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Abstract

Ambient Air Pollution Estimation using Bayesian Hierarchical Models

By

Nancy L. Murray

Ambient fine particulate matter less than 2.5 µm in aerodynamic diameter (PM2.5) nega-
tively affects various health outcomes. However, the sparsity of existing air quality monitors
greatly restricts the spatial-temporal coverage of PM2.5 data, potentially limiting the ac-
curacy of PM2.5-related health studies. Various methods exist to address these limitations
by supplementing air quality monitoring measurements with additional data. We aim to
contribute to these methods with ambient air pollution estimation using Bayesian models.
First, we develop a method to combine PM2.5 estimated from satellite-retrieved aerosol opti-
cal depth (AOD) and chemical transport model (CTM) simulations using statistical models.
In an application of estimating daily PM2.5 in the Southeastern US, the ensemble approach
outperforms previously developed spatial-temporal statistical models that use either AOD
or bias-corrected CTM simulations in cross-validation (CV) analyses. Second, we evaluate
the potential impact of differential exposure measurement error in PM2.5 when examining
differences in associations among subpopulations defined by spatial regions. In a simulation
study, we observe bias when performing stratified analyses by neighborhood-level socioeco-
nomic status measures when exposure granularity is ignored. Finally, we further develop the
ensemble approach for PM2.5 using multiple models and improve accuracy of methods by
incorporating covariates into the weights. Bayesian estimation is accomplished through data
augmentation with parameter expansion. The resulting weights are then used in a Bayesian
ensemble averaging framework to combine estimates across data integration techniques.
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Chapter 1

Introduction
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1.1 Particulate matter less than 2.5 µm in diameter

Ambient air pollution, consisting of particulate matter (PM), nitrogen dioxide (NO2), ozone,

and other components, has been proven to be harmful to human health. (Brunekreef and

Holgate, 2002; Hoek et al., 2013; Liu et al., 2013; Clark et al., 2014a; Evans et al., 2014;

Brook et al., 2017) Due to monitoring of these dangerous pollutants through monitoring

networks and through satellite data, researchers have been able to quantify the amount of

pollution on a given day and, therefore, can relate adverse health outcomes to these specific

pollutants in epidemiologic studies. (Bowatte et al., 2018; Jerrett et al., 2008; Miller and

Marty, 2010; Strickland et al., 2010; Sarnat et al., 2010) With these important relationships

in mind, air pollution can be curtailed through lowering emissions and modification of human

activity through air quality regulations and, as a result, related adverse health outcomes can

be reduced.

This dissertation focuses on PM2.5, or particulate matter (PM) less than 2.5 µm in aero-

dynamic diameter. PM2.5 consists of small particles and, subsequently, human exposure is

virtually unavoidable in ambient air. PM2.5 is composed of primary and secondary PM, with

primary PM emitted directly from sources like wildfires, erosion, and pollen and secondary

PM resulting from chemical reactions in the atmosphere. (United States Environmental

Protection Agency, 2009) The availability of accurate PM2.5 estimates is crucial in under-

standing the harmful effects of PM2.5. Throughout this work, we aim to combine strengths

of ground monitoring data, chemical transport models, and satellite data.

Population-based studies of air pollution and health contribute significantly to setting air

quality standards worldwide. However, these studies draw criticism due to the routine use

of regulatory monitoring networks to estimate exposures. Monitors in these networks are

preferentially located in specific geographic areas, often in areas with high pollution levels

and large populations. Due to the high cost of maintenance, PM2.5 monitor measurements

are spatially sparse, such that using these measurements over a large spatial domain may

be inappropriate, and are sometimes temporally available only in 1-in-3 or 1-in-6 days time



3

periods.

Chemical transport models (CTM) are a type of numerical model used in air pollution

research to estimate air pollution levels. CTMs are 3-dimensional deterministic models

that simulate gridded air pollution concentrations based on state-of-the-art knowledge on

drivers of air quality. (Chipperfield, 1999) Advantages of CTMs include their complete

spatial-temporal coverage and the ability to incorporate chemical and physical processes

associated with air pollution. However, CTMs are computationally expensive and often are

only available at crude spatial resolutions.

For PM2.5, remotely-sensed aerosol optical depth (AOD) has been examined extensively in

its ability to predict PM2.5 in combination with other meteorological and land use variables.

(Liu et al., 2005, 2009) AOD measures the degree to which aerosols prevent light from

penetrating the atmosphere. Some main advantages of satellite-based AOD are its fine

spatial resolution, global coverage, and public accessibility. However, remotely-sensed data

can suffer from missing data due to retrieval error and cloud cover.

CTMs and AOD values cannot be used directly in health analyses because complex

spatial-temporal bias exists when compared to ground-level monitoring data. (Marmur et al.,

2006; Friberg et al., 2017, 2018; Loŕıa-Salazar et al., 2017) Therefore, statistical data fusion

models that calibrate CTM and AOD data against observed measurements are needed.

(Berrocal et al., 2010; Chang et al., 2014)

1.2 Bayesian Spatial Hierarchical Models

Bayesian models provide a flexible framework to deal with the complexities of models with

space-time measurements. (Wikle et al., 1998) Due to the advances in computation over

the years, Bayesian methods can now be efficiently implemented for spatial data analysis.

(Hepple, 1995) Likelihood-based methods from a frequentist approach do exist. (Gelfand

et al., 2010) However, the main advantage of using Bayesian inference is the ability to bet-
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ter quantify estimation uncertainties, especially for the unobserved spatial-temporal trends.

In analyzing air pollution data, while an abundance of data is available from monitoring

networks, much of the geographical region is unmonitored.

While monitoring air pollution through satellite data has advanced over the years, it is

economically infeasible and improbable that we will have complete spatial-temporal coverage

in the near future. Various spatial models for air pollution exist, including Bayesian spatial

hierarchical models. These hierarchical models have multiple stages, with each stage building

upon the next as described below,

Data Model: Y |β, η, σ2
ε ∼ Gaussian(Xβ +Hη, σ2

ε I) (1.1)

Process Model: η|θ ∼ Gaussian(0,Σ(θ)) (1.2)

Parameter Model: [β, σ2
ε , θ] (1.3)

Notice here the inclusion of the latent process η , where η = (η(s1, ..., η(sn))′ and η(si) is a

Gaussian spatial process with spatial location si. Additionally, X is a matrix of covariates; β

is some vector of parameters; H connects the observations Y to η; σ2
ε is a spatial effect with

measurement error process ε; and θ contains parameters utilized in the spatial covariance

function. (Gelfand et al., 2010)

1.3 Data Fusion

More recently, an important research area in environmental engineering and epidemiology

involves developing data fusion products that supplement monitoring measurements with

numerical model simulations and remotely-sensed observations from satellites. These data

fusion models typically involve hindcasting, or using estimates and observed data from a

previous time period to assess model performance, as a means of supplementing health

analyses. The overarching goal of data fusion is to increase the spatial-temporal coverage
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of air quality data to support health analyses and health impacts assessments, as seen in

existing data fusion literature that supports epidemiological studies of birth outcomes. (Gray

et al., 2014; Warren et al., 2016; Chang et al., 2011)

Previous studies have used available data from satellite imaging at the available spa-

tial resolution of the data. However, technology is expanding and available resolutions are

narrowing. For example, the aerosol remote sensor Moderate Resolution Imaging Spectro-

radiometer (MODIS) now has spatial resolution as low as 0.25 km. (National Aeronautics

and Space Administration, 2018). With this evolving technology, it is imperative that our

estimation techniques allow the use of these spatially refined data. On the other hand, these

advanced data take time to process, with processing times increasing as the spatial resolu-

tion becomes smaller. Additionally, different data layers may not have the same resolutions.

Our proposed methods aim to accommodate these differences in spatial resolution to obtain

improved estimates as the technology in the air pollution monitoring field evolves.

Existing statistical methods that combine data, such as Bayesian melding, require mod-

eling of the entire unknown pollution surface. Additionally, the bias between predictors and

observations is usually assumed to take simple parametric forms (e.g., linear or quadratic).

(Fuentes and Raftery, 2005; Crooks and Isakov, 2013; Zidek et al., 2012) Our proposed

methods have the computational advantage of connecting point measurements and gridded

predictors.

1.4 Specific Aims

We use Bayesian hierarchical modeling methods and data fusion methods throughout this

dissertation in order to meet the following aims:

Aim 1. To combine estimates of PM2.5 from statistical downscalers based on

satellite imagery and numerical model simulation. We utilize the Bayesian Model

Averaging framework to create a method that combines estimates and their uncertainties
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with spatially-varying weights. Our goal is to improve prediction performance by borrowing

strengths from the existing methods and data inputs.

Aim 2. To evaluate the potential impact of differential exposure measurement

error when examining differences in associations among subpopulations defined

by spatial regions. We utilize the 20-county metropolitan Atlanta area emergency depart-

ment data and ZIP-code level socioeconomic status data. Using estimated PM2.5 at 1km

× 1km spatial resolution building on Aim 1, we conduct a simulation study and real data

analysis to assess the impact of exposure measurement error when cruder exposure metrics

are used to estimate effect modification.

Aim 3. To combine estimates of PM2.5 from multiple models and improve

accuracy of methods by incorporating covariates into the weights. We develop a

modeling framework for incorporating potentially important information into the weights

from Aim 1. We adapt existing methods for spatial classification such as multinomial probit

models.
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Chapter 2

A Bayesian Ensemble Approach to

Combine PM2.5 Estimates from

Statistical Models Using Satellite

Imagery and Numerical Model

Simulation
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2.1 Introduction

Air pollution negatively impacts human health, as supported by various studies around the

world. (Brunekreef and Holgate, 2002; Hoek et al., 2013; Liu et al., 2013; Clark et al.,

2014a; Evans et al., 2014; Brook et al., 2017) While air pollution represents a complex

mixture of chemicals, particulate matter (PM) less than 2.5 µm in aerodynamic diameter

(PM2.5), in particular, has received increasing interest in public health. (Pui et al., 2014;

Hart et al., 2015a; Maji et al., 2017) PM2.5 is a mixture of solids and liquids that can

penetrate deep into the lower respiratory system to affect the lungs and circulatory system.

(Brook et al., 2002; Maté et al., 2010; Adam et al., 2015) PM2.5 is composed of primary and

secondary PM, with primary PM coming from sources like wildfires, erosion, and pollen;

and secondary PM resulting from chemical reactions in the atmosphere. (United States

Environmental Protection Agency, 2009) Also, sources of PM2.5 include power generation,

industrial operations, and automobiles. These anthropogenic emissions and the changing

climate can have notable impacts on PM2.5 concentrations and, subsequently, on human

health. As a result, the United States Environmental Protection Agency (USEPA) regulates

PM2.5 as one of its criteria pollutants to protect public health. (Hubbell et al., 2009)

Population-based studies of air pollution and health have contributed significantly to

setting regulatory standards worldwide. However, these studies often suffer from routine

estimation of exposures using regulatory monitoring networks. Monitors in these networks

are preferentially located in specific geographic areas, often in areas with high pollution levels

and large populations. Due to high cost of maintenance, PM2.5 monitor measurements are

spatially sparse, such that extrapolating these measurements over a large spatial domain

may be inappropriate, and are sometimes temporally available only in 1-in-3 or 1-in-6 days

time periods.

More recently, an important research area involves developing data fusion products that

supplement monitoring measurements with numerical model simulations and remotely sensed

observations. These data fusion models typically involve retrospectively estimating expo-
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sures. The overarching goal of data fusion is to increase the spatial-temporal coverage of

air quality data to support health analyses and health impacts assessments, as seen in ex-

isting applications of data fusion products for epidemiological studies involving exposure

estimation. (Gray et al., 2014; Warren et al., 2016; Chang et al., 2011)

Numerical model simulations used in air pollution research are known as chemical trans-

port models (CTM). CTMs are 3-dimensional deterministic models that simulate gridded air

pollution concentrations based on state-of-the-art knowledge on drivers of air quality. (Chip-

perfield, 1999) Advantages of CTM include its complete spatial-temporal coverage and the

ability to incorporate chemical and physical processes associated with air pollution. How-

ever, CTM is computationally expensive and, as a result, is often only available at crude

spatial resolutions. Because CTM are often archived and shared, CTMs continue to be used

in estimating PM2.5.

Remotely sensed aerosol optical depth (AOD) has been examined extensively in its ability

to predict PM2.5 in combination with other meteorological and land use variables. (Liu et al.,

2005, 2009) AOD measures the degree to which aerosols prevent light from penetrating

the atmosphere. AOD measurements can come from both polar orbiting or geostationary

satellites. (Levy et al., 2007; Zhou et al., 2018) We focus on polar orbiting satellites in this

work. Some main advantages of satellite-based AOD are its fine spatial resolution, global

coverage, and public accessibility. However, remotely sensed data represents columnular

measurements and can suffer from missing data due to retrieval error and cloud cover.

CTM simulations and AOD values cannot be used directly in health analyses because

complex spatial-temporal bias exists when compared to ground-level monitoring data. (Mar-

mur et al., 2006; Friberg et al., 2017, 2018; Loŕıa-Salazar et al., 2017) For example, the

Community Multiscale Air Quality (CMAQ) model, a type of CTM, may suffer from under-

prediction or overprediction due to error in inputs and discretization over space and time.

(Mebust et al., 2003; Lim et al., 2010) AOD measures aerosol over the entire atmospheric

column and its relationship with ground-level PM2.5 can depend on various factors. There-
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fore, statistical data fusion models that calibrate CTM and AOD data against observed

measurements are needed. (Berrocal et al., 2010; Chang et al., 2014)

Most existing data fusion models that incorporate uncertainty quantification have been

developed to utilize only one data source: CTM or satellite AOD. Concurrent utilization of

both data sources in the fusion process may provide more accurate PM2.5 estimates. Specifi-

cally, CTM simulation can address the missing data problem in satellite AOD, while satellite

AOD can provide additional fine-scale spatial information to CTM simulation. Current ap-

proaches center around using CTM simulations to impute missing AOD values, followed

by using the gap-filled AOD field as a predictor of PM2.5 in multi-stage regression mod-

els (de Hoogh et al., 2018; Xiao et al., 2017) or machine learning algorithms. (Di et al.,

2016; Hu et al., 2017; Reid et al., 2015) Kloog et al. provides full coverage by first fitting

a model with available data, then smoothing predictions from this model to achieve com-

plete spatial-temporal coverage. (Kloog et al., 2015) Because of this multi-stage approach,

obtaining prediction standard error is challenging. Similarly, in the Global Burden of Dis-

ease project of Van Donkelaar et al., annual PM2.5 averages are obtained by using satellite

AOD values that are informed by CTM simulations to account for the vertical aerosol pro-

file.(Van Donkelaar et al., 2016) However, one cannot conduct an epidemiological study that

examines short-term effects of air pollution based on results from the Global Burden of Dis-

ease project. (Brauer et al., 2012) Most of the aforementioned studies rely on long-term

averages, which do not capture the complex daily missingness of AOD data. Our method

uses a sophisticated statistical model to estimate daily PM2.5 exposure while also propagating

uncertainty.

In this article, we describe a way to combine estimates of PM2.5 from spatial-temporal

statistical models using Bayesian ensemble averaging. Specifically, predictions from statis-

tical data fusion models using either CTM simulation or satellite AOD are combined with

spatially varying weights. The focus on statistical models is motivated by the need to pro-

vide uncertainties in PM2.5 estimates, in terms of prediction standard error, that can be used
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in subsequent health effect and health impact analyses. Our model-based approach offers

several advantages compared to previous methods, namely the ability to incorporate various

sources of uncertainty in predictions and to characterize the relative prediction performance

of CTM versus satellite AOD. Model-based approaches also provide data-driven information

on relationships between PM2.5 and predictors that is often not available from algorithmic,

or machine learning, methods. In an application, we evaluate the proposed method for pre-

dicting daily PM2.5 in the Southeastern United States (Southeastern US) using 12km CTM

simulations and 1km satellite-derived AOD.

