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Abstract

Statistical Modeling and Learning in Single Cell RNA Sequencing Data

By Kenong Su

The Single-cell RNA-sequencing (scRNA-seq) has emerged as a powerful tool to

explore the biology at the unitary resolution of life. It has successfully deepened our

understanding of various biological problems such as cell populations, gene regula-

tions, and cellular transcriptional states. It also opens a door for investigating com-

plex biological systems such as brain regions and immune responses. Furthermore, it

leads to the discovery of new and rare cell types, which benefits for identifying drug

targets and decoding disease etiologies in clinical studies.

Even though researchers are inspired by the success of the scRNA-seq, there still

exist difficulties with the respect to the data analysis. Specifically, in the scRNA-seq

gene expression profiles, the sparsity of excessive zero expressions, the heterogeneity

across and within cell types, and confounding batch effects together contribute to the

analytical challenges. To deal with these concerns, we have developed algorithms and

pipelines for different research aspects in scRNA-seq data.

With the advance of high-throughput techniques, nowadays we are able to perform

transcriptome sequencing for a massive number of cells experimentally. To facilitate

the analysis on the large-scale scRNA-seq data, one commonly performed task is cell

clustering, which enables the quantitative characterization of cell types. An essential

step in scRNA-seq clustering is to select a set of most representative genes (referred

as “features”) whose expression patterns will be adopted for proper cell clustering.

Currently, almost all existing scRNA-seq clustering tools include a simple unsuper-

vised feature selection step (e.g., statistical moments of gene-wise expression distribu-

tion) and uses random top number (e.g., 1000) of features for clustering. Therefore,

it is more reasonable to designate a rigorous approach for better feature selection.



We created an algorithm named FEAture SelecTion (FEAST) specifically designed

for selecting the most informative genes in the context of scRNA-seq clustering. We

demonstrated that applying FEAST can significantly improve the cell clustering accu-

racy, and outperformed other feature selection methods embedded in the state-of-art

scRNA-seq clustering methods such as Seurat and SC3.

Furthermore, determining the sample size for adequate power to detect statistical

significance is a crucial step at the design stage for high-throughput experiments. Due

to the unique sparse and heterogeneous characters presented in scRNA-seq, there are

few tools explicitly designed for scRNA-seq experiments to address this topic. We de-

veloped POWSC pipeline, a simulation-based approach to provide power evaluation

and sample size estimation in the context of differential expression (DE) analysis.

POWSC provides a variety of power evaluations including stratified and marginal

power analyses for DE genes characterized by two forms (phase transition or magni-

tude tuning), under different comparison scenarios. Additionally, we also devised the

POWCLUST workflow as an extension of POWSC with a focus on assessing power

for clustering. POWCLUST is able to recover the underlining information for cell

type hierarchies and cell type proportions with a proper sample size estimation.

Overall, I designed new algorithms and pipelines including FEAST and POWSC

for accurately selecting features and adequately evaluating power in scRNA-seq. We

showcase that FEAST can assist to find more representative genes and POWSC can

potentially be served as a guideline for scRNA-seq experiment design.
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Chapter 1

Introduction

1.1 Single-Cell RNA sequencing and challenges

Since the first description of single-cell transcriptome analysis in 2009 [139], single-

cell sequencing techniques have aroused people’s attention for its ability to dissect

individual cell, so as to profile genome, transcriptome, epigenome, and proteome.

In 2013, single-cell RNA and DNA sequencing techniques were highlighted as the

“Method of Year” [1]. Later, single-cell multi-omics and spatial transcriptomics were

then selected as the “Method of Year” in 2019 [141] and 2020 [104] respectively.

Among these single-cell related sequence research areas, single-cell RNA sequencing

(scRNA-seq) is the most active study field, and it has been successfully widely used

for studying complex tissues [26, 85, 91, 100, 165] and diseases [8, 14, 30, 109].

A typical workflow for scRNA-seq experiment contains the following steps. The

first step is the isolation of the cells from the prepared issue of interest. Then, isolated

cells are lysed for effectively capturing the mRNA molecules. Next, processed mRNA

will convert to complementary DNA (cDNA) through revise transcription followed

by the amplification. The amplified cDNAs usually undergo nucleotide barcode-

tagging as sequencing library preparation, and lastly, they are pooled and profiled via
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sequencing platforms. To date, a variety of scRNA-seq techniques and protocols have

been developed, which can generally fall into two categories based on the captured

transcript coverage: full-length sequencers such as Smart-seq2 [113] and MATQ-seq

[128], and 3’-end or 5’-end sequencers such as Chromium [178] and Drop-seq [102].

Recently, the latter droplet-based sequencers have gained popularity because they can

encapsulate thousands of cells which presents unprecedent opportunities for studying

cell populations. However, one caveat for scRNA-seq experiments especially from

the droplet-based sequencers is the low volume of mRNA products extracted from

individual cells which consequently impact the data analytical procedure.

Considering the unique characters in the scRNA-seq expression data, it presents

three major analytical challenges including high sparsity, heterogeneity, and confound-

ing batches. The sparsity meaning the excessive zero expression values observed in

the expression mainly results from biological effects and technical noises. Some im-

putation methods have been developed to tackle the increasing sparsity issue [59].

Due to the cell-to-cell variation from between and within cell types, the cell popu-

lations demonstrate high heterogeneity especially in the complex tissues. In terms

of expression patterns, bimodal and multi-modal distributions level are widely ac-

knowledged which requires complicated statistical mixture models. Moreover, the

cell types usually structure hierarchically [162] which adds to the level of heterogene-

ity. Even though the advancing scRNA-seq technique allows to sequence thousands

of cells at one time, many experiments are performed under different conditions, plat-

forms, patients, and timepoints. These confounding factors known as batches gain

the difficulty for data analysis, numerous methods are specifically designed to address

this concern [143]. Researchers need to properly handle these three unique characters

when delivering data analysis with respect to different scRNA-seq research topics.

With the revolution of scRNA-seq experiments accessible to academic laboratories

and commercial customers, many pipelines have been designed to address the afore-
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mentioned concerns when conducting data analysis. However, this field is still at the

infancy status, currently, there are no gold standard rules widely acknowledged for

data analysis. For example, since the imputation of zero expression would falsely en-

hance clustering signals, there is still lack of agreement of which imputation method

can least pose circularity that introduce false-positive results [4, 173]. Furthermore,

with the respect to modeling the gene expression distributions, because of distinct

sequence platforms, there is no consensus about the best choice for the probabilistic

density that can lead to the best sensitivity. Thus, researchers need to make their

best judgements to properly deal with these factors for different purposes of data

analysis.

1.2 ScRNA-seq clustering analysis

ScRNA-seq clustering has become the routine step for scRNA-seq analysis, which

lays the foundation for identification of existing and novel cell types [69, 156], and

classification of subpopulations from complex tissue systems [171, 174]). The essence

of single cell clustering is to apply statistical learning approach to characterize gene

expression patterns of cells and label them into putative cell types.

To date, lots of unsupervised computational algorithms have been developed for

single cell clustering [36, 131, 83]. An overview of the workflow [79] involves the

following components: quality control, normalization, feature selection, dimension

reduction, and the core step of clustering. Different scRNA-seq clustering algorithms

have at least one step difference by adopting their own strategies. However, it is

noting that each strategy has its own strength as well as limitation. Thus, these

established clustering algorithms could be sensitive and resulting into rather dissimilar

clustering outcomes [43, 63, 168]. It is important to balance the clustering outcomes

and optimize the clustering results.
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Several other concerns remain for single cell clustering. First, there is no universal

agreement of how to define a cell type particularly for the rare cell type based on

gene expression patterns. How to reasonably combine biological aspect (e.g., known

marker genes) for determining a cell type is worth exploring. Second, sometimes

there is no gold-standard for evaluating the clustering outcomes especially for the

cases that the truth (i.e., true cell labels and the number of cell types) is unknown.

Third, the increasing size of scRNA-seq data ranging to millions of cells can hinder

the computational scalability.

Except for unsupervised approach, some recently designed methods using prior

knowledge of the similar tissue systems can also achieve the goal of cell clustering. The

supervised approach is essentially to map the cell types from the existing dataset to

the given dataset depending on the closeness of expression patterns. These approaches

can be generally categorized into two ways: reference-tree-based approach [31, 78] and

transfer-learning approach [61]. It is rational to choose the proper source dataset in

order to correctly assign cell types in the target dataset.

Overall, scRNA-seq clustering presents promising opportunities as well as analyt-

ical challenges. We need to consider both computational and biological aspects to

benefit the single cell clustering analysis.

1.3 ScRNA-seq power evaluation

At the design stage of scRNA-seq experiment, it is needed to determine the desired

number of cells (known as sample size) to be sequenced with the consideration of the

sequencing platforms, sequencing cost, and total read counts. With these factors,

providing comprehensive and detailed power assessments is crucial for optimizing

the design of scRNA-seq experiment. The power evaluations under the context of

differential expression (DE) will confidently guide the researchers for detecting cell-
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type-specific marker genes, which is an important task for conducting the experiment.

Even though numerous methods and tools are available for sample size calculation

for microarray and RNA-seq in the context of DE, this topic in the field of scRNA-

seq is understudied. Moreover, the unique data characteristics present in scRNA-seq

such as sparsity and heterogeneity increase the challenge. Recently, it starts to gain

people’s attention and a few statistical frameworks explicitly designed for scRNA-seq

have just come out [134, 94]. Each pipeline recruits its own model assumption for

estimating key parameters and simulating data, but there is still lack of systematic

evaluation and comparison.

Currently, all most all existing power evaluation tools of DE analysis are con-

structed with the focus major cell types. It is more rigorous to estimate the power

for sub-populations [28] and sub-cell-types. However, the unexchangeable hypotheses

tests and potential batch effects gain the complexity of statistical inference. Fur-

thermore, it is also necessary to accurately estimate power and sample size with the

respect to the clustering, which is directly related to recovering the reference cell type

structures.

Overall, scRNA-seq power estimation is central to the scRNA-seq experiment

design. Even though many challenges presented in this topic, it is still worth exploring

and the findings can potentially guide for conducting the scRNA-seq experiments.

1.4 Outline

In this dissertation, I present some statistical methods for analyzing scRNA-seq data

with the different research perspectives. In chapter 2, I concentrate on scRNA-seq

clustering and comprehensively review the feature selection methods included in the

existing scRNA-seq clustering methods. I propose a method named FEAST [135],

which is designed for selecting an optimized feature set before the core of scRNA-
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seq clustering. FEAST can serve as a plug-in for the well-established scRNA-seq

clustering methods. I will discuss the logistic of FEAST and demonstrate its abil-

ity to improve the clustering accuracy. In chapter 3, I focus on scRNA-seq power

evaluation and sample size estimation. I created a simulation-based pipeline named

POWSC [134], which uniquely combines two forms of DE genes. POWSC can provide

a variety of power evaluations including stratified and marginal power. In addition, it

offers strategy for optimizing the tradeoffs between sequencing depth and sample size.

Besides scRNA-seq, in chapter 4, I list a cancer genomics project by introducing a

unique statistical model iPath. Ipath is able to identify highly predictive biomarkers

for clinical outcomes, including overall survival, tumor subtypes, and tumor stage

classifications. In chapter 5, I outline several potential research directions that I want

to pursue in the near future.
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Chapter 2

FEAST: Accurate Feature

Selection Improves Single Cell

RNA-seq Cell Clustering

Algorithm 1: FEAST

2.1 Introduction

Single-cell RNA sequencing (scRNA-seq) technologies have revolutionized biological

research [81, 178, 102]. Unlike the traditional bulk RNA sequencing (RNA-seq)

that measures the average expression of large number of cells, scRNA-seq profiles

the transcriptome of individual cells, which provides data with higher resolution for

better understanding the transcriptomic regulation and variation at cellular level. It

has been successfully applied to study many complex biology systems such as immune

system [66], cerebral cortices [37], and tumor progressions [112]. In addition to the

traditional expression analysis in bulk RNA-seq, scRNA-seq provides information to
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answer many new biological questions, such as discovering novel and rare cell types

[89], and constructing pseudotime cell trajectories [19].

The scRNA-seq experiments usually generate expression profiles for large number

of cells. For example, the 10x Genomics sequencer can profile thousands to millions

of cells at a relatively low cost. One of the most important goals for scRNA-seq

data analysis is the cell clustering, which is to partition cells into multiple groups via

unsupervised clustering algorithms. Cell clustering provides important information

for the cell composition and cell type specific transcriptome in complex tissues. It

lays the foundation for downstream analyses such as differential expression, pseudo-

time construction, and new/rare cell type discovery. There are many methods and

tools developed for unsupervised cell clustering [77, 123, 67], and they have been

comprehensively reviewed and compared [114, 84, 36]. These methods usually start

with a matrix of gene expression and output the grouping of cells. Many algorithmic

factors can affect the performances of the cell clustering methods, including data pre-

processing [155], normalization [9, 99], feature selection, dimension reduction [142],

cell-to-cell similarity calculation, etc. Among them, feature selection is an important

step which could have significant impact on the overall performance of cell clustering.

Although feature selection is implemented in most scRNA-seq clustering tools, it

is not clear how different selection procedures will impact the results. Despite some

efforts have been made to systematically compare and evaluate methods for data

normalization [52, 25], dimension reduction [137], and cell similarity metrics [75] in

scRNA-seq, there is no study specifically focused on the impact of feature selections.

In this work, we comprehensively evaluate and compare the impact of feature selection

on cell clustering in scRNA-seq. To the best of our knowledge, this is the first work

to systematically evaluate and compare the impact of feature selection approaches on

cell clustering accuracy. In addition, we also develop an algorithm, named FEAST

(FEAture SelecTion), which selects representative genes for scRNA-seq cell clustering.
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We compare FEAST with the feature selection approaches implemented in existing

clustering tools through extensive benchmark tests. We demonstrate that FEAST can

select more representative features than other approaches. Moreover, we demonstrate

that using features selected FEAST with existing clustering tools can significantly

improve the clustering accuracy.

2.1.1 Feature selection in scRNA-seq cell clustering

The scRNA-seq experiment produces expression levels for the whole transcriptome. A

majority of the genes are not differentially expressed among different cell types; thus,

they contain no information for cell clustering. The feature selection step selects a

subset of genes best representing the structures of the dataset in a lower dimensional

space, which enhances the signal to noise ratios and subsequently improves the cell

clustering results. Since the cell grouping is unknown before clustering, the feature

selection has to be done in an unsupervised fashion. Simple metrics based on quanti-

ties related to the statistical moments of the gene expressions are often used in most

methods. We conduct a comprehensive review on the feature selection algorithms

in existing cell clustering methods, summarized In Table 2.1. To be specific, both

Seurat [123] and PanoView [62] first groups genes into 20 bins according to the mean

expressions, and then selects the most variable genes, termed as highly variable genes

(HVGs), within each bin. SC3 [77] filters out ubiquitous and rarely expressed genes

to retain informative genes based on mean expression levels and dropout rates. Mon-

ocle [144]] selects genes based on minimum mean expression and variance. SCANPY

[160] identifies a set of HVGs by using normalized dispersions in the preprocess across

different batches. scVI [98] selects top ranked gene by variance. TSCAN [67] finds

featured genes by considering both dropout rates and coefficient of variation (CV).

SAIC [167] first filters out low-expressed genes and selects genes deviated from the

fitted loess regression between CV and mean. SCENT [28] retrieves a set of most
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scRNA-seq clustering method Quantities used for feature selection
Seurat µ and φ

PanoView µ and φ (similar to Seurat)
SC3 µ and δ

Monocle µ and σ2

SCANPY φ
scVI σ2

TSCAN δ and CV
SAIC loess regression between µ and CV

SCENT SVD
SOUP Gini index and SPCA
FiRE µ, δ, and φ

SINCERA µ, δ, and cell-specific index
RaceID3 Second-order polynomial between σ2 and µ

Table 2.1: Feature selection methods implemented in different scRNA-seq clustering
algorithms. Mean is denoted as µ. Variance is denoted as σ2. Dispersion is denoted
as φ. Coefficient of variation is denoted as CV . Dropout rate is denoted as δ. SPCA
means the sparse PCA algorithm. SV D means the singular value decomposition.

variable genes by singular value decomposition (SVD). SOUP [179] obtains most in-

formative genes from two approaches: Sparse PCA (SPCA) [181] algorithm and Gini

index, which is also adopted in DESCNED [154]. FiRE [69] first filters out genes

with low expression levels and high dropout, and then selects top 1000 genes with

the largest normalized dispersions. SINCERA [50] also first removes genes with low

expression and high dropout, and then defines a cell specificity index based on the

scaled expression to further filter out uninformative genes. RaceID3 [45] finds the

featured genes exceeding the estimated variability from the fitted second-order poly-

nomial functioning on the mean.

In addition to these moment-based approaches, there are other relatively more

complicated methods for feature selection in high dimensional data. For example,

Laplacian Scores [55] evaluate the feature importance by constructing local weighted

graph. Moreover, some unsupervised approaches can be modified as the supervised

approaches assuming the cell grouping is known. For instance, both Fisher Scores

[38] and F-test statistics assess the efficiency of discrimination based on the fractions
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of between-group variance and within-group variance. If initial cell partitions are

pre-determined, one can use statistical test based approaches such as Fisher Scores

and F-statistics to select the significant features. When preparing the manuscript, we

found a method named FEATS [147] just came out recently. FEATS uses F statistics

to rank the features and optimizes a feature set by using silhouette coefficient [119]

based on the initial hierarchical clustering outcomes.

