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Abstract 

 
Exploring Bayesian credible intervals for common epidemiologic effect measures 

based on cross-sectional data 
By Bowen Shi 

 
 

As the limitations of standard Wald-type methods to estimate the confidence intervals for 
the difference of proportions, relative risk, and odds ratio in 2 × 2 contingency tables are 
well recognized, we investigated the frequentist performance of alternative Bayesian 
credible intervals. We used simulation studies to compare the coverage rates and widths of 
these competing sorts of confidence intervals. As a new proposal, we also put forth an 
adjusted credible interval which used two different Dirichlet priors to get the lower and 
upper limits of the confidence intervals. In small sample settings, this method appears to 
greatly reduce average interval width compared to Wald-type approaches, while 
maintaining far better coverage rates compared to more standard credible intervals based 
on a single Dirichlet prior. 
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1. Introduction 

The cross-sectional study is a commonly used method to investigate associations 

between risk factors and outcomes of interest 1. The most simple case of a cross-

sectional study is to study a binary outcome and a binary risk factor. Consider two 

independent samples, with Xi, a binomial bin(ni , pi) variate. There are three 

common measures of association that could be estimated in this kind of cross-

sectional study based on the resulting two-by-two contingency table. They are 

odds ratio OR = [p1 /(1 – p1 )]/[p2 /(1 – p2 )], the risk difference of proportions RD = 

(p1 – p2) and the relative risk RR = p1 /p2. Confidence intervals for these parameters 

are often of interest to evaluate the association. 

 

The confidence intervals which result from inverting large sample-based Wald 

tests are the most commonly used. They are often called ‘Wald intervals’ 2, and 

are known to perform poorly in certain categorical data scenarios when sample 

size is small 3,4. Some literature has also proven that their performance could be 

poor even when the sample size is large, particularly in the case of extreme 

proportions 5. To make up for the deficiencies of Wald intervals, several 

adjustments were proposed in previous literature. Agresti and others suggested 

adding two ‘success’ and two ‘failures’ before the calculation 6. Gart suggested 
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adding 0.5 to each cell of the contingency table when calculating the variance of 

the estimator 7. These methods were shown to offer improved performance 

compared to standard Wald intervals. 

 

Besides adding pseudo observations to the sample, another good direction to 

perform the adjustment corresponding to shrinkage of point estimates is the 

Bayesian approach. The main idea of the Bayesian approach is to find a suitable 

prior distribution for parameters of interest and then to make inferences based on 

the corresponding posterior distribution. Carlin and Louis considered independent 

uniform priors for p1 and p2 8. Their final intervals are similar to Agresti’s 6, and can 

be considered as an approach which adds three ‘success’ and three ‘failures’. In 

another study 9, beta priors, logit-normal priors, and related correlated priors were 

simulated and evaluated. Agresti suggested that it is better to use diffuse priors if 

you want to use a Bayesian estimator and are concerned with frequentist 

performance. 

 

According to Agresti’s results 9 and Brown’s suggestion 10, Jeffrey’s priors are good 

options for binomial parameters in a two by two contingency table. For a single 

binomial parameter, Jeffrey’s prior is the Beta (0.5,0.5) distribution. For multinomial 

probabilities, Jeffrey’s prior is the Dirichlet distribution with all parameters equal to 

0.5. In the following sections, we briefly review standard Wald and adjusted Wald 
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intervals for association parameters of interest. We then describe Bayesian 

methods for credible interval construction with Jeffreys priors as well as with 

proposed alternative Dirichlet priors that are designed to improve coverage. 

Simulations were performed to compare the performance of each method, with a 

focus on interval width and frequentist coverage. The goal of the study is to find 

out if Bayesian methods with Jeffreys priors and/or alternative Dirichlet priors show 

improvements compared to standard methods. 