2.2 Methods

2.2.1 Data

We obtained daily ground-level 24-hour average measurements of PM2.5 from 63 monitors

in the Southeastern US over the period 2003 to 2005 via the USEPA’s Air Quality System

(AQS). We strategically use this period of time in order to perform subsequent health analy-

ses with data from the same time period. CTM simulations were obtained from the USEPA

Models-3/Community Multiscale Air Quality (CMAQ) model version 4.5 at a 12 km × 12 km

horizontal spatial resolution. (Byun and Schere, 2006) We acquired satellite-retrieved AOD

measurements by the aerosol remote sensor Moderate Resolution Imaging Spectroradiometer

(MODIS), which orbits the Earth on the National Aeronautics and Space Administration’s

Aqua and Terra satellites. We utilized a new multiangle implementation of atmospheric cor-

rection (MAIAC) algorithm that provides AOD values at a 1km × 1km spatial resolution.

(Lyapustin, Martonchik, Wang, Laszlo and Korkin, 2011; Lyapustin, Wang, Laszlo, Kahn,

Korkin, Remer, Levy and Reid, 2011) For each AOD grid cell, we also compiled variables

including: elevation from the US Geological Survey, forest cover and road lengths from the

2001 National Land Cover data, meteorology (e.g. wind speed) from the North American

Land Data Assimilation Systems, and PM2.5 primary emission point sources from the 2002
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USEPA National Emissions Inventory. As in Hu et al., forest cover and elevation were av-

eraged from their original resolutions of about 1 km and about 30 m, respectively, to the

1 km × 1 km MAIAC grid cell level.(Hu et al., 2013) Additionally, road lengths and point

emissions were summed over the 1 km × 1 km MAIAC grid cell level.

Figure 2.1 shows the locations of the 63 AQS monitors in our study region and gridded

PM2.5 simulations from CMAQ for an example day of March 17, 2005. Similarly, Figure 2.2,

with an overlay of the same AQS monitor locations, shows the 1km-level satellite MAIAC

AOD values on the same day with a considerable amount of missing data. Overall, the

MAIAC AOD is missing for approximately 57% of the days and grid cells in our study.

The differences in spatial resolution are also apparent between CMAQ and MAIAC AOD in

Figures 2.1 and 2.2.
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g/m3 

Figure 2.1: Simulation of PM2.5 from the Community Multiscale Air Quality (CMAQ) model
at 12 km resolution on March 17, 2005. Black triangles indicate AQS monitoring locations.

2.2.2 Statistical Modeling

2.2.2.1 Bayesian Hierarchical Modeling for Daily PM2.5

We first describe the model for combining monitoring data with CMAQ outputs or AOD

retrievals as predictors for point-referenced AQS monitoring measurements in a Bayesian

spatial-temporal hierarchical model (BHM). Predictions of PM2.5 from the PM2.5-CMAQ

BHM and PM2.5-AOD BHM are subsequently used as inputs to the ensemble model.

Let Y (s, t) represent the observed PM2.5 concentration on day t at locations s. Following

Berrocal et al. and Chang et al., our statistical model has the form of a BHM:

Y (s, t) = α1(s) + α2(s)X(s, t) + β1(t) + β2(t)X(s, t) +Z(s, t)γ + ε(s, t), (2.1)

where X(s, t) is the linked AOD or CMAQ values in the grid cells containing the monitor at

locations s, and Z(s, t) is a vector of additional predictors with coefficient γ.(Berrocal et al.,

2010; Chang et al., 2014) For the AOD model, Z(s, t) includes the following land use and

meteorology variables: elevation, forest cover, road length, primary emission source, wind

speed, and temperature. Because CMAQ uses information on emissions and meteorology to
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Figure 2.2: Satellite-derived aerosol optical depth (AOD) at 1 km × 1 km gridded resolution
on March 17, 2005. Black triangles indicate AQS monitoring locations.

perform simulations, Z(s, t) is not included in the PM2.5-CMAQ BHM. Preliminary analysis

also showed that including additional covariates does not improve prediction performance

for the CMAQ model. Finally, the residual error term, ε(s, t), is independent normally

distributed with mean zero and variance σ2
y .

Parameters α1(s) and α2(s) in Equation (2.1) are the spatial random intercept and spatial

random slope, respectively; β1(t) and β2(t) in Equation (2.1) are the temporal random inter-

cept and temporal random slope, respectively. α1(s), α2(s), β1(t), and β2(t) are sometimes

referred to as calibration parameters because they correct for the additive and multiplicative

bias associated with CMAQ or AOD. Additional details about the modeling assumptions for

BHM can be found in Appendix A.

2.2.2.2 Combining Estimates from Statistical Models

Our proposed method to combine PM2.5 estimates from the CMAQ-only and AOD-only

model is based on the Bayesian Model Averaging (BMA) framework. BMA has been applied

to probabilistic weather forecasting in order to combine forecasts from different numerical

weather models.(Raftery et al., 2005) Here, we extend the approach for estimating spatial-
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temporal air pollution concentrations when predictions from multiple statistical models are

available. To our knowledge, this framework has not previously been used in modeling

spatial-temporal air pollution.

We consider the following model:

p(yst |M1,M2) = wsf1(yst |M1) + (1− ws)f2(yst |M2), (2.2)

where yst is the PM2.5 value; fk(yst | Mk) is the posterior predictive distribution of yst from

model Mk, and ws is the weight for the PM2.5-CMAQ BHM at location s. ws ranges from 0

to 1, with a default value of 1 on days where AOD is missing.

Equation (2.2) can be viewed as a predictive model, where ws is the posterior probability

(ensemble weight) that the PM2.5-CMAQ BHM is the better estimate of PM2.5 at monitor

s. Here we assume fk(yst | Mk) ≡ φ
(
yst | µ(k)

st , σ
2,(k)
st

)
, i.e., a Normal posterior predictive

distribution of yst with mean µ
(k)
st and variance σ

2,(k)
st using either the PM2.5-CMAQ BHM

(k = 1) or the PM2.5-AOD BHM (k = 2). Hence, the point prediction of yst can be defined

by its posterior mean

ŷst = wsµ
(1)
st + (1− ws)µ(2)

st , (2.3)

which is a weighted average of predictions from the PM2.5-CMAQ BHM and the PM2.5-AOD

BHM. Similarly, the error for yst is defined as

Var(yst|µ(1)
st , µ

(2)
st ) = wsσ

2,(1)
st +(1−ws)σ2,(2)

st +wsµ
2,(1)
st +(1−ws)µ2,(2)

st −
(
wsµ

(1)
st + (1− ws)µ(2)

st

)2
(2.4)

which allows us to quantitatively define uncertainties and make inferences. Bayesian in-

ference also allows us to capture the uncertainty in the weight estimation procedure. Ad-

ditionally, the posterior interval can be defined as the 2.5% and the 97.5% interval of the

conditional distribution. To allow for spatial interpolation of the ensemble weight to loca-

tions without monitors, we further assume that qs = logit(ws) is a Gaussian process with
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an exponential covariance function, i.e., Cov(qs, qs′) = τ 2e−||s−s
′||/ρ, where τ 2 controls the

spatial variability, and ρ controls the rate of spatial decay in dependence.

2.2.2.3 Estimation and Prediction

Estimation and prediction are accomplished in seven stages, which we describe in the enu-

merated steps below.

1. Fit the PM2.5-CMAQ BHM using Equation (2.1) to obtain posterior predictive means,

µ
(1)
st , and variances, σ

2,(1)
st , for each day and location.

2. Fit the PM2.5-AOD BHM using Equation (2.1) to obtain posterior predictive means,

µ
(2)
st , and variances, σ

2,(2)
st , for each day and location where we have observed AOD

values.

3. Create out-of-sample CMAQ-based predictions. Randomly leave 10% of the PM2.5

observations out then obtain prediction means and prediction variances using the re-

maining 90% of the data. Repeat this ten times. Stack the predictions to create a

dataset.

4. Create out-of-sample AOD-based predictions. Randomly leave 10% of the PM2.5 obser-

vations out then obtain prediction means and prediction variances using the remaining

90% of the data. Repeat this ten times. Stack the predictions to create a dataset.

Note: the training folds and validation folds are the same for CMAQ and AOD.

5. Estimate spatially varying weights based on PM2.5 measurements and out-of-sample

prediction datasets from Steps 3 and 4 using Equation (2.2).

6. Interpolate the weights to 1 km × 1 km grid cells using kriging.

7. Combine the estimates from Steps 1 and 2 using weights from Step 5 in the same

fashion as Equation (2.3) to obtain the ensemble estimate.
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Notice in Steps 3 and 4, to avoid overfitting while estimating ensemble weights, we fit the

BHMs repeatedly, but we leave-out and back-predict observations in a cross-validation ex-

periment, similar to approaches employed in stack regression and SuperLearner techniques.

(LeBlanc and Tibshirani, 1996; Polley and van der Laan, 2010)

Estimation and inference are carried out in a Bayesian framework by specifying priors

for all model parameters. Markov chain Monte Carlo (MCMC) methods are used to obtain

samples from posterior distributions; we use Gibbs sampler when the full conditional dis-

tributions are in closed-form and the random-walk Metropolis-Hasting algorithm otherwise.

MCMC computations are standard for Bayesian hierarchical modeling and are provided else-

where. (Chang et al., 2014) MCMC details for fitting the BHM (Step 1 and Step 2) and the

ensemble weights (Step 5) are provided in Appendix A.

We also investigate alternative approaches to estimate the ensemble weights. In addition

to the 10-fold cross-validation (CV) predictions to estimate the weights, we also use a spatial

(leave-one-monitor-out) CV approach. We also consider estimating the weights by using a

two-stage approach, which first estimates the optimal weight at each model separately, then

performs spatial interpolation in a second stage. This method differs from Step 5 in that the

uncertainty in the monitor-specific weight is not accounted for in the spatial interpolation.

We use R version 3.5.1 for all estimation and prediction. (R Core Team, 2018) The

MCMC algorithm is available, coded in R, through the corresponding author’s Github site.

Sample data is also posted.

2.2.2.4 Assessing Model Performance

We evaluated the prediction performance of the proposed ensemble approach using three out-

of-sample cross-validation (CV) experiments. First, in a 10-fold CV, we randomly divided

the dataset into 10 subsets. Repeatedly, we left out each subset (10% of the data) and

used the other 90% of the data to fit the prediction model. Because data are available

at each monitor in each CV fold, this 10-fold CV experiment allowed us to evaluate the
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model’s ability to perform temporal interpolation when daily PM2.5 is missing at monitoring

locations.

We also performed a spatial CV experiment where all observations at each monitor were

left out one-monitor-at-a-time. This allowed us to evaluate the model’s ability to perform

spatial interpolation to estimate PM2.5 at locations without monitors.

Finally, we performed spatially clustered CV, where 20 clusters formed through hierarchi-

cal clustering by proximity of monitoring locations (the hclust function in the stats package of

R) were dropped, and the remaining data were used to estimate PM2.5 at multiple locations

without monitors (leave one-cluster-at-a-time out). (Johnson, 1967) The twenty clusters, as

well as more details about their formation, are given in Figure A.1 in Appendix A. The

spatially clustered CV simulates a more realistic scenario where the modeling approaches

are tasked with spatially interpolating a larger group of spatially missing data rather than

a single missing location. (Young et al., 2016)

We quantified the performance of different methods using the following statistics: pre-

diction root-mean-square error (RMSE), 95% coverage probability of the posterior intervals

(PI), average posterior standard deviation (SD), and R2. R2 and RMSE were calculated

based on posterior predictive means of the left-out observed PM2.5 concentrations. Poste-

rior prediction intervals were based on the 2.5th and the 97.5th percentiles of the posterior

distribution of the two-component predictive model distribution in Equation (2.2).

2.3 Results

Due to the deterministic construction of CMAQ simulations, we have full spatial-temporal

coverage for CMAQ across the Southeastern US during the study period of 2003-2005. AOD,

on the other hand, is only available at 57.4% of locations and days. PM2.5 observations

from AQS monitoring sites are available at 75.8% of all days over the three-year study

period. Observed PM2.5 has a mean of 14.54 µg/m3 and a standard deviation of 7.02 µg/m3.
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The mean value of PM2.5 as determined by the CMAQ simulation is 12% lower at 12.78

µg/m3. Mean AOD is 0.24. Pearson correlations show moderate linear relationships between

observed PM2.5 and CMAQ at 0.57 and observed PM2.5 and AOD at 0.54. CMAQ and AOD

are weakly correlated with a Pearson correlation coefficient of 0.13.

Table 2.1 gives model performance results for the i) 10-fold CV experiment, ii) spatial

CV experiment, and iii) spatially clustered CV experiment. Overall, the ensemble approach

resulted in improved out-of-sample predictions. Specifically, using inputs derived from the

10-fold CV, the ensemble model achieved the lowest RMSE and highest R2 in all three eval-

uations, with the RSME of the ordinary CV being 43% of the standard deviation of PM2.5

measurements. The posterior prediction SD for the 10-fold CV increases, but this increase

allows us to maintain the proper coverage of at least 95%. While results of the spatial CV

and spatially clustered CV show similar trends as in the 10-fold CV experiment, we find the

improvement of the ensemble approach over separate models tends to be better, suggesting

the ensemble approach is particularly beneficial for spatial interpolation compared to using

only CMAQ or only AOD. Among the three CV experiments, prediction performance de-

creases from 10-fold CV to spatial CV due to the need to spatially interpolate to locations

without monitors; prediction performance also decreases from spatial CV to spatially clus-

tered CV because the number of nearby monitors to aid in interpolation is limited. Despite

these differences in CV experiment results, the ensemble approach continues to outperform

separate statistical models in all three types of CV experiments. Using a two-stage estima-

tion approach resulted in a negligible reduction in prediction performance compared to the

joint estimation method utilized above; these results can be found in Appendix A in Table

A.1 and Table A.2. The spatial CV prediction inputs result in weaker results but still justify

use of our method compared to the individual models, as seen in Appendix A in Table A.2.

Figure 2.3 clearly demonstrates the need for spatially varying weights due to the PM2.5−CMAQ

BHM receiving a higher assigned weight value for the predictive model in certain areas,

whereas the PM2.5−AOD BHM receives higher weights in more rural areas but also close to
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Evaluation Statistical Coverage Average
Method Model RMSE of 95% PI Posterior SD R2

Ordinary (10-fold) CV
PM2.5-AOD BHM 3.40 94.07 3.30 0.78

PM2.5-CMAQ BHM 3.14 95.05 3.28 0.81
Ensemble 3.00 97.15 3.52 0.83

Spatial (Leave-one-
monitor-out) CV PM2.5-AOD BHM 3.45 94.25 3.39 0.77

PM2.5-CMAQ BHM 3.33 95.32 3.45 0.78
Ensemble 2.99 96.81 3.52 0.83

Spatially clustered
(Leave-one-cluster-out) CV PM2.5-AOD BHM 3.62 94.43 3.59 0.74

PM2.5-CMAQ BHM 3.93 93.34 3.58 0.69
Ensemble 3.13 95.73 3.43 0.81

RMSE: root mean squared error (in µg/m3); PI: prediction interval; SD: standard
deviation (in µg/m3); CV: cross-validation; PM2.5: particulate matter less than 2.5 µm;
AOD: aerosol optical depth; BHM: Bayesian hierarchical model; CMAQ: Community

Multiscale Air Quality

Table 2.1: Prediction performance for daily PM2.5 concentrations in 10-fold cross-validation
(CV) comparing ensemble averaging with a Bayesian hierarchical model (BHM) using
satellite-derived aerosol optical depth (AOD) or a BHM using a numerical model (CMAQ)
simulation. Ensemble weights were derived from first performing 10-fold CV.
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some urban centers across the study time period. We can also illustrate spatially kriging the

weight estimates from the 10-fold CV experiment to areas without monitoring locations at a

finer spatial resolution of 1 km × 1 km across the Southeastern US (Figure A.2 in Appendix

A).