2.1.2 Feature evaluation in scRNA-seq cell clustering

How to evaluate the quality of the feature set is another important problem. A

straightforward assessment is the clustering accuracy if the reference labels (true

classes for cells) are available. There are several metrics for clustering accuracy:

adjust Rand index (ARI) [63], normalized mutual information (NMI) [133], Jaccard

similarity index [88], Fowlkes–Mallows index [42], normalized information distance

(NID) [12], and purity [126]. Without reference labels, it is more difficult to validate

the quality of the selected features in an unsupervised manner. In this case, one can

resort to a “pseudo-supervised” way, that is, to look at the “separation” of the clusters

from the result based on selected features. The separation can be defined based on

the average distance among the cluster centroids, or the mean squared distances

between individual cells and the cluster centroids, or the combination of them. A

set of features is deemed better if it leads to clusters with larger between-group and

smaller within-group distances.

2.2 Method

2.2.1 Preprocess and normalization

We preprocess the raw gene expression data as the followings. First, genes with all

zero read counts and low expression rates (σ) are filtered out. The default threshold
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for σ equals to 2 divided by the total number of cells. It is common to observe some

genes are only expressed in very few (one or two) cells in 10x and inDrop data, which

are not informative for cell clustering. We do not remove the ubiquitously expressed

genes and use a relatively conservative threshold for σ because we intend to keep more

features for further selection. Next, we normalize the count matrix by cell-specific

size factors, which are calculated based on the sequencing depths, and take a log2

transformation on the normalized counts.

2.2.2 The consensus clustering

With the preprocessed gene expression matrix (Y) of G genes and N cells, FEAST

utilizes the cluster-based similarity partitioning algorithm (CSPA) [133] to create a

consensus matrix. Specifically, FEAST first performs principle component analysis

(PCA) to obtain a sequence of principle components (PCs). For each of the top-i (i=

2,3,. . . ) PCs, FEAST fits a Gaussian Mixture Model (GMM) to cluster the cells into

k groups. Each clustering result is represented by a binary N ×N matrix, where the

corresponding cell unit is 1 if two cells belong to the same cluster, and 0 otherwise.

By default, FEAST examines till top 10 PCs because we purposely cover a relatively

large number of PCs to account variabilities from different directions in the covariance

matrix. Next, FEAST construct a consensus matrix by averaging all the similarity

matrices. The final clustering labels are obtained through fitting another round of

GMM on the consensus matrix. Only cells with posterior probability of belonging to

a cluster greater than 0.95 are kept in the final clusters.

The consensus clustering is similar to the procedure implemented in SC3. It only

retains cells that are tightly clustered together and excludes the ones whose cluster

membership cannot be determined with high confidence. As shown in the Result

section (Figure 2.2), this step enhances the signal in the data, which subsequently

helps identifying features.
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2.2.3 Gene-level significance inference

After obtaining the consensus clusters, selecting the most representative features be-

comes a supervised feature selection step. FEAST uses F-statistics to test the feature

significance because it can summarize the differences among multiple groups into a

single number. F-statistics essentially calculates the fraction between between-group

variance (varb) and within-group variance (varw). Noticeably, F-statistics is similar

to Fisher-scores which was initially developed as the estimation of variance ratios.

Mathematically, the F-statistics calculation for the gth gene is denoted as in equation

(2.1).

Fg =
(varbg)/(df1)

varwg/df2
=

(varbg)/(df1)

(vartg − varbg)/df2
(2.1)

Here, df1 and df2 are degrees of freedoms calculated as K − 1 and N
′ − K re-

spectively where N
′

is the total number of cells in the consensus clusters (N
′ ≤ N).

FEAST uses the difference between total variance (vartg) and between-group variance

to represent within-group variance, where varbg is calculated as
∑K

i=1 ni× (Ȳg− Ȳgi)2

and vartg is calculated as
∑N ′

j=1(Ȳg − Ygi)2. Ȳg is the average expression for gth gene,

and Ygi is the expression value for the gth gene and ith cell. Ȳgi and ni denote the

mean and sample size for the ith cluster respectively.

2.2.4 Determine the optimized feature set

Unsupervised feature set validation is challenging without a properly predefined op-

timization criterion. FEAST uses the MSE to evaluate the clustering results. The

MSE represents the average distances between cells and the cluster centroids, which

is a good representation for the goodness of fit. To be specific, with the obtained

clustering labels, FEAST fits simple linear regression between the normalized gene

expression and the clustering outcomes, Then, FEAST computes the MSE from the

regression residuals, which represents the mean squared distance of each data point
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to its assigned cluster center. For each clustering outcome with different feature

set, FEAST calculates an MSE. The feature set associated with the smallest MSE is

recommended as the optimal feature set.

The feature selection in clustering is similar to the variable selection problem, i.e.,

one tries to identify a subset of variables to best predict the classification outcomes.

Since the clustering is unsupervised, it is difficult to evaluate which set of variables is

the best without knowing the outcome. In this case, MSE, which represents the model

fitting, is a reasonable choice for evaluating the variable selection result. It is worth

noting that the MSE is calculated from all genes and all cells, even though the features

are selected based on a subset of cells and the predicted cluster is based on a subset

of genes (the selected features). This ensures fair comparisons for different clustering

outcomes and avoids over-fitting of the data. Our real data analyses demonstrate

that this approach can select an optimal set of features, i.e., the feature set with the

smallest MSE usually corresponds to the best clustering results.

2.3 Result

We comprehensively evaluate several existing scRNA-seq clustering methods in a

number of datasets (Supplementary Table A.1) and find that feature selection has sig-

nificant impact on the cell clustering results. To better assist existing scRNA-seq clus-

tering algorithm, we develop the FEAST framework (https://github.com/suke18/FEAST)

that produces a representative feature set to improve the clustering accuracy. To pro-

vide a quick summary, FEAST first performs a consensus clustering to get initial cell

clusters. Features are then ranked and selected based on the initial clusters. Op-

timal number of features is determined by the fitness of the clustering results from

different numbers of top features. The output of FEAST is a list of features that

can be fed into the existing cluster methods. We systematically compare features

https://github.com/suke18/FEAST
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selected by FEAST with other unsupervised feature selection methods implemented

in existing cell clustering tools. We demonstrate that the FEAST can identify more

representative features and significantly improve the clustering accuracy.

2.3.1 Overview of FEAST

FEAST is a tool solely designed for scRNA-seq feature selection, and works with any

existing cell clustering method. Users can use FEAST to replace the feature selection

step provided in existing cell clustering methods and obtain improved results. The

FEAST workflow includes three major steps, as illustrated in Figure 2.1. First, it

implements a computationally efficient algorithm to obtain a consensus cell clustering

(Figure 2.1A). This unique consensus clustering step allows the detection of the most

confident cell clusters, which improves the feature selection in the next step. Second,

based on the consensus clusters, it calculates the significance for each feature via

F-test and ranks the features according to the F-statistics (Figure 2.1B). Third, it

finds an optimal feature set through a feature evaluation algorithm (Figure 2.1C). We

provide detailed description for each step in the Method section.

Figure 2.1: The overall FEAST workflow. FEAST includes three major steps: (A)
it performs consensus clustering to find clusters with high confidence, the cell that
are less correlated with the clusters are filtered out as indicated by the “×”. (B) it
calculates the feature significance based the initial clusters. (C) it determines the
optimal size of the feature set through a validation process.
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2.3.2 Datasets

We collect 12 public scRNA-seq datasets (Supplementary Table A.1) for evaluat-

ing the impact of features selection on clustering and benchmarking the perfor-

mance of FEAST. These datasets are obtained from different sources, including

https://hemberg-lab.github.io/scRNA.seq.datasets, https://portal.brain-map.org/atlases-

and-data/rnaseq, and Gene Expression Omnibus from the National Center for Biotech-

nology Information (NCBI-GEO) [11]. It is noted that the cell type information for

these collected datasets are either obtained by experimental validation such as fluo-

rescence activated cell sorting (FACS) or annotated by well-known cell-type-specific

marker genes. All datasets include the raw count gene expression matrix as well as

the cell type labels, which enable the evaluation and comparison of methods.

2.3.3 Consensus clustering improves the signal

As discussed before, feature selection in existing methods are mostly based on first

and second moments of the gene-wise expression distribution. We found that this

procedure can select wrong features, for example, a gene with high marginal variance

can be caused by the large within cell type variation. We design an algorithm to

convert the unsupervised feature selection problem into supervised fashion. To be

specific, we first cluster the cells to generate initial clusters, and then detect features

based on these initial clusters. The initial clustering from this approach plays an im-

portant role. A biased cluster will obviously lead to poorly selected features. FEAST

implements a consensus clustering procedure (details in the Method section) to find

clusters with high confidence, and then computes the feature significance based on

the cells in the consensus clusters. Here we show that this consensus clustering step

can improve the signals.

Figure 2 shows the distribution of the statistical significance of all genes when

comparing their expression across clusters. As a comparison, we benchmark the
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Figure 2.2: Consensus clustering improves the separation signals. Results are shown
for two embryonic development datasets: Yan (A) and Deng (B). We use consensus
clustering from FEAST and K-means to determine initial clusters. Then, we calculate
the feature significance by F-test. The results demonstrate that the p-values from
the consensus clustering are more significant.

results from using K-means to determine initial clusters. Results from two embryo

development datasets Yan (Figure 2A) and Deng (Figure 2B) are shown. To be

specific, we apply both K-means and consensus clustering on each dataset to obtain

the clustering. Then for each gene, we perform F-test to compare the expression levels

cross clusters. These figures show that the p-values from the consensus clustering

in FEAST are more significant than those from K-means, that is, there are more

genes with p-values closer to 0. Additionally, we investigate the distributions of

F-statistics (Supplementary Figure A.1) from these two approaches, and obtain a

similar finding that the consensus clustering can improve the separation signal by

showing higher F-statistics values than K-means. These results demonstrate that

the consensus clustering procedure provides “tighter” clusters and more distinctive

features (ones that show greater difference among clusters).
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2.3.4 FEAST selects features better than other unsupervised

approaches

After obtaining the initial cell labels from consensus clustering, FEAST selects the

top features based on F-test statistics. We systematically compare the top-m features

generated by FEAST with other three feature selection procedures implemented in

SAIC, SC3, and Seurat. Specifically, for SAIC, we select the genes that are most

deviated from the fitted loess regression between CV and mean. For SC3, we filter

out the rarely and ubiquitously expressed genes and select the top genes based on

expression levels. For Seurat, we adopt the FindVariableFeature function inside the

Seurat R package to select the top genes. We purposely fix the number of top features

for each approach and evaluate the feature quality via cell clustering. Specifically,

we select top-m (m = 500,1000,and 2000) and perform the clustering by SC3 on a

series of test datasets (Supplementary Table A.1). It is noted that SC3 allows users to

specify the input number of clusters. For the evaluation and comparison, we assume

the number of the true cell types are known. We use the ARI value as metric to

compare the cell clustering results with features selected from different methods.

These comparison results are summarized in Figure 2.3, where each panel rep-

resents a test dataset, and each group of bars corresponds to the ARI values from

using a certain number of top (m =500,1000,and 2000) features. The results show

that the FEAST has the best performance compared with other feature selection

methods. Out of the 12 datasets, FEAST shows the highest ARI values in 11 of

them. The performance gain can be substantial, for example, in Goolam, Treutlein

and LGd data. Even in the Nestorowa data where FEAST result is not the best,

its performance is comparable with other methods. The features selected by Seurat

show the second-best performance overall. It also shows that genes selected by SAIC

could lead to poor ARI values such as in Close, Treutlein, and Zheng datasets. Ad-

ditionally, we also compare FEAST to the feature selection approaches implemented
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Figure 2.3: The comparison of the feature selection methods. We benchmark FEAST
with other three unsupervised feature selection procedures implemented in SAIC,
Seurat, and SC3. In each test dataset, we select the top 500, 1000, and 2000 fea-
tures from each criterion followed by SC3 clustering. FEAST outperforms the other
methods in almost all the scenarios by showing the highest ARI values in 11 out of
12 datasets.

in raceID3, scVI, and SOUP. It is demonstrated that features selected by FEAST

lead to better cell clustering results compared to the features selected by the other

approaches (Supplementary Figure A.2).

We further inspect the features selected by other unsupervised approaches includ-

ing kurtosis and CV, and find that the top selected genes show extreme high expres-

sion in only a few cells while remaining the same (usually 0) in the rest of the cells

(Supplementary Figure A.3). These are the ones with highly skewed expression distri-

bution, and clearly not good features for clustering. These bar plots in Figure 3 also

indicate that including more features does not necessarily lead to a better clustering
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performance; for example, the performances decrease from m = 1000 to m = 2000 in

Goolam, and Romanov datasets. Overall, these results show that FEAST can select

better features than the other approaches with respect to cell clustering accuracy.

2.3.5 FEAST optimize the feature set through validation

Above we show that FEAST outperforms other methods in top-m features. In ad-

dition to provide better ranking for the genes, a good feature selection method also

needs to determine an optimal number of genes to be included in the final feature set.

For the second part, FEAST implements a validation process to determine the num-

ber of features. Details of the method are provided in the Method section. Briefly,

FEAST selects a series of top-m (m = 20, 50, 100, 200, 500, 1000, 2000, 5000, and all

genes) features based on consensus clustering, and then conducts clustering using dif-

ferent number of features. Then, FEAST assesses the goodness of fit of the clustering

results and determines the optimized number of features.

We benchmark the method on two datasets, the Zheng dataset which contains 8

well-annotated PBMC types, and Deng dataset which includes 6 adult liver cell types.

In Figure 2.4 A and C, each curve represents a metric for evaluating the clustering

results from SC3 under different number of top features. The conclusions from these

metrics overall agree with each other. For example, in the Zheng data, with the

increasing number of input features (m =50 to 1000), the clustering accuracy also

increases. Specifically, the ARI increases from 0.33 to 0.74 and the NMI increases

from 0.48 to 0.80. However, after reaching to the peak at m = 2000 (ARI = 0.75 and

NMI = 0.81 respectively), the accuracy curve plateaus until using 5000 features, and

becomes lower is using all genes. This indicates that including more features will not

necessarily improve the clustering accuracy.

For many datasets where the true cell labels are unavailable, we adopt a criterion

based on the mean squared errors (MSE) of clustering (details in Method section) to
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assess overall clustering fitness and select the optimal number of features. Figure 2.4

B and D shows the MSE values from the clusters based on different numbers of top

features. We find that the MSE reaches the lowest level at m=2000 for the Zheng

data, which matches the best clustering accuracy result in Figure 2.4 A. In the Deng

data, we find the lowest MSE result is concordant with the best clustering accuracy

at m = 1000. These results show that the MSE criteria works well in selecting the

optimal number of features.

Figure 2.4: The validation process used in FEAST to determine the optimal number
of features. In both Zheng and Deng datasets, FEAST selects the top-m (m = 20, 50,
100, 200, 500, 1000, 2000, 5000, and all genes) features, and performs cell clustering
by SC3. For different m, (A) and (C) show the clustering accuracy measurements,
(B) and (D) show the MSE which represents the goodness of fit of the clustering
results. We find that the lowest MSE results (B and C) agree with the best clustering
accuracy (A and C).

Additionally, we also perform the above analyses using TSCAN as the clustering
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method (Supplementary Figure A.4). We obtain similar findings that the optimized

feature set in general matches with the validation procedure by MSE. It is noted

that we utilize TSCAN or SC3 for clustering, which allow to specify the number

of clusters (k). The user can also adopt their favorite scRNA-seq algorithm on the

selected feature sets, but need to keep the same k for fair comparison and evaluation.

2.3.6 FEAST improves the clustering accuracy

We systematically evaluate the performance of FEAST on 12 publicly available scRNA-

seq datasets (Supplementary Table A.1). These datasets cover a wide range of sample

sizes (from tens to thousands of cells), as well as from different sequencing technologies

such as smart-seq2 [113], 10x Genomics, and inDrop [80]. In each dataset, we utilize

FEAST to select features, which are obtained through the MSE validation process of

using the top-m (m =500, 1000, 2000) features. Then, we feed the optimal feature set

into SC3 for cell clustering. We compare these results to the default setting in SC3,

which selects features based on mean expression and dropout rates. The clustering

ARI values from default SC3 and SC3 with FEAST features are summarized in Figure

2.5. For all datasets, features selected by FEAST results in better clustering ARI.

In all 12 datasets, the ARI is increased by 0.19 on average, indicating a significant

improvement. In some datasets, the ARI values increase dramatically with speci-

fied FEAST features. For example, in Goolam dataset the ARI values increase from

0.65 to 0.93. Similar improvements are also observed in Treutlein, LGd, and Deng

datasets. To demonstrate the broad applicability of FEAST, we perform the same

analyses using three other clustering methods: TSCAN, SHARP [152], and SIMLR

[153]. We observe significant improvements of clustering accuracy in all methods.

The results are summarized in Supplementary Figure A.5, A.6, and A.7.

Note that all above tests are well-controlled: the only difference between the

blue and red bars is the feature selection procedure. Even though these clustering
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Figure 2.5: FEAST improves the clustering accuracy with existing method. The
figures show ARI values for 12 public datasets. For each dataset, we compare the
results from SC3 and SC3 with FEAST selected features. For all datasets, we observe
significant improvement in ARI using SC3 with FEAST features.

tools implements different methods and perform differently at different datasets, we

show that using features selected by FEAST can instantly improve the clustering

accuracy. Taken together, we show the superior performance and broad applicability

of FEAST, regardless of the clustering method, experimental protocol (full-length or

3’ end sequencing), and size of the dataset.

2.3.7 Test FEAST on larger datasets

Furthermore, we test the performance of FEAST on relatively larger datasets. The

purpose is to evaluate the computational scalability and the robustness of the algo-

rithm when there are more cells and cell types. We analyzed three public datasets
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(Supplementary Table A.2), which contains ∼28k cells and ∼28 cell types on aver-

age. For these tests we use SHARP as the clustering method since it’s specifically

designed for large dataset. Again, we observe significantly improved ARI values using

the features selected by FEAST (Figure 2.6). These results suggest that FEAST is

robust and efficient, and work well for large datasets.

Figure 2.6: FEAST improves the clustering accuracy on the larger datasets. We
investigate three datasets with ∼28k cells and ∼28 cell types on average. For each
dataset, we compare the results from SHARP and SHARP with FEAST selected
features. For all datasets, we observe significant improvement in ARI.

