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Abstract 
 

Examining an Impact of Peer Comparison Intervention on Vancomycin Utilization Using 

Interrupted Time Series Model, Negative Binomial Random Intercept Model, and Linear Mixed 

Model with AR(1) Covariance Structure 

 

By Young Moo Yoo 

 

 

Introduction: Irresponsible use of antibiotics has led to concern about antibiotic resistance. The 

Antibiotic Stewardship Program (ASP) was introduced nationally to control the antibiotic usage. 

At Grady Health System, an intervention was implemented by sending out an email to the 

internal medicine physicians with the report of their historical and current prescription of 

intravenous vancomycin. The objective of this quality improvement project was to evaluate 

whether the report card intervention was associated with the provider’s vancomycin prescription 

behavior. This thesis examines various modeling strategies to assess this association. 

 

Methods: As of December 1, 2016, the intervention was implemented by sending out the bi-

weekly report on physicians’ intravenous vancomycin use. In this analysis, the outcome measure 

is the days of therapy per 100 patient days, which is the vancomycin use rate. An Interrupted 

Time Series model, Negative Binomial repeated measures model with offset term, and linear 

mixed model with AR(1) covariance structure were fitted and compared to examine the impact 

of the intervention. 

 

Results: A total of 64 physicians were included in this two-year period quality improvement 

project. The estimated baseline vancomycin prescription rate was 10.35 (95% confidence 

interval, 9.22 to 11.47). When physicians started to receive a report card, the vancomycin 

prescription rate declined by 2.33 (95% confidence interval, -3.79, to 0.87). Throughout the post-

intervention year, the rate decreased by 0.13 (95% confidence interval, -0.24, -0.03) every two 

weeks.  

 

Conclusion: During the historical year (pre-intervention period), no significant temporal trend of 

the vancomycin prescription rate was measured. However, once the intervention was introduced 

on December 1, 2016, there was an immediate drop of the vancomycin use rate. During the post-

intervention period, constant decline of the vancomycin use rate was captured. These results 

were consistent over three modeling strategies that provides the audience options to choose 

based on their research questions.  

 

Key Words: Antibiotic Stewardship Program, Longitudinal Intervention Data, Interrupted Time 

Series, Linear Mixed model, Negative Binomial random-intercept model. 
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1. Introduction 

Antibiotics are truly a great discovery that saved us from manifold diseases and 

transformed healthcare industry but concerns around antibiotic therapy has been raised. Before 

prescribing antibiotics to patients, physicians now must take both benefits and toxic sequelae of 

antibiotics into account. Imprudent use of antibiotic may result in patients’ developing a 

resistance to the therapy and can no longer take the advantage of this powerful medication.1 As 

of March 2015, the White House issued the National Action Plan for Combating Antibiotic-

Resistant Bacteria and it expressed the needs of nationally mandated program that control the 

antibiotic usage. Due to the possible side effect of antibiotics, the Infectious Disease Society of 

America (IDSA), the Society for Healthcare Epidemiology of America (SHEA), and the 

Pediatric Infectious Disease Society (PIDS) introduced an antibiotic stewardship program (ASP). 

By correctly measuring the appropriate use of antibiotic drugs, patient’s outcome would be 

significantly improved, adverse effects caused by antibiotic drugs would be lessened, and health 

care industry would be able to reduce the cost effectively. The antibiotic stewardship program 

promotes the selection of optimal drug regime by controlling a dosage and duration of therapy.2  

The antibiotic stewardship program proposed five strategies to efficiently control the 

antibiotic use: education/guidelines, formulary/restriction, review/feedback, computer assistance, 

and antimicrobial cycling.3 The strongest recommendation made by the ASP is preauthorization 

or prospective audit and feedback which belong to formulary/restriction and review/feedback 

strategy, respectively. However, after the ASP was introduced to medical institutions, 

insufficient resources and limited research funding was available to determine the best possible 

strategies for the ASP in different settings. Few studies have been conducted to investigate the 

use of prescriber feedback on their own drug utilization compared to another prescriber.2 
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 One of few studies was conducted by Meeker et al., which studied the effect of behavior 

interventions among primary care practices. Meeker et al. investigated three different 

intervention strategies in the randomized clinical trial setting, which were suggested alternatives, 

accountable justification, and peer comparison. Results revealed that peer comparison and 

accountable justifications are the efficient strategies that led prescribers to reduce inappropriate 

antibiotic prescribing; peer comparison was performed by sending an email periodically and 

comparing the prescribers’ performance and accountable justification was performed by 

prompting the prescriber to enter a justification for an inappropriate prescribed antibiotic.4  

Staphylococcus aureus is a widespread pathogen that can cause varying damage from a 

skin infection to serious bone and joint infection. One of the popular and effective treatments of 

S. aureus was Penicillin. However, S. aureus strains soon became resistant to penicillin and even 

to methicillin. To treat methicillin-resistant strains of S. aureus (MRSA), many antibiotics were 

developed. Among those antibiotics, vancomycin has been the standard choice treat MRSA 

infections.5 Clindamycin, trimethoprim-sulfamethoxazole (TMP-SMX), doxycycline, 

daptomycin, linezolid, and ceftaroline are the other possible treatments for MRSA infections. 

However, clindamycin, TMP-SMX, doxycycline, and linezolid usually are used for less severe 

indications such as mild skin infections. Also, daptomycin, linezolid, and ceftaroline are less 

prescribed to treat MRSA infections. In the clinical practice, physicians should only use 

vancomycin when a clinical suspicion for MRSA is evident or MRSA infection is diagnosed. 

Intravenous vancomycin and oral use of vancomycin are two ways to utilize drug but oral use 

cannot treat systematic illnesses as it is not absorbed. For these reasons, intravenous vancomycin 

use is the subject of interest in this study. 
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This study is an application of Meeker’s findings that extends to the acute care inpatient 

hospitals. The aim of this study is to evaluate the impact of peer comparison on the utilization of 

intravenous (IV) vancomycin using data collected from an urban 650 bed tertiary academic 

medical center. Interrupted Time Series, Poisson random-effect, Negative Binomial random 

effect, and linear mixed model were considered to adequately analyze the change of the 

vancomycin prescription rate over the two year period (e.g., pre-intervention period and post-

intervention period). 