 

Figure 2.3: Ensemble weights for predictions from the PM2.5-CMAQ Bayesian hierarchical
model at AQS monitoring locations.

While the derived weights spatially vary across the Southeastern US, the metropolitan

Atlanta, GA area is a clear example of the varying weights the PM2.5−CMAQ BHM receives

within a relatively small geographical area. PM2.5’s environmental health effects are well-

documented in Atlanta, GA. (Alhanti et al., 2016; Gass et al., 2015) To that end, we illustrate

the use of ensemble estimates of PM2.5 within the 20-county metropolitan Atlanta, GA area.

We aim to contrast results from the two individual AOD and CMAQ models with our results

from the combined, ensemble method. This Atlanta region contains 16,063 AOD grid cells

and 143 CMAQ grid cells.

Figure 2.4 demonstrates the applicability of the ensemble approach for a single day. The

20-county metropolitan Atlanta area has 9 AQS monitors, but the ensemble approach, com-

bined with spatial kriging and interpolation, allows us to extend the use of weights beyond
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areas with monitors to obtain posterior predictive mean PM2.5 concentrations across a wider

swath of land. Figure 2.4(AOD model) shows the spatially refined PM2.5 estimates from the

PM2.5-AOD BHM. Figure 2.4(CMAQ model), the PM2.5-CMAQ BHM results, starkly differs

from Figure 2.4(Ensemble model), the ensemble averaged results, in terms of smoothness. On

this particular day, the PM2.5-AOD BHM predicts lower PM2.5 concentrations over Atlanta

than the PM2.5-CMAQ BHM (Figure 2.4(AOD model) and Figure 2.4(CMAQ model); also

seen in Appendix A Figure A.3 and A.5. The standard error of the PM2.5-AOD BHM is also

lower than that of the PM2.5-CMAQ BHM (Figure A.4 and A.6). The ensemble approach

leads to an average of the PM2.5-AOD BHM and the PM2.5-CMAQ BHM predictions and,

thereby, allows for depictions of seamless PM2.5 estimates between neighboring spatial fields

for which CMAQ alone does not have the complexity.

Figure 2.5 displays the long-term 3-year PM2.5 concentration estimates over Atlanta

from the PM2.5-AOD BHM (Figure 2.5(AOD model)), the PM2.5-CMAQ BHM (Figure

2.5(CMAQ model), and ensemble averages restricted to days when AOD was observed (Fig-

ure 2.5(Ensemble model (AOD observed))) or across all days (Figure 2.5(Ensemble model

(all days))). The combination of information from the PM2.5-AOD BHM and PM2.5-CMAQ

BHM permits more granularity in the maps on both a daily level (Figure 2.4(Ensemble

model)) and when averaging across days where AOD is observed (Figure 2.5(Ensemble model

(AOD observed))). This finer resolution on a daily level or on days with observed AOD will

aid in acute environmental health effect analyses. However, in Figure 2.5(Ensemble model

(all days)), the predictions from the PM2.5-CMAQ BHM dominate, likely due to the large

amount of temporally missing AOD in this region over the study time period (about 57%).
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Figure 2.4: Daily estimates of PM2.5 concentrations on March 26, 2005 in the 20-county
metropolitan Atlanta, GA area using estimates from (top left) the PM2.5-AOD Bayesian
hierarchical model (BHM) , (top right) the PM2.5-CMAQ BHM , and (bottom left) the
ensemble method.
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Figure 2.5: Posterior averages of PM2.5 concentrations across 2003-2005 in the 20-county
metropolitan Atlanta, GA area based on (top left) the PM2.5-AOD Bayesian hierarchical
model (BHM), (top right) the PM2.5-CMAQ BHM, (bottom left) the ensemble method for
days in the three-year time period where AOD is observed, and (bottom right) the ensemble
method for all days in the three-year time period.
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2.4 Discussion

Instead of relying solely upon numerical CTM simulations or satellite data to perform data

fusion, the proposed combined statistical model framework allows us to incorporate both

sources of information and harness their collective predictive power. Existing statistical

methods that combine data, such as Bayesian melding, require modeling of the entire un-

known pollution surface, which is computationally intensive, and the data source with the

largest sample size (i.e. CTM) will dominate over monitoring measurements and satellite

imagery. The proposed ensemble method does not incur significant additional computa-

tional burden because it estimates ensemble weights from 10-fold CV predictions, which

are routinely performed by researchers when comparing prediction performance of different

models.

Another advantage of the ensemble approach entails accounting for differences in spatial

resolution between different gridded data because CTM and satellite data are first calibrated

to the point-level using monitoring data via Bayesian hierarchical modeling. Finally, in our

PM2.5 application, the ensemble approach also naturally accounts for the missing values

in satellite retrievals, providing PM2.5 estimates with complete spatial-temporal coverage.

Specifically, in settings with more than two inputs, when satellite AOD is missing, ensemble

weights for different inputs can be reweighted among available inputs. In the current version

of the ensemble method, missing AOD results in assigning the other input (CTM) a weight

of one and proceeding with the estimation. This differs from existing approaches where AOD

needs to be imputed before being used as a predictor for PM2.5, increasing computational

burden and introducing another source of prediction uncertainty.

The computation time of estimating weights for the ensemble method itself is not limiting

because it is based on the number of monitors in the area. However, the computation time for

predictions do take some time at the fine-scale resolution of 1 km × 1 km. For this reason, we

displayed results in Atlanta, GA instead of the entire Southeastern region. Specifically, we

presented predictions that incorporated spatial correlation between grid cells (i.e. predicting
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“maps” of PM2.5 concentrations jointly), but if that is not needed, weights can be spatially

interpolated one grid cell at a time, which is highly parallelizable.

Our approach deviates from the existing methods in our lack of imputed AOD because

of our focus on uncertainty quantification, an important assessment other methods, such

as machine learning ensemble methods, cannot provide. Specifically, our Bayesian model-

ing framework provides prediction standard error, which can then be used for uncertainty

quantification in subsequent health effect analyses. Although here we focus on ambient air

pollution for the application of this method, the approach is also highly relevant to the

estimation of other environmental exposures (e.g. temperature, precipitation) that utilize

information from both satellite imagery and numerical model simulations.

This current case study presents a relatively small geographic area; however, the method

can be extended to other regions with different meteorological and land characteristics as

well. A previous analysis using a non-Bayesian ensemble approach, which does not provide

prediction error quantification, to combine estimates from PM2.5-AOD BHM and PM2.5-

CMAQ BHM in Colorado has shown similar improvements. (Geng et al., 2018)

While this is not the first use of Bayesian Model Averaging (BMA) to perform ensemble

modeling in a spatial setting, we focus on combining statistical models rather than deter-

ministic outputs from climate model simulations. (Berrocal et al., 2007) Bhat, et al. also

use spatial-temporal BMA but to combine global climate projections. (Bhat et al., 2011)

In contrast, our method interpolates the ensemble weights and uses the model on a much

more localized level. Specifically, although the monitoring stations are not randomly placed,

we are still able to obtain fine-scale spatially smoothed estimates due to the use of CMAQ

and AOD. We also reconcile the spatial resolution differences between our statistical model

estimates. Finally, as previously mentioned, we can handle data with high spatial sparsity

as demonstrated by the performance of the spatial and spatially clustered CVs.

Several extensions of the proposed method warrant additional investigations. First, en-

semble modeling can be generalized to consider multiple sources of information. For ex-
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ample, one can consider a model only driven by fine-scale land use variables with AOD

missing. Specifically, the two-component predictive model utilized here can be extended to

have multiple weights (i.e. more than two) that are estimated with a multinomial latent

variable. In the air pollution application, this may include (1) CTM simulations driven by

different assumptions on emission levels and pollution composition for each emission source,

(2) multiple satellite parameters that may inform different characteristics of aerosol, and (3)

AOD retrievals from different satellites. Our model inputs are also not limited to BHM; we

can adapt this method to obtain spatial weights based on the performance of other popu-

lar techniques that provide prediction standard error such as kriging or machine learning

techniques such as random forests. We modeled spatially varying weights largely due to the

ability of satellite-retrieved AOD to predict PM2.5 over large areas at a fine scale in certain

areas and the error in CMAQ simulation being likely to exhibit spatial variation. Another

extension of the ensemble method is to allow weights to depend on spatial and temporal

covariates (e.g. land use and meteorology). This may further improve PM2.5 prediction and

provide insights into which factors are associated with the relative underperformance of the

PM2.5-CMAQ BHM and PM2.5-AOD BHM.
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Chapter 3

Impacts of PM2.5 Exposure Spatial

Resolutions on Estimating

Neighborhood-Level Socioeconomic

Status as an Effect Modifier
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3.1 Introduction

Exposure to outdoor air pollution has been linked to increased asthma morbidity, espe-

cially among children. (Wardlaw, 1993; Guarnieri and Balmes, 2014; Bowatte et al., 2018;

Jerrett et al., 2008; Miller and Marty, 2010) Some populations are disproportionately ex-

posed to higher levels of outdoor air pollution due to their residential proximity to emission

sources. (Bell and Ebisu, 2012; Clark et al., 2014b; Mikati et al., 2018) One active area of

research in environmental epidemiology focuses on examining how health effects of air pol-

lution may vary across sub-populations defined by measures of socioeconomic status (SES).

Effect modification of air pollution by SES may be attributed to differences in exposure lev-

els, disease severity, and prevalence of comorbid conditions. (Neidell, 2004; Forastiere et al.,

2007; Munoz-Pizza et al., 2020)

Particulate matter less than 2.5 µm in diameter (PM2.5) lends itself to exacerbating

existing respiratory health issues due to its chemically diverse composition and the small

particles’ ability to enter the lungs and become irritants. (Xing et al., 2016) In population-

based epidemiologic studies, PM2.5 exposures are typically estimated from ground monitors,

as well as using a host of different data inputs and techniques. (United States Environmental

Protection Agency, 2009; Xiao et al., 2017; Di et al., 2016; Van Donkelaar et al., 2016) The

process of linking PM2.5 exposure estimates to health outcomes may lead to complex exposure

measurement errors due to insufficient characterization of the spatial-temporal variation in

pollution concentration. (Gryparis et al., 2009; Alexeeff et al., 2016; Dionisio et al., 2014;

Szpiro et al., 2011)

Neighborhood-level measures of SES are frequently used in times-series and case-crossover

analyses for examining modifications of short-term air pollution health effects. However, the

use of spatially-varying effect modifiers may result in exposure measurement errors that are

differential across sub-populations. For example, low SES neighborhoods located in urban

centers may have less exposure measurement error due to availability of nearby monitor-

ing stations compared to high SES neighborhoods in the suburbs. Hence spatial patterns
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of monitor locations and population demographics may result in spatially-varying exposure

measurement errors that are dependent on the outcome, resulting in biased health effect esti-

mates that are not necessarily towards the null. (Carrothers and Evans, 2000; VanderWeele

and Hernán, 2012; van Smeden et al., 2020)

The goal of this study is to examine how exposure measurement error may impact our

ability to estimate effect modifications of short-term PM2.5 effects by neighborhood-level

SES measures. First, we constructed estimates of daily PM2.5 concentrations at 1km spatial

resolution in southeastern United States using an ensemble approach to combine predictions

from two random forest models. (Breiman, 2001) Then, we compared estimated short-term

PM2.5 associations with pediatric asthma-related emergency department visits in Atlanta

using either the spatially-resolved PM2.5 estimates across the study area or a non-spatially-

varying exposure estimate derived from monitoring data. Finally, we conducted a simulation

study to quantify bias due to exposure measurement error when performing stratified case-

crossover analyses by neighborhood-level SES measures.

3.2 Methods

3.2.1 Data

3.2.1.1 Emergency Department Visit Data

The Study of Particulates and Health in Atlanta (SOPHIA) is a long-standing study on the

short-term health effects of air pollution and the study has established clear connections

between air pollution and emergency department (ED) visits for issues ranging from respi-

ratory problems to circulatory disease in the metropolitan Atlanta area. (Peel et al., 2005;

Metzger et al., 2004; Strickland et al., 2010; Sarnat et al., 2010) We acquire SOPHIA ED

visits data originally analyzed in a case-crossover study by O’Lenick et al. that investigated

ZIP code-level poverty measures as an effect modifier for short-term health effects of PM2.5
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and other pollutants on asthma-related pediatric ED visits.(O’Lenick et al., 2017) Specifi-

cally, patient-level ED visits are obtained from individual hospitals and the Georgia Hospital

Association from the Atlanta area for children, 5 to 18 years old, between January 1, 2002

and December 31, 2008. ED visits for asthma or wheeze are based on primary or secondary

ICD9 diagnosis codes. Daily ED visits are then aggregated at the residential ZIP code-level

and matched to one of 173 ZIP code tabulation areas (ZCTAs, using 2010 Census Bureau

boundaries, created from census blocks to approximate ZIP codes) in order to inspect effect

modification by ZCTA-level SES measures in the air pollution health analysis.

3.2.1.2 Socioeconomic Status Data

Our socioeconomic status measures (SES) are derived from the 2000 US Census long-form

and the American Community Survey (ACS) 5-year (2007-2011) summary files. We use

linear interpolation between the 2000 Census and the ACS data to capture yearly changes

in ZCTA-level SES over our 2002-2008 study period. (O’Lenick et al., 2017) We examine

the difference in air pollution effects between high and low levels of SES by classifying the

study areas into four sub-regions based on quartiles of percent of households in a ZCTA

living below the federal poverty line. Quartile values of percent below poverty are calculated

across all years and areas as: Q1 = <7.6%; Q2 = ≥ 7.6% to <11.4%; Q3 = ≥11.4% to

<16.2%; Q4 = ≥16.2%.

3.2.1.3 PM2.5 Monitoring Data and Predictors

We obtain daily ground-level 24-hour average measurements of PM2.5 from 115 United States

Environmental Protection Agency (USEPA) Air Quality System (AQS) monitors spanning

six states in the Southeastern United States over the period 2002 to 2008 in order to train

our exposure models. We use satellite-retrieved aerosol optical depth (AOD) measurements

from the Earth-orbiting National Aeronautics and Space Administration’s Aqua and Terra

satellites’ aerosol remote sensor Moderate Resolution Imaging Spectroradiometer (MODIS).
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We estimate AOD using the multiangle implementation of atmospheric correction (MAIAC)

algorithm that provides AOD values at a fine spatial resolution of 1km × 1km. (Lyapustin,

Martonchik, Wang, Laszlo and Korkin, 2011; Lyapustin, Wang, Laszlo, Kahn, Korkin, Re-

mer, Levy and Reid, 2011) For each 1 km-resolution AOD grid cell, in addition to spatial

information from the grid cell centroid, we also obtain predictor variables including: percent

forest cover and lengths of major road types from the 2001 National Land Cover data, daily

meteorology (temperature, wind speed, and relative humidity) from the North American

Land Data Assimilation Systems, and PM2.5 primary emission point sources from the 2002

USEPA National Emissions Inventory. We also include planetary boundary layer height from

the North American Regional Reanalysis. Figure 3.1 displays the 20-county metropolitan

Atlanta area, along with ground monitors, primary roads, and quartiles of SES for a single

year (2005).