FEAST is implemented as an open-source R package and freely available at

https://github.com/suke18/FEAST. As a feature selection tool, it can serve as a

plug-in for established scRNA-seq clustering methods. FEAST offers excellent com-

putational performance. We profile the computational performance of FEAST for a

wide range of sample sizes (100 to 50,000 cells). Results are shown in the Supplemen-

tary Figure A.8. It is important to note that the computational burden does increase

exponentially with the increasing number of cells, due to the first step of consensus

clustering in the algorithm. However, with an efficient implementation, FEAST still

provides excellent computational performance and will handle a majority of the tasks.

For example, the feature selection step takes less than one minute for 10,000 cells and
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takes less than four minutes for 50,000 cells. The validation process requires running

clustering for different number of top features; thus, its performance depends on the

clustering method itself.

2.4 Discussion

In scRNA-seq clustering, selecting a desirable feature set before performing clustering

is very important because the features will have significant impact on the clustering

outcomes. Particularly, a feature set including excessive non-informative genes or

lacking marker genes will result in poor clustering accuracy. Even though numerous

clustering algorithms tailored for scRNA-seq have been developed and widely used

in the community, the importance of feature selection step has not been thoroughly

investigated. Currently, almost all clustering methods include a feature selection

step, mostly based on thresholding some simple statistics, for example, to use the top

2000 highly variable genes, or to choose genes with low dropout rate and high average

expression. It is unclear how much the feature selection will impact the cell clustering

accuracy, and whether better selected features can improve the cell clustering result.

The major contribution of this work is two-fold. First, we carefully evaluate

and compare the impacts of feature selection on cell clustering by comprehensive

data analysis. Secondly, we design a new algorithm named FEAST for selecting an

optimal set of features. FEAST can work as a plug-in tool for existing clustering

methods. We systematically compare FEAST with other common feature selection

methods, and demonstrate that FEAST outperforms other methods in selecting more

representative features, which subsequently improves clustering accuracy. We show

that the improvement brought by the FEAST features is not limited to the clustering

method, i.e., we observe significant improvements using a number of existing cell

clustering tools including SC3, TSCAN, SHARP, and SIMLR. These results show
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that researchers can first run FEAST to obtain a set of features then feed them to

established scRNA-seq clustering algorithms, which will likely improve the clustering

accuracy. Moreover, based on our experiences, selecting top 1000 or 2000 features

from FEAST usually give satisfactory results. So, if computational time is a concern,

we recommend users take top 1000 features as the final feature set.

Determining the number of clusters (K) is an important step in cell clustering.

Some clustering software tools such as SC3, TSCAN, and CIDR provide function for

estimating K, but the clustering functions in these tools require users to specify a

fixed K. FEAST does not provide function for estimating K. It works merely as a

feature selection tool for cell clustering, and the users need to provide K. On the

other hand, users can use methods implemented in current software tools or prior

knowledge to estimate K.

The current FEAST frame, similar to most other clustering methods, selects fea-

tures based on the given dataset. It is possible to incorporate existing biological

knowledge on marker genes into the feature selection algorithm. For example, we can

impose a prior on the features and formula the problem in a Bayesian framework.

In addition, even though the clustering put cells into several distinct, exchangeable

groups, the cell types form a hierarchical tree in reality. With the consideration of

such hierarchical structure, it might be better to use a different set of features at each

branching point, and perform clustering in a top-down, step-wise manner. Further-

more, a new paradigm of cell type identification has recently gained much attention

[31, 78]. Those methods don’t cluster the cells. Instead, they assign each cell to a

particular cell type, based on a reference panel. We believe feature selection will also

play an important role for those methods, and FEAST can potentially be used to

improve those methods. These interesting questions are all on our future research

plan.
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Chapter 3

POWSC: Simulation, Power

Evaluation, and Sample Size

Recommendation for Single Cell

RNA-seq

Algorithm 2: POWSC

3.1 Introduction

Single cell RNA-sequencing (scRNA-seq) has emerged recently as a powerful tech-

nology to investigate transcriptomic variation and regulation at the single cell level

[47, 151]. The traditional “bulk” RNA-seq pools RNA from a large number of cells

and measures the average expression in a sample. scRNA-seq, on the other hand,

profiles the transcriptome at individual cell level, which reveals cell to cell hetero-

geneity in transcription and provides more insights into understanding many impor-
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tant biological processes and disease etiologies such as early embryonic development

[23], immunology [108], and tumorigenesis [60]. The scRNA-seq technology has drawn

tremendous attention recently, and an enormous amount of data have been generated.

These data present many opportunities as well as challenges to the developments of

analytic methods. One fundamental challenge, similar to many other high-throughput

genomics data, is to identify genes that are differentially expressed (DE) under distinct

biological or clinical conditions. Over the last several years, a number of methods

and tools for scRNA-seq DE analysis have been developed [73, 41, 163, 123], and

comprehensively compared [131].

With the DE tools available, the sample size estimation has become an impor-

tant question at the experimental design stage. The investigators would like to know

the required number of cells and the sequencing depth, within a certain budget, in

order to achieve the desired level of statistical power to detect the DE genes. Tra-

ditional power evaluation and sample size calculation methods often serve studies

with a single primary end point, thus these deal with a single hypothesis test. They

are not applicable to high-throughput data sets, which involve testing many unex-

changeable hypotheses simultaneously. Recently, power evaluation and sample size

recommendation for high-throughput data have attracted much attention along with

the increasing application of the technology, and a number of methods and software

tools have been developed for gene expression microarray [97, 157, 33] and RNA-seq

[39, 54, 90].

Compared with the traditional single-hypothesis test setting, the DE problem

in high-throughput data such as RNA-seq involves many parameters, including the

baseline expression levels, within group variances, effect sizes, sequencing depths,

type I error control with multiple testing adjustment, and more complicated testing

procedures. These complexities make it very difficult to derive an analytical solution

for power calculation. Thus, scientists often resort to simulation-based procedures
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to evaluate the power and provide sample size recommendation. To imitate real

biological situation, most simulations introduce DE with various levels of effect sizes,

ranging from near zero to substantial differences. The statistical power in detecting

DE genes with near zero effects, as expected, is very low. The genes with minimal

effects, though non-null by classical definition, are of little biological interest. Thus the

concept of “targeted power”, which is the probability of detecting DE with effect sizes

exceeding a user-defined level, is introduced and applied to bulk RNA-seq experiments

[161]. Another characteristic of RNA-seq data is that nuisance parameters, such as

mean expression level, may affect statistical power. Inspecting stratified power may

inform not only experimental design, but analysis plan as well, as filtering out genes

in some strata may result in a higher true discovery rate.

Compared with bulk RNA-seq, scRNA-seq presents even more challenges and

unique characteristics in DE test. First, bimodal [127] and multi-modal [82] expres-

sion at single cell level are widely observed thus DE may include a discrete transition

of expression status as well as a continuous change in expression level. To reflect

this observation, methods for detecting DE in these two forms, phase transition and

magnitude tuning, are developed [41, 163]. The first form tests the differences in pro-

portions of cells expressing a certain gene, and the second form tests the quantitative

changes given the gene is expressed. Second, the cells profiled from a sample often

contain a mixture of multiple cell types, and DE test can be carried out for each cell

type in the mixture. This can be done as the following: first clustering cells into

multiple groups and then performing DE. The cell mixture further complicates the

power evaluation since the mixing proportion directly influences the statistical power:

rarer cell types have fewer cells, hence with lower power detecting the same level of

DE. Moreover, researchers might be interested in comparing different cell types in a

mixture to identify marker genes [102, 171, 58, 110], and it is desirable to provide

power assessment in such tests.
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The power assessment for scRNA-seq experiment designs has gained some inter-

ests recently. To the best of our knowledge, there are two power assessment methods

for scRNA-seq data: powsimR [149] and scDesign [94]. Both methods are simulation-

based approaches: they simulate scRNA-seq expressions based on some template data,

and then evaluate power in DE tests. Each method, however, has its own data model

and power evaluation criteria. PowsimR assumes a negative binomial distribution for

sequencing counts, while scDesign uses a gamma-normal mixture model for log counts.

Both methods perform DE detection using existing methods, and then compare the

results with the truth to evaluate power in different ways. PowsimR produces power

stratified by expression levels, while scDesign outputs a number of power-related

quantities (precision, recall, true negative rate, etc.) for detecting the top (with the

default set at 1000) DE genes. Both methods concentrate on two-group comparison

designs. In addition, there is another data simulator Splatter, which adopts com-

plex step-wise procedures in simulating gene-wised means, enforcing dropouts, and

removing outliers.

In this work, we developed a method, named POWSC, to provide comprehensive

functionalities for power evaluation and sample size recommendation in scRNA-seq

DE analyses. Note, unlike traditional RNA-seq where the number of biological repli-

cates is regarded as sample size, POWSC refers the number of cells as the sample size

because a single cell is the unit for scRNA-seq experiment. Compared with powsimR

and scDesign, POWSC computes stratified targeted power for two forms of DE tests.

In addition, POWSC considers the cell type mixtures in the data and provides com-

prehensive power evaluations for two DE test scenarios: comparing the same cell

types from two biological conditions, and comparing different cell types under the

same condition. Moreover, POWSC investigates the relationship between sequencing

depths and cell numbers under the same total sequencing depth, and offers an optimal

strategy.
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3.2 Method

Estimate cell proportions given the 
scRNA-seq expression matrix.

Estimate model parameters for 
each cell type. ("#, %&, '&, (#, )#)

Simulate expression matrix for 
each cell type. (two scenarios)

Perform DE tests for target power 
assessments. (stratified, marginal, 
and overall powers)

Parameter 
Estimator 

Data 
Simulator 

Power 
Assessor 

Figure 3.1: The schematic overview of the POWSC pipeline.

POWSC relies on simulation to evaluate the relationship between the sample

size and statistical power in scRNA-seq DE analysis. It simulates scRNA-seq data

with known DE status, then runs DE analysis and evaluates the statistical power.

POWSC contains three modules: Parameter Estimator, Data Simulator, and Power

Assessor. First, a number of pre-specified model parameters, including the marginal

distributions of gene expression, dispersion, sequencing depth, and etc. are accurately

estimated by the Parameter Estimator. To mimic real scRNA-seq data, POWSC es-

timates these parameters from a pilot dataset provided by the user or selected from

public databases. Users who do not have in-house pilot data may choose from one

of several tissue types for which the model parameters are pre-calculated, including

blood, brain, immune system, and tonsil. Given the parameters, the Data Simulator

then generates scRNA-seq counts under different sample sizes. Last, Power Asses-

sor will evaluate and report different types of power. Below we provide detailed

description for each module. The pipeline diagram for POWSC is listed in Figure
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3.1.

3.2.1 Parameter estimator

Given a preliminary scRNA-seq dataset, this module will estimate the parameters

required by the simulator. The preliminary dataset is in the form of a matrix of

sequence read counts. Denote the expression matrix as Y, which is a G ×N matrix

for G genes and N cells. Let Ygi represents the count observed on gth gene and ith cell.

Note that Y often contains cells with highly heterogeneous states such as different

cell types, differentiation stages, disease progressions, etc. Estimating parameters

directly from the data will bias the results; for example, over-estimate the gene-specific

variances. Thus, the first step in the estimator module is to cluster the cells, and then

perform parameter estimation for each cluster. In our implementation, POWSC can

choose either Seurat [123] or SC3 [77] as the cell clustering tool. With cells properly

clustered, POWSC estimates a number of model parameters to characterize the data

in each cluster.

One special characteristic in scRNA-seq is the excessive observation of zero gene

counts. It could be caused by two factors: biologically some genes are not expressed,

or technically the gene expression levels are too low to be detected. To account for

these zeros, we follow the data model presented in SC2P [163], which is a mixture of

zero inflated Poisson (ZIP) and log-normal Poisson (LNP) distributions. This mixture

captures the expression heterogeneity among cells for a particular gene. Specifically,

ZIP describes the inactive transcription (Phase 1) from the background, and LNP

represents the active transcription (Phase 2) from the foreground. This mixture

model is written as the following Equation 3.1.

P (Ygi = ygi) = (1− πg)ZIP (ygi|pi, λi) + πgLNP (ygi|µg, σ
2
g) (3.1)
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The parameters to be estimated in the data model include the following: pi is

the point mass for zero-inflation in the background signal; λi is the Poisson rate

from background signals in unexpressed genes; µg and σ2
g are parameters in LNP

for the distributions of active transcription levels; and πg is the mixture proportion

for Phase 2. The parameter estimation procedure is adopted from SC2P. Given a

pilot dataset, the Parameter Estimator module outputs the cell-specific parameters

in ZIP distribution, gene-specific parameters in LNP distribution, and the mixture

proportion. These parameters characterize the distribution of the input data. In

addition, we have pre-calculated the model parameters for certain cells for several

tissue types, and these parameters can be easily accessed and used in the downstream

simulation.

3.2.2 Data simulator

With model parameters, we are in place to simulate scRNA-seq data for DE detec-

tion and power evaluation. A real scRNA-seq experiment is often conducted on bulk

tissues, where investigators randomly pick a number of cell and measure their expres-

sions. In DE analysis, scientists are usually interested in two different scenarios: (1)

within cell type: comparing the same cell types across biological conditions such as

case vs. control, which reveals the expression change of a particular cell type under

different contexts. (2) between cell types: comparing different cell types under the

same condition, which identifies biomarkers to distinguish cell types. In either case,

the experiment starts from a number of cells randomly picked from a tissue sample

consisting of a mixture of different cell types. The only factor one can control is the

total number of cells. In the first scenario, the numbers of cells for a particular cell

type under different biological conditions are often similar, barring significant changes

in cell composition. In the second scenario, the numbers of cells for distinct cell types

can be very different, so the power for DE highly depends on the mixing propor-
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tions. For both scenarios, another experimental design question is how to optimize

the tradeoff between the number of cells and average sequencing depth in order to

maximize power, under the constraint of total sequencing depth.

For the first scenario (comparing cells of the same cell type between two biological

conditions), the simulation starts from a given cell number in each group. POWSC

generates expressions for one condition according to the ZIP-LNP mixture distribu-

tion in Equation 3.1, using estimated parameters from one condition in the pilot data.

To be specific, for gene g, we first generate an indicator variable for its phase accord-

ing to Bernoulli(πg). If the gene is in Phase 1, its expression will be generated from

ZIP (ygi|pi, λi); otherwise, the expression is generated from LNP (ygi|µg, σ
2
g). Next,

POWSC simulates DE genes, and generates expressions for the other condition. By

default, POWSC randomly select 5% genes to be Form I DE (phase transition), and

5% genes with non-zero average expressions to be Form II DE (quantitative differ-

ence in Phase 2). For DE of Form I, POWSC perturbs the gene-specific mixture

proportions πg to π′g, as follows:

π′g =

 πg + δ : πg < 0.5

πg − δ : πg ≥ 0.5

By default, δ ∼ Uniform(0.1,0.3). π′g will be capped to be between 0 and 1. For

DE of Form II, POWSC randomly generates log fold changes, denoted as κg, from

a user-specified distribution. By default, we use the following mixture distribution

0.5×N(−1, 1)+0.5×N(1, 1) for κg. Then the means of the LNP distribution for DE

genes are generated as µ′g = κgµg. After obtaining model parameters for the other

condition, sequencing counts are generated according to Equation 3.1 again.

For the second scenario (comparing different cell types within the same condition),

POWSC starts with a given total number of cells N in an experiment. The first step

is to generate the numbers of cells for each cell type from a multinomial distribution,
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where the mixture probabilities are cell type proportions estimated from real data.

Next, it applies Parameter Estimator to obtain the model parameters for each cell

type. Last, it generates cell-type-specific gene expression matrix based on Equation

??. For this scenario, DE is not generated by perturbing model parameters. This is

because with multiple cell types, it is very difficult to assume reasonable effect sizes

for DE genes in all pair-wise comparisons. Instead, we generate all expressions based

on parameters estimated from real data, and then determine the true DE status from

these parameters. This strategy allows the simulation to mimic real data situation.

In both scenarios, POWSC produces a series of expression matrices for down-

stream DE analysis, corresponding to different total cell numbers. The number of

total cells can be specified by the user. By default, they are set to be a range of num-

bers 50, 100, 200, 500, and 1000. The average sequencing depth can also be specified

for investigating how sequencing depth influences the power estimation. Additionally,

POWSC can adjust the sequencing depth and total number of cells simultaneously to

explore how to balance these two factors in a scRNA-seq experiment. For instance,

if the researchers have a fixed total sequencing depth, POWSC compares the powers

from sequencing more cells with lower depth to fewer cells with higher depths, and

suggests an optimal strategy.

3.2.3 Power assessor

POWSC utilizes either MAST or SC2P Bioconductor packages to perform DE analy-

sis. The results from these packages include p-values and false discovery rates (FDR)

for each gene in two forms of DE tests (Form I: phase transition; and Form II: magni-

tude turning in Phase 2). Genes with FDR less than a user-specified threshold (with

default set to 0.1) are the “called DE” genes, among which the true discoveries are

referred to as the “Recovered DE” (RD) genes. POWSC compares the RD genes

with the known truth to evaluate power for the two forms of DE. For each form, we
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focus on the “targeted power” as introduced in PROPER [161], which refers to the

power in detecting DE with effect sizes considered biologically relevant. Genes with

none-zero but trivial DE may not be “null” genes in the conventional definition with

the null hypothesis being δ = 0, but they could be biologically meaningless. Thus, we

report the power for detecting DE with effect size beyond a user-specified threshold.