2.Methods 

We consider a cross-sectional sample producing a 2*2 table for associating a 

binary outcome with a binary exposure: 

 
Exposure    Exposure 

Yes No    Yes No 

Outcome 
Yes N11 N10  

Outcome 
Yes P11 P10 

No N01 N00  No P01 P00 

 

Above, the table on the left reflects the multinomial cell counts and the table on the 

right provides a notation for the true cell probabilities. Then we have: 

   Risk Difference (RD) = 
௉భభ

௉భభା௉బభ
−

௉భబ

௉భబା௉బబ
      (1) 

Odds Ratio (OR) = 
௉భభ௉బబ

௉బభ௉భబ
         (2) 
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Relative Risk (RR) = 
௉భభ(௉భబା௉బబ)

௉భబ(௉భభା௉బభ)
       (3) 

The MLEs for the three parameters are obtained by replacing the Pijs by the 

corresponding cell counts (nijs) that are obtained in the sample. 

2.1 Standard Wald intervals 

The most commonly used method to calculate the confidence intervals is inverting 

large sample Wald tests. It evaluates the standard errors at the maximum 

likelihood estimates. By using delta method 11 and assuming a natural four-cell 

multinomial model for the cell counts in the two-by-two table, the three estimators 

are approximately normal with asymptotic standard errors. 

 

For risk difference, 𝑆𝐸{𝑅𝐷෢ }  = ඥ𝑉𝑎𝑟෢ (𝑝ଵෞ) + 𝑉𝑎𝑟෢ (𝑝ଶෞ) − 2𝐶𝑜𝑣(𝑝ଵෞ, 𝑝ଶෞ) . Since the 

MLEs for p1 and p2 are uncorrelated binomial proportions,  

𝑆𝐸൛𝑅𝐷෢ ൟ = ඥ𝑉𝑎𝑟෢ (𝑝ଵෞ) + 𝑉𝑎𝑟෢ (𝑝ଶෞ) = ට
௣భ(ଵି௣భ)

௡భభା௡బభ
+

௣మ(ଵି௣మ)

௡భబା௡బబ
= ට

௡భభ௡భబ

(௡భభା௡భబ)య +
௡భబ௡బబ

(௡భబା௡బబ)య  (4)  

 

For the odds ratio and relative risk, one can apply the multivariate delta method: 

𝑉𝑎𝑟൫𝑓(𝑥)൯ = 𝐷෡ᇱ𝑉𝑎𝑟෢ ([𝑛ଵଵ, 𝑛ଵ଴, 𝑛଴ଵ, 𝑛଴଴])𝐷෡ 

𝐷෡ = [
𝑑𝑓෢

𝑑𝑛ଵଵ
,

𝑑𝑓෢

𝑑𝑛ଵ଴
,

𝑑𝑓෢

𝑑𝑛଴ଵ
,

𝑑𝑓෢

𝑑𝑛଴଴
] 

𝑓(𝑥ଵ) = log (𝑂𝑅෢ ) = log(𝑛ଵଵ) + log(𝑛଴଴) − log(𝑛ଵ଴) − log (𝑛଴ଵ)  

𝑓(𝑥ଶ) = log (𝑅𝑅෢ ) = log(𝑛ଵଵ) + log(𝑛଴଴ + 𝑛ଵ଴) − log(𝑛ଵ଴) − log (𝑛଴ଵ + 𝑛ଵଵ) 
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After algebra, we have: 

SE{ln(𝑂𝑅෢ )} = ට
ଵ

௡భభ
+ 

ଵ

௡బభ
+ 

ଵ

௡భబ
+ 

ଵ

௡బబ
       (5) 

SE{ln(𝑅𝑅෢ )} = ට
ଵ

௡భభ
+ 

ଵ

௡భబ
− 

ଵ

௡భభା௡బభ
− 

ଵ

௡భబା௡బబ
     (6) 

 

The approach of using the delta method-based SEs to calculate confidence 

intervals for the odds ratio and relative risk is known as Woolf’s method 12. The 

corresponding approximate 95% confidence intervals are: 

95% CI for RD = RD – 1.96*SE{RD} to RD + 1.96*SE{RD}     (7) 

95% CI for OR = exp(ln(OR) – 1.96*SE{ln(OR)}) to exp(ln(OR) + 

1.96*SE{ln(OR)})              (8) 

95% CI for RR = exp(ln(RR) – 1.96*SE{ln(RR)}) to exp(ln(RR) + 

1.96*SE{ln(RR)})               (9) 

2.2 Gart intervals and adjusted Gart intervals 

Wald intervals often behave poorly for small samples, exhibiting coverage 

probabilities that are too low. They can remain deficient even if the sample is 

relatively large, especially in categorical settings involving relatively small or large 

probabilities. Gart provided one method which works better for small samples 7. 