3.2.2 Exposure Modeling via an Ensemble of Random Forests

While satellite-derived AOD has been shown to improve spatial-temporal PM2.5 predictions,

AOD can be informatively missing due to cloud cover or high surface reflectance. Imputation

of missing AOD data may be an appealing approach for full spatial-temporal coverage, but

for random forest-based PM2.5 predictions, imputation has been shown to not necessarily

yield greatly improved results. (Kianian et al., 2021) Instead, to obtain PM2.5 estimates

with complete spatial and temporal coverage, we combine estimates from two random forest

models through an ensemble approach that allows us to use the rich set of covariate informa-

tion for PM2.5 predictions, as well as satellite-derived AOD when available. (Murray et al.,

2019) Random forest is an approach increasingly used by air pollution researchers due to its

accuracy and ease of use. (Hu et al., 2017; Brokamp et al., 2018; Huang et al., 2018) Random

forest is a decision tree-based approach in which many small decision trees are grown and

then aggregated to provide a single prediction averaged across trees. Random forest can

be preferable to regression-based approaches due to its ability to better accommodate non-
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Figure 3.1: 20-county Atlanta study area with ZIP code tabulation area (ZCTA)-level so-
cioeconomic status (SES) indicators in green with each shade of green indicating quartiles
of percent below poverty from Q1(1) to Q4(4). Major highways are indicated in orange.
USEPA AQS monitors based on 2005 data are shown as red triangles, and counties are
outlined in gray.
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linearity and general flexibility in specifying model inputs. More importantly, in contrast to

other machine learning techniques, prediction uncertainties can be derived for random forest

predictions useful for the ensemble approach.

We train two random forest models separately for each year. The first model uses land-

use variables, meteorological data, and time covariates, including day of week, month, and

day of year. We also include the projected x-y coordinates. We refer to this model as the

“Base” model. In the second model, we additionally include AOD as a covariate where

available. We refer to the second model as the “Base+AOD” model.

Each random forest model is evaluated by conducting an overall ten-fold cross-validation

experiment and calculating the out-of-sample root mean squared error (RMSE), R2, average

prediction standard error, and 95% coverage probability of the prediction intervals. First,

using data from years 2002, 2005, and 2008, we explore different hyperparameters to identify

the combination that results in the best prediction performance. The chosen hyperparameter

combinations consider all possible partitions of factor variables and are 1000, 7, 3 (number of

trees, number of variables to consider at each split in a node, minimal node size, respectively)

for the “AOD” model and 1000, 14, 3 for the “Base” model. (R Core Team, 2019; Wright

and Ziegler, 2017) We find that within a certain year, the hyperparameter combinations

result in similar predictive summaries.

In our previous study (Murray et al., 2019), we assign ensemble weights to estimates

from models across multiple years. Here, we design the model to allow ensemble weights to

vary for different years. This approach allows for more flexibility for the weighting across

years. We combine predictions from the two random forest models using a Bayesian ensemble

approach as follows. First, we assume the relationship between true PM2.5 concentrations

and predictions from random forest models follow a Normal distribution with density fr(yst |

Mr) ≡ φ
(
yst | µ(r)

st , σ
2,(r)
st

)
, where yst is the PM2.5 value at location s and time t; φ denotes

the Normal density function; µ
(r)
st is the corresponding prediction from the rth random forest;

and σ
2,(r)
st is the variance of prediction. (Biau and Scornet, 2016)
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Given predictions from two random forest models, the probabilistic predictions for PM2.5

concentration are given by:

p(yst |M1,M2) = wsf1(yst |M1) + (1− ws)f2(yst |M2), (3.1)

where fr(yst |Mr) is the predictive distribution of yst from model Mr, and ws is the weight for

the random forest at location s, where ensemble weights are allowed to be spatially-varying

and range from 0 to 1. Let M1 be the “Base” model and M2 be the “Base+AOD” model. We

set ws = 1 on days where AOD is missing. We run 10,000 MCMC iterations with a burn-in of

2,500. Estimation of the spatially-varying ensemble weights and prediction are accomplished

in multiple stages, which we omit here and refer the reader to the Supplementary Materials.

Once we obtain predictions of daily PM2.5 from the ensemble model, we average the 1 km

× 1 km estimates over each ZCTA area for use as exposure estimates in the health model.

3.2.3 Case-Crossover Analysis of Emergency Department Visit

Data

We use case-crossover analysis to assess the short-term effect of PM2.5 on ED visits for

pediatric asthma. Each unique, independent ED visit (case) is assigned control days matched

on year, month, and day of week. Specifically, each case serves as its own control for the other

days of week during that month, thereby limiting potential confounding. Frequently, this

results in three or four controls to one case. We implement a conditional logistic regression

model with time-stratification by year, month, and day of the week. This approach to

selecting control days minimizes overlap bias and time trend bias. (Janes et al., 2005) We

also prefer this approach due to its ability to minimize temporal autocorrelation and remove

for the effect of day of the week, which in the case of ED visits, is a known confounder.

(Carracedo-Mart́ınez et al., 2010)

We investigate the role of SES in the association between asthma ED visits and PM2.5
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exposure through stratified analyses by SES quartile. Let Y
(q)
kt denote the binary variable

for an ED visit for patient k on day t living in the qth quartile of SES (q=1,...,4 with q=1

representing the highest level of SES). The corresponding regression models are:

logit{Pr(Y (q)
kt = 1)} =

Np∑
k=1

αkVk + β(q)PM
(q)
t−1 + γXt, (3.2)

where Vk is the indicator variable for patient k and αk is the patient-specific baseline risk

coefficient for Vk; Np is the number of case-control matched sets; and β(q) is the log odds ratio

for 1-day lagged exposure PM
(q)
t−1. The set of temporally-varying covariates Xt includes: in-

dicator variables for four seasons, for hospital participation on ED case days, and for holidays

during the study period. We also include a cubic spline on day of year (5 degrees of freedom)

to smoothly control for within-window seasonal trends. Meteorology is controlled with cubic

polynomials for 3-day moving average (lags 0-2) of maximum temperature and mean dew

point. We also include interaction terms between season and maximum temperature.

We examine two methods to define PM2.5 exposures in order to evaluate the benefit of

having spatially-varying exposures in estimating SES-specific odds ratios. The first method

uses ZCTA-level averaged estimates (spatially-varying) derived from ensembled 1 km × 1 km

exposures, as described in Section 3.2.2. The second method uses a spatially-homogeneous

exposure ZCTA average located centrally in the study region.

3.3 Application to Asthma Emergency Department Data

The mean daily PM2.5 for the “Base” model is 14.58 µg/m3 whereas the mean daily PM2.5

for the “Base+AOD” model is 15.26 µg/m3 across the southeastern US during our study

period of 2002-2008. AOD is missing in 54% of the total space-time units for our 2002-2008

data.

The overall population of the 173 ZCTAs over the 20-county metropolitan Atlanta area

counties is 5,079,436 according to the 2010 Census data. There were a total of 127,396
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pediatric asthma ED visit across the study period, and 22.01% of all space-time combinations

in the study period had at least one pediatric asthma ED visit.

3.3.1 Random Forest Ensemble Exposure Modeling Results

The ensemble model and its accompanying weights are formed by relying on information

from the entire southeastern region for an individual year, and because the “Base” model

has better predictive performance across the study area with RMSE of 3.46 and R2 of 76%

averaged across study years (Supplementary Table 1), the ensemble model favors the “Base”

model estimates in a 2005 example we highlight throughout.

Figure 3.2 shows the fine-scale, 1 km × 1 km predictions we are able to obtain from the

ensembled RF model for a single day in Atlanta. We see the 20-county metropolitan area

and demonstrate that even for a relatively small region, PM2.5 varies not only from county

to county but within each county.

Figure 3.3 illustrates the effect of averaging the fine scale ensemble predictions over each

ZCTA for use in the health effects analysis. We see the same patterns in Figure 3.2 and

Figure 3.3, where the more densely populated and trafficked areas have higher levels of PM2.5.

and the more suburban areas have lower levels.

Figure 3.4 displays the year-long average for PM2.5 concentration estimates averaged

over the ZCTA areas. On average throughout the year, the ensemble is able to differentiate

between the higher PM2.5 levels in more urban areas versus the suburban areas.

3.3.2 Associations between PM2.5 and Asthma ED Visits

In an unstratified analysis, the estimated odds ratio between yesterday’s PM2.5 exposure

and asthma ED visits was 1.014 (95% CI: (0.998, 1.031)) per 10 µg/m3 increase PM2.5

concentration when using the ZCTA-level spatially-varying exposure and 1.010 (95% CI:

(0.996, 1.024)) when using the spatially-homogeneous exposure.

Figure 3.5 gives estimated associations when the analysis is stratified by quartiles of
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Figure 3.2: Ensemble PM2.5 from the 20-county metro Atlanta area at 1 km× 1 km resolution
on June 16, 2005.

Figure 3.3: Ensemble PM2.5 from the 20-county metro Atlanta area averaged over ZCTAs
on June 16, 2005.
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Figure 3.4: Ensemble PM2.5 from 20-county metro Atlanta area averaged over 173 ZIP code
tabulation areas (ZCTAs) daily over 2005.
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SES. Associations between PM2.5 and asthma ED visits across SES strata show the same

pattern for both exposure assessment methods: the highest levels of SES (Q1) had the largest

magnitude of association (1.033 and 1.025) and the 3rd quartile (Q3) had the smallest mag-

nitude (0.996 and 0.992). The differences in estimates across quartiles are more pronounced

with the spatially-varying exposure due to the Q1 estimate being slightly higher when a

spatially-varying exposure is used for estimation.

3.4 Simulation for Emergency Department Visit Mod-

eling

3.4.1 Simulation Settings

Population-based studies of PM2.5 exposure and health often assess “exposure” differently.

While exposures derived from monitoring networks are common, the method of assigning

exposures to at-risk populations varies. For example, some analyses assign monitor values

based on proximity to a patient’s residence (Baxter et al. (2013); Boutin-Forzano et al. (2004)

or ZIP code (Bell and Ebisu (2012)); others assign the monitoring values to a broader area

(Glad et al. (2012); Grineski et al. (2015)).

For our analyses, we develop PM2.5 exposure estimates at the ZCTA-level based on

averaging over all 1 km × 1 km estimates within a certain ZCTA. We hypothesize that

these spatially-varying exposure estimates will result in more accurate estimates of effect

modification by SES. In this section, we conduct a simulation study to quantify the difference

between the effect sizes estimated using a spatially coarser exposure estimate, when the true

exposure is more spatially heterogeneous. Specifically, we first simulate multiple datasets of

daily ED visits using “true” ZCTA-level exposures obtained from ensemble modeling (Section

3.2.2). Then, we estimate PM2.5 health effects using a coarser exposure defined as the central

ZCTA-level estimate that is assumed to be common across all ZCTAs.
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Figure 3.5: Odds ratios (per 10 µg/m3 of PM2.5) of asthma emergency department visits
based on a spatially-varying ZIP code tabulation area (ZCTA)-level PM2.5 exposure and
spatially-homogeneous ZCTA-level PM2.5 exposure, stratified by quartiles of socioeconomic
status (SES) defined by percent of ZCTA living in poverty. Quartile values of percent below
poverty were defined as: Q1 = <7.6%; Q2 = ≥ 7.6% to <11.4%; Q3 = ≥11.4% to <16.2%;
Q4 = ≥16.2%. spatially-homogeneous- PM2.5 exposure ZCTA average located centrally in
the study region. spatially-varying- PM2.5 exposure ZCTA average from each ZCTA in the
study region.
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Our main objective is to examine the difference in PM2.5 short-term effects between high

SES and low SES areas. In the simulation study, we define ZCTAs with the lowest quartile

of poverty as high SES and all other quartiles as low SES. We use the binomial model in

Equation (3.3) to simulate the number of cases for each ZCTA on each day for a one-year

period.

Binomial(ns, pst) where pst =
exp(β0 + PMstβ)

1 + exp(β0 + PMstβ)
, (3.3)

where ns is the ZCTA-level (s) population in 2010, β0 is chosen to provide similar incidence

as the observed ED counts in the year 2005, PMst is the true ZCTA-level (s) PM2.5 concen-

tration on day t, and β is the true health effect assigned based on SES level. We assign β in

two different ways in order to investigate the bias when either high or low SES area has the

higher effect from PM2.5. When one SES level is assigned no effect (β = 0), the other SES

level is assigned an effect invoking approximately a 5% difference per 10 µg/m3 of PM2.5

(β = 0.0048). (Kuo et al., 2018)

For each simulated dataset, we fit the stratified conditional logistic regression (Equation

(3.2)), similar to those in Section 3.2.3 but without the additional confounders by SES level,

i.e., no Xt term.

We compare health effect estimates from using three exposure assessment methods:

(a) with spatially-varying ZCTA-level averaged estimates (true exposure), (b) a spatially-

homogeneous exposure, derived from a single ZCTA-level average located in the center of

the study area (spatially-homogeneous-single-site), and (c) a spatially-homogeneous expo-

sure, derived by averaging ZCTA-level exposures from multiple locations that correspond to

locations with US EPA monitors (spatially-homogeneous-average-of-sites). This allows us to

examine differences in estimated effect modification for exposures either assigned close to a

residence versus a more central monitor or an average of monitoring locations. We perform

this simulation across 1000 times and assess this potential bias on average, as well as RMSE,

95% and 90% coverage probabilities, average standard error, Monte Carlo error, and power
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or Type I error. (Alexeeff et al., 2015)

3.4.2 Simulation Results

Table 3.1 shows results where both SES levels (high and low) had null PM2.5 effect. Within

each SES group, estimation performance is similar across different exposure assessment meth-

ods in terms of average bias, RMSE, and coverage. The use of different exposures results in

similar Type I error rates that are close to the nominal 5% level, with the low SES popula-

tion being more conservative. Therefore, when the true effect is null, the impact of potential

differential exposure measurement is minimal, and we did not detect biases away from the

null.