To define the gold standard, the default threshold for relevant DE effect sizes are

set to be 10% for the difference in πg for Form I DE, and log fold change κg of 0.5

for Form II DE. These thresholds can be adjusted by users. Furthermore, POWSC

reveals the impact of other factors, including zero percentage (sometimes referred to

as dropout rate in other publications) and mean expression level, by stratifying genes

into different categories. For each gene, we compute its zero fraction Z̄g =
∑

i(Ygi =

0)/N , and average expression Ȳg =
∑

i Ygi/N . For Form I test, genes are stratified

by the zero fractions from 0 to 1 into 5 equal-sized intervals. For Form II DE test,

the genes are stratified by average expression. The average expression Ȳg is divided

from 0 to infinite into intervals such as (0,2], (2, 4], (4, 8], etc. These strata can be

specified by the users. Within a stratum, the stratified target power is calculated,

e.g., as Power = RD/(RD+FN). Here, RD and FN represent the number of genes

with high enough DE that are recovered or missed by the DE detection, respectively

(Table 3.1).

stratified power true DE status
high DE low DE Non- DE Total

DE test result
Positive RD RD′ FD CD
Negative FN FN ′ TN CN

Table 3.1: The stratified power calculation. RD: Recovered DE; FD: false discovery;
CD: called DE; FN: false negative; TN: true negative. CN: called non-DE.
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3.3 Result

3.3.1 Overview

We use a real scRNA-seq dataset as blueprint to demonstrate the functionalities of

POWSC. This dataset is obtained from GEO under accession number GSE29087. It

is generated to profile the transcriptomes for 92 single cells consisting of mouse em-

bryonic fibroblast (MEF) and embryonic stem (ES) cells [65]. The average sequencing

depth for the dataset is around half a million.

We first evaluate the performance of the Parameter Estimator and Data Simula-

tor on this blueprint dataset, and compare with two alternatives: scDesign [94] and

Splatter [170]. We then use the Power Estimator to obtain the stratified targeted

power vs. sample sizes relation under the two aforementioned scenarios: comparing

the same cell types between conditions, and comparing different cell types within

the same condition. The results demonstrate the general trends of improved power

with the increase of cell numbers. In addition, we investigate the relation between

sequencing depths and sample sizes under the constraint of total sequencing depth.

Moreover, we provide estimated parameters for a list of datasets from common tissue

types such as brain, blood, immune, and tonsil (Table 3.2). These estimated param-

eters are distributed with the software package, which can be easily accessed by the

users to compute desired sample sizes on similar biological systems without providing

pilot data.

3.3.2 POWSC accurately simulates scRNA-seq data

Parameter estimation and data simulation play essential roles in the whole simulation

process because these lay the foundation for power assessment. Given a pilot dataset,

simulators such as scDesign, Splatter, and POWSC will first estimate a set of model

parameters based on their own statistical models, and then produce a synthetic ex-
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Tissue
GEO

Accession
ID

#
Cells

#
Genes

Average
Sequencing

Depth (reads)
Platform

Peripheral blood
mononuclear cells

GSE94820 1140 26593 ∼1 M Smart-Seq2

Brain cortex tissue GSE67835 466 25287 ∼2.8 M Fluidigm C1
Immune GSE65528 192 37315 ∼1.1 M Hiseq-2500
Tonsil GSE70580 648 25219 ∼2.3 M Smart-Seq2

Table 3.2: Estimated model parameters for different biological systems. These esti-
mated parameters are pre-stored in POWSC package

pression matrix. Splatter includes six simulation models, here we use Splat (which is

their own simulation model) in our comparison. To assess how well the simulated ex-

pression matrix mimics the real data, we follow similar strategies described in Splatter

and scDesign to compare the simulated to the real data. Given an expression matrix,

we compute six parameters to characterize the real scRNA-seq distributions. The

parameters include four gene-wise variables: mean (µ), variance (σ2), coefficient of

variation (cv), and zero fraction (ρ1); two cell-wise variables: library size (l), and zero

fraction (ρ2). A good simulated dataset should have similar empirical distributions

for the six parameters to the corresponding real scRNA-seq data. To evaluate the

similarity between the simulated and real expression matrices, Splatter proposes to

calculate the median absolute deviation (MAD) for the six parameters, while scDe-

sign suggests using Kolmogorov-Smirnov (KS) distances. Smaller quantities for these

two measurements indicate higher similarity between the simulated and real data.

We adopt these two metrics to compare the estimates of these six parameters from

three methods. As shown in Figure 3.2A, POWSC has the best performance in the

MAD measurement for half of the parameters investigated. The improvements can

be substantial: the MAD for mean and gene zero ratio from POWSC is less than one

third of the other two methods. For the performance by KS measurement, POWSC

has the best performance in three parameters: CV, gene zero ratio, and cell zero

ratio. Splat performs slightly better than POWSC in mean variance and library size
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Figure 3.2: The comparison of data simulators in POWSC, scDesign, and splat. Two
metrics A: Median absolute deviation (MAD) and B: Kolmogorov-Smirnov (KS)
distance, are used to quantify the fidelities of a number of gene- and cell-wise param-
eters from simulated data. In A, MAD value are scaled by 10 for gene-wise mean and
1000 for gene-wise variance for better visualization. We found in the blueprint data
(GSE29087), POWSC outperformed the other two simulators for MEF cell type.

estimates (Figure 3.2B). Overall, POWSC significantly outperforms scDesign and

Splat in imitating the real scRNA-seq data in this comparison. We also run the

comparison in 11 additional datasets in (Table 3.3). Again, POWSC shows the best

performance among all methods.

Both scDesign and Splatter use stepwise procedures in simulating expressions and

then introducing dropout. POWSC uses a more unified statistical model for the data:

a ZIP distribution for zero-inflated background and an LNP distribution for expres-

sions. The merit of POWSC mainly comes from the the proper data model to capture

bimodal expression, and a rigorous mechanism in simulating the two expression (in-

active and active) phases.
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accession species cell types genes cells protocol
GSE73121 Human Primary renal cell car-

cinoma
25219 48 HiSeq

GSE73121 Human Metastatic renal cell
carcinoma

25219 73 HiSeq

GSE94820 Human CD1C dendritic cells 26593 192 Smart-
Seq2

GSE94820 Human CD141 dendritic cells 26593 192 Smart-
Seq2

GSE94820 Human Monocyte 26593 372 Smart-
Seq2

GSE75748 Human Definitive endoderm
cells at 96 hours

19189 188 HiSeq

GSE75748 Human Neuronal progenitor
cells

19097 173 HiSeq

GSE45719 Mouse Middle blast 22431 60 HiSeq
GSE45719 Human Early blast 22431 43 HiSeq
GSE70758 Human Cell cluster with the

highest proportion
25892 162 Smart-

Seq2
GSE67835 Human oligodendrocyte 25892 37 Fluidigm

C1

Table 3.3: A list of scNRA-seq datasets that we curated to investigate the simulation
accuracy

3.3.3 POWSC provides recommended sample size for two-

group comparison

In the context of detecting DE genes that undergo two biological conditions, e.g.,

control versus treatment, POWSC uses the Data Simulator to produce a series of

expression count matrices with different numbers of total cells (e.g., 50, 100, 200,

500, and 1000). Subsequently, POWSC applies Power Assessor on each matrix, and

obtains the stratified targeted power. The reported power curves are demonstrated in

Fig. 3.3. As expected, we observe that larger sample sizes lead to higher power in both

forms of DE tests. For Form I DE, 500 cells in total are needed in order to achieve

80% power of detecting DE genes overall except that (0.4, 0.6] stratum is associated

with the 71% power (Fig. 3.3A). For Form II DE, the sample size requirement is
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Figure 3.3: The stratified powers, marginal powers, and overall powers for two-group
comparison. A and D show the stratified power curves under different number of
cells, for Form I and II DE respectively. The power is stratified by cell-wise zero
fractions for Form I DE, and average expression levels for Form II DE. The means
and the confidence intervals are obtained by repeating 50 simulation runs. G and H
show the increase of the marginal and overall power with the increase of the total
cell numbers from 50 to 1000. B-C and E-F demonstrate the distributions of the
recovered and true DE genes for Form I and II respectfully, in the cases of 100 and
1000 total cells.

higher. It shows that even if we discard the genes with average read counts less than

10, we still need 1000 cells to reach 80% power (Fig. 3.3D).

In Figure 3.3, the power curve for Form I DE has a V -shape, which indicates that

DE genes with low and high zero fractions (dropout rates) are easier to be detected

than DE genes with fractions close to 0.5. This is because the estimated proportions

from binomial distribution have the highest variance at 0.5, thus the statistical test

is not as sensitive. In Fig. 3.3D, it shows the power curves for Form II DE genes.

Horizontally, the power curve inclines up as the average expression level increases,
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indicating that Form II DE is easier to detect for genes with higher expression levels.

The same phenomenon is observed in bulk RNA-seq data [140, 3]. For genes with

very low expression (average counts less than 10), the power for detecting Form II

DE is low (less than 56% for 1000 cells). Thus, it might be desirable to ignore

those genes before performing Form II DE test, which will reduce the testing space

and improve the FDR estimate and power. Besides, we also investigate how the

targeted power for Form II DE changes with respect to the zero fractions. The result

(Supplementary, Figure B.1) illustrates that higher targeted power is associated with

lower zero fractions, which implies that if a Form II DE gene has high zero fraction

(many dropouts), it is less likely to be detected.

Furthermore, we also evaluate the marginal power, which is computed by con-

sidering genes in all strata. The marginal power is defined as Powermarginal =∑n
i=1RDi/

∑n
i=1 TDi, where TD and RD represent the number of true DE genes

(TD = RD + FN) with meaningful fold change and the number of Recovered DE

in each stratum. We show the numbers for CD and TD for one simulation in Figure

3.3B, C for Form I test, and Figure 3.3E, F for Form II test. The marginal power

for both forms is shown in Figure 3.3G. For Form I, the marginal power can reach

to 94.4% with 1000 cells. For Form II, the marginal power can reach to 81.1% with

1000 cells, 90.8% if ignoring the genes with average counts less than 10. Last, we cal-

culate the overall power in Figure 3.3H which combines the Form I and II DE genes

together. As expected, higher overall power is associated with larger sample sizes.

It is important to note that the sample size here is for one particular cell type. To

get the total cell numbers required, one should divide this number by the estimated

proportion of this cell type in the cell population.
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3.3.4 POWSC provides recommended sample size for cross

cell type comparison

In addition to comparing the same cell type under different conditions, another inter-

est is to identify differences between cell types. For that, the number of cell types and

their proportions in the cell population affect the power, in addition to the total num-

ber of cells. POWSC provides power analysis for this situation. Again, the Parameter

Estimator acquires cell-type-specific model parameters, and the Data Simulator pro-

duces a series of expression count matrices with different numbers of total cells, each

simulated dataset contains a mixture of different cell types. Next, the power assessor

performs DE analysis for each pair of cell types and obtains the stratified targeted

powers.

This analysis starts a template scRNA-seq dataset as blueprint for simulation.

Here, we demonstrate the functionality using a human brain dataset (GSE67835) as

template. From this dataset, five cell types including astrocytes, endothelial, oligo-

dendrocytes, microglia, and neurons with proportions of 0.23, 0.08, 0.14, 0.06, and

0.49 are considered. The reported stratified targeted power is illustrated in Figure

3.4: Figure 3.4A shows the power for Form I DE, and Figure 3.4B is for Form II

DE. In each plot, the columns are for different strata and the rows are for different

comparisons. For example, astr_vs_endo means the comparison between cell types

astrocyte and endothelial. As expected, more cell leads to improved power for both

forms of DE. Rows in Figure 3.4B follow similar trends as the curves shown in Figure

3.3D, which implies genes with higher expression levels are more likely to be detected

as Form II DE. Moreover, cell types with higher proportion are associated with higher

power: the power for cell type astr_vs_neur comparison is higher than the other

comparisons, since their effective sample sizes are greater due to their higher propor-

tions in the cell population. These results provide detailed information for researchers

to choose a proper sample size. For example, if one wants to focus on detecting the
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Figure 3.4: Stratified power for cross cell type comparisons. Five cell types including
astrocytes (astr), endothelial (endo), oligodendrocytes (olig), microglia (micr), and
neurons (neur) are considered to imitate the situation of multiple cell types. Each
panel shows the power under a certain cell number. Inside each panel, each row is
for one comparison between two cell types e.g., cell type astrocytes versus endothelial
denoted as astr vs endo; each column is for one stratum. A and B correspond to
Form I and II DE.

marker genes among abundant cells, the required cell number will be smaller. If,

however, one wants to identify markers for a rarer cell type, one may have to measure

more cells.

We also test POWSC on a Glioblastoma (GBM) dataset (GSE57872) to demon-

strate how the power changes under different biology context (Supplementary Figure

B.2). This scRNA-seq dataset includes 5 individual tumor samples (MGH26, MGH28,

MGH29, MGH30, and MGH31). By using MGH31 as the template, we obtain four

cell types (denoted as 1 to 4) with proportions of 0.66, 0.15, 0.1, and 0.09 by SC3.

We find that the cell types with higher proportion lead to higher power evaluations,
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consistent with the previous finding. It is also noticeable that the stratified power

for both forms of DE is generally lower than that in simulation based on GSE67835.

This is caused by the larger within-cell-type gene expression variability Supplementary

Figure 3.5, which makes DE detection more challenging. In another GBM dataset

(GSE84465) (Supplementary Figure B.3) which contains 4 patients (BT S1, BT S2,

BT S4, BT S6), we perform POWSC on BT S1 by considering 4 cell types: Astro-

cytes(HEPACAM), Endothelial(BSC), Microglia(CD45), and Oligodendrocytes(GC),

with proportions of 0.36, 0.25, 0.23, and 0.16. The power results from this dataset

is more similar to that from the human brain data in Fig. 3.4. Thus, power analysis

is case sensitive and scientists should be cautious about choosing proper template

data. For example, within-cell-type variability can play an essential role in the power

assessment: larger variation is indicator of relatively lower power.
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Figure 3.5: The gene-wise standard deviation for the various cell types in GSE67835
GSE57872, and GSE84465. Different colors represent different dataset. Each panel
includes the density plot for gene-wise sds for one specific cell type.

Note that the cell composition information, including the cell types and the cor-

responding proportions, is very important for power analysis and sample size estima-

tion. We perform additional evaluation on the impact of biases of cell proportions on
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sample size estimation. Overall, the power (and sample size) estimation can become

unrealistic if the proportions are inaccurate, especially when the biases are large.

Detailed simulation procedures and results are provided in the Section 3.3.6. In

practice, POWSC recommends two approaches for users to obtain and specify the

cell proportions: (1) POWSC provides pre-estimated model parameters for a few tis-

sue types (brain, tonsil, immune, and blood), which include cell type proportions.

The researchers can directly use these if they work on the same (or similar) biological

systems. (2) The users can specify the cell proportions for their experiment. This

usually requires a pilot dataset, from which the cell type proportions can be estimated

through existing clustering tools.

3.3.5 POWSC offers a strategy to balance sample size and

sequencing depth

The results above show that DE genes with higher sequencing counts are easier to

detect, which is tempting for researchers to consider deeper sequencing to assist the

DE detection. However, they often also face a budget limit, which is directly related

to the total sequencing reads they can afford. Thus, an interesting question is how

to optimize the tradeoff between sample size (denoted by N) and sequencing depth

(denoted by S) with fixed total sequencing reads, in order to maximize the power.

POWSC uses 500 cells with an average sequencing depth of 0.5 million as the

baseline setting, and varies the values of N and S while keeping the total sequencing

depth NS constant. The targeted power curves for Form I DE are illustrated in

Figure ??A, Form II DE in Figure ??D, for different combinations of S and N. When

utilizing the blueprint dataset of GSE29087 for simulation, we find that measuring

more cells at a shallower sequencing depth leads to higher power. For example,

doubling the total cells to 1000 and reducing the average sequencing depth to 0.25

million improves the power in all strata significantly. It implies that larger sample
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sizes are preferable to deeper sequencing when the total sequencing reads are fixed,

because the positive impact of larger cell numbers on power is stronger than the

negative impact of shallower sequencing depth. The overall power plot in Figure ??H

also demonstrates the preference of larger N rather than deeper S, and this finding can

potentially guide the researchers to conduct the scRNA-seq experiment when facing

a limited budget or fixed total sequencing reads.
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Figure 3.6: The tradeoffs between average sequencing depth (S) and sample sizes (N).
We set up the case of 500 cells with the average sequencing depth 0.5 million reads
as the baseline. The pre-determined total read counts is from the baseline. Then, we
shrink or expand the S to (1/3, 1/2, 2, 3 times), and expand or shrink N to (3, 2, 1/2,
1/3 times) subject to a fixed cost. We found larger sample sizes are more preferable to
deeper sequence depths (A and D). G demonstrates the marginal power (Form I and
II DE) changes for each combination of S and N. H shows the overall power changes
for each combination of S and N. Both G and H are averaged by 50 simulation runs.
B-C and E-F demonstrate the distributions of the recovered DE (RD) and true DE
(TD) genes for Form I and II respectfully, in the cases of 1.5e6 sequencing depth with
167 cells, and 1.67e5 with 1500 total cells.

The marginal power for both DE forms under different scenarios is illustrated
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in Figure 3.6G. For example, if one decreases the sequencing depth to about 167

thousand reads per cell but sequences 1500 cells in each condition, the marginal

power for the two forms of DE tests becomes close to 0.95 and 0.8, respectively. On

the other hand, if one spends 1.5 million reads for each cell but only sequences 167

cells in each condition, those two marginal power suffers a huge reduction to only

around 0.35 and 0.39. Notice that with lower sequencing depth for each cell, more

DE genes will locate in the (0,10] interval, so successfully detecting these DE genes at

low magnitudes will contribute the marginal power evaluation specifically for Form

II DE. Each panel in Figure 3.6B,C, and Figure 3.6E,F representing a combination

of S and N, plots the distributions of recovered and true DE genes for both forms.