 

2. Methods 

2.1 Study Design and Intervention  

 A single-center observational pre-intervention and post-intervention quality improvement 

project was conducted at Grady Health System (GHS). The target population of interest was 

inpatient admitting internal medicine (IM) attending physicians at GHS. The study started on 

December 1, 2016 and ended on November 30, 2017. During this one-year period, internal 

medicine attending physicians at GHS were observed given report cards of their prescription use. 

No patient identifiers were used, and each physician received a random 4-digit number that was 

used to avoid personal identifiers. During the pre-intervention period, historical one-year 

baseline data from December 1, 2015 to November 30, 2016 were obtained from information 

warehouse. 

 Internal medicine physicians have their service time divided into approximately two-

week time periods, which will be referred as blocks. Intervention was made by sending out 

emails with bi-weekly reports of antibiotic use for each physician in the block from the medical 

director of the antibiotics stewardship at the institution. The report was issued from 1st day of the 
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month to 15th or 16th day of the month, and the next report was issued from 15th or 16th day of the 

month to 30th and 31st day of the month. February was the only month that the report was issued 

from 1st day of the month to 14th day of the month, and the next report was issued from 15th day 

of the month to 28th or 29th day of the month. For the intervention, the director of Antimicrobial 

stewardship sent to each IM physician their historical individual block average and one-year 

cumulative individual average along with the entire IM group cumulative year average before 

doctor of medicine (MD) going on service. In addition, any subsequent physician time on 

service, historical information from the pre-intervention time period and up to two of their most 

recent block information, if available, was sent to each MD. All providers on the medical service 

were advised prior to the intervention to better understand the brief data description as well as 

the graphs included in the bi-weekly reports. As of December 1, 2016, the reports were sent to 

the physicians allowing for real-time peer comparison data. This period is called the post-

intervention period.  

 

2.2 Data Collection and Cleaning 

 Pre-intervention and post-intervention data were retrieved from the information 

warehouse. Collected data was kept on an encrypted drive and stored in a secure cloud-based 

location, to which both investigators and the Emory Biostatistics Collaboration Core group had 

access. 

 Because the study was focused on IV vancomycin drug use, all irrelevant drugs and drug 

diluents were excluded from the data set. Observations that did not have physician information 

or when the physician only contributed less than 3 days to each block were also excluded. One 

data set was used to calculate the days of vancomycin therapy. Each observation row in this data 
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set referred to one day of vancomycin therapy. The other data set was used to calculate the total 

patient-days physicians were in service. Each observation row in this data set referred to one 

patient day, which means that a patient admitted to IM team for at least one minute of a calendar 

day. The two data sets were merged together to calculate the days of therapy per number of 

patient days for each physician, which is the outcome measure that will be discussed in the 

following section. Because the report was distributed to the IM physicians bi-weekly, we 

formatted the data set by two-week block level (e.g., December 1,2015 to December 16, 2015 

refers to block 1).  

 

2.3 Outcome of Interest 

 Days of therapy (DOT) is the number of days a patient was administered intravenous 

vancomycin, irrespective of number of administrations within a calendar day or dose (i.e., if the 

patient was prescribed vancomycin twice on March 5, then DOT will be recorded as one). 

However, DOT alone is not an appropriate measurement because patient days (PD) would be 

higher for those physicians who see many patients, and those particular physicians tend to 

prescribe vancomycin drug more than others. Therefore, setting DOT as the outcome measure 

might overestimate or underestimate the result. DOT/PD was calculated by dividing DOT by the 

number of patient days and multiplying by 100, and this rate was used instead of DOT alone. If a 

physician prescribed vancomycin 33 times during block 1 period, the days of therapy for that 

specific physician in block 1 will be 33. If a physician gave a medical treatment to 247 patients 

for one day each during block 1 period, the number of patient days (PD) for that specific 

physician in block 1 will be 247. The outcome measure is 
33

247
× 100 = 13.36. This outcome 

measure will be referred to as vancomycin prescription rate throughout the paper. 
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2.4 Statistical Analysis 

 In this study, the physicians’ prescription behavior change after the intervention was the 

focus of the study. To examine the effectiveness of the intervention, two scientific questions 

were addressed. The first sought to observe if there was an immediate impact when the 

intervention was implemented. The second sought to examine if the intervention effect was 

maintained over time. An interrupted time series model and different types of mixed-effect 

model were considered to navigate these study’s objectives. 

2.4.1 Interrupted Time Series 

An Interrupted Time Series (ITS) model is a powerful statistical tool to evaluate 

healthcare intervention over regular time period after adjusting for secular trend. When data were 

collected from administrative data or medical records not for policy or intervention examining 

purposes, ITS can be ideally used to evaluate the intervention effect.6 Segmented regression 

analysis is a modeling method for ITS, and this simple and easy to interpret model can deliver 

more formal conclusions of the impact of an intervention. In order to use segmented regression, 

data first need to be collected regularly over time with equally spaced time interval.7 According 

to Rozario et al., at least six time points in each pre-intervention period and post intervention 

period are needed to achieve adequate power for ITS.6 The outcome measure can be averages, 

proportions, and rates for time series studies.7 Du et al. and Wagner A.K et al. suggested to use 

the unit of analysis as the monthly aggregated rate, rather than each physician’s rate per month 

(i.e., only one observation in one block).7,8 Snap shot of data set that presents a difference 

between individual level data set and aggregated data set is shown in Table 1. Another important 

feature of an ITS using segmented regression is to include an autoregressive form. Since 

observations were collected over time, observations collected within short time period might 
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have stronger correlation than observation collected within long time period.9  PROC 

AUTOREG in SAS 9.4 was used to detect autocorrelation in time series.10 This function tests if 

the positive correlation or negative correlation exists, estimates significant autoregressive 

parameters, and estimates fixed effects after adjusting for significant autoregressive parameters.9 

The equation of the segmented autoregressive error model is expressed as follows: 

𝑅𝑎𝑡𝑒𝑡 = 𝐵0 + 𝐵1 ∗ 𝐵𝑙𝑜𝑐𝑘𝑡 + 𝐵2 ∗ 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑡 + 𝐵3 ∗ (𝐵𝑙𝑜𝑐𝑘𝑡 − 24)+ + 𝑒𝑡 

