In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature: Harnal Mandle

Hannah Mandle

Name

04/15/2024.

Date

Title Pathogen recognition, inflammation, and ovarian cancer

AuthorHannah MandleDegreeDoctor of Philosophy

**Program** Epidemiology

Approved by the Committee

Joellen M. Schlidkraut ACB8D56CA99C4E5...

DocuSigned by:

— DocuSigned by: Anke Huls — 6FEC7C88FBB3492...

DocuSigned by: Icronika Fedirko 643162AF237B465...

Andrew Berchuck

Joellen M. Schildkraut Advisor

Timothy L. Lash Advisor

Anke Huels Committee Member

Veronika Fedirko

Committee Member

Andrew Berchuck Committee Member

Accepted by the Laney Graduate School:

Kimberly Jacob Arriola, Ph.D, MPH Dean, James T. Laney Graduate School

Date

# Pathogen recognition, inflammation, and ovarian cancer

By

Hannah B. Mandle

M.P.H., Emory University, 2018

B.A., University of Massachusetts Lowell, 2012

Chair: Joellen M. Schildkraut, PhD, MPH

Co-Chair: Timothy L. Lash, DSc, MPH

An abstract of a dissertation submitted to the Faculty of the James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Epidemiology

2024

Abstract

# Pathogen recognition, inflammation, and ovarian cancer

By

# Hannah B. Mandle

Epithelial ovarian cancer (EOC) accounts for roughly 2.5% of all cancers among natal women and yet EOC has the fifth highest mortality rate among female cancers in the US. Although studies have identified factors associated with EOC risk and survival, the underlying biologic mechanisms of these factors are still largely unknown. The overarching goal of this research is to evaluate genetic variants in pathogen recognition and downstream inflammation processes as they relate to EOC and high-grade serous EOC (HGSOC, the most common histotype) risks and survival among Black and White women.

In Aim 1, we investigate the aggregate association of TLR, NFkB and TNF signaling genes and pathways with ovarian cancer risk among Black and White women separately. Per *P*<sub>raw</sub> < 0.05, MAPK-related genes, present in all three pathways, were associated with EOC/HGSOC risks among both Black and White women. Among White women *MYD88* and *CCL2* were associated with EOC risk; *PARP1* and *TICAM2* were associated with HGSOC risk. Among Black women, *MAP3K8*, *MAP3K7*, and *PRKCB* were associated with EOC risk *and* indicated to have an interaction with BMI.

In Aim 2, we investigate the association TLR, NFkB and TNF signaling genes and pathways with EOC/HGSOC 5-year overall survival. *AKT3* and *CTSK* genes were associated with EOC/HGSOC 5-year survival in both Black and White women. *LTA* was the only gene observed to possibly have a Black EOC 5-year survival association differential by BMI.

In Aim 3, we investigate differentially expressed genes (DEGs) using RNA-Seq data from Black and White HGSOC tumor tissues. Black and White women were analyzed separately, and we compare DEGs between 5-year survival (yes/no) and FIGO stage (early/late). *CXCL9* was differentially expressed for survival in both Black and White women. *BLNK, CEBPB, PIK3R1, PIK3CD, TLR4, MMP14, JUN, ICAM1, MAPK10*, and *TRAF6* were also differentially expressed by stage at diagnosis regardless of race.

In this dissertation, we identified genes associated with EOC and/or HGSOC risk and survival that may provide mechanistic insight for ovarian carcinogenesis and progression and possible novel hypothesis generation.

# Pathogen recognition, inflammation, and ovarian cancer

By

Hannah B. Mandle

M.P.H., Emory University, 2018

B.A., University of Massachusetts Lowell, 2012

Chair: Joellen M. Schildkraut, PhD, MPH

Co-Chair: Timothy L. Lash

A dissertation submitted to the Faculty of the James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Epidemiology 2024

# Table of Contents

| List of Tables.                                                   | 1  |
|-------------------------------------------------------------------|----|
| List of Figures.                                                  | 4  |
| Chapter 1: Background and Literature Review                       | 5  |
| Ovarian Cancer                                                    | 5  |
| Epithelial Ovarian Cancer Epidemiology                            | 5  |
| Biological Hypotheses for Epithelial Ovarian Carcinogenesis       | 11 |
| Inflammation and Cancer                                           | 11 |
| Inflammation and Innate Immunity: The Toll-Like Receptor Pathway  | 15 |
| TLRs/inflammation and Obesity                                     | 17 |
| TLRs, inflammation, and race                                      | 18 |
| TLR polymorphisms and Cancer Risk and Survival                    | 19 |
| Summary of Critical Literature Review                             | 19 |
| Chapter 2: Specific Aims                                          | 21 |
| Chapter 3: Data Sources and Methods                               | 21 |
| 3.1. Data Sources                                                 | 22 |
| 3.1.1 The African American Cancer Epidemiology Study              | 22 |
| 3.1.2. The Ovarian Cancer Association Consortium                  | 22 |
| 3.2. Study Populations                                            | 22 |
| 3.3. Variables                                                    | 23 |
| 3.3.1. Exposures                                                  | 23 |
| 3.3.1a. SNP selection, genotype data and quality control          | 23 |
| 3.3.1b. RNA Extraction and quantification of gene expression data | 24 |
| 3.3.2. Outcomes                                                   | 25 |
| 3.3.3. Covariates                                                 | 25 |
| 3.4. Analytic Methods                                             | 27 |
| 3.4.1. Aim 1                                                      | 27 |
| 3.4.2. Aim 2                                                      | 28 |
| 3.4.3. Aim 3                                                      | 29 |
| Chapter 4: Aim 1                                                  | 30 |
| 4.1. Abstract                                                     | 31 |
| 4.2 Introduction                                                  | 33 |
| 4.3 Methods                                                       |    |

| 4.3.1 Case/control ascertainment and selection36            |
|-------------------------------------------------------------|
| 4.3.2. SNP Selection, Genotyping, and Quality Control       |
| 4.3.3. Genes and Pathways37                                 |
| 4.3.4. Statistical Analysis37                               |
| 4.4. Results                                                |
| 4.5. Discussion41                                           |
| 4.6. Tables and Figures48                                   |
| <b>Chapter 5: Aim 2.</b>                                    |
| 5.1. Abstract                                               |
| 5.2. Introduction                                           |
| 5.3. Methods                                                |
| 5.3.1. Case ascertainment and vital status58                |
| 5.3.2. SNP Selection, Genotyping, and Quality Control59     |
| 5.3.3. Genes and Pathways60                                 |
| 5.3.4. Statistical Analysis60                               |
| 5.4. Results                                                |
| 5.5. Discussion64                                           |
| 5.6. Tables and Figures68                                   |
| Chapter 6: Aim 3                                            |
| 6.1. Abstract73                                             |
| 6.2 Introduction75                                          |
| 6.3. Methods                                                |
| 6.3.1. Study Population77                                   |
| 6.3.2. RNA Extraction78                                     |
| 6.3.3. Quantification of gene expression data79             |
| 6.3.4. Germline Genotyping and Quality Control80            |
| 6.3.5. Statistical analysis80                               |
| 6.4. Results                                                |
| 6.4.1. Survival                                             |
| 6.4.2. Stage                                                |
| 6.5. Discussion                                             |
| 6.6. Tables and Figures                                     |
| Chapter 7: Public Health Implications and Future Directions |

| References                       |     |
|----------------------------------|-----|
| Supplementary Tables and Figures | 123 |

#### List of Tables.

**Table 4.1.** Select baseline characteristics of the Black and White analytic populations from AACES
 and OCAC participants.

 **Table 4.2.** Statistically significant gene associations and lead SNPs within

 TLR, NFkB, and TNF pathways with invasive EOC and HGSOC risk among Black women in AACES

 and OCAC.

 Table 4.3.
 Statistically significant BMI interactions and lead SNPs among raw statistically

 significant genes associated with EOC risk among Black women in AACES and OCAC.

**Table 4.4.** Statistically significant genes and lead SNPs within TLR, NFkB, and TNF pathways with invasive EOC and HGSOC risk among White women in OCAC.

 Table 4.5.
 Statistically significant BMI interactions and lead SNPs among raw statistically

 significant genes associated with EOC or HGSOC risk among White women in OCAC.

 Table 5.1. Select baseline characteristics of the Black and White invasive epithelial ovarian cancer

 populations.

Table 5.2. Gene associations and lead SNPs within TLR, NFkB, and TNF pathways with invasive EOC and HGSOC 5-year overall survival among Black women in AACES and OCAC.

**Table 5.3.** Gene associations and lead SNPs within TLR, NFkB, and TNF pathways with invasiveEOC and HGSOC 5-year survival among White women in OCAC.

**Table 6.1**. Selected demographic and clinical characteristics of the Black and White HGSOC study populations.

**Table 6.2**. Statistically significant gene expression in association with 5-year invasive HGSOC survival (no *vs* yes) among Black and White cases.

**Table 6.3**. Statistically significant associations of high/low gene expression with 5-year survival (no/yes) in TLR, NFkB, and TNF pathway genes among Black and White HGSOC cases.

 Table 6.4. Statistically significant gene expression in association with FIGO stage at diagnosis

 (III/IV vs 0/I/II) among Black and White HGSOC cases.

 Table 6.5. Statistically significant associations of high/low gene expression with stage at diagnosis
 (late/early) in TLR, NFkB, and TNF pathway genes among Black and White HGSOC cases.

# Supplementary Table ST1. FIGO Staging for Carcinoma of the Ovary

Supplementary Table ST2. Studies Participating in the Ovarian Cancer Association Consortium.

Supplementary Table ST3. Pathways, genes, and chromosomal coordinates included for analysis

Supplementary Table ST4.1. Gene associations/BMI interactions within TLR, NFkB, and TNF

pathways with invasive EOC risk among Black women.

**Supplementary Table ST4.2.** Gene associations/BMI interactions within TLR, NFkB, and TNF pathways with invasive HGSOC risk among Black women.

**Supplementary Table ST4.3.** Gene associations/BMI interactions within TLR, NFkB, and TNF pathways with invasive EOC risk among White women.

**Supplementary Table ST4.4.** Gene associations/BMI interactions within TLR, NFkB, and TNF pathways with invasive HGSOC risk among White women.

**Supplementary Table ST5.1.** Gene associations/BMI interactions within TLR, NFkB, and TNF pathways with 5-year overall survival among Black women with EOC.

**Supplementary Table ST5.2.** Gene associations/BMI interactions within TLR, NFkB, and TNF pathways with 5-year overall survival among Black women with HGSOC.

**Supplementary Table ST5.3.** Gene associations/BMI interactions within TLR, NfkB, and TNF pathways with EOC 5-year survival among White women.

**Supplementary Table 5.4.** Gene associations/BMI interactions within TLR, NFkB, and TNF pathways with HGSOC 5-year survival among White women.

Supplementary Table ST6.1. RNASeq Metadata.

**Supplementary Table ST6.2.** DEGs for HGSOC 5- year survival (no *vs* yes) among Black and White HGSOC cases.

**Supplementary Table ST6.3.** Cox proportional hazard models to assess high/low RNA expression in association with 5-year Survival (no/yes) in TLR, NFkB, TNF genes among Black and White HGSOC cases.

**Supplementary Table ST6.4.** DEGs for stage at diagnosis (late *vs* early) among Black and White HGSOC cases.

**Supplementary Table ST6.5.** Logistic Regression assessing high/low RNA expression in association with stage at diagnosis (late/early) in TLR, NFkB, and TNF genes among Black and White HGSOC cases.

### List of Figures.

Figure 1.1. Stage distribution (%) for invasive ovarian cancer, 2014-2018.

Figure 1.2. 5-year relative survival for invasive ovarian cancer by stage, 2011-2017.

**Figure 1.3.** Mapped locations for invasive ovarian cancer histotype cells-of-origin and pathologic presentations.

Figure 1.4. Distribution of the stage at diagnosis for ovarian cancer by race, 2014-2018.

Figure 1.5. Five-year relative survival by stage at diagnosis and race, 2011-2017.

Figure 1.6. Types of inflammation in tumorigenesis and cancer.

Figure 1.7. A simplified schematic of TLR4 sensing and signaling processes.

Figure 6.1. Volcano plot of DEGs for HGSOC survival among Black women.

Figure 6.2. Volcano plot of DEGs for HGSOC survival among White women.

Figure 6.3. Volcano plot of DEGs for stage at diagnosis among Black women.

Figure 6.4. Volcano plot of DEGs for stage at diagnosis among White women.

Supplementary Figure SF1. Genome-wide association QxQ plot assessing inflation due to

population admixture among Black women.

Supplementary Figure SF2. Genome-wide association QxQ plot assessing inflation due to

population admixture among White women.

Supplementary Figure SF6.1.

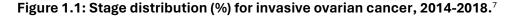
Supplementary Figure SF6.2.

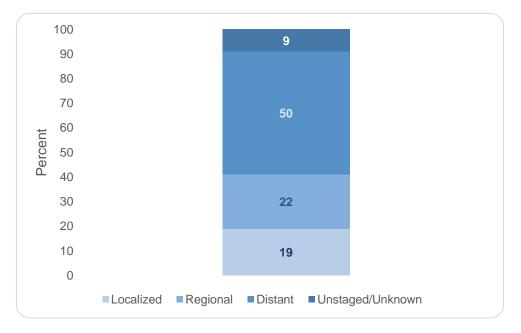
Supplementary Figure SF6.3.

# **Chapter 1: Background and Literature Review**

**Ovarian Cancer** 

Ovarian cancer occurs when gynecological tissues grow out of control and form a malignant tumor.<sup>1</sup> Within these gynecologic tissues, three types of cells can develop into different malignancies: epithelial, germ cell, and stromal. The majority of ovarian tumors arise from the epithelium (~90%); germ cell and stromal tumors are rare.<sup>2</sup> The forthcoming discussion of ovarian cancer encompasses a group of malignancies involving the ovary, fallopian tube, and peritoneum that arise from epithelial cells collectively referred to as epithelial ovarian cancer (EOC).


# Epithelial Ovarian Cancer Epidemiology


EOC accounts for roughly 2.5% of all cancers among natal women and has a lifetime risk occurrence of about 1 out of every 78 women.<sup>3,4</sup> Two systems for the classification of tumor staging are used for EOC: 1) the International Federation of Gynecology and Obstetrics (FIGO) classifications,<sup>5</sup> which are presented in **Table 1.1** along with the corresponding summary staging;<sup>6</sup> 2) the American Join Committee on Cancer (AJCC) TNM staging system which provides more details about the size of the tumor (T), lymph node involvement (N), and metastasis (M) to further determine stage grouping.<sup>5</sup> A detailed list of all stages and stage groupings are presented in **Supplementary Table 1.** Only 19% of all EOCs are diagnosed at the localized stage (stage I), followed by 22% at regional (stage II) and 50% at distant (stage III+; **Figure 1.1**).<sup>7</sup>

| Table 1.1. | . FIGO and | l summary | <pre>v staging 1</pre> | for EOC. |
|------------|------------|-----------|------------------------|----------|
|------------|------------|-----------|------------------------|----------|

| FIGO Stage | Summary Stage | Description                                                                                                                                                                                                           |
|------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I          | Localized     | Tumor limited to the ovaries (one or both)                                                                                                                                                                            |
| 11         | Regionalized  | The cancer is in one or both ovaries or fallopian tubes and has<br>spread to other organs within the pelvis or there is primary<br>peritoneal cancer. It has not spread to nearby lymph nodes or to<br>distant sites. |

| ш  | Distant | Tumor involves one or both ovaries with microscopically confirmed peritoneal metastasis outside the pelvis and/or retroperitoneal lymph node involvement |
|----|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| IV |         | Distant metastasis, excluding peritoneal metastases                                                                                                      |





Despite a low incidence, EOC is the fifth leading cause of cancer deaths among natal women in the US, the highest fatality rate of all gynecologic cancers.<sup>7</sup> One-half of all women diagnosed with EOC will not survive after the first five years.<sup>7</sup> One of the greatest contributing factors to poor EOC survival is the stage at diagnosis. Although women diagnosed with EOC during the localized stage have a high chance of survival (~93%), only one in five women will be diagnosed at this stage (**Figure 1.1**). Women who are diagnosed during the distant stage, half of all EOC cases, only have an estimated 30% likelihood of survival in the first five years. The 5-year survival rates for each stage are presented in **Figure 1.2** below.

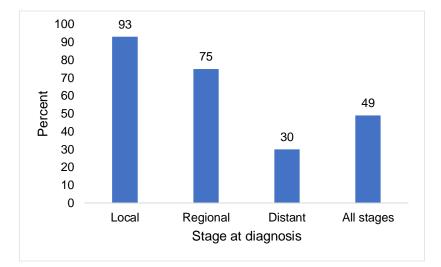



Figure 1.2: 5-year relative survival for invasive ovarian cancer by stage, 2011-2017<sup>7</sup>

Development of an effective screening program has failed in multiple trials.<sup>8,9</sup> Cancer antigen 125 (CA125), a mucinous glycoprotein found on the surface of ovarian cancer cells, appeared to be a promising tumor biomarker for EOC but lacked sensitivity in early stages of disease. In addition, increased CA125 is also observed during menstruation, pregnancy, endometriosis and inflammatory diseases of the peritoneum.<sup>10,11</sup>

Numerous risk factors have been identified for EOC incidence. Parous *vs* nulliparous, any oral contraceptive pill use, age at menarche 15 years or greater, and tubal ligation are all associated with a decrease in risk.<sup>12,13</sup> An increase in EOC risk is associated with older age, use of body powder, BRCA1/2 germline mutations, fist-degree family history of ovarian or breast cancer, age at menopause greater than 55 years (relative to ages 50-55), endometriosis, elevated body mass index (BMI), circulating C-reactive protein levels >10mg/L compared to <1mg/L, and use of postmenopausal hormone replacement therapy.<sup>12-15</sup> Factors associated with poor EOC prognosis include a BMI category of obese measured 1-5 years before diagnosis, smoking (worse for current smokers), Black race, lower SES, and older age.<sup>16-19</sup> Interestingly, despite an association with an

increased risk of EOC, menopausal hormone therapy of greater than 5 years before diagnosis is associated with a better EOC survival.<sup>20</sup>

## Epithelial Ovarian Cancer Subtypes

First, tumors are classified as benign, borderline, or malignant (carcinomas) according to tumor behavior. Borderline tumors exhibit epithelial proliferation that is higher than benign tumors and have variable nuclear atypia, yet they do not destroy and invade nearby stroma.<sup>21</sup> Prognosis of a borderline tumor is also much better than a malignant tumor.<sup>21</sup> Second, EOC consists of five major histotypes that have different cells of origin, morphology, molecular features, epidemiologic risk factors, clinical characteristics and survival. The most common histotype is high grade serous (HGSOC), which accounts for roughly 63% of all EOCs followed by endometroid (~10%), clear cell (~10%), mucinous (~9%), and low grade serous (~3%) cancers.<sup>22</sup> High- and low-grade serous carcinomas arise from fallopian tube and ovarian surface epithelial cells (though via separate mechanisms) while endometroid and clear cell carcinomas arise from the endometrium and are associated with endometriosis, possibly due to endometriotic cysts.<sup>23</sup> The origin of mucinous carcinomas is unclear, but are theorized to evolve from transitional cells at the fallopian tube-peritoneal junction.<sup>23</sup> A schematic of where the cells-of-origin are in the female reproductive tract and pathological presentations of each histotype is shown in **Figure 1.3**.

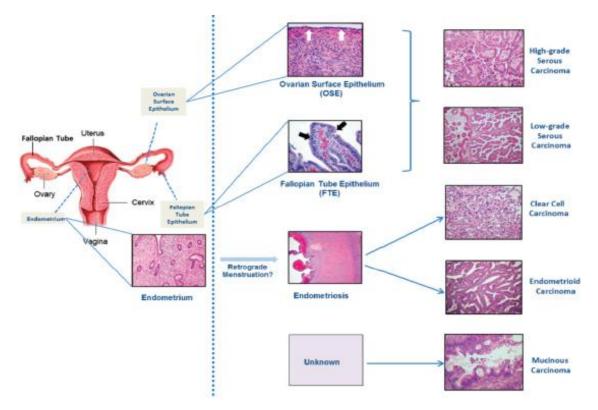



Figure 1.3. Mapped locations for invasive ovarian cancer histotype cells-of-origin and pathologic presentations<sup>24</sup>

EOC histotypes have been observed to have different.<sup>12,25–27</sup> At the genomic level, HGSOC is associated with *TP53* mutations resulting in somatic chromosome instability and DNA repair copy number changes.<sup>28</sup> Roughly half of all HGSOC cases are characterized by homologous recombination DNA repair pathway mutations, namely *BRCA1* and *BRCA2*. Risk factors for EOC differentially associated with risk by histotype include first-degree family history of breast cancer (HGSOC), smoking per 20 pack-years (mucinous ovarian cancers), BMI (non-serous), and endometriosis (endometrioid and clear cell ovarian cancers).<sup>12,27</sup>

#### Epithelial Ovarian Cancer Disparities

Despite a having lower incidence and a similar distribution of stage at diagnosis (**Figure 1.4**),<sup>7</sup> Black women experience markedly worse outcomes<sup>29</sup> and have a five-year relative survival approximately 10% lower than for White women (**Figure 1.5**).<sup>7</sup> Recently, the Ovarian Cancer in Women of African Ancestry (OCWAA) consortium reported that risk factors, including BMI, oral contraceptive use, parity, tubal ligation, first-degree family history of ovarian cancer, first-degree family history of breast cancer, aspirin use, use of body powder applied to genital areas, education, and history of endometriosis accounted for slightly more risk among Black women than White women when considered together.<sup>30 30</sup>

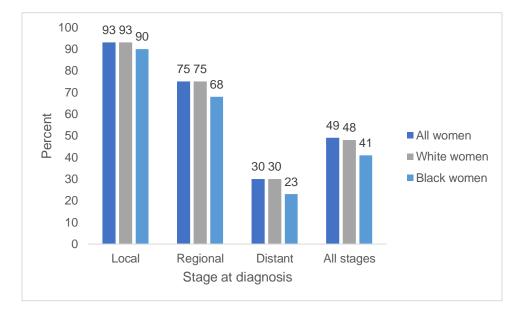



Figure 1.4: Distribution of the stage at diagnosis for ovarian cancer by race, 2014-2018.<sup>7</sup>

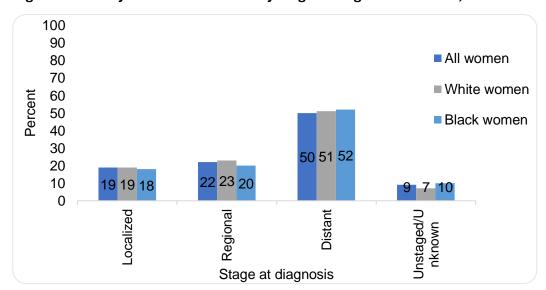
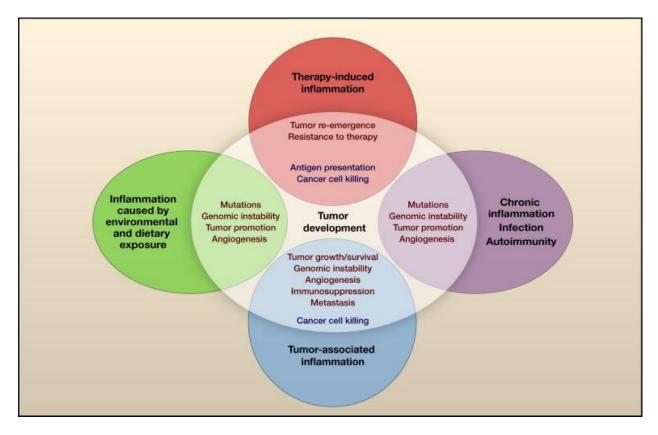




Figure 1.5: Five-year relative survival by stage at diagnosis and race, 2011-2017.<sup>7</sup>

Until there are effective, non-invasive screening programs for ovarian cancer, the best way to reduce EOC burden and cancer-specific deaths is through prevention. While there is no chemopreventive agent for EOC established via clinical trials, oral contraceptive (OC) use is associated with a significantly lower incidence in a meta-analysis of 55 studies.<sup>31</sup> Longer duration of OC use was associated with decreasing incidence of EOC,<sup>31</sup> but the benefits are not without risks. In the same meta-analysis, OC users were observed to have slight, yet significant, risks of breast cancer and vascular events.<sup>31</sup> Further understanding of EOC etiology is a critical step in identifying chemopreventive agents, high-risk groups, gene treatment targets, and modifiable factors associated with risk and survival. This is particularly crucial among Black women as there are limited studies and small sample sizes inhibiting thorough investigations of biological mechanisms contributing to EOC and possible differences compared to other racial groups.

#### Biological Hypotheses for Epithelial Ovarian Carcinogenesis

Risk factors for EOC identified early on, such as parity, contraceptive use, ages of menarche and menopause, led researchers to propose incessant ovulation<sup>32</sup> and gonadotropin hormone levels<sup>33</sup> were the two major mechanisms by which ovarian carcinogenesis occurred. However, there has been accumulating epidemiologic evidence of risk factors associated with EOC that do not directly affect ovulation or hormones levels. These risk factors include use of body powder use, obesity, endometriosis, and tubal ligation, all of which are associated with local inflammation, leading Ness and Cottreau to propose the hypothesis of inflammation as a pathophysiologic contributor to EOC etiology.<sup>34</sup> In fact, there are several cyclical processes necessary for ovulation that share commonalities with inflammatory responses such as the production of chemokines and cytokines, an influx of leukocytes to the microenvironment and rapid angiogenesis.<sup>35</sup> Inflammation is one of the hallmarks of cancer,<sup>36</sup> and generally considered to be one of the most important environmental factors for tumorigenesis and tumor progression.<sup>37</sup> There are multiple mechanisms by which inflammation can promote cancer, illustrated in Figure 1.6 created by Grivennikov et al.<sup>38</sup>





Inflammation caused by environmental exposures is demonstrated by established lifestyle factors associated with cancer, e.g. smoking. There is a plethora of evidence to support smoking as a Class 1 carcinogen<sup>39</sup> and smoking can lead to oxidative stress which can elicit inflammatory responses and alter the epigenome.<sup>40,41</sup> This process can lead to additional oxidative damage thus creating a cycle of inflammation and tumor promotion.

*Chronic inflammation from autoimmune and infectious diseases*, such as Crohn's disease and *Helicobacter pylori*, respectively, can also lead to a tumor-promoting environment. Coussens and Werb<sup>37</sup> have reported numerous cancers that are associated with pathologic inflammatory conditions (**Table 1.2**).

| Table 1.2. Inflammatory conditions associated with neoplasms. <sup>a</sup> |                                                                                                    |                |  |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------|--|
| Neoplasm(s)                                                                | Pathologic condition                                                                               | Condition Type |  |
| Mesothelioma, lung carcinoma                                               | Asbestosis, silicosis                                                                              | Chronic        |  |
| Lung carcinoma                                                             | Bronchitis                                                                                         | Chronic        |  |
| Bladder carcinoma                                                          | Cystitis, bladder inflammation                                                                     | Chronic        |  |
| Oral squamous cell carcinoma                                               | Gingivitis, lichen planus                                                                          | Chronic        |  |
| Colorectal carcinoma                                                       | Inflammatory bowel disease, Crohn's<br>disease, chronic ulcerative colitis                         | Chronic        |  |
| Vulvar squamous cell carcinoma                                             | Lichen sclerosus                                                                                   | Chronic        |  |
| Pancreatic carcinoma                                                       | Chronic and hereditary pancreatitis                                                                | Chronic        |  |
| Oesophageal carcinoma                                                      | Reflux and Barrett's oesophagitis                                                                  | Chronic        |  |
| Salivary gland carcinoma                                                   | Sialadenitis                                                                                       | Chronic        |  |
| MALT lymphoma                                                              | Sjögren syndrome, Hashimoto's thyroiditis                                                          | Chronic        |  |
| Melanoma                                                                   | Skin inflammation                                                                                  | Chronic        |  |
| Cholangiosarcdoma, colon carcinoma                                         | Opisthorchis, Cholangitis                                                                          | Infectious     |  |
| Gall bladder caner                                                         | Chronic cholecystitis                                                                              | Infectious     |  |
| Gastric adenocarcinoma, MALT                                               | Gastritis/ulcers (Helicobacter pylori)                                                             | Infectious     |  |
| B-cell non-Hodgkin's lymphoma,<br>Burkitts lymphoma                        | Mononucleosis (Epstein-Barr Virus)                                                                 | Infectious     |  |
| Non-Hodgkin's lymphoma, squamous<br>cell carcinomas, Kaposi's sarcoma      | AIDS                                                                                               | Infectious     |  |
| Skin carcinoma in draining sinuses                                         | Osteomyelitis                                                                                      | Infectious     |  |
| Ovarian Cancer                                                             | Pelvic inflammatory disease, chronic<br>cervicitis (Gonorrhea, chlamydia, human<br>papillomavirus) | Infectious     |  |
| Bladder, liver, rectal carcinoma,<br>follicular lymphoma of the spleen     | Chronic cystitis                                                                                   | Infectious     |  |

<sup>a</sup>Modified from Coussens and Werb<sup>37</sup>

Many of the established inflammatory conditions associated with tumorigenesis presented above

are a result of infectious agents. Once a tumor has developed, further exposure and response to

pathogenic microbes may promote metastasis and impact survival by sustaining a chronic inflammatory state, activating leukocytes and fibroblasts within the tumor microenvironment.<sup>42</sup>

*Therapy-induced inflammation* is duplicitous by nature. Chemotherapeutic agents and radiation induce signaling events that eliminate and control tumor cells *and* trigger an inflammatory stress response<sup>43</sup> termed cellular senescence.<sup>44</sup> In primary murine and human cells, researchers found several chemotherapy drugs induced a senescence response which promotes local and systemic inflammation<sup>44</sup> and tumor progression.<sup>45</sup>

*Tumor-associated inflammation* occurring in the tumor microenvironment is an established driver of proliferation, progression, metastasis, and chemoresistance.<sup>37</sup> The tumor microenvironment milieu contains both inflammatory and immunosuppressive components that are coopted by the malignant and infiltrating immune cells.<sup>46</sup> Tumor-associated macrophages, for example, are often functionally transformed into M2-like phenotype which favor tumor growth and promote tumor microenvironment remodeling by producing growth and immunosuppressive factors.<sup>47</sup>

As previously stated, EOC risk has established associations with numerous inflammatory factors (smoking, elevated BMI, body powder, endometriosis). Among EOC cases, pre-diagnosis exposure to inflammation-related lifestyle factors and chronic diseases exposures have been associated with poorer survival. In one study, 12 exposures (alcohol use; aspirin use; other nonsteroidal anti-inflammatory drug use; body mass index; environmental tobacco smoke exposure; history of pelvic inflammatory disease, polycystic ovarian syndrome, and endometriosis; menopausal hormone therapy use; physical inactivity; smoking status; and talc use) were used to create a weighted inflammation-related risk score (IRRS) among mostly White women with EOC. Per each increasing quartile of the IRRS there was an associated increase in risk of death (HR = 1.09; 95% CI: 1.03, 1.14).<sup>48</sup> Additionally, women in the upper quartile of the IRRS had a 31% higher death

rate compared with the lowest quartile (95% CI: 1.11, 1.54).<sup>48</sup> Johnson et al. sought to replicate this study in a cohort of 592 Black women with EOC and similarly observed a higher IRRS was associated with worse overall survival (per quartile HR: 1.11; 95% CI: 1.01, 1.22). The authors also evaluated the energy-adjusted Dietary Inflammatory Index (E-DII). Adding the E-DII attenuated the association of the IRRS with survival and the greater E-DII, i.e. a more pro-inflammatory diet, was associated with shorter survival (per quartile HR: 1.12; 95% CI: 1.02, 1.24).<sup>49</sup>

# Inflammation and Innate Immunity: The Toll-Like Receptor Pathway

Toll-like receptors (TLRs) are type 1 transmembrane proteins that play a key role in immunity and subsequent inflammatory responses by recognizing small, conserved microbial motifs, known as pathogen-associated (exogenous) and danger-associated (endogenous) molecular patterns, expressed by microorganisms.<sup>50,51</sup> One example of a pathogen-associated molecular pattern (PAMP) is lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria,<sup>52</sup> and one example of a danger-associated molecular pattern (DAMP) is heat shock protein 60.53,54 To date, there have been 13 mammalian TLRs discovered, with TLRs 1-10 present in humans.<sup>51</sup> TLRs 1, 2, 4, 5, and 6 primarily recognize bacterial and fungal components and are located on the cell surface.<sup>55</sup> TLRs 3, 7, 8, and 9 are localized to intracellular membranes and primarily recognize viral and microbial nucleic acids.<sup>55</sup> TLR10 is the only "orphan" TLR with no discovered ligand and unknown biological function,<sup>56</sup> however, it has been associated with anti-inflammatory effects.<sup>57</sup> TLR ligation triggers an intricate signaling cascade, beginning first with recruiting and binding to adapter proteins from inside the intracellular domain. The adapter proteins include the Myeloid differentiation primary response (MyD88), Toll-interleukin-1 receptor (TIR)-domaincontaining adaptor protein inducing beta interferon (TRIF), TIR-domain-containing adaptor protein (TIRAP), and TIR-domain-containing adaptor molecule (TRAM). MyD88-dependent signaling is perhaps the most common pathway as it can bind with TLRs 1, 2, 4, 5, 6, 7, 8, and 9. To illustrate TLR signaling, a simplified schematic of the TLR4 signaling pathway is shown in **Figure 1.7**.

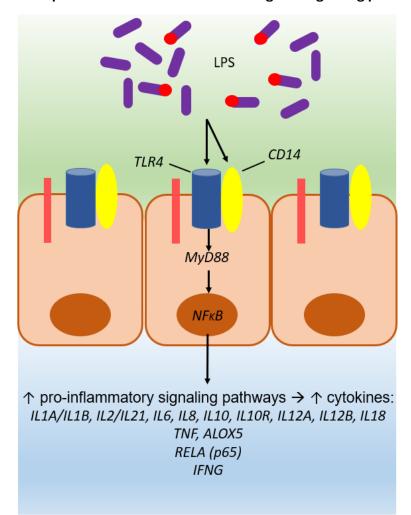



Figure 1.7: A simplified schematic of TLR4 sensing and signaling processes.

However, TLRs expressed in tumor tissues can promote proliferation and anti-apoptosis through the activation of proinflammatory processes.<sup>58-60</sup> In a small study by Zhou et al., healthy ovarian tissue samples were collected from patients undergoing routine gynecologic procedures and EOC tumor tissue samples were collected among stage III/IV patients.<sup>61</sup> TLR2, TLR3, TLR4, and TLR5 were strongly expressed on the surface epithelium of healthy tissues, TLR6 and TLR8 expression was inconsistent among samples, and TLR1, TLR7, and TLR9 were either weak or absent.<sup>61</sup> Similar to normal tissues, tumor tissues expressed TLR2, TLR3, TLR4, and TLR5, but other TLRs had inconsistent results. Of note, epithelial cells from tumors had strong TLR staining regardless of tumor stage.<sup>61</sup> EOC tumor tissue expression has also been studied specifically for TLR4 and its adapter protein, MyD88, but many studies have conflicting results, <sup>61–65</sup> and are comprised of over 90% white women. Li et al found that immunohistochemical expression of both TLR4 and MyD88 was associated with serous histology and poorer survival. and <sup>65</sup> TLR4 activation, additionally, has been observed to lead to chemoresistance through ligation with paclitaxel in EOC cell lines when signaling through a MyD88-dependent pathway.<sup>60,66</sup>

Activation of nuclear factor kappa B (NFkB) signaling was observed to contribute to colon cancer development and progression via transcriptional upregulation of cell proliferation and angiogenesis, inhibition of apoptosis, and overexpression of cyclooxygenase-2 (COX-2), which additionally promotes inflammation and cell proliferation.<sup>67</sup> Worse overall survival in EOC is observed to be associated with elevated expressions of NFkB pathway subunits, activating IkB kinases (IKKs).<sup>46</sup> In the previously mentioned study by Li et al, tumors with elevated TLR4 and MyD88 expression were significantly correlated with the expression of NFkB pathway proteins.<sup>65</sup>

## TLRs/inflammation and Obesity

Being obese has previously been found to be associated with higher plasma concentrations of LPS, which is recognized by TLR4, and higher circulating concentrations of pro-inflammatory markers such as IL-6 and TNF-α. In one small study, mRNA and immunohistochemistry expression of TLR2, TLR4, and MyD88 in both adipose tissues and peripheral blood mononuclear cells were significantly higher in obese and overweight individuals compared to lean individuals.<sup>68</sup> Furthermore, TLR and adapter protein expression (IRAK1 and MyD88) was strongly correlated with TNF-α and IL-6 expression, possibly indicating a greater inflammatory immune response in obese individuals.<sup>68</sup> TLR2 and 4 stimulation in adipocytes from human adipose tissue via abdominal subcutaneous fat increased NFkB mRNA expression and activated NFkB p65 at the protein level.<sup>69</sup> In one study by Nikpay et al., SNPs in an inflammatory gene-set, based off of a genetic investigation of systemic inflammation and innate immunity<sup>70</sup> (though which genes were selected is not stated by the authors), accounted for roughly 28% of obesity heritability.<sup>71</sup>

Within EOC, obesity has a disparate prevalence between Black and White ( women as well as different strengths of association with EOC risk.<sup>30</sup> A high BMI ( $\geq$ 35 vs. 20 to < 25 kg/m<sup>2</sup>) is also associated with increased risks for all complications in primary ovarian cancer surgery<sup>72</sup> and an increased risk of highly aggressive (death in  $\leq$ 1 year) disease.<sup>73</sup> Whether there is a gene\*environment interaction between TLR/inflammation genes and pathways and obesity in relation to EOC risk and survival hast not yet been investigated.

#### TLRs, inflammation, and race

In a study among healthy controls selected from the African American Breast Cancer Etiology and Risk Consortium, the Women's Circle of Health Study, and the Carolina Breast Cancer Study, roughly half of the 14 cytokines studied were found to be differential between Black and White women.<sup>74</sup> Black women were observed to have higher levels of TNFα and lower levels of IL4 and IL10 relative to White women.<sup>74</sup> White women were observed to have higher levels of chemokines CCL2 and CCL11 but lower levels of type I interferon α2 relative to Black women.<sup>74</sup> In an aggregated mRNA expression analysis from a total of 7,142 samples, Singh et al. investigated gene expression differences between Black and White individuals.<sup>75</sup> Regardless of diseased or non-diseased state, the chemokine CCL3L3 was upregulated in Blacks relative to Whites.<sup>75</sup> Another study comparing variation in *TLRs* among Black and White women with pelvic inflammatory disease found that SNPs in *TLR1*, *TLR2*, *TLR6*, and *TIRAP* (the gene to encode the TIRAP adapter protein) significantly differed between the two races.<sup>76</sup> Furthermore, healthy men and women from the Genetics of Evoked Responses to Niacin and Endotoxemia (GENE) study observed Black participants exposed to lowdose endotoxemia via LPS were found to have a lower cytokine response compared to White women, yet they had higher baseline levels.<sup>74,77</sup>

# TLR polymorphisms and Cancer Risk and Survival

To date, no individual SNP in the 224 genes selected for this project has been found to be associated with EOC risk or survival and previous candidate gene analyses have not focused on many of the genes in the TLR pathway. Most importantly, previous studies have only selected a few genes from a functional pathway. This study takes a broader approach to studying pathogen recognition and downstream inflammation with EOC by investigating associations at the gene *and* functional pathway level. Furthermore, investigation of these genes and pathways are conducted separately among Black and White women. Last, as genetic differences are rarely the entire causal mechanism for carcinogenesis, investigating possible gene\*environment interaction may yield more actionable results. In this study, we assess whether obesity, a state of chronic inflammation and associated with *TLR* genetic variants and race, has a possible interaction with the included genes and pathways.

## Summary of Critical Literature Review

EOC is the most fatal of all gynecologic malignancies and has known racial disparities for both risk and survival.<sup>4,30,78</sup> Although studies have identified factors associated with EOC risk and survival, the underlying biologic mechanisms of these factors are still largely unknown. Furthermore, there has been little study of whether potential biological mechanisms leading to ovarian tumorigenesis differ between racial groups. Evidence supports the idea that immunological responses to bacterial and viral products, which induce inflammatory processes, can mediate tumorigenesis.<sup>37</sup> After tumor development, further exposure and response to pathogenic microbes may impact survival by creating a chronic inflammatory state within the tumor microenvironment.<sup>42</sup> Toll-like receptors (TLRs) are transmembrane proteins that play a key role in immunity by recognizing pathogen- and danger-associated molecular patterns expressed by microorganisms.<sup>79</sup> TLR ligation triggers an intricate signaling cascade that activates downstream pro-inflammatory pathways.

### Chapter 2: Specific Aims

**Overarching research question:** The overarching goal of this research is to evaluate genetic variants in pathogen recognition and downstream inflammation processes as they relate to ovarian cancer risk and survival among Black and White women. We aim to investigate whether there may be differences in these processes among Black and White women. The following specific aims are proposed:

**AIM 1**: To investigate the association of Toll-like receptor signaling genes and pathway with ovarian cancer <u>risk</u> among Black and White women separately.

**1a.** Investigate the association with downstream inflammatory processes and ovarian cancer risk.

**1b.** Investigate gene\*environment effect modification by body mass index (BMI), which is associated with inflammation.

**1c.** Compare results among White and Black women.

**AIM 2**: To investigate the association of Toll-like receptor signaling genes and pathway with ovarian cancer <u>survival</u> among Black and White women separately.

**2a.** Investigate the association with downstream inflammatory processes and ovarian cancer survival.

**2b.** Investigate gene\*environment effect modification by body mass index (BMI).

**2c.** Compare results among White and Black women.

**AIM 3**. To evaluate differentially expressed TLR, NFkB, and TNF pathway genes in high-grade serous ovarian cancer (HGSOC) tumor tissues among Black and White women.

3a. Investigate differentially expressed genes (DEGs) for HGSOC 5-year survival.

**3b.** Investigate DEGs for HGSOC stage at diagnosis.

## Chapter 3: Data Sources and Methods

#### 3.1. Data Sources

#### 3.1.1 The African American Cancer Epidemiology Study

The African American Cancer Epidemiology Study (AACES)<sup>80</sup> is a population-based casecontrol study of ovarian cancer in Black women in 11 geographic locations. The sites were selected for geographic regions with a relatively high density of Black residents in the population and that had the ability to rapidly identify newly diagnosed cases of EOC. Eligible cases included women who selfidentified as African American/Black aged 20 to 79 years with a newly diagnosed, histologically confirmed invasive EOC starting December 1, 2010, via population-based and hospital registries. Controls were frequency-matched based on age and geographic location. Controls were identified via an outside contractor (Kreider Research and Consulting) using list-assisted, random-digit dialing to select control women who self-identify as AA race. Controls were matched to cases by state of residence and 5-year age category. Eligible controls could not have had a previous diagnosis of EOC or bilateral oophorectomy. Contact of eligible cases for AACES stopped in 2016 and the last date of diagnosis was 12/31/2015.

## 3.1.2. The Ovarian Cancer Association Consortium

The Ovarian Cancer Association Consortium (OCAC)<sup>81</sup> was formed in 2005 to allow for highthrough-put and greater powered genetic association investigations, replication analyses for previously reported associations, and the identification of possible rare variants and novel genes that may promote EOC. To date, OCAC consists of more than 80 participating groups from four continents: North America, Europe, Asia, and Australia. Eligible case-control and cohort studies provided germline DNA for genotyping, managed by the University of Cambridge, and epidemiologic data, which was centrally harmonized at the OCAC data-coordination center at Duke University. A list of all participating OCAC studies is presented in **Supplementary Table ST2.** 

#### 3.2. Study Populations

The study population for Aim 1 will be comprised of all non-Hispanic Black cases and controls in AACES and OCAC ( $N_{cases} = 720$ ;  $N_{controls} = 1,201$ ) and non-Hispanic White cases and

controls in OCAC ( $N_{cases} = 13,747$ ;  $N_{controls} = 19,174$ ). Aim 2 will be a subset of the Aim 1 study population consisting of cases only. Specific Aim 3 will be a subset of Black AACES and North Carolina Ovarian Cancer Study (NCO; a participating OCAC study) and White NCO HGSOC cases who agreed to provide tumor tissue samples ( $N_{Black} = 214$ ;  $N_{White} = 255$ ).

# 3.3. Variables

#### 3.3.1. Exposures

The 224 candidate genes included for analysis were selected from the Kyoto Encyclopedia of Genes and Genomes (KEGG)<sup>82</sup> TLR, NFkB and TNF pathways. In situations where a gene appears in multiple pathways, we assigned the gene to only one pathway based off function (for example, lipopolysaccharide binding protein [*LBP*] is in both and NFkB and TLR pathways but analyzed only in the TLR pathway). In total, 95, 74, and 55 genes were in the TLR, NFkB, and TNF pathways, respectively. SNPs within each candidate gene were selected based on the chromosomal coordinates of the start and end positions (Ensembl GRCh37/hg19 for the Black dataset and GRCh38/hg38 for the White)<sup>83,84</sup> ±10,000 base pairs to capture promoter and regulatory regions. All included genes and the chromosomal coordinates are shown per pathway in **Supplementary Table ST3.** For Aims 1 and 2, we investigate germline expression of these genes and pathways with EOC/HGSOC risk and outcomes. The exposure in Aim 3 is mRNA expression of genes in the TLR, NFkB, and TNF pathways within HGSOC tumor tissues among Black and White women.

#### 3.3.1a. SNP selection, genotype data and quality control

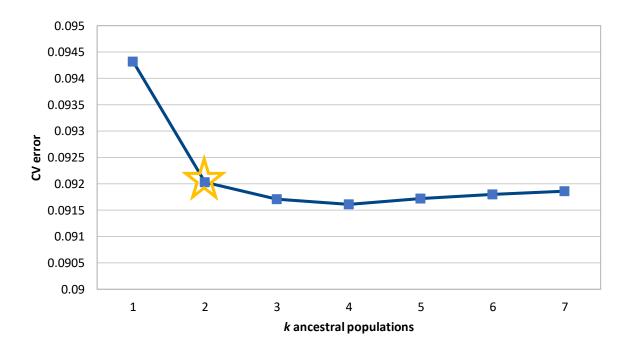
Genotyping was performed at five centers: University of Cambridge, Center for Inherited Disease Research (CIDR), National Cancer Institute (NCI), Genome Quebec and Mayo Clinic using an Illumina Infinium iSelect BeadChip. Genotype data quality control (QC) was previously carried out according to the OncoArray QC guidelines.<sup>81</sup> A small number of subjects that were not genetically female (XX) or those who had ambiguous sex, or were duplicates were omitted from the dataset.<sup>26,85</sup> Only those SNPs that passed QC for all consortia were used for imputation. White OCAC genotyped samples were imputed using the Michigan Imputation Server to the Trans-Omics for Precision Medicine (TOPMed) imputation with 97,256 samples (Version R2 on GRCh38/hg38).<sup>86</sup> Phasing was performed with Eagle2<sup>87</sup> and imputation with Minimac3.<sup>88</sup> In the Black genomic data, SNPs that were not directly genotyped were imputed according to the 1,000 Genomes Phase 3 v5 reference set (GRCh37/hg19) using Minimac3.<sup>88</sup> SNP level post-imputation QC included filtering on call rate >95%, Hardy–Weinberg Equilibrium  $p > 1 \times 10^{-5}$ , and a minor allele frequency (MAF)  $\geq$ 0.01 using PLINK 2.0.<sup>89,90</sup>

#### 3.3.1b. RNA Extraction and quantification of gene expression data

RNA was extracted from FFPE tumor tissue and stored at -80°C. An initial quality control (QC) evaluation revealed substantial RNA degradation, so a repurification step consisting of DNAase treatment and purification on a Zymo research spin column was completed before library preparation to reduce the bulk of degraded RNA product (i.e., <200 nucleotides in length). Following repurification, RNA libraries were prepared from total RNA samples (5-100 ng) using reagents from the Illumina Stranded mRNA Prep (cat# 20020189) and TruSeq RNA UD Indexes (20040534) for reverse transcription, adapter ligation, and PCR amplification. Amplified libraries were hybridized to biotin-labeled probes from the Illumina Exome Panel (cat# 20020183) using the Illumina RNA Fast Hyb Enrichment kit (20040540) to generate strand-specific libraries enriched for coding regions of the transcriptome. Exon-enriched libraries were qualified on an Agilent Technologies 2200 TapeStation using a D1000 ScreenTape assay (cat# 5067-5582 and 5067-5583). The molarity of adapter-modified molecules was defined by quantitative PCR using the Kapa Biosystems Kapa Library Quant Kit (cat#KK4824). Individual libraries were normalized to 0.95 nM in preparation for Illumina sequence analysis. Sequencing libraries were chemically denatured and applied to an Illumina NovaSeq flow cell using the NovaSeq XP workflow (20043131). Following the

transfer of the flow cell to an Illumina NovaSeq 6000 instrument, a 150 x 150 cycle paired-end sequence run was performed using a NovaSeq 6000 S4 reagent Kit v1.5 (20028312).

Adapters were trimmed adapters and filtered read quality using fastp.<sup>91</sup> Filtering was set to reads with a PHRED score of at least 15 and at least 20 base pairs long. Pair-end reads were quantified with salmon (version 1.4.0)<sup>92</sup> using GRCh38 release 95. We used the seqBias and gcBias flags to correct for sequence-specific biases. The recommended rangeFactorizationBins parameter value was set to 4, which improves quantification accuracy on difficult-to-quantify transcripts. Then, low-expression genes were filtered out by excluding 10,608 genes with a median expression across all samples of 0. Samples were library-size normalized using 85th quantile normalization.


# 3.3.2. Outcomes

The outcome assessed in Aim 1 is the association with overall EOC and HGSOC-only risks among Black and White women. In Aim 2, we assess 5-year overall survival (yes/no) for both EOC and HGSOC cases. Aim 3 is a preliminary investigation of differentially expressed genes (DEGs) via mRNA expression in associated with two HGSOC clinical outcomes: overall 5-year survival and FIGO stage at diagnosis.<sup>93</sup> We further investigate possible associations and overall HGSOC survival and stage at diagnosis.

### 3.3.3. Covariates

For Aims 1 and 2, due to population stratification and possible differences in minor allele frequencies, all outcomes and analyses were stratified by self-reported race. We analyzed the five major EOC histotype together as well as restricted to high-grade serous only. In best practice, investigations should always stratify by histotype, but this can often present a challenge regarding power within certain histotypes, especially for minority groups and survival analyses. Risk estimates were controlled for age (continuous) and ancestry. Ancestry was controlled using principal components (PCs). Ancestry was calculated for the OCAC and AACES using the software package FastPop, developed specifically for the OncoArray.<sup>26,85</sup> To confirm the correct number of PCs to use for Black women, we used the Admixture program which estimates ancestry in a model-based manner from large autosomal SNP genotype datasets.<sup>94</sup> Using the cross-validation procedure, selection of the ideal number of ancestral populations was chosen based on a low cross-validation error estimates (**Figure 3.1**). To assess adequate control for admixture or possible inflation, QxQ plots and  $\lambda$  values were generated from the results of a genome-wide association analysis assuming an additive logistic regression model controlling for age and the first two PCs. We observed adequate control per the calculated  $\lambda$  values ( $\lambda_{Black} = 1.02$ ,  $\lambda_{White} = 1.10$ ) and QxQ plots (shown in **Supplementary Figures SF1 and SF2**).

Figure 2.1: Ancestral population (k) determination for principal components in Black



**EOC** dataset

The analyses for Aim 3 control for ancestry using the previously derived PCs. For the exploratory Cox PH investigation of select gene mRNA expressions and survival. We control for two PC age at diagnosis and FIGO stage. Tumor cellularity is accounted for *post hoc* from the expression data via Cibersort to estimate cell fractions.<sup>95</sup> All analyses controlled for age at diagnosis, tumor purity, and two principal components. The survival analyses were additionally adjusted for FIGO stage at diagnosis.

#### 3.4. Analytic Methods

We provide descriptive statistics (mean, median, and proportion) to describe selected demographic, tumor, and survival characteristics. All data and analyses presented are stratified by race and conducted for all EOC and HGSOC-only outcomes.

# 3.4.1. Aim 1

Additive, unconditional logistic regression models are used to calculate the genome-wide association of individual SNPs with EOC/HGSOC risks and 5-year overall survival (yes/no). Risk models adjust for age (continuous) and two PCs (continuous). The survival models additionally control for FIGO stage at diagnosis and histotype (for EOC models only). To conduct sub-analyses assessing interaction by BMI (continuous), we use the same additive risk and survival models with a SNP\*BMI interaction term and assess significance via a Wald  $\chi^2$  test statistic *P*-value.

To examine the associations between genes (a combination of SNPs) and pathways (a combination of genes) and EOC/HGSOC risk, we use the Multi-marker Analysis of GenoMic Annotation (MAGMA) tool for gene and generalized gene-set analyses of GWAS data.<sup>58</sup> In brief, MAGMA accounts for local linkage disequilibrium and aggregates multiple logistic regression model-derived *P*-values for SNPs within the same gene body. We applied the same additive genetic model used in the genome-wide association analyses adjusting for age (continuous), and two ancestry PCs (continuous). To examine the associations between pathways and risk, each gene *P*-value computed

in the previous model is converted to a Z-value and normalized to yield a distribution that reflects the strength of the association for each gene with EOC/HGSOC risk. The competitive gene-set analysis is implemented as a linear regression model on this gene-level data matrix where the resulting Pvalue tests whether the mean association with EOC/HGSOC risk varies among genes in a specified gene-set (in this case, a pathway) relative to the genes not in the gene-set. MAGMA adjusts for gene size, gene density, the inverse of the mean MAC in the gene and the log value of each. To evaluate a possible interaction among genes and pathways with body mass index (BMI, kg/m<sup>2</sup>, continuous), we use an extension of the MAGMA tool by adding a SNP by covariate interaction to the gene-level model. To correct for multiple testing, we adjust the raw gene-level P-values by the number of genes tested using the Benjamini-Hochberg false-discovery rate (FDR). We present both raw and FDRcorrected results. To better understand what may be driving a gene-level association with EOC/HGSOC risk, we report the lead SNP for gene and gene\*BMI interactions. The measure of association and P-value for each lead SNP in a gene is extracted from the post-QC genome-wide analysis used to generate the QxQ plots and  $\lambda$  values. For statistically significant unadjusted gene\*BMI interaction, we use the same genome-wide additive logistic regression model with a SNP\*BMI interaction term. We report the SNP rsID, odds ratio (OR), 95% confidence interval (CI) and raw *P*-value for the most statistically significant gene-specific SNP.

As these data are the largest collection of genomic ovarian cancer case/control data and, therefore, cannot be validated in external data sources, we randomly split our White analytic dataset into a 67% test set and 33% internal validation set.

# 3.4.2. Aim 2

Analyses for Aim 2 follow the same procedures as in Aim 1 but the outcome is 5-year overall survival (yes/no) for EOC/HGSOC. We use MAGMA to estimate the association of genes and pathways with overall EOC and HGSOC survival. Interaction with BMI will also be implemented the

same as in Aim 1. Multivariable odds ratios and 95% confidence intervals for each SNP are calculated using logistic regression models adjusting for two PCs, age (continuous), FIGO stage, and histotype (EOC model only) assuming a log-additive model.

# 3.4.3. Aim 3

We investigate mRNA gene expression in HGSOC tumor tissues among Black and White women. Differentially expressed genes (DEGs) within the TLR, NFkB, and TNF pathways for HGSOC 5-year survival and stage at diagnosis are presented. Furthermore, binary variables for each gene are calculated as 'low': expression levels less than or equal to the gene-specific median and 'high': expression greater than the median. We perform exploratory analyses for dichotomized expression and survival and stage at diagnosis. Cox proportional hazard models are used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for association of high *vs* low gene expression and survival adjusting for age, stage at diagnosis, and two ancestry principal components (PCs). Unconditional logistic regression models are used to estimate odds ratios (ORs) and corresponding 95% CIs for the association with FIGO stage at diagnosis adjusted for age and two ancestry PCs.

Pathogen-recognition and Inflammatory Genes and Pathways Associated with Epithelial Ovarian Cancer Risk

#### 4.1. Abstract

**Background:** Epithelial ovarian cancer (EOC) has the highest mortality rate among all gynecologic cancers and is the fifth deadliest malignancy among women in the US. EOC mortality is largely attributable to the late stage of diagnosis as symptoms are often vague and non-specific. Due to these limitations, reducing EOC-specific mortality may best be accomplished by identifying groups at high risk of disease and factors that promote tumorigenesis. The goal of this study is to investigate whether genetic variation in genes belonging to toll-like receptor (TLR), nuclear factor kappa B (NFkB), and tumor necrosis factor (TNF) signaling pathways is associated with EOC risk at the gene or pathway level among Black and White women.

**Methods:** Eligible cases and controls were self-reported, non-Hispanic Black and White women genotype data from the African American Cancer Epidemiology Study (AACES) and the Ovarian Cancer Association Consortium (OCAC). Single-nucleotide polymorphisms (SNPs) were mapped to 224 genes in the Kyoto Encyclopedia of Genes and Genomes TLR, NFkB, and TNF pathways based on chromosomal location ± 10,000 base pairs to capture promoter and regulatory regions. Due to differences in minor allele frequencies and population stratification, all analyses were stratified by race (Black and White women). To test and internally validate our results, we further randomized the White population into a 67% test cohort or a 33% validation cohort. We examine the associations of genes (a combination of SNPs) and pathways (a combination of genes or 'geneset') and EOC risk, we use the Multi-marker Analysis of GenoMic Annotation (MAGMA) tool for gene and generalized gene-set analyses of GWAS data. We assumed an additive genetic model to assess the association with EOC or high-grade serous EOC (HGSOC) risk (yes vs no) adjusting for age and ancestry principal components. In addition, we investigated a possible gene x environment (GXE) interaction between observed statistically significant genes/pathways and body mass index (BMI), which is disparately associated with EOC *and* race and is considered a chronic state of inflammation.

Results: Our study consisted of 720 Black invasive EOC cases and 1,201 Black controls (those with  $\geq$  50% African ancestry) and 13,747 and 19,174 White cases and controls, respectively. Genes in White women had noticeably fewer SNPs mapped within the chromosomal locations. No pathway was statistically significant for any group in relation to EOC or HGSOC risk nor was any gene after correcting for multiple testing. Per raw P-values < 0.05, MAPK-related genes, which trigger the transcription of genes involved in the regulation of cellular processes present in all three pathways, were associated with EOC and/or HGSOC risks among both Black and White women. Among White women specifically, four genes were associated with EOC/HGSOC risks in both the test and validation dataset. These genes included MYD88 and CCL2 associated with EOC risk and PARP1 and TICAM2 associated with HGSOC risk (Praw < 0.05). Among Black women, MAP3K,8 MAP3K7, and PRKCB were indicated to have an interaction with BMI for EOC but not HGSOC risk. Conclusion: Although we had no statistically significant gene results after multiple testing correction, this study observed genes associated (P<sub>raw</sub> < 0.05) with EOC and HGSOC risk among Black and White women that are biologically consistent with previously published literature among EOC and/or other cancer sites. These results may provide insight or generate new hypotheses regarding EOC carcinogenesis.