This method adds 0.5 to each cell when conducting both the point and standard 

error estimation. Thus the problems with computation of effects or standard errors 

caused by zero cells are solved, and the coverage probabilities are improved. In 
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this project, we also want to examine the alternative of only adding 0.5 to 0 cells in 

the point and standard error estimation (leaving non-zero cell counts as they are). 

We will call this method “adjusted Gart”. These two methods are included in our 

simulation comparison. 

2.3 Bayesian credible intervals 

Agresti compared and summarized some commonly used priors for proportions 9. 

As he said, even though a relatively informative prior can represent the 

researcher’s subjective beliefs, it may cause poor performance in terms of ordinary 

frequentist criteria especially when the prior beliefs are incorrect. He 

recommended using quite diffuse priors in order to maintain good coverage 

performance, and suggested that even uniform priors are too informative. Lyles, 

Weiss and Waller (2020) examined credible intervals based on the two most 

popular Bayesian priors for p. These are the weakly informative uniform and 

Jeffreys priors. Since both of them lead to beta posteriors, sampling is not needed 

and credible intervals can be calculated using any software program that provides 

access to beta distribution percentiles. Among the two options, the Jeffreys prior is 

highly recommended for satisfactory average coverage properties (e.g., Brown et 

al. 2001). It is generally seen as performing well even for high and low p. Lyles et 

al. (2020) affirmed the notion that the intervals based on the uniform and Jeffreys 

prior obtain favorable overall coverage on average across the full range of p. 
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However, they uncovered notable deficiencies in terms of coverage balance. For 

example, for p < 0.5, Jeffreys prior reduces high-side errors characteristic of the 

uniform prior, but at the expense of low-side errors. In order to achieve specified 

nominal coverage criteria for both high-side and low-side errors, Lyles et al. (2020) 

provided an alternative which selects an optimal value κ between (0,0.5) and uses 

Beta(κ, 1−κ) and Beta(1−κ, κ) priors to calculate the lower bound and upper bound 

of the credible interval. In this study, we use a variant on this approach somewhat 

analogous to choosing κ=0.25, to produce credible intervals for association 

parameters that will be more conservative than those based on Jeffreys prior and 

yet less conservative than the Gart and adjusted Gart intervals. 

 

As we know, the cell counts in the contingency table based on cross-sectional 

sampling are reasonably assumed to follow the multinomial distribution: 

(N11, N10, N01, N00) ~ Multinomial (N, p11, p10, p01, p00)    (10) 

If we decide to place a Jeffreys prior on p = (p11, p10, p01, p00), this implies the 

following assumption: 

(p11, p10, p01, p00) ~ Dirichlet (0.5, 0.5, 0.5, 0.5)      (11) 

The posterior distribution is then known also to follow a Dirichlet distribution, i.e.,  

p | n ~ Dirichlet (n11 + 0.5, n10 + 0.5, n01 + 0.5, n00 + 0.5)   (12) 

In addition to considering the standard Jeffreys prior, we adjust the Dirichlet 

parameters somewhat analogously to the approach taken by Lyles et al. (2020), in 
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order to make the credible intervals more conservative. The two sides of the 

confidence interval were obtained from two Dirichlet distributions.  

For the upper bound, the prior on (p11, p10, p01, p00) is  

(p11, p10, p01, p00) ~ Dirichlet (0.75, 0.25, 0.25, 0.75)    (13) 

Thus the posterior distribution is  

p|n ~ Dirichlet (n11 + 0.75, n10 + 0.25, n01 + 0.25, n00 + 0.75)  (14) 

The 97.5th percentile of the posterior distribution was used as the upper limit. 

For the lower bound, the prior on (p11, p10, p01, p00) is  

(p11, p10, p01, p00) ~ Dirichlet (0.25, 0.75, 0.75, 0.25)    (15) 

Thus the posterior distribution is  

p|n ~ Dirichlet (n11 + 0.25, n10 + 0.75, n01 + 0.75, n00 + 0.25)  (16) 

The 2.5th percentile of the posterior distribution was used as the lower limit. 