𝑤ℎ𝑒𝑟𝑒 (𝐵𝑙𝑜𝑐𝑘𝑡 − 24)+ = {
𝐵𝑙𝑜𝑐𝑘𝑡 − 24, 𝑖𝑓 𝐵𝑙𝑜𝑐𝑘𝑡 > 24

0,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Let 𝑅𝑎𝑡𝑒𝑡 denote the vancomycin prescription rate at block t. In this model, 𝐵0 estimates the 

baseline level of the outcome measure at the start point (e.g., December 1, 2015). 𝐵1 estimates 

the change of the vancomycin prescription rate over time before the intervention was 

implemented. 𝐵2 estimates the immediate impact of the intervention on the vancomycin 

prescription rate. 𝐵3 estimates the impact of the intervention on the vancomycin prescription rate 

over time during post-intervention period. The error term 𝑒𝑡 has the appropriate autoregressive 

covariance matrix to account for the time variability. 
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Table 1. Snapshot of two different data sets used in ITS design  

Individual DOT/PD Aggregated DOT/PD 

ID block prepost1 afterpost2 DOT/PD block prepost1 afterpost2 DOT/PD 

7992 1 0 0 13.36 1 0 0 10.83 

8564 1 0 0 3.4 2 0 0 10.08 

4604 1 0 0 14.93 3 0 0 7.25 

9016 1 0 0 12.29 4 0 0 11.22 

6602 1 0 0 12.41 5 0 0 11.98 

6387 1 0 0 14.58 6 0 0 10.39 

3672 1 0 0 10.23 7 0 0 11.71 

1098 1 0 0 9.46 8 0 0 10.79 

2038 1 0 0 7.05 9 0 0 11.11 

6258 1 0 0 15.87 10 0 0 13.18 

8435 1 0 0 7.66 11 0 0 11.77 

2652 1 0 0 8.11 12  0 10.86 

⋮ ⋮ 

5371 48 1 24 13.36 38 1 14 9.45 

8564 48 1 24 3.39 39 1 15 8.88 

9016 48 1 24 13.48 40 1 16 7.25 

9897 48 1 24 6.62 41 1 17 8.35 

5631 48 1 24 7.55 42 1 18 8.85 

2331 48 1 24 4.48 43 1 19 6.62 

9913 48 1 24 14.88 44 1 20 6.16 

6562 48 1 24 6.37 45 1 21 7.26 

6590 48 1 24 12.44 46 1 22 6.44 

5932 48 1 24 6.39 47 1 23 6.89 

6714 48 1 24 4.43 48 1 24 8.45 

         1 0 indicates pre-intervention period and 1 indicates post-intervention period 

         2 number of block counts after the intervention 

 

2.4.2 Nonlinear mixed model 

Even though ITS can provide an audience a straight forward numerical presentation, the 

major limitation of ITS is that it cannot analyze by individual-level (i.e., ITS model can consider 

time variability but cannot consider physician variability in this study). Using somewhat 

summarized data loses a flexibility compared to individual-level data. Poisson random-intercept 

regression with offset term was considered as an alternative modeling strategy to analyze 

individual-level data. The offset term was set as patient days (PD) that each physician 
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contributed. The days of therapy was assumed to follow the Poisson distribution. When 

analyzing longitudinal count data, an inherent correlation within subject is the major cause of 

over-dispersion. To relax this violation, the random intercept Poisson model was used to capture 

additional variability. Morris et al. argued that including random intercept to the Poisson 

regression adds between group variability in the baseline prescription level, while accounting for 

the correlation between repeated measurements on the same physician.11 

PROC NLMIXED in SAS 9.4 was used to fit the Poisson regression models.10 The 

equation of the Poisson random intercept model with offset term is expressed as follows: 

𝐷𝑂𝑇𝑖𝑗|𝜃𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(⅄𝑖𝑗) 

log(⅄𝑖𝑗) = log(𝑃𝐷𝑖𝑗/100) + 𝐵0 + 𝜃𝑖 + 𝐵1 ∗ 𝐵𝑙𝑜𝑐𝑘𝑡 + 𝐵2 ∗ 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑡 + 𝐵3

∗ (𝐵𝑙𝑜𝑐𝑘𝑡 − 24)+ 

𝜃𝑖~𝑁(0, 𝜏2) 

𝑤ℎ𝑒𝑟𝑒 (𝐵𝑙𝑜𝑐𝑘𝑡 − 24)+ = {
𝐵𝑙𝑜𝑐𝑘𝑡 − 24, 𝑖𝑓 𝐵𝑙𝑜𝑐𝑘𝑡 > 24

0,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Let 𝐷𝑂𝑇𝑖𝑗 denote the vancomycin use at block j on the ith physician. In this model, 𝐵0 estimates 

the log expected DOT at baseline averaged across physicians. 𝑒𝐵1 estimates relative rate of 

change of DOT over time before intervention. 𝑒𝐵2 estimates relative rate of immediate impact of 

the intervention on DOT. 𝑒𝐵3 estimates relative rate of change of DOT over time after 

intervention. 𝜏2 represents the heterogeneity variance, which explains the physician-specific 

deviation in baseline log expected DOT. 