32

Despite accounting for only ~3% of all cancers diagnosed among women, ovarian cancer ranks fifth among female cancer-specific fatality rates in the US.<sup>4</sup> The most fatal gynecologic cancer,<sup>4</sup> poor survival is largely attributable to the fact that most cases are diagnosed at stage III or later (65-75%), for which survival is only 30%<sup>2</sup> (*vs* 70-90% survival for stages I or II).<sup>4</sup> The majority of ovarian tumors arise from the epithelium (~90%); germ cell and stromal tumors are rare.<sup>2</sup> Thus, forthcoming discussion of ovarian cancer is collectively referred to as epithelial ovarian cancer (EOC), which encompasses a group of malignancies involving the ovary, fallopian tube, and peritoneum that arise from epithelial cells.

EOC is a heterogeneous disease that consists of five major histotypes that have differing cells of origin, morphology, molecular features, methylation patterns, gene and RNA expression signatures, epidemiologic risk factors, and clinical characteristics.<sup>13,25–27</sup> The incidence of EOC is also disparate among racial groups where Black women have an estimated 25% lower age-standardized incidence of ovarian cancer relative to White women.<sup>78</sup> In addition, modifiable risk factors such as BMI, oral contraceptive use, aspirin and body powder have been observed to account for more of the risk in Black women relative to White women.<sup>30</sup>

Symptoms of EOC are vague and non-specific and may not be present during the earliest stages.<sup>96</sup> Development of an effective screening program has failed in multiple trials with low sensitivity and specificity,<sup>8,9</sup> which may be, in part, due to a relatively short interval between the presence of detectable disease and dissemination of the tumor throughout the peritoneal cavity.<sup>97</sup> Because the effectiveness of screening and early intervention is inherently limited by the natural history of the disease, identifying high-risk groups and factors associated with tumorigenesis may be the best way to reduce EOC burden and reduce cancer-specific mortality.

A hallmark of cancer, inflammation is generally considered to be one of the most important environmental factors for tumorigenesis. Pathologic inflammatory conditions resulting from autoimmune diseases or exposure to infectious agents have been associated with tumor development for numerous cancer sites.<sup>37</sup> In EOC, pelvic inflammatory disease and chronic cervicitis following gonorrhea, chlamydia, or human papillomavirus infections are hypothesized risk factors.<sup>98</sup> There is growing evidence to support the idea that immunological responses to bacterial and viral products, and subsequently induced inflammatory processes, can mediate tumorigenesis.<sup>37</sup> Toll-like receptors (TLRs) are pattern recognition receptors that play a key role in immunity and downstream inflammatory responses by recognizing small, conserved microbial motifs expressed by microorganisms.<sup>50,51</sup> TLRs expressed in non-neoplastic tissues can stimulate adaptive immune responses and activate immune cells that dynamically combat tumors.<sup>58,99</sup> However, TLR expression in neoplastic cells can promote chronic inflammation and are antiapoptotic in the tumor microenvironment. In a few small studies, TLR expression has been observed in both normal ovary and tumor tissues, and in EOC cell lines.<sup>61</sup> TLR ligation and binding with adapter proteins activates an immune response and inflammatory signaling pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB)<sup>100,101</sup> and tumor necrosis factor α (TNFα). NFkB is hypothesized to be a major link between chronic inflammation and cancer as it functions in all cell types present within the tumor microenvironment and modulates further inflammation and metastasis.<sup>102</sup>

Despite experimental evidence of the involvement of TLRs and downstream inflammatory processes in association with EOC, and the polymorphic nature of these genes, few studies have comprehensively investigated the respective signaling pathways in relation to EOC risk. Many studies have investigated *TLR* polymorphisms with overall and site-specific cancer risks, the majority of which are now summarized in numerous meta-analyses.<sup>103–117</sup> There are a number

publications that show *TLR2*, *TLR4*, and *TLR9* polymorphisms, especially among cancers that occur in sites exposed to microbiota such as the stomach, colon, and cervix,<sup>105,106,109,113,117-119</sup> are associated with cancer risks. However, among statistically significant SNPs, many are in opposing directions, underpowered, or only show an association when all cancer sites are analyzed together, which may not be the best approach given the heterogeneity among different sites. Given the modest to null associations observed, it is unlikely that a single SNP in *TLRs* and inflammatory pathway-associated genes could be a causal mechanism of carcinogenesis. In addition, most studies chose candidate SNPs based on previous literature, therefore only a select and small number of SNPs are evaluated. Last, the populations and cell lines that comprise these studies are almost entirely of White ancestry despite evidence of Black-White differences in genetic associations, gene expression and molecular biomarkers related to inflammatory processes.<sup>75,120,121</sup> TLR genetic variants known to increase inflammation have been found to differ between the two racial groups as well.<sup>76</sup>

In this study, we investigate whether genetic variation at the gene and/or pathway level for TLR, NFkB, and TNF signaling is associated with EOC risk. Additionally, we investigate whether there is a possible interaction with a chronic inflammatory state, characterized by body mass index (BMI), and risk of EOC. To account for population stratification and to evaluate any gene or pathway differences between Black and White women, all outcomes and analyses are stratified by race. Because EOC is a heterogenous disease and histotypes have different risk factors<sup>12</sup> and gene expression profiles,<sup>25</sup> we also conduct all analyses restricting to high-grade serous ovarian cancer (HGSOC) cases, the most common histotype,<sup>4</sup> relative to controls.

#### 4.3 Methods

#### 4.3.1 Case/control ascertainment and selection

The African American Cancer Epidemiology Study (AACES) is a population-based casecontrol study of Black women with invasive EOC and controls residing in 11 geographic locations in the U.S. enrolled between December 2010 and August 2016.<sup>80</sup> Cases were identified through cancer registries and hospitals and were eligible for the study if they were 1) aged 20–79 years, 2) selfreported Black race, and 3) resided in one of the included geographic regions. Controls were identified via an outside contractor using list-assisted, random-digit dialing to select control women who self-identify as Black. Controls were frequency-matched to cases by state of residence and 5year age category. Eligible controls could not have had a previous diagnosis of EOC or bilateral oophorectomy. Institutional review board approval was obtained from all participating institutions. Methods have been described in further detail previously.<sup>80</sup>

The Ovarian Cancer Association Consortium (OCAC)<sup>81</sup> consists of more than 80 participating groups from four continents: North America, Europe, Asia, and Australia. Eligible case-control and cohort studies provided germline DNA for genotyping and epidemiologic data, which was centrally harmonized by members of OCAC at the data-coordination center. A list of all participating OCAC studies is presented in **Supplementary Table ST2.** 

All invasive EOC cases and controls from OCAC who self-identified as non-Hispanic White women were eligible for inclusion in the White analytic dataset. The Black cases and controls from AACES and OCAC were previously subset to include women with >50% African ancestry, calculated using the software package FastPop.<sup>85,122</sup>

### 4.3.2. SNP Selection, Genotyping, and Quality Control

Genotyping was performed at five centers: University of Cambridge, Center for Inherited Disease Research (CIDR), National Cancer Institute (NCI), Genome Quebec and Mayo Clinic using an Illumina Infinium iSelect BeadChip. Genotype data quality control (QC) was previously carried out according to the OncoArray QC guidelines. A small number of subjects that were not genetically female (XX) or those who had ambiguous sex, or were duplicates were omitted from the dataset.<sup>26,85</sup> White OCAC genotyped samples were imputed using the Michigan Imputation Server to the Trans-Omics for Precision Medicine (TOPMed) imputation with 97,256 samples (Version R2 on GRCh38/hg38).<sup>86</sup> Phasing was performed with Eagle2<sup>87</sup> and imputation with Minimac3.<sup>51</sup> In the Black genomic data, SNPs that were not directly genotyped were imputed according to the 1,000 Genomes Phase 3 v5 reference set (GRCh37/hg19) using Minimac3.<sup>88</sup> SNP level post-imputation QC included filtering on call rate >95%, Hardy–Weinberg Equilibrium p >1×10<sup>-5</sup>, and a minor allele frequency (MAF) >0.01 using PLINK 2.0.<sup>89,90</sup>

# 4.3.3. Genes and Pathways

The 224 candidate genes included for analysis were selected from the Kyoto Encyclopedia of Genes and Genomes (KEGG)<sup>82</sup> TLR, NFkB and TNF pathways. In situations where a gene appears in multiple pathways, we assigned the gene to only one pathway based off function (for example, lipopolysaccharide binding protein [*LBP*] is in both and NFkB and TLR pathways but analyzed only in the TLR pathway). In total, 95, 74, and 55 genes were in the TLR, NFkB, and TNF pathways, respectively. SNPs within each candidate gene were selected based on the chromosomal coordinates of the start and end positions (Ensembl GRCh37/hg19 for the Black dataset and GRCh38/hg38 for the White)<sup>83,84</sup> ±10,000 base pairs to capture promoter and regulatory regions. All included genes and the chromosomal coordinates are shown per pathway in **Supplementary Table ST3.** 

# 4.3.4. Statistical Analysis

To control for population admixture we use ancestry principal components (PCs). PCs were previously, separately calculated for the Black and White datasets using the software package FastPop, developed specifically for the OncoArray.<sup>26,85</sup> To confirm the correct number of PCs to use,

we used the Admixture program, which estimates ancestry in a model-based manner from large autosomal SNP genotype datasets, on the raw Black genomic data.<sup>94</sup> Using the cross-validation procedure, selection of two PCs was indicated as the the ideal number of ancestral populations based on a low cross-validation error estimate (**Figure 3.1**). We applied the same number of PCs to our White population and assessed adequate control for possible inflation via QxQ plots and  $\lambda$  values generated from the *P*-values of all genome-wide SNPs assuming an additive logistic regression model controlling for age and the first two PCs. While using two PCs, we observed adequate control per the calculated  $\lambda$  values ( $\lambda_{Btack} = 1.02$ ,  $\lambda_{White} = 1.10$ ) and QxQ plots (shown in **Supplementary Figures SF1-SF2**).

To examine the associations between genes (a combination of SNPs) and pathways (a combination of genes) and EOC/HGSOC risk, we use the Multi-marker Analysis of GenoMic Annotation (MAGMA) tool for gene and generalized gene-set analyses of GWAS data.<sup>123</sup> In brief, MAGMA accounts for local linkage disequilibrium and aggregates multiple logistic regression modelderived *P*-values for SNPs within the same gene body. We applied the same additive genetic model used in the genome-wide association analyses adjusting for age (continuous), and two ancestry PCs (continuous). To examine the associations between pathways and risk, each gene *P*-value computed in the previous model is converted to a Z-value and normalized to yield a distribution that reflects the strength of the association for each gene with EOC/HGSOC risk. The competitive gene-set analysis is implemented as a linear regression model on this gene-level data matrix where the resulting *P*-value tests whether the mean association with EOC/HGSOC risk varies among genes in a specified gene-set (in this case, a pathway) relative to the genes not in the gene-set. MAGMA adjusts for gene size, gene density, the inverse of the mean MAC in the gene and the log value of each. To evaluate a possible interaction among genes and pathways with body mass index (BMI, kg/m<sup>2</sup>, continuous), we use an extension of the MAGMA tool by adding a SNP by covariate interaction to the gene-level model. To correct for multiple testing, we adjust the raw gene-level *P*-values by the number of genes tested using the Benjamini-Hochberg false-discovery rate (FDR).<sup>124</sup> We present both raw and FDR-corrected results. To better understand what may be driving a gene-level association with EOC/HGSOC risk, we report the lead SNP for gene and gene\*BMI interactions. The measure of association and *P*-value for each lead SNP in a gene is extracted from the post-QC genome-wide analysis used to generate the QxQ plots and  $\lambda$  values. For statistically significant unadjusted gene\*BMI interaction, we use the same genome-wide additive logistic regression model with a SNP\*BMI interaction term. We report the SNP rsID, odds ratio (OR), 95% confidence interval (CI) and raw *P*-value for the most statistically significant gene-specific SNP.

As these data are the largest collection of genomic ovarian cancer case/control data ( $N_{Black}$  = 1,921;  $N_{White}$  = 32,921) and, therefore, cannot be validated in external data sources, we randomly split our White analytic dataset into a 67% test set and 33% internal validation set. We compared selected baseline characters between the two sets and determined successful randomization (**Table 4.1**). Although this remains the largest genomic dataset for Black women with EOC as well, we unfortunately lack power the conduct internal validation in this group.

#### 4.4. Results

In total, the final Black analytic dataset (AACES + OCAC) included 720 invasive EOC cases and 1,201 controls. The final White (OCAC) analytic test dataset included 9,181 and 12,876 cases and controls, respectively, while the White analytic validation dataset included 4,566 cases and 6,298 controls. Selected baseline characteristics for each study population are presented in **Table 4.1**. Cases had an average age of 57 years while controls were roughly 54 years old for all groups. Although mean BMI did not meaningfully differ between cases and controls within each group, the BMI among Black women was noticeably higher compared to White women. All aggregate associations of SNPs at the gene and pathway levels for TLR, NFkB, and TNF signalling with EOC and HGSOC risk among Black and White women are shown in **Supplementary Tables ST4.1-ST4.4.** No pathway-level or FDR-corrected gene-level association was statistically significant for either racial group.

In **Table 4.2**, we present the genes (*P*<sub>raw</sub> <0.05) associated with EOC and/or HGSOC risk among Black women. In total, 19 genes were associated with Black EOC risk and 11 with Black HGSOC risk. Seven genes: *PRKCB* and *RELB* in the NFkB pathway, *PIK3CA*, *MAPK14*, *IRAK4*, and *MAPK8* in the TLR pathway, and *CREB3L4* in the TNF pathway, were associated with both EOC and HGSOC risk.

Mitogen activated protein kinases (MAPKs) related genes: *MAPK8, MAPK14, MAP2K2, MAP3K5, MAP3K7* and *MAP3K8* were associated with EOC at the gene level (all *P<sub>raw</sub>* <0.04. *MAPK8* and *MAPK14* were also associated with Black HGSOC risk. In addition, *MAP3K7* and *MAP3K8* were observed to have raw, statistically significant interactions with BMI for EOC risk (*P* = 0.039; **Table 4.3**). *PRKCB* also had an interaction with BMI for EOC risk and the lead SNP for all three genes was associated with an increase in risk per a one-unit increase in BMI. No gene associated with HGSOC risk was observed to have an interaction with BMI. It is possible we lack the power to detect an association for this group as the Black HGSOC\*BMI analytic population was the smallest in the study (403 cases, 760 controls).

Genes in White women had noticeably fewer SNPs mapped within the chromosomal locations. This may be due to differences in minor allele and haplotype frequencies between the two groups, particularly for the TOPMed White genomic data where 96% of SNPs had a MAF < 0.01. Six genes had no SNPs mapped after post-imputation and MAGMA internal QC filters while two genes (*MAPK11* and *MAPK12*) had chromosomal coordinates that were not included in the OCAC data

(Supplementary Tables ST4.3-ST4.4). In Table 4.4 we present the genes observed to be associated (Praw < 0.05) with EOC and/or HGSOC risks among the 67% test cohort of White women. Two genes were statistically significantly associated with EOC risk in both the White test and validation cohorts: *MYD88* and *CCL2*. Two different genes, *PARP1* and *TICAM2*, were associated with HGSOC in the test and validation sets. We observed 20 genes with raw, statistically significantly associations with White EOC risk and 24 genes for HGSOC risk. Four genes were associated with both outcomes: *CSNK2A1* (NFkB) and *IL12B*, *TLR1* and *MYD88* (TLR). Several genes related to encoding members of the caspase family (*CASP8*, *CASP10*, *CFLAR*, *CARD10*, *CARD11*) and the TNF receptor superfamily (*TNFSF11*, *TNFRSF1B*, *TRAF6*, *TNFAIP3*) were associated with White EOC and/or HGSOC risk. While we found two MAPK-related genes also associated with risk among White women (*MAP3K14*, *MAP3K8*), only *MAP3K8* was also observed in Black women. Also consistent with our results for HGSOC risk among Black women, *LY96* and *TNFAIP3* were associated with HGSOC risk in White women.

Among the statistically significant genes in the White women, only two were observed to differ by BMI (**Table 4.5**). We found *EDN1* indicated to be differentially associated with EOC risk while *CARD11* was observed to interact with BMI regarding HGSOC risk. Unlike our results in Black women, both lead SNPs were associated with a reduced risk of cancer per a one-unit increase in BMI. It should be noted that the lead SNP for *EDN1* was not statistically significant ( $P_{raw}$  = 0.09)

### 4.5. Discussion

In this analysis of genetic variation, we investigated whether TLR, NFkB, and TNF genes and/or pathways were associated with Black and White EOC or HGSOC risk. Despite null results after FDR correction, a discussion of the genes associated with our outcomes within and between the two groups before correction could possibly provide mechanistic insight or hypothesis generation. Thus, the following discussion will present possible biological mechanisms consistent with our results.

We observed multiple MAPK genes associated with EOC and HGSOC risks for both Black and White women. MAPK mutations have been observed in numerous cancers including ovarian, breast, colon, melanoma, pancreas, lung, and thyroid.<sup>125–130</sup> MAPKs in innate immune cells are activated downstream of pattern recognition receptors, such as TLRs, alongside NFkB. Activated by a wide range of intra- and extra-cellular stimuli, the MAPK cascade triggers the transcription of genes involved in the regulation of cellular processes including proliferation, differentiation, inflammation, and apoptosis.<sup>131</sup> Ras proteins and downstream Raf kinases act as 'molecular switches' of the threetiered cascade where an activated MAP3K (aka MEKK, MKKK) phosphorylates a MAP2K (MEK, MKK) which, in turn, phosphorylates MAPK.<sup>131,132</sup> *Ras* is perhaps the most well studied and frequently mutated oncogene in human cancer, while *Raf* somatic mutations have been observed in multiple malignancies including serous EOC.<sup>133-135</sup>

*MAP3K8* was associated with EOC risk for both Black and White women. Also known as the oncogene tumor progression locus 2 (Tpl2), *MAP3K8* encodes a protein that can induce NFkB and promote the production of TNF $\alpha$  and IL-2.<sup>136</sup> Dysregulation of *MAP3K8* expression has been observed in multiple malignancies and is associated with increased inflammation, malignant transformation, and angiogenesis.<sup>137–139</sup> If genetic variations in *MAP3K8* lead to aberrant inflammatory processes, an increase in cancer risk seems plausible. Supporting this theory, the lead SNPs for *MAP3K8* in both groups had an OR > 1.

Black women additionally were observed to have interactions between *MAP3K8* and *MAP3K7* and BMI. Being obese has previously been found to be associated with higher plasma concentrations of LPS, which is recognized by TLR4, and higher circulating concentrations of pro-

inflammatory markers such as IL-6 and TNF-α. Within EOC, obesity has a disparate prevalence between Black and White (women as well as different strengths of association with EOC risk.<sup>140</sup> Similarly in our two populations, BMI was higher among Black women relative to White women, regardless of case or control status. MAP3K8 is expressed in human subcutaneous adipose tissues and mRNA expression is increased in obese and morbidly obese subjects relative to lean ones.<sup>140</sup> Within adipocytes, MAP3K8 is implicated to play a role in COX-2 expression<sup>141</sup> and cross talk with macrophages to produce inflammatory cytokines in LPS-induced adipose tissue inflammation. In turn, MAP3K8 is activated by some of these inflammatory cytokines (such as TNFα) thus creating a pro-inflammatory signaling loop.<sup>142,143</sup> In mice, MAP3K8 knockout attenuates immune cell infiltration and inflammation in adipose tissues.<sup>142</sup> Slattery et al. found several SNPs in *MAPK* genes to have statistically significant interactions with dietary and lifestyle factors, such as BMI, with risks for colorectal or breast cancer risk.<sup>143,144</sup>

MAPK8 and *MAPK14* were associated with both EOC and HGSOC risks among Black women only. MAPKs signal through one of two pathways: Jun N-terminal kinases (JNKs) and p38 MAPKs. *MAPK8* encodes JNK1 while *MAPK14* encodes p38a.<sup>145</sup> Previous investigations regarding these genes and the proteins they encode are scarce in relation to EOC. In ovarian cancer cells, the JNK1 pathway was implicated to play a role in resistance to cisplatin, a platinum combination chemotherapy agent.<sup>146</sup> Pharmacological blockade of p38 a in 3 major EOC cell lines lead to a reduction of cell growth and viability<sup>147</sup> and immunohistochemical expression of p38a was higher in FFPE EOC tumor tissues (N=120) relative to normal fallopian tube tissues (N=35).<sup>148</sup>

*MAP3K14* was associated with HGSOC risk among White women. Commonly known as NFkB-inducing kinase (NIK), MAP3K14 plays a major role in regulating non-canonical NFkB activation<sup>149</sup> which has been observed in EOC cell lines.<sup>150</sup> In EOC cell lines xenografted in mice,

depletion of NIK was observed to slow tumor growth.<sup>150</sup> In the same study, researchers also silenced NIK in cells via RNA interference and observed a reduction in NFkB2 DNA binding activity.<sup>150</sup>

Although we observed other MAPK-related genes to be associated with EOC/HGSOC between Black *vs* White women, there is scant literature on observed racial differences in *MAPK* genetic variation (outside of upstream *Ras* and *Raf*).<sup>151–153</sup> One review reports key signaling proteins associated with the ERK1/2 signaling pathway, another major MAPK subfamily, to have racially disparate expression in Black relative to White cancer patients.<sup>154</sup> A study of early-stage breast cancer cases observed Black patients with *ERBB2* (previously *HER2*) positive tumors were significantly more likely to have MAPK pathway alterations (comprised of *EGFR*, *NF1*, *KRAS*, *BRAF*, and *MAP2K*) than White patients via tumor next-generation sequencing.<sup>155</sup> In colorectal cancer, Black cases had more *MAP2K1* mutations relative to White cases.<sup>153</sup>

Upstream of MAPK signaling activation, TLR ligation induces IL-1R-associated kinases (IRAKs), genetic variations in which have been previously associated with cancer and inflammatory conditions.<sup>156</sup> *IRAK1* was associated with EOC risk among Black women in our study while *IRAK4* was associated with both outcomes. IRAK4, which recruits and phosphorylates IRAK1, plays an essential role in innate immune responses via the IL-1 signaling cascade, especially regarding cytokine signaling.<sup>157</sup> Overexpression of *IRAK4* can activate MAPK and NFkB pathways.<sup>157,158</sup>

We observed *CREB3L4* associated with both EOC and HGSOC risks in Black women. In prostate cancer cell lines, CREB3L4 is essential for proliferation and is modulated by and interacts with androgens and androgen receptors.<sup>159</sup> CREB3L4 expression was observed to be upregulated in breast cancer tissues, which frequently express androgen receptors,<sup>160</sup> and knockdown of the gene in breast cancer cell lines inhibited proliferation and promoted apoptosis.<sup>161,162</sup> Androgens and androgen receptors have been hypothesized to play a role in EOC<sup>163-166</sup> as well as polycystic ovarian

syndrome,<sup>167,168</sup> a known risk factor for EOC.<sup>169,170</sup> Genetic variation of follistatin (*FST*), an encoding gene for a gonadal protein that inhibits follicle-stimulating hormone release, has been connected to PCOS and was associated with HGSOC risk in the previously conducted GWAS of the Black AACES and OCAC study population.<sup>85</sup>

Among White women, *MYD88, was* associated with both EOC and HGSOC risks. A TLR adapter protein. MyD88 (often along with TLR4) is one of the more commonly studied genes in the TLR pathway. Yet, previous investigations of MYD88 expression in EOC tumor tissues have conflicting results<sup>61,62</sup> or are focused on outcomes related to treatment or survival.<sup>64,65</sup>

For White HGSOC risk only, five associated genes belong to the TNF receptor superfamily: *TRAF6, TNFSF11, TNFRSF1A, TNFRSF1B,* and *TNFAIP3.* In a study analyzing genetic variation in *TRAFs* from The Cancer Genome Atlas (TCGA) and the Catalog of Somatic Mutations in Cancer (COSMIC) datasets, Zhu et al found eight cancers with a greater proportion of *TRAF6* variation, including EOC (5.1%).<sup>171</sup> The consistency between the TCGA/COSMIC-wide results and our findings among White women only may be due to the high number (or larger sample size) of White cases in the datasets.<sup>172</sup> The tumor necrosis factor receptor-associated factor (TRAF) family consists of adapter proteins that regulate signaling pathways including TLR, NFkB, and TNF and therefore play a role in downstream cellular processes such as proliferation and differentiation.<sup>173,174</sup> Binding of the TNFRSF1A protein with TNF induces activation of NFkB<sup>175,176</sup> and *TNFRSF1A* SNP rs767455 is associated with an increased risk of breast cancer.<sup>177</sup>

The major strength of our study is the largest sample size of high quality, EOC genotype data that has been previously QCed and pathologically confirmed. To our knowledge this is the first comprehensive analysis of TLR, NFkB, and TNF genes and pathways for EOC risk. By studying genes and pathways, we sought to ameliorate the challenges of interpreting a meaningful change in a single SNP associated with an outcome. The gene level allows us to assess a singular function while the pathway level considers cellular processes at large with other genes that share biological functions up or downstream. In addition, our selection of pathways and genes was hypothesis driven.

Although we have discussed biologically plausible support for our results regardless of the lack of statistical significance after FDR correction, that is not to say the data are without limitations that should be critically considered. First and foremost, cancer is a stochastic disease and genetics account for very few causal mechanisms at any cancer site. Furthermore, race is a social construct and racial disparities in health are rarely a direct result of genetic differences. However, if genes are differentially associated with risk, it may provide insight to the etiology/ biological processes that are associated with ovarian carcinogenesis and/or EOC disparities.

Although this is the largest genetic dataset for women with EOC, we were still hindered by small sample sizes in subgroups such as histotype, which are known to be differentially associated with race and genetic markers. To reduce histotype variability, we also restricted our analyses to HGSOC cases *vs* controls and observed genes that were associated with EOC remained. Still these genes may not be generalizable to other histotypes such as low-grade serous and mucinous.

The validity of the White OCAC data may also be a major limitation in our analyses. More than 96% of all SNPs imputed had MAFs less than or equal to 0.01 and far fewer passed MAGMA QC filtering relative to the Black imputed data. We explored multiple datasets and QC thresholds but could not map SNPs to every selected gene among the White datasets. Nor could we replicate previously published OCAC GWAS SNP totals,  $\lambda$  or QxQ plot. Upon our request for scripts to reproduce these results, we were informed the findings were generated using an in-house logit program. Furthermore, some of the raw genomic data was truncated resulting in missing data for entire genes. These reasons could be why we observed very few internally validated results between

our 67/33% randomly split cohorts. Another possibility for the lack of validation could be an extreme sensitivity to sample size in the MAGMA program. Considering the 33% cohort is still larger than our total Black population, those results could potentially be invalid as well. While the simple answer to this question would be to analyze the same data using another gene/gene-set analysis program, there are no programs (to our knowledge) that are currently maintained which suit all our analytic needs (raw GWAS data, interaction assessment, gene, and gene-set analyses) for comparison.

In conclusion, this study has presented possible genetic variations in TLR and downstream NFkB and TNF inflammatory genes/pathways associated with EOC risk among Black and White women that are biologically consistent with previously published literature among EOC and/or other cancer sites. This study also highlights the necessity for documenting and facilitating methods of reproducibility and validity for both data sets and analytic programs. Further investigations of these genes and biological processes in relation to EOC risk may be more fruitful when investigating somatic expression within the tumor microenvironment rather than germline expression.

# 4.6. Tables and Figures

**Table 4.1.** Select baseline characteristics of the Black and White analytic populations from AACES and OCAC participants.

|                          | Plack       | Nomen       |               | White Women  |                  |             |  |  |  |  |
|--------------------------|-------------|-------------|---------------|--------------|------------------|-------------|--|--|--|--|
|                          | Васку       | vomen       | Test (6       | 67%)         | Validation (33%) |             |  |  |  |  |
|                          | Controls    | Cases       | Controls      | Cases        | Controls         | Cases       |  |  |  |  |
| N                        | 1,201       | 720         | 12,876        | 9,181        | 6,298            | 4,566       |  |  |  |  |
| Age, mean (sd)           | 54.6 (11.8) | 57.1 (11.2) | 54.6 (12.1)   | 58.8 (11.4)  | 54.6 (12.1)      | 58.8 (11.6) |  |  |  |  |
| BMI (kg/m²), mean (sd)   | 32 (8.4)    | 32.8 (8.3)  | 27.2 (6.3)    | 27.1 (6.1)   | 27.3 (6.6)       | 27.6 (6.8)  |  |  |  |  |
| missing, N (%)           | 431 (35.9)  | 166 (23.1)  | 10,524 (81.7) | 7,055 (76.8) | 5,133 (81.5)     | 3,537 (77.5 |  |  |  |  |
| Year of diagnosis, N (%) |             |             |               |              |                  |             |  |  |  |  |
| 1990-1999                |             | 11 (1.5)    |               | 74 (0.8)     |                  | 41 (0.9)    |  |  |  |  |
| 2000-2009                |             | 119 (16.5)  |               | 1,212 (13.2) |                  | 1,386 (30.4 |  |  |  |  |
| 2010-2019                |             | 423 (58.8)  |               | 2,884 (31.4) |                  | 647 (14.2)  |  |  |  |  |
| missing                  |             | 167 (23.2)  |               | 5,010 (54.6) |                  | 2,492 (54.6 |  |  |  |  |
| Stage, N (%)             |             |             |               |              |                  |             |  |  |  |  |
| localized                |             | 128 (17.8)  |               | 1,082 (11.8) |                  | 545 (11.9)  |  |  |  |  |
| regional                 |             | 66 (9.2)    |               | 1,395 (15.2) |                  | 695 (15.2)  |  |  |  |  |
| distant                  |             | 400 (55.6)  |               | 4,414 (48.1) |                  | 2,315 (50.7 |  |  |  |  |
| unstaged/missing         |             | 126 (17.5)  |               | 2,290 (24.9) |                  | 1,191 (26.1 |  |  |  |  |
| Histotype, N (%)         |             |             |               |              |                  |             |  |  |  |  |
| high-grade serous        |             | 423 (58.8)  |               | 5,612 (61.1) |                  | 2,774 (60.8 |  |  |  |  |
| low-grade serous         |             | 20 (2.8)    |               | 310 (3.4)    |                  | 167 (3.7)   |  |  |  |  |
| endometrioid             |             | 64 (8.9)    |               | 612 (6.7)    |                  | 292 (6.4)   |  |  |  |  |
| clear cell               |             | 26 (3.6)    |               | 528 (5.6)    |                  | 281 (6.2)   |  |  |  |  |
| mucinous                 |             | 34 (4.7)    |               | 514 (5.6)    |                  | 274 (6)     |  |  |  |  |
| other EOC                |             | 153 (21.3)  |               | 1,605 (17.5) |                  | 754 (16.5)  |  |  |  |  |
|                          |             |             |               |              |                  |             |  |  |  |  |

**Abbreviations:** AACES = African American Cancer Epidemiology Study, OCAC = Ovarian Cancer Association Consortium, N = number, BMI = body mass index, EOC = epithelial ovarian cancer.

| Pathway | Gene    | # SNPs | $P^{\mathrm{b}}$ | $P_{FDR}^{c}$ | Lead SNP     | Ref.<br>allele | Alt.<br>allele | OR (95% CI) <sup>d</sup> | P <sub>SNP</sub> |
|---------|---------|--------|------------------|---------------|--------------|----------------|----------------|--------------------------|------------------|
| EOC     |         |        |                  |               |              |                |                |                          |                  |
|         | PRKCB   | 2,384  | 0.003            | 0.351         | rs148451701  | G              | Α              | 2.65 (1.70-4.15)         | <0.001           |
|         | GADD45G | 7      | 0.006            | 0.351         | rs3138505    | G              | А              | 0.48 (0.33-0.70)         | <0.001           |
| NFkB    | LTB     | 4      | 0.009            | 0.351         | rs3093556    | А              | G              | 0.46 (0.26-0.80)         | 0.007            |
| NIKD    | PIDD1   | 82     | 0.010            | 0.351         | rs1865782162 | CT             | С              | 1.42 (1.17-1.72)         | <0.001           |
|         | PLCG2   | 1,937  | 0.018            | 0.375         | rs9938253    | G              | А              | 0.67 (0.54-0.81)         | <0.001           |
|         | RELB    | 193    | 0.046            | 0.556         | rs74394107   | Т              | С              | 1.97 (1.22-3.19)         | 0.006            |
|         | PIK3CA  | 326    | 0.007            | 0.351         | rs116367233  | С              | Т              | 1.86 (1.35-2.55)         | <0.001           |
|         | MAPK14  | 400    | 0.012            | 0.351         | rs138487031  | А              | G              | 2.03 (1.26-3.27)         | 0.004            |
| TLR     | IRAK4   | 144    | 0.012            | 0.351         | rs9849       | С              | Т              | 1.26 (1.10-1.43)         | 0.001            |
|         | MAP2K2  | 176    | 0.012            | 0.351         | rs6630       | G              | Т              | 1.25 (1.09-1.42)         | 0.001            |
|         | MAP3K8  | 144    | 0.017            | 0.375         | rs303437     | G              | Α              | 1.36 (1.16-1.59)         | <0.001           |
|         | IRAK1   | 25     | 0.029            | 0.474         | rs5987026    | Т              | С              | 1.13 (0.98-1.67)         | 0.095            |
|         | MAPK8   | 598    | 0.033            | 0.474         | rs73296755   | А              | С              | 0.28 (0.13-0.63)         | 0.002            |
|         | MAP3K7  | 318    | 0.035            | 0.474         | rs34087194   | Т              | Α              | 0.36 (0.17-0.75)         | 0.006            |
|         | CREB3L4 | 11     | 0.015            | 0.375         | rs4845586    | G              | Т              | 0.83 (0.73-0.96)         | 0.009            |
|         | CXCL5   | 5      | 0.023            | 0.446         | rs352047     | G              | С              | 0.85 (0.74-0.96)         | 0.013            |
| TNF     | TRAF2   | 253    | 0.034            | 0.474         | rs17250483   | G              | А              | 0.67 (0.53-0.85)         | 0.001            |
|         | MAP3K5  | 1,047  | 0.035            | 0.474         | rs1022690    | Т              | С              | 0.77 (0.67-0.89)         | <0.001           |
|         | CREB5   | 3,041  | 0.045            | 0.556         | rs56271133   | С              | Т              | 2.04 (1.37-3.06)         | <0.001           |
| HGSOC   |         |        |                  |               |              |                |                |                          |                  |
| NFkB    | PRKCB   | 2,384  | 0.007            | 0.559         | rs74560827   | G              | Т              | 2.25 (1.47-3.44)         | <0.001           |
| INFKD   | RELB    | 193    | 0.006            | 0.559         | rs34491117   | G              | Т              | 1.94 (1.30-2.89)         | 0.001            |
|         | IKBKE   | 163    | 0.012            | 0.674         | rs41295982   | А              | G              | 1.96 (1.44-2.66)         | <0.001           |
|         | LY96    | 221    | 0.020            | 0.761         | rs143496381  | А              | С              | 3.10 (1.55-6.19)         | 0.001            |
|         | PIK3CA  | 326    | 0.023            | 0.761         | rs115920312  | С              | А              | 0.68 (0.51-0.92)         | 0.012            |
| TLR     | CTSK    | 22     | 0.030            | 0.803         | rs1811698    | Т              | С              | 1.24 (1.06-1.45)         | 0.007            |
|         | MAPK14  | 400    | 0.045            | 0.803         | rs7750653    | Т              | G              | 1.37 (1.07-1.75)         | 0.014            |
|         | MAPK8   | 598    | 0.045            | 0.803         | rs140396817  | А              | G              | 2.62 (1.37-5.01)         | 0.003            |
|         | IRAK4   | 144    | 0.045            | 0.803         | rs3794262    | А              | Т              | 1.23 (1.05-1.44)         | 0.011            |
| TNF     | CREB3L4 | 11     | 0.007            | 0.559         | rs4845586    | G              | Т              | 0.82 (0.69-0.97)         | 0.021            |
|         | TNFAIP3 | 48     | 0.023            | 0.761         | rs74880481   | Т              | TA             | 0.79 (0.65-0.97)         | 0.023            |

Table 4.2. Statistically significant gene associations and lead SNPs within TLR, NFkB, and TNF pathways

Abbreviations: TLR = toll-like receptor; NFkB = nuclear factor kappa B; TNF = tumor necrosis factor; EOC = epithelial ovarian cancer; HGSOC = high grade serous ovarian cancer; AACES = African American Cancer Epidemiology Study; OCAC = Ovarian Cancer Association Consortium; SNP = single nucleotide polymorphism; FDR = false discovery rate; Ref = referent; Alt = alternate; OR = odds ratio; CI = confidence interval.

<sup>a</sup>With unadjusted P-value < 0.05.

<sup>b</sup>Aggregate P-value of MAGMA model results. Each model controls for age and the first two ancestry principal components.

°Corrected for multiple testing by the number of genes tested using the Benjamini-Hochberg false discovery rate (FDR).

<sup>d</sup>Additive model adjusted for age and two ancestry principal components

**Table 4.3.** Statistically significant BMI interactions and lead SNPs among raw statistically significant genes

 associated with EOC risk among Black women in AACES and OCAC.<sup>a</sup>

| Pathway | Gene   | # SNPs | $P_{BMI}{}^{b}$ | $P_{BMI \ FDR}^{c}$ | Lead SNP  | Ref.<br>allele | Alt.<br>allele | OR <sub>SNPxBMI</sub> (95% CI) <sup>d</sup> | P <sub>SNPxBMI</sub> |
|---------|--------|--------|-----------------|---------------------|-----------|----------------|----------------|---------------------------------------------|----------------------|
| NfkB    | PRKCB  | 2384   | 0.044           | 0.748               | rs198200  | С              | G              | 1.07 (1.03-1.11)                            | <0.001               |
| TLR     | МАРЗК8 | 144    | 0.004           | 0.748               | rs7910678 | А              | Т              | 1.09 (1.04-1.13)                            | <0.001               |
| ILK     | MAP3K7 | 318    | 0.039           | 0.748               | rs9362755 | Т              | С              | 1.03 (1.01-1.06)                            | 0.006                |

Abbreviations: BMI = body mass index; EOC = epithelial ovarian cancer; AACES = African American Cancer Epidemiology Study; OCAC = Ovarian Cancer Association Consortium; SNP = single nucleotide polymorphism; FDR = false discovery rate; Ref = referent; Alt = alternate; OR = odds ratio; CI = confidence interval; TLR = toll-like receptor; NFkB = nuclear factor kappa B.

<sup>a</sup>With unadjusted P-value < 0.05.

<sup>b</sup>Aggregate P-value of MAGMA model results for gene\*BMI interaction. Each model controls for age, BMI, and the first two ancestry principal components.

<sup>c</sup>Corrected for multiple testing by the number of genes tested using the Benjamini-Hochberg false discovery rate (FDR). <sup>d</sup>OR for SNP\*BMI interaction term in an additive model adjusted for age, BMI and two ancestry principal components.

|         |         |        | Test 6<br>(N <sub>EOC</sub> = 9<br>N <sub>HGSOC</sub> = 9<br>N <sub>controls</sub> = 1 | = 9,181, (N <sub>E</sub><br>c = 5,612, N <sub>HG</sub> |                | on 33%<br>4,566,<br>2,774,<br>6,298) |              |                |                |                          |                  |
|---------|---------|--------|----------------------------------------------------------------------------------------|--------------------------------------------------------|----------------|--------------------------------------|--------------|----------------|----------------|--------------------------|------------------|
| Pathway | Gene    | # SNPs | $P^{b}$                                                                                | $P_{FDR}^{c}$                                          | P <sup>b</sup> | $P_{FDR}^{c}$                        | Lead SNP     | Ref.<br>allele | Alt.<br>allele | OR (95% CI) <sup>d</sup> | P <sub>SNP</sub> |
| EOC     |         |        |                                                                                        |                                                        |                |                                      |              |                |                |                          |                  |
| NfkB    | CSNK2A1 | 166    | 0.008                                                                                  | 0.297                                                  | 0.084          | 0.565                                | rs80001974   | С              | Т              | 0.81 (0.73-0.90)         | <0.001           |
|         | BLNK    | 253    | 0.011                                                                                  | 0.297                                                  | 0.784          | 1.000                                | rs117791247  | G              | А              | 1.21 (1.08-1.35)         | 0.00             |
|         | RIPK1   | 119    | 0.012                                                                                  | 0.297                                                  | 0.318          | 0.825                                | rs183512622  | G              | А              | 1.47 (1.17-1.85)         | 0.00             |
|         | EDA2R   | 56     | 0.016                                                                                  | 0.334                                                  | 0.792          | 1.000                                | rs146182380  | Т              | G              | 0.83 (0.72-0.97)         | 0.02             |
|         | ERC1    | 1,966  | 0.016                                                                                  | 0.334                                                  | 0.927          | 1.000                                | rs77087493   | Т              | А              | 0.79 (0.71-0.89)         | <0.00            |
|         | TAB3    | 67     | 0.033                                                                                  | 0.477                                                  | 0.402          | 0.868                                | rs17283005   | А              | G              | 0.92 (0.86-0.99)         | 0.02             |
|         | CARD10  | 155    | 0.042                                                                                  | 0.522                                                  | 0.386          | 0.868                                | rs4080481    | С              | А              | 1.04 (1.01-1.08)         | 0.01             |
| TLR     | CFLAR   | 200    | <0.001                                                                                 | 0.052                                                  | 0.167          | 0.745                                | rs137937873  | С              | Т              | 1.22 (1.08-1.38)         | 0.00             |
|         | CASP8   | 221    | <0.001                                                                                 | 0.052                                                  | 0.211          | 0.825                                | rs3769821    | Т              | С              | 1.06 (1.03-1.10)         | <0.00            |
|         | IL12B   | 73     | 0.005                                                                                  | 0.267                                                  | 0.706          | 1.000                                | rs2546892    | G              | А              | 0.93 (0.89-0.96)         | <0.00            |
|         | МАРЗК8  | 42     | 0.006                                                                                  | 0.267                                                  | 0.910          | 1.000                                | rs3824589    | Т              | А              | 1.08 (1.02-1.14)         | 0.00             |
|         | CD86    | 206    | 0.020                                                                                  | 0.340                                                  | 0.281          | 0.825                                | rs2681416    | G              | А              | 0.96 (0.93-0.99)         | 0.01             |
|         | TLR1    | 161    | 0.020                                                                                  | 0.340                                                  | 0.727          | 1.000                                | rs5743594    | G              | А              | 0.94 (0.90-0.98)         | 0.00             |
|         | MYD88   | 35     | 0.021                                                                                  | 0.340                                                  | 0.028          | 0.385                                | rs6853       | А              | G              | 1.09 (1.04-1.14)         | 0.00             |
|         | IFNAR1  | 157    | 0.039                                                                                  | 0.522                                                  | 0.668          | 0.976                                | rs13046940   | G              | А              | 1.15 (1.07-1.25)         | <0.00            |
|         | AKT3    | 546    | 0.044                                                                                  | 0.522                                                  | 0.258          | 0.825                                | rs145558771  | Т              | С              | 0.79 (0.67-0.94)         | 0.00             |
| TNF     | CASP10  | 131    | 0.002                                                                                  | 0.141                                                  | 0.280          | 0.825                                | rs115407041  | С              | А              | 1.18 (1.05-1.32)         | 0.00             |
|         | EDN1    | 118    | 0.010                                                                                  | 0.297                                                  | 0.069          | 0.506                                | rs9349158    | А              | С              | 0.94 (0.90-0.99)         | 0.01             |
|         | CCL2    | 59     | 0.023                                                                                  | 0.345                                                  | 0.039          | 0.393                                | rs4586       | т              | С              | 1.05 (1.02-1.09)         | 0.002            |
|         | PGAM5   | 117    | 0.046                                                                                  | 0.522                                                  | 0.848          | 1.000                                | rs1409015057 | TGGG           | т              | 0.89 (0.82-0.96)         | 0.00             |

| NfkB | GADD45B  | 31    | <0.001 | 0.069 | 0.693 | 1.000 | rs2024144   | С   | Т    | 1.05 (0.99-1.10) | 0.087  |
|------|----------|-------|--------|-------|-------|-------|-------------|-----|------|------------------|--------|
|      | MAP3K14  | 166   | 0.005  | 0.223 | 0.276 | 0.937 | rs1352312   | Т   | G    | 1.11 (1.07-1.16) | <0.001 |
|      | IL1R1    | 417   | 0.006  | 0.229 | 0.272 | 0.937 | rs115860741 | G   | А    | 1.28 (1.10-1.5)  | 0.002  |
|      | CARD11   | 447   | 0.011  | 0.349 | 0.955 | 1.000 | rs2527506   | G   | А    | 1.08 (1.04-1.13) | <0.001 |
|      | TRAF6    | 95    | 0.019  | 0.404 | 0.617 | 1.000 | rs200798752 | Т   | TAGA | 0.76 (0.64-0.90) | 0.001  |
|      | CSNK2A1  | 159   | 0.019  | 0.404 | 0.193 | 0.935 | rs80001974  | С   | Т    | 0.77 (0.68-0.87) | <0.001 |
|      | TNFSF11  | 215   | 0.024  | 0.413 | 0.605 | 1.000 | rs78205134  | С   | G    | 0.76 (0.64-0.90) | 0.002  |
|      | CXCL2    | 31    | 0.025  | 0.413 | 0.055 | 0.745 | rs11574449  | С   | G    | 0.82 (0.67-0.99) | 0.037  |
|      | BCL2L1   | 123   | 0.031  | 0.421 | 0.161 | 0.900 | rs117957706 | А   | Т    | 0.79 (0.67-0.94) | 0.009  |
|      | PARP1    | 217   | 0.035  | 0.421 | 0.016 | 0.448 | rs78797064  | Т   | G    | 0.80 (0.69-0.91) | 0.001  |
| TLR  | LY96     | 172   | 0.001  | 0.077 | 0.541 | 0.970 | rs142442787 | Т   | С    | 0.77 (0.66-0.89) | 0.001  |
|      | TLR1     | 161   | 0.012  | 0.349 | 0.149 | 0.900 | rs3924113   | G   | Т    | 1.06 (1.02-1.11) | 0.009  |
|      | TLR6     | 163   | 0.019  | 0.404 | 0.480 | 0.959 | rs79025411  | G   | А    | 0.78 (0.68-0.90) | 0.001  |
|      | РІКЗСВ   | 292   | 0.030  | 0.421 | 0.570 | 0.983 | rs869187727 | TAA | Т    | 1.07 (1.03-1.12) | 0.001  |
|      | IL12B    | 73    | 0.033  | 0.421 | 0.228 | 0.937 | rs2569253   | С   | Т    | 1.06 (1.03-1.10) | 0.001  |
|      | MYD88    | 35    | 0.035  | 0.421 | 0.715 | 1.000 | rs6853      | А   | G    | 1.09 (1.04-1.16) | 0.001  |
|      | TICAM2   | 90    | 0.043  | 0.445 | 0.046 | 0.745 | rs256945    | Т   | А    | 0.93 (0.89-0.96) | <0.001 |
|      | PIK3R1   | 301   | 0.045  | 0.445 | 0.456 | 0.957 | rs831229    | G   | А    | 0.94 (0.90-0.97) | 0.001  |
| TNF  | CREB5    | 1,712 | 0.003  | 0.196 | 0.098 | 0.900 | rs12671650  | С   | Т    | 1.10 (1.06-1.14) | <0.001 |
|      | CREB3    | 33    | 0.003  | 0.196 | 0.203 | 0.937 | rs10814274  | С   | Т    | 1.06 (1.02-1.10) | 0.002  |
|      | TNFRSF1A | 39    | 0.022  | 0.413 | 0.787 | 1.000 | rs4149587   | С   | G    | 1.05 (1.01-1.09) | 0.012  |
|      | TNFRSF1B | 103   | 0.043  | 0.445 | 0.529 | 0.970 | rs5745961   | С   | Т    | 0.78 (0.65-0.95) | 0.015  |
|      | TNFAIP3  | 77    | 0.045  | 0.445 | 0.748 | 1.000 | rs79608867  | G   | С    | 0.84 (0.70-1.00) | 0.051  |
|      | RPS6KA4  | 85    | 0.047  | 0.445 | 0.840 | 1.000 | rs117514762 | С   | Т    | 0.83 (0.73-0.95) | 0.006  |

Abbreviations: TLR = toll-like receptor; NFkB = nuclear factor kappa B; TNF = tumor necrosis factor; EOC = epithelial ovarian cancer; HGSOC = high grade serous ovarian cancer; AACES = African American Cancer Epidemiology Study; OCAC = Ovarian Cancer Association Consortium; SNP = single nucleotide polymorphism; FDR = false discovery rate; Ref = referent; Alt = alternate; OR = odds ratio; CI = confidence interval.

<sup>a</sup>With unadjusted P-value < 0.05.

<sup>b</sup>Aggregate P-value of MAGMA linreg, snp-wise=mean and snp-wise=top model results. Each model controls for age and the first two ancestry principal components.

°Corrected for multiple testing by the number of genes tested using the Bejnamini-Hochberg false discovery rate (FDR).

<sup>d</sup>Additive model adjusted for age and two ancestry principal components

| Table 4.5. Statistically significant BMI interactions and lead SNPs among raw statistically significant genes associated with |
|-------------------------------------------------------------------------------------------------------------------------------|
| EOC or HGSOC risk among White women in OCAC. <sup>a</sup>                                                                     |

| Pathway | Gene   | Test 67%      |                   | Validation 33%  |                   | -           |                |                |                                     |                             |
|---------|--------|---------------|-------------------|-----------------|-------------------|-------------|----------------|----------------|-------------------------------------|-----------------------------|
|         |        | $P_{BMI}^{b}$ | $P_{BMI FDR}^{c}$ | $P_{BMI}{}^{b}$ | $P_{BMI FDR}^{c}$ | Lead SNP    | Ref.<br>allele | Alt.<br>allele | OR <sub>SNPxBMI</sub> d<br>(95% CI) | <b>P</b> <sub>SNPxBMI</sub> |
| EOC     |        |               |                   |                 |                   |             |                |                |                                     |                             |
| TNF     | EDN1   | 0.016         | 0.392             | 0.868           | 1.000             | rs9296344   | Т              | С              | 0.98 (0.96-1.00)                    | 0.088                       |
| HGSOC   |        |               |                   |                 |                   |             |                |                |                                     |                             |
| NfkB    | CARD11 | 0.027         | 0.517             | 0.123           | 1.000             | rs144144335 | С              | Т              | 0.90 (0.85-0.95)                    | <0.001                      |

Abbreviations: BMI = body mass index; EOC = epithelial ovarian cancer; HGSOC = high grade serous ovarian cancer; OCAC = Ovarian Cancer Association Consortium; SNP = single nucleotide polymorphism; FDR = false discovery rate; Ref = referent; Alt = alternate; OR = odds ratio; CI = confidence interval; TNF = tumor necrosis factor.

<sup>a</sup>With unadjusted P-value < 0.05.

<sup>b</sup>Aggregate P-value of MAGMA model results for gene\*BMI interaction. Each model controls for age, BMI, and the first two ancestry principal components.

<sup>c</sup>Corrected for multiple testing by the number of genes tested using the Benjamini-Hochberg false discovery rate (FDR). <sup>d</sup>OR for SNP\*BMI interaction term in an additive model adjusted for age, BMI and two ancestry principal components. Chapter 5: Aim 2.

Pathogen-recognition and Inflammatory Genes and Pathways Associated with Epithelial Ovarian Cancer Survival

#### 5.1. Abstract

**Background:** Despite being a rare cancer, epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy in the US. EOC survival is further complicated by the heterogeneity of histologic subtypes and racial disparities in clinical outcomes. Inflammation in the tumor microenvironment is an established driver of cancer progression and may represent targetable processes for treatment. In this study we investigate whether genetic variation in the toll-like receptor (TLR) and downstream pro-inflammatory NFkB- and TNF-signaling pathways is associated with EOC survival at the gene or pathway level among Black and White women.

**Methods:** Eligible EOC cases were self-reported, non-Hispanic Black and White women with OncoArray genotype data from the African American Cancer Epidemiology Study (AACES) and the Ovarian Cancer Association Consortium (OCAC). Single-nucleotide polymorphisms (SNPs) were mapped to 224 genes in the Kyoto Encyclopedia of Genes and Genomes TLR, NFkB, and TNF pathways based on chromosomal location ± 10,000 base pairs to capture promoter and regulatory regions. Due to differences in minor allele frequencies and population stratification, all analyses were stratified by race (Black and White women). To test and internally validate our results, we further randomized the White population into a 67% test cohort or a 33% validation cohort. To examine the associations of genes (a combination of SNPs) and pathways (a combination of genes or 'gene-set') with EOC survival, we used the Multi-marker Analysis of GenoMic Annotation (MAGMA) tool for gene and generalized gene-set analyses of GWAS data. We assumed an additive genetic model to assess the associations with EOC or high-grade serous EOC (HGSOC) 5-year survival (yes vs. no) adjusting for age, FIGO stage, tumor histotype (EOC model only) and ancestry principal components. In addition, we investigated a possible gene x environment interaction with the genes/pathways with body mass index (BMI), which is disparately associated with EOC and race and is considered a chronic state of inflammation.

**Results:** Our study consisted of 720 Black and 13,747 invasive EOC cases. Genes in White women had noticeably fewer SNPs mapped within the chromosomal locations. No pathway was statistically significant for any group in relation to EOC or HGSOC 5-year survival nor was any gene after correcting for multiple testing. Per raw *P*-values < 0.05, *AKT3* and *CTSK* genes were associated with EOC and/or HGSOC 5-year survival in both Black and White women. *LTA* was the only gene observed to possibly have a Black EOC 5-year survival association differential by BMI. No interactions with BMI were observed for White women.

**Conclusion:** No gene results were statistically significant after multiple testing correction. We observed genes associated ( $P_{raw} < 0.05$ ) with EOC and HGSOC 5-year survival among Black and White women that are biologically plausible and consistent with previously published literature among EOC and/or other cancer sites. These results may provide insight or generate new hypotheses regarding processes contributing to EOC survival.

# 5.2. Introduction

The most fatal of all gynecologic malignancies, ovarian cancer-specific mortality ranks fifth highest among female cancers in the US, despite being a rare cancer.<sup>4</sup> Although Black women have a lower risk of developing epithelial ovarian cancer (EOC), they experience markedly worse outcomes relative to White women<sup>29</sup> and have a five-year relative survival approximately 10% lower.<sup>178</sup>

Tumor-associated inflammation in the tumor microenvironment (TME) is an established driver of proliferation, progression, metastasis, chemoresistance, and genomic instability.<sup>37,179</sup> The tumor microenvironment milieu contains both inflammatory and immunosuppressive components

that are coopted by malignant and infiltrating immune cells.<sup>46</sup> Tumor-associated macrophages, for example, are often functionally transformed into the M2-like phenotype which favor tumor growth and promote TME remodeling by producing growth and immunosuppressive factors.<sup>47</sup>

Toll-like receptors (TLRs) are pattern recognition receptors that play a key role in immunity and downstream inflammatory responses by recognizing small, conserved microbial motifs expressed by microorganisms.<sup>50,51</sup> TLRs expressed in cancer cells can promote proliferation, antiapoptosis, and chemoresistance of EOC through the activation of multiple proinflammatory cytokines.<sup>42,58</sup> Select TLRs also recognize endogenous ligands released as part of cellular debris following cell death.<sup>51</sup> Cellular debris released during primary debulking surgery or chemotherapy can be recognized by TLRs and may initiate tumor repair processes leading to recurrence. Downstream of TLR ligation and binding with adapter proteins, an intricate signaling cascade is triggered that activates immune response and inflammatory signaling pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB)<sup>100</sup> and tumor necrosis factor a (TNFa).<sup>101</sup> NFkB is hypothesized to be a major link between chronic inflammation and cancer as it functions in all cell types present within the tumor microenvironment and modulates further inflammation and metastasis.<sup>102</sup> In EOC, a meta-analysis of 9 retrospective studies showed that a systemic immune inflammation index (calculated via pre-treatment neutrophil, platelet, and lymphocyte counts) was associated with lymph-node metastasis and progression-free and disease-free survival.<sup>180</sup>

EOC is a heterogeneous disease that consists of five major histotypes (a combination of histology and grade) that have differing cells of origin, morphology, molecular features, methylation patterns, gene and RNA expression signatures, epidemiologic risk factors, clinical characteristics, and survival rates.<sup>12,13,25–27</sup> The most common histotype, high grade serous ovarian cancer (HGSOC) tumors were observed to have a greater endogenous immune response (indicated by tumor

infiltrating lymphocytes) relative to other histotypes.<sup>181</sup> In a study of inflammatory serum biomarkers (glycoproteins A, B, and C) among HGSOC cases, researchers observed significantly higher levels in HGSOC and was associated with tumor progression.<sup>182</sup>

Black-White differences in genetic associations, gene expression and molecular biomarkers related to inflammatory processes have been observed in previous GWAS and candidate SNP studies<sup>74,75,121</sup> and TLR genetic variants known to increase inflammation have been found to differ between the two racial groups.<sup>76</sup> Immune and inflammatory responses have been observed to differ between Black and White individuals in numerous cancers including ovarian, breast, colon, prostate, and lung.<sup>183,184</sup> Despite these findings and the polymorphic nature of these genes, no study has thoroughly investigated racial differences in genetic variation of pathogen recognition and inflammatory pathways among Black and White women with EOC. Therefore, in this study we investigate whether genetic variation at the gene and/or pathway level of TLR, NFkB, and TNF is associated with EOC 5-year overall survival (OS). Additionally, we assess whether there is a possible gene x environment interaction with a chronic inflammatory state, characterized by body mass index (BMI), and OS. To account for population stratification and to elucidate if there are any gene or pathway differences between Black and White women, all outcomes and analyses are stratified by genetic ancestry (European, referred to in this paper as 'White' or >50% African, referred to as 'Black'). We additionally restrict our analyses to HGSOC cases to limit possible confounding due to histotype heterogeneity.