We expected improvement after conducting interval estimation base on the 

adjusted Jeffreys priors, as they are designed to confer a measure of 

conservativeness. 

2.4 Simulation process 

The SAS statistical package V9.4 was used for generating the simulations. Wald 

and Gart intervals were simulated within the SAS IML procedure. A SAS macro 

generating Dirichlet random variables was built. Credible intervals were estimated 

by using the 2.5th and 97.5th percentiles of the posterior distributions as the two 
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sides of the intervals. 30000 simulations were generated in the study. The sum of 

frequencies in the contingency table was set to be 20, in order to simulate small 

sample situations. 

 

During each simulation, 4 random multinomial probabilities were created. The 

mean of each randomly generated probability is 0.25, but these true probabilities 

were generated in such a way that they could each vary over the (0,1) range. 

Based on the multinomial distribution with each such set of probabilities, the 

numbers in the cells were generated randomly. Then the Wald intervals can be 

estimated by (7), (8) and (9), along with the Gart intervals (adding 0.5 to each cell 

prior to calculations) and adjusted Gart intervals (only adding 0.5 to each zero cell 

prior to calculations). Simulation runs where there was at least one cell with a 0 

count are excluded when estimating and evaluating standard Wald intervals based 

on Woolf’s method (as in Agresti and Min, 2005). For credible intervals, draws from 

the appropriate Dirichlet distributions were randomly generated based on the cell 

counts, (12) and (14). We set any posterior cell count that was less than 0.5 equal 

to 0.5. Then the intervals were constructed as described above, based on 

percentiles of the Dirichlet posterior distributions. 
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3. Results 

To compare the performance of the intervals, we initially selected the simulations 

where the generated true ln(OR) was between -1.6 and 1.6 (odds ratio from 0.2 to 

5.0) and divided this range into 16 intervals with a step of 0.2. Since most 

epidemiology problems in real studies yield an odds ratio in this interval, it makes 

this study representative. Average coverage probabilities were calculated within 

each small interval, along with upper and lower lack of coverage rates and mean 

interval widths. A similar process was conducted for simulations where the true 

ln(OR) was between -3 and 3 (odds ratio from 0.05 to 20), as we also wish to 

consider the relative performance of the competing methods when odds ratios can 

be extremely high or low. 

 

Figure 1 plots the overall coverage rates and the upper and lower lack of coverage 

vs lnORtrue for the 95% Gart, adjusted Gart, Cred and adjusted Cred intervals for 

ln(OR), when n=20. The Gart and adjusted Gart approaches lead to similar results. 

Their overall coverage rates are a lot higher than 95% (panel A and C), and their 

region-specific average upper and lower lack of coverage rates are always less 

than 0.025 (panel B and D). In contrast, the standard Bayesian intervals based on 

Jeffreys Dirichlet prior exhibit low coverage rates (panel E). Note that the upper 

lack of coverage rate increases while the lower lack of coverage rate decreases 
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when the absolute value of lnORtrue increases (panel F). The Bayesian intervals 

based on our proposed adjusted Jeffreys prior performed much better. Their 

region-specific average coverage rates are quite close to 0.95 (panel G). The 

upper and lower lack of coverage rates remain much closer to the dotted lines 

(panel H) than those for the standard credible intervals.  

 

Comparisons of mean widths of confidence intervals were also conducted. The 

results indicated that the two Gart intervals are far more conservative than the two 

credible intervals (panel I and J). Among the two credible intervals, the one based 

on the standard Jeffreys prior is less conservative in terms of width, but 

unacceptably anticonservative in terms of coverage. The width advantage of the 

adjusted credible interval compared to the two Gart intervals is pronounced. 
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Figure 1 Overall coverage rates of 95% adjusted Gart (panel A), standard Gart (panel C), credible 

(panel E) and adjusted credible (panel G) intervals plotted over the range of LnORtrue from -1.6 to 

1.6 for n=20, together with upper and lower lack of coverage rates for these intervals (panels B, D, 

F and H) and mean of width of the intervals (panel I and J). Positive y-axis values in panels B, D, 

F, H represent upper excursion probabilities and negative y-axis values represent lower excursion 



13 
 

probabilities (e.g, a value at 0.05 means the intervals misses high 5% of the time at that value of p; 

a value at -0.05 means the interval misses low 5% of the time at that value of LnORtrue). Dashed 

lines are drawn at 0.95 (panel A, C, E and G) and ∓0.025 (panel B, D, F and H). 