Morris et al. argued that the Poisson model with random effect assumes it to be equi-

dispersion even after the longitudinal structure is absent.11 The difference between the Poisson 

model and Negative Binomial model is that the Negative Binomial model allows over-

dispersion. The Poisson distribution is the generalized negative binomial distribution, where the 
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mean parameter is the same as the variance parameter (i.e., 𝐸(𝑋) = 𝑉𝑎𝑟(𝑋)). However, for the 

Negative Binomial distribution, a mean parameter is different for all members of population and 

it follows gamma distribution. Because of this reason, a Negative Binomial model with random 

effect allows more flexibility into the model.12 PROC NLMIXED in SAS 9.4 was used to fit the 

Negative Binomial regression model.10 The Negative Binomial random intercept model with 

offset is expressed as follows: 

𝐷𝑂𝑇𝑖𝑗|𝜃𝑖~𝑁𝑒𝑔𝑏𝑖𝑛(⅄𝑖𝑗, 𝑘) 

log(⅄𝑖𝑗) = log(𝑃𝐷𝑖𝑗/100) + 𝐵0 + 𝜃𝑖 + 𝐵1 ∗ 𝐵𝑙𝑜𝑐𝑘𝑡 + 𝐵2 ∗ 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑡 + 𝐵3

∗ (𝐵𝑙𝑜𝑐𝑘𝑡 − 24)+ 

𝜃𝑖~𝑁(0, 𝜏2) 

𝑤ℎ𝑒𝑟𝑒 (𝐵𝑙𝑜𝑐𝑘𝑡 − 24)+ = {
𝐵𝑙𝑜𝑐𝑘𝑡 − 24, 𝑖𝑓 𝐵𝑙𝑜𝑐𝑘𝑡 > 24

0,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Let 𝐷𝑂𝑇𝑖𝑗 denote the vancomycin use at block j on the ith physician. 𝑘 is a dispersion parameter 

that detects if the over-dispersion is present. In this model, 𝐵0 estimates the log expected DOT at 

baseline averaged across physicians. 𝑒𝐵1 estimates relative rate of change of DOT over time 

before intervention. 𝑒𝐵2 estimates relative rate of immediate impact of the intervention on DOT. 

𝑒𝐵3 estimates relative rate of change of DOT over time after intervention. 𝜏2 represents the 

heterogeneity variance, which explains the physician-specific deviation in baseline log expected 

DOT. 

 

2.4.3 Linear mixed model with AR(1) covariance structure 

Considering repeated measures design, a mixed model method with special parametric 

structure on the covariance matrices was applied along with Poisson regression and Negative 

Binomial regression.13 With this model, within-subject covariance can be manipulated so that the 
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model has more flexibility by choosing an appropriate covariance structure. Fitting an 

unstructured covariance matrix for within-subject errors was not adequate for highly unbalanced 

data. Instead, AR(1) covariance matrix was applied because it can handle unbalanced but equally 

spaced data.14s Also, an autoregressive form is reasonable covariance structure to be used for 

repeated measures because an observation is likely to be highly correlated to an observation 

measured within short-term interval than to an observation measured within long-term interval. 

However, there is no correlation between subjects but each physician is known to be 

independent. We call this covariance structure as AR(1)+RE.13 To fit this model, an assumption 

was made that outcome measure is a continuous variable. PROC MIXED in SAS 9.4 was used to 

fit the mixed linear model.10 The mixed linear model equation is expressed as follows: 

𝑅𝑎𝑡𝑒𝑖𝑗 = 𝐵0 + 𝜃𝑖 + 𝐵1 ∗ 𝐵𝑙𝑜𝑐𝑘𝑖𝑗 + 𝐵2 ∗ 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑖𝑗 + 𝐵3 ∗ (𝐵𝑙𝑜𝑐𝑘𝑖𝑗 − 24)
+

+ 𝑒𝑖𝑗 

𝜃𝑖~𝑁(0, 𝜏2) 

𝑤ℎ𝑒𝑟𝑒 (𝐵𝑙𝑜𝑐𝑘𝑡 − 24)+ = {
𝐵𝑙𝑜𝑐𝑘𝑡 − 24, 𝑖𝑓 𝐵𝑙𝑜𝑐𝑘𝑡 > 24

0,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑉𝑎𝑟[𝒆𝒊] = 𝜎2

[
 
 
 
 1 𝑝 𝑝2

 1 𝑝
  1

⋯ 𝑝𝑗−1

⋯ 𝑝𝑗−2

⋯ ⋮
   
   

⋱ 𝑝
 1 ]

 
 
 
 

, 𝑖𝑓 𝑝ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛 𝑖 ℎ𝑎𝑠 𝑗 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠  

Let 𝑅𝑎𝑡𝑒𝑖𝑗 denotes the vancomycin prescription rate at block j on the ith physician. In this model, 

𝐵0 estimates the baseline level of the outcome measure at the start point (e.g., December 1, 

2015). 𝐵1 estimates the change of the vancomycin prescription rate over time before the 

intervention was implemented. 𝐵2 estimates the immediate impact of the intervention on the 

vancomycin prescription rate. 𝐵3 estimates the impact of the intervention on the vancomycin 

prescription rate over time during post-intervention period. 𝜏2 represents the heterogeneity 

variance, which is a between-group variability in the intercepts. 𝜎2 represents the residual 
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variance, which is a within-group variability in the residuals. 𝑝 is a parameter that determines 

functional form of the correlation. 

 

3. Result 

 The counterfactual refers to a hypothetical scenario where intervention was not enforced 

and pre-existing time trend stayed the same even after intervention. With the counterfactual 

scenario, we could visualize the impact of intervention if there was a change occurring in the 

post-intervention period.15 A graphical display of the counterfactual scenario is shown in Figure 

1. The continuous line shows the trend of the vancomycin prescription rate in the pre-

intervention period. Assuming there was no intervention (i.e., counterfactual scenario), the 

dashed line represents the pre-intervention trend of the vancomycin prescription rate. All of the 

points after intervention period (e.g., grey zone) lie below the dashed line, which suggests a 

strong indication of intervention effect. With the graphical support, ITS model and random-effect 

models provided statistical evidence. 
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Figure 1. Scatter plot of DOT/PD over time. 

 

 The Durbin-Watson test was performed to examine the presence of autocorrelation. If the 

Durbin-Watson test statistic is close to 2.00, then that number suggests that there is no 

autocorrelation.7 However, according to Table 2, the Durbin-Watson test statistic was 1.45 which 

indicates that the autocorrelation exists. The p-value for testing positive autocorrelation was 

0.007, which suggests there is a positive autocorrelation. The p-value for testing negative 

autocorrelation was 0.99, which strongly suggests there is no negative autocorrelation.  

The prescription of the antibiotic drugs is fluctuated with the influenza cases every year. 

Physicians tend to prescribe more antibiotic drugs to the patient during the flu season. Therefore, 

controlling for the flu season might reveal the true physicians’ prescription behavior.16 The flu 

season was set as September 1st – December 31st and January 1st – March 31st in this study. Since 
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a positive correlation exists and adjusting for flu effect might be critical, first-order 

autocorrelation and higher-order autocorrelation were tested. By performing backward 

elimination of first-order, second-order and higher-order autocorrelation, the most parsimonious 

model was fitted and the results are present in Table 2. 