# 5.3. Methods

# 5.3.1. Case ascertainment and vital status

The African American Cancer Epidemiology Study (AACES) is a population-based casecontrol study of Black women with invasive EOC and controls residing in 11 geographic locations in the U.S. enrolled between December 2010 and August 2016.<sup>80</sup> Cases were identified through cancer registries and hospitals and were eligible for the study if they were 1) aged 20–79 years, 2) selfreported Black race, and 3) resided in one of the included geographic regions.<sup>80</sup> Annual follow-up interviews were attempted to collect information regarding vital status and length of overall survival (OS). The goal for time between baseline interview and follow-up was one year. When follow-up interviews were not possible, thorough searches withing Lexus Nexus, obituaries, and the National Death Index were implemented to obtain date and cause of death where applicable.<sup>80</sup>

The Ovarian Cancer Association Consortium (OCAC)<sup>81</sup> consists of more than 80 participating groups from four continents: North America, Europe, Asia, and Australia. Eligible case-control and cohort studies provided germline DNA for genotyping, epidemiologic data, and vital status information, which was centrally harmonized at the OCAC data-coordination center. A list of all participating OCAC studies is presented in **Supplementary table ST2**.

All White invasive EOC cases from OCAC genotype data who self-identified as non-Hispanic were eligible for analysis in this project. The Black cases from AACES and OCAC were previously subset to include women with >50% African genetic ancestry, calculated using the software package FastPop.<sup>85,122</sup>

### 5.3.2. SNP Selection, Genotyping, and Quality Control

Genotyping was performed at five centers: University of Cambridge, Center for Inherited Disease Research (CIDR), National Cancer Institute (NCI), Genome Quebec and Mayo Clinic using an Illumina Infinium iSelect BeadChip. Genotype data quality control (QC) was previously carried out according to the OncoArray QC guidelines. A small number of subjects that were not genetically female (XX) or those who had ambiguous sex, or were duplicates were omitted from the dataset.<sup>26,85</sup> White OCAC genotyped samples were imputed using the Michigan Imputation Server to the Trans-Omics for Precision Medicine (TOPMed) imputation with 97,256 samples (Version R2 on GRCh38/hg38).<sup>86</sup> Phasing was performed with Eagle2<sup>87</sup> and imputation with Minimac3.<sup>51</sup> In the Black genomic data, SNPs that were not directly genotyped were imputed according to the 1,000 Genomes Phase 3 v5 reference set (GRCh37/hg19) using Minimac3.<sup>88</sup> SNP level post-imputation QC included filtering on call rate >95%, Hardy–Weinberg Equilibrium  $p > 1 \times 10^{-5}$ , and a minor allele frequency (MAF) ≥0.01 using PLINK 2.0.<sup>89,90</sup>

## 5.3.3. Genes and Pathways

The 224 candidate genes included for analysis were selected from the Kyoto Encyclopedia of Genes and Genomes (KEGG)<sup>82</sup> TLR, NFkB and TNF pathways. In situations where a gene appears in multiple pathways, we assigned the gene to only one pathway based off function (for example, lipopolysaccharide binding protein [*LBP*] is in both and NFkB and TLR pathways but analyzed only in the TLR pathway). In total, 95, 74, and 55 genes were in the TLR, NFkB, and TNF pathways, respectively. SNPs within each candidate gene were selected based on the chromosomal coordinates of the start and end positions (Ensembl GRCh37/hg19 for the Black dataset and GRCh38/hg38 for the White)<sup>83,84</sup> ±10,000 base pairs to capture promoter and regulatory regions. All included genes and the chromosomal coordinates are shown per pathway in **Supplementary Table ST3.** 

#### 5.3.4. Statistical Analysis

To control for population admixture we use ancestry principal components (PCs). PCs were previously, separately calculated for the Black and White datasets using the software package FastPop, developed specifically for the OncoArray.<sup>26,85</sup> To confirm the correct number of PCs to use, we used the Admixture program, which estimates ancestry in a model-based manner from large autosomal SNP genotype datasets, on the raw Black genomic data.<sup>94</sup> Using the cross-validation procedure, selection of two PCs was indicated as the the ideal number of ancestral populations based on a low cross-validation error estimate (**Figure 3.1**). We applied the same number of PCs to our White population and assessed adequate control for possible inflation via QxQ plots and λ values

generated from the *P*-values of all genome-wide SNPs assuming an additive logistic regression model controlling for age and the first two PCs. While using two PCs, we observed adequate control per the calculated  $\lambda$  values ( $\lambda_{Black} = 1.02$ ,  $\lambda_{White} = 1.10$ ) and QxQ plots (shown in **Supplementary Figures SF1-SF2**).

To examine the associations between genes (a combination of SNPs) and pathways (a combination of genes) and EOC 5-year survival, we use the Multi-marker Analysis of GenoMic Annotation (MAGMA) tool for gene and generalized gene-set analyses of GWAS data.<sup>123</sup> In brief, MAGMA accounts for local linkage disequilibrium and aggregates multiple logistic regression modelderived P-values for SNPs within the same gene. We applied the additive genetic model to assess the association with EOC or HGSOC 5-year overall survival (OS; yes vs no) adjusting for age (continuous), FIGO stage, histotype (EOC model only), and two ancestry PCs (continuous). To examine the associations between pathways (a combination of genes) and OS, each gene P-value computed in the previous model is converted to a Z-value to yield a roughly normal distribution that reflects the strength of the association for each gene with 5-year survival. The competitive gene-set analysis is implemented as a linear regression model on this gene-level data matrix where the resulting P-value tests whether the mean association with EOC/HGSOC survival varies among genes in a specified gene-set (in this case, a pathway) relative to the genes not in the gene-set. MAGMA adjusts for gene size, gene density, the inverse of the mean MAC in the gene and the log value of each. To evaluate a possible interaction among genes and pathways with pre-diagnosis body mass index (BMI, kg/m<sup>2</sup>, continuous), we used an extension of the MAGMA tool by adding a SNP by covariate interaction to the gene-level model. To correct for multiple testing, we adjust the raw genelevel P-values by the number of genes tested using the Benjamini-Hochberg false-discovery rate (FDR).<sup>124</sup> We present both raw and FDR-corrected results.

61

To better understand what may be driving a gene-level association with EOC/HGSOC 5-year survival, we report the lead SNP for gene and gene\*BMI interactions that are statistically significant at P<sub>raw</sub> < 0.05. The measure of association and *P*-value for each lead SNP in a gene are calculated via a genome-wide association analysis for EOC/HGSOC 5-year OS via logistic regression controlling for age, FIGO stage, histotype (EOC model only), and two ancestry PCS. For statistically significant unadjusted gene\*BMI interaction, we use the same genome-wide additive logistic regression model with a SNP\*BMI interaction term. We report the SNP rsID, odds ratio (OR), 95% confidence interval (CI) and raw *P*-value for the most statistically significant gene-specific SNP.

As these data are the largest collection of genomic invasive EOC data and, therefore, cannot be validated in external data sources, we randomly split our White analytic dataset into a 67% test set and 33% internal validation set. We compared selected baseline characters between the two sets and determined successful randomization (**Table 5.1**). Although this the remains the largest genomic dataset for Black women with EOC as well, we unfortunately lack the sample size to conduct internal validation in this group.

# 5.4. Results

In total, the Black dataset (AACES + OCAC) included 720 cases and the White test and validation datasets included 9,181 and 4,566 cases, respectively. Selected baseline characteristics per study population are presented in **Table 5.1**. Black cases had an average of 5 years follow-up time while White women had an average of 6 years. About one quarter of the White cases, regardless of test/validation group were missing information regarding FIGO stage compared to only 17.5% of Black cases.

All aggregate associations of SNPs at the gene and pathway levels for TLR, NFkB, and TNF signalling with EOC and HGSOC 5-year survival among Black and White women are shown in

**Supplementary Tables ST5.1- ST5.4.** No pathway-level or FDR-correct gene-level association was statistically significant for either racial group.

We present genes associated with EOC/HGSOC 5-year survival among Black women with a raw *P*-value of < 0.05 in **Table 5.2**. Results for BMI interactions are presented alongside each raw, statistically significant gene. In total, 11 genes were associated with Black EOC survival and six with HGSOC survival. Although no genes in the TNF pathway were associated with either outcome among Black women, several TNF superfamily genes that are part of processes in the TLR and NFkB pathways were observed. *TNFRSF11A and CTSK* were associated with both EOC and HGSOC survival. *LTA* was the only gene among Black women to have an interaction with BMI for EOC survival. No HGSOC survival-associated genes were observed to have an interaction ( $P_{BMI} = 0.03$ ;  $P_{BMI FDR} = 0.60$ ), however, the lead SNP joint interaction was not statistically significant [rs3093544; OR = 1.10 (95% CI: 0.99-1.23)].

The *P*<sub>raw</sub> statistically significantly associated genes for EOC/HGSOC 5-year OS among White women are presented in **Table 5.3**. Genes in White women had noticeably fewer SNPs mapped within the chromosomal locations. This may be due to differences in minor allele and haplotype frequencies between the two groups, particularly for the TOPMed White genomic data where 96% of SNPs had a MAF < 0.01.<sup>59</sup> Six genes had no SNPs mapped after post-imputation and MAGMA internal QC filters, such as MAF, MAC, and differential missingness. Two genes (*MAPK11* and *MAPK12*) had chromosomal coordinates that were not included in the OCAC data (**Supplementary Tables ST5.3**-**ST5.4**). *CTSK* was also associated with EOC survival among White women but unlike in the Black women, no associated was observed for HGSOC 5-year OS. *AKT3*, however, was associated with HGSOC survival in both groups. In total, six genes were associated with EOC and HGSOC 5-year survival among White women: *PTSG2, GADD45B, VCAM1, TAB1, TLR9, TLR8,* and *PIK3CA*. Although we did observe associated genes in the TNF pathway for survival among White women, in contrast

to Black women, no genes overlapped between the two outcomes. Furthermore, no gene among White women had a raw, statistically significant interaction with BMI for EOC or HGSOC. Only three genes were associated with White EOC/HGSOC 5-year survival among both the test and validation cohorts: *VCAM1* (HGSOC survival only), *TLR9* and *IL6* (both EOC only).

# 5.5. Discussion

In this analysis of genetic variation, we investigated whether TLR, NFkB, and TNF genes and/or pathways were associated with Black and White EOC or HGSOC 5-year OS. Although our results were null after FDR correction, we did observe genes that were associated with EOC/HGSOC 5-year OS in both groups when considering the  $P_{raw}$  threshold of < 0.05. While these results do not indicate an irrefutable association with these genes and ovarian cancer survival, discussion of these genes may elucidate possible biological mechanisms or generate new hypotheses that could contribute to our understanding of what drives the fatality of this disease.

*CTSK* was associated with both EOC and HGSOC 5-year survival among Black women and EOC 5-year survival among White women. Cathepsin K (CTSK) is part of the cathepsin superfamily, members of which are highly expressed in various cancers and mediate metastasis.<sup>185</sup> *CTSK* in EOC is differentially expressed in peritoneal metastatic ovarian (N=57) relative to primary ovarian tumor tissues (N=153) and validated in 30 pairs of matched fresh tissues.<sup>186</sup> In another small study, immunohistochemistry expression of CTSK in EOC tumor and paired, adjacent normal tissues was observed to be upregulated in EOC tissues and was also associated with metastasis and poorer survival.<sup>187</sup>

*AKT3* was associated with HGSOC 5-year survival among both Black and White women as well. AKT protein isoforms are part of the PI3K/AKT signalling pathway that promotes cell survival, growth, migration, and progression.<sup>188,189</sup> Dysfunction of this pathway is a known driver of cancer progression and treatment resistance.<sup>188,190</sup> AKT3 is not as well studied as its first two isoforms. By

way of EOC, results are conflicting. One study observed knockdown of AKT3 in EOC cell lines was associated with increased tumor size relative to controls<sup>191</sup> while another found knockdown led to a decrease in ovarian cancer cell proliferation.<sup>192</sup> The authors of the former study did note that they observed decreased proliferation in two EOC cell lines, which were the two lines exhibiting the highest levels of AKT3 at baseline.<sup>191</sup> Perhaps this is why we only observed AKT3 associated with HGSOC in our study. mRNA *AKT3* expression via laser capture micro-dissected ovarian tissues was observed to be differential in HGSOC tumors relative to benign tumors or normal epithelium.<sup>193</sup> Whether there would be differential expression between HGSOC and other EOC histotypes, however, is unknown. Mutations in a PI3K subunit gene, *PIK3CA*, which was also associated with White EOC and HGSOC 5-year survival in our study, have been shown to stimulate downstream AKT signalling and increase cell invasion and metastasis.<sup>189</sup>

In Black women, TNF superfamily member 11 encoding gene (*TNFSF11*) was associated with EOC survival and the gene that encodes its receptor, *TNFRSF11A*, was associated with both EOC and HGSOC survival. Binding of TNFSF11 induces NFkB and MAPK8 activation. Also known as receptor activator NFkB ligand (RANKL; RANK for TNFRSF11A), high protein expression has been observed in cancers such as colorectal, cervical, and breast.<sup>194</sup> RANKL is implicated in tumorigenesis at every step from epithelial-mesenchymal transition to distant metastasis.<sup>194,195</sup>

*LTA* was also associated with Black EOC 5-year survival and was the only gene in our analysis indicated to possibly differ by BMI. Previously referred to as TNF-beta, lymphotoxins alpha (LTA) is a cytotoxic protein in the TNF superfamily. Polymorphisms in *LTA* have been observed in association with cancer risks such as breast and lung.<sup>196-201</sup> Lymphotoxins and their possible role in cancer survival is less well understood. In colorectal cancer cells, LTA was associated with increased cell migration, proliferation, pro-inflammatory signalling and chemoresistance.<sup>202,203</sup> Cancer cell-derived lymphotoxin was found to induce chemokine expression in fibroblasts via NFkB signalling in EOC

cells.<sup>204</sup> There is epidemiologic evidence that polymorphisms in *LTA*, some of which overlap with our analyses, are associated with metabolic diseases (highly prevalent in Black women),<sup>205</sup> including BMI, although none of the study populations included Black participants.<sup>206–210</sup>

The greatest strength of our study is the largest sample of high quality, EOC genotype data and pathologist-confirmed clinical outcomes. In addition, to our knowledge, this is the first comprehensive analysis of TLR, NFkB, and TNF genes and pathways for EOC and HGSOC 5-year survival. Our selection of pathways and genes was hypothesis-driven and the aggregate analysis of SNPs at the gene level facilitates investigation of a singular function while the pathway level considers cellular processes at large.

Ovarian cancer is a rare disease and Black women are ubiquitously under-represented in large-scale cancer studies.<sup>211</sup> Although this is the largest genetic dataset for Black and White women with EOC, we were still hindered by small sample sizes in subgroups such as histotype, which are known to be differentially associated with race, genetic markers, and clinical outcomes. To reduce histotype variability, we restricted our analyses to HGSOC cases *only* and observed genes that were associated with EOC remained statistically significant. Still, these genes may not be generalizable to other histotypes such as low-grade serous and mucinous. We must also acknowledge the inherent limitations of genetic studies between racial groups and cautiously interpret results as race is a social construct and disparities in health are rarely a direct result of genetic differences. Furthermore, cancer is a stochastic disease and genetics account for very few *causal* mechanisms at any cancer site. However, genes associated with survival may provide insight for novel therapies and prognostic markers.

The validity of the White OCAC data may also be a major limitation in our analyses. The vast majority of SNPs imputed had MAFs less than or equal to 0.01 and far fewer passed QC filtering

relative to the Black imputed data. We explored multiple datasets and QC thresholds but could not map SNPs to every selected gene among the White datasets. Nor could we replicate previously published OCAC GWAS SNP totals, λ or QxQ plot. Upon our request for scripts to reproduce these results, we were informed the findings were generated using an in-house logit program. Furthermore, some of the raw genomic data was truncated resulting in missing data for entire genes. These reasons could be why we observed very few internally validated results between our 67/33% randomly split cohorts. Another possibility for the lack of validation could be an extreme sensitivity to sample size in the MAGMA program. Considering the 33% cohort is still larger than our total Black population, concerns regarding the validity of those results should be acknowledged. Unfortunately, very few programs outside of MAGMA can incorporate gene\*environment interactions or input raw GWAS data. There are no publicly available summary statistics for EOC survival.

In conclusion, there are genetic variations in pathogen recognition and downstream inflammatory pathways that are associated ( $P_{raw} < 0.05$ ) with EOC and/or HGSOC 5-year survival which are biologically consistent and plausible with cell mechanisms and cancer progression. These results, along with EOC disparities studies overall, require larger minority populations for replication and subgroup analyses.

## 5.6. Tables and Figures

|                               | Black cases | White cases    | White cases  |
|-------------------------------|-------------|----------------|--------------|
|                               | DIACK Cases | 67% Validation | 33% Test     |
| N                             | 720         | 9,181          | 4,566        |
| Age, mean (sd)                | 57.1 (11.2) | 58.8 (11.4)    | 58.8 (11.6)  |
| BMI, mean (sd)                | 32.8 (8.3)  | 27.1 (6.1)     | 27.6 (6.8)   |
| missing, N (%)                | 166 (23.1)  | 7,055 (76.8)   | 3,537 (77.5) |
| Year of diagnosis, N (%)      |             |                |              |
| 1990-1999                     | 11 (1.5)    | 74 (0.8)       | 41 (0.9)     |
| 2000-2009                     | 119 (16.5)  | 1,212 (13.2)   | 1,386 (30.4) |
| 2010-2019                     | 423 (58.8)  | 2,884 (31.4)   | 647 (14.2)   |
| missing                       | 167 (23.2)  | 5,010 (54.6)   | 2,492 (54.6) |
| Stage, N (%)                  |             |                |              |
| localized                     | 128 (17.8)  | 1,082 (11.8)   | 545 (11.9)   |
| regional                      | 66 (9.2)    | 1,395 (15.2)   | 695 (15.2)   |
| distant                       | 400 (55.6)  | 4,414 (48.1)   | 2,315 (50.7) |
| unstaged/missing              | 126 (17.5)  | 2,290 (24.9)   | 1,191 (26.1) |
| Histotype, N (%)              |             |                |              |
| high-grade serous             | 423 (58.8)  | 5,612 (61.1)   | 2,774 (60.8) |
| low-grade serous              | 20 (2.8)    | 310 (3.4)      | 167 (3.7)    |
| endometrioid                  | 64 (8.9)    | 612 (6.7)      | 292 (6.4)    |
| clear cell                    | 26 (3.6)    | 528 (5.6)      | 281 (6.2)    |
| mucinous                      | 34 (4.7)    | 514 (5.6)      | 274 (6)      |
| other EOC                     | 153 (21.3)  | 1,605 (17.5)   | 754 (16.5)   |
| Years of follow-up, mean (sd) | 5.3 (3.9)   | 6.2 (4.7)      | 6.2 (4.8)    |
| missing, N (%)                | 92 (12.8)   |                |              |
| 5-year survival, N (%)        |             |                |              |
| yes                           | 313 (43.5)  | 3,150 (34.3)   | 1,557 (34.1) |
| no                            | 296 (41.1)  | 3,201 (34.9)   | 1,573 (34.5) |
| missing                       | 111 (15.4)  | 2,830 (30.8)   | 1,436 (31.4) |

Abbreviations: BMI = body mass index; N = number; sd = standard deviation; EOC = epithelial ovarian cancer.

|             | 550C 5-year 0 | verall su | rvivat arr | iong Bla                      | CK WOMEN IN A    | ACES an        | IO UCAC.       | -                        |                  |
|-------------|---------------|-----------|------------|-------------------------------|------------------|----------------|----------------|--------------------------|------------------|
| Path<br>way | Gene          | #<br>SNPs | $P^b$      | P <sub>FDR</sub> <sup>c</sup> | Lead SNP         | Ref.<br>allele | Alt.<br>allele | OR (95% CI) <sup>d</sup> | P <sub>SNP</sub> |
| EOC         |               |           |            |                               |                  |                |                |                          |                  |
| NFkB        |               |           |            |                               |                  |                |                |                          |                  |
|             | LTA           | 11        | 0.026      | 0.916                         | rs4647195        | Т              | С              | 0.18 (0.05-0.61)         | 0.006            |
|             | BCL2L1        | 155       | 0.030      | 0.916                         | rs6058431        | Т              | С              | 1.51 (1.14-1.99)         | 0.004            |
|             | TNFRSF11A     | 355       | 0.032      | 0.916                         | rs11152342       | G              | С              | 1.71 (1.30-2.25)         | <0.001           |
|             | LCK           | 125       | 0.044      | 0.916                         | rs79979643       | G              | А              | 0.29 (0.13-0.66)         | 0.003            |
|             | ZAP70         | 120       | 0.046      | 0.916                         | rs57831860       | С              | Т              | 0.66 (0.52-0.84)         | 0.001            |
| TLR         |               |           |            |                               |                  |                |                |                          |                  |
|             | FOS           | 11        | 0.009      | 0.916                         | rs2239615        | А              | Т              | 0.64 (0.45-0.91)         | 0.013            |
|             | STAT1         | 195       | 0.020      | 0.916                         | rs144222846<br>9 | TG             | Т              | 1.5 (1.17-1.93)          | 0.002            |
|             | MAP2K4        | 382       | 0.032      | 0.916                         | rs115783238      | Т              | С              | 0.36 (0.18-0.71)         | 0.003            |
|             | TAB2          | 548       | 0.035      | 0.916                         | rs144021633<br>7 | ТА             | Т              | 0.67 (0.50-0.88)         | 0.005            |
|             | CTSK          | 22        | 0.035      | 0.916                         | rs929955171      | CA             | С              | 2.98 (1.46-6.09)         | 0.003            |
|             | IKBKE         | 163       | 0.037      | 0.916                         | rs12093831       | С              | Т              | 1.36 (1.07-1.73)         | 0.013            |
| HGSO        | C             |           |            |                               |                  |                |                |                          |                  |
| NFkB        |               |           |            |                               |                  |                |                |                          |                  |
|             | TNFSF11       | 216       | 0.004      | 0.764                         | rs633137         | Т              | С              | 2.13 (1.41-3.22)         | <0.001           |
|             | TNFRSF11A     | 355       | 0.007      | 0.764                         | rs12454677       | С              | Т              | 4.12 (2.06-8.25)         | <0.001           |
|             | BCL2          | 961       | 0.021      | 0.971                         | rs4987856        | С              | Т              | 9.9 (2.24-43.8)          | 0.003            |
| TLR         | 0.701/        |           |            |                               |                  |                |                |                          |                  |
|             | CTSK          | 22        | 0.010      | 0.775                         | rs16841797       | С              | Т              | 1.77 (1.22-2.58)         | 0.003            |
|             | AKT3          | 1176      | 0.027      | 0.971                         | rs116556988      | Т              | G              | 2.27 (1.16-4.44)         | 0.017            |
|             | TICAM2        | 194       | 0.039      | 0.971                         | 5:114920059      | ACTT           | А              | 2.72 (1.27-5.85)         | 0.010            |

**Table 5.2.** Gene associations and lead SNPs within TLR, NFkB, and TNF pathways with invasive EOC and HGSOC 5-year overall survival among Black women in AACES and OCAC.<sup>a</sup>

Abbreviations: TLR = toll-like receptor; NFkB = nuclear factor kappa B; TNF = tumor necrosis factor; EOC = epithelial ovarian cancer; HGSOC = high grade serous ovarian cancer; AACES = African American Cancer Epidemiology Study; OCAC = Ovarian Cancer Association Consortium; SNP = single nucleotide polymorphism; FDR = false discovery rate; Ref = referent; Alt = alternate; OR = odds ratio; CI = confidence interval. <sup>a</sup>With unadjusted P-value < 0.05.

<sup>b</sup>Aggregate P-value of MAGMA model results. Each model controls for age, two ancestry principal components stage at diagnosis, and histotype (EOC model only).

<sup>°</sup>Corrected for multiple testing by the number of genes tested using the Benjamini-Hochberg false discovery rate (FDR).

<sup>d</sup>Additive model adjusted for age, two ancestry principal components, stage at diagnosis, and histotype (EOC model only).

|           |          | _         | Tes     | tset          | Valida | tion Set      | _           |             |             |                          |                  |
|-----------|----------|-----------|---------|---------------|--------|---------------|-------------|-------------|-------------|--------------------------|------------------|
| Pathway ( | Gene     | #<br>SNPs | $P^{b}$ | $P_{FDR}^{c}$ | $P^b$  | $P_{FDR}^{c}$ | lead SNP    | Ref. allele | Alt. allele | OR (95% CI) <sup>d</sup> | P <sub>SNP</sub> |
| EOC       |          |           |         |               |        |               |             |             |             |                          |                  |
| NFkB      |          |           |         |               |        |               |             |             |             |                          |                  |
|           | PTGS2    | 115       | 0.002   | 0.434         | 0.827  | 0.979         | rs4648284   | Т           | С           | 0.79 (0.65-0.96)         | 0.01             |
|           | CXCL12   | 158       | 0.017   | 0.628         | 0.753  | 0.956         | rs71494727  | G           | А           | 0.86 (0.75-0.98)         | 0.02             |
|           | TAB3     | 66        | 0.020   | 0.535         | 0.975  | 0.993         | rs62590400  | G           | С           | 0.80 (0.67-0.95)         | 0.01             |
|           | GADD45B  | 30        | 0.029   | 0.628         | 0.100  | 0.817         | rs2024144   | С           | Т           | 1.05 (0.97-1.14)         | 0.22             |
|           | SYK      | 512       | 0.030   | 0.628         | 0.128  | 0.817         | rs7852876   | Т           | А           | 1.10 (1.03-1.16)         | 0.00             |
|           | VCAM1    | 30        | 0.041   | 0.628         | 0.270  | 0.826         | rs3176862   | С           | G           | 1.21 (0.97-1.49)         | 0.08             |
| TLR       |          |           |         |               |        |               |             |             |             |                          |                  |
|           | CTSK     | 52        | 0.010   | 0.628         | 0.662  | 0.956         | rs111905669 | Т           | С           | 0.92 (0.87-0.98)         | 0.00             |
|           | TAB1     | 94        | 0.011   | 0.628         | 0.769  | 0.959         | rs3830119   | Т           | С           | 1.13 (1.05-1.22)         | 0.00             |
|           | TLR9     | 37        | 0.024   | 0.628         | 0.023  | 0.817         | rs352139    | С           | Т           | 1.12 (1.06-1.19)         | <0.00            |
|           | IL6      | 94        | 0.029   | 0.628         | 0.013  | 0.801         | rs1548216   | G           | С           | 0.77 (0.64-0.93)         | 0.00             |
|           | PIK3CA   | 335       | 0.030   | 0.628         | 0.576  | 0.910         | rs79786599  | А           | G           | 0.80 (0.69-0.92)         | 0.00             |
|           | TLR8     | 33        | 0.039   | 0.535         | 0.197  | 0.787         | rs143598634 | С           | Т           | 0.78 (0.67-0.92)         | 0.00             |
|           | IFNAR2   | 164       | 0.045   | 0.628         | 0.375  | 0.844         | rs189110596 | А           | G           | 0.72 (0.59-0.89)         | 0.00             |
|           | IRAK4    | 123       | 0.045   | 0.628         | 0.086  | 0.817         | rs4251520   | Т           | С           | 0.92 (0.84-1.01)         | 0.06             |
| TNF       |          |           |         |               |        |               |             |             |             |                          |                  |
|           | CREB3L4  | 30        | 0.011   | 0.628         | 0.625  | 0.948         | rs35138279  | С           | Т           | 1.05 (0.96-1.15)         | 0.25             |
|           | CSF1     | 240       | 0.036   | 0.628         | 0.346  | 0.829         | rs183849981 | С           | G           | 0.72 (0.52-0.99)         | 0.04             |
|           | SELE     | 88        | 0.045   | 0.628         | 0.660  | 0.956         | rs3917438   | G           | А           | 0.88 (0.75-1.02)         | 0.09             |
|           | TNFRSF1B | 76        | 0.046   | 0.628         | 0.130  | 0.817         | rs547731360 | TTTTGTTTG   | Т           | 1.47 (1.04-2.09)         | 0.02             |
| HGSOC     |          |           |         |               |        |               |             |             |             |                          |                  |
| NFkB      |          |           |         |               |        |               |             |             |             |                          |                  |
|           | PTGS2    | 115       | 0.016   | 0.872         | 0.555  | 0.956         | rs4648298   | Т           | С           | 0.80 (0.62-1.03)         | 0.08             |
|           | VCAM1    | 29        | 0.025   | 0.872         | 0.012  | 0.628         | rs3176862   | С           | G           | 1.28 (0.98-1.69)         | 0.07             |

|     | PLCG2   | 1052 | 0.026 | 0.872 | 0.197 | 0.916 | rs11648625  | Т | С | 0.60 (0.45-0.79) | <0.001 |
|-----|---------|------|-------|-------|-------|-------|-------------|---|---|------------------|--------|
|     | GADD45B | 30   | 0.038 | 0.872 | 0.164 | 0.852 | rs2024144   | С | Т | 1.05 (0.95-1.16) | 0.348  |
| TLR |         |      |       |       |       |       |             |   |   |                  |        |
|     | TAB1    | 86   | 0.018 | 0.872 | 0.501 | 0.956 | rs3830119   | Т | С | 1.14 (1.04-1.26) | 0.007  |
|     | TLR9    | 37   | 0.026 | 0.872 | 0.491 | 0.956 | rs352139    | С | Т | 1.12 (1.04-1.21) | 0.003  |
|     | PIK3CA  | 335  | 0.028 | 0.872 | 0.362 | 0.956 | rs576007456 | G | А | 0.58 (0.39-0.88) | 0.009  |
|     | TLR8    | 33   | 0.036 | 0.755 | 0.532 | 0.956 | rs143598634 | С | Т | 0.76 (0.62-0.92) | 0.006  |
|     | AKT3    | 541  | 0.038 | 0.872 | 0.474 | 0.956 | rs76075275  | А | G | 2.33 (1.33-4.09) | 0.003  |
| TNF |         |      |       |       |       |       |             |   |   |                  |        |
|     | MMP3    | 88   | 0.003 | 0.801 | 0.622 | 0.956 | rs679620    | Т | С | 1.08 (1.01-1.16) | 0.034  |
|     | CX3CL1  | 104  | 0.033 | 0.872 | 0.228 | 0.951 | rs4151117   | G | Т | 1.11 (1.01-1.21) | 0.031  |
|     | CREB3L1 | 100  | 0.047 | 0.964 | 0.277 | 0.951 | rs191404853 | Т | G | 0.55 (0.39-0.79) | 0.001  |

Abbreviations: TLR = toll-like receptor; NFkB = nuclear factor kappa B; TNF = tumor necrosis factor; EOC = epithelial ovarian cancer; HGSOC = high grade serous ovarian cancer; OCAC = Ovarian Cancer Association Consortium; SNP = single nucleotide polymorphism; FDR = false discovery rate; Ref = referent; Alt = alternate; OR = odds ratio; CI = confidence interval.

<sup>a</sup>With unadjusted P-value < 0.05.

<sup>b</sup>Aggregate P-value of MAGMA model results. Each model controls for age, two ancestry principal components stage at diagnosis, and histotype (EOC model only).

°Corrected for multiple testing by the number of genes tested using the Bejnamini-Hochberg FDR.

<sup>d</sup>Additive model adjusted for age, two ancestry principal components, stage at diagnosis, and histotype (EOC model only).

Chapter 6: Aim 3.

Expression of pathogen-recognition and inflammatory pathway genes associated with high grade serous ovarian cancer survival among Black and White women.

### 6.1. Abstract

**Background:** Tumor-associated inflammation in the tumor microenvironment is an established driver of proliferation, progression, metastasis, chemoresistance, and genomic instability. Epithelial ovarian cancer (EOC) is the fifth most lethal cancer among Women in the U.S. High grade serous ovarian cancer (HGSOC) is the most common EOC histotype diagnosed (~60-70%) and has the lowest survival relative to other common histotypes, regardless of stage at diagnosis. Furthermore, prior studies indicate Black women have poorer overall EOC survival and poorer three-year and six-year HGSOC survival when compared to White women. In this study, we leverage RNA-sequencing (RNA-seq) data from tumor tissues to investigate differential expression of TLR, NFkB, and TNF pathway genes in HGSOC tumors from both Black and White women in association with 5-year survival and stage at diagnosis.

**Methods:** We included newly generated RNA-Seq data from 214 Black and 255 White individuals from the African American Cancer Epidemiology Study (AACES) and the North Carolina Ovarian Cancer Study (NCOCS). Differentially expressed genes (DEGs) were analyzed via the Bioconductor package DESeq2 in R separately for Black and White HGSOC cases in association with 5-year overall survival (no *vs* yes) and stage at diagnosis (late *vs* early). We also performed exploratory analyses to investigate possible associations between the level of gene expression and survival or stage. A binary variable for each gene was calculated as expression levels less than or equal to the gene-specific median expression ("low") and greater than the median ("high"). Cox proportional hazard (PH) models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for association of high vs low gene expression and mortality. Logistic regression models were used to estimate odds ratios (ORs) and corresponding 95% CIs for the association with FIGO stage.

**Results:** We observed several statistically significant genes that are differentially expressed by 5year overall survival among Black (*CCL13, CREB5*) and White (*CXCL1, CXCL6, CSF2, BLNK, LTB, TLR8*) HGSOC tumor tissues. In the exploratory analyses , although we were limited in power due to sample size, *CREB5* among Black women and *BLNK* and *CXCL6* among White women were also associated with survival via Cox PH models. Among Black women, statistically significant DEGs included *BLNK, TLR4, JUN,* and *MAPK10*. Fifteen unique genes were differentially expressed for late *vs* early stage at diagnosis among Black women. Nine of these genes, *BLNK, CEBPB, PIK3R1, PIK3CD, TLR4, MMP14, JUN,* and *ICAM1* were also statistically significant DEGs among White women. No statistically significant DEG was present in White women but not Black.

Conclusions: Several genes in TLR, NFkB, and TNF pathways were observed to be differentially expressed in association with HGSOC survival and stage at diagnosis among Black and/or White women. These findings provide a platform for further investigation and validation of tumor-specific markers that may serve prognostic value or targetable mechanisms for treatment.

### 6.2 Introduction

Epithelial ovarian cancer (EOC) is a group of malignancies involving the ovary, fallopian tube, and peritoneum that arise from epithelial cells. A highly fatal disease, EOC is the fifth most lethal cancer among women in the US. Comprised of multiple histotypes (a combination of histology and grade) EOC has heterogeneous cells of origin, morphology, molecular features, methylation patterns, gene and RNA expression signatures, epidemiologic risk factors, clinical characteristics, and survival rates.<sup>12,13,25-27</sup> At the genomic level, high grade serous ovarian cancer (HGSOC), the most common histotype, is associated with *TP53* mutations resulting in somatic chromosome instability and DNA repair copy number changes.<sup>28</sup> Just under half of all HGSOC cases are characterized by homologous recombination DNA repair pathway mutations, namely *BRCA1* and *BRCA2*.<sup>28</sup> HGSOC has the lowest survival relative to other common histotypes, regardless of FIGO stage at diagnosis.<sup>22</sup> Furthermore, prior studies have found Black women have poorer overall EOC survival<sup>7</sup> and poorer three-year and six-year HGSOC survival when compared to White women.<sup>212,213</sup>

Pre-diagnosis exposure to inflammation-related lifestyle factors and chronic diseases have also been associated with poorer survival. In one study, 12 exposures (alcohol use; aspirin use; other nonsteroidal anti-inflammatory drug use; body mass index; environmental tobacco smoke exposure; history of pelvic inflammatory disease, polycystic ovarian syndrome, and endometriosis; menopausal hormone therapy use; physical inactivity; smoking status; and talc use) were used to create a weighted inflammation-related risk score (IRRS) among mostly White women with EOC. Per each increasing quartile of the IRRS there was an associated increase in risk of death (HR = 1.09; 95% CI: 1.03, 1.14).<sup>46</sup> Additionally, women in the upper quartile of the IRRS had a 31% higher death rate compared with the lowest quartile (95% CI: 1.11, 1.54).<sup>46</sup> Johnson et al. sought to replicate this study in a cohort of 592 Black women with EOC and similarly observed a higher IRRS was associated with worse overall survival (per quartile HR: 1.11; 95% CI: 1.01, 1.22). The authors also evaluated the

energy-adjusted Dietary Inflammatory Index (E-DII). Adding the E-DII attenuated the association of the IRRS with survival and the greater E-DII, i.e. a more pro-inflammatory diet, was associated with shorter survival (per quartile HR: 1.12; 95% CI: 1.02, 1.24).<sup>49,102</sup> A meta-analysis investigating a systemic immune inflammation index (calculated via pre-treatment neutrophil, platelet, and lymphocyte counts) was associated with lymph-node metastasis and progression-free and disease-free survival in EOC.<sup>180</sup>

Tumor-associated inflammation in the tumor microenvironment (TME) is an established driver of proliferation, progression, metastasis, chemoresistance, and genomic instability.<sup>37,179</sup> The tumor microenvironment milieu contains both inflammatory and immunosuppressive components that are coopted by the malignant and infiltrating immune cells.<sup>46</sup> Toll-like receptors (TLRs) are transmembrane proteins that play a key role in immunity by recognizing pathogen- and danger-associated molecular patterns expressed by microorganisms. TLR ligation triggers an intricate signaling cascade that activates downstream pro-inflammatory pathways such as NFkB and TNF. TLRs expressed in tumor tissues can promote proliferation and anti-apoptosis through the activation of proinflammatory processes.<sup>58–60</sup> TLR4 in particular has been observed to confer chemoresistance through ligation with paclitaxel in EOC cell lines.<sup>60,66</sup>

EOC tumor tissue expression has also been studied specifically for TLR4 and its adapter protein, MyD88, but many studies have conflicting results,<sup>61–65</sup> likely due to differences in analytic histotype stratifications and expression classification (high/low, none/weak/moderate/strong, or weak/moderate/strong) and results include studies that are comprised of over 90% white women. However, Block et al., Kim et al., and Li et al. all observed differential gene expression levels and associations with EOC survival between histotypes. In HGSOC, specifically, strong immunohistochemical expression of both TLR4 and MyD88 was associated with serous histology and poorer survival.<sup>62,65</sup> By way of downstream inflammation, worse overall survival in EOC has been observed to be associated with elevated expressions of NFkB pathway subunits, activating IkB kinases (IKKs).<sup>46</sup> In the previously mentioned study by Li et al., tumors with elevated TLR4 and MyD88 expression were significantly correlated with the expression of NFkB pathway proteins.<sup>65</sup> TNF is an established mediator of inflammation-associated cancers.<sup>214</sup> Ligation of TNF at its receptors triggers various signalling transduction pathways, such as NFkB and MAPK, leading to different cellular responses: 1) cell death, 2) transcription of pro-inflammatory genes and 3) proliferation and cell survival.<sup>214,215</sup> In malignant epithelial cells, TNF is synthesized and secreted into the tumor microenvironment creating an inflammatory feedback loop promoting cell migration, invasion, and infiltration of macrophages.<sup>215-218</sup> In the validated PrOTYPE assay, a robust and 55-gene classifier based on NanoString gene-expression platform to identify HGSOC molecular subtypes, three of the finalized 55 genes overlap with our analyses (*CCL5, CXCL9,* and *CXCL11*).<sup>219</sup>

In this study, we leverage RNA-sequencing (RNA-seq) data from tumor tissues to investigate differential expression of TLR, NFkB, and TNF pathway genes in HGSOC tumors from both Black and White women in association with 5-year survival and stage at diagnosis.

### 6.3. Methods

## 6.3.1. Study Population

The study population consisted of epithelial HGSOC cases enrolled in one of two population-based case-control studies, the North Carolina Ovarian Cancer Study (NCOCS, diagnosis dates 1999-2005), and the African American Cancer Epidemiology Study (AACES, diagnosis dates 2010-2015).<sup>80,220</sup> Both studies enrolled epithelial ovarian cancer cases covering a range of histotypes, grades, and stages, though some of the most aggressive cases were missed because they were feeling very ill or were already deceased by the time they were invited to participate in research.<sup>220</sup> Written informed consent was obtained for NCOCS participants, while AACES participants provided signed consent for blood draw, medical record and pathology release forms to allow for access to tumor tissue. All cases were confirmed via centralized pathology review. Both the NCOCS and AACES studies were approved by the Duke Medical Center Institutional Review Board (IRB) and the IRBs of participating enrollment sites. Detailed methodologies for both studies have been previously published.<sup>80,212,220</sup> Diagnosis dates for enrollment in AACES were between 2010-2015 and between 1999-2005 for NCOCS. In total, AACES and NCOCS included 720 Black ovarian cancer cases, 423 of which were HGOSC. Of these, 325 provided consent to participate in biospecimen-based research and had adequate tissue available to pursue RNA extraction (Supplementary Figure 6.1A).<sup>221</sup> Fifty-three of these cases were excluded from gene expression analyses due to a history of neoadjuvant chemotherapy, which can influence observed gene expression (Supplementary Figure 6.1B). We further excluded any HGSOC cases that did not have germline DNA data to calculate ancestry principal components (PCs) or had missing outcome or covariate data. In total, our analytic population of Black HGSOC tumor tissues was 214. The NCOCS study included 1,014 White cases, 484 of which were HGSC. Of these, 316 provided consent to participate in biospecimen-based research and had sufficient tissue available to pursue RNA extraction (Supplementary Figure 6.2A). After excluding cases without germline DNA, outcome, or covariate data, 255 White HGSOC cases remained. None of these cases had neoadjuvant chemotherapy prior to tissue collection.

## 6.3.2. RNA Extraction

RNA was extracted from FFPE tumor tissue and stored at -80°C. An initial quality control (QC) evaluation revealed substantial RNA degradation, so a repurification step consisting of

DNAase treatment and purification on a Zymo research spin column was completed before library preparation to reduce the bulk of degraded RNA product (i.e., <200 nucleotides in length). Following repurification, RNA libraries were prepared from total RNA samples (5-100 ng) using reagents from the Illumina Stranded mRNA Prep (cat# 20020189) and TruSeq RNA UD Indexes (20040534) for reverse transcription, adapter ligation, and PCR amplification. Amplified libraries were hybridized to biotin-labeled probes from the Illumina Exome Panel (cat# 20020183) using the Illumina RNA Fast Hyb Enrichment kit (20040540) to generate strand-specific libraries enriched for coding regions of the transcriptome. Exon-enriched libraries were qualified on an Agilent Technologies 2200 TapeStation using a D1000 ScreenTape assay (cat# 5067-5582 and 5067-5583). The molarity of adapter-modified molecules was defined by quantitative PCR using the Kapa Biosystems Kapa Library Quant Kit (cat#KK4824). Individual libraries were chemically denatured and applied to an Illumina NovaSeq flow cell using the NovaSeq XP workflow (20043131). Following the transfer of the flow cell to an Illumina NovaSeq 6000 instrument, a 150 x 150 cycle paired-end sequence run was performed using a NovaSeq 6000 S4 reagent Kit v1.5 (20028312).

## 6.3.3. Quantification of gene expression data

We trimmed adapters and filtered read quality using fastp.<sup>91</sup> and filtered to reads with a PHRED score of at least 15 and a length of at least 20 base pairs. While a minimum PHRED score of 15 may include some reads with low quality, we found that most bases across all samples in the Black and White populations had a quality score greater than 30 (**Supplementary Figure 6.3**). We quantified paired-end reads with Salmon (version 1.4.0)<sup>92</sup> using GRCh38 release 95. We used the seqBias and gcBias flags to correct for sequence-specific biases. We also used the recommended rangeFactorizationBins parameter value 4, which improves quantification accuracy on difficult-toquantify transcripts. We then filtered out low-expression genes by excluding genes with a median expression of 0 within a dataset (Black: 10,620 genes removed, White: 10,410 genes removed). We library-size normalized samples using upper quantile normalization. This normalization matches the 85<sup>th</sup> percentile across samples to correct for library size differences across samples.

### 6.3.4. Germline Genotyping and Quality Control

Genotyping was performed at five centers: University of Cambridge, Center for Inherited Disease Research (CIDR), National Cancer Institute (NCI), Genome Quebec and Mayo Clinic using an Illumina Infinium iSelect BeadChip. Genotype data quality control (QC) was previously carried out according to the OncoArray QC guidelines. A small number of subjects that were not genetically female (XX) or those who had ambiguous sex, or were duplicates were omitted from the dataset.<sup>26,85</sup> SNPs that were not directly genotyped were imputed according to the 1,000 Genomes Phase 3 v5 reference set using Minimac3.<sup>85</sup> SNP level QC included filtering on call rate >95%, Hardy–Weinberg Equilibrium p >1×10<sup>-5</sup>, and a minor allele frequency (MAF) >0.05 using PLINK 2.0.<sup>89,90</sup>

#### 6.3.5. Statistical analysis

The candidate genes for analysis were selected from the Kyoto Encyclopedia of Genes and Genomes<sup>82</sup> (KEGG) TLR, NFkB and TNF pathways. In situations where a gene appears in multiple pathways, we assigned the gene to only one pathway based off function (for example, lipopolysaccharide binding protein [*LBP*] is in both and NFkB and TLR pathways but analyzed only in the TLR pathway). To account for population admixture, we excluded subjects who did not have ancestral principal components (PCs) available from our analyses. Principal components (PCs; continuous) were calculated for OCAC using the software package FastPop, developed specifically for the OncoArray.<sup>26,85</sup> To assess adequate control for admixture or possible inflation,  $\lambda$  values were calculated ( $\lambda_{Black} = 1.02$ ,  $\lambda_{White} = 0.95$ ) and QxQ plots were assessed (**Supplementary Figures SF1-SF2**). To reduce inherent variation in RNA-seq data we also controlled for tumor purity (continuous) which is the proportion of cancer cells in a given tissue sample.

The two outcomes of interest in this project are dichotomized FIGO stage ('early:' 0/I/II vs 'late:' II/IV) and 5-year survival (yes vs no). Differentially expressed genes (DEGs) were analyzed via the Bioconductor package DESeq2 in R separately in Black and White HGSOC cases for both outcomes. P-values for DEGs were adjusted for multiple comparisons by the number of genes tested using the Benjamini-Hochberg false-discovery rate (FDR); a  $P_{adj} < 0.05$  is considered statistically significant. Visualization of DEGs among all genes included for analysis are presented in volcano plots generated via DESeq2. We also performed exploratory analyses to investigate possible associations between the level of gene expression and survival or stage. A binary variable for each gene was calculated as expression levels less than or equal to the gene-specific median expression ("low") and greater than the median ("high"). Cox proportional hazard models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for association of high vs low gene expression and mortality. Logistic regression models were used to estimate odds ratios (ORs) and corresponding 95% CIs for the association with FIGO stage. All analyses controlled for age at diagnosis, tumor purity, and two principal components. The survival analyses (DEGs and HRs) were additionally adjusted for stage. The purpose of modeling gene expression with HGSOC outcomes is exploratory and for hypothesis-generation and all genes were chosen a priori, therefore we present and discuss the raw *P*-values generated by the models.

## 6.4. Results

In total, our analytic population is comprised of 211 and 231 Black and White HGSOC cases, respectively (**Table 6.1**). The majority of cases in both groups were diagnosed with FIGO stage III and the average follow up was 5.5 years among Black cases and 6.3 years in White cases.

## 6.4.1. Survival

Results for the estimated differential expression of each gene in the TLR, NFkB, and TNF KEGG pathways are presented in Supplementary Table 1. We observed two statistically significant

genes associated with 5-year survival among Black HGSOC cases: *CCL13* was under-expressed [log fold change (LFC) = -1.8 (95% CI: -2.2, -1.3)] while *CREB5* was overexpressed [LFC = 0.6 (0.4, 0.7)] in cases who did not survive the first 5 years after diagnosis compared to cases who did (**Figure 6.1** and **Table 6.2**). Among White HGSOC cases, six genes, *CXCL1, CXCL6, CSF2, BLNK, LTB,* and *TLR8* were statistically significant after FDR correction, all of which were under-expressed (**Figure 6.2** and **Table 6.2**).

Statistically significant results for our exploratory analysis of high *vs* low gene expression in association with survival are presented in **Table 6.3** (all results in **Supplementary Table ST6.4**). CXCL9 high expression was associated with a decrease in mortality among both groups of HGSOC cases [HR<sub>Black</sub>: 0.67 (95% CI: 0.48, 0.93); HR<sub>white</sub>: 0.68 (95% CI: 0.51, 0.90)]. The only statistically significant gene that was overexpressed in the DEG analysis, *CREB5* was also associated with an increased risk of mortality among Black HGSOC cases (HR = 1.89, 95%CI: 1.36, 2.61). In White cases, *BLNK* and *CXCL6* Cox model results were consistent with the under-expression observed in our DEG analysis. Relative to low, high expression of *BLNK* or *CXCL6* was associated with a lower risk of mortality after HGSOC diagnosis.

## 6.4.2. Stage

We observed 15 genes that are differentially expressed by stage (late *vs* early) in Black and/or White HGSOC cases included in our study (**Figures 6.3 and 6.4**). All statistically significant DEGs for stage are shown in **Table 6.4** (all genes in **Supplementary Table ST6.5**). Relative to cases who were diagnosed at stages II or earlier, late-stage diagnosis was associated with differential expression of *BLNK, CEBPB, PIK3R1, PIK3CD, TLR4, MMP14, JUN,* and *ICAM1* regardless of race. *JUN, ICAM1,* and *CEBPB* were overexpressed in late-stage Black and White HGSOC. All statistically significant White DEGs for stage were observed in Black cases as well. In Black cases, *SOCS3* and *CARD14* were additionally overexpressed while *FAS*, *XIAP*, and *CFLAR* were under-expressed.

Fifty-one unique genes were observed to be associated with stage between Black and White HGSOC cases (**Table 6.5 and Supplementary Table ST6.6**). Within both groups, high expression of *JUN* or *MMP14* was associated with a late stage at diagnosis. These genes were also differentially expressed for both groups but we observed under-expression in late stage relative to early cases. *MAP2K7* was also associated with stage in both populations, however the direction of the associations differed [OR<sub>Black</sub> = 1.99 (95% CI: 1.02, 3.86); OR<sub>white</sub> = 0.41 (95%CI: 0.18, 0.94)].

### 6.5. Discussion

This is the first study of differentially expressed genes among Black HGSOC cases and the first study to evaluate RNA expression from candidate genes with the TLR, NFkB, and TNF pathways in ovarian cancer tissues. We observed several genes differentially expressed for survival as well as stage at diagnosis. In our exploratory analyses, although we were limited in power due to sample size, we did observe several estimated associations for RNA expression levels with survival, which were consistent with genes that were differentially expressed.

*CREB5* was overexpressed in 5-year HGSOC mortality among Black women in our study. This was the only gene we observed to be overexpressed in mortality regardless of race and remained associated with an increased risk of mortality for Black HGSOC in the Cox PH model. The cAMP responsive element binding protein 5 is an encoding gene that produces a cAMP response element (CRE)-binding protein family member. In a small study utilizing both EOC cell lines and fresh tumor tissues, He et al. similarly observed *CREB5* mRNA and protein levels overexpressed in EOC cell lines and tissues.<sup>222</sup> Furthermore, patients with higher CREB5 expression had shorter overall survival and relapse-free times.<sup>222</sup> Immunohistochemistry (IHC) expression also positively correlated with

disease progression and FIGO stage at diagnosis.<sup>222</sup> *CREB5* expression has also been observed to play a role in metastasis of colorectal cancer,<sup>223-225</sup> androgen receptor treatment resistance in prostate cancer,<sup>226</sup> and poor prognosis in hepatocellular carcinoma.<sup>227</sup> *CREB5* was the only gene we observed to be associated with both survival and stage among Black women.

*CCL13* was under-expressed in HGSOC mortality among Black women but was not statistically significant in the exploratory survival model. A chemoattractant cytokine subfamily member, also known as monocyte chemoattractant protein 4 (MCP-4), CCL13, and the CCL family, have been indicated to play essential roles in the recruitment of immune cells. In a study among individuals with rheumatoid arthritis, *CCL13* expression in synovial tissues was positively regulated by TNF and inhibited apoptosis.<sup>228</sup> In a RNAseq analysis in lung cancer, *CCL13* low expression was similarly associated with worse survival.<sup>229</sup>

Among white women, all statistically significant DEGs were under-expressed for 5-year mortality relative to survival. We observed two chemokine ligand encoding genes, *CXCL1* and *CXCL6*, differentially expressed; *CXCL6* high expression was also associated with better survival [HR = 0.70 (95% CI: 0.53-0.92)] via the Cox PH model. Although counterintuitive to these findings, previous experimental and population-based gastric, liver, lung, and cervical cancer studies have observed positive correlations with these ligand-encoding genes and proliferation, invasion, and metastasis.<sup>230-235</sup>

*BLNK* was statistically significantly differentially expressed for stage at diagnosis regardless of race. Among White HGSOC cases, under-expression of *BLNK* and high vs low expression was also associated with a lower risk of mortality. In both populations, *BLNK* expression was lower in latestage cases while high *BLNK* expression was associated with a lower risk of late-stage diagnoses via logistic regression in Black HGSOC cases but not White (P = 0.168). The B-cell linker gene encodes an adapter protein vital for B-cell receptor signaling and has observed tumor-suppressive properties via mouse models of hematologic cancers.<sup>236–238</sup> In colorectal cancer, high BLNK expression in IHC staining of tumor tissues was associated with perineural invasion, lymph node metastasis, lower 5-year recurrence-free survival.<sup>239</sup> RNA expression of *BLNK* is also lower in colorectal cancer tissues relative to adjacent normal tissues<sup>240</sup> and positively correlated with relapse-free survival in ErbB2-positive breast cancer.<sup>241</sup>

In both Black and White HGSOC cases, *JUN* was overexpressed in later stages relative to early, and high expression was associated with over a 2-fold increased likelihood of late-stage diagnosis. Commonly referred to as the Jun Proto-Oncogene or AP-1 transcription factor subunit, the protein encoded by *JUN* binds to AP-1 promoter sites and plays a role in activation-induced T cell death. In a previous study of ovarian tumors and cell lines, Jun family proteins (pc-Jun, Jun B, Jun D) were observed to have higher expression in primary, metastatic and borderline tumors relative to benign tissues via Western blot analysis.<sup>242</sup> A similar Western blot analysis also found pc-Jun expression associated with shorter overall and progression-free survival and high Jun D expression was associated with worse survival relative to moderate expression.<sup>243</sup>

*TLR4* was under-expressed in late-stage cases among both Black and White women. TLRs expressed in non-neoplastic tissues can stimulate adaptive immune responses and activate immune cells that dynamically combat tumors.<sup>58,99</sup> The activation of TLR4 signalling by binding with LPS via LBP and CD14 can stimulate antibody production through the modification of B cell responses <sup>24</sup> and induces pro-inflammatory cytokine production.<sup>244</sup> Although this could be problematic in the tumor microenvironment, this process is an integral part of innate immunology. It is plausible that under-expression of *TLR4*, and thereby impaired immune response, could lead to an abundance of pathogenic gram-negative bacteria and perhaps promote more aggressive tumors.

Exposure to pathogenic bacteria can result in endotoxemia and systemic inflammation,<sup>245,246</sup> which, in turn, can promote tumorigenesis via upregulation of cell proliferation, resistance to apoptosis, increased angiogenesis, and other mechanisms.<sup>247</sup>

The major strength of this study is the novelty of the data and results that will hopefully facilitate and inspire further investigation of tumor-based gene expression in ovarian cancer to identify targetable mechanisms for improved survival. This is also one of few studies prioritizing tissue-specific investigations of ovarian cancer survival in Black women and the largest collection of tissue samples in this population to date. Although we did not have specific cause of death, due to the unfortunate trends in EOC survival, there likely are not enough instances of EOC-independent deaths to dramatically alter our results. Additionally, while our results are only generalizable to HGSOC cases, this histotype represents roughly 60-70% of all EOC and is associated with the worst survival. Considering the rarity of EOC overall and that the remaining 4 histotypes comprise less than half of all cases, analyses in these subgroups are not currently adequately powered.

In conclusion, we identified, for the first time, several genes in TLR, NFkB, and TNF pathways to be differentially expressed in association with HGSOC survival and stage at diagnosis. These findings provide a platform for further investigation and validation of tumor-specific markers that may serve prognostic value or targetable mechanisms for treatment.

## 6.6. Tables and Figures

| <b>Table 6.1</b> . Selected demographic and clinical characteristics of the Black           and White HGSOC study populations. |                    |                   |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|--|--|--|--|
|                                                                                                                                | Black<br>(N = 214) | White<br>(N= 255) |  |  |  |  |
| Age at diagnosis (SD)                                                                                                          | 58.0 (9.6)         | 58.5 (9.5)        |  |  |  |  |
| Follow-up time, years (SD)                                                                                                     | 5.5 (3.5)          | 6.4 (5.3)         |  |  |  |  |
| FIGO stage, N (%)                                                                                                              |                    |                   |  |  |  |  |
| 0                                                                                                                              | 3 (1.4)            | 3 (1.2)           |  |  |  |  |
| 1                                                                                                                              | 23 (10.7)          | 16 (6.3)          |  |  |  |  |
| II                                                                                                                             | 22 (10.3)          | 10 (3.9)          |  |  |  |  |
| 111                                                                                                                            | 157 (73.4)         | 217 (85.1)        |  |  |  |  |
| IV                                                                                                                             | 9 (4.2)            | 9 (3.5)           |  |  |  |  |
| Primary deublking status, N (%)                                                                                                |                    |                   |  |  |  |  |
| optimal                                                                                                                        | 91 (42.5)          | 72 (28.2)         |  |  |  |  |
| suboptimal                                                                                                                     | 45 (21.0)          | 9 (3.5)           |  |  |  |  |
| missing                                                                                                                        | 78 (36.4)          | 174 (68.2)        |  |  |  |  |
| 5-year survival, N (%)                                                                                                         |                    |                   |  |  |  |  |
| no                                                                                                                             | 115 (53.7)         | 152 (59.6)        |  |  |  |  |
| yes                                                                                                                            | 99 (46.3)          | 103 (40.4)        |  |  |  |  |

Abbreviations: HGSOC = high grade serous ovarian cancer; FIGO = International Federation of Gynecology and Obstetrics (Fédération Internationale de Gynécologie et d'Obstétrique).

