = ŵ′. (7.21)

The magnitude of the displacement is the angle between ŵ and ŵ′, and can be computed

using the cross product relation

sin (∆ϕ)û = ŵ × ŵ′. (7.22)

Calculating displacements relative to the axis of rotation always results in displace-

ments greater than or equal to those measured relative to an arbitrary p̂0. For example,

measuring a diffusion coefficient of a spherically symmetric body with this method will yield

a value that is a factor of 3/2 of the actual diffusion coefficient in Eq. (5.20).

To understand the origin of this difference, consider the rotational axis û = ẑ, a

perpendicular vector ŵ = x̂, and an arbitrary vector p̂0 located at Cartesian coordinates

(sin θ, 0, cos θ), where θ is the spherical polar angle. If ŵ is rotated by an amount δϕu, the

angle between ŵ and ŵ′ is identically δϕu. However, the angle δϕ between p̂ and p̂′ can

be shown to be

δϕ = cos−1
(
sin2 θ cos δϕu + cos2 θ

)
(7.23)

For small δϕu, we can approximate δϕ as
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Figure 7.6: The MSADs of simulated pentahedra (R =
√

3 µm) with diffusion coefficients
DR = 10−4 rad2/ts and DR = 10−2 rad2/ts and σx = 50 nm. Dashed lines show the uncor-
rected MSAD described below and solid lines are corrected data, obtained by multiplying
the dashed lines by 2/3. Open circles are the theoretical MSAD from Eq. (5.20). We
note that we have approximated diffusive motion by a single DR for each pentahedron, as
described in section 5.3.

1− δϕ2 ≈ sin2 θ
(
1− δϕ2

u

)
+
(
1− sin2 θ

)
(7.24)

δϕ2 ≈ sin2 θδϕ2
u. (7.25)

If an average of Eq. (7.25) is taken over spherical coordinates, we are left with an

expression similar to an MSAD,

〈δϕ2〉 = 〈sin2 θ〉〈δϕ2
u〉 =

2

3
〈δϕ2

u〉, (7.26)

The factor of 2/3 arises for the same reasons in Perrin’s original derivation of ro-

tational diffusion [229]. Fig. 7.6 shows the MSADs measured in this way for two simulated

pentahedral clusters, using a single diffusion constant for each. As stated, one can correct

for the overestimation of motion by simply multiplying the MSAD by 2/3. The average
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MSAD for any body can be corrected in the same manner, however we stress that this

method returns only the average dynamics. While more direct than using an orientation

vector, characterizing anisotropic bodies in this way will convolute motions about separate

axes, and so will require some care when interpreting results.
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[113] L. Sjögren, “Numerical results on the density fluctuations in liquid rubidium,” Phys.

Rev. A, vol. 22, pp. 2883–2890, 1980.
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[183] S. Büchner and A. Heuer, “Metastable states as a key to the dynamics of supercooled

liquids,” Phys. Rev. Lett., vol. 84, no. 10, pp. 2168–2171, 2000.
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