 

Figure 2 plots the overall coverage rates and the lack of coverage vs lnORtrue for 

the 95% Gart, adjusted Gart, Cred and adjusted Cred intervals of risk difference 

(RD), when n=20. Again, the Gart and adjusted Gart intervals are close. Their 

overall coverage rates are consistently a little higher than 95% (panel A and C) and 

their upper and lower lack of coverage rate are almost always less than 0.025 

(panel B and D). The Bayesian intervals with Jeffreys prior again produce low 

coverage rates (panel E). Both the upper and lower lack of coverage rates are 

consistently out of the desired range, which is -0.025 to 0.025 (panel F). The 

Bayesian intervals with the proposed adjusted Jeffreys prior performed well. Their 

overall coverage rates are quite close to 0.95 (panel G), and the lack of coverage 

rates are close to the dotted lines (panel H). Comparisons of the mean widths of 

the intervals again demostrate that the two Gart intervals are more conservative 

than the two credible intervals. Among the two credible intervals, the one based on 

the standard Jefferys prior is again the narrowest but is far too anti-conservative in 

terms of coverage. 
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Figure 2 Overall coverage rates of 95% adjusted Gart (panel A), standard Gart (panel C), credible 

(panel E) and adjusted credible (panel G) intervals plotted over the range of LnORtrue from -1.6 to 

1.6 for n=20, together with upper and lower lack of coverage rates for these intervals (panels B, D, 

F and H) and mean of width of the intervals (panel I and J). Positive y-axis values in panels B, D, 

F, H represent upper excursion probabilities and negative y-axis values represent lower excursion 

probabilities (e.g, a value at 0.05 means the intervals misses high 5% of the time at that value of p; 

a value at -0.05 means the interval misses low 5% of the time at that value of LnORtrue). Dashed 

lines are drawn at 0.95 (panel A, C, E and G) and ∓0.025 (panel B, D ,F and H). 

 

Figure 3 plots the overall coverage rates and the lack of coverage vs lnORtrue for 

the 95% Gart, adjusted Gart, Cred and adjusted Cred intervals of relative risk(RR) 

when n=20. The Gart and adjusted Gart intervals are again quite close. The 

Bayesian intervals with Jeffreys prior demonstrate low overall coverage rates 

(panel E), and both the upper and lower lack of coverage rates are out of the 

desired -0.025 to 0.025 range (panel F). The Bayesian intervals with adjusted 

Jeffreys prior again performed much better. Their coverage rates are quite close 

to 0.95 (panel G) overall, and the upper and lower lack of coverage rates remain 

close to the dotted line (panel H). Comparisons of mean width of confidence 

intervals again show that the two Gart intervals tend to be far wider than the two 

credible intervals. Among the two credible intervals, the one using the standard 
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Jeffreys prior is less conservative and associated with overly narrow intervals. 
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Figure 3 Overall coverage rates of 95% adjusted Gart (panel A), standard Gart (panel C), credible 

(panel E) and adjusted credible (panel G) intervals plotted over the range of LnORtrue from -1.6 to 

1.6 for n=20, together with upper and lower lack of coverage rates for these intervals (panels B, D, 

F and H) and mean of width of the intervals (panel I and J). Positive y-axis values in panels B, D, 

F, H represent upper excursion probabilities and negative y-axis values represent lower excursion 

probabilities (e.g, a value at 0.05 means the intervals misses high 5% of the time at that value of p; 

a value at -0.05 means the interval misses low 5% of the time at that value of LnORtrue). Dashed 

lines are drawn at 0.95 (panel A, C, E and G) and ∓0.025 (panel B, D, F and H). 

 

Figure 4 plots the overall coverage rates and the upper and lower lack of coverage 

vs lnORtrue for the 95% confidence intervals of LnOR, for all generated values of 

lnORtrue that fell between the wider range of -3 and 3. We increased the range of 

lnORtrue to find out how these intervals perform when the odds ratio is extremely 

small or large. When the absolute value of the lnOR increases, the overall 

coverage rates for the Gart intervals continue to display conservativeness. 