Gene Mean Log fold change (95% CI) Ρ  $P_{adj}{}^{\mathrm{a}}$ Black women CCL13 16 -1.8 (-2.2, -1.3) 0.00002 0.006 CREB5 1113 0.6 (0.4, 0.7) 0.00016 0.019 White women CXCL1 362 -1.1 (-1.4, -0.9) 0.00003 0.003 -2.2 (-2.7, -1.7) CSF2 3 0.003 0.00002 CXCL6 29 -1.3 (-1.6, -1.0) 0.00011 0.006 -0.5 (-0.7, -0.4) 0.006 BLNK 395 0.00012 -1.3 (-1.7, -1.0) 0.009 LTB 32 0.00021 0.016 TLR8 98 -0.5 (-0.7, -0.4) 0.00044

Abbreviations: HGSOC = high grade serous ovarian carcinoma; CI = confidence interval; adj = adjusted *P*-value.

| <b>Table 6.2</b> . Statistically significant gene expression in association with 5-year invasive HGSOC |
|--------------------------------------------------------------------------------------------------------|
| survival (no <i>vs</i> yes) among Black and White cases.                                               |

|             |           | is of high/low gene expression with<br>s among Black and White HGSOC | •      |
|-------------|-----------|----------------------------------------------------------------------|--------|
|             | Gene      | HR (95% CI) <sup>b</sup>                                             | Р      |
| Black women |           |                                                                      |        |
|             | CREB5     | 1.89 (1.36, 2.62)                                                    | 0.0001 |
|             | CXCL8     | 0.57 (0.41, 0.79)                                                    | 0.0007 |
|             | PLAU      | 1.49 (1.08, 2.06)                                                    | 0.015  |
|             | BCL10     | 0.66 (0.48, 0.93)                                                    | 0.016  |
|             | CXCL9     | 0.67 (0.48, 0.93)                                                    | 0.017  |
|             | CXCL11    | 0.67 (0.49, 0.93)                                                    | 0.017  |
|             | CARD14    | 1.49 (1.06, 2.08)                                                    | 0.021  |
|             | RELB      | 1.46 (1.05, 2.04)                                                    | 0.026  |
|             | TNFRSF11A | 1.44 (1.04, 2.01)                                                    | 0.029  |
|             | CXCL3     | 0.70 (0.51, 0.97)                                                    | 0.033  |
|             | UBE2I     | 1.42 (1.03, 1.97)                                                    | 0.033  |
| White women |           |                                                                      |        |
|             | BLNK      | 0.63 (0.48, 0.83)                                                    | 0.001  |
|             | CD80      | 0.64 (0.48, 0.84)                                                    | 0.001  |
|             | MLKL      | 0.64 (0.49, 0.84)                                                    | 0.002  |
|             | NOD2      | 0.69 (0.52, 0.90)                                                    | 0.007  |
|             | CXCL9     | 0.68 (0.51, 0.90)                                                    | 0.007  |
|             | TICAM1    | 0.70 (0.53, 0.92)                                                    | 0.010  |
|             | CXCL6     | 0.70 (0.53, 0.92)                                                    | 0.012  |
|             | CX3CL1    | 0.71 (0.54, 0.93)                                                    | 0.014  |
|             | MAPK13    | 0.72 (0.55, 0.94)                                                    | 0.018  |
|             | FADD      | 0.72 (0.54, 0.95)                                                    | 0.018  |
|             | PIK3R2    | 1.37 (1.04, 1.80)                                                    | 0.024  |
|             | MAP3K7    | 1.32 (1.01, 1.73)                                                    | 0.043  |
|             | LYN       | 0.75 (0.57, 0.99)                                                    | 0.044  |

Abbreviations: TLR = toll-like receptor; NFkB = nuclear factor kappa B; TNF = tumor necrosis factor; HGSOC = high grade serous ovarian cancer; HR = hazard ratio; CI = confidence interval.

<sup>a</sup>With unadjusted P-value < 0.05.

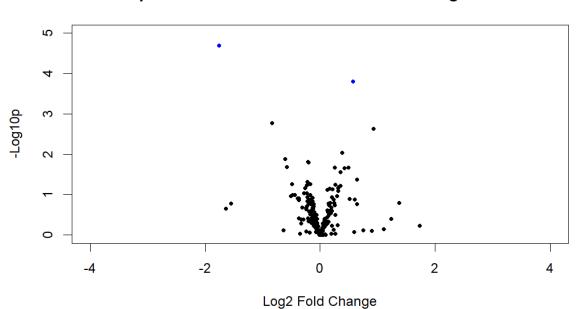
<sup>b</sup>Adjusted for age, stage at diagnosis, and two principal components.

| Gene        | Log fold change   | Р           | $P_{adj}$ |
|-------------|-------------------|-------------|-----------|
| Black women |                   |             |           |
| BLNK        | -1.0 (-1.2, -0.9) | 0.000000004 | 0.0000008 |
| TLR4        | -0.5 (-0.7, -0.4) | 0.00005     | 0.002     |
| JUN         | 0.5 (0.4, 0.6)    | 0.0005      | 0.015     |
| MAPK10      | -0.7 (-0.9, -0.5) | 0.0007      | 0.016     |
| Vhite women |                   |             |           |
| TLR4        | -0.5 (-0.6, -0.4) | 0.0003      | 0.012     |
| JUN         | 0.5 (0.4, 0.7)    | 0.001       | 0.029     |
| MAPK10      | -0.7 (-0.9, -0.5) | 0.001       | 0.029     |
| BLNK        | -1.3 (-1.6, -1.1) | 0.000002    | 0.0005    |
|             |                   |             |           |

 Table 6.4. Statistically significant gene expression in association with FIGO stage at diagnosis (III/IV vs 0/I/II) among Black and White HGSOC cases.

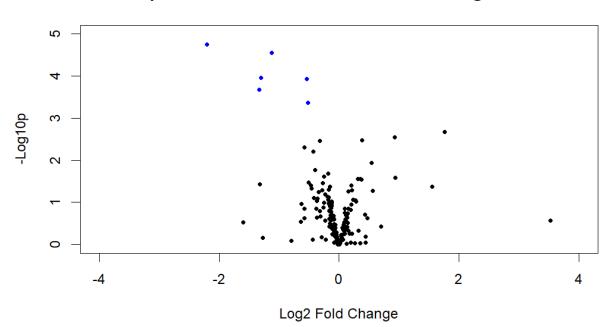
Abbreviations: HGSOC = high grade serous ovarian carcinoma; Abbreviations: HGSOC = high grade serous ovarian carcinoma; adj = adjusted *P*-value.

| Gene        | way genes among Black and White HGSOC<br>OR (95% CI) | Р     |
|-------------|------------------------------------------------------|-------|
| Black cases |                                                      |       |
| DAB2IP      | 3.65 (1.78, 7.49)                                    | 0.00  |
| ATF4        | 0.28 (0.14, 0.57)                                    | 0.00  |
| PIK3R2      | 3.52 (1.73, 7.16)                                    | 0.00  |
| TRAF6       | 0.29 (0.14, 0.59)                                    | 0.00  |
| BCL2L1      | 3.26 (1.61, 6.6)                                     | 0.00  |
| CEBPB       | 3.10 (1.55, 6.22)                                    | 0.00  |
| PARP1       | 2.74 (1.38, 5.46)                                    | 0.004 |
| ATM         | 0.37 (0.18, 0.73)                                    | 0.004 |
| TNFSF14     | 2.68 (1.34, 5.37)                                    | 0.00  |
| NFKBIA      | 2.65 (1.33, 5.3)                                     | 0.00  |
| SOCS3       | 2.56 (1.29, 5.07)                                    | 0.00  |
| МАРКЗ       | 2.56 (1.28, 5.11)                                    | 0.00  |
| IRAK1       | 2.54 (1.28, 5.04)                                    | 0.00  |
| BLNK        | 0.41 (0.21, 0.81)                                    | 0.01  |
| LYN         | 0.41 (0.21, 0.83)                                    | 0.01  |
| EDARADD     | 2.36 (1.2, 4.65)                                     | 0.01  |
| JUN         | 2.36 (1.19, 4.65)                                    | 0.01  |
| ITCH        | 0.42 (0.21, 0.85)                                    | 0.01  |
| MAP2K4      | 0.43 (0.22, 0.85)                                    | 0.01  |
| XIAP        | 0.46 (0.24, 0.9)                                     | 0.02  |
| TBK1        | 0.47 (0.24, 0.91)                                    | 0.02  |
| TOLLIP      | 2.13 (1.1, 4.16)                                     | 0.02  |
| TLR6        | 0.47 (0.24, 0.91)                                    | 0.02  |
| MMP14       | 2.12 (1.09, 4.13)                                    | 0.02  |
| CCL2        | 0.48 (0.24, 0.93)                                    | 0.03  |
| RELB        | 2.08 (1.06, 4.1)                                     | 0.03  |
| CSF1        | 2.04 (1.05, 3.99)                                    | 0.03  |
| MAPK10      | 0.49 (0.25, 0.96)                                    | 0.03  |
| MAP2K7      | 1.99 (1.02, 3.86)                                    | 0.04  |
| White cases | ······································               |       |
| CTSK        | 4.52 (1.76, 11.6)                                    | 0.00  |
| MMP14       | 4.07 (1.63, 10.16)                                   | 0.00  |
| CD40LG      | 0.27 (0.11, 0.67)                                    | 0.004 |
| CD40        | 0.27 (0.11, 0.67)                                    | 0.004 |
| IL6         | 3.58 (1.47, 8.73)                                    | 0.00  |
| CCL13       | 0.28 (0.11, 0.69)                                    | 0.00  |
| BCL2        | 0.28 (0.12, 0.69)                                    | 0.00  |
| CASP8       | 0.31 (0.13, 0.73)                                    | 0.00  |
| MLKL        | 0.33 (0.14, 0.79)                                    | 0.01  |
| TLR8        | 0.34 (0.14, 0.80)                                    | 0.01  |
| TNFSF11     | 2.93 (1.24, 6.92)                                    | 0.01  |
| PIK3R1      | 2.93 (1.24, 6.92)                                    | 0.01  |
| ZAP70       | 0.34 (0.14, 0.81)                                    | 0.01  |
| BIRC3       | 0.37 (0.16, 0.86)                                    | 0.02  |
| TLR3        | 0.38 (0.16, 0.87)                                    | 0.02  |
| CXCL10      | 0.39 (0.17, 0.91)                                    | 0.02  |


 Table 6.5. Statistically significant associations of high/low gene expression with stage at diagnosis

| TLR4    | 0.40 (0.17, 0.92) | 0.030 |
|---------|-------------------|-------|
| JUN     | 2.51 (1.09, 5.81) | 0.031 |
| GADD45G | 0.40 (0.17, 0.93) | 0.032 |
| FOS     | 2.48 (1.08, 5.72) | 0.033 |
| MAP2K7  | 0.41 (0.18, 0.94) | 0.034 |
| SYK     | 2.45 (1.06, 5.65) | 0.035 |
| GADD45A | 2.40 (1.04, 5.52) | 0.039 |
| PRKCB   | 0.41 (0.18, 0.96) | 0.040 |
| PLCG2   | 0.42 (0.18, 0.97) | 0.042 |

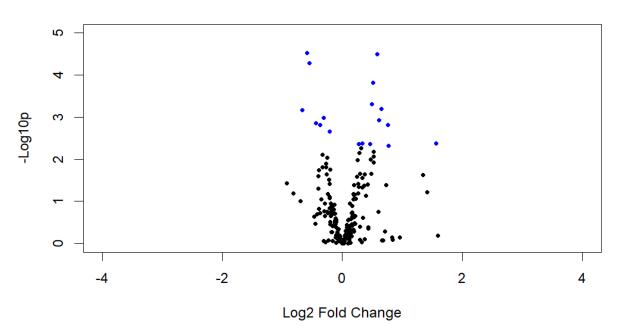
Abbreviations: TLR = toll-like receptor; NFkB = nuclear factor kappa B; TNF = tumor necrosis factor; HGSOC = high grade serous ovarian cancer; OR = odds ratio; CI = confidence interval.


<sup>a</sup>With unadjusted P-value < 0.05.

<sup>b</sup>Adjusted for age and two principal components.



Volcano plot of DEGs for HGSOC survival among Black women


Differential expression of genes in the TLR, NFkB, and TNF pathways by 5-year overall survival status (no vs yes). Blue =  $P_{adj} < 0.05$ . Abbreviations: DEGs = differentially expressed genes; HGSOC = high grade serous ovarian carcinoma; adj = adjusted P-value.



# Volcano plot of DEGs for HGSOC survival among White women

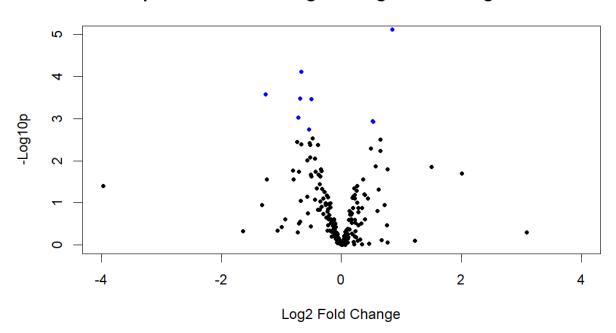

Differential expression of genes in the TLR, NFkB, and TNF pathways by 5-year overall survival status (no vs yes). Blue =  $P_{adj} < 0.05$ . Abbreviations: DEGs = differentially expressed genes; HGSOC = high grade serous ovarian carcinoma; adj = adjusted P-value.

Figure 6.3.



# Volcano plot of DEGs for stage at diagnosis among Black women

Differential expression of genes in the TLR, NFkB, and TNF pathways by stage at diagnosis (late vs early). Blue =  $P_{adj}$  < 0.05. Abbreviations: DEGs = differentially expressed genes; HGSOC = high grade serous ovarian carcinoma; adj = adjusted P-value.



Volcano plot of DEGs for stage at diagnosis among White women

Differential expression of genes in the TLR, NFkB, and TNF pathways by by stage at diagnosis (late vs early). Blue =  $P_{adj} < 0.05$ . Abbreviations: DEGs = differentially expressed genes; HGSOC = high grade serous ovarian carcinoma; adj = adjusted P-value.

#### **Chapter 7: Future Directions**

Although this is the largest genetic dataset for Black and White women with EOC, we were still hindered by small sample sizes in subgroups such as histotype, which are known to be differentially associated with race, genetic markers, and clinical outcomes. We must also acknowledge the inherent limitations of genetic studies between racial groups and cautiously interpret results as race is a social construct and disparities in health are rarely a direct result of genetic differences. In addition, the validity of the White OCAC data and the sensitivity of MAGMA results to sample size necessitate replication studies to confirm our results. Unfortunately, very few programs outside of MAGMA can incorporate gene\*environment interactions or input raw GWAS data.

Our investigations of the TLR, NFkB, and TNF gene expressions within the tumor microenvironment in relation to HGSOC survival resulted in some consistent findings between both Black and White women but no DEG identified as statistically significant in HGSOC survival was consistent with our findings in Aim 2. Despite our null results, we cannot rule out the involvement of these genes in EOC carcinogenesis and/or progression. It is my belief that studying the somatic expression of genes, especially within the tumor microenvironment, may prove more fruitful than germline expression for targetable interventions for EOC development and survival. Several barriers, however, exist for EOC (and all other sites) tumor expression investigations. Perhaps the most important are the time and costs of preparation, staining, processing, and quantification of tissue-based expression data. Furthermore, some genes are only available to measure using single-plex stains, therefore poorly suited for complex quantitative analyses and the simultaneous evaluation of multiple biomarkers. Ovarian tumors are also rare and often small, leading to availability issues and exhausted tissue inventories from using single-plex stains. Therefore, investigators must be

frugal and deliberate in the biomarkers they select to measure thus limiting exploration and hypothesis generation. An emerging area in cancer research is digital pathology, which provides automated image analysis algorithms for quantitative measurements and computer aided diagnosis.<sup>248,249</sup> As part of this field, many advances have been made in digital staining.<sup>250</sup> Continued research and advances in the digital preparation and measurement of biomarkers in cancer tissues could drastically improve the economy and efficiency (and thereby, hopefully, equity) of molecular cancer epidemiology endeavors. I am greatly looking forward to learning and contributing in this field to continue to investigate pathogen recognition and inflammation-related processes and cancer.

## **References**

- Kurman, R. J. & Shih, I.-M. The Origin and Pathogenesis of Epithelial Ovarian Cancer- a Proposed Unifying Theory. *Am. J. Surg. Pathol.* 34, 433–443 (2010).
- 2. Torre, L. A. *et al.* Ovarian cancer statistics, 2018. *CA. Cancer J. Clin.* **68**, 284–296 (2018).
- 3. American Cancer Society. Cancer Facts & Figures 2019.
- Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer Statistics, 2021. CA. Cancer J. Clin.
   71, 7–33 (2021).
- 5. Ovarian Cancer Stages | Staging for Ovarian Cancer.

https://www.cancer.org/cancer/types/ovarian-cancer/detection-diagnosisstaging/staging.html.

6. Summary Staging | SEER Training.

https://training.seer.cancer.gov/staging/systems/summary/.

- Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA. Cancer J. Clin.
   72, 7–33 (2022).
- 8. Menon, U. *et al.* Ovarian cancer population screening and mortality after long-term follow-up in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial. *The Lancet* **397**, 2182–2193 (2021).
- Buys, S. S. *et al.* Effect of screening on ovarian cancer mortality: the Prostate, Lung,
   Colorectal and Ovarian (PLCO) Cancer Screening Randomized Controlled Trial. *JAMA* 305, 2295–2303 (2011).
- 10. Dochez, V. *et al.* Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review. *J. Ovarian Res.* **12**, 28 (2019).
- Charkhchi, P. *et al.* CA125 and Ovarian Cancer: A Comprehensive Review. *Cancers* **12**, 3730 (2020).

- 12. Wentzensen, N. *et al.* Ovarian Cancer Risk Factors by Histologic Subtype: An Analysis From the Ovarian Cancer Cohort Consortium. *J. Clin. Oncol.* **34**, 2888 (2016).
- Fortner, R. T. *et al.* Ovarian cancer risk factor associations by primary anatomic site: the Ovarian Cancer Cohort Consortium. *Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol.* 29, 2010 (2020).
- Peres, L. C. *et al.* High levels of C-reactive protein are associated with an increased risk of ovarian cancer: Results from the Ovarian Cancer Cohort Consortium. *Cancer Res.* **79**, 5442 (2019).
- 15. Ovarian Cancer and Body Size: Individual Participant Meta-Analysis Including 25,157 Women with Ovarian Cancer from 47 Epidemiological Studies. *PLoS Med.* **9**, e1001200 (2012).
- 16. Nagle, C. M. *et al.* Obesity and survival among women with ovarian cancer: results from the Ovarian Cancer Association Consortium. *Br. J. Cancer* **113**, 817 (2015).
- 17. Poole, E. M., Konstantinopoulos, P. A. & Terry, K. L. Prognostic implications of reproductive and lifestyle factors in ovarian cancer. *Gynecol. Oncol.* **142**, 574–587 (2016).
- Minlikeeva, A. N. *et al.* Joint exposure to smoking, excessive weight, and physical inactivityand survival of ovarian cancer patients, evidence from the Ovarian CancerAssociation Consortium. *Cancer Causes Control CCC* **30**, 537 (2019).
- Præstegaard, C. *et al.* Cigarette smoking is associated with adverse survival among women with ovarian cancer: Results from a pooled analysis of 19 studies. *Int. J. Cancer* 140, 2422 (2017).
- 20. Brieger, K. K. *et al.* Menopausal hormone therapy prior to the diagnosis of ovarian cancer is associated with improved survival. *Gynecol. Oncol.* **158**, 702 (2020).
- Prat, J. Pathology of borderline and invasive cancers. *Best Pract. Res. Clin. Obstet. Gynaecol.* 41, 15–30 (2017).

- 22. Peres, L. C. *et al.* Invasive Epithelial Ovarian Cancer Survival by Histotype and Disease Stage. *JNCI J. Natl. Cancer Inst.* **111**, 60 (2019).
- 23. Reid, B. M., Permuth, J. B. & Sellers, T. A. Epidemiology of ovarian cancer: a review. *Cancer Biol. Med.* **14**, 9 (2017).
- Ovarian cancers: Evolving paradigms in research and care. Ovarian Cancers Evol. Paradig. Res. Care 1–396 (2016) doi:10.17226/21841.
- 25. Zorn, K. K. *et al.* Gene Expression Profiles of Serous, Endometrioid, and Clear Cell Subtypes of Ovarian and Endometrial Cancer. *Clin. Cancer Res.* **11**, 6422–6430 (2005).
- 26. Phelan, C. M. *et al.* Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. *Nat. Genet.* **49**, 680–691 (2017).
- 27. Gates, M. A., Rosner, B. A., Hecht, J. L. & Tworoger, S. S. Risk factors for epithelial ovarian cancer by histologic subtype. *Am. J. Epidemiol.* **171**, 45–53 (2010).
- Hollis, R. L. & Gourley, C. Genetic and molecular changes in ovarian cancer. *Cancer Biol. Med.* 13, 236–247 (2016).
- 29. DeSantis, C., Naishadham, D. & Jemal, A. Cancer statistics for African Americans, 2013. *CA*. *Cancer J. Clin.* **63**, 151–166 (2013).
- 30. Peres, L. C. *et al.* Racial Differences in Population Attributable Risk for Epithelial Ovarian Cancer in the OCWAA Consortium. *JNCI J. Natl. Cancer Inst.* (2020) doi:10.1093/jnci/djaa188.
- Havrilesky, L. J. *et al.* Oral contraceptive use for the primary prevention of ovarian cancer.
   *Evid. ReportTechnology Assess.* 1–514 (2013).
- Fathalla, M. F. INCESSANT OVULATION-A FACTOR IN OVARIAN NEOPLASIA ? *The Lancet* vol.
   298 163 Preprint at https://doi.org/10.1016/S0140-6736(71)92335-X (1971).
- 33. Cramer, D. W., Welch, W. R., DW Cramer & Welch, W. R. Determinants of ovarian cancer risk.
  II. Inferences regarding pathogenesis. *J Natl Cancer Inst* 71, 717–21 (1983).

- Ness, R. B. & Cottreau, C. Possible Role of Ovarian Epithelial Inflammation in Ovarian Cancer. JNCI J. Natl. Cancer Inst. 91, 1459–1467 (1999).
- 35. Duffy, D. M., Ko, C., Jo, M., Brannstrom, M. & Curry, T. E. Ovulation: Parallels With Inflammatory Processes. *Endocr. Rev.* **40**, 369–416 (2019).
- 36. Hanahan, D. & Weinberg, R. A. The Hallmarks of Cancer. Cell 100, 57–70 (2000).
- 37. Coussens, L. M. & Werb, Z. Inflammation and cancer. *Nature* **420**, 860 (2002).
- Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, Inflammation, and Cancer. *Cell* 140, 883–899 (2010).
- 39. List of Classifications IARC Monographs on the Identification of Carcinogenic Hazards to Humans. https://monographs.iarc.who.int/list-of-classifications.
- 40. Caliri, A. W., Tommasi, S. & Besaratinia, A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. *Mutat. Res. Mutat. Res.* **787**, 108365 (2021).
- Ziech, D., Franco, R., Pappa, A. & Panayiotidis, M. I. Reactive Oxygen Species (ROS)—Induced genetic and epigenetic alterations in human carcinogenesis. *Mutat. Res. Mol. Mech. Mutagen.* 711, 167–173 (2011).
- 42. Chen, R., Alvero, A. B., Silasi, D.-A. & Mor, G. Inflammation, Cancer and Chemoresistance: Taking Advantage of the Toll-Like Receptor Signaling Pathway. *Am. J. Reprod. Immunol.* 57, 93–107 (2007).
- 43. Zong, W.-X. & Thompson, C. B. Necrotic death as a cell fate. *Genes Dev.* 20, 1–15 (2006).
- 44. Demaria, M. *et al.* Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. *Cancer Discov.* **7**, 165–176 (2017).
- 45. Salam, R. *et al.* Cellular senescence in malignant cells promotes tumor progression in mouse and patient Glioblastoma. *Nat. Commun.* **14**, 441 (2023).

- 46. Harrington, B. S. & Annunziata, C. M. NF-κB Signaling in Ovarian Cancer. Cancers 11, 1182 (2019).
- 47. He, Z. & Zhang, S. Tumor-Associated Macrophages and Their Functional Transformation in the Hypoxic Tumor Microenvironment. *Front. Immunol.* **12**, 741305 (2021).
- Brieger, K. K. et al. High pre-diagnosis inflammation-related risk score associated with decreased ovarian cancer survival. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 31, 443–452 (2022).
- Johnson, C. E. *et al.* Association of inflammation-related exposures and ovarian cancer survival in a multi-site cohort study of Black women. *Br. J. Cancer* (2023) doi:10.1038/s41416-023-02385-w.
- 50. Moresco, E. M. Y., LaVine, D. & Beutler, B. Toll-like receptors. *Curr. Biol.* **21**, R488–R493 (2011).
- Takeda, K. & Akira, S. Toll-Like Receptors. Curr. Protoc. Immunol. 109, 14.12.1-14.12.10 (2015).
- Raetz, C. R. H. & Whitfield, C. Lipopolysaccharide Endotoxins. Annu. Rev. Biochem. 71, 635– 700 (2002).
- 53. Kolb, K., Ohashi, V., Burkart, S. & Flohé, H. Receptor-4 Complex Putative Endogenous Ligand of the Toll-Like Cutting Edge: Heat Shock Protein 60 Is a. *J Immunol Ref.* **164**, 558–561 (2021).
- 54. McCarthy, C. G. *et al.* Pathophysiology of Hypertension: Toll-like receptors and damageassociated molecular patterns: novel links between inflammation and hypertension. *Am. J. Physiol. - Heart Circ. Physiol.* **306**, H184 (2014).
- 55. Hennessy, E. J., Parker, A. E. & O'Neill, L. A. J. Targeting Toll-like receptors: emerging therapeutics? *Nat. Rev. Drug Discov.* **9**, 293–307 (2010).

- Henrick, B. M. *et al.* TLR10 Senses HIV-1 Proteins and Significantly Enhances HIV-1 Infection.
   *Front. Immunol.* **10**, (2019).
- 57. Oosting, M. *et al.* Human TLR10 is an anti-inflammatory pattern-recognition receptor. *Proc. Natl. Acad. Sci. U. S. A.* **111**, E4478–E4484 (2014).
- Huang, B., Zhao, J., Unkeless, J. C., Feng, Z. H. & Xiong, H. TLR signaling by tumor and immune cells: A double-edged sword. *Oncogene* vol. 27 218–224 Preprint at https://doi.org/10.1038/sj.onc.1210904 (2008).
- 59. Muccioli, M. & Benencia, F. Toll-like Receptors in Ovarian Cancer as Targets for Immunotherapies. *Front Immunol* **5**, 341 (2014).
- 60. Kelly, M. G. *et al.* TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. *Cancer Res.* **66**, 3859–3868 (2006).
- 61. Zhou, M. *et al.* Toll-like receptor expression in normal ovary and ovarian tumors. *Cancer Immunol. Immunother.* **58**, 1375–1385 (2009).
- Block, M. S. *et al.* MyD88 and TLR4 Expression in Epithelial Ovarian Cancer. *Mayo Clin. Proc.* 93, 307–320 (2018).
- 63. Bates, M. *et al.* The role of the MAD2-TLR4-MyD88 axis in paclitaxel resistance in ovarian cancer. **15**, e0243715 (2020).
- 64. Kim, K. H. et al. Expression and Significance of the TLR4/MyD88 Signaling Pathway in Ovarian Epithelial Cancers. (2012) doi:10.1186/1477-7819-10-193.
- 65. Li, Z. *et al.* The inflammatory microenvironment in epithelial ovarian cancer: a role for TLR4 and MyD88 and related proteins. *Tumor Biol.* **37**, 13279–13286 (2016).
- 66. Szajnik, M. *et al.* TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. *Oncogene* **28**, 4353–4363 (2009).

- 67. Patel, M., Horgan, P. G., McMillan, D. C. & Edwards, J. NF-κB pathways in the development and progression of colorectal cancer. *Transl. Res. J. Lab. Clin. Med.* **197**, 43–56 (2018).
- 68. Ahmad, R. *et al.* Elevated expression of the toll like receptors 2 and 4 in obese individuals: its significance for obesity-induced inflammation. *J. Inflamm. 2012 91* **9**, 1–11 (2012).
- 69. Vitseva, O. I. *et al.* Inducible Toll-like Receptor and NF-κB Regulatory Pathway Expression in Human Adipose Tissue. *Obesity* 16, 932–937 (2008).
- Calvano, S. E. *et al.* A network-based analysis of systemic inflammation in humans. *Nat. 2005* 4377061 437, 1032–1037 (2005).
- 71. Nikpay, M., Turner, A. W. & McPherson, R. Partitioning the Pleiotropy Between Coronary Artery Disease and Body Mass Index Reveals the Importance of Low Frequency Variants and Central Nervous System–Specific Functional Elements. *Circ. Genomic Precis. Med.* **11**, e002050 (2018).
- 72. Cai, B., Li, K. & Li, G. Impact of Obesity on Major Surgical Outcomes in Ovarian Cancer: A Meta-Analysis. *Front. Oncol.* **12**, 841306 (2022).
- 73. Fortner, R. T. *et al.* Ovarian cancer risk factors by tumor aggressiveness: an analysis from the Ovarian Cancer Cohort Consortium. *Int. J. Cancer* **145**, 58–69 (2019).
- Yao, S. *et al.* Genetic ancestry and population differences in levels of inflammatory cytokines in women: Role for evolutionary selection and environmental factors. *PLOS Genet.* 14, e1007368 (2018).
- 75. Singh, U., Hernandez, K. M., Aronow, B. J. & Wurtele, E. S. African Americans and European Americans exhibit distinct gene expression patterns across tissues and tumors associated with immunologic functions and environmental exposures. *Sci. Rep.* **11**, 9905 (2021).

- Taylor, B. D., Darville, T., Ferrell, R. E., Ness, R. B. & Haggerty, C. L. Racial Variation in Toll-like Receptor Variants Among Women With Pelvic Inflammatory Disease. *J. Infect. Dis.* 207, 940– 946 (2013).
- Ferguson, J. F. *et al.* Race and gender variation in response to evoked inflammation. *J. Transl. Med. 2013 111* 11, 1–9 (2013).
- Song, H. *et al.* American Cancer Society. Cancer Facts & Figures for African Americans 2019-2021. *Cancer Res.* 459, 996–1000 (2013).
- 79. Mogensen, T. H. Pathogen recognition and inflammatory signaling in innate immune defenses. *Clin Microbiol Rev* **22**, 240–73, Table of Contents (2009).
- 80. Schildkraut, J. M. *et al.* A multi-center population-based case-control study of ovarian cancer in African-American women: the African American Cancer Epidemiology Study (AACES). *BMC Cancer* **14**, 688 (2014).
- 81. Berchuck, A., Schildkraut, J. M., Pearce, C. L., Chenevix-Trench, G. & Pharoah, P. D. Role of genetic polymorphisms in ovarian cancer susceptibility: development of an international ovarian cancer association consortium. *Adv Exp Med Biol* **622**, 53–67 (2008).
- 82. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. *Nucleic Acids Res*28, 27–30 (2000).
- 83. Homo sapiens genome assembly GRCh38. *NCBI* https://www.ncbi.nlm.nih.gov/datahub/assembly/GCF\_000001405.26/.
- 84. Howe, K. L. et al. Ensembl 2021. Nucleic Acids Res. 49, D884–D891 (2021).
- 85. Manichaikul, A. *et al.* Identification of novel epithelial ovarian cancer loci in women of African ancestry. *Int. J. Cancer* **146**, 2987 (2020).
- 86. Taliun, D. *et al.* Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program.
  563866 Preprint at https://doi.org/10.1101/563866 (2019).

- Loh, P.-R. *et al.* Reference-based phasing using the Haplotype Reference Consortium panel.
   Nat. Genet. 48, 1443–1448 (2016).
- Das, S. *et al.* Next-generation genotype imputation service and methods. *Nat. Genet.* 48, 1284–1287 (2016).
- 89. Chang, C. C. *et al.* Second-generation PLINK: rising to the challenge of larger and richer datasets. *GigaScience* **4**, s13742-015-0047–8 (2015).
- 90. Chang, C. C. & Purcell, S. M. PLINK v2.00a5.
- Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor.
   *Bioinforma. Oxf. Engl.* 34, i884–i890 (2018).
- 92. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and biasaware quantification of transcript expression. *Nat. Methods* **14**, 417–419 (2017).
- 93. Bandera, E. V *et al.* Impact of body mass index on ovarian cancer survival varies by stage. *Br. J. Cancer* **117**, 282 (2017).
- 94. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. *Genome Res.* **19**, 1655–1664 (2009).
- 95. Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M. & Alizadeh, A. A. Profiling tumor infiltrating immune cells with CIBERSORT. *Methods Mol. Biol. Clifton NJ* **1711**, 243 (2018).
- 96. Goff, B. A. *et al.* Development of an ovarian cancer symptom index: possibilities for earlier detection. *Cancer* **109**, 221–227 (2007).
- Havrilesky, L. J., Sanders, G. D., Kulasingam, S. & Myers, E. R. Reducing ovarian cancer mortality through screening: Is it possible, and can we afford it? *Gynecol. Oncol.* **111**, 179– 187 (2008).
- 98. Ingerslev, K. *et al.* The potential role of infectious agents and pelvic inflammatory disease in ovarian carcinogenesis. *Infect. Agent. Cancer* **12**, 25 (2017).

- 99. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. *Cell* vol. 124 783–801 Preprint at https://doi.org/10.1016/j.cell.2006.02.015 (2006).
- 100. McCall, K. D., Muccioli, M. & Benencia, F. Toll-Like Receptors Signaling in the Tumor Microenvironment. *Adv. Exp. Med. Biol.* **1223**, 81–97 (2020).
- 101. Takeda, K. & Akira, S. TLR signaling pathways. Semin. Immunol. 16, 3–9 (2004).
- 102. Taniguchi, K. & Karin, M. NF-κB, inflammation, immunity and cancer: coming of age. *Nat. Rev. Immunol. 2018 185* **18**, 309–324 (2018).
- 103. Zhang, K., Zhou, B., Wang, Y., Rao, L. & Zhang, L. The TLR4 gene polymorphisms and susceptibility to cancer: a systematic review and meta-analysis. *Eur. J. Cancer Oxf. Engl.* 1990
  49, 946–954 (2013).
- 104. Zhu, L. *et al.* Association of TLR2 and TLR4 polymorphisms with risk of cancer: a metaanalysis. *PloS One* **8**, e82858 (2013).
- 105. Castaño-Rodríguez, N., Kaakoush, N. O., Goh, K.-L., Fock, K. M. & Mitchell, H. M. The role of TLR2, TLR4 and CD14 genetic polymorphisms in gastric carcinogenesis: a case-control study and meta-analysis. *PloS One* **8**, e60327 (2013).
- 106. Chen, J. *et al.* Associations between the four toll-like receptor polymorphisms and the risk of gastric cancer: a meta-analysis. *Cancer Biother. Radiopharm.* **28**, 674–681 (2013).
- 107. Wang, X.-Q., Liu, L., Liu, Y. & Zhang, K. TLR-2 gene polymorphisms and susceptibility to cancer: evidence from meta-analysis. *Genet. Test. Mol. Biomark.* **17**, 864–872 (2013).
- 108. El-Omar, E. M., Ng, M. T. & Hold, G. L. Polymorphisms in Toll-like receptor genes and risk of cancer. *Oncogene* **27**, 244–252 (2008).
- 109. Boraska Jelavić, T. *et al.* Microsatelite GT polymorphism in the toll-like receptor 2 is associated with colorectal cancer. *Clin. Genet.* **70**, 156–160 (2006).

- 110. Cheng, I., Plummer, S. J., Casey, G. & Witte, J. S. Toll-like receptor 4 genetic variation and advanced prostate cancer risk. *Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol.* **16**, 352–355 (2007).
- 111. Shui, I. M. *et al.* Genetic variation in the toll-like receptor 4 and prostate cancer incidence and mortality. *The Prostate* **72**, 209–216 (2012).
- 112. Etokebe, G. E. *et al.* Single-nucleotide polymorphisms in genes encoding toll-like receptor -2,
  -3, -4, and -9 in case-control study with breast cancer. *Genet. Test. Mol. Biomark.* 13, 729–734 (2009).
- 113. Chen, X. *et al.* A genetic variant in the promoter region of Toll-like receptor 9 and cervical cancer susceptibility. *DNA Cell Biol.* **31**, 766–771 (2012).
- 114. Kutikhin, A. G., Yuzhalin, A. E., Volkov, A. N., Zhivotovskiy, A. S. & Brusina, E. B. Correlation between genetic polymorphisms within IL-1B and TLR4 genes and cancer risk in a Russian population: a case-control study. *Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med.* 35, 4821–4830 (2014).
- 115. Kutikhin, A. G. Association of polymorphisms in TLR genes and in genes of the Toll-like receptor signaling pathway with cancer risk. *Hum. Immunol.* **72**, 1095–1116 (2011).
- 116. Kutikhin, A. G. Impact of Toll-like receptor 4 polymorphisms on risk of cancer. *Hum. Immunol.*72, 193–206 (2011).
- 117. Zhang, L., Qin, H., Guan, X., Zhang, K. & Liu, Z. The TLR9 gene polymorphisms and the risk of cancer: evidence from a meta-analysis. *PloS One* **8**, e71785 (2013).
- 118. Meng, S. *et al.* Effect of TLR2 on the proliferation of inflammation-related colorectal cancer and sporadic colorectal cancer. *Cancer Cell Int.* **20**, 95 (2020).
- 119. Semlali, A. *et al.* Expression and Polymorphism of Toll-Like Receptor 4 and Effect on NF-κB Mediated Inflammation in Colon Cancer Patients. *PloS One* **11**, e0146333 (2016).

- 120. Yao, S. *et al.* Genetic ancestry and population differences in levels of inflammatory cytokines in women: Role for evolutionary selection and environmental factors. *PLoS Genet.* 14, e1007368 (2018).
- 121. Nédélec, Y. *et al.* Genetic Ancestry and Natural Selection Drive Population Differences in Immune Responses to Pathogens. *Cell* **167**, 657-669.e21 (2016).
- 122. FastPop. SourceForge https://sourceforge.net/projects/fastpop/ (2015).
- 123. Leeuw, C. A. de, Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: Generalized Gene-Set Analysis of GWAS Data. *PLOS Comput. Biol.* **11**, e1004219 (2015).
- 124. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. *J. R. Stat. Soc. Ser. B Methodol.* **57**, 289–300 (1995).
- 125. De Luca, A., Maiello, M. R., D'Alessio, A., Pergameno, M. & Normanno, N. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. *Expert Opin. Ther. Targets* **16**, S17–S27 (2012).
- 126. Burotto, M., Chiou, V. L., Lee, J.-M. & Kohn, E. C. The MAPK pathway across different malignancies: A new perspective. *Cancer* **120**, 3446–3456 (2014).
- 127. Gonzalez-Hormazabal, P. *et al.* Polymorphisms in RAS/RAF/MEK/ERK Pathway Are Associated with Gastric Cancer. *Genes* **10**, 20 (2019).
- 128. Slattery, M. L., Lundgreen, A. & Wolff, R. K. MAP kinase genes and colon and rectal cancer. *Carcinogenesis* **33**, 2398–2408 (2012).
- 129. Zheng, Q., Ye, J., Wu, H., Yu, Q. & Cao, J. Association between Mitogen-Activated Protein
  Kinase Kinase Kinase 1 Polymorphisms and Breast Cancer Susceptibility: A Meta-Analysis of
  20 Case-Control Studies. *PLOS ONE* 9, e90771 (2014).
- 130. Liu, H. *et al.* Association between functional polymorphisms in genes involved in the MAPK signaling pathways and cutaneous melanoma risk. *Carcinogenesis* **34**, 885–892 (2013).

- 131. Dong, C., Davis, R. J. & Flavell, R. A. MAP kinases in the immune response. *Annu. Rev. Immunol.* **20**, 55–72 (2002).
- 132. Simanshu, D. K., Nissley, D. V. & McCormick, F. RAS Proteins and Their Regulators in Human Disease. *Cell* **170**, 17–33 (2017).
- 133. Hsu, C.-Y. *et al.* Characterization of Active Mitogen-Activated Protein Kinase in Ovarian Serous Carcinomas. *Clin. Cancer Res.* **10**, 6432–6436 (2004).
- 134. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).
- 135. Prior, I. A., Lewis, P. D. & Mattos, C. A comprehensive survey of Ras mutations in cancer. *Cancer Res.* **72**, 2457–2467 (2012).
- 136. Vougioukalaki, M., Kanellis, D. C., Gkouskou, K. & Eliopoulos, A. G. Tpl2 kinase signal transduction in inflammation and cancer. *Cancer Lett.* **304**, 80–89 (2011).
- 137. Tunca, B. *et al.* Overexpression of CK20, MAP3K8 and EIF5A correlates with poor prognosis in early-onset colorectal cancer patients. *J. Cancer Res. Clin. Oncol.* **139**, 691–702 (2013).
- 138. Lehmann, B. D. *et al.* Identification of Targetable Recurrent MAP3K8 Rearrangements in Melanomas Lacking Known Driver Mutations. *Mol. Cancer Res. MCR* **17**, 1842–1853 (2019).
- 139. Njunge, L. W., Estania, A. P., Guo, Y., Liu, W. & Yang, L. Tumor progression locus 2 (TPL2) in tumor-promoting Inflammation, Tumorigenesis and Tumor Immunity. *Theranostics* 10, 8343– 8364 (2020).
- 140. Jager, J. et al. Tpl2 Kinase Is Upregulated in Adipose Tissue in Obesity and May Mediate Interleukin-1β and Tumor Necrosis Factor-α Effects on Extracellular Signal–Regulated Kinase Activation and Lipolysis. Diabetes 59, 61–70 (2010).
- 141. Berthou, F. *et al.* The Tpl2 Kinase Regulates the COX-2/Prostaglandin E2 Axis in Adipocytes in Inflammatory Conditions. *Mol. Endocrinol.* **29**, 1025–1036 (2015).

- 142. Ballak, D. B. *et al.* MAP3K8 (TPL2/COT) affects obesity-induced adipose tissue inflammation without systemic effects in humans and in mice. *PloS One* **9**, e89615 (2014).
- 143. Slattery, M. L., Lundgreen, A. & Wolff, R. K. Dietary Influence on MAPK-Signaling Pathways and Risk of Colon and Rectal Cancer. *Nutr. Cancer* **65**, 729–738 (2013).
- 144. Slattery, M. L. *et al.* MAPK Genes Interact with Diet and Lifestyle Factors to Alter Risk of Breast Cancer: The Breast Cancer Health Disparities Study. *Nutr. Cancer* **67**, 292–304 (2015).
- 145. Wagner, E. F. & Nebreda, Á. R. Signal integration by JNK and p38 MAPK pathways in cancer development. *Nat. Rev. Cancer* **9**, 537–549 (2009).
- 146. Echevarría-Vargas, I. M., Valiyeva, F. & Vivas-Mejía, P. E. Upregulation of miR-21 in cisplatin resistant ovarian cancer via JNK-1/c-Jun pathway. *PloS One* **9**, e97094 (2014).
- 147. Matrone, A. *et al.* p38alpha is required for ovarian cancer cell metabolism and survival. *Int. J. Gynecol. Cancer Off. J. Int. Gynecol. Cancer Soc.* **20**, 203–211 (2010).
- 148. Song, W.-J., Dong, Y., Luo, C. & Chen, Y.-Y. p38MAPK family isoform p38α and activating transcription factor 2 are associated with the malignant phenotypes and poor prognosis of patients with ovarian adenocarcinoma. *Pathol. - Res. Pract.* **213**, 1282–1288 (2017).
- 149. Pflug, K. M. & Sitcheran, R. Targeting NF-κB-Inducing Kinase (NIK) in Immunity, Inflammation, and Cancer. *Int. J. Mol. Sci.* **21**, 8470 (2020).
- 150. Uno, M. *et al.* NF-κB Inducing Kinase, a Central Signaling Component of the Non-Canonical Pathway of NF-κB, Contributes to Ovarian Cancer Progression. *PLoS ONE* **9**, e88347 (2014).
- 151. Yoon, H. H. *et al.* Racial Differences in BRAF/KRAS Mutation Rates and Survival in Stage III Colon Cancer Patients. *JNCI J. Natl. Cancer Inst.* **107**, djv186 (2015).
- 152. Watanabe, M., Shiraishi, T., Yatani, R., Nomura, A. M. Y. & Stemmermann, G. N. International comparison on ras gene mutations in latent prostate carcinoma. *Int. J. Cancer* **58**, 174–178 (1994).

- 153. Heath, E. I. *et al.* Racial Disparities in the Molecular Landscape of Cancer. *Anticancer Res.* **38**, 2235–2240 (2018).
- 154. Mishra, S. *et al.* Racially Disparate Expression of mTOR/ERK-1/2 Allied Proteins in Cancer. *Front. Cell Dev. Biol.* **9**, (2021).
- 155. Zhao, F. *et al.* Racial Disparities in Pathological Complete Response Among Patients Receiving Neoadjuvant Chemotherapy for Early-Stage Breast Cancer. *JAMA Netw. Open* 6, e233329 (2023).
- 156. Rhyasen, G. W. & Starczynowski, D. T. IRAK signalling in cancer. *Br. J. Cancer* **112**, 232–237 (2015).
- 157. Li, S., Strelow, A., Fontana, E. J. & Wesche, H. IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. *Proc. Natl. Acad. Sci. U. S. A.* **99**, 5567–5572 (2002).
- 158. Ringwood, L. & Li, L. The involvement of the interleukin-1 receptor-associated kinases (IRAKs) in cellular signaling networks controlling inflammation. *Cytokine* **42**, 1–7 (2008).
- 159. Kim, T.-H., Park, J.-M., Kim, M.-Y. & Ahn, Y.-H. The role of CREB3L4 in the proliferation of prostate cancer cells. *Sci. Rep.* **7**, 45300 (2017).
- 160. Michmerhuizen, A. R., Spratt, D. E., Pierce, L. J. & Speers, C. W. ARe we there yet?
  Understanding androgen receptor signaling in breast cancer. *Npj Breast Cancer* 6, 1–19 (2020).
- 161. Pu, Q. *et al.* The Novel Transcription Factor CREB3L4 Contributes to the Progression of Human Breast Carcinoma. *J. Mammary Gland Biol. Neoplasia* **25**, 37–50 (2020).
- 162. Hong, C.-C. et al. Genetic Variants in Immune-Related Pathways and Breast Cancer Risk in African American Women in the AMBER Consortium. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 27, 321–330 (2018).

- 163. Chung, W.-M. *et al.* Androgen/Androgen Receptor Signaling in Ovarian Cancer: Molecular Regulation and Therapeutic Potentials. *Int. J. Mol. Sci.* **22**, 7748 (2021).
- 164. Ose, J. *et al.* Androgens Are Differentially Associated with Ovarian Cancer Subtypes in the Ovarian Cancer Cohort Consortium. *Cancer Res.* **77**, 3951–3960 (2017).
- 165. Mizushima, T. & Miyamoto, H. The Role of Androgen Receptor Signaling in Ovarian Cancer. *Cells* **8**, 176 (2019).
- 166. Schildkraut, J. M. *et al.* Trinucleotide Repeat Polymorphisms in the Androgen Receptor Gene and Risk of Ovarian Cancer. *Cancer Epidemiol. Biomarkers Prev.* **16**, 473–480 (2007).
- 167. Ye, W., Xie, T., Song, Y. & Zhou, L. The role of androgen and its related signals in PCOS. J. Cell. Mol. Med. 25, 1825–1837 (2021).
- 168. Kanbour, S. A. & Dobs, A. S. Hyperandrogenism in Women with Polycystic Ovarian Syndrome: Pathophysiology and Controversies. *Androg. Clin. Res. Ther.* **3**, 22–30 (2022).
- 169. Schildkraut, J. M., Schwingl, P. J., Bastos, E., Evanoff, A. & Hughes, C. Epithelial ovarian cancer risk among women with polycystic ovary syndrome. *Obstet. Gynecol.* 88, 554–559 (1996).
- 170. Yin, W., Falconer, H., Yin, L., Xu, L. & Ye, W. Association Between Polycystic Ovary Syndrome and Cancer Risk. *JAMA Oncol.* **5**, 106–107 (2019).
- 171. Zhu, S. *et al.* Genetic Alterations of TRAF Proteins in Human Cancers. *Front. Immunol.* **9**, (2018).
- 172. Wang, X. *et al.* Characteristics of The Cancer Genome Atlas cases relative to U.S. general population cancer cases. *Br. J. Cancer* **119**, 885 (2018).
- 173. Sun, G., Zheng, C., Deng, Z., Huang, C. & Huang, J. TRAF5 promotes the occurrence and development of colon cancer via the activation of PI3K/AKT/NF-кB signaling pathways. *J. Biol. Regul. Homeost. Agents* **34**, 1257–1268 (2020).

- 174. Inoue, J., Gohda, J., Akiyama, T. & Semba, K. NF-κB activation in development and progression of cancer. *Cancer Sci.* **98**, 268–274 (2007).
- 175. Egusquiaguirre, S. P., Yeh, J. E., Walker, S. R., Liu, S. & Frank, D. A. The STAT3 Target Gene TNFRSF1A Modulates the NF-кВ Pathway in Breast Cancer Cells. *Neoplasia N. Y. N* **20**, 489– 498 (2018).
- 176. PubChem. TNFRSF1A TNF receptor superfamily member 1A (human). https://pubchem.ncbi.nlm.nih.gov/gene/TNFRSF1A/human.
- 177. Madeleine, M. M. *et al.* Genetic variation in proinflammatory cytokines IL6, IL6R, TNF-region, and TNFRSF1A and risk of breast cancer. *Breast Cancer Res. Treat.* **129**, 887–899 (2011).
- 178. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. *CA. Cancer J. Clin.* **68**, 7–30 (2018).
- 179. Mantovani, A., Garlanda, C. & Allavena, P. Molecular pathways and targets in cancer-related inflammation. *Ann. Med.* **42**, 161–170 (2010).
- 180. Ji, Y. & Wang, H. Prognostic prediction of systemic immune-inflammation index for patients with gynecological and breast cancers: a meta-analysis. *World J. Surg. Oncol.* **18**, 197 (2020).
- 181. Goode, E. L. *et al.* Dose-Response Relationship of CD8+ Tumor Infiltrating Lymphocytes and Survival Time in High-Grade Serous Ovarian Cancer. *JAMA Oncol.* **3**, e173290 (2017).
- 182. Bae, G. *et al.* Stratification of ovarian cancer borderline from high-grade serous carcinoma patients by quantitative serum NMR spectroscopy of metabolites, lipoproteins, and inflammatory markers. *Front. Mol. Biosci.* **10**, (2023).
- 183. Kiely, M., Lord, B. & Ambs, S. Immune response and inflammation in cancer health disparities. *Trends Cancer* **8**, 316–327 (2022).

- 184. Peres, L. C. et al. Racial Differences in the Tumor Immune Landscape and Survival of Women with High-Grade Serous Ovarian Carcinoma. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. **31**, 1006–1016 (2022).
- 185. Tan, G.-J., Peng, Z.-K., Lu, J.-P. & Tang, F.-Q. Cathepsins mediate tumor metastasis. *World J. Biol. Chem.* **4**, 91–101 (2013).
- 186. Xu, H. *et al.* Identification of Cathepsin K in the Peritoneal Metastasis of Ovarian Carcinoma Using In-silico, Gene Expression Analysis. *J. Cancer* **7**, 722–729 (2016).
- 187. Fan, X. *et al.* Elevated Cathepsin K potentiates metastasis of epithelial ovarian cancer. *Histol. Histopathol.* **33**, 673–680 (2018).
- 188. Manning, B. D. & Cantley, L. C. AKT/PKB signaling: navigating downstream. *Cell* **129**, 1261– 1274 (2007).
- 189. Ligresti, G. et al. PIK3CA mutations in human solid tumors. Cell Cycle 8, 1352–1358 (2009).
- 190. Glaviano, A. *et al.* PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. *Mol. Cancer* **22**, 138 (2023).
- 191. Linnerth-Petrik, N. M. *et al.* Akt isoform specific effects in ovarian cancer progression. *Oncotarget* **7**, 74820–74833 (2016).
- 192. Cristiano, B. E. *et al.* A specific role for AKT3 in the genesis of ovarian cancer through modulation of G(2)-M phase transition. *Cancer Res.* **66**, 11718–11725 (2006).
- 193. Yeganeh, P. N., Richardson, C., Bahrani-Mostafavi, Z., Tait, D. L. & Mostafavi, M. T. Dysregulation of AKT3 along with a small panel of mRNAs stratifies high-grade serous ovarian cancer from both normal epithelia and benign tumor tissues. *Genes Cancer* 8, 784–798 (2017).
- 194. Renema, N., Navet, B., Heymann, M.-F., Lezot, F. & Heymann, D. RANK–RANKL signalling in cancer. *Biosci. Rep.* **36**, e00366 (2016).

- 195. de Groot, A. F., Appelman-Dijkstra, N. M., van der Burg, S. H. & Kroep, J. R. The anti-tumor effect of RANKL inhibition in malignant solid tumors A systematic review. *Cancer Treat. Rev.*62, 18–28 (2018).
- 196. Seifart, C. *et al.* TNF-alpha, TNF-beta, IL-6, and IL-10 polymorphisms in patients with lung cancer. *Dis. Markers* **21**, 157–165 (2005).
- 197. Lee, K.-M. *et al.* Genetic polymorphisms of TGF-beta1 & TNF-beta and breast cancer risk. *Breast Cancer Res. Treat.* **90**, 149–155 (2005).
- 198. Gaudet, M. M. *et al.* Genetic variation in tumor necrosis factor and lymphotoxin-alpha (TNF-LTA) and breast cancer risk. *Hum. Genet.* **121**, 483–490 (2007).
- 199. Li, J., Wang, Y., Chang, X. & Han, Z. The effect of LTA gene polymorphisms on cancer risk: an updated systematic review and meta- analysis. *Biosci. Rep.* **40**, BSR20192320 (2020).
- 200. Jongeneel, C. V. *et al.* Extensive genetic polymorphism in the human tumor necrosis factor region and relation to extended HLA haplotypes. *Proc. Natl. Acad. Sci. U. S. A.* 88, 9717–9721 (1991).
- 201. Huang, Y. *et al.* Four genetic polymorphisms of lymphotoxin-alpha gene and cancer risk: a systematic review and meta-analysis. *PloS One* **8**, e82519 (2013).
- 202. Buhrmann, C. *et al.* Evidence that TNF-β induces proliferation in colorectal cancer cells and resveratrol can down-modulate it. *Exp. Biol. Med. Maywood NJ* **244**, 1–12 (2019).
- 203. Buhrmann, C. *et al.* Resveratrol Chemosensitizes TNF-β-Induced Survival of 5-FU-Treated Colorectal Cancer Cells. *Nutrients* **10**, 888 (2018).
- 204. Lau, T.-S. *et al.* Cancer cell-derived lymphotoxin mediates reciprocal tumour-stromal interactions in human ovarian cancer by inducing CXCL11 in fibroblasts. *J. Pathol.* **232**, 43–56 (2014).

- 205. Moore, J. X., Chaudhary, N. & Akinyemiju, T. Metabolic Syndrome Prevalence by Race/Ethnicity and Sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. *Prev. Chronic. Dis.* **14**, E24 (2017).
- 206. Upadhyay, V. & Fu, Y.-X. Linking the microbiota and metabolic disease with lymphotoxin. *Int. Immunol.* **25**, 397–403 (2013).
- 207. Hamid, Y. H. *et al.* The common T60N polymorphism of the lymphotoxin-alpha gene is associated with type 2 diabetes and other phenotypes of the metabolic syndrome. *Diabetologia* **48**, 445–451 (2005).
- 208. Ozaki, K. *et al.* Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. *Nat. Genet.* **32**, 650–654 (2002).
- 209. Norman, R. A., Bogardus, C. & Ravussin, E. Linkage between obesity and a marker near the tumor necrosis factor-alpha locus in Pima Indians. *J. Clin. Invest.* **96**, 158–162 (1995).
- 210. Mahajan, A. *et al.* Obesity-dependent association of TNF-LTA locus with type 2 diabetes in North Indians. *J. Mol. Med. Berl. Ger.* **88**, 515–522 (2010).
- 211. Hamel, L. M. *et al.* Barriers to Clinical Trial Enrollment in Racial and Ethnic Minority Patients With Cancer. *Cancer Control J. Moffitt Cancer Cent.* **23**, 327–337 (2016).
- 212. Schildkraut, J. M. *et al.* Survival of epithelial ovarian cancer in Black women: a society to cell approach in the African American cancer epidemiology study (AACES). *Cancer Causes Control CCC* **34**, 251–265 (2023).
- 213. Peres, L. C. *et al.* Predictors of survival trajectories among women with epithelial ovarian cancer. *Gynecol. Oncol.* **156**, 459–466 (2020).
- 214. Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer 9, 361–371 (2009).
- 215. Waters, J. P., Pober, J. S. & Bradley, J. R. Tumour necrosis factor and cancer. *J. Pathol.* **230**, 241–248 (2013).

- 216. Schmiegel, W., Roeder, C., Schmielau, J., Rodeck, U. & Kalthoff, H. Tumor necrosis factor alpha induces the expression of transforming growth factor alpha and the epidermal growth factor receptor in human pancreatic cancer cells. *Proc. Natl. Acad. Sci. U. S. A.* **90**, 863–867 (1993).
- 217. Al-Lamki, R. S. *et al.* Tumor necrosis factor receptor expression and signaling in renal cell carcinoma. *Am. J. Pathol.* **177**, 943–954 (2010).
- 218. Kalthoff, H., Roeder, C., Brockhaus, M., Thiele, H. G. & Schmiegel, W. Tumor necrosis factor (TNF) up-regulates the expression of p75 but not p55 TNF receptors, and both receptors mediate, independently of each other, up-regulation of transforming growth factor alpha and epidermal growth factor receptor mRNA. *J. Biol. Chem.* **268**, 2762–2766 (1993).
- 219. Talhouk, A. *et al.* Development and validation of the gene-expression Predictor of high-gradeserous Ovarian carcinoma molecular subTYPE (PrOTYPE). *Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.* **26**, 5411–5423 (2020).
- 220. Moorman, P. G. *et al.* Ovulation and ovarian cancer: a comparison of two methods for calculating lifetime ovulatory cycles (United States). *Cancer Causes Control* **13**, 807–811 (2002).
- 221. Davidson, N. R. *et al.* Molecular subtypes of high-grade serous ovarian cancer across racial groups and gene expression platforms. *bioRxiv* 2023.11.01.565179 (2023) doi:10.1101/2023.11.01.565179.
- 222. He, S. *et al.* CREB5 promotes tumor cell invasion and correlates with poor prognosis in epithelial ovarian cancer. *Oncol. Lett.* **14**, 8156–8161 (2017).
- 223. Dai, W. *et al.* The ATF2/miR-3913-5p/CREB5 axis is involved in the cell proliferation and metastasis of colorectal cancer. *Commun. Biol.* **6**, 1026 (2023).