�̂�1 refers to the coefficient that estimates the overall temporal trend. �̂�2 refers to the 

coefficient that estimates immediate impact of the intervention. �̂�3 refers to the coefficient that 

estimates the post-intervention trend on vancomycin prescription rate. These parameter’s 

definitions will bes used throughout the paper.  The baseline average expected vancomycin 

prescription rate was 10.79 (95% confidence interval, 10.05 to 11.53) for an ITS using 

aggregated data with appropriate AR parameters assumed given. Before the intervention, there 

was no statistical evidence that the vancomycin prescription rate changed over time. However, 

there was an immediate drop of the vancomycin prescription rate by 2.29 (95% confidence 

interval, -3.07 to -0.88) when the intervention was introduced, and this drop was statistically 

significant. The �̂�3 parameter estimate suggests that the impact of intervention was not a one-

time effect but the vancomycin prescription rate constantly decreased by 0.12 (95% confidence 

interval, -0.22 to -0.02) every two weeks after the intervention. The directions of the estimates 

using an ITS using individual-level data were the same as an ITS using aggregated data. 

Howevers, for individual-level data, the Durbin-Watson test statistic was close to 2.00, which 

suggests that no specific autocorrelation was captured. When individual-level data was used in 

PROC AUTOREG, each observation was treated as an independent observation, which ignored 

the fact that subjects were measured repeatedly. This might wash way the autocorrelation within 

the error terms. Therefore, individual-level data cannot be analyzed using PROC AUTOREG but 
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rather need alternative modeling strategies such as nonlinear random effect model or mixed 

linear model with AR(1) covariance structure.10 

 

Table 2. Estimated parameters for ITS models 

  

Interrupted Time Series of  

Aggregated DOT/100 PD 

Interrupted Time Series of 

Individual DOT/100 PD 

unadjusted 
AR parameters 

assumed given 
unadjusted 

�̂�0 
10.464* 

(CI: 9.35, 11.56) 

10.79* 

(CI: 10.05, 11.53) 

10.48* 

(CI: 9.44, 11.52) 

�̂�1 
0.037 

(CI: -0.03, 0.11) 

0.015 

(CI: -0.03, 0.06) 

0.041 

(CI: -0.03, 0.11) 

�̂�2 
-2.14* 

(CI: -3.66, -0.62) 

-2.02* 

(CI: -3.13, -0.92) 

-2.29* 

(CI: -3.71, -0.88) 

�̂�3 
-0.12* 

(CI: -0.23, -0.01) 

-0.09* 

(CI: -0.15, -0.02) 

-0.12* 

(CI: -0.22, -0.02) 

Durbin-

Watson** 
1.45 •  2.04 

*Statistically significant, p-value < 0.05 

**Durbin-Watson test statistics before AR parameters assumed given 

 

 For randomly chosen 15 physicians, the individual profiles for the vancomycin 

prescription rate are presented in Figure 2. In the spaghetti plot, the variability caused by 

different physicians is displayed. Each physician had a different starting point and a different 

prescription tendency over time. Using an ITS model might oversimplify this variability and may 

lead to inaccurate statistical inferences. To avoid this situation, between-subject variability 

should be added for individual-level data and thus other models were considered. 
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Figure 2. Individual profiles for DOT/PD in 15 randomly selected individuals 

 

To fit Poisson random intercept model that allows to analyze individual-level data, a 

strong assumption should be made that random intercepts are uncorrelated with other exploratory 

variables in the model (e.g., In this study, random intercept does not change across the two time 

periods, which are the pre-intervention and post-intervention). 17 Two separate Poisson random-

intercept models were fitted to identify if there is a serious violation of this assumption; one for 

the pre-intervention only period and another for the post-intervention only period. Physicians 

who contributed more than 3 blocks both in pre-intervention and post-intervention were only 

included. Estimated random intercept values were extracted from those two models and plotted 

against each other. Through this exploratory analysis, we can examine if the random intercepts 

are correlated with the intervention variable.  
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An independence assumption between random intercept and exploratory variable was 

reviewed. To examine if the random intercepts are correlated with the covariate, the Poisson 

random intercept model from pre-intervention only data and the Poisson random intercept model 

from post-intervention data were fitted. The graphical display of the comparison between those 

two random intercepts are presented in Figure 3. If the dot is close to the diagonal line, then that 

indicates there was no abnormal physician behavior observed. However, if the dot is close to the 

y-axis, that individual physician during the post-intervention period prescribes more vancomycin 

to the patients than during the pre-intervention period. On the other hand, if the dot is close to the 

x-axis, that individual physician during the post-intervention period prescribes less vancomycin to 

the patients than during the pre-intervention period. As shown in Figure 3, no certain relationship 

between random intercepts and intervention variable was captured; plots were scattered without 

any pattern. On top of that, a simple linear regression was fitted for the estimated random intercepts 

from the pre-intervention and post-intervention period.  The result came out that there was no 

statistically significant relationship captured between the random intercept and the intervention 

variable, which supports the finding from Figure 3. Since there was no serious violation, the 

Poisson random intercept model was fitted assuming the random intercepts were uncorrelated with 

other explanatory variables. Note that the same assumption was made for the Negative Binomial 

random intercept model. 
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Figure 3. Scatter plot of estimated random intercepts 

 

The estimates using Poisson random intercept and Negative Binomial random intercept 

models are presented in Table 3. Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) are the measures used to examine improvement in model fitting. Smaller values 

represent better fitting model.18 In this study, the Negative Binomial random-intercept model had 

smaller AIC and BIC than the Poisson random-intercept model. Even after adding a random effect 

to capture both between-subject and within-subject variability in Poisson regression model, 

�̂� =0.15 suggests that additional over-dispersion is evident. For these reasons, the Negative 

Binomial random-intercept was more appropriate model for this data. As shown in Table 3, the 

baseline average expected vancomycin prescription rate was 𝑒2.3437 =10.41 (95% confidence 

interval, 9.33 to 11.62). After controlling for within-physician correlation, the drop of the 

vancomycin prescription rate right after the intervention was statistically significant, and the 
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vancomycin prescription rate dropped by 18.23% (1 − 𝑒−0.2086=0.1823, 95% confidence interval: 