Table 3.2 shows results when each SES group has a log odds ratio of 0.0048 (i.e., an

effect size resulting in about a 5% increase in odds ratios per 10 µg/m3). Among both

high and low SES ZCTAs, the spatially-homogeneous-single-site exposure resulted in larger,

negative biases compared to the gold standard (spatially-varying), around 10% of the true

effect size. Biases associated with a spatially-homogeneous-average-of-sites exposures are

not as pronounced, but they are still negative. Therefore, when the true exposures are

spatially-varying, the use of spatially-homogeneous exposures may result in effect attenuation

when examining SES-specific associations. We note that the use of spatially-homogeneous

exposures had lower RMSE, likely due to smaller average standard error.
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Table 3.1: Simulation with no effect: True β1 = 0 Results of 1,000 case-crossover dataset re-
sults of stratified quartile analyses for 1) all days (lag 1) between 01/01/2005 and 12/31/2005
with assigned ensemble exposure averaged over each ZCTA (spatially-varying; gold stan-
dard); 2) all days (lag 1) between 01/01/2005 and 12/31/2005 with assigned ensemble ex-
posure averaged over the ZCTA containing the central monitor and assigned to all ZCTAs
on that day (spatially-homogeneous-single-site) 3) all days (lag 1) between 01/01/2005 and
12/31/2005 with assigned ensemble exposure averaged over the ZCTAs containing the central
monitors in Atlanta and assigned to all ZCTAs on that day (spatially-homogeneous-average-
of-sites)

Case Average 95% 90% Average MC Type I
SES Data Count Bias* RMSE* Coverage Coverage SE* Error* Error

High spatially-varying 5137 0.103 3.310 94.4 88.4 3.19 0.1 5.6
(Gold standard)

spatially-homogeneous 5137 0.11 3.17 94.9 88.8 3.07 0.1 5.1
(average of sites)

spatially-homogeneous 5137 0.11 3.0 94.8 89.5 2.92 0.09 5.2
(single site)

Low spatially-varying 12779 -0.02 1.95 95.9 91.0 1.97 0.06 4.1
(Gold standard)

spatially-homogeneous 12779 0.017 1.95 95.7 90.0 1.95 0.062 4.3
(average of sites)

spatially-homogeneous 12779 -0.002 1.85 95.6 90.7 1.85 0.06 4.4
(single site)

Footnotes: SES- socioeconomic status; High SES: Q1; Low SES: Q2-Q4; SE- standard
error; RMSE- root mean squared error; MC- Monte Carlo; spatially-homogeneous (single

site) - for the same day, every ZCTA receives the same exposure assignment from the
central monitor containing ZCTA; spatially-homogeneous (average of sites) - for the same

day, every ZCTA receives the same exposure assignment from the average of central
monitors containing ZCTAs in Atlanta

* - estimates times 1,000
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Table 3.2: Simulation with effect: True β1 = 0.0048 Results of 1,000 case-crossover dataset re-
sults of stratified quartile analyses for 1) all days (lag 1) between 01/01/2005 and 12/31/2005
with assigned ensemble exposure averaged over each ZCTA (spatially-varying; gold stan-
dard); 2) all days (lag 1) between 01/01/2005 and 12/31/2005 with assigned ensemble ex-
posure averaged over the ZCTA containing the central monitor and assigned to all ZCTAs
on that day (spatially-homogeneous-single-site) 3) all days (lag 1) between 01/01/2005 and
12/31/2005 with assigned ensemble exposure averaged over the ZCTAs containing the central
monitors in Atlanta and assigned to all ZCTAs on that day (spatially-homogeneous-average-
of-sites)

Case Average 95% 90% Average MC
SES Data Count Bias* RMSE* Coverage Coverage SE* Error* Power

High spatially-varying 5538 0.11 3.18 93.8 88.5 3.05 0.1 37.6
(Gold standard)

spatially-homogeneous 5538 -0.17 3.07 94.7 89.0 2.938 0.097 36.2
(average of sites)

spatially-homogeneous 5538 -0.47 2.94 94.3 88.8 2.79 0.09 35.2
(single site)

Low spatially-varying 13793 -0.045 1.86 96.3 89.7 1.88 0.06 70.4
(Gold standard)

spatially-homogeneous 13793 -0.18 1.86 95.4 89.4 1.86 0.059 70.1
(average of sites)

spatially-homogeneous 13793 -0.45 1.82 93.6 88.9 1.77 0.06 69
(single site)

Footnotes: SES- socioeconomic status; High SES: Q1; Low SES: Q2-Q4; SE- standard
error; RMSE- root mean squared error; MC- Monte Carlo; spatially-homogeneous (single

site) - for the same day, every ZCTA receives the same exposure assignment from the
central monitor containing ZCTA; spatially-homogeneous (average of sites) - for the same

day, every ZCTA receives the same exposure assignment from the average of central
monitors containing ZCTAs in Atlanta

* - estimates times 1,000
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3.5 Discussion

This study quantifies the impacts of using different spatial resolutions of PM2.5 exposure in a

short-term health effect study of pediatric asthma emergency department visits in Atlanta.

Using ED visit data from 2002 to 2008, we do not find a statistically significant difference

in effect estimates between ZCTAs classified by different poverty levels. We do note a stronger

association in the highest and lowest SES ZCTAs, regardless of the exposure granularity

(Figure 3.5), similar to results reported in O’Lenick et al. (2017). The observed differences

may also be explained by varying baseline risk between the lowest and highest SES level

groups, where similar additive risks will result in apparent differences in multiplicative risk

measures.

One concern from previous studies of effect modification by SES is that observed dif-

ferences in associations may be due to differential exposure measurement error. In our

simulation study, we observe similar magnitude of attenuation for both the high and low

SES neighborhoods when error-prone exposures are used; we also do not observe spurious

associations when the effect is null. Hence, given Atlanta’s spatial distribution of SES as

measured by percent population below poverty and PM2.5 monitor placements, we do not

find evidence that observed effect modifications by SES may be due to exposure spatial

misalignment.

When comparing spatially-varying and spatially-homogeneous exposures, odds ratios in

ZCTAs with the highest levels of SES differ the most. This pattern is in agreement with

bias we see in the high SES group from our simulation study. We also observe higher upper

confidence limits for the spatially-varying exposure, consistent with simulation results.

This study utilizes PM2.5 concentrations estimated through random forests and ensemble

techniques at a fine spatial resolution that can reflect local PM2.5 exposures. This expo-

sure assessment approach is increasingly being used by environmental health researchers to

investigate potential links between air pollution and adverse health events.

In our study, the optimal random forest hyperparameter combinations for the models
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with and without AOD differ. This is likely due to AOD being a useful predictor of PM2.5;

when AOD is not a potential covariate, the model needs to rely on many more covariates to

optimize prediction.

Combining predictions from both random forest models with and without AOD allows for

more modeling flexibility based on data availability, as well as provide complete spatial and

temporal coverage for exposure assessment. Table B.1 shows a slightly better performing

model when AOD is not included, but this is may not be the case for other areas and years

outside the modeling domain.

Methodology to characterize the uncertainty of predictions from random forests is a

recent research focus. There is no “gold standard” method for random forest prediction

standard error. We use naive estimates of uncertainty based on variability across trees;

other options include more advanced Monte Carlo methods (Coulston et al.) or quantile

regression methods (Meinshausen and Ridgeway) (2016; 2006). A naive estimate provided

better coverage for our predictions. A more detailed exploration of the different options for

random forest uncertainty in our analysis can be found in the Supplementary Materials.

Our results are limited to short-term exposures and pediatric asthma morbidity outcomes

as measured by emergency department visits, and the results from this study may not be

applicable to long-term exposures or other asthma-related outcomes in adults. We also

only explore exposure measurement error due to spatial-misalignment, and we assume the

health outcome is ascertained without error. Other simpler methods of assigning PM2.5 to a

spatial area exist that are not evaluated in this study. For example, Hart et al. (2015b) and

Sarnat et al. (2010) assign monitor measurements to the nearest ZCTA and assess potential

measurement error. Additionally, we are limited in our conclusions by the ZIP code-level ED

data; we know patients’ SES levels are heterogeneous within a ZIP code, and smaller scale

spatial data would allow us to make more use of our spatially refined exposure data. Finally,

our simulation and data analyses rely on having complete daily time-series of exposure data.

Systematic missing data may bias effect estimates in the case-crossover framework when we
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do not have complete time stratified controls. Janes et al. (2005) discuss these issues and

explain the localizable, nonignorable nature of this referent selection.

Our simulation study is based on the motivating Atlanta case-crossover analysis, and

results are dependent on the spatial distributions in PM2.5 levels and ZCTA-level SES mea-

sures. Other simulation settings warrant further considerations. Particularly, the data from

the simulation is created with a slightly different model (unconditional logistic regression)

than the final analysis model (conditional logistic regression). While this approach allows

us to simulate case data, there may be some residual bias. This could explain why our

spatially-varying exposures are not always the top performing result across all performance

statistics despite being the “true exposure.”

We use a time-stratified approach for our case-crossover modeling, but other designs

such as the symmetric bidirectional designs may also be explored for short-term health

outcomes. (Carracedo-Mart́ınez et al., 2010) Additionally, the conditional logistic regression

and referent strategy we used could be replaced with another modeling strategy such as one

that relaxes some distributional assumptions or expands the number or creation of control

days.

In summary, this study assesses the effect of spatial misalignment bias on associations of

PM2.5 and asthma ED visits with effect modification by area-level SES through the use of real

and simulated data. We recommend using spatially-varying PM2.5 exposures when examining

health effects by a spatially-varying effect modifier to minimize potential additional bias

based on our simulation results. With finer resolution air pollution data becoming more

widely accessible, future studies should take advantage of these data. Differences in the

effects of PM2.5 on asthma ED visits in subpopulations should continue to be investigated as

the results have potential policy implications. Limiting harmful exposures to all populations

should be a priority to reduce health inequities. (Adler and Newman, 2002)
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Chapter 4

Combining Air Pollution Estimates

from Multiple Models Using Bayesian

Ensemble Averaging
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4.1 Introduction

Particulate matter less than 2.5 µm in aerodynamic diameter, PM2.5, is a type of air pollutant

that globally harms human health. (Pui et al., 2014; Hart et al., 2015a; Maji et al., 2017)

Availability of PM2.5 data is critical to understand the impact of air pollution on human

health. However, high-quality PM2.5 levels are typically measured at regulatory monitoring

stations, and due to the sparsity and preferential locations of monitoring stations, estimated

PM2.5 derived from observed measurements are often used in health analyses. (United States

Environmental Protection Agency, 2009) Estimates can be obtained through averaging of

monitoring data, e.g., Zeger et al. (2008), or performing spatial kriging, e.g., Wang et al.

(2017). Other popular estimation techniques involve data fusion, where PM2.5 estimates

come from combining monitor measurements with other data sources. (Berrocal et al., 2010)

Another estimation method gaining popularity among environmental researchers is random

forests. (Hu et al., 2017; Brokamp et al., 2018; Huang et al., 2018) This method is appealing

to researchers due to its ease of use and its performance compared to traditional methods.

(Breiman, 2001) However, it has been demonstrated to underestimate more extreme values

and potentially misrepresent the variability. (Berrocal et al., 2019)

Various methods exist to estimate air pollution levels across large spatial areas without

monitors, but many methods lack the ability to quantify the uncertainty of those air pollution

estimates. Statistical modeling makes uncertainty quantification possible. (Hoeting et al.,

1999; Clyde, 2000)

In Murray et al. (2019), we used Bayesian model averaging to combine estimates of

PM2.5 from Bayesian hierarchical models with satellite derived aerosol optical depth and

numerical model simulation as members to the ensemble models. (Murray et al., 2019)

Combining these estimates allowed us to use all available information, while accounting for

informative missingness associated with AOD. The ensemble estimates have better predictive

performance than individual models in cross-validation experiments. By allowing spatially

varying weights, we also found that Bayesian hierarchical models with numerical model
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simulation (i.e., CMAQ) or remote sensing (i.e., AOD) as the main predictor may be favored

more over the other in certain locations. However, in the two-member method, we did not

examine how spatial or temporal covariates affect the ensemble weights.

The main contribution of this paper is to 1) extend the ensemble to more than two

members and 2) include covariates into the weights. The weight estimation is accomplished

through assigning a latent variable structure to the weights so that the weights given to each

model member vary spatially. Estimation of weights is accomplished through the use of data

augmentation with parameter expansion, a computational approach for efficient Bayesian

analysis. This method of estimation allows us to incorporate covariates into the weight es-

timates. In the application, we combine the estimates from the two Bayesian spatial hierar-

chical models with either AOD or CMAQ as the main predictors and a third model member,

estimates from random forests. Random forests predictively perform differently than the

traditionally used models. Spatial statistical models have been shown to perform better for

spatial interpolation, while random forest is better at explaining temporal variation. (Berro-

cal et al., 2019; Hu et al., 2017) Being able to combine estimates from approaches with

different performance in space and time may result in better performing overall estimates.

4.2 Modeling

In our past work, we have detailed the usefulness of combining Bayesian hierarchical models

in order to estimate PM2.5. (Murray et al., 2019) In the current work, we achieve covariate

incorporation through the use of multinomial probit modeling. While the goal of multinomial

probit modeling is to model a categorical outcome, each outcome is assigned a probabilistic

value of the model choosing that outcome. We are able to use these probabilities as our

“weights” for a multi-member ensemble. We show the multinomial probit approach herein,

but it can be easily reduced to binomial probit for a two statistical model member.
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We first describe the ensemble model in a generalized form with J members:

p(yst |M1,M2, ...,MJ) = w(1)
s f1(yst |M1) + w(2)

s f2(yst |M2) + ...+ w(J)
s fJ(yst |MJ), (4.1)

where yst is the PM2.5 concentration at location s on day t; fj(yst | Mj) is the prediction

distribution of the jth member, which may correspond to the posterior predictive distribution

of yst from model Mj for Bayesian models or other ad-hoc distributions. For example, for

random forest, one can define fj(yst |Mj) as a normal distribution with mean µ
(k)
st and vari-

ance σ
2,(k)
st . Parameter w

(j)
s is the non-negative weight for the jth model member at location

s, with vector ws = (w
(1)
s , w

(2)
s , ..., w

(J)
s ) and

∑J
j=1w

(j)
s = 1. ws is a probability vector from a

multinomial probit model. Us = (Us,1, Us,2, ..., Us,J−1) with Us being multivariate normally

distributed with mean µ and variance Σ, then specifically define w
(J)
s = Prob(max(Us) < 0),

and w
(j)
s = Prob(max(Us) = Us,j > 0). Weights have a default value of w

(CMAQ)
s = 1 on

locations where AOD is missing.

To link the ensemble model to the multinomial probit model, define Zs as a multinomial

outcome where each level of Zs represents the best model to estimate PM2.5 among three

different prediction models and s = 1,...,NS, where NS is the total number of spatial locations.

Each Zs has an associated choice probability of ws with w
(1)
s + w

(2)
s + w

(3)
s = 1. In order to

estimate Zs and, subsequently, ws, we use established data augmentation techniques where

Zs is modeled using a latent variableUs. (Tanner and Wong, 1987) We defineUs = Xsβ+εs,

whereXs is constructed as a combination of choice-specific and individual-specific covariates;

β are the coefficients corresponding to the Xs matrix, and εs is the error term, distributed

as N(0,Σ). Σ11 is set as 1 to avoid identifiability issues. (Imai and Van Dyk, 2005) The

ordering of the choice outcomes in Zs is irrelevant so long as the indexing is consistent,

e.g., all indices of 1 correspond to the the first member model, 2 corresponds to the second

member model, etc.

We assume β is distributed as N(0, A−1), where 0 is the prior mean, and A−1 is the prior
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variance of β. Σ is a positive definite 2× 2 matrix with Σ11 = 1. The prior for Σ is defined

as

p(Σ) ∝ |Σ|−(ν+3)/2[trace(SΣ−1)]−ν(2)/2, (4.2)

where ν is the prior degrees of freedom for Σ and S is the prior scale of Σ with S11 = 1.

The prior for Σ is proper if ν ≥ p− 1 = 2.

Typically, Zs is observed in multinomial probit models. In our ensemble model, both Zs

and Us are latent variables. The main motivation of estimating Zs is to subsequently obtain

an estimate of ws to aid in combining estimates from ensemble members.

4.3 Estimation and Inference

We describe model estimation techniques of a three-member model given the motivating

application. Similar approaches can be extended to an ensemble model with more than

three members.

We use parameter-expanded data augmentation for our Markov chain Monte Carlo (MCMC)

estimation. (Imai and Van Dyk, 2005; Schliep and Hoeting, 2015) The parameter expansion

helps with algorithm efficiency using an unidentified parameter, α. (Meng and Van Dyk,

1999) Details on sampling with the use of parameter expansion are below.

4.3.1 Covariate Matrix Construction and Dimension-Reduced Pa-

rameters

We introduce two different types of covariates to consider for these models: individual-

specific and choice-specific. Individual-specific covariates do not vary across choices. They

are the same for each choice but differ among individuals (or in our application, spatial loca-

tions). The intercept is also treated as “individual-specific” due to choices having shared β’s.
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The individual-specific matrix here will be NS ×m∗, where m∗ is the number of individual-

specific covariates. Choice-specific covariates differ among individuals (i.e., locations) and

choice (i.e., models). The choice-specific matrix here will be (NS × p) ×m, where m is the

number of choice-specific covariates, and p is the number of total choices (before reducing to

p− 1). Keane (1992) makes the case for at least one choice-specific covariate in a covariate

matrix in addition to individual-specific covariates. Quinn et al. (1999) offers an explanation

on construction of X with both choice-specific and individual-specific covariates as a stacked

X matrix; we follow this construction herein. We consider three different covariate com-

binations: (1) intercept + choice-specific covariate, (2) intercept + choice-specific covariate

+ individual-specific covariate, and (3) intercept + choice-specific covariate + individual-

specific covariate + latitude + longitude.