- 224. Qi, L. & Ding, Y. Involvement of the CREB5 regulatory network in colorectal cancer metastasis. *Yi Chuan Hered.* **36**, 679–684 (2014).
- 225. Wang, S. *et al.* CREB5 promotes invasiveness and metastasis in colorectal cancer by directly activating MET. *J. Exp. Clin. Cancer Res. CR* **39**, 168 (2020).
- 226. Hwang, J. H. *et al.* CREB5 Promotes Resistance to Androgen-Receptor Antagonists and Androgen Deprivation in Prostate Cancer. *Cell Rep.* **29**, 2355-2370.e6 (2019).
- 227. Wu, J., Wang, S.-T., Zhang, Z.-J., Zhou, Q. & Peng, B.-G. CREB5 promotes cell proliferation and correlates with poor prognosis in hepatocellular carcinoma. *Int. J. Clin. Exp. Pathol.* **11**, 4908– 4916 (2018).
- 228. Yamaguchi, A. *et al.* CC motif chemokine ligand 13 is associated with rheumatoid arthritis pathogenesis. *Mod. Rheumatol.* **23**, 856–863 (2013).
- 229. Zhao, W. *et al.* Clinical Implications of Inter- and Intratumor Heterogeneity of Immune Cell Markers in Lung Cancer. *JNCI J. Natl. Cancer Inst.* **114**, 280–289 (2022).
- 230. Li, Z. *et al.* CXCL6 promotes human hepatocyte proliferation through the CXCR1-NFκB pathway and inhibits collagen I secretion by hepatic stellate cells. *Biochem. Cell Biol. Biochim. Biol. Cell.* **94**, 229–235 (2016).
- 231. Junnila, S. *et al.* Gene expression analysis identifies over-expression of CXCL1, SPARC, SPP1, and SULF1 in gastric cancer. *Genes. Chromosomes Cancer* **49**, 28–39 (2010).
- 232. Li, J. *et al.* CXCL6 promotes non-small cell lung cancer cell survival and metastasis via downregulation of miR-515-5p. *Biomed. Pharmacother. Biomedecine Pharmacother.* **97**, 1182– 1188 (2018).
- 233. Yamamoto, Y. *et al.* The Clinicopathological Significance of the CXCR2 Ligands, CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8 in Gastric Cancer. *Anticancer Res.* **39**, 6645–6652 (2019).

- 234. Gao, Q. *et al.* CXCR6 Upregulation Contributes to a Proinflammatory Tumor Microenvironment That Drives Metastasis and Poor Patient Outcomes in Hepatocellular Carcinoma. *Cancer Res.* **72**, 3546–3556 (2012).
- 235. Fernandez-Avila, L. *et al.* The Value of CXCL1, CXCL2, CXCL3, and CXCL8 as Potential Prognosis Markers in Cervical Cancer: Evidence of E6/E7 from HPV16 and 18 in Chemokines Regulation. *Biomedicines* **11**, 2655 (2023).
- 236. Nakayama, J. *et al.* BLNK suppresses pre–B-cell leukemogenesis through inhibition of JAK3. *Blood* **113**, 1483–1492 (2009).
- 237. Flemming, A., Brummer, T., Reth, M. & Jumaa, H. The adaptor protein SLP-65 acts as a tumor suppressor that limits pre-B cell expansion. *Nat. Immunol.* **4**, 38–43 (2003).
- 238. Jumaa, H. *et al.* Deficiency of the adaptor SLP-65 in pre-B-cell acute lymphoblastic leukaemia. *Nature* **423**, 452–456 (2003).
- 239. Lee, J. H., Lee, J.-H., Ahn, B. K., Paik, S. S. & Lee, K. H. Prognostic value of B-cell linker protein in colorectal cancer. *Pathol. - Res. Pract.* **216**, 152821 (2020).
- 240. Holubekova, V. *et al.* Differential gene expression of immunity and inflammation genes in colorectal cancer using targeted RNA sequencing. *Front. Oncol.* **13**, 1206482 (2023).
- 241. Liu, X. *et al.* ErbB2/Her2-dependent downregulation of a cell death-promoting protein BLNK in breast cancer cells is required for 3D breast tumor growth. *Cell Death Dis.* **13**, 687 (2022).
- 242. Hein, S. *et al.* Expression of Jun and Fos proteins in ovarian tumors of different malignant potential and in ovarian cancer cell lines. *Oncol. Rep.* **22**, 177–183 (2009).
- 243. Eckhoff, K. *et al.* The prognostic significance of Jun transcription factors in ovarian cancer. *J. Cancer Res. Clin. Oncol.* **139**, 1673–1680 (2013).
- 244. Lu, Y.-C., Yeh, W.-C. & Ohashi, P. S. LPS/TLR4 signal transduction pathway. *Cytokine* **42**, 145–151 (2008).

- 245. Mohammad, S. & Thiemermann, C. Role of Metabolic Endotoxemia in Systemic Inflammation and Potential Interventions. *Front. Immunol.* **11**, 594150 (2021).
- 246. Newton, K. & Dixit, V. M. Signaling in innate immunity and inflammation. *Cold Spring Harb*. *Perspect. Biol.* **4**, a006049 (2012).
- 247. Singh, N. et al. Inflammation and cancer. Ann. Afr. Med. 18, 121–126 (2019).
- 248. Kiran, N. *et al.* Digital Pathology: Transforming Diagnosis in the Digital Age. *Cureus* **15**, e44620.
- 249. Baxi, V., Edwards, R., Montalto, M. & Saha, S. Digital pathology and artificial intelligence in translational medicine and clinical practice. *Mod. Pathol.* **35**, 23–32 (2022).
- 250. Bouyssoux, A., Jarnouen, K., Lallement, L., Fezzani, R. & Olivo-Marin, J.-C. Automated staining analysis in digital cytopathology and applications. *Cytom. Part J. Int. Soc. Anal. Cytol.* **101**, 1068–1083 (2022).

## Supplementary Tables and Figures

|     | Stage                 | Description                                                                                                                                                                                                       |
|-----|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I.  | Stage                 | Tumor confined to the ovary.                                                                                                                                                                                      |
|     | IA                    | Tumor limited to one ovary (capsule intact); no tumor on surface of the ovary; no malignant cells in the ascites or peritoneal washings.                                                                          |
|     | IB                    | Tumor limited to both ovaries (capsules intact); no tumor on surface of the ovary; no malignant cells in the ascites or peritoneal washings.                                                                      |
|     | IC                    | Tumor limited to one or both ovaries, with any of the following:                                                                                                                                                  |
|     | IC1                   | Surgical spill.                                                                                                                                                                                                   |
|     | IC2                   | Capsule ruptured before surgery or tumor on the surface of the ovary.                                                                                                                                             |
|     | IC3                   | Malignant cells in the ascites or peritoneal washings.                                                                                                                                                            |
| II  |                       | Tumor involves one or both ovaries with pelvic extension (below pelvic brim) or primary peritoneal cancer.                                                                                                        |
|     | IIA                   | Extension and/or implants on uterus and/or fallopian tubes.                                                                                                                                                       |
|     | IIB                   | Extension to other pelvic intraperitoneal tissues.                                                                                                                                                                |
| 111 |                       | Tumor involves one or both ovaries or primary peritoneal cancer, with cytologically or histologically confirmed spread to the peritoneum outside the pelvis and/or metastasis to the retroperitoneal lymph nodes. |
|     | IIIA1                 | Positive retroperitoneal lymph nodes only (cytologically or histologically proven):                                                                                                                               |
|     | IIIA1(i)<br>IIIA1(ii) | Lymph nodes ≤10 mm in greatest dimension.<br>Lymph nodes >10 mm in greatest dimension.                                                                                                                            |
|     | IIIA2                 | Microscopic extrapelvic (above the pelvic brim) peritoneal involvement with or without positive retroperitoneal lymph nodes.                                                                                      |
|     | IIIB                  | Macroscopic peritoneal metastasis beyond the pelvis ≤2 cm in greatest dimension, with or without metastasis to the retroperitoneal lymph nodes                                                                    |

| IIIC | Macroscopic peritoneal metastasis beyond the pelvis >2 cm in greatest<br>dimension, with or without metastasis to the retroperitoneal lymph nodes<br>(includes extension of tumor to capsule of liver and spleen without<br>parenchymal involvement of either organ). |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IV   | Distant metastasis excluding peritoneal metastases.                                                                                                                                                                                                                   |
| IVA  | Pleural effusion with positive cytology.                                                                                                                                                                                                                              |
| IVB  | Parenchymal metastases and metastases to extra-abdominal organs<br>(including inguinal lymph nodes and lymph nodes outside of the abdominal<br>cavity).                                                                                                               |

| Study Acronym | Study Name                                                       | Country     |
|---------------|------------------------------------------------------------------|-------------|
| AAS           | African American Cancer Epidemiology Study                       | USA         |
| AOV           | Alberta Ovarian Tumor Types study                                | Canada      |
| AUS           | Australia Ovarian Cancer Study & Australia Cancer Study (Ovarian | Australia   |
|               | Cancer)                                                          |             |
| BAV           | Bavarian Ovarian Cancer Cases and Controls                       | Germany     |
| BEL           | Belgium Ovarian Cancer Study                                     | Belgium     |
| BGS           | Breakthrough Generations Study                                   | UK          |
| BRZ           | Brazil Gynecologic Tumor Bank Study                              | Brazil      |
| BVU           | The BioVU DNA Repository                                         | USA         |
| CAM           | Cancer Research UK, Cambridge Research Institute                 | UK          |
| СНА           | Tianjin China Ovarian Cancer Study                               | China       |
| CHN           | Hebei Medical University                                         | China       |
| CNI           | CNIO Ovarian Cancer Study                                        | Spain       |
| COE           | Gynecologic Cancer Center of Excellence                          | USA         |
| CON           | Connecticut Ovary Study                                          | USA         |
| CWR           | Case Western Reserve University                                  | USA         |
| CZE           | CZEch CAncer PaNel for Clinical Analysis                         | Czech       |
|               |                                                                  | Republic    |
| DKE           | Duke University Clinic                                           | USA         |
| DOV           | Diseases of the Ovary and their Evaluation                       | USA         |
| EMC           | Rotterdam Ovarian Cancer Study                                   | Netherlands |
| EPC           | European Prospective Investigation into Nutrition and Cancer     | Europe      |
| GER           | Germany Ovarian Cancer Study                                     | Germany     |
| GRC           | Demokritos                                                       | Greece      |
| GRR           | Familial Ovarian Cancer Registry                                 | Global      |
| HAW           | Hawaii Ovarian Cancer Study                                      | USA         |
| OCH           | Hannover-Jena Ovarian Cancer Study                               | Germany     |
| НМО           | Hannover-Minsk Ovarian Cancer Study                              | Germany     |
| HOP           | Hormones and Ovarian Cancer Prediction                           | USA         |
| HSK           | Dr. Horst Schmidt Kliniken                                       | Germany     |
| HUO           | Hannover-Ufa Ovarian Cancer Study                                | Germany     |
| ITL           | University of Milan-Bicocca/ASST Monza Ovarian Cancer Study      | Italy       |
| JGO           | Japanese Gynecologic Oncology Study                              | Japan       |
| JPN           | Hospital-based Epidemiologic Research Program at Aichi Cancer    | Japan       |
|               | Center                                                           | Jupun       |
| KRA           | Korean Epithelial Ovarian Cancer Study                           | Korea       |
| LAX           | Women's Cancer Program at the Samuel Oschin Comprehensive        | USA         |
|               | Cancer Institute                                                 | 00/1        |
| LUN           | Departments of Cancer Epidemiology and Oncology, University      | Sweden      |
| LOIN          | Hospital, Lund                                                   | oweden      |
| MAC           | Mayo Clinic Case-Only Ovarian Cancer Study                       | USA         |
| MAL           | Danish Malignant Ovarian Tumor Study                             | Denmark     |
| MAS           | Malaysia Ovarian Cancer Genetic Study                            | Malaysia    |
| MAY           | Mayo Clinic Ovarian Cancer Case Control Study                    | USA         |
| MCC           | Melbourne Collaborative Cohort Study                             | Australia   |
| MDA           | MD Anderson Ovarian Cancer Study                                 | USA         |
| MEC           | Multiethnic Cohort Study                                         | USA         |
| MOF           | Motfitt Cancer Center Ovarian Cancer Study                       | USA         |
| MSK           |                                                                  | USA<br>USA  |
| JON           | Memorial Sloan Kettering Cancer Center                           | USA         |

Supplementary Table ST2. Studies Participating in the Ovarian Cancer Association Consortium.

| NEC New England Case-Control Study                   | USA                     |
|------------------------------------------------------|-------------------------|
| NHS Nurses' Health Study I and II                    | USA                     |
| NJO New Jersey Ovarian Cancer Study                  | USA                     |
| NOR University of Bergen, Haukeland University Hospi | ital, Norway Norway     |
| NTH Nijmegen Ovarian Cancer Study                    | Netherlands             |
| OPL Ovarian Cancer Prognosis and Lifestyle Study     | Australia               |
| ORE Oregon Ovarian Cancer Registry                   | USA                     |
| OVA Ovarian Cancer in Alberta and British Columbia   | Canada                  |
| PLC The Prostate, Lung, Colorectal and Ovarian Canc  | er Screening Trial USA  |
| POC Polish Ovarian Cancer Study                      | Poland                  |
| POL Polish Ovarian cancer Case Control Study (NCI)   | Poland                  |
| PVQ PRevention of OVArian cancer in Quebec           | Canada                  |
| RBH Royal Brisbane Hospital                          | Australia               |
| RMH Royal Marsden Hospital Ovarian Cancer Study      | UK                      |
| RPC Roswell Park Cancer Institute Ovarian Cancer Co  | ohort USA               |
| SEA UK Studies of Epidemiology and Risk Factors in C | Cancer Heredity UK      |
| (SEARCH) Ovarian Cancer Study                        |                         |
| SIS The Sister Study                                 | USA                     |
| SMC Swedish Mammography Cohort                       | Sweden                  |
| SOC Southampton Ovarian Cancer Study                 | UK                      |
| SON Southern Ontario Ovarian Cancer Study            | Canada                  |
| SRO Scottish Randomised Trial in Ovarian Cancer      | UK                      |
| STA Family Registry for Ovarian Cancer AND Genetic   | Epidemiology of USA     |
| Ovarian Cancer                                       |                         |
| SWE Sweden Western Region Ovarian Cancer Study       | Sweden                  |
| SWH Shanghai Women's Health Study                    | China                   |
| TBO Tampa Bay Ovarian Cancer Study                   | USA                     |
| TOR Familial Ovarian Tumor Study                     | Canada                  |
| TWH Tuebingen University Women's Hospital Study      | Germany                 |
| UCI UC Irvine Ovarian Cancer Study                   | USA                     |
| UHN Princess Margaret Cancer Centre                  | Canada                  |
| UKO UK Ovarian Cancer Population Study               | UK                      |
| UKR UK Familial Ovarian Cancer Registry              | UK                      |
| USC Los Angeles County Case-Control Studies of Ova   | rian Cancer USA         |
| VAN OVCARE Gynecologic Tissue Bank and Outcome       | s Unit Canada           |
| VTL VITamins And Lifestyle Cohort Study              | USA                     |
| WMH Westmead Institute for Cancer Research – Westr   | mead Hospital Australia |
| WOC Warsaw Ovarian Cancer Study                      | Poland                  |

| Pathway  | Gene # | Gene Name | Chromosome | GRCh3     | 7/hg19    | GRCh3     | 38/hg38   |
|----------|--------|-----------|------------|-----------|-----------|-----------|-----------|
| Falliway | Gene # | Gene Name | Chiomosome | Start     | Stop      | Start     | Stop      |
| NfkB     | 5743   | PTGS2     | 1          | 186640944 | 186649559 | 186671812 | 18668042  |
|          | 7535   | ZAP70     | 2          | 98330031  | 98356990  | 97713568  | 97744327  |
|          | 3554   | IL1R1     | 2          | 102686836 | 102796334 | 102069638 | 10217987  |
|          | 8809   | IL18R1    | 2          | 102979093 | 103015230 | 102356283 | 10239877  |
|          | 1386   | ATF2      | 2          | 175936978 | 176032934 | 175072250 | 17516820  |
|          | 6772   | STAT1     | 2          | 191833762 | 191878976 | 190969036 | 19101425  |
|          | 1385   | CREB1     | 2          | 208394616 | 208470284 | 207529892 | 20760556  |
|          | 7096   | TLR1      | 4          | 38797876  | 38806814  | 38787555  | 38805800  |
|          | 3600   | IL15      | 4          | 142557749 | 142655140 | 141636596 | 14173398  |
|          | 7424   | VEGFC     | 4          | 177604689 | 177713899 | 176683534 | 17679274  |
|          | 929    | CD14      | 5          | 140011313 | 140013286 | 140631728 | 14063370  |
|          | 5601   | MAPK9     | 5          | 179660594 | 179719071 | 180233594 | 18029207  |
|          | 5603   | MAPK13    | 6          | 36098261  | 36112301  | 36130484  | 36144524  |
|          | 7128   | TNFAIP3   | 6          | 138188325 | 138204451 | 137866317 | 13788331  |
|          | 9586   | CREB5     | 7          | 28338940  | 28865511  | 28299321  | 28825894  |
|          | 3663   | IRF5      | 7          | 128577976 | 128590089 | 128937737 | 12895004  |
|          | 64764  | CREB3L2   | 7          | 137559725 | 137686847 | 137874979 | 13800210  |
|          | 9530   | BAG4      | 8          | 38034106  | 38070819  | 38176588  | 38213301  |
|          | 3551   | ΙΚΒΚΒ     | 8          | 42128820  | 42190171  | 42271302  | 42332653  |
|          | 4067   | LYN       | 8          | 56792386  | 56925006  | 55878463  | 56012447  |
|          | 3456   | IFNB1     | 9          | 21077104  | 21077943  | 21077105  | 21077944  |
|          | 10488  | CREB3     | 9          | 35732317  | 35737005  | 35732320  | 35737008  |
|          | 7099   | TLR4      | 9          | 120466453 | 120479769 | 117704175 | 11771749  |
|          | 5588   | PRKCQ     | 10         | 6435558   | 6622254   | 6393595   | 6580646   |
|          | 5599   | MAPK8     | 10         | 49514682  | 49647403  | 48306639  | 48439360  |
|          | 5328   | PLAU      | 10         | 75670862  | 75677259  | 73909182  | 73917501  |
|          | 355    | FAS       | 10         | 90750288  | 90775542  | 88969801  | 89017059  |
|          | 4791   | NFKB2     | 10         | 104153867 | 104162286 | 102394110 | 10240252  |
|          | 840    | CASP7     | 10         | 115438921 | 115490668 | 113679162 | 113730909 |

| 55367  | PIDD1     | 11 | 799179    | 809872    | 799179    | 809501    |
|--------|-----------|----|-----------|-----------|-----------|-----------|
| 54472  | TOLLIP    | 11 | 1295598   | 1330892   | 1274368   | 1309662   |
| 90993  | CREB3L1   | 11 | 46299189  | 46342972  | 46277638  | 46321422  |
| 329    | BIRC2     | 11 | 102217913 | 102249401 | 102347182 | 102378670 |
| 472    | ATM       | 11 | 108093559 | 108239829 | 108222500 | 108369102 |
| 7132   | TNFRSF1A  | 12 | 6437923   | 6451283   | 6328757   | 6342117   |
| 10059  | DNM1L     | 12 | 32832134  | 32898584  | 32679200  | 32745650  |
| 51135  | IRAK4     | 12 | 44152747  | 44183346  | 43758944  | 43789543  |
| 29110  | TBK1      | 12 | 64845840  | 64895899  | 64452060  | 64502119  |
| 192111 | PGAM5     | 12 | 133287393 | 133299323 | 132710807 | 132722737 |
| 4323   | MMP14     | 14 | 23305742  | 23316809  | 22836533  | 22847600  |
| 9252   | RPS6KA5   | 14 | 91335086  | 91526993  | 90868122  | 91060649  |
| 7187   | TRAF3     | 14 | 103243816 | 103377837 | 102777475 | 102911500 |
| 5604   | MAP2K1    | 15 | 66679182  | 66783882  | 66386873  | 66491544  |
| 597    | BCL2A1    | 15 | 80253232  | 80263643  | 79960890  | 79971301  |
| 27040  | LAT       | 16 | 28996147  | 29002104  | 28984826  | 28990783  |
| 5595   | MAPK3     | 16 | 30125426  | 30134630  | 30114105  | 30123309  |
| 64127  | NOD2      | 16 | 50727507  | 50766990  | 50693581  | 50733081  |
| 1540   | CYLD      | 16 | 50775961  | 50835847  | 50742050  | 50801936  |
| 1459   | CSNK2A2   | 16 | 58191811  | 58231782  | 58157907  | 58197878  |
| 197259 | MLKL      | 16 | 74705753  | 74734789  | 74671855  | 74701148  |
| 6347   | CCL2      | 17 | 32582296  | 32584222  | 34255277  | 34257203  |
| 9020   | MAP3K14   | 17 | 43340488  | 43394414  | 45263119  | 45317064  |
| 5608   | MAP2K6    | 17 | 67410838  | 67538470  | 69414697  | 69542329  |
| 9021   | SOCS3     | 17 | 76352858  | 76356160  | 78356777  | 78360079  |
| 10892  | MALT1     | 18 | 56338618  | 56417371  | 58671386  | 58750139  |
| 8792   | TNFRSF11A | 18 | 59992520  | 60054943  | 62325287  | 62387710  |
| 596    | BCL2      | 18 | 60790579  | 60987011  | 63123346  | 63319778  |
| 4616   | GADD45B   | 19 | 2476123   | 2478257   | 2476125   | 2478259   |
| 84699  | CREB3L3   | 19 | 4153598   | 4173051   | 4153601   | 4173054   |
| 148022 | TICAM1    | 19 | 4815936   | 4831754   | 4815924   | 4831742   |
| 3383   | ICAM1     | 19 | 10380707  | 10397291  | 10270841  | 10286615  |

|     | 3726   | JUNB          | 19 | 12902310  | 12904125  | 12791496  | 12793311  |
|-----|--------|---------------|----|-----------|-----------|-----------|-----------|
|     | 602    | BCL3          | 19 | 45246070  | 45263301  | 44748045  | 44760044  |
|     | 4318   | MMP9          | 20 | 44637547  | 44645200  | 46008908  | 46016561  |
|     | 958    | CD40          | 20 | 44746899  | 44758384  | 46118250  | 46129745  |
|     | 3454   | IFNAR1        | 21 | 34696748  | 34732129  | 33324443  | 33359823  |
|     | 10454  | TAB1          | 22 | 39795759  | 39833132  | 39399754  | 39437127  |
|     | 468    | ATF4          | 22 | 39916569  | 39918691  | 39520559  | 39522686  |
|     | 6300   | MAPK12        | 22 | 50691331  | 50700248  | 50252902  | 50261759  |
|     | 257397 | TAB3          | 23 | 30845559  | 30907511  | 30827442  | 30889394  |
|     | 60401  | EDA2R         | 23 | 65815479  | 65859140  | 66594384  | 66639298  |
|     | 1896   | EDA           | 23 | 68835911  | 69259322  | 69616067  | 70039472  |
|     | 331    | XIAP          | 23 | 122993662 | 123047829 | 123859812 | 123913979 |
|     | 959    | CD40LG        | 23 | 135730281 | 135742549 | 136648177 | 136660390 |
| TLR | 7133   | TNFRSF1B      | 1  | 12227044  | 12269279  | 12166949  | 12209222  |
|     | 1647   | GADD45A       | 1  | 68150860  | 68154021  | 67685177  | 67688338  |
|     | 8915   | BCL10         | 1  | 85731459  | 85742604  | 85265776  | 85276904  |
|     | 7412   | VCAM1         | 1  | 101185196 | 101204601 | 100719640 | 100739045 |
|     | 1435   | CSF1          | 1  | 110453233 | 110473616 | 109910611 | 109930994 |
|     | 1513   | CTSK          | 1  | 150768684 | 150780917 | 150796208 | 150808441 |
|     | 9641   | IKBKE         | 1  | 206643586 | 206670223 | 206470243 | 206496890 |
|     | 7100   | TLR5          | 1  | 223282748 | 223316624 | 223109404 | 223143282 |
|     | 128178 | EDARADD       | 1  | 236557680 | 236648008 | 236394380 | 236484708 |
|     | 10000  | AKT3          | 1  | 243651535 | 244014381 | 243488233 | 243851079 |
|     | 10913  | EDAR          | 2  | 109510927 | 109605828 | 108894471 | 108989372 |
|     | 3553   | IL1B          | 2  | 113587337 | 113594356 | 112829751 | 112836779 |
|     | 8837   | CFLAR         | 2  | 201980877 | 202037411 | 201116154 | 201172688 |
|     | 841    | CASP8         | 2  | 202098166 | 202152434 | 201233443 | 201287711 |
|     | 4615   | MYD88         | 3  | 38179969  | 38184513  | 38138478  | 38143022  |
|     | 54106  | TLR9          | 3  | 52255096  | 52260179  | 52221080  | 52226163  |
|     | 941    | CD80          | 3  | 119243140 | 119278481 | 119523948 | 119559634 |
|     | 942    | CD86          | 3  | 121774209 | 121839990 | 122055362 | 122121143 |
|     | 5291   | <i>РІКЗСВ</i> | 3  | 138371540 | 138553780 | 138652698 | 138834938 |
|     |        |               |    |           |           |           | •         |

| 3592   | IL12A  | 3 | 159706623 | 159713806 | 159988836 | 159996019 |
|--------|--------|---|-----------|-----------|-----------|-----------|
| 5290   | PIK3CA | 3 | 178866311 | 178952500 | 179148114 | 179240084 |
| 10333  | TLR6   | 4 | 38825325  | 38858438  | 38823704  | 38857711  |
| 2919   | CXCL1  | 4 | 74735109  | 74737019  | 73869392  | 73871302  |
| 6374   | CXCL5  | 4 | 74861359  | 74864446  | 73995642  | 73998729  |
| 2921   | CXCL3  | 4 | 74902306  | 74904490  | 74036589  | 74038773  |
| 2920   | CXCL2  | 4 | 74962752  | 74964997  | 74097035  | 74099280  |
| 5602   | MAPK10 | 4 | 86933452  | 87374283  | 86012299  | 86594110  |
| 6696   | SPP1   | 4 | 88896802  | 88904563  | 87975650  | 87983411  |
| 4790   | NFKB1  | 4 | 103422486 | 103538459 | 102501329 | 102617302 |
| 7097   | TLR2   | 4 | 154605404 | 154627243 | 153684256 | 153706091 |
| 7098   | TLR3   | 4 | 186990309 | 187006252 | 186069155 | 186085098 |
| 5295   | PIK3R1 | 5 | 67511584  | 67597649  | 68215756  | 68301821  |
| 353376 | TICAM2 | 5 | 114914339 | 114952142 | 115578496 | 115602479 |
| 1437   | CSF2   | 5 | 131409485 | 131411863 | 132073792 | 132076170 |
| 3659   | IRF1   | 5 | 131817301 | 131826465 | 132481609 | 132490777 |
| 1460   | CSNK2B | 6 | 31632995  | 31637844  | 31665880  | 31670070  |
| 1388   | ATF6B  | 6 | 32083045  | 32096017  | 32115268  | 32128240  |
| 1432   | MAPK14 | 6 | 35995412  | 36079013  | 36027635  | 36111236  |
| 4217   | MAP3K5 | 6 | 136878184 | 137113656 | 136557046 | 136793051 |
| 23118  | TAB2   | 6 | 149639436 | 149732747 | 149217924 | 149411613 |
| 84433  | CARD11 | 7 | 2945709   | 3083579   | 2906075   | 3043945   |
| 3569   | IL6    | 7 | 22766766  | 22771621  | 22725442  | 22732002  |
| 23643  | LY96   | 8 | 74903564  | 74941314  | 73991329  | 74032562  |
| 3452   | IFNA21 | 9 | 21165636  | 21166659  | 21165637  | 21166660  |
| 3441   | IFNA4  | 9 | 21186617  | 21187598  | 21186618  | 21187599  |
| 3446   | IFNA10 | 9 | 21206180  | 21207142  | 21206181  | 21207143  |
| 3449   | IFNA16 | 9 | 21216372  | 21217310  | 21216373  | 21217311  |
| 3451   | IFNA17 | 9 | 21227242  | 21228221  | 21227243  | 21228222  |
| 3448   | IFNA14 | 9 | 21239201  | 21239978  | 21239202  | 21239979  |
| 3442   | IFNA5  | 9 | 21304613  | 21305312  | 21304614  | 21305313  |
| 3447   | IFNA13 | 9 | 21367371  | 21368075  | 21367372  | 21368076  |
|        |        |   |           |           |           |           |

| 3440   | IFNA2    | 9  | 21384254  | 21385396  | 21384255  | 21385397  |
|--------|----------|----|-----------|-----------|-----------|-----------|
| 3439   | IFNA1    | 9  | 21440453  | 21441315  | 21440454  | 21441316  |
| 6363   | CCL19    | 9  | 34689567  | 34691274  | 34689570  | 34691277  |
| 6366   | CCL21    | 9  | 34709002  | 34710164  | 34709005  | 34710167  |
| 10912  | GADD45G  | 9  | 92219913  | 92221470  | 89605012  | 89606555  |
| 6850   | SYK      | 9  | 93564012  | 93660842  | 90801680  | 90898560  |
| 153090 | DAB2IP   | 9  | 124329162 | 124547809 | 121566883 | 121785530 |
| 6387   | CXCL12   | 10 | 44865601  | 44880545  | 44370153  | 44385097  |
| 1147   | CHUK     | 10 | 101948123 | 101989367 | 100186113 | 100229610 |
| 283106 | CSNK2A3  | 11 | 11373489  | 11374904  | 11351942  | 11353357  |
| 7189   | TRAF6    | 11 | 36505317  | 36531863  | 36483767  | 36510313  |
| 5970   | RELA     | 11 | 65421067  | 65430443  | 65653596  | 65662972  |
| 330    | BIRC3    | 11 | 102188181 | 102210134 | 102317373 | 102339403 |
| 4314   | MMP3     | 11 | 102706528 | 102714342 | 102835797 | 102843611 |
| 8600   | TNFSF11  | 13 | 43136872  | 43182149  | 42562736  | 42608013  |
| 10673  | TNFSF13B | 13 | 108921875 | 108960832 | 108269420 | 108308484 |
| 11035  | RIPK3    | 14 | 24805227  | 24809242  | 24336021  | 24340036  |
| 5579   | PRKCB    | 16 | 23847300  | 24231932  | 23835979  | 24220611  |
| 6376   | CX3CL1   | 16 | 57406414  | 57418956  | 57372461  | 57385048  |
| 5336   | PLCG2    | 16 | 81812899  | 81996290  | 81779258  | 81962693  |
| 5606   | MAP2K3   | 17 | 21187968  | 21218552  | 21284656  | 21315240  |
| 6357   | CCL13    | 17 | 32683471  | 32685629  | 34356452  | 34358610  |
| 6348   | CCL3     | 17 | 34415602  | 34417506  | 36088256  | 36090160  |
| 6351   | CCL4     | 17 | 34431220  | 34433014  | 36103827  | 36105621  |
| 414062 | CCL3L3   | 17 | 34522268  | 34524147  | 36194869  | 36196748  |
| 9560   | CCL4L2   | 17 | 34538468  | 34540275  | 36211063  | 36212878  |
| 7706   | TRIM25   | 17 | 54965270  | 54991409  | 56887909  | 56914048  |
| 79092  | CARD14   | 17 | 78143791  | 78183130  | 80169992  | 80209331  |
| 51588  | PIAS4    | 19 | 4007749   | 4038067   | 4007598   | 4039386   |
| 5605   | MAP2K2   | 19 | 4090319   | 4124126   | 4090321   | 4124184   |
| 8740   | TNFSF14  | 19 | 6661264   | 6670599   | 6658135   | 6670588   |
| 208    | AKT2     | 19 | 40736224  | 40791443  | 40230317  | 40285531  |
|        |          |    |           |           |           |           |

|     | 5971   | RELB      | 19 | 45504707  | 45541456  | 45001449  | 45038198  |
|-----|--------|-----------|----|-----------|-----------|-----------|-----------|
|     | 3661   | IRF3      | 19 | 50162826  | 50169132  | 49659569  | 49665875  |
|     | 1457   | CSNK2A1   | 20 | 463338    | 524482    | 472969    | 543838    |
|     | 182    | JAG1      | 20 | 10618332  | 10654694  | 10637684  | 10674046  |
|     | 598    | BCL2L1    | 20 | 30252261  | 30311752  | 31664452  | 31723964  |
|     | 3455   | IFNAR2    | 21 | 34602231  | 34636831  | 33229895  | 33264513  |
|     | 29775  | CARD10    | 22 | 37886400  | 37915543  | 37490362  | 37519203  |
|     | 115650 | TNFRSF13C | 22 | 42321036  | 42322821  | 41925032  | 41926817  |
|     | 51284  | TLR7      | 23 | 12885202  | 12908480  | 12867083  | 12890361  |
|     | 51311  | TLR8      | 23 | 12924739  | 12941288  | 12906620  | 12923169  |
|     | 695    | BTK       | 23 | 100604435 | 100641212 | 101349447 | 101390796 |
|     | 8517   | IKBKG     | 23 | 153769419 | 153796804 | 154541204 | 154568573 |
| TNF | 5293   | PIK3CD    | 1  | 9711789   | 9789172   | 9629889   | 9729114   |
|     | 3932   | LCK       | 1  | 32716840  | 32751766  | 32251239  | 32286170  |
|     | 8503   | PIK3R3    | 1  | 46505812  | 46642167  | 46040140  | 46176495  |
|     | 3725   | JUN       | 1  | 59246463  | 59249785  | 58780791  | 58784113  |
|     | 148327 | CREB3L4   | 1  | 153940315 | 153946840 | 153967839 | 153974364 |
|     | 6401   | SELE      | 1  | 169691781 | 169703220 | 169722640 | 169734079 |
|     | 7188   | TRAF5     | 1  | 211499849 | 211548403 | 211326579 | 211374946 |
|     | 142    | PARP1     | 1  | 226548392 | 226595801 | 226360691 | 226408100 |
|     | 843    | CASP10    | 2  | 202047621 | 202094129 | 201182898 | 201229406 |
|     | 6364   | CCL20     | 2  | 228678558 | 228682280 | 227813842 | 227817564 |
|     | 3576   | CXCL8     | 4  | 74606223  | 74609433  | 73740506  | 73743716  |
|     | 6372   | CXCL6     | 4  | 74702273  | 74704477  | 73836556  | 73838760  |
|     | 4283   | CXCL9     | 4  | 76922623  | 76928641  | 76001342  | 76007523  |
|     | 3627   | CXCL10    | 4  | 76942269  | 76944689  | 76021116  | 76023536  |
|     | 6373   | CXCL11    | 4  | 76954835  | 76957350  | 76033682  | 76036197  |
|     | 836    | CASP3     | 4  | 185548850 | 185570629 | 184627696 | 184649475 |
|     | 3593   | IL12B     | 5  | 158741791 | 158757481 | 159314783 | 159330473 |
|     | 8737   | RIPK1     | 6  | 3064201   | 3115421   | 3063967   | 3115187   |
|     | 1906   | EDN1      | 6  | 12290529  | 12297427  | 12261214  | 12297194  |
|     | 4049   | LTA       | 6  | 31539876  | 31542101  | 31560550  | 31574324  |
|     |        |           |    |           |           |           |           |

| 7124   | TNF     | 6  | 31543344  | 31546113  | 31575567  | 31578336  |
|--------|---------|----|-----------|-----------|-----------|-----------|
| 4050   | LTB     | 6  | 31548335  | 31550202  | 31580558  | 31582425  |
| 6885   | MAP3K7  | 6  | 91223292  | 91297020  | 90513573  | 90587301  |
| 5879   | RAC1    | 7  | 6414126   | 6443598   | 6374495   | 6403967   |
| 3444   | IFNA7   | 9  | 21201468  | 21202204  | 21201469  | 21202205  |
| 3443   | IFNA6   | 9  | 21350317  | 21350886  | 21350318  | 21350887  |
| 3445   | IFNA8   | 9  | 21409146  | 21410184  | 21409147  | 21410185  |
| 7185   | TRAF1   | 9  | 123664671 | 123691451 | 120902393 | 120929173 |
| 7186   | TRAF2   | 9  | 139776341 | 139821853 | 136881933 | 136926621 |
| 1326   | MAP3K8  | 10 | 30722950  | 30750762  | 30434003  | 30461833  |
| 29760  | BLNK    | 10 | 97951455  | 98031333  | 96191699  | 96271576  |
| 3665   | IRF7    | 11 | 612555    | 615999    | 612553    | 615999    |
| 8986   | RPS6KA4 | 11 | 64126625  | 64139687  | 64359153  | 64372215  |
| 8772   | FADD    | 11 | 70049269  | 70053508  | 70203163  | 70207402  |
| 114609 | TIRAP   | 11 | 126152800 | 126164828 | 126281893 | 126294933 |
| 23085  | ERC1    | 12 | 1100404   | 1605099   | 991208    | 1495933   |
| 4055   | LTBR    | 12 | 6484534   | 6500737   | 6375368   | 6391571   |
| 4792   | NFKBIA  | 14 | 35870716  | 35873960  | 35401510  | 35404754  |
| 2353   | FOS     | 14 | 75745477  | 75748937  | 75278778  | 75282234  |
| 207    | AKT1    | 14 | 105235686 | 105262080 | 104769349 | 104795743 |
| 3492   | IGH     | 14 | 106032614 | 107288051 | 105566277 | 106879844 |
| 7329   | UBE2I   | 16 | 1357420   | 1377019   | 1309153   | 1327018   |
| 8717   | TRADD   | 16 | 67188088  | 67193812  | 67154185  | 67159909  |
| 6416   | MAP2K4  | 17 | 11924135  | 12047148  | 12020818  | 12143831  |
| 6352   | CCL5    | 17 | 34198495  | 34207377  | 35871491  | 35880373  |
| 5609   | MAP2K7  | 19 | 7968665   | 7979363   | 7903780   | 7914483   |
| 5296   | PIK3R2  | 19 | 18263988  | 18281343  | 18153178  | 18170533  |
| 83737  | ITCH    | 20 | 32951041  | 33099198  | 34363235  | 34511393  |
| 3929   | LBP     | 20 | 36974814  | 37005653  | 38346411  | 38377011  |
| 5335   | PLCG1   | 20 | 39766159  | 39804359  | 41137519  | 41175721  |
| 1051   | CEBPB   | 20 | 48807120  | 48809227  | 50190583  | 50192690  |
| 5594   | MAPK1   | 22 | 22113946  | 22221970  | 21759657  | 21867680  |
|        |         |    |           |           |           |           |

| 39 | 976          | LIF 2   | 2 3 | 30636436   | 30642840    | 30240447    | 30257923  |
|----|--------------|---------|-----|------------|-------------|-------------|-----------|
| 56 | 600 M        | APK11 2 | 2 5 | 50702142   | 50708779    | 50263713    | 50270393  |
| 36 | 654 <i>I</i> | RAK1 2  | 3 1 | 53275957 1 | 153285342 1 | 154010506 1 | 154024584 |

**Supplementary Table ST4.1**. Gene associations/BMI interactions within TLR, NFkB, and TNF pathways with invasive EOC risk among Black women.

| Pathway | Gene      | # SNPs | <b>P</b> <sub>raw</sub> | $P_{BH}$ | <b>P</b> <sub>BMI raw</sub> | <b>Р</b> <sub>ВМІ FDR</sub> |
|---------|-----------|--------|-------------------------|----------|-----------------------------|-----------------------------|
| NFkB    |           |        | 0.099                   |          | 0.165                       |                             |
|         | PRKCB     | 2384   | 0.003                   | 0.351    | 0.044                       | 0.748                       |
|         | GADD45G   | 7      | 0.006                   | 0.351    | 0.188                       | 0.886                       |
|         | LTB       | 4      | 0.009                   | 0.351    | 0.875                       | 1.000                       |
|         | PIDD1     | 82     | 0.010                   | 0.351    | 0.307                       | 0.886                       |
|         | PLCG2     | 1937   | 0.018                   | 0.375    | 0.521                       | 0.943                       |
|         | RELB      | 193    | 0.046                   | 0.556    | 0.196                       | 0.886                       |
|         | ZAP70     | 120    | 0.060                   | 0.571    | 0.391                       | 0.886                       |
|         | LYN       | 857    | 0.065                   | 0.571    | 0.696                       | 0.961                       |
|         | CARD14    | 271    | 0.072                   | 0.571    | 0.397                       | 0.886                       |
|         | TRAF6     | 108    | 0.088                   | 0.608    | 0.289                       | 0.886                       |
|         | TRADD     | 14     | 0.094                   | 0.614    | 0.837                       | 1.000                       |
|         | CXCL12    | 104    | 0.117                   | 0.702    | 0.135                       | 0.886                       |
|         | CARD11    | 1090   | 0.137                   | 0.767    | 0.058                       | 0.748                       |
|         | VCAM1     | 80     | 0.144                   | 0.782    | 0.265                       | 0.886                       |
|         | MAP3K14   | 208    | 0.156                   | 0.794    | 0.429                       | 0.901                       |
|         | TNFSF13B  | 158    | 0.167                   | 0.817    | 0.357                       | 0.886                       |
|         | CSNK2A3   | 12     | 0.168                   | 0.817    | 0.033                       | 0.748                       |
|         | RIPK1     | 368    | 0.196                   | 0.856    | 0.159                       | 0.886                       |
|         | SYK       | 662    | 0.197                   | 0.856    | 0.277                       | 0.886                       |
|         | RELA      | 41     | 0.201                   | 0.856    | 0.125                       | 0.886                       |
|         | CSNK2A2   | 166    | 0.202                   | 0.856    | 0.997                       | 1.000                       |
|         | IGH       | 2142   | 0.209                   | 0.856    | 0.744                       | 0.961                       |
|         | TNFSF11   | 216    | 0.217                   | 0.857    | 0.009                       | 0.748                       |
|         | CXCL1     | 16     | 0.223                   | 0.867    | 0.238                       | 0.886                       |
|         | XIAP      | 254    | 0.256                   | 0.902    | 0.031                       | 0.748                       |
|         | CD40LG    | 34     | 0.276                   | 0.903    | 0.395                       | 0.886                       |
|         | EDARADD   | 710    | 0.301                   | 0.903    | 0.012                       | 0.748                       |
|         | PLCG1     | 87     | 0.321                   | 0.903    | 0.613                       | 0.951                       |
|         | CCL19     | 7      | 0.334                   | 0.903    | 0.457                       | 0.901                       |
|         | TNFRSF11A | 355    | 0.339                   | 0.903    | 0.071                       | 0.748                       |
|         | PLAU      | 22     | 0.350                   | 0.903    | 0.981                       | 1.000                       |
|         | BIRC3     | 65     | 0.375                   | 0.913    | 0.399                       | 0.886                       |
|         | PARP1     | 240    | 0.421                   | 0.915    | 0.331                       | 0.886                       |
|         | TRIM25    | 80     | 0.426                   | 0.915    | 0.116                       | 0.886                       |
|         | CCL21     | 5      | 0.430                   | 0.915    | 0.729                       | 0.961                       |
|         | NFKB2     | 26     | 0.431                   | 0.915    | 0.168                       | 0.886                       |
|         | CARD10    | 197    | 0.441                   | 0.916    | 0.889                       | 1.000                       |
|         | GADD45B   | 9      | 0.451                   | 0.916    | 0.159                       | 0.886                       |
|         | ERC1      | 3618   | 0.452                   | 0.916    | 0.877                       | 1.000                       |

| CXCL3     | 6    | 0.470 | 0.929 | 0.482 | 0.919 |
|-----------|------|-------|-------|-------|-------|
| GADD45A   | 16   | 0.486 | 0.942 | 0.025 | 0.748 |
| NFKBIA    | 18   | 0.526 | 0.948 | 0.417 | 0.901 |
| NFKB1     | 441  | 0.548 | 0.950 | 0.131 | 0.886 |
| MALT1     | 389  | 0.570 | 0.951 | 0.211 | 0.886 |
| LCK       | 125  | 0.586 | 0.951 | 0.515 | 0.943 |
| BCL2A1    | 48   | 0.594 | 0.951 | 0.535 | 0.945 |
| PIAS4     | 214  | 0.606 | 0.951 | 0.460 | 0.901 |
| BCL2      | 961  | 0.613 | 0.951 | 0.172 | 0.886 |
| ATM       | 671  | 0.632 | 0.951 | 0.900 | 1.000 |
| CSNK2B    | 16   | 0.637 | 0.951 | 0.905 | 1.000 |
| EDA       | 1492 | 0.648 | 0.951 | 0.412 | 0.901 |
| ICAM1     | 75   | 0.668 | 0.951 | 0.679 | 0.961 |
| BCL10     | 59   | 0.681 | 0.951 | 0.445 | 0.901 |
| CSNK2A1   | 249  | 0.681 | 0.951 | 0.124 | 0.886 |
| TNFSF14   | 47   | 0.700 | 0.962 | 0.206 | 0.886 |
| CCL13     | 7    | 0.702 | 0.962 | 0.465 | 0.903 |
| BLNK      | 487  | 0.737 | 0.976 | 0.259 | 0.886 |
| LTA       | 11   | 0.771 | 0.987 | 0.203 | 0.886 |
| CHUK      | 192  | 0.790 | 0.990 | 0.082 | 0.814 |
| EDAR      | 500  | 0.814 | 0.990 | 0.088 | 0.837 |
| BCL2L1    | 155  | 0.815 | 0.990 | 0.772 | 0.970 |
| TAB3      | 180  | 0.824 | 0.990 | 0.792 | 0.974 |
| BTK       | 152  | 0.833 | 0.990 | 0.366 | 0.886 |
| LAT       | 16   | 0.838 | 0.990 | 0.795 | 0.974 |
| CXCL2     | 4    | 0.841 | 0.990 | 0.537 | 0.945 |
| BIRC2     | 99   | 0.877 | 0.990 | 0.615 | 0.951 |
| IL1R1     | 679  | 0.879 | 0.990 | 0.950 | 1.000 |
| PTGS2     | 34   | 0.885 | 0.990 | 0.603 | 0.951 |
| TNFRSF13C | 9    | 0.902 | 0.990 | 0.318 | 0.886 |
| PRKCQ     | 1222 | 0.906 | 0.990 | 0.730 | 0.961 |
| UBE21     | 198  | 0.914 | 0.990 | 0.934 | 1.000 |
| CYLD      | 242  | 0.937 | 0.990 | 0.479 | 0.919 |
| EDA2R     | 82   | 0.941 | 0.990 | 0.715 | 0.961 |
| LTBR      | 87   | 0.962 | 0.997 | 0.230 | 0.886 |
| TLR       |      | 0.118 |       | 0.481 |       |
| PIK3CA    | 326  | 0.007 | 0.351 | 0.586 | 0.951 |
| MAPK14    | 400  | 0.012 | 0.351 | 0.946 | 1.000 |
| IRAK4     | 144  | 0.012 | 0.351 | 0.171 | 0.886 |
| MAP2K2    | 176  | 0.012 | 0.351 | 0.521 | 0.943 |
| MAP3K8    | 144  | 0.017 | 0.375 | 0.004 | 0.748 |
| IRAK1     | 25   | 0.029 | 0.474 | 0.675 | 0.961 |
| ΜΑΡΚ8     | 598  | 0.033 | 0.474 | 0.548 | 0.950 |
| MAP3K7    | 318  | 0.035 | 0.474 | 0.039 | 0.748 |
|           |      |       |       |       | •     |

| LY96   | 221  | 0.056 | 0.571 | 0.115 | 0.886 |
|--------|------|-------|-------|-------|-------|
| IFNA5  | 3    | 0.057 | 0.571 | 0.097 | 0.855 |
| MAPK11 | 28   | 0.058 | 0.571 | 0.674 | 0.961 |
| IRF5   | 62   | 0.067 | 0.571 | 0.739 | 0.961 |
| MAPK12 | 58   | 0.072 | 0.571 | 0.164 | 0.886 |
| IKBKE  | 163  | 0.081 | 0.594 | 0.581 | 0.951 |
| CCL5   | 23   | 0.083 | 0.594 | 0.210 | 0.886 |
| TLR9   | 6    | 0.083 | 0.594 | 0.216 | 0.886 |
| CTSK   | 22   | 0.124 | 0.729 | 0.959 | 1.000 |
| IFNA6  | 3    | 0.132 | 0.753 | 0.722 | 0.961 |
| TAB1   | 122  | 0.156 | 0.794 | 0.740 | 0.961 |
| CFLAR  | 228  | 0.171 | 0.817 | 0.219 | 0.886 |
| MAPK9  | 313  | 0.189 | 0.856 | 0.240 | 0.886 |
| CD14   | 6    | 0.208 | 0.856 | 0.894 | 1.000 |
| CCL3L3 | 1    | 0.214 | 0.857 | 0.425 | 0.901 |
| IFNAR1 | 193  | 0.257 | 0.902 | 0.457 | 0.901 |
| MYD88  | 6    | 0.260 | 0.902 | 0.319 | 0.886 |
| IFNA16 | 12   | 0.273 | 0.903 | 0.791 | 0.974 |
| IFNA8  | 4    | 0.282 | 0.903 | 0.927 | 1.000 |
| IL1B   | 30   | 0.287 | 0.903 | 0.455 | 0.901 |
| TICAM1 | 109  | 0.290 | 0.903 | 0.282 | 0.886 |
| IFNA21 | 6    | 0.300 | 0.903 | 0.291 | 0.886 |
| MAP2K4 | 382  | 0.309 | 0.903 | 0.757 | 0.961 |
| IFNA2  | 7    | 0.318 | 0.903 | 0.365 | 0.886 |
| FADD   | 13   | 0.319 | 0.903 | 0.203 | 0.886 |
| IFNA13 | 1    | 0.329 | 0.903 | 0.954 | 1.000 |
| TIRAP  | 61   | 0.331 | 0.903 | 0.661 | 0.961 |
| PIK3R3 | 454  | 0.337 | 0.903 | 0.531 | 0.945 |
| IFNA7  | 2    | 0.351 | 0.903 | 0.922 | 1.000 |
| CXCL10 | 15   | 0.369 | 0.913 | 0.370 | 0.886 |
| IRF7   | 25   | 0.371 | 0.913 | 0.971 | 1.000 |
| TLR2   | 122  | 0.400 | 0.915 | 0.183 | 0.886 |
| MAPK10 | 2512 | 0.403 | 0.915 | 0.061 | 0.748 |
| CCL4L1 | 2    | 0.410 | 0.915 | 0.286 | 0.886 |
| PIK3R2 | 73   | 0.414 | 0.915 | 0.759 | 0.961 |
| IL12A  | 36   | 0.418 | 0.915 | 0.043 | 0.748 |
| MAP2K6 | 609  | 0.423 | 0.915 | 0.046 | 0.748 |
| MAP2K7 | 61   | 0.426 | 0.915 | 0.392 | 0.886 |
| PIK3R1 | 380  | 0.431 | 0.915 | 0.563 | 0.950 |
| CD86   | 226  | 0.432 | 0.915 | 0.270 | 0.886 |
| TICAM2 | 194  | 0.466 | 0.928 | 0.025 | 0.748 |
| TAB2   | 548  | 0.478 | 0.936 | 0.058 | 0.748 |
| TLR4   | 60   | 0.493 | 0.942 | 0.973 | 1.000 |
| IKBKB  | 243  | 0.497 | 0.942 | 0.859 | 1.000 |
|        |      |       |       |       |       |

| TLR7   | 103  | 0.502 | 0.942 | 0.895 | 1.000 |
|--------|------|-------|-------|-------|-------|
| STAT1  | 195  | 0.506 | 0.942 | 0.737 | 0.961 |
| CXCL11 | 24   | 0.513 | 0.948 | 0.291 | 0.886 |
| CXCL8  | 9    | 0.525 | 0.948 | 0.070 | 0.748 |
| IFNA1  | 8    | 0.539 | 0.950 | 0.217 | 0.886 |
| CCL4   | 23   | 0.551 | 0.950 | 0.582 | 0.951 |
| AKT2   | 154  | 0.552 | 0.950 | 0.787 | 0.974 |
| TLR3   | 98   | 0.570 | 0.951 | 0.357 | 0.886 |
| IFNA4  | 6    | 0.585 | 0.951 | 0.632 | 0.961 |
| PIK3CD | 323  | 0.587 | 0.951 | 0.512 | 0.943 |
| MAPK13 | 46   | 0.597 | 0.951 | 0.970 | 1.000 |
| IFNAR2 | 178  | 0.626 | 0.951 | 0.635 | 0.961 |
| IFNA10 | 14   | 0.652 | 0.951 | 0.912 | 1.000 |
| MAP2K1 | 542  | 0.652 | 0.951 | 0.910 | 1.000 |
| AKT3   | 1176 | 0.657 | 0.951 | 0.703 | 0.961 |
| TLR1   | 69   | 0.661 | 0.951 | 0.695 | 0.961 |
| PIK3CB | 702  | 0.671 | 0.951 | 0.523 | 0.943 |
| IFNB1  | 5    | 0.676 | 0.951 | 0.562 | 0.950 |
| IL12B  | 72   | 0.681 | 0.951 | 0.899 | 1.000 |
| IL6    | 29   | 0.701 | 0.962 | 0.398 | 0.886 |
| CXCL9  | 18   | 0.709 | 0.963 | 0.263 | 0.886 |
| CCL3   | 16   | 0.717 | 0.963 | 0.743 | 0.961 |
| AKT1   | 167  | 0.719 | 0.963 | 0.678 | 0.961 |
| MAP2K3 | 185  | 0.728 | 0.969 | 0.048 | 0.748 |
| TLR5   | 175  | 0.752 | 0.985 | 0.336 | 0.886 |
| JUN    | 15   | 0.754 | 0.985 | 0.599 | 0.951 |
| MAPK1  | 513  | 0.757 | 0.985 | 0.385 | 0.886 |
| IFNA17 | 10   | 0.770 | 0.987 | 0.735 | 0.961 |
| МАРКЗ  | 24   | 0.828 | 0.990 | 0.206 | 0.886 |
| TLR6   | 346  | 0.850 | 0.990 | 0.775 | 0.970 |
| LBP    | 265  | 0.884 | 0.990 | 0.700 | 0.961 |
| IRF3   | 23   | 0.886 | 0.990 | 0.251 | 0.886 |
| SPP1   | 42   | 0.888 | 0.990 | 0.120 | 0.886 |
| TOLLIP | 158  | 0.908 | 0.990 | 0.039 | 0.748 |
| TBK1   | 177  | 0.909 | 0.990 | 0.701 | 0.961 |
| CD40   | 48   | 0.924 | 0.990 | 0.700 | 0.961 |
| CD80   | 217  | 0.926 | 0.990 | 0.522 | 0.943 |
| IKBKG  | 25   | 0.928 | 0.990 | 0.803 | 0.978 |
| CASP8  | 240  | 0.938 | 0.990 | 0.199 | 0.886 |
| FOS    | 11   | 0.943 | 0.990 | 0.245 | 0.886 |
| RAC1   | 241  | 0.958 | 0.997 | 0.851 | 1.000 |
| TLR8   | 83   | 0.971 | 1.000 | 0.066 | 0.748 |
| IFNA14 |      |       |       |       |       |
| CCL3L1 |      |       |       |       |       |
|        |      |       |       |       |       |

| TNF |          |      |       |       |       |       |
|-----|----------|------|-------|-------|-------|-------|
|     |          |      | 0.762 |       | 0.882 |       |
|     | CREB3L4  | 11   | 0.015 | 0.375 | 0.398 | 0.886 |
|     | CXCL5    | 5    | 0.023 | 0.446 | 0.391 | 0.886 |
|     | TRAF2    | 253  | 0.034 | 0.474 | 0.818 | 0.991 |
|     | MAP3K5   | 1047 | 0.035 | 0.474 | 0.170 | 0.886 |
|     | CREB5    | 3041 | 0.045 | 0.556 | 0.898 | 1.000 |
|     | SELE     | 81   | 0.055 | 0.571 | 0.436 | 0.901 |
|     | TNFAIP3  | 48   | 0.069 | 0.571 | 0.457 | 0.901 |
|     | DAB2IP   | 1151 | 0.091 | 0.614 | 0.097 | 0.855 |
|     | CASP7    | 276  | 0.110 | 0.697 | 0.759 | 0.961 |
|     | BAG4     | 115  | 0.116 | 0.702 | 0.647 | 0.961 |
|     | BCL3     | 72   | 0.147 | 0.785 | 0.246 | 0.886 |
|     | DNM1L    | 494  | 0.190 | 0.856 | 0.583 | 0.951 |
|     | JAG1     | 173  | 0.233 | 0.889 | 0.013 | 0.748 |
|     | VEGFC    | 572  | 0.240 | 0.902 | 0.564 | 0.950 |
|     | JUNB     | 3    | 0.244 | 0.902 | 0.072 | 0.748 |
|     | CREB3L1  | 191  | 0.257 | 0.902 | 0.180 | 0.886 |
|     | MMP3     | 46   | 0.270 | 0.903 | 0.068 | 0.748 |
|     | EDN1     | 30   | 0.275 | 0.903 | 0.961 | 1.000 |
|     | PGAM5    | 108  | 0.308 | 0.903 | 0.555 | 0.950 |
|     | TNF      | 10   | 0.342 | 0.903 | 0.856 | 1.000 |
|     | SOCS3    | 8    | 0.349 | 0.903 | 0.391 | 0.886 |
|     | IRF1     | 60   | 0.362 | 0.913 | 0.487 | 0.922 |
|     | CREB3L3  | 105  | 0.374 | 0.913 | 0.978 | 1.000 |
|     | CX3CL1   | 76   | 0.420 | 0.915 | 0.993 | 1.000 |
|     | CASP3    | 117  | 0.439 | 0.916 | 0.391 | 0.886 |
|     | CREB3    | 14   | 0.448 | 0.916 | 0.607 | 0.951 |
|     | CREB1    | 227  | 0.465 | 0.928 | 0.564 | 0.950 |
|     | TNFRSF1B | 211  | 0.498 | 0.942 | 0.871 | 1.000 |
|     | CCL2     | 7    | 0.520 | 0.948 | 0.360 | 0.886 |
|     | CCL20    | 20   | 0.546 | 0.950 | 0.324 | 0.886 |
|     | LIF      | 29   | 0.549 | 0.950 | 0.437 | 0.901 |
|     | MLKL     | 147  | 0.560 | 0.951 | 0.393 | 0.886 |
|     | ATF2     | 435  | 0.573 | 0.951 | 0.354 | 0.886 |
|     | CSF2     | 12   | 0.622 | 0.951 | 0.459 | 0.901 |
|     | CASP10   | 190  | 0.639 | 0.951 | 0.240 | 0.886 |
|     | TNFRSF1A | 42   | 0.646 | 0.951 | 0.945 | 1.000 |
|     | NOD2     | 165  | 0.656 | 0.951 | 0.193 | 0.886 |
|     | ATF6B    | 34   | 0.664 | 0.951 | 0.917 | 1.000 |
|     | CSF1     | 74   | 0.678 | 0.951 | 0.737 | 0.961 |
|     | RPS6KA5  | 968  | 0.719 | 0.963 | 0.333 | 0.886 |
|     | CXCL6    | 7    | 0.766 | 0.987 | 0.362 | 0.886 |
|     | ATF4     | 19   | 0.778 | 0.990 | 0.725 | 0.961 |

| ITCH    | 458 | 0.791 | 0.990 | 0.370 | 0.886 |
|---------|-----|-------|-------|-------|-------|
| CEBPB   | 2   | 0.834 | 0.990 | 0.941 | 1.000 |
| RIPK3   | 19  | 0.836 | 0.990 | 0.682 | 0.961 |
| MMP9    | 41  | 0.838 | 0.990 | 0.673 | 0.961 |
| IL18R1  | 202 | 0.842 | 0.990 | 0.447 | 0.901 |
| RPS6KA4 | 65  | 0.857 | 0.990 | 0.585 | 0.951 |
| CREB3L2 | 728 | 0.860 | 0.990 | 0.755 | 0.961 |
| TRAF3   | 541 | 0.903 | 0.990 | 0.717 | 0.961 |
| IL15    | 372 | 0.907 | 0.990 | 0.601 | 0.951 |
| TRAF5   | 162 | 0.911 | 0.990 | 0.300 | 0.886 |
| TRAF1   | 145 | 0.937 | 0.990 | 0.608 | 0.951 |
| FAS     | 154 | 0.952 | 0.995 | 0.284 | 0.886 |
| MMP14   | 73  | 0.974 | 1.000 | 0.234 | 0.886 |

<sup>a</sup>Aggregate P-value of MAGMA model results. Each model controls for age, and two ancestry principal components.