Even though more cells in general leads to higher power, it is not true that in-

finitely increasing the cell numbers can improve power, because the sequencing depth

will eventually become too shallow have adequate coverage. We investigate the ex-

treme cases where the N is extended by factors such as 20 and 30 and S is shrunk

accordingly. The targeted power for Form I and II DE becomes unstable especially

in the stratum (0.8, 1) for Form I DE in (Figure 3.7A), and (0, 10), (160, ∞) for

Form II DE in (Figure 3.7B). A similar trend is observed in data from 10X Genomics

platform, where the sequencing depth is extremely shallow (∼3-10k per cell).
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Figure 3.7: Simulation to extreme cases. We multiple the sample size to larger factors
such as 30 and 20 to mimic the extreme cases. We found that it is not entirely true
that infinitely increasing the sample sizes will lead to higher targeted powers..
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Thus the power analysis not only provides information for experimental design,

but also guidance for the data analysis plan.In our simulation studies, we hold S

reasonably high, which is important if one wishes to perform DE analysis. We find

that as long as S is at reasonable level, our data model and the main conclusion of

more cells leading to higher power generally hold well. It is possible that the data

characteristics can diverge from our model when S becomes very small. For that,

we will develop new statistical model to characterize the data, which is our future

research plan.

3.3.6 POWSC handles the perturbation of cell compositions

Cell composition information, including the cell types and the corresponding cell

proportions, are important for power analysis and sample size estimation in scRNA-

seq. In practice, the cell proportions sometimes can be inaccurately estimated. Here,

we discuss the robustness of POWSC when there are biases in the cell proportions.

We assess the power evaluation results after purposely perturbing some cell type

proportions, where the cell types are predetermined. The specific simulation settings

are as followings: (1) Simulations are based on the brain cortex data (GSE67835)

which includes five 5 cell types including astrocytes, endothelial, oligodendrocytes,

microglia, and neurons with proportions of 0.23, 0.08, 0.14, 0.06, and 0.49; (2) We

increase the cell percentage for astrocytes by 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6, and

decrease proportions of other cell types; (3) Total number of cells is fixed at 2000.

The stratified power for Form I DE and Form II DE are illustrated in Figure 3.8A

and Figure 3.8B. Each panel represents one simulated case where the cell proportions

are manually perturbed. For a pairwise comparison for Form I and II DE, we report

the sum of absolute change of all stratified powers against the sum of absolute change

of the cell proportions in Figure 3.8C and Figure 3.8D. With increasing biases of cell

fractions, the overall power changes become more drastic. For example, the sum of
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absolute changes of all stratified powers in the endo vs micr comparison for Form I DE

is increased from 0.24 to 1.57, and endo vs olig comparison for Form II DE changes

from 0.29 to 0.85, Overall, these results show that the biases in cell proportions are

directly related to the accuracy in power estimation. The power (and sample size)

estimation can become unrealistic if the proportions are inaccurate.

 
Figure S20: The stratified powers change with the change of perturbation levels from 0.1 to 0.6. A and B illustrate the power 
change for Form I and II DE. For a pairwise comparison in Form I (C) and II DE (D), we report the sum of the absolute change 
of all stratified powers with the sum of absolute change of the cell proportions.  
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Figure 3.8: The stratified powers change with the change of perturbation levels from
0.1 to 0.6. A and B illustrate the power change for Form I and II DE. For a pairwise
comparison in Form I (C) and II DE (D), we report the sum of the absolute change
of all stratified powers with the sum of absolute change of the cell proportions.

3.3.7 Extend POWSC to the context of clustering

So far, we have demonstrated the success of POWSC in accurately predicting the

sample size and providing power evaluation under the context of the DE analysis.

Further, we develop another pipeline named POWCLUST as an extension of POWSC
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which assesses power with respect to properly recovering the cell type information

under the context of clustering.

POWCLUST also includes three steps of parameter estimator, data simulator,

and power assessor. Considering the low sequencing depth observed from the droplet-

based scRNA-seq experiments, we adopt the Dirichlet-multinomial Bayesian frame-

work to directly model the count expression at the individual cell level. The model

we propose is as the following: ~yi is the count vector for all the genes from the ith
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Figure 3.9: Apply POWCLUST on PBMC datase (GSE96583)

cell. Each element in the probabilistic vector ~pj corresponds to a gene expressing a

certain level of reads. ri presents the total read counts from the ith cell. ~αk
i denotes

the parameter of the kth cell type specifying the conjugate prior i.e., Dirichlet distri-

bution. To fast and accurately estimate the model parameters, we use the Method of

Moment approach described by Dr. Narayanan [107].

To evaluate whether the simulated the data can properly recover the cell type

information, we use the following strategies: 1. Estimate the similarity of the cell type
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hierarchy between the reference and the obtained tree structure from the generated

data. The hierarchy of the cell types are obtained by fitting the traditional hierarchical

clustering on the cell type centroids. We use cophenetic correlation [129] to measure

the similarities between two structured trees. 2. Evaluate the cell type proportion

between the reference and the computed cell fraction from the simulated data. We

use the cosine similarity to measure the closeness between two cell type proportion

vectors. 3. Calculate the specific cell type bias.

To obtain the classified cell type information, we investigated both supervised

approach and unsupervised approaches. For supervised approach, we used the scmap

[78] to assign the cell type in the simulated data by comparing to the reference

data. For unsupervised approach, we used the SHARP [152] for clustering the cells

and iteratively map the cell types with the reference cell types by constructing the

similarity matrix.

We used one dataset under the GEO accession ID GSE96583 about peripheral

blood mononuclear cells (PBMCs) as the template to estimate model parameters.

The data includes 8 cell types of B cells, CD4 T cells, CD8 T cells, and etc. For

the computation process, we first simulate a series of datasets with different sizes

ranging from 500 to 4500. Then, we applied both scmap and SHARP for predicting

the cell type labels for each dataset. Next, we compare with reference by reporting

the cophenetic correlation, cosine similarity, and bias. As demonstrated in the Figure

3.10, it shows that larger size will associate with higher cophenetic statistics in (Figure

3.9A) and cosine similarity in (Figure 3.9B), which indicates including more cells will

be more likely to recover the true information of cell type hierarchical structure and

cell type proportion. It also tells that using supervised approach for assigning cell

types is more sensitive than unsupervised approach. Furthermore, we showcase that

the cell type bias (Figure 3.9C) for the abundant cell types will likely converge with

large sample sizes such as CD4 T cells (57.39%), and CD14+ Monocytes (15.37%),



53

but the trend is not obvious for cell types with relatively smaller proportions such as

CD8 T cells (3.83%), and Dendritic cells (1.94%).

3.4 Discussion

For the scRNA-seq experiment designed for identifying differential expression, statisti-

cal power evaluation plays an essential role for sample size recommendation. Multiple

factors affect the ability of detecting DE genes in scRNA-seq. These factors include

but go beyond the typical size effect and sample size in traditional single hypothesis

testing, and beyond those encountered in bulk RNA-seq including sequencing depth

and mean expression level. The unique nature of scRNA-seq datasets includings the

high percentage and large variation of zero counts, the multiple cell types measured

simultaneously, and the different forms of DE. These unique characteristics, adding

the high dimensionality with unexchangeable tests, make theoretical samples size

“calculation” or “determination” impractical, and the power assessment even more

complicated than in bulk RNA-seq. Rather, we follow the strategy in bulk RNA-seq

and provide sample size recommendation via simulation so that the scientists can

have a comprehensive view of what can be expected in various sample sizes.

Another consideration is the diverse sequencing methods with different protocols.

There are currently a number of scRNA-seq technologies, including CEL-seq2, Drop-

seq, MARS-seq, SCRB- seq, Smart-seq2 (the improved version of Smart-seq), and

Seq-Well. Many considerations such as the cost and capture accuracy will influence

the choice of sequencing platforms. It is reported that Drop-seq is more effective in

transcriptome quantification for large numbers of cells, while MARS-seq, SCRB-seq,

and Smart-seq2 provide improved transcripts detection and coverage [180]. Recently,

10X Genomics system has become a popular choice for researchers. The technology

is designed to sequence a large number of cells at shallow coverage, which is ideal
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for cell clustering and rare cell type discovery. To test whether POWSC can still

perform on 10X datasets, we applied POWSC based on a Peripheral blood mononu-

clear cells (PBMCs). This dataset (https://support.10xgenomics.com/single-cell-

gene-expression/datasets/2.1.0/pbmc4k) includes 4,340 cells with average sequencing

depth at around 3000. We find that enlarging sample size can lead to higher power

even with such shallow sequencing depth, as expected. However, the power becomes

saturated after including a certain number (∼1000) of total cells (Supplementary,

Figure B.4-B.5). For Form II DE, the majority of the DE genes have less than 10

counts on average (Supplementary, Figure B.5A-E). This leads to low marginal power:

with 2000 cells, the marginal power is barely over 0.4 (Supplementary, Figure B.6).

Overall, 10X is not recommended for DE analysis.

There are some discussions and debates on the cause of sparsity (the abundance

of zeros) in scRNA-seq data, e.g., whether the sparsity is due to biological fact or

technical limit or a combination of the two. The sparsity mechanism will have some

impact on the data modeling strategy; for example, whether a zero-inflation compo-

nent is necessary. It has been reported that the raw read counts from Smart-seq have

zero-inflation, while Unique Molecular Identifiers (UMIs) counts can be adequately

modeled by a negative binomial distribution (NB) [46, 142, 138]. We model the

scRNA-seq counts as a mixture of a zero-inflated Poisson (ZIP) for background and

a lognormal-Poisson (LNP) for foreground. This provides the flexibility to accommo-

date either case (dropout or dropdown) when the user choose different parameters.

For example, the zero-inflation can be removed (then the background simply becomes

a Poisson) if the mixing proportions for the point mass at zero are specified as 0, or the

whole ZIP component for background can be removed if proportions for ZIP are set to

be 0. The LNP model captures the same mean-variance relationship as the negative

binomial model does but is more flexible when the dispersion is greater (as typical

for scRNA-seq data) [163]. Most importantly, our modular software implementation
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keeps the tool flexible such that users may elect to simulate scRNA-seq data from

other data generative models (either published data generator or their own in-house

simulation) and still benefit from the POWSC’s power evaluation functionalities.

It’s important to point out that the current scheme in POWSC starts from simulat-

ing read count matrix. For more realistic simulation, it is ideal to consider additional

factors related to data processing, such as read mapping efficiency and read count

summarization. This requires simulating scRNA-seq data at the sequence read level,

and there are existing works for it [122]. To incorporate that component in POWSC

is our research plan in the near future.

In cross cell type comparisons, our results in Section 3.3 and Figure 4 are based on

the true cell type labels. In real data analysis, cell types may be identified by surface

markers (such as flow cytometry cell sorting) in which case the cell types are usually

considered as identified without mislabeling. Another type of analysis is also common:

cell clusters are identified using unsupervised clustering algorithms [77, 123], followed

by an inspection of the highly expressed genes in each cluster to infer their cell types.

In this kind of analysis, since the cell types are inferred and are subject to error,

the DE analysis comparing the clusters may find spurious DE that is only associated

with these given clusters [172]. The typical multiple testing adjustment procedures

do not guard against this type of false discovery, because some of these false positives

represent true difference between the clusters. The impact of the potential mistakes

in the clustering step on the DE analysis depends on how distinct the cell types are,

hence how accurately the cells are clustered and cell types inferred. This is beyond

the scope of this manuscript, but certainly an important direction for our continuous

development of POWSC. Moreover, with a modular structure, POWSC makes it easy

for users to adopt other DE analysis to the ones we currently include, such as the one

proposed in [172] that provides a solution for clustering-then-DE type of analysis.

Right now, POWSC is designed for assessing powers under the context of two-
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group comparison DE analysis. In the near further, we will extend the power evalua-

tions for DE in more complex experimental design (multiple-group comparison, with

continuous covariates, etc.). Another important point is related to scRNA-seq data

from multiple subjects. To date, the analysis method for scRNA-seq data from multi-

ple subjects is not yet well-developed. A common practice for that is to combine data

from all subjects, which implicitly ignore the biological variation among subjects. We

acknowledge that this could potentially underestimate the number of cells required.

Continuous development of POWSC with consideration of inter-subject variation is

our research plan in the near future. Other important utilities of scRNA-seq such as

cell clustering and rare cell type discovery also require sample size recommendation.

In these questions, there is no clear definition of “power” in the traditional statistical

sense. Scientists need to use other metrics and relate them to sample size. These are

certainly interesting questions worth careful exploring and may demand new metrics

for assessment.
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Chapter 4

Besides scRNA-seq: the design of

iPath

Algorithm 3: iPath

4.1 Introduction

Cancer is a leading cause of morbidity and mortality worldwide and its prevalence is

rapidly increasing, primarily due to the aging of the population. Given this, there is an

urgent need for understanding the molecular mechanisms of tumorigenesis in order to

develop effective treatments. It has long been recognized that dramatic transcriptome

alteration is a hallmark of cancer [53]. Detecting gene signatures in transcriptome

profiling data has been an essential step for many cancer studies [18, 29, 166, 182].

Using microarray or RNA sequencing (RNA-seq), many important discoveries have

been made using differential expression (DE) detection techniques [115, 130, 177].

For example, important biomarker genes in breast cancer have been identified using

high-throughput technologies [146, 70].



58

Despite the successes and importance of DE gene detection, significant challenges

limit its utility. First, the expression level of many genes is rather dynamic and is

affected by many factors that may or may not relate to the disease. Second, most high-

throughput technologies produce data with substantial uncertainties: a long list of DE

genes is usually produced, with many of them potentially being false positives. The

low reproducibility of high-throughput technologies has long been acknowledged [92].

To overcome this challenge, scientists have developed gene set enrichment analysis

(GSEA) [136]. Instead of individual genes, GSEA focus on pre-defined gene sets and

use rankings instead of actual expression levels, to determine whether a given gene

set shows concordant and statistically significant changes between two conditions.

GSEA is specifically designed to analyze inherently noisy data produced from high-

throughput assays, such as microarray and RNA-seq. Operationally, GSEA first

ranks all genes in the genome based on the level of expression changes between two

conditions (e.g., treatment and control). Then, it focuses on whether the genes from

predefined functional gene sets locate towards the top or bottom of the sorted list

by calculating a Kolmogorov-Smirnov version of enrichment score (ES). GSEA has

been shown to be a powerful method, especially for cancer research. Besides GSEA,

a dozen of methods designed for pathway analysis around the same time, and Atul

et al. systematically reviewed these pathway analytic approaches during the past

ten years in 2012 [74]. Recent studies demonstrate that alterations in multiple genes

tend to accumulate in pathways central to the control of cell growth and cell fate

determination [5, 124, 175].

However, cancer is characterized by tremendous phenotype heterogeneity, which is

also reflected at the molecular level. The new precision-medicine philosophy advocates

for a treatment plan that targets the unique characteristics of the tumor. Therefore, it

is critically important that one focuses on the unique pattern shown in the individual

tumor sample in order to identify the most promising treatment strategy for the
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patient. Despite its success, GSEA is predominantly carried out as a follow-up to

DE analysis. GSEA looks for those gene sets that have gone through significant

systematic changes between two groups of samples. Therefore, significant pathway

changes that occur only in a small number of samples will likely be missed by GSEA.

Cancer is a disease of the genome. Multiple types of genomic or epigenomic alter-

ations have been linked to human malignancies, including mutations, translocations,

and changes in DNA copy number, gene expression and CpG methylation patterns.

Given the vast heterogeneity among disease prognoses, it is of great interest to iden-

tify biomarkers that can predict clinical progression and outcomes. In a recent study

[145], Uhlen et al. comprehensively and systematically correlated gene expression dif-

ferences with patient survival. Using data from The Cancer Genome Atlas (TCGA),

they identified multiple candidate prognostic genes whose expression level strongly

correlated with the patients’ overall survival.

Despite identifying many prognostic genes, the substantial variation and uncer-

tainties that are ubiquitous in high-throughput technologies may raise concerns of

robustness when using a single gene as the biomarker. Additionally, cancer is a com-

plex disease: tens, or even hundreds, of genes are interactively involved and together

play an important role in tumorigenesis and progression. Therefore, we hypothesize

that gene sets—especially pathways and pre-defined, biologically meaningful gene

sets—could serve as better biomarkers than individual genes to predict clinical out-

comes for cancer patients in terms of robustness and interpretability. We acknowledge

that a pathway is much more than just a gene set since how genes interact with each

other is exceedingly important. However, in this work, we only focus on the gene

membership part of the pathway, for simplicity consideration, we use the two words

interchangeably. Given that whole transcriptome profiling has become increasingly

affordable in the clinic, in this study, we explored the feasibility and efficacy of us-

ing the expression profiles of pathways or pre-defined gene sets as biomarkers, and
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compared them with individual gene biomarkers.

Here, we introduce iPath, or individual-level pathway analysis, to quantify the

magnitude of alteration occurring for a particular pathway at the individual sample

level. Our goal is to understand cancer one tumor sample at a time. Since tens or

hundreds of genes are required to work together harmoniously in order to achieve

even a simple biological function, and because high-throughput assays are known

to produce data with a substantial amount of noise and artifacts, we believe it is

more effective and robust to study genes in a pathway or gene set collectively, as

a group, rather than one by one. To achieve this, for each pathway we calculate

a pathway-based individual-level Enrichment Score (iES) (see Methods) to classify

tumor samples into two groups—normal-like or perturbed—and then conduct a formal

statistical test (reporting a log-rank p-value) to check whether such grouping has any

implication on clinical outcomes such as overall survival.