Both U and X, and by relation Us and Xs, are dimension reduced parameters that are

created by using the third model member’s values as a “reference” group. Specifically, if we

let U+ and X+ be the non-dimension reduced values, we can write Us as

Us,j = U+
s,j − U+

s,3, j=1,2, where U is a (NS × 2) matrix, U+ is a (NS × 3) matrix, and Us

is a (1× 2) matrix. The construction of X+ and, subsequently, X follows. The individual-

specific covariate matrix will have dimension NS × m∗ before expanding it to combine with

the choice-specific covariate matrix, where it will become (NS × 3=183) ×(m∗×3) based on

cross multiplying the original individual-specific covariate matrix by Ip, the identity matrix.

Then, deleting every pth row and column, as in Quinn et al. (1999), will result in dimension

(NS × 2=122) ×(m∗ × 2).

Any choice-specific covariate matrix will be of dimension (NS × 3 = 183) × m before

reducing the dimension to (NS × (p − 1)) × m, which will result in dimension (NS × 2 =

122)×m.

When we stack the individual-specific covariate matrix and the choice-specific covariate

matrix, we ultimately will have an X matrix that is of dimension (NS × 2 = 122)× l, where

l is the result of combining columns, m∗ + m. Individually, when we see Xs referenced in
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the model, Xs is of dimension (2× l).

β and Σ are also affected by the dimension reduction where β becomes (p− 1)× 1, and

Σ becomes (p− 1)× (p− 1).

4.3.2 Estimation Algorithm with Parameter Expansion

Before beginning the algorithm, we first offer some notational clarity. Much of the notation

used mirrors that of Imai and Van Dyk (2005).

Asterisk (∗) indicates an intermediate step and that sampled value is not saved for pos-

terior inference. Tilde (̃) indicates an unidentified parameter, i.e., a parameter altered by

the parameter expansion, α2. Overall, our MCMC involves sequential sampling of: U ∗s , α2∗(
both (α2)∗(t−1) and (α2)∗(t)

)
, Ũ∗s , β̃∗, Σ̃∗, and S̃.

Data augmentation with parameter expansion allows us to more efficiently sample our

parameters. When we introduce the working parameter, α, following Imai and Van Dyk, we

can use any working prior distribution. α2
0, a positive constant, is the prior for α.

Under parameter expansion, set α2 = Σ̃11 and Σ = Σ̃/Σ̃11 to obtain

p(Σ, α2) ∝ |Σ|−(ν+3)/2exp[− α2
0

2α2
trace(SΣ−1)](α2)−[ν(2)/2+1], where

α2|Σ ∼ α2
0trace(SΣ−1)/χ2

ν(p−1=2).

Finally, by combining the priors for β, Σ, and the joint distribution of (Σ, α2), then trans-

forming to (β̃, Σ̃), we have β̃|Σ̃ ∼ N(0, Σ̃11A
−1) with Σ̃ ∼ inv Wishart(ν, S̃) with S̃ = α2

0S.

Begin algorithm:

1. Draw
(

(α2)∗, Ũ ∗s

)
via p(α2,Us|β,Σ−1, Zs)

(a) Draw (α2)∗ from p(α2|Σ) ∼ α2
0trace(SΣ−1)/χ2

ν(p−1=2).

(b) Draw NS × 2 conditionals of U ∗s,j|Us,−j,β,Σ
−1, Zs for s = 1, ..., NS and j = 1, 2.

Specifically, draw

i. U ∗s,1|Us,2,β,Σ
−1, Zs
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ii. U ∗s,2|Us,1,β,Σ
−1, Zs

where the conditionals are truncated univariate normal (details in Appendix C.)

Set Ũ ∗s,j = α∗U ∗s,j, where α∗ =
√

(α2)∗.

2. Draw
(

(α2)∗, β̃∗
)

via p(α2,β|Ũ ∗s ,Σ−1, Zs)

(a) Draw α2∗|Ũ ∗,Σ−1

α2∗|Ũ ∗,Σ−1 ∼
∑NS

s=1(Ũ
∗
s −Xsβ̂)TΣ−1(Ũ ∗s −Xsβ̂) + β̂TAβ̂ + trace[S̃Σ−1]

χ2
(NS+ν)(p−1=2)

where

β̂ =
[∑NS

s=1X
T
s Σ−1Xs +A

]−1 [∑NS

s=1X
T
s Σ−1Ũ ∗s

]

(b) Draw β̃∗|Ũ ∗,Σ−1 ∼ Normal

[
β̂, (α2)∗

(∑NS

s=1X
T
s Σ−1Xs +A

)−1]

Then, set β = β̃∗/α∗

3. Draw
(

(α2)∗, (Σ̃)−1∗
)

via p(α2,Σ−1|Ũ ∗s ,β, Zs)

(Σ̃)−1∗|β, (Ũ ∗s−Xsβ̃
∗) ∼Wishart

[
NS + ν, {S̃ +

∑NS

s=1(Ũ
∗
s −Xsβ̃

∗)(Ũ ∗s −Xsβ̃
∗)T}−1

]
For Σ̃∗11 to meet the constraints of the Σ prior, ẽs(Σ̃

∗
11) = es + (Σ̃∗11)Xsβ must satisfy

max{ẽs1(Σ̃∗11), ..., ẽsj(Σ̃∗11)} < 0 if Zs = 0

max{0, ẽs1(Σ̃∗11), ..., ẽsj(Σ̃∗11)} = ẽsk(Σ̃
∗
11) if Zs = k

Jiao and van Dyk (2015) recommend simple rejection sampling, for which details can

be found in Appendix C.

Set α2 = Σ̃2∗
11 (Note: Σ̃2∗

11 comes from the first diagonal element of Σ̃∗ NOT Σ̃−1∗.)

Set Σ−1 = Σ̃−1∗ × α2

4. Draw Zs via p(Zs|ws) for s = 1, . . . , NS.
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Calculate ws via p(ws|β,Σ)

Us ∼ Normal(Xsβ,Σ)

w
(1)
s = Pr(Us,1 > Us,2,Us,1 > 0)

w
(2)
s = Pr(Us,1 < Us,2,Us,2 > 0)

w
(3)
s = Pr(max(Us,1,Us,2) < 0)

p(Zs|ws) ∝ ps,1 ∗ ps,2 ∗ ps,3, where

ps,j = Prob(Zs = j|·) =
w

(j)
s

∏T
t=1 φ(yst;µ

(j), σ2,(j))
3∑
j=1

w
(j)
s

∏T
t=1 φ(yst;µ(j), σ2,(j))

where µ(j) and σ2,(j) correspond to the predictive probability distribution mean and

variance, respectively, and φ ≡ a Normal distribution.

End algorithm.

4.3.3 Inference

The point prediction of yst can be defined by its posterior mean

ŷst = w(1)
s µ

(1)
st + w(2)

s µ
(2)
st + w(3)

s µ
(3)
st , (4.3)

which is a weighted average of predictions from the three members. The error for yst is

defined as

Var(yst|µ(1)
st , µ

(2)
st , µ

(3)
st ) = w(1)

s σ
2,(1)
st + w(2)

s σ
2,(2)
st + w(3)

s σ
2,(3)
st + w(1)

s µ
2,(1)
st + w(2)

s µ
2,(2)
st + w(3)

s µ
2,(3)
st

−
(
w(1)
s µ

(1)
st + w(2)

s µ
(2)
st + w(3)

s µ
(3)
st

)2
Bayesian inference also allows us to capture the uncertainty in the weight estimation pro-

cedure. Using Bayesian techniques, one can report any appropriate summary measures to

describe the centrality and variation in the weight estimation.
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4.4 Application

We obtained daily ground-level 24-hour average measurements of PM2.5 from 63 monitors in

the Southeastern US over the period 2003 to 2005 via the United States Environmental Pro-

tection Agency’s Air Quality System (AQS). To supplement the monitoring data, chemical

transport model (CTM) simulations were obtained from the USEPA Models-3/Community

Multiscale Air Quality (CMAQ) model version 4.5 at a 12 km × 12 km horizontal spatial

resolution. (Byun and Schere, 2006) Satellite-retrieved aerosol optical depth (AOD) mea-

surements by the aerosol remote sensor Moderate Resolution Imaging Spectroradiometer

(MODIS), which orbits the Earth on the National Aeronautics and Space Administration’s

Aqua and Terra satellites, are also available. We utilized a new multiangle implementa-

tion of atmospheric correction (MAIAC) algorithm that provides AOD values at a 1km ×

1km spatial resolution. (Lyapustin, Martonchik, Wang, Laszlo and Korkin, 2011; Lyapustin,

Wang, Laszlo, Kahn, Korkin, Remer, Levy and Reid, 2011) For each AOD grid cell, we

also compiled variables including: elevation from the US Geological Survey, forest cover and

road lengths from the 2001 National Land Cover data, meteorology (e.g. wind speed) from

the North American Land Data Assimilation Systems, and PM2.5 primary emission point

sources from the 2002 USEPA National Emissions Inventory. As in Hu et al., forest cover

and elevation were averaged from their original resolutions of about 1 km and about 30 m,

respectively, to the 1 km × 1 km MAIAC grid cell level. (Hu et al., 2013) Additionally, road

lengths and point emissions were summed over the 1 km × 1 km MAIAC grid cell level.

4.4.1 Random Forest

Random forest is a decision tree-based approach in which many small decision trees are grown

and then aggregated to provide a single prediction averaged across trees. Random forest can

be preferable to regression-based approaches due to its ability to better accommodate non-

linearity and general flexibility in specifying model inputs. Additionally, integral to our
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ensemble approach, prediction uncertainties can be derived for random forest predictions.

Our random forest incorporates 1 km-resolution spatial information such as latitude

and longitude, percent forest cover and lengths of major and local road types from the

2001 National Land Cover data, daily meteorology (temperature, wind speed, and relative

humidity) from the North American Land Data Assimilation Systems, and PM2.5 primary

emission point sources and distance from the emission point source from the 2002 USEPA

National Emissions Inventory. We also include planetary boundary layer height from the

North American Regional Reanalysis. Finally, we input CMAQ, AOD, and time ID values.

The function randomForest in R has parameters that the user can specify, e.g., number

of trees, number of variables to consider at each split in a node, and minimal node size.

We ultimately use random forests with 500 trees, 6 variables considered at each split, and a

minimum of 5 terminal nodes, all of which is the default. The point predictions and stan-

dard deviations for the random forests result from taking the mean and standard deviation,

respectively, of the 500 trees at each observation. (Breiman, 2001)

4.4.2 Bayesian Hierarchical Modeling for Daily PM2.5

We have previously described the model for combining monitoring data with CMAQ outputs

or AOD retrievals as predictors for point-referenced AQS monitoring measurements in a

Bayesian spatial-temporal hierarchical model (BHM). (Murray et al., 2019)

Let Y (s, t) represent the observed PM2.5 concentration on day t at locations s. Following

Berrocal et al. and Chang et al., our statistical model has the form of a BHM:

Y (s, t) = α1(s) + α2(s)X(s, t) + β1(t) + β2(t)X(s, t) +Z(s, t)γ + ε(s, t), (4.4)

where X(s, t) is the linked AOD or CMAQ values in the grid cells containing the monitor at

locations s, and Z(s, t) is a vector of additional predictors with coefficient γ. (Berrocal et al.,

2010; Chang et al., 2014) For the AOD model, Z(s, t) includes the following land use and



60

meteorology variables: elevation, forest cover, road length, primary emission source, wind

speed, and temperature. Because CMAQ uses information on emissions and meteorology to

perform simulations, Z(s, t) is not included in the PM2.5-CMAQ BHM. Preliminary analysis

also showed that including additional covariates does not improve prediction performance

for the CMAQ model. Finally, the residual error term, ε(s, t), is independent normally

distributed with mean zero and variance σ2
y .

Parameters α1(s), α2(s) and β1(t), β2(t) in Equation (4.4) are spatial and temporal

random effects, sometimes referred to as calibration parameters because they correct for the

additive and multiplicative bias associated with CMAQ or AOD. Additional details about

the modeling assumptions for BHM can be found in Murray et al. (2019).

4.4.3 Estimation and Prediction

Estimation and prediction are accomplished in three stages. In Stage I, we fit the CMAQ

and the AOD Bayesian hierarchical models and the random forest to obtain posterior pre-

dictive means, µ
(j)
st , and variances for each observed PM2.5 value. To avoid overfitting, each

observation was left-out and back-predicted in a cross-validation experiment, similar to ap-

proaches employed in stack regression. (LeBlanc and Tibshirani, 1996) In Stage II, we fit

the proposed ensemble model to estimate covariate-dependent weights using the posterior

predictive distributions from Stage I. Finally, in Stage III, the CMAQ and the AOD Bayesian

hierarchical models and the random forest are fitted again with all PM2.5 observations. Pre-

dictions are made at all locations and then combined using ensemble weights obtained based

on parameter estimates from Stage II.

We consider two types of cross-validation experiments to assess model performance. First,

we use a traditional ten-fold cross-validation technique to assess prediction. This requires

us to separate the data into 10 different subsets with 90% of the data used as training data

and the other 10% of the data used as validation data within each subset. This allows

us to evaluate prediction performance in scenarios with temporally missing observations
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of PM2.5. Then, in order to evaluate the prediction performance of the proposed method

at locations absent of ground monitors, especially over large geographical areas, we use a

spatially clustered cross-validation technique. This cross-validation most closely mimics the

real world scenario of needing to estimate ambient air pollution in areas without monitoring

data. (Young et al., 2016) Clusters are formed through hierarchical clustering based on

distance. (Johnson, 1967) We leave out one spatial cluster at a time (validation data) and

use the other nineteen clusters as training data.

We run 2500 MCMC iterations with a burn-in of 1000 for cross-validation results. We

use R version 3.5.1 for all estimation and prediction. (R Core Team, 2018)

Out-of-sample prediction performance is based on four statistics: prediction root-mean-

square error (RMSE), 95% coverage probability of the posterior intervals (PI), average pos-

terior standard deviation (SD), and R2. R2 and RMSE were calculated based on posterior

predictive means of the left-out observed PM2.5 concentrations. Posterior prediction inter-

vals were based on the 2.5th and the 97.5th percentiles of the posterior distribution of the

two-component predictive model distribution in Equation (4.1).

We apply the ensemble model with covariate-dependent weights to the PM2.5 data in the

southeastern United States. The PM2.5 measurements are present at 63 monitoring stations.

(Murray et al., 2019) When choosing covariates that inform the weights, we only consider

covariates that are present at all spatial locations where we estimate PM2.5 to avoid un-

necessary computation, (i.e., interpolation). The covariates we examine as potential weight

predictors are: i. (standardized) elevation, ii. (standardized) percent forest coverage, iii.

average estimated PM2.5, defined as the three-year average estimated PM per model, and iv.

above average estimated PM2.5 per model, defined as whether the three-year average esti-

mated PM2.5 is higher than the USEPA’s National Ambient Air Quality Standards (NAAQS)

from the 2006 annual threshold of 15 µg/m3.
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4.4.4 Cross-Validation Results

Table 4.1shows the relative performance of the ensemble model compared to individual mod-

els for spatially clustered cross-validation. Similarly, Table 4.2 shows the same comparisons

but for ten-fold cross-validation. We see similar statistics for spatially clustered CV ensemble

results (Table 4.1) compared to ten-fold CV ensemble results (Table 4.2).

For the spatially clustered cross-validation, the proposed three-member ensemble has

an improved RMSE of 2.99 compared to the RMSE of 3.13 of the two-member ensemble

model. The three-member ensemble also has a slightly higher R2 of 0.83 compared to the

two-member ensemble’s R2=0.81. We see little improvement in the RMSE (0.7% decrease)

in the ordinary ten-fold cross-validation experiment compared to the two-member ensemble

while the R2 remains the same for the two ensembles. The three-member ensemble model has

a higher overall standard deviation than the two-member ensemble model (3.91 vs. 3.43).

The best ensemble model has weights dependent on elevation and estimated three-year PM2.5

average at each location.