<sup>b</sup>Corrected for multiple testing by the number of genes tested using the Benjamini-Hochberg false discovery rate (FDR).

**Supplementary Table ST4.2.** Gene associations/BMI interactions within TLR, NFkB, and TNF pathways with invasive HGSOC risk among Black women.

| Pathway | Gene      | # SNPs | $P^{a}$ | $P_{FDR}^{b}$ | <b>P</b> <sub>BMI</sub> <sup>a</sup> | <b>P</b> <sub>BMI FDR</sub> <sup>b</sup> |
|---------|-----------|--------|---------|---------------|--------------------------------------|------------------------------------------|
| NFkB    |           |        |         |               |                                      |                                          |
|         | RELB      | 193    | 0.006   | 0.559         | 0.110                                | 0.888                                    |
|         | PRKCB     | 2384   | 0.007   | 0.559         | 0.133                                | 0.888                                    |
|         | ZAP70     | 120    | 0.055   | 0.803         | 0.838                                | 0.996                                    |
|         | CXCL12    | 104    | 0.060   | 0.803         | 0.552                                | 0.966                                    |
|         | TRAF6     | 108    | 0.070   | 0.803         | 0.643                                | 0.988                                    |
|         | CSNK2A3   | 12     | 0.107   | 0.859         | 0.167                                | 0.919                                    |
|         | PLCG2     | 1937   | 0.108   | 0.859         | 0.482                                | 0.964                                    |
|         | GADD45G   | 7      | 0.116   | 0.859         | 0.276                                | 0.963                                    |
|         | CARD14    | 271    | 0.160   | 0.981         | 0.135                                | 0.888                                    |
|         | TNFSF13B  | 158    | 0.166   | 0.981         | 0.269                                | 0.963                                    |
|         | LTB       | 4      | 0.178   | 0.981         | 0.873                                | 0.996                                    |
|         | RELA      | 41     | 0.232   | 1.000         | 0.129                                | 0.888                                    |
|         | CSNK2A2   | 166    | 0.243   | 1.000         | 0.677                                | 0.988                                    |
|         | CD40LG    | 34     | 0.255   | 1.000         | 0.574                                | 0.974                                    |
|         | GADD45B   | 9      | 0.276   | 1.000         | 0.035                                | 0.888                                    |
|         | CCL19     | 7      | 0.288   | 1.000         | 0.459                                | 0.964                                    |
|         | CARD11    | 1090   | 0.307   | 1.000         | 0.141                                | 0.888                                    |
|         | EDAR      | 500    | 0.312   | 1.000         | 0.164                                | 0.919                                    |
|         | MAP3K14   | 208    | 0.313   | 1.000         | 0.133                                | 0.888                                    |
|         | TRADD     | 14     | 0.320   | 1.000         | 0.936                                | 1.000                                    |
|         | PIDD1     | 82     | 0.322   | 1.000         | 0.245                                | 0.963                                    |
|         | LCK       | 125    | 0.330   | 1.000         | 0.397                                | 0.964                                    |
|         | ATM       | 671    | 0.333   | 1.000         | 0.758                                | 0.988                                    |
|         | TNFSF11   | 216    | 0.377   | 1.000         | 0.036                                | 0.888                                    |
|         | VCAM1     | 80     | 0.379   | 1.000         | 0.233                                | 0.963                                    |
|         | IGH       | 2142   | 0.389   | 1.000         | 0.758                                | 0.988                                    |
|         | EDARADD   | 710    | 0.425   | 1.000         | 0.051                                | 0.888                                    |
|         | TRIM25    | 80     | 0.426   | 1.000         | 0.259                                | 0.963                                    |
|         | CCL13     | 7      | 0.428   | 1.000         | 0.348                                | 0.963                                    |
|         | SYK       | 662    | 0.448   | 1.000         | 0.108                                | 0.888                                    |
|         | CCL21     | 5      | 0.458   | 1.000         | 0.506                                | 0.964                                    |
|         | IL1R1     | 679    | 0.487   | 1.000         | 0.807                                | 0.996                                    |
|         | ICAM1     | 75     | 0.494   | 1.000         | 0.828                                | 0.996                                    |
|         | TNFRSF11A | 355    | 0.495   | 1.000         | 0.039                                | 0.888                                    |
|         | CXCL3     | 6      | 0.548   | 1.000         | 0.867                                | 0.996                                    |
|         | BTK       | 152    | 0.571   | 1.000         | 0.426                                | 0.964                                    |
|         | XIAP      | 254    | 0.574   | 1.000         | 0.021                                | 0.888                                    |
|         | PLCG1     | 87     | 0.586   | 1.000         | 0.654                                | 0.988                                    |

|     | GADD45A   | 16   | 0.613 | 1.000 | 0.006 | 0.648 |
|-----|-----------|------|-------|-------|-------|-------|
|     | EDA       | 1492 | 0.622 | 1.000 | 0.142 | 0.888 |
|     | BCL2L1    | 155  | 0.623 | 1.000 | 0.476 | 0.964 |
|     | TNFSF14   | 47   | 0.652 | 1.000 | 0.401 | 0.964 |
|     | CYLD      | 242  | 0.679 | 1.000 | 0.509 | 0.964 |
|     | BIRC3     | 65   | 0.693 | 1.000 | 0.580 | 0.976 |
|     | BCL2A1    | 48   | 0.698 | 1.000 | 0.487 | 0.964 |
|     | CXCL1     | 16   | 0.708 | 1.000 | 0.680 | 0.988 |
|     | CARD10    | 197  | 0.716 | 1.000 | 0.891 | 0.998 |
|     | PTGS2     | 34   | 0.727 | 1.000 | 0.783 | 0.988 |
|     | BCL10     | 59   | 0.727 | 1.000 | 0.094 | 0.888 |
|     | BLNK      | 487  | 0.743 | 1.000 | 0.345 | 0.963 |
|     | ERC1      | 3618 | 0.746 | 1.000 | 0.693 | 0.988 |
|     | EDA2R     | 82   | 0.748 | 1.000 | 0.520 | 0.964 |
|     | CHUK      | 192  | 0.749 | 1.000 | 0.093 | 0.888 |
|     | NFKB1     | 441  | 0.760 | 1.000 | 0.204 | 0.963 |
|     | PIAS4     | 214  | 0.805 | 1.000 | 0.773 | 0.988 |
|     | PLAU      | 22   | 0.815 | 1.000 | 0.989 | 1.000 |
|     | MALT1     | 389  | 0.852 | 1.000 | 0.117 | 0.888 |
|     | PARP1     | 240  | 0.862 | 1.000 | 0.878 | 0.996 |
|     | RIPK1     | 368  | 0.873 | 1.000 | 0.346 | 0.963 |
|     | LYN       | 857  | 0.877 | 1.000 | 0.465 | 0.964 |
|     | NFKBIA    | 18   | 0.880 | 1.000 | 0.349 | 0.963 |
|     | CXCL2     | 4    | 0.881 | 1.000 | 0.400 | 0.964 |
|     | CSNK2B    | 16   | 0.883 | 1.000 | 0.935 | 1.000 |
|     | LTA       | 11   | 0.891 | 1.000 | 0.172 | 0.919 |
|     | PRKCQ     | 1222 | 0.895 | 1.000 | 0.411 | 0.964 |
|     | BCL2      | 961  | 0.896 | 1.000 | 0.134 | 0.888 |
|     | LAT       | 16   | 0.916 | 1.000 | 0.977 | 1.000 |
|     | TNFRSF13C | 9    | 0.936 | 1.000 | 0.238 | 0.963 |
|     | TAB3      | 180  | 0.940 | 1.000 | 0.823 | 0.996 |
|     | CSNK2A1   | 249  | 0.940 | 1.000 | 0.266 | 0.963 |
|     | NFKB2     | 26   | 0.958 | 1.000 | 0.241 | 0.963 |
|     | BIRC2     | 99   | 0.966 | 1.000 | 0.543 | 0.964 |
|     | UBE2I     | 198  | 0.994 | 1.000 | 0.454 | 0.964 |
|     | LTBR      | 87   | 0.997 | 1.000 | 0.234 | 0.963 |
| TLR |           |      |       |       |       |       |
|     | IKBKE     | 163  | 0.012 | 0.674 | 0.689 | 0.988 |
|     | LY96      | 221  | 0.020 | 0.761 | 0.210 | 0.963 |
|     | PIK3CA    | 326  | 0.023 | 0.761 | 0.324 | 0.963 |
|     | CTSK      | 22   | 0.030 | 0.803 | 0.782 | 0.988 |
|     | MAPK14    | 400  | 0.045 | 0.803 | 0.964 | 1.000 |
|     | ΜΑΡΚ8     | 598  | 0.045 | 0.803 | 0.418 | 0.964 |
|     | IRAK4     | 144  | 0.045 | 0.803 | 0.369 | 0.964 |
|     |           |      |       |       |       |       |

| MAP2K2        | 176  | 0.051 | 0.803 | 0.045 | 0.888 |
|---------------|------|-------|-------|-------|-------|
| IRF5          | 62   | 0.053 | 0.803 | 0.745 | 0.988 |
| МАРЗК8        | 144  | 0.064 | 0.803 | 0.060 | 0.888 |
| MAPK12        | 58   | 0.068 | 0.803 | 0.128 | 0.888 |
| TIRAP         | 61   | 0.093 | 0.859 | 0.714 | 0.988 |
| IL1B          | 30   | 0.095 | 0.859 | 0.805 | 0.996 |
| IFNA5         | 3    | 0.102 | 0.859 | 0.318 | 0.963 |
| FADD          | 13   | 0.119 | 0.859 | 0.235 | 0.963 |
| IFNA21        | 6    | 0.120 | 0.859 | 0.503 | 0.964 |
| TAB1          | 122  | 0.144 | 0.981 | 0.785 | 0.988 |
| IFNA16        | 12   | 0.165 | 0.981 | 0.311 | 0.963 |
| TAB2          | 548  | 0.167 | 0.981 | 0.078 | 0.888 |
| MAP2K6        | 609  | 0.175 | 0.981 | 0.282 | 0.963 |
| MAP3K7        | 318  | 0.178 | 0.981 | 0.383 | 0.964 |
| <i>РІКЗСВ</i> | 702  | 0.180 | 0.981 | 0.680 | 0.988 |
| IFNA6         | 3    | 0.201 | 1.000 | 0.622 | 0.988 |
| CCL5          | 23   | 0.223 | 1.000 | 0.152 | 0.909 |
| MAP2K4        | 382  | 0.238 | 1.000 | 0.338 | 0.963 |
| IFNA4         | 6    | 0.238 | 1.000 | 0.438 | 0.964 |
| MAPK11        | 28   | 0.266 | 1.000 | 0.541 | 0.964 |
| PIK3R1        | 380  | 0.289 | 1.000 | 0.551 | 0.966 |
| IRAK1         | 25   | 0.291 | 1.000 | 0.271 | 0.963 |
| IFNA8         | 4    | 0.301 | 1.000 | 0.644 | 0.988 |
| IFNA1         | 8    | 0.314 | 1.000 | 0.405 | 0.964 |
| IL12A         | 36   | 0.322 | 1.000 | 0.005 | 0.648 |
| МАРК9         | 313  | 0.328 | 1.000 | 0.218 | 0.963 |
| CD14          | 6    | 0.339 | 1.000 | 0.725 | 0.988 |
| TLR9          | 6    | 0.374 | 1.000 | 0.355 | 0.964 |
| MYD88         | 6    | 0.389 | 1.000 | 0.155 | 0.909 |
| CCL4          | 23   | 0.402 | 1.000 | 0.783 | 0.988 |
| TLR3          | 98   | 0.406 | 1.000 | 0.046 | 0.888 |
| TICAM2        | 194  | 0.423 | 1.000 | 0.037 | 0.888 |
| AKT3          | 1176 | 0.439 | 1.000 | 0.629 | 0.988 |
| IRF7          | 25   | 0.441 | 1.000 | 0.947 | 1.000 |
| IFNA7         | 2    | 0.441 | 1.000 | 0.999 | 1.000 |
| IKBKG         | 25   | 0.447 | 1.000 | 0.874 | 0.996 |
| CCL4L1        | 2    | 0.467 | 1.000 | 0.333 | 0.963 |
| IFNAR1        | 193  | 0.477 | 1.000 | 0.526 | 0.964 |
| CD86          | 226  | 0.483 | 1.000 | 0.099 | 0.888 |
| IFNA13        | 1    | 0.501 | 1.000 | 0.930 | 1.000 |
| IFNA2         | 7    | 0.512 | 1.000 | 0.358 | 0.964 |
| PIK3R2        | 73   | 0.515 | 1.000 | 0.765 | 0.988 |
| IFNA10        | 14   | 0.515 | 1.000 | 0.846 | 0.996 |
| CFLAR         | 228  | 0.536 | 1.000 | 0.487 | 0.964 |
|               |      |       |       |       |       |

| TICAM1 | 109  | 0.551 | 1.000 | 0.122 | 0.888 |
|--------|------|-------|-------|-------|-------|
| MAP2K1 | 542  | 0.558 | 1.000 | 0.865 | 0.996 |
| CXCL8  | 9    | 0.583 | 1.000 | 0.225 | 0.963 |
| PIK3R3 | 454  | 0.603 | 1.000 | 0.702 | 0.988 |
| FOS    | 11   | 0.617 | 1.000 | 0.421 | 0.964 |
| STAT1  | 195  | 0.621 | 1.000 | 0.573 | 0.974 |
| TLR5   | 175  | 0.631 | 1.000 | 0.282 | 0.963 |
| IL12B  | 72   | 0.642 | 1.000 | 0.900 | 0.998 |
| PIK3CD | 323  | 0.643 | 1.000 | 0.344 | 0.963 |
| TOLLIP | 158  | 0.647 | 1.000 | 0.043 | 0.888 |
| MAPK10 | 2512 | 0.648 | 1.000 | 0.234 | 0.963 |
| TLR1   | 69   | 0.654 | 1.000 | 0.427 | 0.964 |
| MAP2K7 | 61   | 0.658 | 1.000 | 0.343 | 0.963 |
| RAC1   | 241  | 0.673 | 1.000 | 0.515 | 0.964 |
| IFNB1  | 5    | 0.674 | 1.000 | 0.705 | 0.988 |
| IKBKB  | 243  | 0.680 | 1.000 | 0.849 | 0.996 |
| IFNA17 | 10   | 0.714 | 1.000 | 0.840 | 0.996 |
| CCL3L3 | 1    | 0.717 | 1.000 | 0.860 | 0.996 |
| LBP    | 265  | 0.731 | 1.000 | 0.710 | 0.988 |
| AKT1   | 167  | 0.737 | 1.000 | 0.598 | 0.988 |
| MAP2K3 | 185  | 0.743 | 1.000 | 0.127 | 0.888 |
| CCL3   | 16   | 0.752 | 1.000 | 0.923 | 1.000 |
| MAPK1  | 513  | 0.777 | 1.000 | 0.310 | 0.963 |
| SPP1   | 42   | 0.782 | 1.000 | 0.570 | 0.974 |
| TLR7   | 103  | 0.807 | 1.000 | 0.656 | 0.988 |
| TLR4   | 60   | 0.810 | 1.000 | 0.999 | 1.000 |
| MAPK13 | 46   | 0.815 | 1.000 | 0.832 | 0.996 |
| МАРКЗ  | 24   | 0.816 | 1.000 | 0.133 | 0.888 |
| AKT2   | 154  | 0.836 | 1.000 | 0.783 | 0.988 |
| IRF3   | 23   | 0.853 | 1.000 | 0.336 | 0.963 |
| CASP8  | 240  | 0.885 | 1.000 | 0.789 | 0.988 |
| TLR6   | 346  | 0.886 | 1.000 | 0.874 | 0.996 |
| CD40   | 48   | 0.893 | 1.000 | 0.643 | 0.988 |
| TLR2   | 122  | 0.904 | 1.000 | 0.209 | 0.963 |
| CXCL9  | 18   | 0.920 | 1.000 | 0.641 | 0.988 |
| IL6    | 29   | 0.924 | 1.000 | 0.216 | 0.963 |
| TBK1   | 177  | 0.927 | 1.000 | 0.403 | 0.964 |
| CXCL11 | 24   | 0.928 | 1.000 | 0.779 | 0.988 |
| JUN    | 15   | 0.939 | 1.000 | 0.904 | 0.998 |
| IFNAR2 | 178  | 0.965 | 1.000 | 0.617 | 0.988 |
| TLR8   | 83   | 0.983 | 1.000 | 0.064 | 0.888 |
| CD80   | 217  | 0.984 | 1.000 | 0.366 | 0.964 |
| CXCL10 | 15   | 0.988 | 1.000 | 0.907 | 0.998 |
| IFNA14 |      |       |       |       |       |
|        |      |       |       |       |       |

| CCL3L1   |       |       |       |       |       |
|----------|-------|-------|-------|-------|-------|
| CCL4L2   |       |       |       |       |       |
| TNF      |       |       |       |       |       |
| CREB3L4  | 4 11  | 0.007 | 0.559 | 0.292 | 0.963 |
| TNFAIP3  | 48    | 0.023 | 0.761 | 0.395 | 0.964 |
| JUNB     | 3     | 0.051 | 0.803 | 0.083 | 0.888 |
| MAP3K5   | 1047  | 0.067 | 0.803 | 0.143 | 0.888 |
| CREB5    | 3041  | 0.089 | 0.859 | 0.889 | 0.998 |
| MMP3     | 46    | 0.092 | 0.859 | 0.076 | 0.888 |
| TRAF2    | 253   | 0.102 | 0.859 | 0.682 | 0.988 |
| VEGFC    | 572   | 0.114 | 0.859 | 0.761 | 0.988 |
| CXCL5    | 5     | 0.146 | 0.981 | 0.172 | 0.919 |
| MMP9     | 41    | 0.207 | 1.000 | 0.866 | 0.996 |
| BCL3     | 72    | 0.208 | 1.000 | 0.433 | 0.964 |
| JAG1     | 173   | 0.252 | 1.000 | 0.111 | 0.888 |
| CREB3L3  | 3 105 | 0.265 | 1.000 | 0.696 | 0.988 |
| PGAM5    | 108   | 0.295 | 1.000 | 0.700 | 0.988 |
| DNM1L    | 494   | 0.300 | 1.000 | 0.538 | 0.964 |
| ATF2     | 435   | 0.320 | 1.000 | 0.111 | 0.888 |
| EDN1     | 30    | 0.342 | 1.000 | 0.950 | 1.000 |
| NOD2     | 165   | 0.352 | 1.000 | 0.111 | 0.888 |
| CREB1    | 227   | 0.359 | 1.000 | 0.906 | 0.998 |
| CEBPB    | 2     | 0.365 | 1.000 | 0.665 | 0.988 |
| ATF4     | 19    | 0.376 | 1.000 | 0.428 | 0.964 |
| CASP7    | 276   | 0.438 | 1.000 | 0.473 | 0.964 |
| CREB3    | 14    | 0.439 | 1.000 | 0.598 | 0.988 |
| SOCS3    | 8     | 0.458 | 1.000 | 0.846 | 0.996 |
| IRF1     | 60    | 0.469 | 1.000 | 0.373 | 0.964 |
| SELE     | 81    | 0.480 | 1.000 | 0.609 | 0.988 |
| CX3CL1   |       | 0.513 | 1.000 | 0.976 | 1.000 |
| TNFRSF1  | B 211 | 0.514 | 1.000 | 0.857 | 0.996 |
| BAG4     | 115   | 0.528 | 1.000 | 0.761 | 0.988 |
| IL15     | 372   | 0.574 | 1.000 | 0.528 | 0.964 |
| MMP14    | 73    | 0.604 | 1.000 | 0.223 | 0.963 |
| CCL20    | 20    | 0.610 | 1.000 | 0.296 | 0.963 |
| CSF2     | 12    | 0.623 | 1.000 | 0.477 | 0.964 |
| TNFRSF1. |       | 0.626 | 1.000 | 0.938 | 1.000 |
| TRAF5    | 162   | 0.650 | 1.000 | 0.536 | 0.964 |
| CCL2     | 7     | 0.718 | 1.000 | 0.666 | 0.988 |
| CREB3L1  |       | 0.722 | 1.000 | 0.332 | 0.963 |
| DAB2IP   | 1151  | 0.724 | 1.000 | 0.283 | 0.963 |
| TNF      | 10    | 0.725 | 1.000 | 0.918 | 1.000 |
| CASP3    | 117   | 0.734 | 1.000 | 0.245 | 0.963 |
| ITCH     | 458   | 0.771 | 1.000 | 0.679 | 0.988 |

| RIPK3   | 19  | 0.840 | 1.000 | 0.706 | 0.988 |
|---------|-----|-------|-------|-------|-------|
| CSF1    | 74  | 0.841 | 1.000 | 0.946 | 1.000 |
| CASP10  | 190 | 0.866 | 1.000 | 0.733 | 0.988 |
| RPS6KA5 | 968 | 0.881 | 1.000 | 0.491 | 0.964 |
| CREB3L2 | 728 | 0.882 | 1.000 | 0.511 | 0.964 |
| RPS6KA4 | 65  | 0.896 | 1.000 | 0.275 | 0.963 |
| ATF6B   | 34  | 0.903 | 1.000 | 0.780 | 0.988 |
| CXCL6   | 7   | 0.907 | 1.000 | 0.568 | 0.974 |
| LIF     | 29  | 0.913 | 1.000 | 0.784 | 0.988 |
| IL18R1  | 202 | 0.935 | 1.000 | 0.649 | 0.988 |
| FAS     | 154 | 0.939 | 1.000 | 0.533 | 0.964 |
| MLKL    | 147 | 0.940 | 1.000 | 0.471 | 0.964 |
| TRAF3   | 541 | 0.975 | 1.000 | 0.454 | 0.964 |
| TRAF1   | 145 | 0.992 | 1.000 | 0.541 | 0.964 |

<sup>a</sup>Aggregate P-value of MAGMA model results. Each model controls for age, and two ancestry principal components.

<sup>b</sup>Corrected for multiple testing by the number of genes tested using the Benjamini-Hochberg false discovery rate (FDR).

| <b></b> | Qaraa   |        |           | Tes      | t Set           |                             |           | Valida   | ation Set       |                     |
|---------|---------|--------|-----------|----------|-----------------|-----------------------------|-----------|----------|-----------------|---------------------|
| athway  | Gene    | # SNPs | $P_{raw}$ | $P_{BH}$ | $P_{BMI \ raw}$ | <b>P</b> <sub>BMI FDR</sub> | $P_{raw}$ | $P_{BH}$ | $P_{BMI \ raw}$ | P <sub>BMI FD</sub> |
| NfkB    |         |        | 0.075     |          | 0.856           |                             | 0.875     |          | 0.096           |                     |
|         | CSNK2A1 | 166    | 0.008     | 0.297    | 0.886           | 1.000                       | 0.084     | 0.565    | 0.035           | 1.000               |
|         | BLNK    | 253    | 0.011     | 0.297    | 0.988           | 1.000                       | 0.784     | 1.000    | 0.119           | 1.000               |
|         | RIPK1   | 119    | 0.012     | 0.297    | 0.244           | 0.871                       | 0.318     | 0.825    | 0.886           | 1.000               |
|         | EDA2R   | 56     | 0.016     | 0.334    | 0.172           | 0.763                       | 0.792     | 1.000    | 0.353           | 1.000               |
|         | ERC1    | 1966   | 0.016     | 0.334    | 0.795           | 1.000                       | 0.927     | 1.000    | 0.724           | 1.000               |
|         | TAB3    | 67     | 0.033     | 0.477    | 0.861           | 1.000                       | 0.402     | 0.868    | 0.355           | 1.000               |
|         | CARD10  | 155    | 0.042     | 0.522    | 0.854           | 1.000                       | 0.386     | 0.868    | 0.826           | 1.000               |
|         | NFKB2   | 58     | 0.055     | 0.553    | 0.108           | 0.667                       | 0.992     | 1.000    | 0.126           | 1.000               |
|         | BTK     | 126    | 0.056     | 0.553    | 0.867           | 1.000                       | 0.231     | 0.825    | 0.284           | 1.000               |
|         | CYLD    | 140    | 0.070     | 0.569    | 0.853           | 1.000                       | 0.107     | 0.597    | 0.767           | 1.000               |
|         | IL1R1   | 417    | 0.074     | 0.569    | 0.491           | 1.000                       | 0.088     | 0.575    | 0.924           | 1.000               |
|         | CARD11  | 449    | 0.077     | 0.569    | 0.349           | 0.903                       | 0.199     | 0.815    | 0.254           | 1.000               |
|         | MAP3K14 | 166    | 0.077     | 0.569    | 0.024           | 0.397                       | 0.032     | 0.393    | 0.604           | 1.000               |
|         | CCL13   | 61     | 0.084     | 0.570    | 0.582           | 1.000                       | 0.092     | 0.586    | 0.749           | 1.000               |
|         | CXCL12  | 158    | 0.096     | 0.608    | 0.098           | 0.667                       | 0.817     | 1.000    | 0.442           | 1.000               |
|         | LTBR    | 38     | 0.119     | 0.640    | 0.384           | 0.967                       | 0.571     | 0.952    | 0.198           | 1.000               |
|         | GADD45B | 30     | 0.141     | 0.707    | 0.608           | 1.000                       | 0.390     | 0.868    | 0.458           | 1.000               |
|         | BCL2A1  | 50     | 0.169     | 0.749    | 0.108           | 0.667                       | 0.971     | 1.000    | 0.679           | 1.000               |
|         | CXCL3   | 10     | 0.170     | 0.749    | 0.829           | 1.000                       | 0.884     | 1.000    | 0.457           | 1.000               |
|         | BCL2L1  | 123    | 0.170     | 0.749    | 0.038           | 0.517                       | 0.878     | 1.000    | 0.636           | 1.000               |
|         | EDARADD | 241    | 0.174     | 0.749    | 0.720           | 1.000                       | 0.436     | 0.907    | 0.087           | 1.000               |
|         | RELB    | 73     | 0.177     | 0.749    | 0.633           | 1.000                       | 0.016     | 0.335    | 0.434           | 1.000               |
|         | PLCG2   | 1060   | 0.191     | 0.749    | 0.973           | 1.000                       | 0.516     | 0.952    | 0.015           | 1.000               |
|         | CSNK2A2 | 204    | 0.213     | 0.760    | 0.269           | 0.871                       | 0.872     | 1.000    | 0.128           | 1.000               |
|         | VCAM1   | 28     | 0.239     | 0.786    | 0.750           | 1.000                       | 0.289     | 0.825    | 0.601           | 1.000               |
|         | PARP1   | 217    | 0.251     | 0.786    | 0.855           | 1.000                       | 0.002     | 0.159    | 0.795           | 1.000               |
|         | BIRC3   | 40     | 0.256     | 0.786    | 0.338           | 0.903                       | 0.635     | 0.962    | 0.262           | 1.000               |

**Supplementary Table ST4.3.** Gene associations/BMI interactions within TLR. NFkB. and TNF pathways

| CSNK2B    | 77   | 0.265 | 0.786 | 0.514 | 1.000 | 0.660 | 0.974 | 0.575 | 1.000 |
|-----------|------|-------|-------|-------|-------|-------|-------|-------|-------|
| PTGS2     | 116  | 0.267 | 0.786 | 0.587 | 1.000 | 0.901 | 1.000 | 0.797 | 1.000 |
| ICAM1     | 43   | 0.270 | 0.786 | 0.019 | 0.392 | 0.806 | 1.000 | 0.744 | 1.000 |
| LAT       | 33   | 0.293 | 0.819 | 0.635 | 1.000 | 0.553 | 0.952 | 0.567 | 1.000 |
| TRADD     | 21   | 0.298 | 0.821 | 0.969 | 1.000 | 0.316 | 0.825 | 0.242 | 1.000 |
| PRKCQ     | 588  | 0.301 | 0.821 | 0.608 | 1.000 | 0.468 | 0.922 | 0.695 | 1.000 |
| TNFRSF13C | 61   | 0.315 | 0.823 | 0.669 | 1.000 | 0.116 | 0.597 | 0.118 | 1.000 |
| EDA       | 706  | 0.342 | 0.841 | 0.101 | 0.667 | 0.416 | 0.882 | 0.208 | 1.000 |
| CHUK      | 158  | 0.342 | 0.841 | 0.155 | 0.754 | 0.369 | 0.862 | 0.992 | 1.000 |
| TNFSF14   | 87   | 0.362 | 0.841 | 0.782 | 1.000 | 0.763 | 1.000 | 0.934 | 1.000 |
| GADD45G   | 68   | 0.409 | 0.841 | 0.552 | 1.000 | 0.518 | 0.952 | 0.577 | 1.000 |
| CCL21     | 56   | 0.413 | 0.841 | 0.756 | 1.000 | 0.019 | 0.335 | 0.043 | 1.000 |
| ATM       | 286  | 0.418 | 0.841 | 0.079 | 0.667 | 0.632 | 0.962 | 0.489 | 1.000 |
| ZAP70     | 90   | 0.426 | 0.841 | 0.190 | 0.770 | 0.440 | 0.907 | 0.252 | 1.000 |
| PLCG1     | 85   | 0.430 | 0.841 | 0.336 | 0.903 | 0.841 | 1.000 | 0.135 | 1.000 |
| CCL19     | 57   | 0.441 | 0.849 | 0.938 | 1.000 | 0.390 | 0.868 | 0.601 | 1.000 |
| LCK       | 57   | 0.456 | 0.865 | 0.006 | 0.392 | 0.065 | 0.497 | 0.855 | 1.000 |
| PLAU      | 55   | 0.462 | 0.865 | 0.821 | 1.000 | 0.644 | 0.969 | 0.794 | 1.000 |
| SYK       | 511  | 0.464 | 0.865 | 0.889 | 1.000 | 0.130 | 0.645 | 0.584 | 1.000 |
| PRKCB     | 1205 | 0.497 | 0.886 | 0.791 | 1.000 | 0.228 | 0.825 | 0.821 | 1.000 |
| XIAP      | 113  | 0.499 | 0.886 | 0.770 | 1.000 | 0.648 | 0.969 | 0.352 | 1.000 |
| LTB       | 85   | 0.512 | 0.894 | 0.312 | 0.903 | 0.975 | 1.000 | 0.827 | 1.000 |
| NFKB1     | 301  | 0.520 | 0.894 | 0.143 | 0.729 | 0.941 | 1.000 | 0.325 | 1.000 |
| BCL10     | 123  | 0.534 | 0.899 | 0.650 | 1.000 | 0.710 | 1.000 | 0.500 | 1.000 |
| MALT1     | 292  | 0.545 | 0.905 | 0.563 | 1.000 | 0.994 | 1.000 | 0.429 | 1.000 |
| LTA       | 154  | 0.563 | 0.910 | 0.725 | 1.000 | 0.932 | 1.000 | 0.945 | 1.000 |
| TRAF6     | 95   | 0.579 | 0.910 | 0.904 | 1.000 | 0.799 | 1.000 | 0.809 | 1.000 |
| IGH       | 395  | 0.582 | 0.910 | 0.738 | 1.000 | 0.565 | 0.952 | 0.335 | 1.000 |
| TNFSF13B  | 68   | 0.591 | 0.910 | 0.047 | 0.561 | 0.166 | 0.745 | 0.651 | 1.000 |
| BCL2      | 551  | 0.601 | 0.910 | 0.145 | 0.729 | 0.575 | 0.952 | 0.648 | 1.000 |
| TNFRSF11A | 338  | 0.619 | 0.915 | 0.444 | 1.000 | 0.937 | 1.000 | 0.517 | 1.000 |
| CXCL2     | 31   | 0.622 | 0.915 | 0.428 | 1.000 | 0.794 | 1.000 | 0.744 | 1.000 |
|           |      |       |       |       |       |       |       |       |       |

|     | PIAS4          | 86        | 0.688          | 0.954          | 0.179          | 0.763          | 0.897          | 1.000          | 0.957          | 1.000          |
|-----|----------------|-----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
|     | BIRC2          | 90        | 0.692          | 0.955          | 0.518          | 1.000          | 0.853          | 1.000          | 0.663          | 1.000          |
|     | CSNK2A3        | 22        | 0.709          | 0.969          | 0.313          | 0.903          | 0.927          | 1.000          | 0.179          | 1.000          |
|     | TRIM25         | 20        | 0.767          | 0.985          | 0.086          | 0.667          | 0.268          | 0.825          | 0.237          | 1.000          |
|     | NFKBIA         | 81        | 0.788          | 0.992          | 0.399          | 0.973          | 0.816          | 1.000          | 0.064          | 1.000          |
|     | GADD45A        | 84        | 0.806          | 0.997          | 0.755          | 1.000          | 0.525          | 0.952          | 0.043          | 1.000          |
|     | CD40LG         | 28        | 0.827          | 1.000          | 0.084          | 0.667          | 0.394          | 0.868          | 0.722          | 1.000          |
|     | CXCL1          | 72        | 0.868          | 1.000          | 0.640          | 1.000          | 0.304          | 0.825          | 0.986          | 1.000          |
|     | TNFSF11        | 215       | 0.900          | 1.000          | 0.977          | 1.000          | 0.344          | 0.825          | 0.386          | 1.000          |
|     | RELA           | 54        | 0.904          | 1.000          | 0.038          | 0.517          | 0.354          | 0.837          | 0.588          | 1.000          |
|     | LYN            | 508       | 0.926          | 1.000          | 0.318          | 0.903          | 0.115          | 0.597          | 0.601          | 1.000          |
|     | EDAR           | 171       | 0.977          | 1.000          | 0.215          | 0.824          | 0.240          | 0.825          | 0.719          | 1.000          |
|     | UBE21          | 84        | 0.997          | 1.000          | 0.299          | 0.903          | 0.322          | 0.825          | 0.239          | 1.000          |
|     | PIDD1          | 65        | 0.999          | 1.000          | 0.175          | 0.763          | 0.729          | 1.000          | 0.130          | 1.000          |
|     | CARD14         |           |                |                |                |                |                |                |                |                |
| TLR |                |           | 0.537          |                | 0.045          |                | 0.078          |                | 0.328          |                |
|     | CFLAR          | 200       | 0.0003         | 0.052          | 0.641          | 1.000          | 0.167          | 0.745          | 0.293          | 1.000          |
|     | CASP8          | 221       | 0.0005         | 0.052          | 0.054          | 0.618          | 0.211          | 0.825          | 0.405          | 1.000          |
|     | IL12B          | 73        | 0.005          | 0.267          | 0.902          | 1.000          | 0.706          | 1.000          | 0.048          | 1.000          |
|     | MAP3K8         | 42        | 0.006          | 0.267          | 0.676          | 1.000          | 0.910          | 1.000          | 0.873          | 1.000          |
|     | CD86           | 206       | 0.020          | 0.340          | 0.252          | 0.871          | 0.281          | 0.825          | 0.846          | 1.000          |
|     | TLR1           | 161       | 0.020          | 0.340          | 0.448          | 1.000          | 0.727          | 1.000          | 0.029          | 1.000          |
|     | MYD88          | 35        | 0.021          | 0.340          | 0.980          | 1.000          | 0.028          | 0.385          | 0.273          | 1.000          |
|     | IFNAR1         | 157       | 0.039          | 0.522          | 0.776          | 1.000          | 0.668          | 0.976          | 0.477          | 1.000          |
|     | AKT3           | 546       | 0.044          | 0.522          | 0.594          | 1.000          | 0.258          | 0.825          | 0.639          | 1.000          |
|     | TLR6           | 163       | 0.052          | 0.553          | 0.445          | 1.000          | 0.982          | 1.000          | 0.575          | 1.000          |
|     |                |           |                | 0.553          | 0.167          | 0.763          | 0.626          | 0.962          | 0.578          | 1.000          |
|     | CCL5           | 78        | 0.058          | 0.000          |                |                |                |                |                |                |
|     | CCL5<br>TAB1   | 78<br>92  | 0.058<br>0.068 | 0.569          | 0.216          | 0.824          | 0.867          | 1.000          | 0.800          | 1.000          |
|     |                |           |                |                |                |                | 0.867<br>0.539 | 1.000<br>0.952 | 0.800<br>0.216 | 1.000<br>1.000 |
|     | TAB1           | 92        | 0.068          | 0.569          | 0.216          | 0.824          |                |                |                |                |
|     | TAB1<br>IFNAR2 | 92<br>162 | 0.068<br>0.076 | 0.569<br>0.569 | 0.216<br>0.250 | 0.824<br>0.871 | 0.539          | 0.952          | 0.216          | 1.000          |

| MAP2K3 | 39  | 0.115 | 0.640 | 0.848 | 1.000 | 0.448 | 0.908 | 0.784 | 1.000 |
|--------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| IL12A  | 68  | 0.167 | 0.749 | 0.719 | 1.000 | 0.243 | 0.825 | 0.628 | 1.000 |
| IFNB1  | 71  | 0.175 | 0.749 | 0.010 | 0.392 | 0.484 | 0.939 | 0.900 | 1.000 |
| PIK3CA | 334 | 0.184 | 0.749 | 0.459 | 1.000 | 0.992 | 1.000 | 0.286 | 1.000 |
| МАРКЗ  | 25  | 0.190 | 0.749 | 0.473 | 1.000 | 0.924 | 1.000 | 0.149 | 1.000 |
| AKT1   | 97  | 0.192 | 0.749 | 0.856 | 1.000 | 0.103 | 0.597 | 0.139 | 1.000 |
| ΙΚΒΚΒ  | 138 | 0.196 | 0.749 | 0.017 | 0.392 | 0.009 | 0.335 | 0.169 | 1.000 |
| IRF5   | 113 | 0.200 | 0.750 | 0.751 | 1.000 | 0.051 | 0.449 | 0.040 | 1.000 |
| CD80   | 245 | 0.216 | 0.760 | 0.795 | 1.000 | 0.893 | 1.000 | 0.446 | 1.000 |
| MAP2K1 | 412 | 0.265 | 0.786 | 0.558 | 1.000 | 0.004 | 0.221 | 0.913 | 1.000 |
| PIK3CD | 217 | 0.271 | 0.786 | 0.393 | 0.973 | 0.414 | 0.882 | 0.556 | 1.000 |
| IL1B   | 52  | 0.317 | 0.823 | 0.257 | 0.871 | 0.014 | 0.335 | 0.964 | 1.000 |
| IFNA8  | 77  | 0.320 | 0.823 | 0.805 | 1.000 | 0.597 | 0.961 | 0.446 | 1.000 |
| IRF7   | 93  | 0.329 | 0.836 | 0.653 | 1.000 | 0.840 | 1.000 | 0.418 | 1.000 |
| TIRAP  | 102 | 0.345 | 0.841 | 0.062 | 0.645 | 0.553 | 0.952 | 0.445 | 1.000 |
| MAPK1  | 335 | 0.351 | 0.841 | 0.010 | 0.392 | 0.327 | 0.825 | 0.273 | 1.000 |
| IKBKG  | 9   | 0.367 | 0.841 | 0.952 | 1.000 | 0.022 | 0.340 | 0.777 | 1.000 |
| TLR4   | 92  | 0.380 | 0.841 | 0.347 | 0.903 | 0.255 | 0.825 | 0.594 | 1.000 |
| RAC1   | 234 | 0.384 | 0.841 | 0.081 | 0.667 | 0.578 | 0.952 | 0.965 | 1.000 |
| MAP3K7 | 291 | 0.399 | 0.841 | 0.730 | 1.000 | 0.863 | 1.000 | 0.402 | 1.000 |
| TICAM1 | 110 | 0.405 | 0.841 | 0.184 | 0.765 | 0.175 | 0.757 | 0.341 | 1.000 |
| PIK3R2 | 98  | 0.409 | 0.841 | 0.942 | 1.000 | 0.035 | 0.393 | 0.291 | 1.000 |
| TLR7   | 9   | 0.409 | 0.841 | 0.020 | 0.392 | 0.713 | 1.000 | 0.670 | 1.000 |
| ΜΑΡΚ8  | 365 | 0.414 | 0.841 | 0.794 | 1.000 | 0.013 | 0.335 | 0.361 | 1.000 |
| MAPK13 | 68  | 0.421 | 0.841 | 0.119 | 0.675 | 0.270 | 0.825 | 0.749 | 1.000 |
| IFNA17 | 133 | 0.422 | 0.841 | 0.817 | 1.000 | 0.108 | 0.597 | 0.648 | 1.000 |
| LBP    | 146 | 0.427 | 0.841 | 0.730 | 1.000 | 0.590 | 0.961 | 0.851 | 1.000 |
| TICAM2 | 90  | 0.441 | 0.849 | 0.124 | 0.676 | 0.105 | 0.597 | 0.714 | 1.000 |
| IRF3   | 32  | 0.459 | 0.865 | 0.415 | 1.000 | 0.039 | 0.393 | 0.457 | 1.000 |
| MAP2K7 | 56  | 0.490 | 0.883 | 0.351 | 0.903 | 0.241 | 0.825 | 0.134 | 1.000 |
| IL6    | 93  | 0.505 | 0.890 | 0.108 | 0.667 | 0.672 | 0.976 | 0.541 | 1.000 |
| ΜΑΡΚ9  | 291 | 0.523 | 0.894 | 0.747 | 1.000 | 0.169 | 0.745 | 0.671 | 1.000 |
|        |     |       |       |       |       |       |       |       |       |

| LY96          | 172  | 0.529 | 0.897 | 0.115 | 0.675 | 0.280 | 0.825 | 0.774 | 1.000 |
|---------------|------|-------|-------|-------|-------|-------|-------|-------|-------|
| IFNA21        | 79   | 0.546 | 0.905 | 0.795 | 1.000 | 0.557 | 0.952 | 0.438 | 1.000 |
| TLR8          | 33   | 0.549 | 0.905 | 0.077 | 0.667 | 0.012 | 0.335 | 0.513 | 1.000 |
| TBK1          | 138  | 0.570 | 0.910 | 0.941 | 1.000 | 0.331 | 0.825 | 0.568 | 1.000 |
| IRAK4         | 123  | 0.582 | 0.910 | 0.951 | 1.000 | 0.078 | 0.542 | 0.648 | 1.000 |
| AKT2          | 164  | 0.582 | 0.910 | 0.803 | 1.000 | 0.656 | 0.974 | 0.972 | 1.000 |
| CXCL9         | 58   | 0.593 | 0.910 | 0.453 | 1.000 | 0.679 | 0.978 | 0.100 | 1.000 |
| MAPK14        | 280  | 0.599 | 0.910 | 0.070 | 0.667 | 0.543 | 0.952 | 0.616 | 1.000 |
| CXCL8         | 44   | 0.600 | 0.910 | 0.059 | 0.640 | 0.862 | 1.000 | 0.510 | 1.000 |
| TLR5          | 117  | 0.608 | 0.910 | 0.655 | 1.000 | 0.460 | 0.915 | 0.278 | 1.000 |
| IFNA16        | 166  | 0.623 | 0.915 | 0.599 | 1.000 | 0.064 | 0.497 | 0.397 | 1.000 |
| CD40          | 102  | 0.630 | 0.919 | 0.903 | 1.000 | 0.311 | 0.825 | 0.751 | 1.000 |
| FADD          | 44   | 0.654 | 0.948 | 0.886 | 1.000 | 0.334 | 0.825 | 0.861 | 1.000 |
| IFNA6         | 62   | 0.662 | 0.948 | 0.130 | 0.690 | 0.217 | 0.825 | 0.988 | 1.000 |
| CCL4          | 9    | 0.684 | 0.954 | 0.606 | 1.000 | 0.148 | 0.705 | 0.322 | 1.000 |
| MAP2K6        | 185  | 0.711 | 0.969 | 0.111 | 0.667 | 0.344 | 0.825 | 0.734 | 1.000 |
| CXCL11        | 175  | 0.733 | 0.980 | 0.785 | 1.000 | 0.715 | 1.000 | 0.326 | 1.000 |
| <i>РІКЗСВ</i> | 292  | 0.737 | 0.980 | 0.939 | 1.000 | 0.882 | 1.000 | 0.355 | 1.000 |
| CTSK          | 52   | 0.737 | 0.980 | 0.011 | 0.392 | 0.999 | 1.000 | 0.165 | 1.000 |
| TLR3          | 129  | 0.738 | 0.980 | 0.840 | 1.000 | 0.045 | 0.432 | 0.939 | 1.000 |
| MAPK10        | 1848 | 0.745 | 0.981 | 0.493 | 1.000 | 0.792 | 1.000 | 0.786 | 1.000 |
| PIK3R1        | 301  | 0.756 | 0.981 | 0.329 | 0.903 | 0.143 | 0.697 | 0.065 | 1.000 |
| IFNA13        | 86   | 0.770 | 0.985 | 0.513 | 1.000 | 0.246 | 0.825 | 0.835 | 1.000 |
| TLR9          | 37   | 0.788 | 0.992 | 0.375 | 0.954 | 0.931 | 1.000 | 0.220 | 1.000 |
| FOS           | 44   | 0.789 | 0.992 | 0.699 | 1.000 | 0.060 | 0.496 | 0.703 | 1.000 |
| IFNA2         | 31   | 0.800 | 0.995 | 0.568 | 1.000 | 0.448 | 0.908 | 0.687 | 1.000 |
| MAP2K4        | 216  | 0.811 | 0.999 | 0.774 | 1.000 | 0.002 | 0.159 | 0.089 | 1.000 |
| IFNA1         | 75   | 0.826 | 1.000 | 0.192 | 0.770 | 0.530 | 0.952 | 0.073 | 1.000 |
| IFNA10        | 154  | 0.835 | 1.000 | 0.837 | 1.000 | 0.112 | 0.597 | 0.326 | 1.000 |
| CXCL10        | 101  | 0.849 | 1.000 | 0.828 | 1.000 | 0.854 | 1.000 | 0.283 | 1.000 |
| STAT1         | 170  | 0.856 | 1.000 | 0.022 | 0.392 | 0.180 | 0.765 | 0.206 | 1.000 |
| CCL3          | 6    | 0.859 | 1.000 | 0.160 | 0.762 | 0.577 | 0.952 | 0.859 | 1.000 |
|               |      |       |       |       |       |       |       |       |       |

|     | JUN                                                                                           | 34                                                                   | 0.867                                                                                           | 1.000                                                                                  | 0.498                                                                                                         | 1.000                                                                                  | 0.310                                                                                       | 0.825                                                                                  | 0.643                                                                                           | 1.000                                                                         |
|-----|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|     | IFNA4                                                                                         | 126                                                                  | 0.890                                                                                           | 1.000                                                                                  | 0.571                                                                                                         | 1.000                                                                                  | 0.219                                                                                       | 0.825                                                                                  | 0.877                                                                                           | 1.000                                                                         |
|     | TOLLIP                                                                                        | 184                                                                  | 0.897                                                                                           | 1.000                                                                                  | 0.622                                                                                                         | 1.000                                                                                  | 0.614                                                                                       | 0.962                                                                                  | 0.141                                                                                           | 1.000                                                                         |
|     | IRAK1                                                                                         | 15                                                                   | 0.907                                                                                           | 1.000                                                                                  | 0.087                                                                                                         | 0.667                                                                                  | 0.071                                                                                       | 0.506                                                                                  | 0.086                                                                                           | 1.000                                                                         |
|     | MAP2K2                                                                                        | 91                                                                   | 0.914                                                                                           | 1.000                                                                                  | 0.311                                                                                                         | 0.903                                                                                  | 0.856                                                                                       | 1.000                                                                                  | 0.835                                                                                           | 1.000                                                                         |
|     | SPP1                                                                                          | 95                                                                   | 0.938                                                                                           | 1.000                                                                                  | 0.020                                                                                                         | 0.392                                                                                  | 0.391                                                                                       | 0.868                                                                                  | 0.854                                                                                           | 1.000                                                                         |
|     | IFNA7                                                                                         | 149                                                                  | 0.950                                                                                           | 1.000                                                                                  | 0.839                                                                                                         | 1.000                                                                                  | 0.117                                                                                       | 0.597                                                                                  | 0.250                                                                                           | 1.000                                                                         |
|     | IFNA14                                                                                        | 88                                                                   | 0.957                                                                                           | 1.000                                                                                  | 0.956                                                                                                         | 1.000                                                                                  | 0.456                                                                                       | 0.915                                                                                  | 0.762                                                                                           | 1.000                                                                         |
|     | IFNA5                                                                                         | 60                                                                   | 0.960                                                                                           | 1.000                                                                                  | 0.274                                                                                                         | 0.871                                                                                  | 0.265                                                                                       | 0.825                                                                                  | 0.872                                                                                           | 1.000                                                                         |
|     | IKBKE                                                                                         | 111                                                                  | 0.980                                                                                           | 1.000                                                                                  | 0.741                                                                                                         | 1.000                                                                                  | 0.805                                                                                       | 1.000                                                                                  | 0.879                                                                                           | 1.000                                                                         |
|     | TAB2                                                                                          | 0 <sup>c</sup>                                                       |                                                                                                 |                                                                                        |                                                                                                               |                                                                                        |                                                                                             |                                                                                        |                                                                                                 |                                                                               |
|     | CCL3L1                                                                                        | <b>0</b> <sup>c</sup>                                                |                                                                                                 |                                                                                        |                                                                                                               |                                                                                        |                                                                                             |                                                                                        |                                                                                                 |                                                                               |
|     | CCL3L3                                                                                        | 0 <sup>c</sup>                                                       |                                                                                                 |                                                                                        |                                                                                                               |                                                                                        |                                                                                             |                                                                                        |                                                                                                 |                                                                               |
|     | CCL4L1                                                                                        | 0 <sup>c</sup>                                                       |                                                                                                 |                                                                                        |                                                                                                               |                                                                                        |                                                                                             |                                                                                        |                                                                                                 |                                                                               |
|     | CCL4L2                                                                                        | 0 <sup>c</sup>                                                       |                                                                                                 |                                                                                        |                                                                                                               |                                                                                        |                                                                                             |                                                                                        |                                                                                                 |                                                                               |
|     | MAPK11                                                                                        | <b>0</b> <sup>d</sup>                                                |                                                                                                 |                                                                                        |                                                                                                               |                                                                                        |                                                                                             |                                                                                        |                                                                                                 |                                                                               |
|     | MAPK12                                                                                        | <b>O</b> <sup>d</sup>                                                |                                                                                                 |                                                                                        |                                                                                                               |                                                                                        |                                                                                             |                                                                                        |                                                                                                 |                                                                               |
|     |                                                                                               | 0                                                                    |                                                                                                 |                                                                                        |                                                                                                               |                                                                                        |                                                                                             |                                                                                        |                                                                                                 |                                                                               |
| TNF |                                                                                               | 0                                                                    | 0.932                                                                                           |                                                                                        | 0.225                                                                                                         |                                                                                        | 0.329                                                                                       |                                                                                        | 0.314                                                                                           |                                                                               |
| TNF | CASP10                                                                                        | 131                                                                  | 0.932<br><b>0.002</b>                                                                           | 0.141                                                                                  | 0.225<br>0.290                                                                                                | 0.903                                                                                  | 0.329<br>0.280                                                                              | 0.825                                                                                  | 0.314<br>0.067                                                                                  | 1.000                                                                         |
| TNF |                                                                                               |                                                                      |                                                                                                 | 0.141<br>0.297                                                                         |                                                                                                               | 0.903<br>0.392                                                                         |                                                                                             | 0.825<br>0.506                                                                         |                                                                                                 | 1.000<br>1.000                                                                |
| TNF | CASP10                                                                                        | 131                                                                  | 0.002                                                                                           |                                                                                        | 0.290                                                                                                         |                                                                                        | 0.280                                                                                       |                                                                                        | 0.067                                                                                           |                                                                               |
| TNF | CASP10<br>EDN1                                                                                | 131<br>118                                                           | 0.002<br>0.010                                                                                  | 0.297                                                                                  | 0.290<br><b>0.016</b>                                                                                         | 0.392                                                                                  | 0.280<br>0.069                                                                              | 0.506                                                                                  | 0.067<br>0.868                                                                                  | 1.000                                                                         |
| TNF | CASP10<br>EDN1<br>CCL2                                                                        | 131<br>118<br>59                                                     | 0.002<br>0.010<br>0.023                                                                         | 0.297<br>0.345                                                                         | 0.290<br><b>0.016</b><br>0.658                                                                                | 0.392<br>1.000                                                                         | 0.280<br>0.069<br><b>0.039</b>                                                              | 0.506<br>0.393                                                                         | 0.067<br>0.868<br>0.350                                                                         | 1.000<br>1.000                                                                |
| TNF | CASP10<br>EDN1<br>CCL2<br>PGAM5                                                               | 131<br>118<br>59<br>117                                              | 0.002<br>0.010<br>0.023<br>0.046                                                                | 0.297<br>0.345<br>0.522                                                                | 0.290<br><b>0.016</b><br>0.658<br>0.234                                                                       | 0.392<br>1.000<br>0.865                                                                | 0.280<br>0.069<br><b>0.039</b><br>0.848                                                     | 0.506<br>0.393<br>1.000                                                                | 0.067<br>0.868<br>0.350<br>0.636                                                                | 1.000<br>1.000<br>1.000                                                       |
| TNF | CASP10<br>EDN1<br>CCL2<br>PGAM5<br>CCL20                                                      | 131<br>118<br>59<br>117<br>10                                        | 0.002<br>0.010<br>0.023<br>0.046<br>0.063                                                       | 0.297<br>0.345<br>0.522<br>0.569                                                       | 0.290<br><b>0.016</b><br>0.658<br>0.234<br>0.935                                                              | 0.392<br>1.000<br>0.865<br>1.000                                                       | 0.280<br>0.069<br><b>0.039</b><br>0.848<br><b>0.029</b>                                     | 0.506<br>0.393<br>1.000<br>0.385                                                       | 0.067<br>0.868<br>0.350<br>0.636<br>0.752                                                       | 1.000<br>1.000<br>1.000<br>1.000                                              |
| TNF | CASP10<br>EDN1<br>CCL2<br>PGAM5<br>CCL20<br>BCL3                                              | 131<br>118<br>59<br>117<br>10<br>92                                  | 0.002<br>0.010<br>0.023<br>0.046<br>0.063<br>0.085                                              | 0.297<br>0.345<br>0.522<br>0.569<br>0.570                                              | 0.290<br><b>0.016</b><br>0.658<br>0.234<br>0.935<br><b>0.031</b>                                              | 0.392<br>1.000<br>0.865<br>1.000<br>0.473                                              | 0.280<br>0.069<br><b>0.039</b><br>0.848<br><b>0.029</b><br>0.329                            | 0.506<br>0.393<br>1.000<br>0.385<br>0.825                                              | 0.067<br>0.868<br>0.350<br>0.636<br>0.752<br>0.445                                              | 1.000<br>1.000<br>1.000<br>1.000<br>1.000                                     |
| TNF | CASP10<br>EDN1<br>CCL2<br>PGAM5<br>CCL20<br>BCL3<br>ATF4                                      | 131<br>118<br>59<br>117<br>10<br>92<br>29                            | 0.002<br>0.010<br>0.023<br>0.046<br>0.063<br>0.085<br>0.099                                     | 0.297<br>0.345<br>0.522<br>0.569<br>0.570<br>0.611                                     | 0.290<br><b>0.016</b><br>0.658<br>0.234<br>0.935<br><b>0.031</b><br>0.877                                     | 0.392<br>1.000<br>0.865<br>1.000<br>0.473<br>1.000                                     | 0.280<br>0.069<br><b>0.039</b><br>0.848<br><b>0.029</b><br>0.329<br>0.554                   | 0.506<br>0.393<br>1.000<br>0.385<br>0.825<br>0.952                                     | 0.067<br>0.868<br>0.350<br>0.636<br>0.752<br>0.445<br>0.582                                     | 1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000                            |
| TNF | CASP10<br>EDN1<br>CCL2<br>PGAM5<br>CCL20<br>BCL3<br>ATF4<br>JUNB                              | 131<br>118<br>59<br>117<br>10<br>92<br>29<br>43                      | 0.002<br>0.010<br>0.023<br>0.046<br>0.063<br>0.085<br>0.099<br>0.113                            | 0.297<br>0.345<br>0.522<br>0.569<br>0.570<br>0.611<br>0.640                            | 0.290<br><b>0.016</b><br>0.658<br>0.234<br>0.935<br><b>0.031</b><br>0.877<br>0.220                            | 0.392<br>1.000<br>0.865<br>1.000<br>0.473<br>1.000<br>0.828                            | 0.280<br>0.069<br><b>0.039</b><br>0.848<br><b>0.029</b><br>0.329<br>0.554<br>0.346          | 0.506<br>0.393<br>1.000<br>0.385<br>0.825<br>0.952<br>0.825                            | 0.067<br>0.868<br>0.350<br>0.636<br>0.752<br>0.445<br>0.582<br>0.481                            | 1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000                            |
| TNF | CASP10<br>EDN1<br>CCL2<br>PGAM5<br>CCL20<br>BCL3<br>ATF4<br>JUNB<br>TRAF5                     | 131<br>118<br>59<br>117<br>10<br>92<br>29<br>43<br>184               | 0.002<br>0.010<br>0.023<br>0.046<br>0.063<br>0.085<br>0.099<br>0.113<br>0.115                   | 0.297<br>0.345<br>0.522<br>0.569<br>0.570<br>0.611<br>0.640<br>0.640                   | 0.290<br><b>0.016</b><br>0.658<br>0.234<br>0.935<br><b>0.031</b><br>0.877<br>0.220<br>0.536                   | 0.392<br>1.000<br>0.865<br>1.000<br>0.473<br>1.000<br>0.828<br>1.000                   | 0.280<br>0.069<br><b>0.039</b><br>0.848<br><b>0.029</b><br>0.329<br>0.554<br>0.346<br>0.429 | 0.506<br>0.393<br>1.000<br>0.385<br>0.825<br>0.952<br>0.825<br>0.825<br>0.901          | 0.067<br>0.868<br>0.350<br>0.636<br>0.752<br>0.445<br>0.582<br>0.481<br>0.399                   | 1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000                   |
| TNF | CASP10<br>EDN1<br>CCL2<br>PGAM5<br>CCL20<br>BCL3<br>ATF4<br>JUNB<br>TRAF5<br>CX3CL1           | 131<br>118<br>59<br>117<br>10<br>92<br>29<br>43<br>184<br>104        | 0.002<br>0.010<br>0.023<br>0.046<br>0.063<br>0.085<br>0.099<br>0.113<br>0.115<br>0.120          | 0.297<br>0.345<br>0.522<br>0.569<br>0.570<br>0.611<br>0.640<br>0.640<br>0.640          | 0.290<br><b>0.016</b><br>0.658<br>0.234<br>0.935<br><b>0.031</b><br>0.877<br>0.220<br>0.536<br>0.208          | 0.392<br>1.000<br>0.865<br>1.000<br>0.473<br>1.000<br>0.828<br>1.000<br>0.823          | 0.280<br>0.069<br>0.039<br>0.848<br>0.029<br>0.329<br>0.554<br>0.346<br>0.429<br>0.015      | 0.506<br>0.393<br>1.000<br>0.385<br>0.825<br>0.952<br>0.825<br>0.901<br>0.335          | 0.067<br>0.868<br>0.350<br>0.636<br>0.752<br>0.445<br>0.582<br>0.481<br>0.399<br>0.519          | 1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000          |
| TNF | CASP10<br>EDN1<br>CCL2<br>PGAM5<br>CCL20<br>BCL3<br>ATF4<br>JUNB<br>TRAF5<br>CX3CL1<br>MAP3K5 | 131<br>118<br>59<br>117<br>10<br>92<br>29<br>43<br>184<br>104<br>430 | 0.002<br>0.010<br>0.023<br>0.046<br>0.063<br>0.085<br>0.099<br>0.113<br>0.115<br>0.120<br>0.129 | 0.297<br>0.345<br>0.522<br>0.569<br>0.570<br>0.611<br>0.640<br>0.640<br>0.640<br>0.669 | 0.290<br><b>0.016</b><br>0.658<br>0.234<br>0.935<br><b>0.031</b><br>0.877<br>0.220<br>0.536<br>0.208<br>0.556 | 0.392<br>1.000<br>0.865<br>1.000<br>0.473<br>1.000<br>0.828<br>1.000<br>0.823<br>1.000 | 0.280<br>0.069<br>0.848<br>0.029<br>0.329<br>0.554<br>0.346<br>0.429<br>0.015<br>0.498      | 0.506<br>0.393<br>1.000<br>0.385<br>0.825<br>0.952<br>0.825<br>0.901<br>0.335<br>0.950 | 0.067<br>0.868<br>0.350<br>0.636<br>0.752<br>0.445<br>0.582<br>0.481<br>0.399<br>0.519<br>0.787 | 1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000 |