5.73% to 30.03%). The trend of vancomycin prescription rate was statistically significant for the 

post-intervention period. After seeing a peer-comparison report card, the vancomycin prescription 

rate continuously decreased by 1.4% (1 − 𝑒−0.014=0.014 95% confidence interval: 0.3% to 2.5%) 

bi-weekly suggesting that there was a detectable impact in the long run. Between-physician 

variation in the days of therapy has a standard deviation of -2.66 on the log scale and the covariance 

parameter 𝜏 is statistically significant. Note that, block coefficient was statistically significant in 

Poisson random-intercept model setting, which disagreed with both ITS and Negative Binomial 

random-intercept models. Flu indicator variable (e.g., �̂�4) was included in the model to adjust for 

the flu effect. For both of the Poisson random effect model and Negative Binomial random effect 

model, there was no major change after the adjustment and flu coefficient was not statistically 

significant. 
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Table 3. Estimated parameters for Poisson and Negative Binomial random effect models 

 Poisson Random Effect NB Random Effect 
 Risk Ratio Adjusted Risk Ratio Risk Ratio Adjusted Risk Ratio 

�̂�0 
2.31* 

(95% CI: 2.25, 2.37) 

2.31* 

(95% CI: 2.24, 2.38) 

2.34* 

(95% CI: 2.23, 2.45) 

2.36* 

(95% CI: 2.23, 2.48) 

�̂�1 
0.004* 

(95% CI: 0.001, 0.008) 

0.004* 

(95% CI: 0.001, 0.008) 

0.003 

(95% CI: -0.003, 0.011) 

0.003 

(95% CI: -0.004, 0.01) 

�̂�2 
-0.21* 

(95% CI: -0.28, -0.13) 

-0.21* 

(95% CI: -0.28, -0.12) 

-0.21* 

(95% CI: -0.35, -0.05) 

-0.19* 

(95% CI: -0.35, -0.04) 

�̂�3 
-0.01* 

(95% CI: -0.02, -0.009) 

-0.01* 

(95% CI: -0.02, -0.009) 

-0.01* 

(95% CI: -0.02, -0.003) 

-0.01* 

(95% CI: -0.02, -0.003) 

�̂�4 • 
0.003 

(95% CI: -0.04, 0.04) 
• 

-0.02 

(95% CI: -0.11, 0.06) 

k • • 
0.15* 

(95% CI: 0.12, 0.17) 

0.15* 

(95% CI: 0.12, 0.17) 

𝜏 
-1.93* 

(95% CI: -2.21, -1.65) 

-1.93* 

(95% CI: -2.21, -1.65) 

-2.66* 

(95% CI: -3.46, -1.87) 

-2.68* 

(95% CI: -3.48, -1.87) 

AIC 5130.9 5132.9 4284.2 4285.9 

BIC 5141.7 5145.8 4297.2 4301.1 

* Statistically significant, p-value < 0.05 

 

For a mixed linear model, the normality assumption was made. The parameter estimates 

of linear random-intercept model with or without AR(1) components are present in Table 4. 

AR(1)+RE and RE models had similar fixed effects’ estimates. According to Raftery, differences 

of 0-2 in BIC provide weak evidence favoring the more complex model and differences of 2-6 in 

BIC provide positive evidence favoring the more complex model.18 For both unadjusted and 

adjusted model, the BIC difference was within 0-2 range so more complex model was favored 

(e.g., AR(1)+RE is more complex model). Moreover, the AR(1)+RE had slightly smaller AIC 

value than the RE model. For the unadjusted AR(1)+RE model, the baseline expected 

vancomycin prescription rate was 10.34 (95% confidence interval, 9.21 to 11.47). After 

controlling for within-physician correlation, the vancomycin prescription rate was dropped by 
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2.32 (95% confidence interval, -3.78 to -0.87) when the intervention was introduced. This 

decreasing trend continued until the end of the study (e.g., the vancomycin prescription rate 

decreased by 0.13 bi-weekly). Pre-intervention vancomycin prescription trend and flu effect 

were not statistically significant. Note that the directions and values of the coefficients were 

similar to those of ITS and Negative Binomial random-intercept model. 

 

Table 4. Estimated parameters for mixed linear model with different covariance matrix structure 

  RE AR(1)+RE 

 Unadjusted Adjusted Unadjusted Adjusted 

�̂�0 
10.41* 

(95% CI: 9.33, 11.48) 

10.54* 

(95% CI: 9.30, 11.78) 

10.34* 

(95% CI: 9.21, 11.47) 

10.48* 

(95% CI: 9.18, 11.78) 

�̂�1 
0.04 

(95% CI: -0.02, 0.11) 

0.042 

(95% CI: -0.03, 0.11) 

0.04 

(95% CI: -0.02, 0.12) 

0.04 

(95% CI: -0.02, 0.12) 

�̂�2 
-2.30* 

(95% CI: -3.7, -0.89) 

-2.19* 

(95% CI: -3.67, -0.71) 

-2.32* 

(95% CI: -3.78, -0.87) 

-2.22* 

(95% CI: -3.75, -0.69) 

�̂�3 
-0.12* 

(95% CI: -0.22, -0.02) 

-0.13* 

(95% CI: -0.24, -0.02) 

-0.13* 

(95% CI: -0.24, -0.025) 

-0.14* 

(95% CI: -0.25, -0.02) 

�̂�4 • 
-0.19 

(95% CI: -1.08, 0.68) 
• 

-0.19 

(95% CI: -1.10, 0.71) 

𝜏2 

0.65** 

(SE: 0.41,  

P-value:0.056) 

0.64** 

(SE: 0.41 

P-value: 0.058) 

0.43 

(SE: 0.43 

P-value: 0.15) 

0.42 

(SE: 0.42 

P-value: 0.15) 

𝑝 • • 
0.09* 

(SE: 0.04 

P-value: 0.03) 

0.09* 

(SE: 0.04 

P-value: 0.03) 

 𝜎2 

18.68* 

(SE: 1.11 

P-value: <0.0001) 

18.71* 

(SE: 1.12 

P-value: <0.0001) 

18.92* 

(SE: 1.15 

P-value: <0.0001) 

18.96* 

(SE: 1.16 

P-value: <0.0001) 

AIC 3499.2 3498.8 3497.0 3496.5 

BIC 3503.5 3503.1 3503.4 3503.0 

* Statistically significant, p-value < 0.05 

**p-value slightly bigger than 0.05 
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 For random-intercept only model, the within-group covariance is 𝜏2. However, for 

random intercept with AR(1) covariance matrix model, the within-group covariance is 𝜏2 +

𝜎2𝑝|𝑗−𝑗′|. The within-group covariance for random intercept only model was calculated as 

follows. 