The idea of conducting personalized GSEA has appeared in the literature. For ex-

ample, Barbie et al. introduced single sample GSEA (ssGSEA) [10], which internally

integrates the calculation of GSEA with a modified weighting factor. Gundem and

Lopez-Bigas introduced Sample-level enrichment analysis (SLEA) [49]. Both meth-

ods produce a score for every pathway and sample. However, in ssGSEA, genes are

ranked by their absolute expression values and the ESs are based on their ranks. In

SLEA, genes are randomly permuted, and a pathway is scored by comparing the ex-

pression levels of its member genes before and after permutation. In both methods,

pathways consisting of genes with constitutively high levels of expression (for exam-

ple, housekeeping genes) will score higher. Other tools use a relative complicated

approach for calculating the individual-level pathway ES. For example, GSVA [64]

obtains the gene ranks by fitting the gene-specific kernel functions, and computes a

Kolmogorov-Smirnov statistics like ES. Pathifier [35] computes the distance between

each individual and a fitted principal curve in the low-dimension space for each path-
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way. iPS [38] computes ESs for tumors by summing up the correlation perturbations

with the reference of normal samples. In contrast, iPath ranks genes based on the

magnitude of their departure from the overall expression levels across the tumor and

normal samples which improves quantification of the changes induced by experimen-

tal condition or disease status. As a result, iPath is better at identifying disrupted

pathways as prognostic biomarkers which we are able to demonstrate in the present

study.

We applied iPath to perform a pan-cancer analysis using well-established path-

ways and gene sets cataloged in the Molecular Signature Database (MSigDB) [95].

Our results suggest that pathways are better options than single genes in terms of pre-

dicting clinical outcomes. Thus, we believe that prognostic pathways are promising

and reliable biomarkers for precision oncology. Additional analyses further reveal that

many of these prognostic biomarker pathways can be linked to frequently mutated

cancer driver genes in a cancer-specific manner, illustrating the intricate interactions

between somatic mutations, abnormal gene expression, and tumorigenesis.

4.2 Method

4.2.1 Data sources

Transcriptomics data

The iPath program takes expression data and clinical data as input. We utilize the

RTCGA—an R package, to retrieve level 3 RNA-Seq data and clinical data from

TCGA maintained by Broad Institute GDAC Firehose.

Pathways and gene sets

Pathway information is obtained from the Molecular Signature Database (MSigDB).

MSigDB stores eight different collections of biologically relevant pathways, enabling

the discovery of biomarker pathways from different biological perspectives. From
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MSigDB, we downloaded the C2 collection (4,726) curated from pathways sources,

biomedical literature, and expert knowledge, as well as the GO collection (5,917)

annotated by GO terms.

4.2.2 Overview of the iPath approach

The goal of iPath is to identify pathways that show unusual patterns at single sample-

level. To achieve this, we defined a novel statistics, namely iES. For each pathway

and each given patient, iPath first computes iES, a single value that reflect the overall

expression profile of the pathway in this sample relative to the population average of

all samples. Such a method allows us to quantify the level of irregularity for a set of

genes in a single sample. Next, for each pathway, using normal samples’ distribution

of the iESs (Figure 4.1c), we come up with an iES threshold which we use to classify

all tumor samples into either the category of normal-like or perturbed. Last, we

compare the survival difference between these two groups, and designate a pathway

as a prognostic biomarker pathway if the two groups of patients show significant

difference in overall survival (Figure 4.1b).

4.2.3 Calculation of iESs

For each cancer type, we denote the RNA-seq expression matrix as Y = yij , with

rows corresponding to the patients and columns corresponding to the genes, and

i=1,. . . ,M, and j=1,. . . ,N, M is the total number of samples and N is the total num-

ber of genes in the genome. The expression levels Y are assumed to have already been

normalized, for example, measured by FPKM or RPKM values. We first use all the

samples of this cancer type to construct a transcriptomic homeostasis, calculate the

mean (ȳj) and standard deviation (sj) of the expression level for every gene in the

genome. Then for each sample, assuming sample i, calculate iES for every pathway

as follows.
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Figure 4.1: a.The 14 cancer types analyzed in this pan cancer study. b. The workflow
of iPath, as demonstrated in the table with rows representing patients and columns
representing pathways, iPath first calculates an iES score for each pathway and each
patient (norms in the blue circle and tumors in the red circle). Then, for each path-
way, iPath divides tumor samples as either normal-like or perturbed groups based on
the iES scores from the normal patients. Last, iPath performs survival analysis for
two tumor groups and determines prognostic pathways based on significant survival
difference. c. The t-SNE data visualization of the iES scores from all samples of the
14 cancer types.

1. Calculate z-score zij = (Yij − ȳj)/sj for every gene, here zij represent the level of

deviation from the norm for gene j in the ith sample, i=1,. . . ,M, and j=1,. . . ,N.

2. Next, sort the absolute value of zij, denoted as |zij|, in descending order to

obtain the ranks of all genes in the genome, denoted as gi1, gi2, . . . , giN such that
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|zigi1 | ≥ |zigi2| ≥ · · · ≥ |zigiN |.

3. Subject the sorted gene list gi1, gi2, . . . , giN to the GSEA analysis: given one path-

way (S) including R genes, iPath loops through the sorted gene list gi1, gi2, . . . , giN

and calculates a running sum (Kolmogorov–Smirnov) statistics iESi for ith sample in

the following manner: if the gj is not in S, then subtract a penalty score 1
N−R ; If the

gj is in S, then add a n incremental score
|Zij |∑

j∈S |Zij | . By aggregating the scores from

each position, it computes the iESip value at the pth position in Li as:

Pincrements(S, p) =
∑
gi∈S
j≤p

|Zij|
SR

, where SR =
∑
gi∈S

|Zij|

Ppenalities(S, p) =
∑
gi /∈S
j≤p

1

N −R

The iES score forith sample acquires the maximum deviation from zero of Pincrements−

Ppenalities. It is worth noting that utilizing |Zij| for the ith sample allows for the

estimation of the leading contribution of the most perturbed genes.

4.2.4 Definition of perturbed tumor samples

For each pathway, we classified each tumor sample as either normal-like or perturbed.

Perturbed means a significant departure from the expression homeostasis observed

for this group of genes in normal samples. To achieve this classification, we used

the distribution of the normal samples’ iESs as the benchmark (obtained their mean

and standard deviation). Specifically, we labeled a tumor sample as “perturbed”

if its iES was more than two standard deviations away from the normal samples’

mean, in the direction along the normal samples’ mean towards the tumor samples’

mean. Otherwise, the sample is labeled “normal-like”. In cancer studies, especially

for solid tumors, “normal” samples typically refer to tissues adjacent to the tumor

site, hence the level of heterogeneity in the normal samples is usually quite high. This
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is evidenced by frequently observing more than one mode in the distribution of the iES

values among the normal samples. In order to best estimate the mean and standard

deviation of the bona fide normal samples, we fit a Gaussian mixture model for these

iES values to account for heterogeneity, and selected the mean and the standard

deviation for the subgroup of samples with the highest posterior probability. This

can be achieved by specifying the modelName parameter to “V” inside the Mclust

function (mclust R package), which is able to automatically determine the number of

the modes and assign samples to clusters.

Using pathway “FARMER BREAST CANCER APOCRINE VS LUMINAL” in

BRCA as an example. In Figure 4.3, from the density plots, we observed that the

overall iESs for tumor samples were higher than the normal samples (first column:

waterfall plot, and second column: density plot), so we used the mean + 2sd as

the cutoff to determine whether a tumor sample was perturbed. Figure 4.3a shows

enrichment plots of three normal-like samples in the first column. Figure 4.3b shows

that of three perturbed samples. Figure 4.3c shows a random normal sample. After

classifying all tumor samples into either normal-like or perturbed, survival analysis

indicated that this was a prognostic biomarker pathway (see the Kaplan-Meier plot

in the fourth column of Figure 4.3e). The same trend is found in another biomarker

pathway “PEDERSEN METASTASIS BY ERBB2 ISOFORM 3”.

4.2.5 Performance comparison among sample-level gene set

analysis methods

Clustering. We adopt the following steps: (1) randomly choose 50 normal and 50 tu-

mor samples from the BRCA cohort; (2) for each method, we calculate an ES matrix

with rows corresponding to pathway/gene sets and columns corresponding to sam-

ples. (3) conduct DE analysis on the ES using limma (67). (4) select the top 10 gene

sets according to the adjusted p-values and perform the hierarchical clustering. (5)
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bipartition the hierarchical tree into two classes and compare the clustering results

with sample labels using the adjusted rand index (ARI). (6) repeat the above process

1000 times and summarize the average ARI for each method.

Survival analysis. We randomly sample 70% patients as the training set and use the

rest of the data as the test set. Using training data, we fit individual Cox propor-

tional hazards model for each BIOCARTA pathway and select the pathway that best

correlates with the survival. Then using the test data, we assess the predictive ability

of the selected pathway by computing the concordance index (c-index). We repeat

the random samplings for training and test data 1000 times. The distributions of

c-indices are summarized using boxplots.

4.3 Result

4.3.1 Overview

We systematically explored the relationships between biological pathways or gene

sets (referred simply as “pathways” hereafter for the sake of simplicity) and clinical

outcomes in 14 solid cancer types (Figure 4.1a), using data available from TCGA

(Supplementary Table C.1). These cancer types were selected because we require at

least 20 matching normal samples in each cancer type. These normal samples are

either normal or adjacent-normal tissues in the tumor patients.

We studied two major collections of pathways: C2 curated gene sets from MSigDB

and Gene Ontology (GO) [6]. There are 4,762, and 5,917 gene sets (Supplementary

Table C.2) in these categories, respectively. Unlike most of the existing pathway-

based studies [93, 121, 125, 150] that identify pathways with significant differences

between the group of tumor samples and the group of normal samples, we intended

to develop a method that focuses on pathway behavior at the individual patient

level, and to identify pathways in which departure from its norm has significant
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implication for patients’ clinical outcomes. To achieve this, we developed a new

computational approach named iPath. There are three major steps in iPath: First,

for each individual patient and pathway, we calculate an individual-level ES (iES),

analogous to the ES used in GSEA. Then, based on the iES, we dichotomize all

tumor samples into two groups: normal-like and perturbed. Finally, we conduct

survival analyses to compare whether the two groups of patients show differences in

terms of their overall survival. Figure 4.1b illustrates the main workflow of iPath. We

demonstrate that pathways identified by iPath have intimate connections with other

biological and clinical properties, including somatic mutations, cancer subtypes, and

pathology imaging features.

Furthermore, we investigated whether the expression pattern reflected in the path-

way’s iES values could illuminate the heterogeneity among different cancer types.

Using the 4,762 gene sets from the C2 category, we plotted t-distributed stochastic

neighbor embedding (t-SNE [101]) for all samples across 14 cancer types (Figure 4.1c).

From the t-SNE plot, we observed that samples from the same tumor type (dots with

the same color) tend to cluster together, indicating that iES values are highly in-

formative in terms of the distinct pattern in their expression profiles. As expected,

we found that three clusters of kidney cancer types— Kidney renal papillary cell

carcinoma (KIRP), Kidney renal clear cell carcinoma (KIRC) and Kidney Chromo-

phobe (KICH)—are located together, and two clusters of lung cancer types— Lung

squamous cell carcinoma (LUSC) and Lung adenocarcinoma (LUAD)—are located

next to each other. Breast invasive carcinoma (BRCA) shows the greatest spread,

and Prostate adenocarcinoma (PRAD) shows multiple cluster formations indicating

potential subtypes.
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4.3.2 Identifying perturbed pathways

For a specific cancer type and a specific pathway, we classify each tumor sample as

either normal-like or perturbed. The latter means the gene expression pattern of this

pathway is significantly deviated from that of a healthy, normal sample. We hypoth-

esized that in any given tumor sample, multiple key pathways were perturbed. An

important consideration is how many pathways are perturbed in a tumor sample, and

whether these numbers vary by tumor types. From our comprehensive survey on path-

ways belonging to the C2 category of MSigDB, we found that there was remarkable

diversity among the 14 tumor types in terms of the average percentage of perturbed

pathways per patient (Figure 4.2a). LUSC shows the highest proportions (32%) of

perturbed pathways whereas PRAD shows the lowest proportions (9.6%). Interest-

ingly, for the 14 tumor types, the proportions of tumor samples showing perturbation

averaged across pathways follow a similar order, but with much less variation among

different tumor types (Figure 4.2b).

The MSigDB Hallmark gene set is a collection of 50 “refined” gene sets, curated

from numerous “founder” sets, each representing a specific biological process or state

and demonstrating coherent expression [96]. The Hallmark set contains numerous

well-known signaling pathways that have long been implicated in tumorigenesis and

tumor progression, including the p53 pathway, Wnt, Notch and PI3K pathways. It is

of great interest to examine the expression pattern of these pathways at the individual

tumor sample level. To achieve this, we applied iPath to the 50 pathways in the

Hallmark category. For each of the 14 cancer types, we calculated the percentage of

tumor samples that are perturbed for each Hallmark pathway. As expected, we found

that some pathways such as apoptosis and myogenesis a perturbed in more than half

of the samples across multiple cancer types, while some other pathways, including

PI3K and KRAS and MTORC1, are perturbed in more than half of the samples in

selected cancer types.
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Figure 4.2: a.Survey of the proportions of perturbed pathways in the 14 cancer types.
All analyses are performed using the C2 category pathways which includes 4,729 gene
sets. a. The violin plot of parentage for perturbed pathways: the average proportions
of the perturbed C2 category pathways among all tumor samples within each of the
14 cancer types are ranked. b. The violin plot of percentage for perturbed patients:
the average proportions of tumor samples across C2 category pathways for each of the
14 cancer types are ranked. c. The breakdown of favorable/unfavorable prognostic
biomarker pathways in these 14 cancer types.

4.3.3 Identifying prognostic biomarker pathways

In this study, we applied iPath using 10,679 gene sets to 6,198 tumor samples across

14 different cancer types. A pathway is named a prognostic biomarker pathway for a

given cancer type if the Kaplan-Meier survival analysis yields a significant log-rank p-

value less than 0.05. Here we used the same significance threshold used by Uhlen et al.

to identify candidate prognostic genes [145]. We later applied more stringent criteria

to focus on the most promising prognostic biomarker pathways. Out of these 149,506

gene set / cancer type combinations, 10,592 of them (7.1%) are deemed prognostic:

4,898 (7.3%) in the C2 category, 5,694 (6.9%) in the GO category.

Among all the identified prognostic biomarker pathways, we further classified them
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by clinical outcomes into two subclasses: favorable prognostic biomarker pathways

and unfavorable prognostic biomarker pathways. Favorable prognostic biomarker

pathways imply that higher iES values relative to normal samples are correlated with

better patient survival outcomes and vice versa. Unfavorable prognostic biomarker

pathways designate the opposite. Among the 4,898 C2 pathway-cancer type combi-

nations that deemed significant in predicting patient outcome. 1,734 (35.4%) are fa-

vorable prognostic biomarker pathways and 3,164 (64.6%) are unfavorable prognostic

biomarker pathways, respectively. The ratios of favorable to unfavorable prognostic

biomarker pathways varied among the 14 different types of cancer. Figure 4.2c illus-

trates the number of prognostic biomarker pathways and the two subtypes for the 14

cancer types.

In order to concentrate on the most promising results from this long list, we here

present the most significant gene sets identified by iPath, using a combination of

stringent criteria including the q-value (false discovery rate (FDR)) being less than

0.15 and the number of genes in the gene set being less than 100 in order to focus

on more specific pathways. Excluding KIRC which showed much more prognostic

biomarker pathways than others, on average, about 70 prognostic biomarker pathways

(out of total of 10,679 pathways, less than 1%) were found for each cancer type.

4.3.4 Pan-cancer view on prognostic biomarker pathways iden-

tified

We examined the number of significant prognostic biomarker pathways identified

among different cancer types. We found that there was remarkable imbalance among

these cancer types in terms of the number of such pathways identified. Most of

the significant pathways were found in three kidney cancer types: KIRC, KIRP and

KICH. A few occurred for LUAD, PRAD, THCA, BLCA, and BRCA. Almost none

were found in other cancer types. This could be because the clinical outcomes of
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different cancer types are quite diverse. It is also of interest to discover what pro-

portions of the prognostic biomarker pathways overlap across cancer types. To find

out, we calculated the Jaccard similarity between two lists of prognostic biomarker

pathways for every pair of cancer types. We found that the similarity level is very

low, except for the three kidney cancer types (KICH, KIRC and KIRP), meaning

most cancer types have very few shared pathways. In other words, the majority of

prognostic biomarker pathways are cancer-type-specific. Our findings are consistent

with the results presented in Uhlen et al. and highlight the extensive diversity in

different types of human malignancy.

Compared to other cancer types, very few prognostic biomarker pathways were

identified with breast cancer. This is somewhat surprising, since multiple well-

established pathways are known to play critical roles in the tumorigenesis and pro-

gression of breast cancer [2, 27, 44, 71, 76, 106, 159]. One possible reason for this is the

substantial pathological differences among the four major subtypes of breast cancer:

Luminal A, Luminal B, HER2+, and Basal like. Supporting this hypothesis is the

fact that the proportion of patients with such pathway alterations in these four breast

cancer subtypes (third column) varies greatly (Figure. 3e, f). Given this observation,

we were prompted to explore whether the disruption of a particular pathway prefer-

entially occurs in a particular subtype of breast cancer. We then applied iPath to the

four BRCA subtypes separately and identified 8, 10, 3, and 16 significant biomarker

pathways (using FDR cutoff q-value ≤ 0.15) in the four subtypes, respectively.

4.3.5 Selected prognostic biomarker pathways identified

There were many interesting prognostic biomarker pathways identified by iPath. For

example, in various kidney cancer types, including KIRP, KIRC, and KICH, many

prognostic biomarker pathways from the GO collection in MSigDB were found to be

related to the cell cycle (Supplementary Figure C.3). Recent studies have shown that
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cell cycle progression gene signatures are significant, independent predictors of long-

term outcomes for patients with renal clear cell carcinoma [105] or related biomarkers

[22]. Smaller studies on TCGA KIRC datasets have substantiated this [7, 48]. Our

findings are also consistent with reports of cell cycle-related biomarkers for KIRP [56]

and KICH [169].