| CREB3L1  | 101  | 0.208 | 0.760 | 0.272 | 0.871 | 0.550 | 0.952 | 0.579 | 1.000 |
|----------|------|-------|-------|-------|-------|-------|-------|-------|-------|
| VEGFC    | 354  | 0.211 | 0.760 | 0.439 | 1.000 | 0.496 | 0.950 | 0.818 | 1.000 |
| RPS6KA4  | 84   | 0.225 | 0.779 | 0.266 | 0.871 | 0.401 | 0.868 | 0.192 | 1.000 |
| CASP3    | 113  | 0.231 | 0.786 | 0.736 | 1.000 | 0.674 | 0.976 | 0.539 | 1.000 |
| CREB3L2  | 236  | 0.237 | 0.786 | 0.102 | 0.667 | 0.048 | 0.444 | 0.175 | 1.000 |
| IL18R1   | 270  | 0.241 | 0.786 | 0.595 | 1.000 | 0.964 | 1.000 | 0.865 | 1.000 |
| CASP7    | 232  | 0.258 | 0.786 | 0.121 | 0.675 | 0.515 | 0.952 | 0.834 | 1.000 |
| TNFRSF1A | 40   | 0.269 | 0.786 | 0.246 | 0.871 | 0.038 | 0.393 | 0.996 | 1.000 |
| CREB3L4  | 36   | 0.284 | 0.814 | 0.000 | 0.071 | 0.163 | 0.745 | 0.385 | 1.000 |
| ITCH     | 255  | 0.288 | 0.814 | 0.313 | 0.903 | 0.061 | 0.496 | 0.378 | 1.000 |
| MMP9     | 98   | 0.315 | 0.823 | 0.717 | 1.000 | 0.758 | 1.000 | 0.857 | 1.000 |
| CSF1     | 92   | 0.316 | 0.823 | 0.816 | 1.000 | 0.021 | 0.337 | 0.237 | 1.000 |
| ATF6B    | 76   | 0.381 | 0.841 | 0.867 | 1.000 | 0.920 | 1.000 | 0.982 | 1.000 |
| RPS6KA5  | 521  | 0.387 | 0.841 | 0.102 | 0.667 | 0.275 | 0.825 | 0.587 | 1.000 |
| TRAF1    | 162  | 0.401 | 0.841 | 0.635 | 1.000 | 0.997 | 1.000 | 0.532 | 1.000 |
| CREB3    | 33   | 0.404 | 0.841 | 0.021 | 0.392 | 0.627 | 0.962 | 0.900 | 1.000 |
| CXCL5    | 12   | 0.406 | 0.841 | 0.044 | 0.558 | 0.018 | 0.335 | 0.340 | 1.000 |
| DNM1L    | 361  | 0.429 | 0.841 | 0.896 | 1.000 | 0.609 | 0.961 | 0.033 | 1.000 |
| CREB1    | 169  | 0.477 | 0.874 | 0.542 | 1.000 | 0.262 | 0.825 | 0.500 | 1.000 |
| BAG4     | 83   | 0.477 | 0.874 | 0.438 | 1.000 | 0.788 | 1.000 | 0.334 | 1.000 |
| IL15     | 251  | 0.484 | 0.880 | 0.593 | 1.000 | 0.802 | 1.000 | 0.041 | 1.000 |
| MMP3     | 88   | 0.516 | 0.894 | 0.265 | 0.871 | 0.964 | 1.000 | 0.865 | 1.000 |
| TNF      | 81   | 0.559 | 0.910 | 0.472 | 1.000 | 0.977 | 1.000 | 0.877 | 1.000 |
| ATF2     | 281  | 0.606 | 0.910 | 0.777 | 1.000 | 0.630 | 0.962 | 0.200 | 1.000 |
| MLKL     | 174  | 0.658 | 0.948 | 0.967 | 1.000 | 0.567 | 0.952 | 0.540 | 1.000 |
| SOCS3    | 30   | 0.675 | 0.954 | 0.892 | 1.000 | 0.001 | 0.159 | 0.133 | 1.000 |
| CREB5    | 1704 | 0.681 | 0.954 | 0.465 | 1.000 | 0.323 | 0.825 | 0.481 | 1.000 |
| TRAF2    | 62   | 0.685 | 0.954 | 0.648 | 1.000 | 0.226 | 0.825 | 0.695 | 1.000 |
| TNFAIP3  | 77   | 0.740 | 0.980 | 0.554 | 1.000 | 0.192 | 0.799 | 0.211 | 1.000 |
| JAG1     | 150  | 0.754 | 0.981 | 0.863 | 1.000 | 0.346 | 0.825 | 0.512 | 1.000 |
| NOD2     | 104  | 0.758 | 0.981 | 0.850 | 1.000 | 0.316 | 0.825 | 0.736 | 1.000 |
| DAB2IP   | 563  | 0.794 | 0.993 | 0.180 | 0.763 | 0.725 | 1.000 | 0.142 | 1.000 |
|          |      |       |       |       |       |       |       |       |       |

| MMP14    | 72  | 0.848 | 1.000 | 0.329 | 0.903 | 0.320 | 0.825 | 0.691 | 1.000 |
|----------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| TNFRSF1B | 103 | 0.874 | 1.000 | 0.612 | 1.000 | 0.389 | 0.868 | 0.043 | 1.000 |
| TRAF3    | 336 | 0.894 | 1.000 | 0.345 | 0.903 | 0.601 | 0.961 | 0.220 | 1.000 |
| CXCL6    | 56  | 0.897 | 1.000 | 0.003 | 0.331 | 0.292 | 0.825 | 0.987 | 1.000 |
| LIF      | 65  | 0.903 | 1.000 | 0.503 | 1.000 | 0.510 | 0.952 | 0.550 | 1.000 |
| CEBPB    | 41  | 0.927 | 1.000 | 0.147 | 0.729 | 0.963 | 1.000 | 0.407 | 1.000 |
| SELE     | 203 | 0.951 | 1.000 | 0.508 | 1.000 | 0.724 | 1.000 | 0.304 | 1.000 |
| FAS      | 224 | 0.957 | 1.000 | 0.308 | 0.903 | 0.103 | 0.597 | 0.447 | 1.000 |
| CREB3L3  | 27  | 0.970 | 1.000 | 0.618 | 1.000 | 0.009 | 0.335 | 0.586 | 1.000 |

<sup>a</sup>Aggregate P-value of MAGMA model results. Each model controls for age, and two ancestry principal components.

<sup>b</sup>Corrected for multiple testing by the number of genes tested using the Benjamini-Hochberg false discovery rate (FDR).

| atlassiasi | 0.000   |        |           | Tes      | st Set          |                             |           | Validati | on Set          |                             |
|------------|---------|--------|-----------|----------|-----------------|-----------------------------|-----------|----------|-----------------|-----------------------------|
| athway     | Gene    | # SNPs | $P_{raw}$ | $P_{BH}$ | $P_{BMI \ raw}$ | <b>P</b> <sub>BMI FDR</sub> | $P_{raw}$ | $P_{BH}$ | $P_{BMI \ raw}$ | <b>P</b> <sub>BMI FDF</sub> |
| NfkB       |         |        | 0.345     |          | 0.728           |                             | 0.433     |          | 0.942           |                             |
|            | GADD45B | 31     | 0.000     | 0.069    | 0.849           | 1.000                       | 0.693     | 1.000    | 0.313           | 1.00                        |
|            | MAP3K14 | 166    | 0.005     | 0.223    | 0.691           | 1.000                       | 0.276     | 0.937    | 0.739           | 1.00                        |
|            | IL1R1   | 417    | 0.006     | 0.229    | 0.113           | 0.920                       | 0.272     | 0.937    | 0.413           | 1.00                        |
|            | CARD11  | 447    | 0.011     | 0.349    | 0.027           | 0.517                       | 0.955     | 1.000    | 0.123           | 1.00                        |
|            | TRAF6   | 95     | 0.019     | 0.404    | 0.793           | 1.000                       | 0.617     | 1.000    | 0.684           | 1.00                        |
|            | CSNK2A1 | 159    | 0.019     | 0.404    | 0.730           | 1.000                       | 0.193     | 0.935    | 0.129           | 1.00                        |
|            | TNFSF11 | 215    | 0.024     | 0.413    | 0.664           | 1.000                       | 0.605     | 1.000    | 0.354           | 1.00                        |
|            | CXCL2   | 31     | 0.025     | 0.413    | 0.293           | 0.920                       | 0.055     | 0.745    | 0.061           | 1.00                        |
|            | BCL2L1  | 123    | 0.031     | 0.421    | 0.397           | 0.964                       | 0.161     | 0.900    | 0.911           | 1.00                        |
|            | PARP1   | 217    | 0.035     | 0.421    | 0.457           | 0.977                       | 0.016     | 0.448    | 0.961           | 1.00                        |
|            | CXCL3   | 10     | 0.053     | 0.476    | 0.417           | 0.964                       | 0.370     | 0.937    | 0.126           | 1.00                        |
|            | BIRC3   | 41     | 0.057     | 0.476    | 0.304           | 0.920                       | 0.969     | 1.000    | 0.695           | 1.00                        |
|            | LTBR    | 38     | 0.060     | 0.476    | 0.817           | 1.000                       | 0.480     | 0.959    | 0.939           | 1.00                        |
|            | CXCL12  | 159    | 0.077     | 0.536    | 0.141           | 0.920                       | 0.306     | 0.937    | 0.361           | 1.00                        |
|            | CCL21   | 56     | 0.136     | 0.668    | 0.571           | 1.000                       | 0.216     | 0.937    | 0.417           | 1.00                        |
|            | EDARADD | 240    | 0.151     | 0.668    | 0.212           | 0.920                       | 0.907     | 1.000    | 0.107           | 1.00                        |
|            | PTGS2   | 116    | 0.155     | 0.668    | 0.613           | 1.000                       | 0.904     | 1.000    | 0.765           | 1.00                        |
|            | TRIM25  | 21     | 0.162     | 0.668    | 0.642           | 1.000                       | 0.462     | 0.957    | 0.204           | 1.00                        |
|            | BIRC2   | 96     | 0.162     | 0.668    | 0.239           | 0.920                       | 0.989     | 1.000    | 0.324           | 1.00                        |
|            | CYLD    | 140    | 0.170     | 0.668    | 0.705           | 1.000                       | 0.118     | 0.900    | 0.655           | 1.00                        |
|            | GADD45G | 72     | 0.171     | 0.668    | 0.743           | 1.000                       | 0.987     | 1.000    | 0.561           | 1.00                        |
|            | PLCG1   | 85     | 0.171     | 0.668    | 0.838           | 1.000                       | 0.126     | 0.900    | 0.485           | 1.00                        |
|            | BCL2    | 551    | 0.178     | 0.679    | 0.541           | 1.000                       | 0.250     | 0.937    | 0.850           | 1.00                        |
|            | NFKB1   | 298    | 0.184     | 0.689    | 0.320           | 0.920                       | 0.463     | 0.957    | 0.535           | 1.00                        |
|            | CSNK2B  | 77     | 0.196     | 0.711    | 0.722           | 1.000                       | 0.360     | 0.937    | 0.254           | 1.00                        |
|            | LAT     | 33     | 0.217     | 0.713    | 0.411           | 0.964                       | 0.952     | 1.000    | 0.939           | 1.00                        |
|            | CCL13   | 61     | 0.220     | 0.713    | 0.932           | 1.000                       | 0.140     | 0.900    | 0.921           | 1.00                        |

Supplementary Table ST4.4. Gene associations/BMI interactions within TLR. NFkB. and TNF pathways with

| TNFRSF13C | 61   | 0.234 | 0.728 | 0.854 | 1.000 | 0.474 | 0.959 | 0.117 | 1.000 |   |
|-----------|------|-------|-------|-------|-------|-------|-------|-------|-------|---|
| ERC1      | 1966 | 0.258 | 0.728 | 0.210 | 0.920 | 0.157 | 0.900 | 0.382 | 1.000 |   |
| RIPK1     | 116  | 0.273 | 0.728 | 0.961 | 1.000 | 0.023 | 0.582 | 0.659 | 1.000 |   |
| EDA2R     | 55   | 0.283 | 0.728 | 0.312 | 0.920 | 0.557 | 0.983 | 0.825 | 1.000 |   |
| CCL19     | 57   | 0.303 | 0.728 | 0.493 | 0.977 | 0.595 | 1.000 | 0.812 | 1.000 |   |
| PRKCQ     | 592  | 0.315 | 0.730 | 0.217 | 0.920 | 0.799 | 1.000 | 0.614 | 1.000 |   |
| TAB3      | 68   | 0.329 | 0.746 | 0.139 | 0.920 | 0.605 | 1.000 | 0.752 | 1.000 |   |
| BTK       | 125  | 0.334 | 0.749 | 0.407 | 0.964 | 0.136 | 0.900 | 0.696 | 1.000 |   |
| ATM       | 286  | 0.356 | 0.770 | 0.293 | 0.920 | 0.795 | 1.000 | 0.662 | 1.000 | l |
| SYK       | 512  | 0.365 | 0.771 | 0.900 | 1.000 | 0.925 | 1.000 | 0.291 | 1.000 |   |
| NFKB2     | 58   | 0.374 | 0.771 | 0.777 | 1.000 | 0.071 | 0.745 | 0.391 | 1.000 |   |
| CSNK2A3   | 22   | 0.385 | 0.780 | 0.287 | 0.920 | 0.840 | 1.000 | 0.527 | 1.000 |   |
| XIAP      | 118  | 0.402 | 0.787 | 0.573 | 1.000 | 0.358 | 0.937 | 0.772 | 1.000 |   |
| TRADD     | 21   | 0.416 | 0.787 | 0.325 | 0.920 | 0.368 | 0.937 | 0.447 | 1.000 |   |
| LTA       | 154  | 0.422 | 0.787 | 0.994 | 1.000 | 0.254 | 0.937 | 0.605 | 1.000 |   |
| EDA       | 704  | 0.422 | 0.787 | 0.244 | 0.920 | 0.786 | 1.000 | 0.961 | 1.000 |   |
| VCAM1     | 28   | 0.424 | 0.787 | 0.461 | 0.977 | 0.571 | 0.983 | 0.863 | 1.000 |   |
| BCL2A1    | 50   | 0.428 | 0.787 | 0.317 | 0.920 | 0.292 | 0.937 | 0.651 | 1.000 |   |
| PLAU      | 55   | 0.437 | 0.787 | 0.856 | 1.000 | 0.316 | 0.937 | 0.272 | 1.000 |   |
| IGH       | 392  | 0.449 | 0.787 | 0.240 | 0.920 | 0.290 | 0.937 | 0.739 | 1.000 |   |
| TNFSF13B  | 68   | 0.474 | 0.787 | 0.128 | 0.920 | 0.333 | 0.937 | 0.773 | 1.000 |   |
| PIDD1     | 65   | 0.474 | 0.787 | 0.169 | 0.920 | 0.216 | 0.937 | 0.554 | 1.000 |   |
| RELA      | 54   | 0.487 | 0.792 | 0.395 | 0.964 | 0.163 | 0.900 | 0.916 | 1.000 |   |
| ZAP70     | 89   | 0.491 | 0.792 | 0.470 | 0.977 | 0.061 | 0.745 | 0.579 | 1.000 | l |
| EDAR      | 172  | 0.614 | 0.919 | 0.871 | 1.000 | 0.917 | 1.000 | 0.303 | 1.000 |   |
| CARD10    | 155  | 0.633 | 0.934 | 0.992 | 1.000 | 0.390 | 0.951 | 0.415 | 1.000 |   |
| CHUK      | 158  | 0.648 | 0.934 | 0.898 | 1.000 | 0.464 | 0.957 | 0.031 | 1.000 |   |
| LTB       | 85   | 0.659 | 0.934 | 0.993 | 1.000 | 0.270 | 0.937 | 0.478 | 1.000 | l |
| LCK       | 57   | 0.671 | 0.934 | 0.162 | 0.920 | 0.673 | 1.000 | 0.909 | 1.000 | l |
| ICAM1     | 41   | 0.673 | 0.934 | 0.023 | 0.517 | 0.530 | 0.970 | 0.898 | 1.000 |   |
| CSNK2A2   | 205  | 0.698 | 0.934 | 0.940 | 1.000 | 0.282 | 0.937 | 0.060 | 1.000 |   |
| LYN       | 508  | 0.708 | 0.937 | 0.610 | 1.000 | 0.565 | 0.983 | 0.745 | 1.000 | l |
|           |      |       |       |       |       |       |       |       |       |   |

|     | PRKCB     | 1212 | 0.736 | 0.958 | 0.749 | 1.000 | 0.820 | 1.000 | 0.453 | 1.000 |
|-----|-----------|------|-------|-------|-------|-------|-------|-------|-------|-------|
|     | TNFSF14   | 87   | 0.746 | 0.958 | 0.932 | 1.000 | 0.011 | 0.448 | 0.624 | 1.000 |
|     | BLNK      | 254  | 0.824 | 0.994 | 0.339 | 0.920 | 0.594 | 1.000 | 0.764 | 1.000 |
|     | BCL10     | 123  | 0.831 | 0.994 | 0.437 | 0.977 | 0.963 | 1.000 | 0.757 | 1.000 |
|     | RELB      | 73   | 0.856 | 0.994 | 0.680 | 1.000 | 0.339 | 0.937 | 0.520 | 1.000 |
|     | UBE2I     | 84   | 0.867 | 0.994 | 0.206 | 0.920 | 0.808 | 1.000 | 0.081 | 1.000 |
|     | NFKBIA    | 81   | 0.912 | 1.000 | 0.289 | 0.920 | 0.246 | 0.937 | 0.170 | 1.000 |
|     | PLCG2     | 1055 | 0.922 | 1.000 | 0.291 | 0.920 | 0.666 | 1.000 | 0.737 | 1.000 |
|     | PIAS4     | 85   | 0.933 | 1.000 | 0.654 | 1.000 | 0.437 | 0.957 | 0.710 | 1.000 |
|     | CXCL1     | 71   | 0.962 | 1.000 | 0.639 | 1.000 | 0.095 | 0.900 | 0.467 | 1.000 |
|     | TNFRSF11A | 335  | 0.962 | 1.000 | 0.829 | 1.000 | 0.685 | 1.000 | 0.862 | 1.000 |
|     | MALT1     | 292  | 0.965 | 1.000 | 0.239 | 0.920 | 0.811 | 1.000 | 0.360 | 1.000 |
|     | GADD45A   | 84   | 0.988 | 1.000 | 0.455 | 0.977 | 0.994 | 1.000 | 0.081 | 1.000 |
|     | CD40LG    | 28   | 0.997 | 1.000 | 0.298 | 0.920 | 0.642 | 1.000 | 0.237 | 1.000 |
|     | CARD14    |      |       |       |       |       |       |       |       |       |
| TLR |           |      | 0.560 |       | 0.530 |       | 0.822 |       | 0.387 |       |
|     | LY96      | 172  | 0.001 | 0.077 | 0.288 | 0.920 | 0.541 | 0.970 | 0.070 | 1.000 |
|     | TLR1      | 161  | 0.012 | 0.349 | 0.736 | 1.000 | 0.149 | 0.900 | 0.004 | 0.511 |
|     | TLR6      | 163  | 0.019 | 0.404 | 0.633 | 1.000 | 0.480 | 0.959 | 0.026 | 1.000 |
|     | PIK3CB    | 292  | 0.030 | 0.421 | 0.666 | 1.000 | 0.570 | 0.983 | 0.617 | 1.000 |
|     | IL12B     | 73   | 0.033 | 0.421 | 0.458 | 0.977 | 0.228 | 0.937 | 0.620 | 1.000 |
|     | MYD88     | 35   | 0.035 | 0.421 | 0.261 | 0.920 | 0.715 | 1.000 | 0.024 | 1.000 |
|     | TICAM2    | 90   | 0.043 | 0.445 | 0.111 | 0.920 | 0.046 | 0.745 | 0.292 | 1.000 |
|     | PIK3R1    | 301  | 0.045 | 0.445 | 0.948 | 1.000 | 0.456 | 0.957 | 0.215 | 1.000 |
|     | IRAK4     | 123  | 0.074 | 0.527 | 0.663 | 1.000 | 0.983 | 1.000 | 0.854 | 1.000 |
|     | CFLAR     | 200  | 0.081 | 0.545 | 0.322 | 0.920 | 0.007 | 0.448 | 0.377 | 1.000 |
|     | IFNA4     | 126  | 0.093 | 0.611 | 0.968 | 1.000 | 0.583 | 0.996 | 0.524 | 1.000 |
|     | RAC1      | 234  | 0.107 | 0.668 | 0.718 | 1.000 | 0.444 | 0.957 | 0.442 | 1.000 |
|     | IFNA13    | 86   | 0.111 | 0.668 | 0.205 | 0.920 | 0.614 | 1.000 | 0.576 | 1.000 |
|     | IRF3      | 32   | 0.121 | 0.668 | 0.029 | 0.517 | 0.896 | 1.000 | 0.714 | 1.000 |
|     | IFNA7     | 149  | 0.122 | 0.668 | 0.365 | 0.929 | 0.372 | 0.937 | 0.843 | 1.000 |
|     | CD14      | 65   | 0.128 | 0.668 | 0.239 | 0.920 | 0.395 | 0.953 | 0.664 | 1.000 |
|     |           |      |       |       |       |       |       |       |       |       |

| IFNAR2 | 161 | 0.141 | 0.668 | 0.177 | 0.920 | 0.132 | 0.900 | 0.755 | 1.000 |  |
|--------|-----|-------|-------|-------|-------|-------|-------|-------|-------|--|
| IFNA6  | 62  | 0.149 | 0.668 | 0.354 | 0.928 | 0.617 | 1.000 | 0.303 | 1.000 |  |
| IRF5   | 113 | 0.152 | 0.668 | 0.740 | 1.000 | 0.405 | 0.957 | 0.869 | 1.000 |  |
| IFNA10 | 154 | 0.161 | 0.668 | 0.293 | 0.920 | 0.425 | 0.957 | 0.844 | 1.000 |  |
| МАРЗК8 | 42  | 0.164 | 0.668 | 0.643 | 1.000 | 0.143 | 0.900 | 0.004 | 0.511 |  |
| TICAM1 | 110 | 0.164 | 0.668 | 0.024 | 0.517 | 0.865 | 1.000 | 0.657 | 1.000 |  |
| AKT3   | 546 | 0.199 | 0.711 | 0.361 | 0.929 | 0.488 | 0.959 | 0.314 | 1.000 |  |
| JUN    | 34  | 0.212 | 0.713 | 0.341 | 0.920 | 0.492 | 0.959 | 0.837 | 1.000 |  |
| IFNA17 | 133 | 0.214 | 0.713 | 0.259 | 0.920 | 0.317 | 0.937 | 0.469 | 1.000 |  |
| IL1B   | 54  | 0.219 | 0.713 | 0.538 | 1.000 | 0.371 | 0.937 | 0.105 | 1.000 |  |
| CXCL9  | 58  | 0.224 | 0.713 | 0.751 | 1.000 | 0.770 | 1.000 | 0.780 | 1.000 |  |
| IRF7   | 93  | 0.246 | 0.728 | 0.465 | 0.977 | 0.064 | 0.745 | 0.177 | 1.000 |  |
| MAP2K3 | 39  | 0.254 | 0.728 | 0.892 | 1.000 | 0.776 | 1.000 | 0.459 | 1.000 |  |
| IFNA8  | 77  | 0.256 | 0.728 | 0.852 | 1.000 | 0.999 | 1.000 | 0.411 | 1.000 |  |
| IFNA21 | 79  | 0.267 | 0.728 | 0.654 | 1.000 | 0.791 | 1.000 | 0.699 | 1.000 |  |
| IFNA1  | 75  | 0.270 | 0.728 | 0.978 | 1.000 | 0.992 | 1.000 | 0.105 | 1.000 |  |
| CCL5   | 78  | 0.270 | 0.728 | 0.492 | 0.977 | 0.503 | 0.960 | 0.698 | 1.000 |  |
| FADD   | 44  | 0.288 | 0.728 | 0.922 | 1.000 | 0.067 | 0.745 | 0.900 | 1.000 |  |
| IFNA5  | 60  | 0.295 | 0.728 | 0.598 | 1.000 | 0.372 | 0.937 | 0.503 | 1.000 |  |
| IFNA14 | 89  | 0.297 | 0.728 | 0.282 | 0.920 | 0.406 | 0.957 | 0.496 | 1.000 |  |
| TAB1   | 94  | 0.298 | 0.728 | 0.418 | 0.964 | 0.383 | 0.947 | 0.453 | 1.000 |  |
| IFNA16 | 166 | 0.303 | 0.728 | 0.162 | 0.920 | 0.236 | 0.937 | 0.671 | 1.000 |  |
| AKT1   | 97  | 0.305 | 0.728 | 0.623 | 1.000 | 0.716 | 1.000 | 0.938 | 1.000 |  |
| TLR4   | 92  | 0.313 | 0.730 | 0.469 | 0.977 | 0.434 | 0.957 | 0.437 | 1.000 |  |
| TLR2   | 105 | 0.319 | 0.731 | 0.037 | 0.558 | 0.756 | 1.000 | 0.140 | 1.000 |  |
| ΙΚΒΚΒ  | 138 | 0.344 | 0.761 | 0.788 | 1.000 | 0.385 | 0.947 | 0.269 | 1.000 |  |
| MAP2K7 | 56  | 0.348 | 0.761 | 0.647 | 1.000 | 0.241 | 0.937 | 0.665 | 1.000 |  |
| ΜΑΡΚ8  | 366 | 0.374 | 0.771 | 0.206 | 0.920 | 0.561 | 0.983 | 0.226 | 1.000 |  |
| PIK3CA | 334 | 0.375 | 0.771 | 0.782 | 1.000 | 0.182 | 0.935 | 0.894 | 1.000 |  |
| TLR8   | 33  | 0.377 | 0.771 | 0.132 | 0.920 | 0.328 | 0.937 | 0.785 | 1.000 |  |
| IKBKG  | 9   | 0.396 | 0.787 | 0.835 | 1.000 | 0.069 | 0.745 | 0.714 | 1.000 |  |
| PIK3R2 | 98  | 0.445 | 0.787 | 0.997 | 1.000 | 0.142 | 0.900 | 0.839 | 1.000 |  |
|        |     |       |       |       |       |       |       |       |       |  |

| IFNB1  | 71  | 0.447 | 0.787 | 0.493 | 0.977 | 0.912 | 1.000 | 0.824 | 1.000 |  |
|--------|-----|-------|-------|-------|-------|-------|-------|-------|-------|--|
| TOLLIP | 184 | 0.447 | 0.787 | 0.830 | 1.000 | 0.066 | 0.745 | 0.607 | 1.000 |  |
| TLR5   | 135 | 0.448 | 0.787 | 0.929 | 1.000 | 0.413 | 0.957 | 0.774 | 1.000 |  |
| PIK3R3 | 288 | 0.455 | 0.787 | 0.850 | 1.000 | 0.732 | 1.000 | 0.691 | 1.000 |  |
| CASP8  | 221 | 0.470 | 0.787 | 0.127 | 0.920 | 0.016 | 0.448 | 0.175 | 1.000 |  |
| IFNA2  | 31  | 0.488 | 0.792 | 0.745 | 1.000 | 0.756 | 1.000 | 0.431 | 1.000 |  |
| TLR3   | 128 | 0.498 | 0.792 | 0.941 | 1.000 | 0.542 | 0.970 | 0.171 | 1.000 |  |
| MAPK13 | 68  | 0.516 | 0.815 | 0.495 | 0.977 | 0.673 | 1.000 | 0.790 | 1.000 |  |
| CXCL10 | 101 | 0.537 | 0.837 | 0.515 | 1.000 | 0.689 | 1.000 | 0.944 | 1.000 |  |
| MAP2K1 | 412 | 0.580 | 0.886 | 0.149 | 0.920 | 0.630 | 1.000 | 0.495 | 1.000 |  |
| AKT2   | 164 | 0.631 | 0.934 | 0.649 | 1.000 | 0.853 | 1.000 | 0.977 | 1.000 |  |
| CD80   | 245 | 0.637 | 0.934 | 0.804 | 1.000 | 0.334 | 0.937 | 0.341 | 1.000 |  |
| CXCL11 | 175 | 0.677 | 0.934 | 0.421 | 0.964 | 0.542 | 0.970 | 0.685 | 1.000 |  |
| TBK1   | 137 | 0.680 | 0.934 | 0.982 | 1.000 | 0.998 | 1.000 | 0.910 | 1.000 |  |
| IL12A  | 68  | 0.685 | 0.934 | 0.935 | 1.000 | 0.799 | 1.000 | 0.557 | 1.000 |  |
| CD40   | 102 | 0.689 | 0.934 | 0.477 | 0.977 | 0.072 | 0.745 | 0.488 | 1.000 |  |
| CCL3   | 6   | 0.690 | 0.934 | 0.284 | 0.920 | 0.748 | 1.000 | 0.114 | 1.000 |  |
| IRAK1  | 14  | 0.699 | 0.934 | 0.027 | 0.517 | 0.495 | 0.959 | 0.144 | 1.000 |  |
| MAPK1  | 335 | 0.701 | 0.934 | 0.002 | 0.202 | 0.511 | 0.967 | 0.594 | 1.000 |  |
| PIK3CD | 218 | 0.714 | 0.940 | 0.543 | 1.000 | 0.360 | 0.937 | 0.246 | 1.000 |  |
| SPP1   | 95  | 0.736 | 0.958 | 0.480 | 0.977 | 0.994 | 1.000 | 0.149 | 1.000 |  |
| МАРКЗ  | 25  | 0.740 | 0.958 | 0.027 | 0.517 | 0.812 | 1.000 | 0.799 | 1.000 |  |
| CD86   | 205 | 0.749 | 0.958 | 0.149 | 0.920 | 0.217 | 0.937 | 0.609 | 1.000 |  |
| IFNAR1 | 157 | 0.791 | 0.994 | 0.728 | 1.000 | 0.915 | 1.000 | 0.887 | 1.000 |  |
| TIRAP  | 102 | 0.801 | 0.994 | 0.316 | 0.920 | 0.334 | 0.937 | 0.574 | 1.000 |  |
| IL6    | 93  | 0.809 | 0.994 | 0.611 | 1.000 | 0.639 | 1.000 | 0.057 | 1.000 |  |
| LBP    | 146 | 0.820 | 0.994 | 0.699 | 1.000 | 0.791 | 1.000 | 0.807 | 1.000 |  |
| STAT1  | 172 | 0.841 | 0.994 | 0.160 | 0.920 | 0.712 | 1.000 | 0.460 | 1.000 |  |
| TLR9   | 36  | 0.842 | 0.994 | 0.889 | 1.000 | 0.809 | 1.000 | 0.385 | 1.000 |  |
| CXCL8  | 44  | 0.845 | 0.994 | 0.018 | 0.517 | 0.444 | 0.957 | 0.863 | 1.000 |  |
| MAP2K6 | 195 | 0.851 | 0.994 | 0.785 | 1.000 | 0.345 | 0.937 | 0.542 | 1.000 |  |
| CCL4   | 9   | 0.860 | 0.994 | 0.280 | 0.920 | 0.788 | 1.000 | 0.134 | 1.000 |  |
|        |     |       |       |       |       |       |       |       |       |  |

|     | CTSK     | 52                    | 0.860 | 0.994 | 0.002 | 0.202 | 0.717  | 1.000 | 0.447 | 1.000 |
|-----|----------|-----------------------|-------|-------|-------|-------|--------|-------|-------|-------|
|     | MAP2K4   | 215                   | 0.869 | 0.994 | 0.882 | 1.000 | 0.304  | 0.937 | 0.216 | 1.000 |
|     | MAPK14   | 280                   | 0.891 | 1.000 | 0.332 | 0.920 | 0.863  | 1.000 | 0.634 | 1.000 |
|     | FOS      | 44                    | 0.894 | 1.000 | 0.896 | 1.000 | 0.801  | 1.000 | 0.936 | 1.000 |
|     | MAPK9    | 295                   | 0.911 | 1.000 | 0.387 | 0.964 | 0.835  | 1.000 | 0.790 | 1.000 |
|     | MAP3K7   | 292                   | 0.921 | 1.000 | 0.751 | 1.000 | 0.935  | 1.000 | 0.823 | 1.000 |
|     | TLR7     | 9                     | 0.953 | 1.000 | 0.267 | 0.920 | 0.150  | 0.900 | 0.046 | 1.000 |
|     | MAP2K2   | 91                    | 0.957 | 1.000 | 0.659 | 1.000 | 0.966  | 1.000 | 0.872 | 1.000 |
|     | IKBKE    | 109                   | 0.973 | 1.000 | 0.602 | 1.000 | 0.354  | 0.937 | 0.393 | 1.000 |
|     | MAPK10   | 1849                  | 0.977 | 1.000 | 0.435 | 0.977 | 0.057  | 0.745 | 0.066 | 1.000 |
|     | TAB2     | <b>0</b> <sup>c</sup> |       |       |       |       |        |       |       |       |
|     | CCL3L1   | <b>0</b> <sup>c</sup> |       |       |       |       |        |       |       |       |
|     | CCL3L3   | 0 <sup>c</sup>        |       |       |       |       |        |       |       |       |
|     | CCL4L1   | <b>0</b> <sup>c</sup> |       |       |       |       |        |       |       |       |
|     | CCL4L2   | 0 <sup>c</sup>        |       |       |       |       |        |       |       |       |
|     | MAPK11   | <b>0</b> <sup>d</sup> |       |       |       |       |        |       |       |       |
|     | MAPK12   | <b>0</b> <sup>d</sup> |       |       |       |       |        |       |       |       |
| TNF |          |                       | 0.076 |       | 0.323 |       | 0.876  |       | 0.651 |       |
|     | CREB5    | 1712                  | 0.003 | 0.196 | 0.738 | 1.000 | 0.098  | 0.900 | 0.674 | 1.000 |
|     | CREB3    | 33                    | 0.003 | 0.196 | 0.088 | 0.920 | 0.203  | 0.937 | 0.887 | 1.000 |
|     | TNFRSF1A | 39                    | 0.022 | 0.413 | 0.409 | 0.964 | 0.787  | 1.000 | 0.693 | 1.000 |
|     | TNFRSF1B | 103                   | 0.043 | 0.445 | 0.762 | 1.000 | 0.529  | 0.970 | 0.176 | 1.000 |
|     | TNFAIP3  | 77                    | 0.045 | 0.445 | 0.155 | 0.920 | 0.748  | 1.000 | 0.261 | 1.000 |
|     | RPS6KA4  | 85                    | 0.047 | 0.445 | 0.070 | 0.897 | 0.840  | 1.000 | 0.705 | 1.000 |
|     | CREB3L1  | 101                   | 0.058 | 0.476 | 0.225 | 0.920 | 0.464  | 0.957 | 0.959 | 1.000 |
|     | CREB1    | 169                   | 0.059 | 0.476 | 0.245 | 0.920 | 0.792  | 1.000 | 0.495 | 1.000 |
|     | CCL2     | 59                    | 0.063 | 0.483 | 0.891 | 1.000 | 0.0001 | 0.016 | 0.866 | 1.000 |
|     | CREB3L2  | 238                   | 0.070 | 0.515 | 0.759 | 1.000 | 0.189  | 0.935 | 0.245 | 1.000 |
|     | BCL3     | 94                    | 0.120 | 0.668 | 0.066 | 0.897 | 0.027  | 0.625 | 0.524 | 1.000 |
|     | EDN1     | 118                   | 0.125 | 0.668 | 0.667 | 1.000 | 0.218  | 0.937 | 0.146 | 1.000 |
|     | MAP3K5   | 433                   | 0.131 | 0.668 | 0.223 | 0.920 | 0.427  | 0.957 | 0.870 | 1.000 |
|     | IL15     | 251                   | 0.134 | 0.668 | 0.445 | 0.977 | 0.339  | 0.937 | 0.299 | 1.000 |
|     |          |                       |       |       |       |       |        |       |       |       |

| ATF4    | 29  | 0.172 | 0.668 | 0.400 | 0.964 | 0.110 | 0.900 | 0.959 | 1.000 |
|---------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| CASP3   | 116 | 0.190 | 0.702 | 0.280 | 0.920 | 0.302 | 0.937 | 0.667 | 1.000 |
| DNM1L   | 361 | 0.222 | 0.713 | 0.107 | 0.920 | 0.773 | 1.000 | 0.439 | 1.000 |
| CASP10  | 131 | 0.224 | 0.713 | 0.330 | 0.920 | 0.430 | 0.957 | 0.151 | 1.000 |
| JUNB    | 43  | 0.249 | 0.728 | 0.210 | 0.920 | 0.342 | 0.937 | 0.360 | 1.000 |
| CREB3L4 | 36  | 0.258 | 0.728 | 0.185 | 0.920 | 0.918 | 1.000 | 0.961 | 1.000 |
| CASP7   | 232 | 0.261 | 0.728 | 0.357 | 0.928 | 0.710 | 1.000 | 0.626 | 1.000 |
| SOCS3   | 30  | 0.263 | 0.728 | 0.962 | 1.000 | 0.315 | 0.937 | 0.420 | 1.000 |
| TRAF2   | 62  | 0.300 | 0.728 | 0.936 | 1.000 | 0.857 | 1.000 | 0.401 | 1.000 |
| IL18R1  | 270 | 0.300 | 0.728 | 0.809 | 1.000 | 0.363 | 0.937 | 0.391 | 1.000 |
| DAB2IP  | 567 | 0.303 | 0.728 | 0.032 | 0.524 | 0.650 | 1.000 | 0.440 | 1.000 |
| ATF6B   | 76  | 0.311 | 0.730 | 0.870 | 1.000 | 0.011 | 0.448 | 0.496 | 1.000 |
| CSF1    | 89  | 0.349 | 0.761 | 0.334 | 0.920 | 0.542 | 0.970 | 0.992 | 1.000 |
| LIF     | 65  | 0.368 | 0.771 | 0.977 | 1.000 | 0.903 | 1.000 | 0.340 | 1.000 |
| CXCL6   | 56  | 0.395 | 0.787 | 0.003 | 0.202 | 0.498 | 0.959 | 0.133 | 1.000 |
| CX3CL1  | 104 | 0.404 | 0.787 | 0.226 | 0.920 | 0.849 | 1.000 | 0.643 | 1.000 |
| MLKL    | 173 | 0.409 | 0.787 | 0.906 | 1.000 | 0.164 | 0.900 | 0.388 | 1.000 |
| ITCH    | 255 | 0.430 | 0.787 | 0.104 | 0.920 | 0.174 | 0.927 | 0.540 | 1.000 |
| TRAF5   | 184 | 0.456 | 0.787 | 0.699 | 1.000 | 0.013 | 0.448 | 0.931 | 1.000 |
| RIPK3   | 104 | 0.462 | 0.787 | 0.991 | 1.000 | 0.075 | 0.745 | 0.499 | 1.000 |
| TRAF1   | 162 | 0.466 | 0.787 | 0.070 | 0.897 | 0.488 | 0.959 | 0.697 | 1.000 |
| SELE    | 202 | 0.471 | 0.787 | 0.794 | 1.000 | 0.523 | 0.970 | 0.872 | 1.000 |
| BAG4    | 83  | 0.494 | 0.792 | 0.290 | 0.920 | 0.007 | 0.448 | 0.215 | 1.000 |
| MMP9    | 98  | 0.495 | 0.792 | 0.989 | 1.000 | 0.074 | 0.745 | 0.748 | 1.000 |
| PGAM5   | 117 | 0.525 | 0.823 | 0.814 | 1.000 | 0.366 | 0.937 | 0.404 | 1.000 |
| ATF2    | 281 | 0.546 | 0.841 | 0.094 | 0.920 | 0.047 | 0.745 | 0.470 | 1.000 |
| TNF     | 81  | 0.547 | 0.841 | 0.993 | 1.000 | 0.165 | 0.900 | 0.638 | 1.000 |
| CXCL5   | 12  | 0.588 | 0.892 | 0.075 | 0.905 | 0.112 | 0.900 | 0.778 | 1.000 |
| JAG1    | 147 | 0.607 | 0.914 | 0.796 | 1.000 | 0.196 | 0.935 | 0.650 | 1.000 |
| IRF1    | 109 | 0.658 | 0.934 | 0.124 | 0.920 | 0.186 | 0.935 | 0.316 | 1.000 |
| CSF2    | 48  | 0.670 | 0.934 | 0.263 | 0.920 | 0.784 | 1.000 | 0.239 | 1.000 |
| FAS     | 224 | 0.676 | 0.934 | 0.015 | 0.517 | 0.321 | 0.937 | 0.782 | 1.000 |
|         |     |       |       |       |       |       |       |       |       |

| MMP14   | 70  | 0.691 | 0.934 | 0.567 | 1.000 | 0.798 | 1.000 | 0.994 | 1.000 |
|---------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| NOD2    | 105 | 0.800 | 0.994 | 0.526 | 1.000 | 0.809 | 1.000 | 0.417 | 1.000 |
| CCL20   | 10  | 0.828 | 0.994 | 0.351 | 0.928 | 0.770 | 1.000 | 0.429 | 1.000 |
| MMP3    | 88  | 0.837 | 0.994 | 0.842 | 1.000 | 0.420 | 0.957 | 0.836 | 1.000 |
| CEBPB   | 40  | 0.849 | 0.994 | 0.022 | 0.517 | 0.737 | 1.000 | 0.701 | 1.000 |
| VEGFC   | 354 | 0.852 | 0.994 | 0.881 | 1.000 | 0.830 | 1.000 | 0.631 | 1.000 |
| TRAF3   | 336 | 0.852 | 0.994 | 0.796 | 1.000 | 0.966 | 1.000 | 0.740 | 1.000 |
| RPS6KA5 | 521 | 0.872 | 0.994 | 0.016 | 0.517 | 0.809 | 1.000 | 0.194 | 1.000 |
| CREB3L3 | 27  | 0.997 | 1.000 | 0.680 | 1.000 | 0.116 | 0.900 | 0.364 | 1.000 |

Abbreviations: TLR = toll-like receptor; NFkB = nuclear factor kappa B; TNF = tumor necrosis factor; EOC =

epithelial ovarian cancer; HGSOC = high grade serous ovarian cancer; AACES = African American Cancer

Epidemiology Study; OCAC = Ovarian Cancer Association Consortium;

<sup>a</sup>Aggregate P-value of MAGMA model results. Each model controls for age, and two ancestry principal components.

<sup>b</sup>Corrected for multiple testing by the number of genes tested using the Benjamini-Hochberg false

discovery rate (FDR).

°No SNPs mapped to gene after QC filtering.

<sup>d</sup>Gene chromosomal locations not on raw data file.

**Supplementary Table ST5.1.** Gene associations/BMI interactions within TLR, NFkB, and TNF pathways with 5-year overall survival among Black women with EOC.

| Pathway | Gene      | # SNPs | P <sub>raw</sub> | $P_{BH}$ | $P_{BMI \ raw}$ | <b>P</b> <sub>BMI FDR</sub> |
|---------|-----------|--------|------------------|----------|-----------------|-----------------------------|
| NfkB    |           |        |                  |          |                 |                             |
|         | LTA       | 11     | 0.026            | 0.916    | 0.025           | 0.604                       |
|         | BCL2L1    | 155    | 0.030            | 0.916    | 0.933           | 0.980                       |
|         | TNFRSF11A | 355    | 0.032            | 0.916    | 0.253           | 0.918                       |
|         | LCK       | 125    | 0.044            | 0.916    | 0.680           | 0.968                       |
|         | ZAP70     | 120    | 0.046            | 0.916    | 0.514           | 0.933                       |
|         | PIAS4     | 214    | 0.053            | 0.916    | 0.583           | 0.947                       |
|         | PLAU      | 22     | 0.061            | 0.916    | 0.284           | 0.928                       |
|         | GADD45G   | 7      | 0.065            | 0.916    | 0.524           | 0.933                       |
|         | EDA2R     | 82     | 0.073            | 0.916    | 0.836           | 0.973                       |
|         | EDA       | 1492   | 0.087            | 0.916    | 0.849           | 0.973                       |
|         | CSNK2B    | 16     | 0.122            | 0.916    | 0.134           | 0.853                       |
|         | RELA      | 41     | 0.126            | 0.916    | 0.001           | 0.070                       |
|         | IGH       | 2142   | 0.126            | 0.916    | 0.548           | 0.937                       |
|         | PARP1     | 240    | 0.128            | 0.916    | 0.767           | 0.973                       |
|         | VCAM1     | 80     | 0.138            | 0.916    | 0.711           | 0.968                       |
|         | MAP3K14   | 208    | 0.214            | 1.000    | 0.604           | 0.959                       |
|         | LTBR      | 87     | 0.214            | 1.000    | 0.590           | 0.951                       |
|         | BIRC2     | 99     | 0.246            | 1.000    | 0.672           | 0.968                       |
|         | UBE2I     | 198    | 0.257            | 1.000    | 0.386           | 0.928                       |
|         | TNFSF11   | 216    | 0.295            | 1.000    | 0.533           | 0.933                       |
|         | RELB      | 193    | 0.300            | 1.000    | 0.193           | 0.887                       |
|         | CSNK2A3   | 12     | 0.302            | 1.000    | 0.527           | 0.933                       |
|         | BLNK      | 487    | 0.315            | 1.000    | 0.642           | 0.968                       |
|         | CARD10    | 197    | 0.342            | 1.000    | 0.826           | 0.973                       |
|         | ATM       | 671    | 0.344            | 1.000    | 0.034           | 0.604                       |
|         | BCL2      | 961    | 0.347            | 1.000    | 0.237           | 0.891                       |
|         | PTGS2     | 34     | 0.351            | 1.000    | 0.747           | 0.973                       |
|         | CXCL1     | 16     | 0.363            | 1.000    | 0.376           | 0.928                       |
|         | SYK       | 662    | 0.369            | 1.000    | 0.949           | 0.988                       |
|         | TRAF6     | 108    | 0.377            | 1.000    | 0.411           | 0.928                       |
|         | CXCL12    | 104    | 0.413            | 1.000    | 0.786           | 0.973                       |
|         | CHUK      | 192    | 0.423            | 1.000    | 0.101           | 0.794                       |
|         | PRKCQ     | 1222   | 0.427            | 1.000    | 0.542           | 0.933                       |
|         | CXCL2     | 4      | 0.428            | 1.000    | 0.489           | 0.933                       |
|         | XIAP      | 254    | 0.431            | 1.000    | 0.829           | 0.973                       |
|         | CXCL3     | 6      | 0.458            | 1.000    | 0.405           | 0.928                       |
|         | PRKCB     | 2384   | 0.488            | 1.000    | 0.050           | 0.604                       |
|         | CCL13     | 7      | 0.557            | 1.000    | 0.213           | 0.887                       |

|     | NFKB2     | 26   | 0.565 | 1.000 | 0.421 | 0.928 |
|-----|-----------|------|-------|-------|-------|-------|
|     | CYLD      | 242  | 0.571 | 1.000 | 0.851 | 0.973 |
|     | PLCG2     | 1937 | 0.575 | 1.000 | 0.770 | 0.973 |
|     | TRADD     | 14   | 0.579 | 1.000 | 0.810 | 0.973 |
|     | IL1R1     | 679  | 0.595 | 1.000 | 0.733 | 0.971 |
|     | GADD45B   | 9    | 0.596 | 1.000 | 0.026 | 0.604 |
|     | BCL10     | 59   | 0.626 | 1.000 | 0.493 | 0.933 |
|     | BIRC3     | 65   | 0.641 | 1.000 | 0.205 | 0.887 |
|     | TNFSF14   | 47   | 0.654 | 1.000 | 0.006 | 0.343 |
|     | ICAM1     | 75   | 0.681 | 1.000 | 0.388 | 0.928 |
|     | LAT       | 16   | 0.688 | 1.000 | 0.360 | 0.928 |
|     | TAB3      | 180  | 0.705 | 1.000 | 0.412 | 0.928 |
|     | LYN       | 857  | 0.734 | 1.000 | 0.094 | 0.794 |
|     | EDARADD   | 710  | 0.740 | 1.000 | 0.360 | 0.928 |
|     | LTB       | 4    | 0.789 | 1.000 | 0.000 | 0.070 |
|     | TNFRSF13C | 9    | 0.795 | 1.000 | 0.428 | 0.928 |
|     | GADD45A   | 16   | 0.799 | 1.000 | 0.039 | 0.604 |
|     | CARD11    | 1090 | 0.800 | 1.000 | 0.669 | 0.968 |
|     | CSNK2A2   | 166  | 0.838 | 1.000 | 0.686 | 0.968 |
|     | CSNK2A1   | 249  | 0.851 | 1.000 | 0.845 | 0.973 |
|     | EDAR      | 500  | 0.852 | 1.000 | 0.377 | 0.928 |
|     | NFKB1     | 441  | 0.857 | 1.000 | 0.727 | 0.971 |
|     | BCL2A1    | 48   | 0.866 | 1.000 | 0.922 | 0.980 |
|     | BTK       | 152  | 0.869 | 1.000 | 0.580 | 0.947 |
|     | ERC1      | 3618 | 0.888 | 1.000 | 0.466 | 0.933 |
|     | TRIM25    | 80   | 0.888 | 1.000 | 0.086 | 0.788 |
|     | PIDD1     | 82   | 0.896 | 1.000 | 0.902 | 0.980 |
|     | CCL19     | 7    | 0.910 | 1.000 | 0.297 | 0.928 |
|     | CCL21     | 5    | 0.913 | 1.000 | 0.077 | 0.756 |
|     | CARD14    | 271  | 0.927 | 1.000 | 0.056 | 0.640 |
|     | MALT1     | 389  | 0.948 | 1.000 | 0.671 | 0.968 |
|     | NFKBIA    | 18   | 0.951 | 1.000 | 0.560 | 0.947 |
|     | CD40LG    | 34   | 0.974 | 1.000 | 0.210 | 0.887 |
|     | PLCG1     | 87   | 0.980 | 1.000 | 0.329 | 0.928 |
|     | RIPK1     | 368  | 0.989 | 1.000 | 0.125 | 0.826 |
|     | TNFSF13B  | 158  | 0.994 | 1.000 | 0.185 | 0.882 |
| TLR |           |      |       |       |       |       |
|     | FOS       | 11   | 0.009 | 0.916 | 0.918 | 0.980 |
|     | STAT1     | 195  | 0.020 | 0.916 | 0.715 | 0.968 |
|     | MAP2K4    | 382  | 0.032 | 0.916 | 0.530 | 0.933 |
|     | TAB2      | 548  | 0.035 | 0.916 | 0.336 | 0.928 |
|     | CTSK      | 22   | 0.035 | 0.916 | 0.928 | 0.980 |
|     | IKBKE     | 163  | 0.037 | 0.916 | 0.893 | 0.980 |
|     | TOLLIP    | 158  | 0.068 | 0.916 | 0.126 | 0.826 |
|     |           |      |       |       |       |       |

| AKT3          | 1176 | 0.082 | 0.916 | 0.955 | 0.990 |
|---------------|------|-------|-------|-------|-------|
| PIK3R2        | 73   | 0.082 | 0.916 | 0.391 | 0.928 |
| CXCL11        | 24   | 0.089 | 0.916 | 0.995 | 1.000 |
| TICAM1        | 109  | 0.099 | 0.916 | 0.797 | 0.973 |
| MAPK9         | 313  | 0.121 | 0.916 | 0.782 | 0.973 |
| IRAK4         | 144  | 0.124 | 0.916 | 0.397 | 0.928 |
| РІКЗСА        | 326  | 0.128 | 0.916 | 0.787 | 0.973 |
| IRAK1         | 25   | 0.129 | 0.916 | 0.337 | 0.928 |
| CD40          | 48   | 0.135 | 0.916 | 0.457 | 0.933 |
| IFNA8         | 4    | 0.140 | 0.916 | 0.419 | 0.928 |
| CCL4L1        | 2    | 0.146 | 0.929 | 0.330 | 0.928 |
| MAP2K6        | 609  | 0.172 | 0.974 | 0.874 | 0.980 |
| CCL4          | 23   | 0.173 | 0.974 | 0.518 | 0.933 |
| IKBKB         | 243  | 0.174 | 0.974 | 0.634 | 0.968 |
| MAP2K1        | 542  | 0.196 | 1.000 | 0.032 | 0.604 |
| MAPK8         | 598  | 0.208 | 1.000 | 0.851 | 0.973 |
| MAP3K7        | 318  | 0.215 | 1.000 | 0.231 | 0.891 |
| TICAM2        | 194  | 0.232 | 1.000 | 0.520 | 0.933 |
| PIK3R3        | 454  | 0.269 | 1.000 | 0.339 | 0.928 |
| MYD88         | 6    | 0.276 | 1.000 | 0.713 | 0.968 |
| CD86          | 226  | 0.279 | 1.000 | 0.104 | 0.794 |
| IRF7          | 25   | 0.296 | 1.000 | 0.700 | 0.968 |
| MAPK14        | 400  | 0.329 | 1.000 | 0.215 | 0.887 |
| PIK3R1        | 380  | 0.346 | 1.000 | 0.237 | 0.891 |
| IL6           | 29   | 0.356 | 1.000 | 0.243 | 0.896 |
| TLR9          | 6    | 0.374 | 1.000 | 0.043 | 0.604 |
| TBK1          | 177  | 0.389 | 1.000 | 0.382 | 0.928 |
| CD14          | 6    | 0.390 | 1.000 | 0.922 | 0.980 |
| IL12A         | 36   | 0.397 | 1.000 | 0.949 | 0.988 |
| CCL3          | 16   | 0.415 | 1.000 | 0.217 | 0.887 |
| LY96          | 221  | 0.415 | 1.000 | 0.854 | 0.973 |
| IKBKG         | 25   | 0.416 | 1.000 | 0.365 | 0.928 |
| MAPK10        | 2512 | 0.469 | 1.000 | 0.298 | 0.928 |
| TLR6          | 346  | 0.501 | 1.000 | 0.874 | 0.980 |
| JUN           | 15   | 0.524 | 1.000 | 0.059 | 0.640 |
| IFNA13        | 1    | 0.528 | 1.000 | 0.913 | 0.980 |
| IFNA4         | 6    | 0.541 | 1.000 | 0.932 | 0.980 |
| PIK3CD        | 323  | 0.542 | 1.000 | 0.143 | 0.853 |
| IFNAR1        | 193  | 0.551 | 1.000 | 0.572 | 0.947 |
| <i>РІКЗСВ</i> | 702  | 0.566 | 1.000 | 0.680 | 0.968 |
| IFNA5         | 3    | 0.567 | 1.000 | 0.018 | 0.604 |
| CASP8         | 240  | 0.598 | 1.000 | 0.099 | 0.794 |
| IFNB1         | 5    | 0.644 | 1.000 | 0.748 | 0.973 |
| CCL5          | 23   | 0.679 | 1.000 | 0.402 | 0.928 |
|               |      |       |       |       |       |