𝑉𝑎𝑟(𝜃𝑖) = 𝜏2,    𝐶𝑜𝑣(𝜺𝒊) = [
𝜎2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎2

] 

𝐶𝑜𝑣(𝑅𝑎𝑡𝑒𝑖𝑗 , 𝑅𝑎𝑡𝑒𝑖𝑗′) = 𝐶𝑜𝑣(𝑿𝑩 + 𝜃𝑖 + 𝜀𝑖𝑗, 𝑿𝑩 + 𝜃𝑖 + 𝜀𝑖𝑗′) = 𝐶𝑜𝑣(𝜃𝑖, 𝜃𝑖) = 𝜏2 

The within-group covariance for random intercept with AR(1) covariance matrix model was calculated as 

follows. 

𝑉𝑎𝑟(𝜃𝑖) = 𝜏2,     𝐶𝑜𝑣(𝜺𝒊) = 𝜎2

[
 
 
 
 
1 𝑝 𝑝2

 1 𝑝
  1

⋯ 𝑝𝑘−1

⋯ 𝑝𝑘−2

⋯ ⋮
   
   

⋱ 𝑝
 1 ]

 
 
 
 

 

𝐶𝑜𝑣(𝑅𝑎𝑡𝑒𝑖𝑗, 𝑅𝑎𝑡𝑒𝑖𝑗′) = 𝐶𝑜𝑣(𝑿𝑩 + 𝜃𝑖 + 𝜀𝑖𝑗, 𝑿𝑩 + 𝜃𝑖 + 𝜀𝑖𝑗′) = 𝐶𝑜𝑣(𝜃𝑖, 𝜃𝑖) + 𝐶𝑜𝑣(𝜀𝑖𝑗, 𝜀𝑖𝑗′)

= 𝜏2 + 𝜎2𝑝|𝑗−𝑗′| 

As shown in Table 4, 𝜏2 for both unadjusted and adjusted random intercept only model was 

mildly statistically significant. This confirmed that repeated measures taken from each 

physicians are not independent but correlated in this data. Furthermore, statistically significant 𝑝 

value from both unadjusted and adjusted AR(1)+RE model were even suggesting that the within-

group covariance could be improved by adding AR(1) covariance matrix structure, which 

aligned well with AIC result. After adding AR(1) covariance structure, 𝜏2 became not 

significant. 𝑝 may have played a role by partially absorbing the repeated measures correlation 

from 𝜏2. All the parameters were estimated after accounting for repeated measurement 

correlation.      
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 To interpret the results in a direct way, the ratio of the predicted to the counterfactual 

value was used to express the intervention effect. Predicted the vancomycin prescription rate two 

weeks after the intervention was calculated as follows. 

�̂�25(𝑤𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛) = �̂�0 + �̂�1 × 25 + �̂�2 × 1 + �̂�3 × 1 

Predicted the vancomycin prescription rate at block 25 assuming there was no intervention was 

calculated as follows.  

�̂�25(𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛) = �̂�0 + �̂�1 × 25 

The difference between �̂�25(𝑤𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛) and �̂�25(𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛) represents the absolute 

intervention effect. 
|�̂�25(𝑤𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛)−�̂�25(𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛)|

�̂�25(𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛)
 represents the relative change in 

outcome associated with intervention.7 

 Predicted relative change in outcome was calculated for block 25 and 36. Block 25 is the 

time period right after the intervention and Block 36 is the mid-point of post-intervention period. 

Compared to the scenario when there was no intervention, the predicted vancomycin prescription 

rate per two weeks decreased by 21.46% in block 25. Compared to the scenario when there was 

no intervention, the predicted vancomycin prescription rate per two weeks decreased by 3.414% 

in block 36. As shown in Figure 1, these numbers well represent the counterfactual scenario 

result. 

 

4. Discussion 

The results of this study revealed that the intervention was effective on the reduction of 

the vancomycin prescription rate. The peer comparison intervention was implemented by 

sending out the report card to the IM physicians. This study supports that the peer comparison 
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intervention is an efficient strategy to manage antibiotics use in the acute care inpatient hospitals 

setting.   

The use of statistical models to analyze longitudinal data has surged recently. From 2000 

to 2012, 54.6% of studies in medical journals were declared to be longitudinal studies.19 In 

public health, economics, and policy research settings, longitudinal intervention data are 

common to investigate the intervention effect. An interrupted time series analysis is a widely 

used quasi-experimental study design to estimate the impact of intervention that has been 

implemented at a clearly defined time point. The strength of using interrupted time series 

analysis is that segmented regression models can examine the change in response to an 

intervention while controlling the prior trend in the outcome. ITS also provides a straightforward 

visual presentation which makes possible to identify the intervention effects whether they are 

present or absent, one-time or persistent, and so on. Although ITS is an arguably strong model, 

limitations of ITS also exist. The segmented regression model assumes a linear trend in the 

outcome measure. In many practical situations, the linearity assumption might only hold for 

short time period. Instead, non-linear patterns may be observed within each time segment. These 

non-linear patterns will predict the future time trend better than linear patterns. As opposed to the 

prediction purpose, if the study purpose is just to examine the impact of the intervention, a linear 

trend assumption is adequate to be make. Moreover, aggregated individual-level data by evenly 

spaced time point are generally used in ITS model. Because data are somewhat summarized, an 

ITS model fails to control for individual-level characteristics, which restricts the scope of the 

study.7 Even if one is fitting an ITS model with individual-level data, conventional ITS will not 

take individual variability into account, which will eventually lead to a biased conclusion about 
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the fixed effects. For this reason, ITS analysis is a good tool to study the population-based 

intervention data but not for the individual-based intervention data.  