In BRCA, multiple REACTOME pathways were identified by iPath as prognostic

biomarker pathways. For the REACTOME P38MAPK EVENTS pathway, our re-

sults are consistent with studies showing that p38 MAPK signaling drives resistance

to key breast cancer drugs including trastuzumab resistance in HER2+ breast cancer

[34] and tamoxifen resistance in luminal breast cancer [68]. Identification of the RE-

ACTOME RAF MAP KINASE CASCADE pathway as a biomarker is supported by

a recent study that found that a transcriptional signature called the MAPK Pathway

Activity Score (MPAS) is associated with patient outcome in ERBB2-positive breast

cancer [150]. The prognostic nature of the gene set FARMER BREAST CANCER

APOCRINE VS LUMINAL (Figure C.2) is logical, given the fact that this signa-

ture discriminates between AR+ basal breast cancers with poor outcomes and AR+

luminal breast cancers with much better outcomes [40].

Besides the C2 category gene set database, we also identified GO term “GO CEL-

LULAR RESPONSE TO THYROID HORMONE STIMULUS” (Supplementary Fig-

ure C.2c), which contains 13 genes, as a prognostic biomarker pathway for KIRP

(Supplementary Fiure C.2d). Thyroid hormone has long been linked to the patho-

physiology of various cancer types [83]. While this pathway is not one of the top

enriched pathways according to classical GSEA analysis (p = 0.2112), iPath deter-

mined that a small subset of 22 KIRP patients with much reduced expression in this

pathway led to significant poor clinical prognosis, suggesting that any intervention

that increases the impression of this pathway may benefit this group of patients. An-

other GO term that has been identified as a prognostic biomarker pathway is “ GO
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ATP DEPENDENT MICROTUBULE MOTOR ACTIVITY” in KICH, Supplemen-

tary Figure C.2d). Cell proliferation is a hallmark of almost all tumors, and it is

well known that microtubules play an important role [21] in mitosis. Interestingly,

for this pathway we found that individuals with reduced expression levels have much

better clinical prognoses, thus it is an unfavorable prognostic biomarker pathway.

Given this, it is likely that antimitotic therapies that impede mitosis-specific micro-

tubule functions through inhibiting motor proteins [120] may benefit patients with

high expression of this gene set.

4.3.6 Links to distinct patterns shown in pathology imaging

Pathology imaging has long been regarded as the gold standard diagnostic tool in clin-

ical oncology. We conjectured that individual-level expression profiles of a pathway

could help to distinguish subtle tumor characteristics hidden in pathology imaging.

To investigate, we used the gene set “FARMER BREAST CANCER APOCRINE VS

LUMINAL”, one of the most significant prognostic biomarker pathways identified in

BRCA, as an example. We selected three tumor samples from the far end of both

the normal-like group and the perturbed group, and obtained their corresponding

pathology images from the cancer digital slide archive [51]. The image of the three

normal-like samples and three perturbed samples are shown in the second column in

Figure 4.3a and Figure 4.3b respectively. Among the six pathology images, the lumi-

nal type tumor shows well differentiated morphology with well-formed tumor lumen,

low to intermediate nuclear grade and low mitotic features. The androgen type shows

higher grade, with poorly-formed tumor lumen, intermediate to high nuclear grade,

and focal tumoral necrosis. To confirm this observation, we obtained the ICD-O-3

codes (8500/3 Infiltrating duct adenocarcinoma; 8520/3 Lobular carcinoma) of the

top ten and bottom ten samples patients quantified by their iESs. The breakdown of

these codes shows a distinct distribution between normal-like and perturbed samples
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(Figure 4.3d).

4.3.7 Comparison with GSEA

The core function of iPath is to identify perturbed pathways in every individual

tumor sample. In contrast, the classical GSEA method identifies pathways that show

differences when comparing two groups of samples, hence only one ES is calculated

for each pathway, no matter how many samples there are. Given their differences, a

pathway identified by iPath may not have been picked up by GSEA and vice versa.

This is possibly because a pathway is perturbed only in one individual sample, and

thus unlikely to display a significant difference when tested by GSEA. In other words,

iPath is good at identifying perturbed pathways for a small minority group of cancer

patients. To illustrate the point, we used breast cancer (BRCA) as an example. We

first calculated iES for each pathway in each individual. Using iESs, we applied a

Wilcoxon signed-rank test (Wilcoxon, 1945) to each pathway, compared iES values

between tumor and normal samples, and used the p-values of the test to rank all

pathways. For comparison, we also ran GSEA to obtain a different list of ranked

pathways. The top ten pathways that differentiate the iES values of tumor and normal

samples are listed in (Supplementary Table C.3), along with their significant levels.

The top ten differentiated pathways identified by GSEA are listed in (Supplementary

Table C.4), along with the corresponding ranking in the Wilcoxon signed-rank test

comparing iES values. We found that two pathways (bold) in the two top ten lists are

identical; for the remaining eight pathways, four pathways in the GSEA list are not

cancer-related (red), while only two pathways in the iPath list seem not immediately

cancer-related (red).
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4.3.8 Comparison with other sample-level gene set analysis

methods

We compared iPath against existing methods that are capable of measuring expression

of a pathway at individual level, namely ssGSEA [10], SLEA [49], Pathifier [35] and

GSVA [64]. We adopted the performance comparison study design used in GSVA

study inside which the effectiveness of clustering a mixture of tumor and normal

samples is compared. In such a study, sample-level ES scores were used to select the

most differentiated pathways which in turn were used in the clustering. The details

of the performance comparison procedure are presented in the material and methods

section.

The performance comparison results are shown in Figure 4.4a. We use adjusted

Rand Index (ARI) to measure the clustering performance. Higher ARI indicates bet-

ter clustering, which can be attributed to better pathways selected by each individual

method that calculates sample-level ES scores. Figure 4.4a indicates that iPath ap-

proach results in the highest ARI among all methods tested. Pairwise comparison

between iPath and the three competing methods using t-test indicates that all the

differences are statistically significant.

Additionally, we compared these methods in terms of their ability to consistently

detect prognostic biomarker pathways. Briefly, for each method, we selected the most

significant pathway in the training data and tested its ability to predict survival in

the test data by reporting the c-index. Higher c-index indicates better correlation

with the survival outcomes. The results demonstrate the consistency of iPath for

identifying the most informative prognostic biomarker pathway across the training

and test data. The details of the performance comparison procedures are presented

in the material and methods section. The side-by-side boxplots shown in Figure

4.4b again demonstrate the superior performance of iPath. Pairwise tests show that

iPath produces significantly higher mean and median c-index values than competing
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methods.

4.3.9 Comparison with the Human Pathology Atlas

In a recent study, Uhlen et al. developed the Human Pathology Atlas (HPA), in

which they adopted a system-level strategy to analyze 17 major cancer types with a

focus on mining characteristic genes with respect to clinical outcomes. This method

is based on genome-wide transcriptomic data and searches for prognostic genes whose

top 20% or bottom 20% expression values, measured in FPKM, can stratify patient

cohorts with significant survival differences (p ¡ 0.001). Both HPA and iPath aim

to identify prognostic biomarkers from transcriptome data. However, HPA relies on

individual genes, while iPath focus on pathways. Hence, it is of great interest to

compare their performance. Due to the substantial noise that is ubiquitous in high

throughput technologies, we hypothesized that a pathway-based approach would be

more robust and effective. To test our hypothesis, we applied both HPA and iPath

to renal papillary carcinoma (KIRP). First, we used the p-value threshold of 0.05

to determine whether a pathway or a gene would be considered prognostic by either

approach (Figure 4.4c and Figure 4.4d). Then, when using a more stringent threshold

(q value = 0.05), we found no significant prognostic biomarker genes (Figure 4.4f), but

lots of significant prognostic biomarker pathways Figure 4.4e). Tests conducted on

KIRC gave similar results. These results indicate that the pathway-level biomarkers

are more sensitive than the gene-level biomarkers.

A related question is whether member genes of a prognostic biomarker pathway

are also prognostic biomarker genes. We found that this is not true in most cases.

For some significant prognostic biomarker pathways identified by iPath, none of their

member genes are prognostic genes according to HPA. In other words, at the indi-

vidual gene level, many genes are not prognostic biomarkers themselves, but their

expression pattern as a whole can accurately predict a patients’ clinical outcome.
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“REACTOME RAF MAP KINASE CASCADE”, for instance, is one of the sig-

nificant biomarker pathways identified in BRCA (Figure 4.4g), but no gene inside

this pathway correlates well with survival outcome (Figure 4.4h). This is reminis-

cent of the scenario in which a pathway is identified by GSEA as significant but

none of its member genes show differential expression. Taken all together, we believe

that pathway-based biomarkers are more robust and effective than single-gene based

biomarkers.

4.3.10 Connection with the mutations in cancer driver genes

Progressive accumulation of somatic mutations over time in crucial oncogenes or

tumor-suppressor genes has been implicated in many cancer types [103, 72, 86, 176].

Recently, the somatic mutation statuses of 127 genes have been shown to have signif-

icant effects on patient survival [72]. With the identification of prognostic biomarker

pathways using iPath, a natural question is whether the perturbed state of prognostic

biomarker pathways is linked to somatic mutations occurring in cancer driver genes.

To answer this, given a pathway and a cancer driver gene, we first constructed a

contingency table dividing samples according to their normal-like/perturbed status

for the pathway, and the mutation profile (present or absent) in the cancer gene. We

then conducted a Fisher’s exact test to identify incidence of co-occurrence of the two

events. A binary heatmap indicating whether a significant (p ¡ 0.05, marked in the

red block) connection between the top selected pathways and top mutated gene is

shown in Figure 4.5. We found that indeed somatic mutation in key cancer driver

genes and perturbed prognostic biomarker pathways are often co-occurring events.

In breast cancer (BRCA), we observed that NOTCH1 and E-cadherin (CDH1) are

associated with metastasis-related gene sets (Figure 4.5a), which is consistent with

findings reported in the literature on NOTCH1 signaling [87] and CDH1 [32, 118]. In

lung adenocarcinoma (LUAD) (Figure 4.5b), we identified a couple of histone-lysine
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N-methyltransferase genes (MLL2 and MLL4) that are related to the top significant

pathways found by iPath, and these genes are reportedly clustered in LUAD [72]. We

showed that PIK3CA is correlated with one early cell cycle pathway, which demon-

strates that PIK3CA deregulation serving as an early event precedes genome doubling

in BRCA [13] and colorectal adenocarcinoma [20].

4.4 Discussion

We here describe iPath, a computational tool to identify perturbed pathways found

in individual tumor samples. Unlike individual genes, the collection of functionally

related genes in a pre-defined pathway provides a more robust assessment of the

changes that affect key biological functions in tumor samples. The advantages of

using pathways over individual genes have been well documented in the analysis of

noisy high-throughput data [117] and more recently, as biomarkers [38]. What makes

iPath unique is its ability to provide such an assessment one sample at a time. This is

significant, because substantial heterogeneity among tumor genomes suggests that it

is common for a critical pathway to be perturbed in only a few tumor samples. As a

result, it is highly unlikely that these pathways will be identified by traditional GSEA.

On the other hand, iPath can identify perturbed pathways, even if such disruption

only occurs in a small subset of tumor samples. In short, iPath promises to improve

patient care by enabling oncologists to develop more effective personalized treatment

strategies with fewer side-effects.

To demonstrate the effectiveness of iPath, we conducted a comprehensive pan-

cancer study across 14 different cancer types with more than 6,000 tumor samples.

For each cancer type, iPath identified about 70 prognostic biomarker pathways on av-

erage, many of them showed promising biological interpretations. We also validated

the top prognostic biomarker pathways using SurvExpress, an online biomarker val-
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idation tool. There are two types of prognostic biomarker pathways: favorable and

unfavorable. Favorable pathways account for one third of all the biomarker pathways.

These pathways can be used to identify patients with better prognostics so they can

be spared for unnecessary adjuvant therapies.

Our pan-cancer study using iPath yields two interesting results. First, we found

quite a few pathways or gene sets are potential prognostic biomarkers for most of the

cancer types we studied. However, for the vast majority of these biomarker pathways,

they are perturbed in only a small fraction of all the patients. Second, for any given

pair of cancer types, there is little overlap among the two lists of prognostic biomarker

pathways. Our findings highlight the fact that cancer is a highly heterogeneous disease

therefore personalized treatment strategy is key for effective care for cancer patients.

The present study is conducted on RNA-seq gene expression profiles but iPath can

be applied to other omics data such as microarray data.

The core of iPath is the iES, a single continuous value between -1 and 1, calculated

for every pathway, which may contain hundreds of genes, in each individual sample.

We believe this is a powerful way to summarize the status of a pathway, or provide

a big-picture view of pathway changes at single sample resolution. Our analysis has

shown that iES is informative and sometimes predictive of patients’ clinical features

and prospects. Because it measures the level of the pathway’s deviation from the

norm, we find it to be more sensitive than scores calculated based on the actual

expression level of member genes, used by ssGSEA and similar tools [35, 49, 98, 148].

Scientists have already identified many biomarker genes for various cancer types,

for example, thousands of prognostic genes have been identified in a recent study

of Uhlen et al., why it is important to identify prognostic biomarker pathways? In

the present study, we found that compared to single gene biomarkers, pathway-based

biomarkers are more robust with better separation power, which gives clinicians more

confidence in separating patients to different risk groups, and assign treatment strate-
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gies accordingly. Furthermore, given that they represent well-curated biological path-

ways, easier to interpret, and hence more likely to be informative and meaningful to

clinicians. Another key advantage of pathway-based biomarkers is that there are

drugs that are specifically targeting specific pathways. For example, it is likely that

MAPK perturbed patients will benefit more from MAPK inhibitor drugs. This is

beyond the scope of our current study and we plan to pursue this in future works.

IPath can be applied broadly to other types of cancer, for any given individual

sample, as long as there are corresponding normal samples that can be used to estab-

lish homeostasis. Thus, iPath is a formidable resource for unraveling the large-scale

changes that occur in a small minority of patients, even a single patient. Therefore,

it is an ideal tool for personalized or precision oncology. To illustrate its potential:

some drugs have been developed to specifically target a kinase and its downstream

genes [17, 111]. Using iPath, we can group the drug target and its downstream genes

together and identify patients with elevated expression in this gene set; such patients

may benefit the most from this targeted therapy. We believe iPath can potentially

provide fresh perspectives on patient selection and prognostic prediction.

In this study, we only examined individual pathways to try to establish whether a

given pathway is predictive of a clinical outcome. For prediction purposes, we could

consider multiple pathways jointly, which may produce better prediction performance.

This represents one potential future research direction for the continuous development

of iPath.
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Figure 4.3: Demonstration of an example prognostic biomarker pathway (FARMER
BREAST CANCER APOCRINE VS LUMINAL) in BRCA. a. Enrichment plots of
the pathway and corresponding pathology images of three samples labeled “normal-
like”. b. Enrichment plots and corresponding pathology images of three samples
labeled “perturbed” c. Enrichment plot of the pathway of a normal sample. d.
Breakdown of the ICD-O-3 categories for the top ten perturbed (highest iES value)
and bottom ten normal-like (lowest iES values) patient samples. e-f. Visual summary
of two example pathways including: the waterfall plot shows that the iES in tumor
samples marked in red and normal samples marked in blue; the density plot shows
that overall tumor samples are up-regulated, because the mean of the tumor sample
GSEA scores is higher than normal sample iES. The distribution of perturbed and
normal-like tumors across the four subtypes of breast cancer is listed in the third
column. The Kaplan-Meier plot indicates a significant survival difference for the
perturbed and normal-like tumor samples.
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Figure 4.4: Comparisons between iPath and other sample-level gene set analysis
methods including ssGSEA, SLEA, and GSVA, and comparisons between pathway
biomarkers and individual gene biomarkers. a. Comparison of hierarchical clustering
results in terms of separating tumor and normal samples from the enrichment score
matrix. The hierarchical clustering accuracy is measured by ARI values. As demon-
strated in the violin plot, the clustering accuracy from iPath is significantly higher
than the other methods. b. Comparison of survival analysis results using concor-
dance index. It shows that iPath can sleet the most significant pathways that lead
to the highest concordance in the violin plot. c. The volcano plots for the prognostic
biomarker pathways. The significance threshold is set at p-value 0.05 (log10 (p-value)
= 1.4). The prognostics and non-prognostic biomarkers are marked by red and green
dots respectively. d. The volcano plots for the prognostic biomarker genes. The
significance threshold is set at p-value 0.05 (log10 (p-value) = 1.4). e. The volcano
plots for the prognostic biomarker pathways. The significance threshold is set at q-
value 0.05 (log10 (q-value) = 1.4). f. The volcano plots for the prognostic biomarker
genes. The significance threshold is set at q-value 0.05 (log10 (q-value) = 1.4). g.
The Kaplan-Meier plot of prognostic biomarker pathway “REACTOME RAF MAP
KINASE CASCADE” in BRCA. h. The Kaplan-Meier plots of the member genes of
the “REACTOME RAF MAP KINASE CASCADE” pathway in BRCA.
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Figure 4.5: The association between prognostic biomarker pathways and somatic
mutations of key cancer genes. For each pathway, we classified each tumor sample as
either normal-like or perturbed. For each gene, we classified each tumor sample as
either mutated or not mutated. Then a Fisher’s exact test of association is carried
out on the two-by-two contingency table. a. Matrix of gene/pathway association
in BRCA. Red color indicates significant association. b. Matrix of gene/pathway
association in LUAD.
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Chapter 5

Future research plan

5.1 Single-cell multi-omics data integration

Currently, single-cell biotechnology becomes the tremendous drive for many biological

discoveries. With the scale of the dataset increasing, more robust algorithms need

to be developed to accommodate with both prediction accuracy and computational

efficiency. With multi-omics data (DNA, mRNA, protein) available at single-cell

resolution, it becomes more interesting to integrate multiple data source to gain more

insights because more data potentially conveys more information. I firmly believe

that one of the most important research goals in single cell is still to study the cell

type information. That is, accurately knowing the cell type information is essential

for conducting the analytical process for single cell research.