However, we note that the credible intervals show more of a trend toward anti-

conservativeness as the OR becomes quite extreme. For all intervals, we note that 

one of the upper or lower lack of coverage rates trends toward being relatively high 

while the other one is close to 0 if you compare these Figure 4 to Figure 1. The 

means widths of the Gart and adjusted Gart methods increase when the absolute 
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value of lnOR increases, while the mean widths of the two credible intervals remain 

almost unchanged. This makes logical sense given the decreasing coverage 

trends in the extreme in panels 4E and 4G. 
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Figure 4 Overall coverage rates of 95% adjusted Gart (panel A), standard Gart (panel C), credible 

(panel E) and adjusted credible (panel G) intervals plotted over the range of LnORtrue from -3 to 3 

for n=20, together with upper and lower lack of coverage rates for these intervals (panels B, D, F 

and H) and mean of width of the intervals (panel I and J). Positive y-axis values in panels B, D, F, 

H represent upper excursion probabilities and negative y-axis values represent lower excursion 

probabilities (e.g, a value at 0.05 means the intervals misses high 5% of the time at that value of p; 

a value at -0.05 means the interval misses low 5% of the time at that value of LnORtrue). Dashed 

lines are drawn at 0.95 (panel A, C, E and G) and ∓0.025 (panel B, D, F and H). 

4. Discussion 

Although there are some drawbacks, Wald-type intervals are commonly used and 

offer a simple way to find confidence intervals for OR, RR and RD based on cross-

sectional data associating a binary health-related outcome with a binary exposure. 

Interestingly, we found that both the Gart and adjusted Gart intervals were 

conservative across the board over a wide range of true risk parameters when 
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sample size was small (N=20).  

 

Our study found, somewhat surprisingly, that a standard Bayesian credible interval 

based on the Jeffreys Dirichlet prior produces highly anti-conservative results over 

the same range of parameters. Our proposed adjusted credible interval provides 

a far more favorable alternative that mitigates the conservative lack of coverage 

problems of the Wald method in some cases where sample size is small and/or 

the population is characterized by relatively small or large probabilities. In general, 

we have to make a trade between coverage rates and the width of the confidence 

interval. For N=20, our proposed adjusted Bayesian approach gives credible 

intervals with generally favorable overall coverage rates that are far less 

conservative (i.e., markedly narrower) than the Gart intervals. It generally 

performed well over the range between 0.2 and 5 for the true odds ratio. 

 

Previous studies used Bayesian methods based on some priors such as Jeffreys 

priors, logit-normal priors, and related correlated priors to compare proportions in 

two-by-two contingency tables9,13. However, to our knowledge this is the first 

attempt to consider adjusting the beta priors in a tailored way to control both the 

lower and upper coverage rates and apply this method to OR, RR and RD. 

Although this approach is a little more conservative than the one based on Jeffreys 

prior, it reduces the lack of coverage on both the upper and lower sides greatly. 
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As for limitations, Figure 4 reveal a clear tendency to miss on the high side when 

the true OR gets large and a corresponding tendency to miss on the low side for 

small true OR values. This problem exists for all of the methods we used in the 

study. It indicates a lack of coverage balance when the odds ratio is too high or too 

small. Also, it appears that interval width can be reduced markly at a relatively little 

risk of the coverage probability falling much below the nominal confidence level by 

using Bayesian methods, if adjustments like those proposed here are made. 

Nevertheless, if the analyst can not tolerate any possibility that the coverage rate 

falls below the nominal confidence level, then the Gart and adjusted Gart methods 

would be better. Our results suggest that the standard Gart method could be 

preferred over the adjusted version, since it produces narrower intervals with 

coverage that remains conservative. 

 

For future work, we are interested to see how well the proposed adjusted credible 

interval works compared to Wald methods over a broader range of sample sizes. 

Also, we want to focus on variations on the proposed Dirichlet priors and to 

investigate if there are better priors which improve the coverage propertites while 

maintating interval width benefits. Some sort of optimization might also be 

considered (e.g., Lyles et al. 2020), if an efficient approach that avoids direct 

sampling from Dirichlet posteriors can be incorporated. 
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