Spatially clustered CV results informed which models we compared for ten-fold CV re-

sults. We see little, if any, improvement in the RMSE (2.98 vs. 3.00) in the ten-fold CV

experiment. Similar to the spatially clustered CV experiment, the overall standard deviation

is higher than that of the two-member ensemble model.

4.4.5 Spatial Results

In Figure 4.1, we show an example of the spatially-varying weights based on using percent

forest cover and average estimate over EPA-standard as covariates. This figure illustrates

the spatially-varying performance of the three models, as evidenced by the estimated weights

at monitoring locations. Random forest receives the majority of the weight in most areas,

but some areas may slightly favor (> 0.33) the PM2.5-AOD BHM.
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Table 4.1: Prediction performance for daily PM2.5 concentrations in spatial clustering
cross-validation (CV) comparing ensemble averaging with a Bayesian hierarchical model
(BHM) using satellite-derived aerosol optical depth (AOD), a BHM using a numerical model
(CMAQ) simulation, or random forest. Ensemble inputs were derived from first performing
10-fold CV. Ensembles are based on 2500 runs with 1000 burn in using the mean weight
from the runs.

Coverage Average
Method RMSE of 95% PI Posterior SD R2

PM2.5-AOD BHM 3.62 94.43 3.59 0.74
PM2.5-CMAQ BHM 3.93 93.34 3.58 0.69

Random Forest 3.83 96.86 4.17 0.71
Ensemble (Hi/low PM) 2.98 98.14 3.93 0.83

Ensemble (Avg PM from Model) 2.98 98.13 3.93 0.83
Ensemble (Forest cover + Hi/low PM) 3.00 98.16 3.91 0.82

Ensemble (Forest cover + Avg PM from Model) 3.01 98.18 3.91 0.82
Ensemble (Elevation + Hi/low PM) 2.99 98.13 3.92 0.83

Ensemble (Elevation + Avg PM from Model) 2.99 98.12 3.92 0.83
Ensemble (Lat/Long + Hi/low PM) 3.01 98.04 3.91 0.82

Ensemble (Lat/Long + Avg PM from Model) 3.01 98.12 3.91 0.82
Ensemble (Lat/Long + Elevation + Avg PM from Model) 3.03 98.09 3.90 0.82

RMSE: root mean squared error; PI: prediction interval; SD: standard deviation; CV:
cross-validation; PM2.5: particulate matter less than 2.5 µm; AOD: aerosol optical depth;
BHM: Bayesian hierarchical model; CMAQ: Community Multiscale Air Quality; hi/low

PM: indicator variable for estimated three-year average PM2.5 value above the 2006
NAAQS annual threshold from each of the models (choice-specific variable); Avg PM from
Model: estimated three-year average PM2.5 value from each of the models (choice-specific

variable).
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Table 4.2: Prediction performance for daily PM2.5 concentrations in ordinary (ten-fold)
cross-validation (CV) comparing ensemble averaging with a Bayesian hierarchical model
(BHM) using satellite-derived aerosol optical depth (AOD), a BHM using a numerical model
(CMAQ) simulation, or random forest. Ensemble inputs were derived from first performing
10-fold CV. Ensembles are based on 2500 runs with 1000 burn in using the mean weight
from the runs.

Coverage Average
Method RMSE of 95% PI Posterior SD R2

PM2.5-AOD BHM 3.40 94.07 3.30 0.78
PM2.5-CMAQ BHM 3.14 95.05 3.28 0.81

Random Forest 3.30 97.79 3.89 0.79
Ensemble (Hi/low PM) 2.98 98.19 3.93 0.83

Ensemble (Avg PM from Model) 2.97 98.19 3.92 0.83
Ensemble (Forest cover + Avg PM from Model) 2.99 98.20 3.91 0.83

Ensemble (Elevation + Avg PM from Model) 2.98 98.13 3.92 0.83
Ensemble (Lat/Long + Avg PM from Model) 3.00 98.12 3.91 0.83

Ensemble (Lat/Long + Elevation + Avg PM from Model) 3.01 98.10 3.90 0.82

RMSE: root mean squared error; PI: prediction interval; SD: standard deviation; CV:
cross-validation; PM2.5: particulate matter less than 2.5 µm; AOD: aerosol optical depth;
BHM: Bayesian hierarchical model; CMAQ: Community Multiscale Air Quality; hi/low

PM: indicator variable for estimated three-year average PM2.5 value above the 2006
NAAQS annual threshold from each of the models (choice-specific variable); Avg PM from
Model: estimated three-year average PM2.5 value from each of the models (choice-specific

variable).
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Figure 4.1: Estimated weights using percent forest cover and average estimate over EPA
standard as covariates. Left to right: estimated weights at monitoring locations for PM2.5-
AOD Bayesian Hierarchical Models (AOD), estimated weights at monitoring locations for
PM2.5-CMAQ Bayesian Hierarchical Models (CMAQ), and estimated weights at monitoring
locations for random forest (RF).
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4.5 Discussion

The new Bayesian ensemble approach allows for the integration of multiple PM2.5 estimates

obtained from different prediction models. Unlike previous ensemble approaches, our method

provides estimates of prediction uncertainty, as well as identifies the relative spatially-varying

predictive ability of each ensemble member based on the estimated ensemble weights. Ul-

timately, the ensemble approach may improve health effect estimation and health impact

assessment by improving exposure estimation with complete spatial-temporal coverage.

When combining estimates from different models, especially those without ground mon-

itoring measurements, it can be useful to incorporate covariates into ensemble weight es-

timates. Previous data fusion work has successfully combined multiple numerical models

but not different types of estimation inputs such as satellite data and numerical model out-

puts. (Crooks and Isakov, 2013) The ensemble approach helps to identify which model is

performing the strongest at a certain location through the weight estimation.

The parameter estimates obtained from the post-burn-in MCMC runs to derive the

weights can be used to extrapolate the weights to spatial locations without monitors. Note

that the β values do not correspond to subsequent increases or decreases in ensemble weights.

The βs do, however, indirectly relate to the weights through Us.

Although the method demonstrated here shows small improvements, these relative per-

formances are limited to the southeastern United States. The models that make up the

ensemble method typically perform well in this region of the United States. Other areas of

the United States where certain member models perform relatively worse than other member

models should be studied. (Geng et al., 2018)

Note that our algorithm has a prior mean of β set to 0. Algorithm 2 in Imai and Van

Dyk (2005) allows for a non-zero prior mean, and the rest of our algorithm can be adjusted

accordingly.

While we choose to use the Σ11 restriction, there are other options to maintain identifia-

bility; another popular restriction is from Burgette and Nordheim where the trace of the Σ
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matrix is restricted to be a constant. (Burgette and Nordheim, 2012)

For critics of the random forest and its lack of spatial dependency compared to the spatial

Bayesian hierarchical models, the results may be unsatisfactory. While random forests do

not have a spatial modeling component, they do have the ability to include spatial covariates

such as latitude, longitude, monitor ID, and land-use covariates.

Some readers may question the multiple uses of covariates in both the ensemble modeling

stage and the weighting estimation stages. However, the covariate usage serves two different

purposes. The covariates are intended to help predict PM in the modeling phase while

covariates are helping to choose a best model in the weighting stage. Therefore, the same

covariate can be comfortably used in both stages if desired.

While spatial extensions of the multinomial probit model exist, we chose to evaluate the

usefulness of the non-spatial multinomial probit method; however, the covariates we used

spatially vary. The algorithm can be adjusted to incorporate a spatial structure as well.

When looking beyond three model members, even more efficient algorithms beyond the

use of multinomial probit may used in the same way, e.g., the Diagonal Orthant Multinomial

Probit Models. (Johndrow et al., 2013)

Bayesian hierarchical models allow us to use data such as AOD or CMAQ as covariates

in a model to predict PM2.5 while also incorporating structures for spatial and temporal

dependence. New to the proposed method herein is the inclusion of the machine learn-

ing approach, random forests. Unlike Bayesian hierarchical models, random forests do not

have spatial components built in, but it is still able to perform well based on its ability to

build numerous decision trees to identify which model has the best prediction performance.

(Breiman, 2001)

Incorporating covariate information into the weights provided more information about

what characteristics influence a higher weight for each predictive member and, therefore,

provided more information to easily interpolate the weights to locations without monitors

in future analyses.
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Appendix A

Appendix for Chapter 2

A.1 Bayesian Hierarchical Modeling Details

Y (s, t) = α1(s) + α2(s)X(s, t) + β1(t) + β2(t)X(s, t) +Z(s, t)γ + ε(s, t), (A.1)

Temporal dependence in β1(t) and β2(t) is modeled using a first-order conditional au-

toregressive model (CAR). The CAR model is defined via temporal adjacencies. Let t ∼ t′

indicate that days t and t′ are 1 day apart. The full conditional distribution of β1(t) is

Gaussian with E[β1(t)] = ηβ1
∑

t′∼t β1,t′/nt and Var[β1(t)] = σ2
β1
/nt, where nt is the num-

ber of temporal neighbors and ηβ1 ∈ [0, 1] controls the degree of temporal dependence.

Temporal random slopes β2(t) for the Community Multiscale Air Quality modeling system

(CMAQ) or aerosol optical depth (AOD) are defined similarly. Spatial dependence in α1(s)

and α2(s) is modeled jointly using a linear coregionalization model. Specifically, we assume

(α1(s), α2(s))T = Av(s), where A is a 2×2 lower triangular matrix, and v(s) is a 2×1 vector

(v1(s), v2(s))T , where v1(s) and v2(s) represent two latent independent Gaussian processes

with marginal variances of 1 and exponential covariance functions with range parameters θj,

i.e. Cov(vi(s), vi(s
′)) = e−||s−s

′||/θj for j = 1, 2.
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A.2 Inference Details

A.2.1 Bayesian Hierarchical Model Inference

For the Bayesian Hierarchical Models (BHM), each component of the fixed effect γ is assigned

a flat prior (∝ 1), and each element of A is assigned N(0, 1 × 103). The BHM’s temporal

CAR parameters ηβ1 and ηβ2 are discretized into 1,000 intervals in [0, 1]. Variance compo-

nents (marginal variances for the Gaussian process, τ 2; BHM’s residual error variance, σ2
y;

conditional variance of the temporal CAR model, σ2
β1

and σ2
β2

) are assigned Inverse-Gamma

(a, b), with a and b chosen to be small and non-informative. Range parameters for Gaussian

processes were assigned Gamma (0.5, 0.05).

A.2.2 Ensemble Model Inference

Here we only present the Markov Chain Monte Carlo (MCMC) algorithm for the ensemble

model.

We first introduce a latent variable zst, where zst = 1 if the prediction from CMAQ

performs superiorly to AOD, and zst = 0 otherwise, since zst is Bernoulli. After initialization,

we update zst, ws, τ
2, and ρ as follows.

1. Update zst for s = 1, . . . , S and t = 1, . . . , Ts. The full conditional distribution of

zst ∼ Bernoulli with probability

ws ∗ φ
(
yst | µ(1)

st , σ
2,(1)
st

)
ws ∗ φ

(
yst | µ(1)

st , σ
2,(1)
st

)
+ (1− ws) ∗ φ

(
yst | µ(2)

st , σ
2,(2)
st

) .

2. Update ws for s = 1, . . . , S. At the rth iteration, generate a proposal q
(r)
s = logit(w

(r)
s )

from a Normal distribution with mean q
(r−1)
s and variance κw. Accept q

(r)
s with prob-
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ability

exp
[∑Ts

t=1(zst ∗ q
(r)
s )− Ts ∗ log(1 + exp(q

(r)
s )
]
h1(q

(r)
s | τ 2, ρ,q−s)

exp
[∑Ts

t=1(zst ∗ q
(r−1)
s )− Ts ∗ log(1 + exp(q

(r−1)
s )

]
h1((q

(r−1)
s | τ 2, ρ,q−s)

,

where exp
[∑Ts

t=1(zst ∗ q
(r)
s )− Ts ∗ log(1 + exp(q

(r)
s )
]

is the likelihood of the Bernoulli

distribution given qs, and h1(·) is the univariate conditional Normal distribution given

q−s, the vector of logit weights for all locations except location s.

3. Update τ 2. The full conditional distribution of τ 2 ∼ Inverse-Gamma(a + S/2, b +

1/2WTΣ−1W), where W = (q1, . . . , qS)T , and Σ is the spatial covariance matrix of

W.

4. Update ρ. Generate proposal ρ(r) from a log-normal distribution with mean ρ(r−1) and

variance κρ. Accept ρ(r) with probability

l1(W | τ 2, ρ(r)) l2(ρ(r))ρ(r)

l1(W | τ 2, ρ(r−1)) l2(ρ(r−1))ρ(r−1)
,

where l1 is the multivariate Normal distribution for the Gaussian process, and l2 is the

Gamma prior distribution.

Updating qs, and thereby ws, individually when the number of monitoring locations is

large can be computationally demanding. Hence, we also consider a two-stage approach.

First, the ensemble weight ws is estimated separately at each location by assuming a prior

distribution ws ∼ Beta(1, 1). Bayesian kriging is then applied to the posterior medians of

ws across locations, assuming a similar Gaussian process model as above. Compared to the

original joint estimation approach, the two-stage approach assumes qs to be known when

performing spatial interpolation.
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Equations for evaluation statistics follow. R2 refers to

R2 = 1−
∑S

s=1

∑Ts
t=1(yst − ŷst)2∑S

s=1

∑Ts
t=1(yst − ȳst)2

, (A.2)

while root mean squared error (RMSE) is defined as

RMSE =

√∑S
s=1

∑Ts
t=1(yst − ŷst)2∑S
s=1 s× Ts

(A.3)

A.3 Spatially Clustered Cross-Validation

For the spatially clustered cross-validation (CV) approach, we use hierarchical clustering to

group the United States Environmental Protection Agency’s Air Quality System monitoring

locations based on proximity. Complete, agglomerative hierarchical clustering starts with

each point belonging to its own “cluster,” then finds the best match based on distance, and

continues to do so until all points belong to a single cluster. With this approach, we do

not have to specify the number of clusters ahead of time, allowing for efficient comparison

of results with different numbers of clusters. The distance was determined by Euclidean

distance between AQS monitors. To best illustrate real-life scenarios, we use 20 clusters in

the spatially-clustered CV experiment.

A.4 Non-Bayesian Mixed Models

In order to show the advantages of using individual Bayesian hierarchical models (BHM)

and the ensemble method with BHMs as its inputs, we provide a non-Bayesian mixed model

comparison in Table S3. A single-input mixed model mirrors that of the BHM: PM2.5

is the outcome, and AOD and covariates are used as a fixed effects with space and time

as independent random effects (PM2.5-AOD MM). The single-input CMAQ mixed model

(PM2.5-CMAQ MM) has the same construction without the covariates. The multi-input
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mixed model is the non-Bayesian comparison to the ensemble model. The multi-input mixed

model contains fixed effects for AOD, CMAQ, and covariates with independent, random space

and time effects. Table 1 from the manuscript can be compared to Table S3 herein, and clear

performance advantages from using the Bayesian methods are demonstrated through each

performance metric, i.e. RMSE, coverage, Average SD, and R2.
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A.5 Figures
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Figure A.1: United States Environmental Protection Agency Air Quality System monitoring
sites grouped through hierarchical clustering. Each number and color corresponds to which
cluster that monitoring site belongs.
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Figure A.2: Spatially interpolated ensemble weights for predictions from the PM2.5-
Community Multiscale Air Quality (CMAQ) Bayesian hierarchical model at 1 km × 1 km
resolution. Black triangles indicate AQS monitoring locations.
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Figure A.3: Posterior means of PM2.5 from a Bayesian hierarchical model with simulations
from the Community Multiscale Air Quality (CMAQ) model on March 26, 2005.
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Figure A.4: Posterior standard errors of PM2.5 from a Bayesian hierarchical model with
simulations from the Community Multiscale Air Quality (CMAQ) model on March 26, 2005.
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Figure A.5: Posterior means of PM2.5 from a Bayesian hierarchical model with satellite-
derived aerosol optical depth (AOD) on March 26, 2005.
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Figure A.6: Posterior standard errors of PM2.5 from a Bayesian hierarchical model with
satellite-derived aerosol optical depth (AOD) on March 26, 2005.
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A.6 Tables
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Table A.1: Prediction performance for daily PM2.5 concentrations in 10-fold cross-validation
(CV) comparing ensemble averaging with a Bayesian hierarchical model (BHM) using
satellite-derived aerosol optical depth (AOD) or a BHM using a numerical model (CMAQ)
simulation. Ensemble inputs were derived from first performing either 10-fold or leave-one-
monitor-out (spatial) CV.