One interesting research topic is to design a clustering algorithm specifically for

large dataset, which includes more than millions of cells. One addressable approach is

to partition large dataset into smaller batches and parallelly perform the clustering for

each batch. Then, assembling each piece of the clustering results. So far, particular

scRNA-seq clustering algorithm for millions of cells is still understudied. Only a

handful tools are available including SHAPR [152], scAIDE [164], mbkmean [57], and
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fastPG [15]. However, these tools did not provide the specific solution for clustering

sub-cell-types which could include hundreds of detailed cell-types. The numbers of

cell-types investigated in these existing tools are all less than 40.

With recent largescale pilot studies such as the Human Cell Atlas [116], it is

necessary to study each cell based on the characterized clustering labels. Knowing

the subtype identity of each cell is helpful to study cell functionalities. A possible and

direct approach is to first clustering millions of cells into major classes and further

continue clustering within each major class into subtypes. This stepwise clustering

thought can be beneficial.

To accommodate multi-omics data, another interesting research topic is to inte-

grate the regulatory information such as single-cell sequencing assay for transposase-

accessible chromatin (scATAC-seq) [16] and single-cell protein sequencing to bet-

ter predict the gene regulatory networks. Some tools such as scM&T-seq [24] and

CITE-seq [132] provide the feasibility of generating these multi-omics data, and some

mathematical tools such as liger [158] and Seurat3 allow to analytically integrate

multi-omics datasets.

5.2 Single-cell spatial transcriptomics

By adding another layer of spatial information to scRNA-seq data, the spatial tran-

scriptomics has transformed our understanding of tissue functional organization and

cell-to-cell interactions. The space information of the spot location (coordinates) cor-

responding each cell on the histology image will help us to better understand the

cellular functionalities and cell type purity. Many traditional research topics in orig-

inal scRNA-seq such as differential expression (DE) analysis and trajectory inference

have been modified to incorporate the spatial information. It is worth exploring

whether recruiting this spatial information rather than purely scRNA-seq data can
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improve or alleviate signals in terms of DE analysis and trajectory inference.
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A.1 Test datasets

Abbreviation reference #classes Brief Introduction
Baron GSE84133 13 Map of the human and mouse

pancreas reveals Inter- and Intra-
cell population structure.

Close GSE93593 41 human interneuron differentia-
tion

Darmanis GSE67835 9 Cellular complexity of the adult
and fetal human brain.

Deng GSE45719 6 Adult liver: from zygote to late
blastocyst

Goolam E-MTAB-
3321

5 Transcriptional heterogeneities in
pre-implantation mouse embryos

LGd Allen Brain
Map

4 Mouse dorsolateral geniculate
complex

Nestorowa GSE81682 9 PBMCs (10X genomics)
Romanov GSE74672 7 distinct dopamine neuronal sub-

types
Tasic GSE71585 18 cellular taxonomy of one cortical

region, primary visual cortex.
Treutlein GSE52583 5 Mouse lung epithelium cells
Yan GSE36552 6 human preimplantation embryos

and embryonic stem cells
Zheng 10x Genomics 8 PBMCs (10X genomics)

Table A.1: Test datasets for comparing different feature selections, and demonstrating
that features selected by FEAST can assist scRNA-seq. For Nestorowa, we use the
samples from one batch. For LGd dataset, we use the most abundant 6 cell types
(1592 cells).
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A.2 Test datasets with large number of cells

Dataset # of cells
# of cell

types
Introduction

Chen 14437 45 adult mouse hypothalamus
Shekhar 27499 19 neurons and mouse retinal bipolar cells
Macosko 44808 19 mouse retinal cells

Table A.2: Test large datasets for comparing feature selection. For Chen dataset, we
use 5 most abundant cell types including 9596 cells.

A.3 The comparison of F-statistics distributions

Figure A.1: The distributions of F-statistics from two approaches: k-means and
consensus clustering implemented in FEAST. The F-statistics from FEAST are sig-
nificantly higher than those from k-means, indicating stronger signal to noise ratio
from FEAST. The significances (p-values) are obtained from Wilconxon test.
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A.4 Compare FEAST to other feature selection

approaches

Tasic Treutlein Yan Zheng

Goolam LGd Nestorowa Romanov

Baron Close Darmanis Deng
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Figure A.2: The comparison of the feature selection methods. We benchmark FEAST
with other three unsupervised feature selection procedures implemented in raceID3,
SOUP, and scVI. Specifically, we adopted the fitbackground function inside raceID3
package to rank the features. For SOUP, it combines the a feature set by Gini index
and Sparse PCA. To rank the features, we adopted the SPCAselect function inside
SOUP. For scVI, we order the features based on variance. In each test dataset,
we select the top 500, 1000, and 2000 features from each criterion followed by SC3
clustering. FEAST outperforms the other methods by showing the highest ARI values
in almost scenarios and datasets.
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A.5 Top features selected by CV and Kurtosis
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Figure A.3: Top 10 genes selected by CV and Kurtosis. It is interesting to observe
that the top 10 feature genes selected by these two approaches are the same in the
Deng dataset. These top features have one common character that they only show
expression in one or two cells but remain very low expression (usually 0) in the rest
of the cells. From the benchmark comparison, it shows that these top features are
too sparse to contribute to a better clustering accuracy.
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A.6 Feature set validation by TSCAN clustering
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Figure A.4: Test feature set validation on Zheng (A and B) and Deng (C and D)
datasets. This time, we use TSCAN to obtain the clustering groups as demonstrated
in A and C. Then, we use MSE criterion to determine an optimal feature set (B and
D). In Zheng dataset, we found that the feature set (1000 genes) associated with
smallest MSE matches with the best clustering accuracy result. Similarly, in Deng
dataset, the optimal feature set determined by MSE closes to the best feature set
verified by clustering accuracy.



93

A.7 Features selected by FEAST Improves the clus-

tering accuracy for TSCAN, SIMLR, and SHARP

Tasic Treutlein Yan Zheng

Goolam LGd Nestorowa Romanov

Baron Close Darmains Deng
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Figure A.5: Test TSCAN with selected feature on the collected datasets. We use
FEAST to obtain an optimal feature set. The feature set is determined by the val-
idation process across top-m (m=500, 1000, 2000) feature cases. Then, the selected
features are fed into the TSCAN algorithm. To compare the original TSCAN and
the TSCAN with specified features selected by FEAST, we calculate the adjusted
rand index (ARI) to measure the clustering accuracy. Bars show the ARI values for
original TSCAN (blue) and TSCAN using FEAST features (red).
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Figure A.6: Similar to Figure A.5, but using SHARP as clustering method. SHARP
is based on random projection algorithm, which will lead to different clustering results
from different runs. Thus, for each dataset, we run 50 times and report the mean of
clustering accuracies and the standard errors.
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Figure A.7: Similar to Figure A.5, but using SIMLR as clustering method. SHARP is
based on random projection algorithm, which will lead to different clustering results
from different runs. Thus, for each dataset, we run 50 times and report the mean of
clustering accuracies and the standard errors.
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A.8 Computational performance of FEAST
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Figure A.8: Computational performance for FEAST. Figure shows the total running
time for FEAST for different numbers of cells, without validation procedure. FEAST
takes less than 1 minute for 10,000 cells, and less than 4 minutes for 50,000 cells. The
running time is profiled on a Macbook Pro with 2.3GHz Intel Core i9 CPU.
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B.1 Power analysis for Form II DE with respect

to zero fractions

One unique phenomena in scRNA-seq is dropout event which will cause missing values

(zero expressions) due to low amount of RNA amplification.Due to the high noise in

the scRNA-seq data biologically and technically, it is compelling to investigate how

the targeted powers associate to the dropout events. Here, we specifically stratify the

Form II DE genes with respect to the zero fractions. Within a simulation of a certain

total cell number, we find that stratified powers declines with the higher zero fractions

(Figure S12G). Across simulations of different total cells, the overall stratified power

curves move up as the increase of the sample sizes. A tendency of improved marginal

powers with more cells is clear (Figure S12F). In each case of a certain number of

total of cells (Figure S12A-E), the detailed counts of true DE genes and called DE

genes for each zero fraction interval are listed.
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Figure B.1: The power evaluation for Form II DE. Using the template data, we
simulate a series of data with different numbers of total cells (50, 100, 200, 500, and
1000). In each simulation, we count the numbers of the true (simulated) DE gens
and the recovered DE genes in each stratum (A-E). The stratum is about the zero
fractions which is related to dropout rate. We also calculate the marginal power for
Form II DE (F). The simulation is repeated 50 times and illustrated in the (G).

B.2 Multiple cell types in Glioblastoma

We tested POWSC on a Glioblastoma (GBM) dataset (GSE57872) to demonstrate

how the power changes for comparing different cell types in real case. This scRNA-

seq dataset includes 5 individual tumors (MGH26, MGH28, MGH29, MGH30, and

MGH31). Sample MGH31 is used as template for this simulation. Proportions for four

cell types (cell type 1 to 4) are estimated by SC3, as 0.66, 0.15, 0.1, and 0.09. We first

obtained cell-type-specific model parameters. Then, we simulated data under different

total the cells from 1000 to 6000. Lastly, we performed DE analysis and calculated

stratified targeted power for Form I and II DE. In Figure S13, the heatmap in each
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panel is a simulation case with specific total cells. The first row (A) is the power

evaluation result for Form I DE, and the second row (B) is for Form II DE. In most

pairwise comparisons, the powers are low even with many cells. This is because of

the large within group variance (Figure S14), which makes the DE detection much

challenging.
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Figure B.2: Another test on scenario about the cross cell types comparisons under
the same condition. It is performed on a real scRNA-seq dataset that contains 5
glioblastoma patients. We used MGH31 patient as the template for this case study.
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B.3 Multiple cell types in another Glioblastoma

(GSE84465)

We also tested POWSC on another GBM dataset from GEO with accession ID of

GSE84465, to investigate how the powers improve in a different biological context.

We found that the power (Figure S15A-B) for Form I and II DE have more similarity

than difference compared with the case of GSE67835. However, the results are distinct

from GSE57872 even if they are from the same biological system. It is indicated power

analysis is case sensitive, and many unique factors can affect the power evaluations.

For instance, the within group variations as well as between group variations can play

essential roles for power. Specifically, if the within group variances are high, it will

more difficult to detect DE genes.
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Figure B.3: One more test on the second scenario about the multiple cell types under
the same condition. We used a real scRNA-seq dataset that contains 4 glioblastoma
patients, and we utilize one patient with ID BT S1 as template for this case study.
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B.4 Test on 10X platform

10X community platform has become an popular tools for researchers to conduct

clustering analysis; however, it is not known for DE analysis. Here, we test the abil-

ity of detecting DE genes by using POWSC. POWSC performs the simulation pro-

cess based on a real 10X dataset about Peripheral blood mononuclear cells (PBMCs)

https://support.10xgenomics.com/single- cell-gene-expression/datasets/2.1.0/pbmc4k.

This dataset includes 4,340 cells with average sequencing reads 3 K. We found that

the powers estimated from both forms of DE are not stable as from deeper sequenc-

ing depth cases 0.5 Million. We increased the sample size from 100 to 2000, and

drew the distributions of the recovered (RD) and true DE (TD) genes for each case.

Figure S17A-E are for Form I DE and Figure S18A-E are for Form II DE. The power

evaluations are summarized in Figure S17F and Figure S18F. The marginal power

Figure S19 shows the power for Form II DE has a slow growth from 0.02 to 0.46, but

the power for Form I DE saturated after including 1000 cells.
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Figure B.4: Form II power evaluation for 10x data: A-E show the count distributions
of the simulated DE genes and discovered DE genes for the Form I. They are averaged
by the 50 runs. F shows the stratified targeted powers for Form I DE.
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Figure B.5: Form II power evaluation for 10x data: A-E show the count distributions
of the simulated DE genes and discovered DE genes for the Form II, averaged from 50
runs. F shows the stratified targeted powers for Form II DE. It shows that most of the
DE genes are located in the interval of (0, 10] because of low sequencing depth. Thus,
successfully detecting the DE genes at this interval will contribute to the marginal
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Label Cancer types
# of tumor

samples
# of normal

samples
# total
samples

BLCA Bladder Urothelial Carcinoma 408 19 427
BRCA Breast invasive carcinoma 1,100 112 1,212
COAD Colon adenocarcinoma 287 41 328
HNSC Head and Neck squamous cell carcinoma 522 44 566
KICH Kidney Chromophobe 66 25 91
KIRC Kidney renal clear cell carcinoma 534 72 606
KIRP Kidney renal papillary cell carcinoma 291 32 323
LIHC Liver hepatocellular carcinoma 373 50 423
LUAD Lung adenocarcinoma 517 59 576
LUSC Lung squamous cell carcinoma 501 51 552
PRAD Prostate adenocarcinoma 498 52 550
STAD Stomach adenocarcinoma 415 35 450
THCA Thyroid carcinoma 509 59 568
UCEC Uterine Corpus Endometrial Carcinoma 177 24 201

Table C.1: Summary of the 14 Cancer types used in this study

Category Sub-category or Annotations
# of
Gene Sets

Average
Size

C2

CGP: chemical and genetic perturbations 3433 110.52

CP: Canonical pathways
BIOCARTA 217 20.88
KEGG 186 69.22
REACTOME 674 55.79

GO
BP: GO biological process 4436 114.11
CC: GO cellular component 580 151.35
MF: GO molecular function 901 106.11

Hallmark Hallmark Gene Sets 50 146.48

Table C.2: Summary of pathways and gene sets used in this study
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Pathway P-value
DELYS THYROID CANCER DN 7.65E-66

TURASHVILI BREAST DUCTAL CARCINOMA VS LOBULAR NORMAL DN 1.38E-65
TURASHVILI BREAST DUCTAL CARCINOMA VS DUCTAL NORMAL DN 1.25E-63

VECCHI GASTRIC CANCER EARLY DN 7.03E-63
LIU PROSTATE CANCER DN 7.24E-62

SCHAEFFER PROSTATE DEVELOPMENT AND CANCER BOX5 UP 6.53E-61
TOMLINS PROSTATE CANCER DN 7.23E-61

SABATES COLORECTAL ADENOMA DN 1.05E-60
YAO HOXA10 TARGETS VIA PROGESTERONE UP 1.38E-60

YAO TEMPORAL RESPONSE TO PROGESTERONE CLUSTER 0 1.69E-60

Table C.3: Top pathways in BRCA differentiated between tumor and normal in the
iES of iPath.

Pathway P-value Ranking Percentile
TURASHVILI BREAST DUCTAL

CARCINOMA VS LOBULAR NORMAL DN
0.0000 2 0.04

MIKKELSEN ES ICP WITH
H3K4ME3 AND H3K27ME3

0.0000 325 6.87

FRASOR TAMOXIFEN RESPONSE UP 0.0018 3339 70.61
MEDINA SMARCA4 TARGETS 0.0018 3886 82.17

NIELSEN LEIOMYOSARCOMA DN 0.0018 148 3.13
NADERI BREAST CANCER PROGNOSIS DN 0.0019 285 6.03

TURASHVILI BREAST DUCTAL
CARCINOMA VS DUCTAL NORMAL DN

0.0021 3 0.06

MATZUK CENTRAL FOR FEMALE FERTILITY 0.0026 107 2.26
REACTOME INTRINSIC PATHWAY 0.0027 1200 25.38

SCHAEFFER PROSTATE DEVELOPMENT 48HR UP 0.0045 538 11.38

Table C.4: Top pathways in BRCA differentiated between tumor and normal in the
ES of GSEA
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C.1 The comparison between iPath and Human

Pathology Atlas (HPA)on KIRC cancer type
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Figure C.1: The comparison between iPath and Human Pathology Atlas (HPA)on
KIRC cancer type. We used p-value and q-value equal to 0.05 as the threshold to
determine whether a pathway or gene is prognostic. a and b illustrate the prognostics
biomarkers from both approaches when using p-value = 0.05. c and d are biomarkers
from both approaches when using q-value = 0.05.
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C.2 Selected prognostic C2 and GO pathways in

BRCA
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Figure C.2: Two prognostic biomarker pathways from the C2 category of MSigDB in
BRCA, and two significant GO terms in kidney cancer type.
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C.3 Test iPath on negative-control gene sets
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Figure C.3: Test iPath on randomly generated gene sets. For each of the biomarkers
from BRCA (a-d) KIRP (e-f), and KIRC (g-h), we randomly simulate 1000 gene sets
with the same sizes, and followed by iPath pipeline. The reported p values are shown
in the histograms. The red vertical lines are the p values from the original gene sets
which demonstrate the most significant level.
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Ana Conesa. Differential expression in RNA-seq: a matter of depth. Genome

research, 21(12):2213–2223, 2011.

[141] Sarah Teichmann and Mirjana Efremova. Method of the year 2019: single-cell

multimodal omics. Nat. Methods, 17(1), 2020.

https://www.nature.com/articles/nmeth.1315


135

[142] F William Townes, Stephanie C Hicks, Martin J Aryee, and Rafael A Irizarry.

Feature selection and dimension reduction for single cell RNA-Seq based on a

multinomial model. bioRxiv, page 574574, 2019.

[143] Hoa Thi Nhu Tran, Kok Siong Ang, Marion Chevrier, Xiaomeng Zhang, Nicole

Yee Shin Lee, Michelle Goh, and Jinmiao Chen. A benchmark of batch-effect

correction methods for single-cell RNA sequencing data. Genome Biology, 21

(1):12, January 2020. ISSN 1474-760X. doi: 10.1186/s13059-019-1850-9. URL

https://doi.org/10.1186/s13059-019-1850-9.

[144] Cole Trapnell, Davide Cacchiarelli, Jonna Grimsby, Prapti Pokharel, Shuqiang

Li, Michael Morse, Niall J Lennon, Kenneth J Livak, Tarjei S Mikkelsen, and

John L Rinn. The dynamics and regulators of cell fate decisions are revealed by

pseudotemporal ordering of single cells. Nature biotechnology, 32(4):381, 2014.

[145] Mathias Uhlen, Cheng Zhang, Sunjae Lee, Evelina Sjöstedt, Linn Fager-
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