To capture within-subject variability for individual-level data (e.g., time in the case of 

this study), the Negative Binomial random intercept model was considered. This model allows 

over dispersion, which loosens the Poisson equi-disperson assumption. On top of that, including 

random intercept into the model accounts for variability not only caused by each subject but also 

induced by the correlation of measurements within a subject.11 The Negative Binomial random 

intercept model will fail if the assumption of independence between random intercept and 

predictors is not fulfilled. This model is adequate to analyze longitudinal count data when 

explanatory variables are uncorrelated with the random effects.12, 20  

The random effect in a nonlinear model can take different covariance structures in theory. 

However, statistical packages restrict its use to particular cases because of controlling inferential 

processes and the complex computation.20 Instead, the linear mixed model with special 

parametric structure on the covariance matrices was used to add more flexibility to the model. 

This model is an extension of ITS by adding a random-intercept and specifying the structure of 

the R covariance matrix to the segmented regression; the AR(1) structure was used in this study. 

Handling the between-subject and within-subject variability in a flexible way can provide richer 

output. However, the sample size should be bigger than 25 with at least 3 repeated measurement 

or else AR(1) correlation coefficients are not normally distributed and the variance of these 

coefficients are not constant.21 Both strengths and limitations of three models are summarized in 

Table 5. 
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Table 5. Strengths and Limitations of three models 

  

Segmented Regression 

(Interrupted Time Series) 

Nonlinear (Poisson, NB) 

random intercept model  

Linear mixed model  

with AR(1) covariance structure 

Outcome 
 Continuous variable   Discrete variable  

(count data) 

 Continuous variable 

Strength 

 Simple and easy to 

interpret model 

 Straightforward visual 

presentation 

 Account for higher order 

autocorrelation 

 Accounts for the prior 

trend in the outcome 

 Can analyze individual-

level data 

 Able to adjust for 

individual characteristics 

 Accounts for the prior 

trend in the outcome 

 

 Add more flexibility to the 

within-subject covariance 

 Can analyze individual-

level data 

 Able to adjust for 

individual characteristics 

 Accounts for the prior 

trend in the outcome 

Limitation 

 Only for population-based 

data 

 Not able to adjust for 

individual characteristics 

 

 Cannot manipulate 

covariance structure 

 Random effect should be 

independent to the 

covariates 

 

 Need to have  more than 25 

samples with at least 3 

repeated measurements for 

AR(1) 

  

 

However, the reduction on the overall use of antibiotics still must be examined. After the 

intervention, the physicians might prescribe less intravenous (IV) vancomycin and prescribe 

other antibiotic drugs instead (e.g., Doxycycline, TMP-SMX, Linezolid, Daptomycin, 

Clindamycin, Ceftaroline). Shifting to other antibiotic agents may retain or develop antibiotic-

resistance patterns. This phenomenon is known as the balloon effect. When the balloon is 

squeezed, the air inside the balloon moves to the less restrictive area so that the air itself does not 

disappear. Increased use of other antibiotics would counteract the intervention effect. To observe 

whether the other antibiotic agents prescription rate deceased while there has been a decline for 

vancomycin prescription rate, stratified analysis can be considered for a possible modeling 

strategy. Investigating if the squeezing balloon effect presents might shed new light on studying 

the antibiotic resistance, and this can be a future research topic. 

In conclusion, for an Interrupted Time Series, Negative Binomial random-intercept 

model, and mixed linear model, fixed effects were statistically significant except for the block 
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coefficient and their directions were the same. Negative Binomial random-intercept model and 

mixed linear model with AR(1) covariance structure can be alternative modeling strategies for 

Interrupted Time Series when analyzing individual-level data. Based on these results, we were 

able to answer this study’s scientific questions. There was no statistically significant trend of 

vancomycin prescription rate in pre-intervention period. After the intervention was phased in on 

December 1, 2016, there was an immediate drop of the vancomycin prescription rate. This 

decreasing trend maintained until the end of the study. Therefore, peer-comparison intervention 

was effective on vancomycin utilization and it is evident that vancomycin usage has been 

dropped since the intervention.  
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Appendix: SAS Programming Code 

 
/*********************************** 

******Interrupted Time Series******* 

************************************/ 

 

proc autoreg data=its; 

 model vanco_calc= block prepost afterpost/method=ml nlag=24 backstep 

dwprob; 

 test 24*block+prepost+12*afterpost=0; 

run;  

 

 

/*********************************** 

*********Poisson Regression********** 

************************************/ 

 

proc nlmixed data=poisson; 

 parms logsig=-1.9376 beta0=2.3154 beta1=-0.2065 beta2=0.004894 beta3=-

0.01508; 

 lambda=exp(offset+beta0+beta1*prepost+beta2*block+beta3*afterpost+u); 

 model vanco_days ~ poisson(lambda); 

 random u ~ normal(0,exp(2*logsig)) subject=physician; 

 contrast 'pre vs post' beta1 + 24*beta2 + 12*beta3; 

run; 

 

 

/*********************************** 

*********Negative Binomial********** 

************************************/ 

 

proc nlmixed data=poisson; 

 parms logsig=-2.6675 beta0=2.3437 beta1=-0.2086 beta2=0.003689 beta3=-

0.01420 k=0.1530; 

 linp=beta0+beta1*prepost+beta2*block+beta3*afterpost+offset+u; 

 mu=exp(linp); 

 p=1/(1+mu*k); 

 model vanco_days ~ negbin(1/k, p); 

 random u ~ normal(0,exp(2*logsig)) subject=physician; 

 contrast 'pre vs post' beta1 + 24*beta2 + 12*beta3; 

run; 

ods rtf close; 

 

 

/*********************************** 

******Random Intercept/Slope******** 

************************************/ 

 

proc mixed covtest data=mixed; 

 class physician prepost(ref='0'); 

 model vanco_calc=prepost block afterpost / solution cl; 

 random intercept / subject=physician; 

 repeated / type=ar(1) subject=physician; 

run; 

 

 