Coverage Average
Method Estimation RMSE of 95% PI Posterior SD R2

PM2.5-AOD BHM – 3.40 94.07 3.30 0.78
PM2.5-CMAQ BHM – 3.14 95.05 3.28 0.81

Ensemble (10-fold CV input) Joint 3.00 97.15 3.52 0.83
two-stage 3.01 97.09 3.50 0.82

Ensemble (spatial CV input) Joint 3.13 97.39 3.62 0.81
two-stage 3.14 97.33 3.60 0.81

RMSE: root mean squared error (in µg/m3); PI: prediction interval; SD: standard
deviation (in µg/m3); CV: cross-validation; PM2.5: particulate matter less than 2.5 µm;
AOD: aerosol optical depth; BHM: Bayesian hierarchical model; CMAQ: Community

Multiscale Air Quality

Table A.2: Prediction performance for daily PM2.5 concentrations in leave-one-monitor-out
(spatial) cross-validation (CV) comparing ensemble averaging with a Bayesian hierarchical
model (BHM) using satellite-derived aerosol optical depth (AOD) or a BHM using a numer-
ical model (CMAQ) simulation. Ensemble inputs were derived from first performing either
10-fold or leave-one-monitor-out (spatial) CV.

Coverage Average
Method Estimation RMSE of 95% PI Posterior SD R2

PM2.5-AOD BHM – 3.45 94.25 3.39 0.77
PM2.5-CMAQ BHM – 3.33 95.32 3.45 0.78

Ensemble (10-fold CV input) Joint 2.99 96.81 3.52 0.83
two-stage 3.01 96.68 3.53 0.82

Ensemble (spatial CV input) Joint 3.14 97.23 3.65 0.81
two-stage 3.14 97.23 3.66 0.81

RMSE: root mean squared error (in µg/m3); PI: prediction interval; SD: standard
deviation (in µg/m3); CV: cross-validation; PM2.5: particulate matter less than 2.5 µm;
AOD: aerosol optical depth; BHM: Bayesian hierarchical model; CMAQ: Community

Multiscale Air Quality
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Appendix B

Appendix for Chapter 3

B.1 Random Forest Tuning

Rather than simply using the defaults from the randomForest or ranger packages in R, we

explore different combinations of hyperparameters in the random forest framework to see

which combination results in the best predictive statistics for our data. Instead of tuning all

seven years of data, we look at 2002, 2005, and 2008 as selected representations of the seven

years.

The hyperparameters we vary are: 1) the number of trees (ntree) to build the random

forest. The default of most random forest algorithms is 500, but research shows that as

few as 250 may suffice. (Probst and Boulesteix, 2017) We try 250, 500, and 1000. 2) the

number of variables to randomly sample as candidate covariates at each split of the decision

tree (mtry). The default for regression is p/3. We start at the default value and increase

by equal size until we reach the maximum number of covariates; specifically, we try (7, 11,

15, 19) for the AOD only dataset and (6, 10, 14, 18) for the all dataset. 3) the minimum

number of samples within the terminal nodes (nodesize). This controls the tree depth. The

default for regression is 5. We try 3, 5, 7, 10.

Because we use a 10 fold cross-validation approach to evaluate the predictive ability
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of each random forest, we report the summary statistics on average across the 10 folds.

The best performing hyperparameter combination is subjectively defined as the combination

having the lowest RMSE, on average, and the highest R2, on average, while maintaining at

least 95% coverage, on average.

We also compare different options to code the categorical covariates such as day of week

and month. “Order” is the computationally efficient option and results do not considerably

differ from partition, so all random forests considered here use the order option opposed

to partition, which is computationally expensive with little improvement. This is because

partition allows “all possible 2-partitions” consideration for splitting (Wright and Ziegler,

2017). Order for multiclass classification has the factor levels ordered by the first principal

component of the weighted covariance matrix of the contingency table (Wright and Ziegler,

2017). Finally, we consider the option of manually coding the multicategory covariates as

binary covariates.

The chosen hyperparameter combinations consider all possible partitions of factor vari-

ables and are 1000, 7, 3 (ntrees, mtry, nodesize, respectively) for the AOD only dataset and

1000, 14, 3 for the all dataset. Overall, within a certain tuning year, the hyperparameter

combinations result in similar predictive summaries, and while tuning is recommended, it

may not be necessary to achieve favorable results (Probst and Boulesteix, 2017; Friedman

et al., 2001). As for our method, one can still expect this ensemble method to work regardless

of tuning practices.

B.2 Random Forest Estimation Methods

B.2.1 Discussion of random forest standard errors

Although random forest methods have been used for many years (Breiman), a recent topic

of exploration is the methodology used to characterize the uncertainty of the predictions

from random forests. (Breiman, 2001) We use naive estimates of uncertainty, but other
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options include more advanced Monte Carlo methods (Coulston et al. (2016)) or quantile

regression methods (Meinshausen and Ridgeway (2006)). Neither of these methods are

currently considered “gold standard” estimates for random forest prediction standard error.

Further, it is important to differentiate between methods that produce prediction intervals

and confidence intervals. The ranger package has the infinitesimal jackknife method of Wager

et al. as the default prediction standard error method. (Wager et al., 2014) However, the

infinitesimal jackknife is expressly meant for confidence intervals and provides “estimates for

standard errors of the expected values of prediction” (Hengl et al., 2018). There are other

confidence interval methods as well, but they are not as readily implementable in R, and

because random forest standard error was not the focus of this project, we did not implement

these methods (Sexton and Laake, 2009; Mentch and Hooker, 2016).

We use a naive standard deviation estimate for the random forest estimates where we

take the standard deviation of the 1000 tree estimates. Other uncertainty measures exist for

the random forest variance estimates, with the infinitesimal jackknife method of Wager et al.

being the default in the ranger package (Wager et al., 2014). However, for our application,

the infinitesimal jackknife approach results in inadequate coverage results.

Bivand et al. offers an approach to assess how the prediction standard error performs

by looking at z-scores for each location (Bivand et al., 2008). If the score is lower than 1,

that indicates that the estimate overestimates the error. If the score is higher than 1, the

estimate is underestimating the error. Especially since we planned to use the estimates and

their related uncertainties in a health analysis, we would rather the estimates of uncertainty

be conservative and, therefore, be under 1. We found that our naive approach provides

conservative standard error estimates while the infinitesimal jackknife approach provides too

small error estimates for prediction purposes.
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B.2.2 Estimation details

Estimation and prediction are accomplished in seven stages, which we describe in the enu-

merated steps below.

1. Fit the “Base” random forest to obtain predictive means, µ
(1)
st , and variances, σ

2,(1)
st ,

for each day and location where we have observed AOD values.

2. Fit the “Base+AOD” random forest to to obtain predictive means, µ
(2)
st , and variances,

σ
2,(2)
st , for each day and location regardless of AOD values present.

3. Create out-of-sample “Base” model predictions. Randomly leave 10% of the PM2.5

observations out then obtain prediction means and prediction variances using the re-

maining 90% of the data. Repeat this ten times. Stack the predictions to create a

dataset.

4. Create out-of-sample “Base+AOD” predictions. Randomly leave 10% of the PM2.5

observations out then obtain prediction means and prediction variances using the re-

maining 90% of the data. Repeat this ten times. Stack the predictions to create a

dataset.

5. Estimate spatially varying weights based on PM2.5 measurements and out-of-sample

prediction datasets from Steps 3 and 4 using Equation (B.1).

p(yst |M1,M2) = wsf1(yst |M1) + (1− ws)f2(yst |M2), (B.1)

6. Interpolate the weights to 1 km × 1 km grid cells using kriging.

7. Combine the estimates from Steps 1 and 2 using weights from Step 5 in the same

fashion as Equation (B.2) to obtain the ensemble estimate.

ŷst = wsµ
(1)
st + (1− ws)µ(2)

st , (B.2)
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Notice in Steps 3 and 4, to avoid overfitting while estimating ensemble weights, we fit the

RF models repeatedly, but we leave-out and back-predict observations in a cross-validation

experiment, similar to approaches employed in stack regression and SuperLearner techniques.

(LeBlanc and Tibshirani, 1996; Polley and van der Laan, 2010)

B.3 Tables
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Table B.1: PM2.5 predictions summary statistics by year, AOD only subset.
Year Base Model Base+AOD Model

RMSE Coverage of 95% PI Avg SD R2 RMSE Coverage of 95% PI Avg SD R2

2002 3.52 0.98 4.57 0.76 3.78 0.98 4.64 0.73
2003 3.25 0.98 4.29 0.77 3.48 0.98 4.37 0.74
2004 3.15 0.98 4.19 0.79 3.39 0.98 4.30 0.76
2005 3.76 0.98 4.81 0.77 3.77 0.98 4.73 0.77
2006 3.32 0.98 4.28 0.78 3.54 0.98 4.44 0.75
2007 4.07 0.98 4.97 0.74 4.12 0.98 4.96 0.73
2008 3.18 0.98 3.86 0.72 3.37 0.98 4.06 0.68

Table B.2: Case-crossover results of overall analyses for 1) all days (lag 1) between
01/02/2002 and 12/31/2008 with assigned ensemble exposure averaged over each ZCTA
(spatially-varying); 2) all days (lag 1) between 01/02/2002 and 12/31/2008 with assigned
ensemble exposure averaged over the ZCTA containing the central monitor and assigned to
all ZCTAs on that day (spatially-homogeneous)

95% Standard p-value
Data OR CI β Error for H0 : β = 0

All days 1.014 0.998, 1.031 0.0014 0.0008 0.09
(spatially-
varying)

All days 1.010 0.996, 1.024 0.0010 0.0007 0.16
(spatially-

homogeneous)

Footnotes: β is the log odds ratio for that model. Spatially-homogeneous: for the same
day, every ZCTA receives the same exposure assignment from the central monitor

containing ZCTA. OR are in terms of every 10 µg/m3.
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Table B.3: Case-crossover results of stratified quartile analyses for 1) all days (lag 1) between
01/02/2002 and 12/31/2008 with assigned ensemble exposure averaged over each ZCTA
(spatially-varying); 2) all days (lag 1) between 01/02/2002 and 12/31/2008 with assigned
ensemble exposure averaged over the ZCTA containing the central monitor and assigned to
all ZCTAs on that day (spatially-homogeneous)

95% Standard p-value p-value for
Data Quartile OR CI β Error for H0 : β = 0 H0 : µ1 = µother

Spatially- Q1 1.033 0.995, 1.073 0.0033 0.0019 0.09 -
varying Q2 1.019 0.983, 1.056 0.0019 0.0018 0.31 0.60

Q3 0.996 0.962, 1.031 -0.0004 0.0018 0.82 0.16
Q4 1.014 0.988, 1.041 0.0014 0.0013 0.29 0.43

Spatially- Q1 1.025 0.994, 1.057 0.0025 0.0016 0.12 -
homogeneous Q2 1.018 0.987, 1.049 0.0018 0.0016 0.26 0.75

Q3 0.992 0.963, 1.023 -0.0008 0.0015 0.62 0.14
Q4 1.010 0.986, 1.034 0.0010 0.0012 0.42 0.45

Footnotes: β is the log odds ratio for that stratum’s model. µ1 is the log odds ratio for Q1.
µother is the log odds ratio for Q2, Q3, or Q4. Quartile values of percent below poverty were

defined as: Q1 = <7.6%; Q2 = ≥ 7.6% to <11.4%; Q3 = ≥11.4% to <16.2%; Q4 =
>16.2%. OR are in terms of every 10 µg/m3. Spatially-homogeneous: for the same day,
every ZCTA receives the same exposure assignment from a central monitor containing

ZCTA.
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Appendix C

Appendix for Chapter 4

C.1 Truncated Normal Mean and Variance

Truncated univariate normal details from Step 1 of estimation algorithm has truncation

points from R2 region moments from

U ∗s,j|Us,−j,β,Σ
−1, Zs ∼ N(ms,j, τ

2
s,j), where ms,j and τ 2s,j are formed from partitioning the

Σ−1 matrix.

Permute Σ−1 so the jth row and column are last.

e.g., for j = 1,

Σ−1 =

σ22 σ21

σ12 σ11


−1

=

σ−122 + FE−1F −FE−1

−EF ′ E−1

 ,
where E = σ11 − σ12σ−122 σ21 = τ 2s,1

F = σ−122 σ21

ms,1 = Xs[1, ]β + F
′
(Us,2 −Xs[2, ]β)

C.2 Simple Rejection Sampling

Let es = Ũ ∗s − α∗Xsβ, where β =
β̃∗

α∗
. Also, α = Σ̃∗11 and α∗ is the proposed α for that

iteration.
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In order for the transformation from (es,β, α, Σ̃
∗) to (U ,β, α,Σ) to be correct, we must set

Us =
es + αXsβ

α
=
Ũ ∗s − α∗Xs

β̃∗

α∗
+ αXs

β̃∗

α∗

α

= Ũ ∗s /α−Xsβ̃∗/α +Xsβ̃∗/α
∗

(The above helps the stationarity of U .)

Therefore, set Us =
es + αXsβ

α
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Maté, T., Guaita, R., Pichiule, M., Linares, C. and Dı́az, J. (2010), ‘Short-term effect of fine

particulate matter (PM2.5) on daily mortality due to diseases of the circulatory system in

Madrid (Spain)’, Science of the Total Environment 408(23), 5750–5757.

Mebust, M. R., Eder, B. K., Binkowski, F. S. and Roselle, S. J. (2003), ‘Models-3 Community

Multiscale Air Quality (CMAQ) model aerosol component 2. Model evaluation’, Journal

of Geophysical Research: Atmospheres 108, 1–18.

Meinshausen, N. and Ridgeway, G. (2006), ‘Quantile regression forests’, Journal of Machine

Learning Research 7(6), 983–999.

Meng, X.-L. and Van Dyk, D. A. (1999), ‘Seeking efficient data augmentation schemes via

conditional and marginal augmentation’, Biometrika 86(2), 301–320.



99

Mentch, L. and Hooker, G. (2016), ‘Quantifying uncertainty in random forests via confidence

intervals and hypothesis tests’, The Journal of Machine Learning Research 17(1), 841–881.

Metzger, K. B., Tolbert, P. E., Klein, M., Peel, J. L., Flanders, W. D., Todd, K., Mulholland,

J. A., Ryan, P. B. and Frumkin, H. (2004), ‘Ambient air pollution and cardiovascular

emergency department visits’, Epidemiology 15(1), 46–56.

Mikati, I., Benson, A. F., Luben, T. J., Sacks, J. D. and Richmond-Bryant, J. (2018),

‘Disparities in distribution of particulate matter emission sources by race and poverty

status’, American Journal of Public Health 108(4), 480–485.

Miller, M. D. and Marty, M. A. (2010), ‘Impact of environmental chemicals on lung devel-

opment’, Environmental Health Perspectives 118(8), 1155.

Munoz-Pizza, D. M., Villada-Canela, M., Reyna, M., Texcalac-Sangrador, J. L. and Osornio-
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