| TIRAP  | 61             | 0.683 | 1.000 | 0.595 | 0.954 |
|--------|----------------|-------|-------|-------|-------|
| IFNA21 | 6              | 0.685 | 1.000 | 0.209 | 0.887 |
| IFNA1  | 8              | 0.690 | 1.000 | 0.160 | 0.853 |
| MAPK13 | 46             | 0.704 | 1.000 | 0.367 | 0.928 |
| IRF3   | 23             | 0.709 | 1.000 | 0.430 | 0.928 |
| IL12B  | 72             | 0.713 | 1.000 | 0.043 | 0.604 |
| AKT1   | 167            | 0.713 | 1.000 | 0.858 | 0.973 |
| TLR8   | 83             | 0.730 | 1.000 | 0.696 | 0.968 |
| MAP2K7 | 61             | 0.731 | 1.000 | 0.916 | 0.980 |
| MAPK1  | 513            | 0.758 | 1.000 | 0.533 | 0.933 |
| LBP    | 265            | 0.767 | 1.000 | 0.845 | 0.973 |
| AKT2   | 154            | 0.768 | 1.000 | 0.764 | 0.973 |
| MAP2K2 | 176            | 0.775 | 1.000 | 0.288 | 0.928 |
| IFNAR2 | 178            | 0.781 | 1.000 | 0.151 | 0.853 |
| TLR4   | 60             | 0.799 | 1.000 | 0.827 | 0.973 |
| IFNA17 | 10             | 0.801 | 1.000 | 0.111 | 0.817 |
| FADD   | 13             | 0.806 | 1.000 | 0.754 | 0.973 |
| CD80   | 217            | 0.808 | 1.000 | 0.162 | 0.853 |
| MAPK12 | 58             | 0.817 | 1.000 | 0.032 | 0.604 |
| IFNA7  | 2              | 0.819 | 1.000 | 0.267 | 0.928 |
| IFNA16 | 12             | 0.819 | 1.000 | 0.714 | 0.968 |
| CFLAR  | 228            | 0.822 | 1.000 | 0.825 | 0.973 |
| TAB1   | 122            | 0.853 | 1.000 | 0.416 | 0.928 |
| TLR5   | 175            | 0.861 | 1.000 | 0.180 | 0.877 |
| MAP3K8 | 144            | 0.863 | 1.000 | 0.234 | 0.891 |
| IFNA6  | 3              | 0.863 | 1.000 | 0.164 | 0.853 |
| CXCL8  | 9              | 0.864 | 1.000 | 0.079 | 0.756 |
| SPP1   | 42             | 0.871 | 1.000 | 0.172 | 0.858 |
| TLR3   | 98             | 0.873 | 1.000 | 0.893 | 0.980 |
| RAC1   | 241            | 0.881 | 1.000 | 0.340 | 0.928 |
| CCL3L3 | 1              | 0.881 | 1.000 | 0.154 | 0.853 |
| TLR1   | 69             | 0.885 | 1.000 | 0.754 | 0.973 |
| МАРКЗ  | 24             | 0.886 | 1.000 | 0.039 | 0.604 |
| CXCL10 | 15             | 0.919 | 1.000 | 0.351 | 0.928 |
| MAP2K3 | 185            | 0.934 | 1.000 | 0.456 | 0.933 |
| MAPK11 | 28             | 0.934 | 1.000 | 0.274 | 0.928 |
| IL1B   | 30             | 0.945 | 1.000 | 0.411 | 0.928 |
| IFNA2  | 7              | 0.946 | 1.000 | 0.482 | 0.933 |
| CXCL9  | 18             | 0.951 | 1.000 | 0.460 | 0.933 |
| TLR7   | 103            | 0.967 | 1.000 | 0.731 | 0.971 |
| IFNA10 | 14             | 0.977 | 1.000 | 0.228 | 0.891 |
| IRF5   | 62             | 0.982 | 1.000 | 0.802 | 0.973 |
| TLR2   | 122            | 0.998 | 1.000 | 0.914 | 0.980 |
| IFNA14 | 0 <sup>c</sup> |       |       |       |       |
|        |                |       |       |       |       |

|     | CCL3L1   | <b>0</b> <sup>c</sup> |       |       |       |       |
|-----|----------|-----------------------|-------|-------|-------|-------|
|     | CCL4L2   | <b>0</b> <sup>c</sup> |       |       |       |       |
| TNF |          |                       |       |       |       |       |
|     | LIF      | 29                    | 0.064 | 0.916 | 0.722 | 0.971 |
|     | EDN1     | 30                    | 0.085 | 0.916 | 0.674 | 0.968 |
|     | TRAF3    | 541                   | 0.132 | 0.916 | 0.685 | 0.968 |
|     | MMP9     | 41                    | 0.175 | 0.974 | 0.691 | 0.968 |
|     | CREB3    | 14                    | 0.176 | 0.974 | 0.696 | 0.968 |
|     | CREB3L4  | 11                    | 0.182 | 0.974 | 0.043 | 0.604 |
|     | DNM1L    | 494                   | 0.183 | 0.974 | 0.651 | 0.968 |
|     | TNF      | 10                    | 0.213 | 1.000 | 0.001 | 0.106 |
|     | ATF6B    | 34                    | 0.290 | 1.000 | 0.069 | 0.715 |
|     | TRAF1    | 145                   | 0.291 | 1.000 | 0.621 | 0.967 |
|     | CASP3    | 117                   | 0.298 | 1.000 | 0.094 | 0.794 |
|     | DAB2IP   | 1151                  | 0.299 | 1.000 | 0.123 | 0.826 |
|     | MLKL     | 147                   | 0.309 | 1.000 | 0.653 | 0.968 |
|     | TRAF2    | 253                   | 0.312 | 1.000 | 0.887 | 0.980 |
|     | CREB3L3  | 105                   | 0.341 | 1.000 | 0.817 | 0.973 |
|     | CSF1     | 74                    | 0.345 | 1.000 | 0.009 | 0.431 |
|     | BAG4     | 115                   | 0.420 | 1.000 | 0.621 | 0.967 |
|     | RPS6KA5  | 968                   | 0.430 | 1.000 | 0.348 | 0.928 |
|     | CREB1    | 227                   | 0.486 | 1.000 | 0.512 | 0.933 |
|     | TNFRSF1A | 42                    | 0.499 | 1.000 | 0.773 | 0.973 |
|     | NOD2     | 165                   | 0.502 | 1.000 | 0.798 | 0.973 |
|     | ITCH     | 458                   | 0.517 | 1.000 | 0.296 | 0.928 |
|     | FAS      | 154                   | 0.527 | 1.000 | 0.437 | 0.928 |
|     | MMP3     | 46                    | 0.570 | 1.000 | 0.353 | 0.928 |
|     | CCL20    | 20                    | 0.598 | 1.000 | 0.674 | 0.968 |
|     | IL18R1   | 202                   | 0.624 | 1.000 | 0.579 | 0.947 |
|     | SELE     | 81                    | 0.640 | 1.000 | 0.047 | 0.604 |
|     | CASP7    | 276                   | 0.652 | 1.000 | 0.329 | 0.928 |
|     | CXCL5    | 5                     | 0.664 | 1.000 | 0.308 | 0.928 |
|     | CASP10   | 190                   | 0.667 | 1.000 | 0.779 | 0.973 |
|     | JAG1     | 173                   | 0.677 | 1.000 | 0.380 | 0.928 |
|     | MMP14    | 73                    | 0.698 | 1.000 | 0.438 | 0.928 |
|     | JUNB     | 3                     | 0.701 | 1.000 | 0.340 | 0.928 |
|     | CREB5    | 3041                  | 0.705 | 1.000 | 0.532 | 0.933 |
|     | VEGFC    | 572                   | 0.757 | 1.000 | 0.503 | 0.933 |
|     | CREB3L1  | 191                   | 0.762 | 1.000 | 0.201 | 0.887 |
|     | BCL3     | 72                    | 0.763 | 1.000 | 0.569 | 0.947 |
|     | RPS6KA4  | 65                    | 0.789 | 1.000 | 0.539 | 0.933 |
|     | IL15     | 372                   | 0.809 | 1.000 | 0.966 | 0.996 |
|     | CREB3L2  | 728                   | 0.829 | 1.000 | 0.522 | 0.933 |
|     | TNFAIP3  | 48                    | 0.835 | 1.000 | 0.168 | 0.856 |

| TRAF5    | 162  | 0.835 | 1.000 | 0.408 | 0.928 |  |
|----------|------|-------|-------|-------|-------|--|
| CXCL6    | 7    | 0.839 | 1.000 | 0.715 | 0.968 |  |
| CSF2     | 12   | 0.843 | 1.000 | 0.158 | 0.853 |  |
| TNFRSF1B | 211  | 0.887 | 1.000 | 0.538 | 0.933 |  |
| ATF4     | 19   | 0.891 | 1.000 | 0.126 | 0.826 |  |
| CEBPB    | 2    | 0.915 | 1.000 | 0.484 | 0.933 |  |
| CX3CL1   | 76   | 0.917 | 1.000 | 0.338 | 0.928 |  |
| IRF1     | 60   | 0.924 | 1.000 | 0.144 | 0.853 |  |
| SOCS3    | 8    | 0.930 | 1.000 | 0.050 | 0.604 |  |
| CCL2     | 7    | 0.936 | 1.000 | 0.525 | 0.933 |  |
| MAP3K5   | 1047 | 0.937 | 1.000 | 0.568 | 0.947 |  |
| RIPK3    | 19   | 0.956 | 1.000 | 0.881 | 0.980 |  |
| ATF2     | 435  | 0.957 | 1.000 | 0.607 | 0.959 |  |
| PGAM5    | 108  | 0.996 | 1.000 | 0.494 | 0.933 |  |

<sup>a</sup>Aggregate P-value of MAGMA model results. Each model controls for age, and two ancestry principal components.

<sup>b</sup>Corrected for multiple testing by the number of genes tested using the Benjamini-Hochberg false discovery rate (FDR).

°No SNPs mapped to gene after QC filtering.

<sup>d</sup>Gene chromosomal locations not on raw data file.

**Supplementary Table ST5.2.** Gene associations/BMI interactions within TLR, NFkB, and TNF pathways with 5-year overall survival among Black women with HGSOC.

| NfkB         LTA         11         0.026         0.916         0.025         0           BCL2L1         155         0.030         0.916         0.933         0           TNFRSF11A         355         0.032         0.916         0.253         0           LCK         125         0.044         0.916         0.253         0           ZAP70         120         0.046         0.916         0.514         0           PIAS4         214         0.053         0.916         0.583         0           PLAU         22         0.061         0.916         0.583         0           GADD45G         7         0.065         0.916         0.524         0           EDA2R         82         0.073         0.916         0.836         0           EDA2R         82         0.073         0.916         0.849         0           CSNK2B         16         0.122         0.916         0.134         0           IGH         2142         0.126         0.916         0.548         0           IGH         2142         0.128         0.916         0.767         0           VCAM1         80         0 | MI FDR<br>0.604<br>0.980<br>0.918 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| LTA       11       0.026       0.916       0.025       0         BCL2L1       155       0.030       0.916       0.933       0         TNFRSF11A       355       0.032       0.916       0.253       0         LCK       125       0.044       0.916       0.680       0         ZAP70       120       0.046       0.916       0.514       0         PIAS4       214       0.053       0.916       0.583       0         PLAU       22       0.061       0.916       0.544       0         GADD45G       7       0.065       0.916       0.524       0         EDA2R       82       0.073       0.916       0.836       0         EDA       1492       0.087       0.916       0.849       0         CSNK2B       16       0.122       0.916       0.134       0         IGH       2142       0.126       0.916       0.548       0         IGH       2142       0.126       0.916       0.548       0         PARP1       240       0.128       0.916       0.767       0         VCAM1       80       0.138       0.916                                                                                          | 0.980                             |
| BCL2L1       155       0.030       0.916       0.933       0         TNFRSF11A       355       0.032       0.916       0.253       0         LCK       125       0.044       0.916       0.680       0         ZAP70       120       0.046       0.916       0.514       0         PIAS4       214       0.053       0.916       0.583       0         PLAU       22       0.061       0.916       0.284       0         GADD45G       7       0.065       0.916       0.524       0         EDA2R       82       0.073       0.916       0.836       0         EDA2R       82       0.073       0.916       0.849       0         EDA       1492       0.087       0.916       0.134       0         EDA       1492       0.087       0.916       0.548       0         IGH       2142       0.126       0.916       0.548       0         IGH       2142       0.126       0.916       0.767       0         VCAM1       80       0.138       0.916       0.711       0         MAP3K14       208       0.214       1.000                                                                                       | 0.980                             |
| TNFRSF11A       355       0.032       0.916       0.253       0         LCK       125       0.044       0.916       0.680       0         ZAP70       120       0.046       0.916       0.514       0         PIAS4       214       0.053       0.916       0.583       0         PLAU       22       0.061       0.916       0.284       0         GADD45G       7       0.065       0.916       0.524       0         EDA2R       82       0.073       0.916       0.836       0         EDA2R       1492       0.087       0.916       0.849       0         CSNK2B       16       0.122       0.916       0.134       0         IGH       2142       0.126       0.916       0.548       0         IGH       2142       0.126       0.916       0.548       0         VCAM1       80       0.138       0.916       0.711       0                                                                                                                                                                                                                                                                              |                                   |
| LCK       125       0.044       0.916       0.680       0         ZAP70       120       0.046       0.916       0.514       0         PIAS4       214       0.053       0.916       0.583       0         PLAU       22       0.061       0.916       0.284       0         GADD45G       7       0.065       0.916       0.524       0         EDA2R       82       0.073       0.916       0.836       0         EDA       1492       0.087       0.916       0.849       0         CSNK2B       16       0.122       0.916       0.134       0         IGH       2142       0.126       0.916       0.548       0         VCAM1       80       0.138       0.916       0.767       0                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 010                             |
| ZAP70       120       0.046       0.916       0.514       0         PIAS4       214       0.053       0.916       0.583       0         PLAU       22       0.061       0.916       0.284       0         GADD45G       7       0.065       0.916       0.524       0         EDA2R       82       0.073       0.916       0.836       0         EDA2R       1492       0.087       0.916       0.849       0         CSNK2B       16       0.122       0.916       0.134       0         RELA       41       0.126       0.916       0.548       0         IGH       2142       0.126       0.916       0.548       0         VCAM1       80       0.138       0.916       0.767       0                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.910                             |
| PIAS4       214       0.053       0.916       0.583       0         PLAU       22       0.061       0.916       0.284       0         GADD45G       7       0.065       0.916       0.524       0         EDA2R       82       0.073       0.916       0.836       0         EDA       1492       0.087       0.916       0.849       0         CSNK2B       16       0.122       0.916       0.134       0         RELA       41       0.126       0.916       0.548       0         IGH       2142       0.126       0.916       0.548       0         VCAM1       80       0.138       0.916       0.767       0         MAP3K14       208       0.214       1.000       0.604       0                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.968                             |
| PLAU       22       0.061       0.916       0.284       0         GADD45G       7       0.065       0.916       0.524       0         EDA2R       82       0.073       0.916       0.836       0         EDA2R       1492       0.087       0.916       0.849       0         CSNK2B       16       0.122       0.916       0.134       0         RELA       41       0.126       0.916       0.548       0         IGH       2142       0.126       0.916       0.548       0         VCAM1       80       0.138       0.916       0.767       0         MAP3K14       208       0.214       1.000       0.604       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.933                             |
| GADD45G       7       0.065       0.916       0.524       0         EDA2R       82       0.073       0.916       0.836       0         EDA       1492       0.087       0.916       0.849       0         CSNK2B       16       0.122       0.916       0.134       0         RELA       41       0.126       0.916       0.001       0         IGH       2142       0.126       0.916       0.548       0         PARP1       240       0.128       0.916       0.767       0         VCAM1       80       0.138       0.916       0.711       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.947                             |
| EDA2R       82       0.073       0.916       0.836       0         EDA       1492       0.087       0.916       0.849       0         CSNK2B       16       0.122       0.916       0.134       0         RELA       41       0.126       0.916       0.001       0         IGH       2142       0.126       0.916       0.548       0         PARP1       240       0.128       0.916       0.767       0         VCAM1       80       0.138       0.916       0.711       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.928                             |
| EDA14920.0870.9160.8490CSNK2B160.1220.9160.1340RELA410.1260.9160.0010IGH21420.1260.9160.5480PARP12400.1280.9160.7670VCAM1800.1380.9160.7110MAP3K142080.2141.0000.6040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.933                             |
| CSNK2B       16       0.122       0.916       0.134       0         RELA       41       0.126       0.916       0.001       0         IGH       2142       0.126       0.916       0.548       0         PARP1       240       0.128       0.916       0.767       0         VCAM1       80       0.138       0.916       0.711       0         MAP3K14       208       0.214       1.000       0.604       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.973                             |
| RELA       41       0.126       0.916       0.001       0         IGH       2142       0.126       0.916       0.548       0         PARP1       240       0.128       0.916       0.767       0         VCAM1       80       0.138       0.916       0.711       0         MAP3K14       208       0.214       1.000       0.604       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.973                             |
| IGH21420.1260.9160.5480PARP12400.1280.9160.7670VCAM1800.1380.9160.7110MAP3K142080.2141.0000.6040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.853                             |
| PARP12400.1280.9160.7670VCAM1800.1380.9160.7110MAP3K142080.2141.0000.6040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.070                             |
| VCAM1 80 0.138 0.916 0.711 0<br>MAP3K14 208 0.214 1.000 0.604 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.937                             |
| MAP3K14 208 0.214 1.000 0.604 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.973                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.968                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.959                             |
| LTBR 87 0.214 1.000 0.590 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.951                             |
| BIRC2 99 0.246 1.000 0.672 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.968                             |
| UBE2I 198 0.257 1.000 0.386 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.928                             |
| TNFSF11 216 0.295 1.000 0.533 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.933                             |
| RELB 193 0.300 1.000 0.193 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.887                             |
| CSNK2A3 12 0.302 1.000 0.527 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.933                             |
| BLNK 487 0.315 1.000 0.642 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.968                             |
| CARD10 197 0.342 1.000 0.826 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.973                             |
| ATM 671 0.344 1.000 <b>0.034</b> (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.604                             |
| BCL2 961 0.347 1.000 0.237 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.891                             |

| PTGS2     | 34   | 0.351 | 1.000 | 0.747 | 0.973 |  |
|-----------|------|-------|-------|-------|-------|--|
| CXCL1     | 16   | 0.363 | 1.000 | 0.376 | 0.928 |  |
| SYK       | 662  | 0.369 | 1.000 | 0.949 | 0.988 |  |
| TRAF6     | 108  | 0.377 | 1.000 | 0.411 | 0.928 |  |
| CXCL12    | 104  | 0.413 | 1.000 | 0.786 | 0.973 |  |
| CHUK      | 192  | 0.423 | 1.000 | 0.101 | 0.794 |  |
| PRKCQ     | 1222 | 0.427 | 1.000 | 0.542 | 0.933 |  |
| CXCL2     | 4    | 0.428 | 1.000 | 0.489 | 0.933 |  |
| XIAP      | 254  | 0.431 | 1.000 | 0.829 | 0.973 |  |
| CXCL3     | 6    | 0.458 | 1.000 | 0.405 | 0.928 |  |
| PRKCB     | 2384 | 0.488 | 1.000 | 0.050 | 0.604 |  |
| CCL13     | 7    | 0.557 | 1.000 | 0.213 | 0.887 |  |
| NFKB2     | 26   | 0.565 | 1.000 | 0.421 | 0.928 |  |
| CYLD      | 242  | 0.571 | 1.000 | 0.851 | 0.973 |  |
| PLCG2     | 1937 | 0.575 | 1.000 | 0.770 | 0.973 |  |
| TRADD     | 14   | 0.579 | 1.000 | 0.810 | 0.973 |  |
| IL1R1     | 679  | 0.595 | 1.000 | 0.733 | 0.971 |  |
| GADD45B   | 9    | 0.596 | 1.000 | 0.026 | 0.604 |  |
| BCL10     | 59   | 0.626 | 1.000 | 0.493 | 0.933 |  |
| BIRC3     | 65   | 0.641 | 1.000 | 0.205 | 0.887 |  |
| TNFSF14   | 47   | 0.654 | 1.000 | 0.006 | 0.343 |  |
| ICAM1     | 75   | 0.681 | 1.000 | 0.388 | 0.928 |  |
| LAT       | 16   | 0.688 | 1.000 | 0.360 | 0.928 |  |
| TAB3      | 180  | 0.705 | 1.000 | 0.412 | 0.928 |  |
| LYN       | 857  | 0.734 | 1.000 | 0.094 | 0.794 |  |
| EDARADD   | 710  | 0.740 | 1.000 | 0.360 | 0.928 |  |
| LTB       | 4    | 0.789 | 1.000 | 0.000 | 0.070 |  |
| TNFRSF13C | 9    | 0.795 | 1.000 | 0.428 | 0.928 |  |
| GADD45A   | 16   | 0.799 | 1.000 | 0.039 | 0.604 |  |
| CARD11    | 1090 | 0.800 | 1.000 | 0.669 | 0.968 |  |
| CSNK2A2   | 166  | 0.838 | 1.000 | 0.686 | 0.968 |  |
| CSNK2A1   | 249  | 0.851 | 1.000 | 0.845 | 0.973 |  |
|           |      |       |       |       |       |  |

|     | EDAR     | 500  | 0.852 | 1.000 | 0.377 | 0.928 |
|-----|----------|------|-------|-------|-------|-------|
|     | NFKB1    | 441  | 0.857 | 1.000 | 0.727 | 0.971 |
|     | BCL2A1   | 48   | 0.866 | 1.000 | 0.922 | 0.980 |
|     | BTK      | 152  | 0.869 | 1.000 | 0.580 | 0.947 |
|     | ERC1     | 3618 | 0.888 | 1.000 | 0.466 | 0.933 |
|     | TRIM25   | 80   | 0.888 | 1.000 | 0.086 | 0.788 |
|     | PIDD1    | 82   | 0.896 | 1.000 | 0.902 | 0.980 |
|     | CCL19    | 7    | 0.910 | 1.000 | 0.297 | 0.928 |
|     | CCL21    | 5    | 0.913 | 1.000 | 0.077 | 0.756 |
|     | CARD14   | 271  | 0.927 | 1.000 | 0.056 | 0.640 |
|     | MALT1    | 389  | 0.948 | 1.000 | 0.671 | 0.968 |
|     | NFKBIA   | 18   | 0.951 | 1.000 | 0.560 | 0.947 |
|     | CD40LG   | 34   | 0.974 | 1.000 | 0.210 | 0.887 |
|     | PLCG1    | 87   | 0.980 | 1.000 | 0.329 | 0.928 |
|     | RIPK1    | 368  | 0.989 | 1.000 | 0.125 | 0.826 |
|     | TNFSF13B | 158  | 0.994 | 1.000 | 0.185 | 0.882 |
| TLR |          |      |       |       |       |       |
|     | FOS      | 11   | 0.009 | 0.916 | 0.918 | 0.980 |
|     | STAT1    | 195  | 0.020 | 0.916 | 0.715 | 0.968 |
|     | MAP2K4   | 382  | 0.032 | 0.916 | 0.530 | 0.933 |
|     | TAB2     | 548  | 0.035 | 0.916 | 0.336 | 0.928 |
|     | CTSK     | 22   | 0.035 | 0.916 | 0.928 | 0.980 |
|     | IKBKE    | 163  | 0.037 | 0.916 | 0.893 | 0.980 |
|     | TOLLIP   | 158  | 0.068 | 0.916 | 0.126 | 0.826 |
|     | AKT3     | 1176 | 0.082 | 0.916 | 0.955 | 0.990 |
|     | PIK3R2   | 73   | 0.082 | 0.916 | 0.391 | 0.928 |
|     | CXCL11   | 24   | 0.089 | 0.916 | 0.995 | 1.000 |
|     | TICAM1   | 109  | 0.099 | 0.916 | 0.797 | 0.973 |
|     | ΜΑΡΚ9    | 313  | 0.121 | 0.916 | 0.782 | 0.973 |
|     | IRAK4    | 144  | 0.124 | 0.916 | 0.397 | 0.928 |
|     | PIK3CA   | 326  | 0.128 | 0.916 | 0.787 | 0.973 |
|     | IRAK1    | 25   | 0.129 | 0.916 | 0.337 | 0.928 |
|     |          |      |       |       |       |       |

| CD40          | 48   | 0.135 | 0.916 | 0.457 | 0.933 |  |
|---------------|------|-------|-------|-------|-------|--|
| IFNA8         | 4    | 0.140 | 0.916 | 0.419 | 0.928 |  |
| CCL4L1        | 2    | 0.146 | 0.929 | 0.330 | 0.928 |  |
| MAP2K6        | 609  | 0.172 | 0.974 | 0.874 | 0.980 |  |
| CCL4          | 23   | 0.173 | 0.974 | 0.518 | 0.933 |  |
| ΙΚΒΚΒ         | 243  | 0.174 | 0.974 | 0.634 | 0.968 |  |
| MAP2K1        | 542  | 0.196 | 1.000 | 0.032 | 0.604 |  |
| ΜΑΡΚ8         | 598  | 0.208 | 1.000 | 0.851 | 0.973 |  |
| MAP3K7        | 318  | 0.215 | 1.000 | 0.231 | 0.891 |  |
| TICAM2        | 194  | 0.232 | 1.000 | 0.520 | 0.933 |  |
| PIK3R3        | 454  | 0.269 | 1.000 | 0.339 | 0.928 |  |
| MYD88         | 6    | 0.276 | 1.000 | 0.713 | 0.968 |  |
| CD86          | 226  | 0.279 | 1.000 | 0.104 | 0.794 |  |
| IRF7          | 25   | 0.296 | 1.000 | 0.700 | 0.968 |  |
| MAPK14        | 400  | 0.329 | 1.000 | 0.215 | 0.887 |  |
| PIK3R1        | 380  | 0.346 | 1.000 | 0.237 | 0.891 |  |
| IL6           | 29   | 0.356 | 1.000 | 0.243 | 0.896 |  |
| TLR9          | 6    | 0.374 | 1.000 | 0.043 | 0.604 |  |
| TBK1          | 177  | 0.389 | 1.000 | 0.382 | 0.928 |  |
| CD14          | 6    | 0.390 | 1.000 | 0.922 | 0.980 |  |
| IL12A         | 36   | 0.397 | 1.000 | 0.949 | 0.988 |  |
| CCL3          | 16   | 0.415 | 1.000 | 0.217 | 0.887 |  |
| LY96          | 221  | 0.415 | 1.000 | 0.854 | 0.973 |  |
| IKBKG         | 25   | 0.416 | 1.000 | 0.365 | 0.928 |  |
| MAPK10        | 2512 | 0.469 | 1.000 | 0.298 | 0.928 |  |
| TLR6          | 346  | 0.501 | 1.000 | 0.874 | 0.980 |  |
| JUN           | 15   | 0.524 | 1.000 | 0.059 | 0.640 |  |
| IFNA13        | 1    | 0.528 | 1.000 | 0.913 | 0.980 |  |
| IFNA4         | 6    | 0.541 | 1.000 | 0.932 | 0.980 |  |
| PIK3CD        | 323  | 0.542 | 1.000 | 0.143 | 0.853 |  |
| IFNAR1        | 193  | 0.551 | 1.000 | 0.572 | 0.947 |  |
| <i>РІКЗСВ</i> | 702  | 0.566 | 1.000 | 0.680 | 0.968 |  |
|               |      |       |       |       |       |  |

| IFNA5  | 3   | 0.567 | 1.000 | 0.018 | 0.604 |  |
|--------|-----|-------|-------|-------|-------|--|
| CASP8  | 240 | 0.598 | 1.000 | 0.099 | 0.794 |  |
| IFNB1  | 5   | 0.644 | 1.000 | 0.748 | 0.973 |  |
| CCL5   | 23  | 0.679 | 1.000 | 0.402 | 0.928 |  |
| TIRAP  | 61  | 0.683 | 1.000 | 0.595 | 0.954 |  |
| IFNA21 | 6   | 0.685 | 1.000 | 0.209 | 0.887 |  |
| IFNA1  | 8   | 0.690 | 1.000 | 0.160 | 0.853 |  |
| MAPK13 | 46  | 0.704 | 1.000 | 0.367 | 0.928 |  |
| IRF3   | 23  | 0.709 | 1.000 | 0.430 | 0.928 |  |
| IL12B  | 72  | 0.713 | 1.000 | 0.043 | 0.604 |  |
| AKT1   | 167 | 0.713 | 1.000 | 0.858 | 0.973 |  |
| TLR8   | 83  | 0.730 | 1.000 | 0.696 | 0.968 |  |
| MAP2K7 | 61  | 0.731 | 1.000 | 0.916 | 0.980 |  |
| MAPK1  | 513 | 0.758 | 1.000 | 0.533 | 0.933 |  |
| LBP    | 265 | 0.767 | 1.000 | 0.845 | 0.973 |  |
| AKT2   | 154 | 0.768 | 1.000 | 0.764 | 0.973 |  |
| MAP2K2 | 176 | 0.775 | 1.000 | 0.288 | 0.928 |  |
| IFNAR2 | 178 | 0.781 | 1.000 | 0.151 | 0.853 |  |
| TLR4   | 60  | 0.799 | 1.000 | 0.827 | 0.973 |  |
| IFNA17 | 10  | 0.801 | 1.000 | 0.111 | 0.817 |  |
| FADD   | 13  | 0.806 | 1.000 | 0.754 | 0.973 |  |
| CD80   | 217 | 0.808 | 1.000 | 0.162 | 0.853 |  |
| MAPK12 | 58  | 0.817 | 1.000 | 0.032 | 0.604 |  |
| IFNA7  | 2   | 0.819 | 1.000 | 0.267 | 0.928 |  |
| IFNA16 | 12  | 0.819 | 1.000 | 0.714 | 0.968 |  |
| CFLAR  | 228 | 0.822 | 1.000 | 0.825 | 0.973 |  |
| TAB1   | 122 | 0.853 | 1.000 | 0.416 | 0.928 |  |
| TLR5   | 175 | 0.861 | 1.000 | 0.180 | 0.877 |  |
| МАРЗК8 | 144 | 0.863 | 1.000 | 0.234 | 0.891 |  |
| IFNA6  | 3   | 0.863 | 1.000 | 0.164 | 0.853 |  |
| CXCL8  | 9   | 0.864 | 1.000 | 0.079 | 0.756 |  |
| SPP1   | 42  | 0.871 | 1.000 | 0.172 | 0.858 |  |
|        |     |       |       |       |       |  |

|     | TLR3    |   | 98   | 0.873 | 1.000 | 0.893 | 0.980 |
|-----|---------|---|------|-------|-------|-------|-------|
|     | RAC1    |   | 241  | 0.881 | 1.000 | 0.340 | 0.928 |
|     | CCL3L3  |   | 1    | 0.881 | 1.000 | 0.154 | 0.853 |
|     | TLR1    |   | 69   | 0.885 | 1.000 | 0.754 | 0.973 |
|     | МАРКЗ   |   | 24   | 0.886 | 1.000 | 0.039 | 0.604 |
|     | CXCL10  |   | 15   | 0.919 | 1.000 | 0.351 | 0.928 |
|     | MAP2K3  |   | 185  | 0.934 | 1.000 | 0.456 | 0.933 |
|     | MAPK11  |   | 28   | 0.934 | 1.000 | 0.274 | 0.928 |
|     | IL1B    |   | 30   | 0.945 | 1.000 | 0.411 | 0.928 |
|     | IFNA2   |   | 7    | 0.946 | 1.000 | 0.482 | 0.933 |
|     | CXCL9   |   | 18   | 0.951 | 1.000 | 0.460 | 0.933 |
|     | TLR7    |   | 103  | 0.967 | 1.000 | 0.731 | 0.971 |
|     | IFNA10  |   | 14   | 0.977 | 1.000 | 0.228 | 0.891 |
|     | IRF5    |   | 62   | 0.982 | 1.000 | 0.802 | 0.973 |
|     | TLR2    |   | 122  | 0.998 | 1.000 | 0.914 | 0.980 |
|     | IFNA14  | 0 |      |       |       |       |       |
|     | CCL3L1  |   |      |       |       |       |       |
|     | CCL4L2  |   |      |       |       |       |       |
| TNF |         |   |      |       |       |       |       |
|     | LIF     |   | 29   | 0.064 | 0.916 | 0.722 | 0.971 |
|     | EDN1    |   | 30   | 0.085 | 0.916 | 0.674 | 0.968 |
|     | TRAF3   |   | 541  | 0.132 | 0.916 | 0.685 | 0.968 |
|     | MMP9    |   | 41   | 0.175 | 0.974 | 0.691 | 0.968 |
|     | CREB3   |   | 14   | 0.176 | 0.974 | 0.696 | 0.968 |
|     | CREB3L4 |   | 11   | 0.182 | 0.974 | 0.043 | 0.604 |
|     | DNM1L   |   | 494  | 0.183 | 0.974 | 0.651 | 0.968 |
|     | TNF     |   | 10   | 0.213 | 1.000 | 0.001 | 0.106 |
|     | ATF6B   |   | 34   | 0.290 | 1.000 | 0.069 | 0.715 |
|     | TRAF1   |   | 145  | 0.291 | 1.000 | 0.621 | 0.967 |
|     | CASP3   |   | 117  | 0.298 | 1.000 | 0.094 | 0.794 |
|     | DAB2IP  |   | 1151 | 0.299 | 1.000 | 0.123 | 0.826 |
|     | MLKL    |   | 147  | 0.309 | 1.000 | 0.653 | 0.968 |
|     |         |   |      |       |       |       |       |

| TRAF2    | 253  | 0.312 | 1.000 | 0.887 | 0.980 |  |
|----------|------|-------|-------|-------|-------|--|
| CREB3L3  | 105  | 0.341 | 1.000 | 0.817 | 0.973 |  |
| CSF1     | 74   | 0.345 | 1.000 | 0.009 | 0.431 |  |
| BAG4     | 115  | 0.420 | 1.000 | 0.621 | 0.967 |  |
| RPS6KA5  | 968  | 0.430 | 1.000 | 0.348 | 0.928 |  |
| CREB1    | 227  | 0.486 | 1.000 | 0.512 | 0.933 |  |
| TNFRSF1A | 42   | 0.499 | 1.000 | 0.773 | 0.973 |  |
| NOD2     | 165  | 0.502 | 1.000 | 0.798 | 0.973 |  |
| ITCH     | 458  | 0.517 | 1.000 | 0.296 | 0.928 |  |
| FAS      | 154  | 0.527 | 1.000 | 0.437 | 0.928 |  |
| MMP3     | 46   | 0.570 | 1.000 | 0.353 | 0.928 |  |
| CCL20    | 20   | 0.598 | 1.000 | 0.674 | 0.968 |  |
| IL18R1   | 202  | 0.624 | 1.000 | 0.579 | 0.947 |  |
| SELE     | 81   | 0.640 | 1.000 | 0.047 | 0.604 |  |
| CASP7    | 276  | 0.652 | 1.000 | 0.329 | 0.928 |  |
| CXCL5    | 5    | 0.664 | 1.000 | 0.308 | 0.928 |  |
| CASP10   | 190  | 0.667 | 1.000 | 0.779 | 0.973 |  |
| JAG1     | 173  | 0.677 | 1.000 | 0.380 | 0.928 |  |
| MMP14    | 73   | 0.698 | 1.000 | 0.438 | 0.928 |  |
| JUNB     | 3    | 0.701 | 1.000 | 0.340 | 0.928 |  |
| CREB5    | 3041 | 0.705 | 1.000 | 0.532 | 0.933 |  |
| VEGFC    | 572  | 0.757 | 1.000 | 0.503 | 0.933 |  |
| CREB3L1  | 191  | 0.762 | 1.000 | 0.201 | 0.887 |  |
| BCL3     | 72   | 0.763 | 1.000 | 0.569 | 0.947 |  |
| RPS6KA4  | 65   | 0.789 | 1.000 | 0.539 | 0.933 |  |
| IL15     | 372  | 0.809 | 1.000 | 0.966 | 0.996 |  |
| CREB3L2  | 728  | 0.829 | 1.000 | 0.522 | 0.933 |  |
| TNFAIP3  | 48   | 0.835 | 1.000 | 0.168 | 0.856 |  |
| TRAF5    | 162  | 0.835 | 1.000 | 0.408 | 0.928 |  |
| CXCL6    | 7    | 0.839 | 1.000 | 0.715 | 0.968 |  |
| CSF2     | 12   | 0.843 | 1.000 | 0.158 | 0.853 |  |
| TNFRSF1B | 211  | 0.887 | 1.000 | 0.538 | 0.933 |  |
|          |      |       |       |       |       |  |

| ATF4   | 19   | 0.891 | 1.000 | 0.126 | 0.826 |  |
|--------|------|-------|-------|-------|-------|--|
| CEBPB  | 2    | 0.915 | 1.000 | 0.484 | 0.933 |  |
| CX3CL1 | 76   | 0.917 | 1.000 | 0.338 | 0.928 |  |
| IRF1   | 60   | 0.924 | 1.000 | 0.144 | 0.853 |  |
| SOCS3  | 8    | 0.930 | 1.000 | 0.050 | 0.604 |  |
| CCL2   | 7    | 0.936 | 1.000 | 0.525 | 0.933 |  |
| MAP3K5 | 1047 | 0.937 | 1.000 | 0.568 | 0.947 |  |
| RIPK3  | 19   | 0.956 | 1.000 | 0.881 | 0.980 |  |
| ATF2   | 435  | 0.957 | 1.000 | 0.607 | 0.959 |  |
| PGAM5  | 108  | 0.996 | 1.000 | 0.494 | 0.933 |  |

Abbreviations: TLR = toll-like receptor; NFkB = nuclear factor kappa B; TNF = tumor necrosis factor; EOC = epithelial ovarian cancer; HGSOC = high grade serous ovarian cancer; AACES = African American Cancer Epidemiology Study; OCAC = Ovarian Cancer Association Consortium;

<sup>a</sup>Aggregate P-value of MAGMA model results. Each model controls for age, and two ancestry principal components.

<sup>b</sup>Corrected for multiple testing by the number of genes tested using the Benjamini-Hochberg false discovery rate (FDR).

°No SNPs mapped to gene after QC filtering.

| Dothucov | Conc      |        | Test set         |          |                 |                             | Validatio | on set   |                 |                             |
|----------|-----------|--------|------------------|----------|-----------------|-----------------------------|-----------|----------|-----------------|-----------------------------|
| Pathway  | Gene      | # SNPs | P <sub>raw</sub> | $P_{BH}$ | $P_{BMI \ raw}$ | <b>P</b> <sub>BMI FDR</sub> | $P_{raw}$ | $P_{BH}$ | $P_{BMI \ raw}$ | <b>P</b> <sub>BMI FDR</sub> |
| NFkB     |           |        | 0.236            |          | 0.190           |                             | 0.523     |          | 0.925           |                             |
|          | PTGS2     | 115    | 0.002            | 0.414    | 0.762           | 0.982                       | 0.827     | 0.932    | 0.156           | 0.98                        |
|          | CXCL12    | 158    | 0.017            | 0.535    | 0.997           | 1.000                       | 0.753     | 0.910    | 0.385           | 0.98                        |
|          | TAB3      | 66     | 0.020            | 0.535    | 0.217           | 0.982                       | 0.975     | 0.993    | 0.980           | 0.99                        |
|          | GADD45B   | 30     | 0.029            | 0.535    | 0.330           | 0.982                       | 0.100     | 0.778    | 0.178           | 0.98                        |
|          | SYK       | 512    | 0.030            | 0.535    | 0.696           | 0.982                       | 0.128     | 0.778    | 0.100           | 0.98                        |
|          | VCAM1     | 30     | 0.041            | 0.535    | 0.474           | 0.982                       | 0.270     | 0.787    | 0.142           | 0.98                        |
|          | PLCG1     | 86     | 0.047            | 0.535    | 0.959           | 0.987                       | 0.269     | 0.787    | 0.828           | 0.98                        |
|          | ICAM1     | 43     | 0.078            | 0.670    | 0.198           | 0.982                       | 0.072     | 0.778    | 0.429           | 0.98                        |
|          | NFKBIA    | 84     | 0.080            | 0.670    | 0.368           | 0.982                       | 0.787     | 0.918    | 0.359           | 0.98                        |
|          | TRADD     | 21     | 0.113            | 0.855    | 0.456           | 0.982                       | 0.904     | 0.966    | 0.590           | 0.98                        |
|          | BLNK      | 252    | 0.114            | 0.855    | 0.205           | 0.982                       | 0.831     | 0.932    | 0.606           | 0.98                        |
|          | CCL13     | 61     | 0.153            | 0.889    | 0.590           | 0.982                       | 0.221     | 0.787    | 0.652           | 0.98                        |
|          | TNFRSF11A | 335    | 0.159            | 0.889    | 0.715           | 0.982                       | 0.928     | 0.980    | 0.769           | 0.98                        |
|          | CYLD      | 140    | 0.160            | 0.889    | 0.929           | 0.983                       | 0.431     | 0.833    | 0.670           | 0.98                        |
|          | CCL19     | 57     | 0.169            | 0.889    | 0.991           | 1.000                       | 0.631     | 0.905    | 0.339           | 0.98                        |
|          | PRKCQ     | 590    | 0.177            | 0.889    | 0.363           | 0.982                       | 0.394     | 0.813    | 0.928           | 0.98                        |
|          | BIRC3     | 41     | 0.177            | 0.889    | 0.909           | 0.982                       | 0.848     | 0.933    | 0.359           | 0.98                        |
|          | LTB       | 85     | 0.183            | 0.889    | 0.535           | 0.982                       | 0.225     | 0.787    | 0.587           | 0.98                        |
|          | CARD10    | 155    | 0.218            | 0.889    | 0.149           | 0.982                       | 0.484     | 0.842    | 0.753           | 0.98                        |
|          | LTA       | 154    | 0.252            | 0.889    | 0.631           | 0.982                       | 0.457     | 0.836    | 0.661           | 0.98                        |
|          | CCL21     | 56     | 0.255            | 0.889    | 0.834           | 0.982                       | 0.910     | 0.968    | 0.307           | 0.98                        |
|          | PLCG2     | 1063   | 0.263            | 0.889    | 0.819           | 0.982                       | 0.442     | 0.833    | 0.406           | 0.98                        |
|          | LTBR      | 38     | 0.270            | 0.889    | 0.221           | 0.982                       | 0.147     | 0.787    | 0.405           | 0.98                        |
|          | CXCL1     | 72     | 0.273            | 0.889    | 0.257           | 0.982                       | 0.414     | 0.820    | 0.197           | 0.98                        |
|          | CSNK2A3   | 22     | 0.289            | 0.889    | 0.879           | 0.982                       | 0.755     | 0.910    | 0.892           | 0.98                        |

| IGH      | 405 | 0.294 | 0.889 | 0.248 | 0.982 | 0.050 | 0.778 | 0.692 | 0.982 |
|----------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| EDA2R    | 56  | 0.315 | 0.889 | 0.344 | 0.982 | 0.729 | 0.910 | 0.750 | 0.982 |
| BCL2L1   | 123 | 0.335 | 0.889 | 0.508 | 0.982 | 0.206 | 0.787 | 0.208 | 0.982 |
| CSNK2B   | 77  | 0.343 | 0.889 | 0.672 | 0.982 | 0.208 | 0.787 | 0.420 | 0.982 |
| XIAP     | 112 | 0.346 | 0.889 | 0.369 | 0.982 | 0.181 | 0.787 | 0.822 | 0.982 |
| NFKB1    | 303 | 0.355 | 0.889 | 0.969 | 0.987 | 0.650 | 0.910 | 0.581 | 0.982 |
| ATM      | 286 | 0.356 | 0.889 | 0.559 | 0.982 | 0.114 | 0.778 | 0.506 | 0.982 |
| RELA     | 54  | 0.369 | 0.889 | 0.274 | 0.982 | 0.308 | 0.787 | 0.888 | 0.982 |
| EDARADD  | 241 | 0.404 | 0.889 | 0.189 | 0.982 | 0.503 | 0.842 | 0.520 | 0.982 |
| LCK      | 56  | 0.405 | 0.889 | 0.608 | 0.982 | 0.453 | 0.836 | 0.099 | 0.982 |
| TRIM25   | 23  | 0.439 | 0.889 | 0.116 | 0.982 | 0.757 | 0.910 | 0.390 | 0.982 |
| NFKB2    | 58  | 0.442 | 0.889 | 0.080 | 0.982 | 0.335 | 0.787 | 0.051 | 0.982 |
| EDAR     | 171 | 0.451 | 0.889 | 0.063 | 0.982 | 0.076 | 0.778 | 0.540 | 0.982 |
| PLAU     | 55  | 0.463 | 0.889 | 0.463 | 0.982 | 0.796 | 0.918 | 0.558 | 0.982 |
| RIPK1    | 125 | 0.481 | 0.889 | 0.828 | 0.982 | 0.974 | 0.993 | 0.058 | 0.982 |
| LAT      | 33  | 0.515 | 0.904 | 0.274 | 0.982 | 0.160 | 0.787 | 0.999 | 0.999 |
| CSNK2A2  | 208 | 0.524 | 0.904 | 0.700 | 0.982 | 0.278 | 0.787 | 0.655 | 0.982 |
| CSNK2A1  | 167 | 0.537 | 0.904 | 0.149 | 0.982 | 0.032 | 0.778 | 0.458 | 0.982 |
| BIRC2    | 90  | 0.547 | 0.907 | 1.000 | 1.000 | 0.168 | 0.787 | 0.753 | 0.982 |
| BTK      | 126 | 0.558 | 0.915 | 0.733 | 0.982 | 0.086 | 0.778 | 0.591 | 0.982 |
| TNFSF13B | 67  | 0.567 | 0.917 | 0.735 | 0.982 | 0.059 | 0.778 | 0.606 | 0.982 |
| PIAS4    | 85  | 0.576 | 0.917 | 0.367 | 0.982 | 0.563 | 0.862 | 0.695 | 0.982 |
| GADD45G  | 73  | 0.597 | 0.917 | 0.959 | 0.987 | 0.101 | 0.778 | 0.581 | 0.982 |
| BCL10    | 123 | 0.604 | 0.917 | 0.403 | 0.982 | 0.732 | 0.910 | 0.202 | 0.982 |
| IL1R1    | 417 | 0.643 | 0.917 | 0.799 | 0.982 | 0.714 | 0.910 | 0.916 | 0.982 |
| TRAF6    | 95  | 0.670 | 0.917 | 0.181 | 0.982 | 0.990 | 0.995 | 0.974 | 0.999 |
| TNFSF14  | 89  | 0.679 | 0.919 | 0.254 | 0.982 | 0.367 | 0.801 | 0.124 | 0.982 |
| TNFSF11  | 213 | 0.717 | 0.936 | 0.061 | 0.982 | 0.567 | 0.862 | 0.272 | 0.982 |
| CD40LG   | 28  | 0.722 | 0.936 | 0.855 | 0.982 | 0.739 | 0.910 | 0.990 | 0.999 |
| LYN      | 508 | 0.729 | 0.936 | 0.795 | 0.982 | 0.211 | 0.787 | 0.200 | 0.982 |
| CXCL3    | 10  | 0.734 | 0.936 | 0.208 | 0.982 | 0.302 | 0.787 | 0.232 | 0.982 |
| PARP1    | 217 | 0.775 | 0.953 | 0.512 | 0.982 | 0.522 | 0.842 | 0.787 | 0.982 |
|          |     |       |       |       |       |       |       |       |       |

|     | TNFRSF13C | 61   | 0.795 | 0.953 | 0.339 | 0.982 | 0.653 | 0.910 | 0.415 | 0.982 |
|-----|-----------|------|-------|-------|-------|-------|-------|-------|-------|-------|
|     | CXCL2     | 30   | 0.799 | 0.953 | 0.318 | 0.982 | 0.077 | 0.778 | 0.307 | 0.982 |
|     | UBE2I     | 94   | 0.813 | 0.953 | 0.855 | 0.982 | 0.473 | 0.838 | 0.169 | 0.982 |
|     | СНИК      | 158  | 0.826 | 0.953 | 0.334 | 0.982 | 0.377 | 0.803 | 0.777 | 0.982 |
|     | MALT1     | 292  | 0.828 | 0.953 | 0.552 | 0.982 | 0.025 | 0.778 | 0.821 | 0.982 |
|     | ERC1      | 1966 | 0.886 | 0.973 | 0.277 | 0.982 | 0.226 | 0.787 | 0.262 | 0.982 |
|     | RELB      | 73   | 0.897 | 0.973 | 0.592 | 0.982 | 0.771 | 0.913 | 0.284 | 0.982 |
|     | MAP3K14   | 166  | 0.907 | 0.973 | 0.409 | 0.982 | 0.064 | 0.778 | 0.960 | 0.999 |
|     | EDA       | 711  | 0.922 | 0.973 | 0.276 | 0.982 | 0.413 | 0.820 | 0.738 | 0.982 |
|     | BCL2      | 556  | 0.925 | 0.973 | 0.802 | 0.982 | 0.720 | 0.910 | 0.121 | 0.982 |
|     | GADD45A   | 84   | 0.925 | 0.973 | 0.906 | 0.982 | 0.565 | 0.862 | 0.252 | 0.982 |
|     | ZAP70     | 90   | 0.926 | 0.973 | 0.136 | 0.982 | 0.496 | 0.842 | 0.517 | 0.982 |
|     | CARD11    | 451  | 0.952 | 0.976 | 0.121 | 0.982 | 0.703 | 0.910 | 0.593 | 0.982 |
|     | BCL2A1    | 50   | 0.964 | 0.981 | 0.607 | 0.982 | 0.734 | 0.910 | 0.689 | 0.982 |
|     | PIDD1     | 65   | 0.973 | 0.981 | 0.061 | 0.982 | 0.395 | 0.813 | 0.809 | 0.982 |
|     | PRKCB     | 1214 | 0.981 | 0.981 | 0.361 | 0.982 | 0.332 | 0.787 | 0.598 | 0.982 |
|     | CARD14    | 0°   |       |       |       |       |       |       |       |       |
| TLR |           |      | 0.241 |       | 0.647 |       | 0.098 |       | 0.185 |       |
|     | CTSK      | 52   | 0.010 | 0.535 | 0.550 | 0.982 | 0.662 | 0.910 | 0.835 | 0.982 |
|     | TAB1      | 94   | 0.011 | 0.535 | 0.568 | 0.982 | 0.769 | 0.913 | 0.119 | 0.982 |
|     | TLR9      | 37   | 0.024 | 0.535 | 0.969 | 0.987 | 0.023 | 0.778 | 0.448 | 0.982 |
|     | IL6       | 94   | 0.029 | 0.535 | 0.159 | 0.982 | 0.013 | 0.762 | 0.327 | 0.982 |
|     | PIK3CA    | 335  | 0.030 | 0.535 | 0.717 | 0.982 | 0.576 | 0.866 | 0.465 | 0.982 |
|     | TLR8      | 33   | 0.039 | 0.535 | 0.906 | 0.982 | 0.197 | 0.787 | 0.243 | 0.982 |
|     | IFNAR2    | 164  | 0.045 | 0.535 | 0.739 | 0.982 | 0.375 | 0.803 | 0.109 | 0.982 |
|     | IRAK4     | 123  | 0.045 | 0.535 | 0.889 | 0.982 | 0.086 | 0.778 | 0.195 | 0.982 |
|     | CD86      | 206  | 0.067 | 0.660 | 0.733 | 0.982 | 0.014 | 0.762 | 0.072 | 0.982 |
|     | MAP2K3    | 39   | 0.073 | 0.667 | 0.366 | 0.982 | 0.830 | 0.932 | 0.512 | 0.982 |
|     | MAP3K8    | 44   | 0.101 | 0.819 | 0.950 | 0.987 | 0.464 | 0.837 | 0.396 | 0.982 |
|     | PIK3CD    | 220  | 0.159 | 0.889 | 0.683 | 0.982 | 0.364 | 0.801 | 0.625 | 0.982 |
|     | MAP3K7    | 291  | 0.168 | 0.889 | 0.748 | 0.982 | 0.306 | 0.787 | 0.417 | 0.982 |
|     |           |      |       |       |       |       |       |       |       |       |
|     | SPP1      | 95   | 0.183 | 0.889 | 0.401 | 0.982 | 0.002 | 0.525 | 0.737 | 0.982 |

| MAPK13 | 68  | 0.202 | 0.889 | 0.835 | 0.982 | 0.708 | 0.910 | 0.902 | 0.982 |  |
|--------|-----|-------|-------|-------|-------|-------|-------|-------|-------|--|
| IFNAR1 | 157 | 0.205 | 0.889 | 0.534 | 0.982 | 0.222 | 0.787 | 0.304 | 0.982 |  |
| MAP2K6 | 197 | 0.205 | 0.889 | 0.456 | 0.982 | 0.246 | 0.787 | 0.261 | 0.982 |  |
| ΜΑΡΚ8  | 366 | 0.205 | 0.889 | 0.801 | 0.982 | 0.177 | 0.787 | 0.441 | 0.982 |  |
| CCL5   | 78  | 0.224 | 0.889 | 0.331 | 0.982 | 0.805 | 0.919 | 0.217 | 0.982 |  |
| AKT3   | 543 | 0.248 | 0.889 | 0.463 | 0.982 | 0.700 | 0.910 | 0.941 | 0.987 |  |
| PIK3R2 | 98  | 0.270 | 0.889 | 0.495 | 0.982 | 0.132 | 0.778 | 0.584 | 0.982 |  |
| ΙΚΒΚΒ  | 138 | 0.279 | 0.889 | 0.776 | 0.982 | 0.109 | 0.778 | 0.908 | 0.982 |  |
| IKBKE  | 109 | 0.286 | 0.889 | 0.325 | 0.982 | 0.674 | 0.910 | 0.155 | 0.982 |  |
| TOLLIP | 184 | 0.306 | 0.889 | 0.402 | 0.982 | 0.536 | 0.856 | 0.765 | 0.982 |  |
| IRAK1  | 19  | 0.336 | 0.889 | 0.034 | 0.982 | 0.308 | 0.787 | 0.296 | 0.982 |  |
| CXCL10 | 101 | 0.374 | 0.889 | 0.338 | 0.982 | 0.121 | 0.778 | 0.197 | 0.982 |  |
| IFNA1  | 75  | 0.392 | 0.889 | 0.045 | 0.982 | 0.748 | 0.910 | 0.893 | 0.982 |  |
| PIK3R1 | 301 | 0.399 | 0.889 | 0.568 | 0.982 | 0.107 | 0.778 | 0.782 | 0.982 |  |
| AKT2   | 164 | 0.404 | 0.889 | 0.542 | 0.982 | 0.336 | 0.787 | 0.999 | 0.999 |  |
| IFNA13 | 86  | 0.405 | 0.889 | 0.472 | 0.982 | 0.185 | 0.787 | 0.893 | 0.982 |  |
| FOS    | 44  | 0.410 | 0.889 | 0.659 | 0.982 | 0.190 | 0.787 | 0.136 | 0.982 |  |
| PIK3CB | 288 | 0.410 | 0.889 | 0.987 | 1.000 | 0.696 | 0.910 | 0.773 | 0.982 |  |
| TBK1   | 137 | 0.412 | 0.889 | 0.329 | 0.982 | 0.337 | 0.787 | 0.214 | 0.982 |  |
| CD40   | 102 | 0.412 | 0.889 | 0.017 | 0.982 | 0.263 | 0.787 | 0.979 | 0.999 |  |
| IFNA2  | 31  | 0.421 | 0.889 | 0.828 | 0.982 | 0.239 | 0.787 | 0.824 | 0.982 |  |
| TLR1   | 161 | 0.431 | 0.889 | 0.572 | 0.982 | 0.550 | 0.862 | 0.797 | 0.982 |  |
| МАРК9  | 294 | 0.434 | 0.889 | 0.327 | 0.982 | 0.638 | 0.910 | 0.171 | 0.982 |  |
| TICAM1 | 110 | 0.444 | 0.889 | 0.094 | 0.982 | 0.022 | 0.778 | 0.320 | 0.982 |  |
| TIRAP  | 102 | 0.448 | 0.889 | 0.304 | 0.982 | 0.392 | 0.813 | 0.274 | 0.982 |  |
| МАРКЗ  | 26  | 0.450 | 0.889 | 0.441 | 0.982 | 0.516 | 0.842 | 0.665 | 0.982 |  |
| TLR2   | 105 | 0.453 | 0.889 | 0.351 | 0.982 | 0.608 | 0.901 | 0.680 | 0.982 |  |
| CFLAR  | 200 | 0.456 | 0.889 | 0.573 | 0.982 | 0.834 | 0.932 | 0.470 | 0.982 |  |
| IFNA7  | 149 | 0.459 | 0.889 | 0.893 | 0.982 | 0.213 | 0.787 | 0.862 | 0.982 |  |
| CXCL9  | 58  | 0.467 | 0.889 | 0.291 | 0.982 | 0.117 | 0.778 | 0.244 | 0.982 |  |
| FADD   | 42  | 0.467 | 0.889 | 0.070 | 0.982 | 0.283 | 0.787 | 0.575 | 0.982 |  |
| IFNA4  | 126 | 0.473 | 0.889 | 0.808 | 0.982 | 0.119 | 0.778 | 0.777 | 0.982 |  |
|        |     |       |       |       |       |       |       |       |       |  |

| IL12A  | 68   | 0.475 | 0.889 | 0.335 | 0.982 | 0.961 | 0.993 | 0.535 | 0.982 |
|--------|------|-------|-------|-------|-------|-------|-------|-------|-------|
| STAT1  | 172  | 0.479 | 0.889 | 0.950 | 0.987 | 0.778 | 0.915 | 0.982 | 0.999 |
| TLR7   | 9    | 0.489 | 0.895 | 0.912 | 0.982 | 0.439 | 0.833 | 0.413 | 0.982 |
| IFNA21 | 79   | 0.493 | 0.896 | 0.804 | 0.982 | 0.180 | 0.787 | 0.692 | 0.982 |
| CASP8  | 221  | 0.509 | 0.904 | 0.729 | 0.982 | 0.724 | 0.910 | 0.703 | 0.982 |
| IFNA8  | 77   | 0.536 | 0.904 | 0.488 | 0.982 | 0.267 | 0.787 | 0.509 | 0.982 |
| MAP2K4 | 218  | 0.539 | 0.904 | 0.526 | 0.982 | 0.781 | 0.915 | 0.989 | 0.999 |
| TLR3   | 129  | 0.539 | 0.904 | 0.415 | 0.982 | 0.965 | 0.993 | 0.152 | 0.982 |
| IFNA10 | 154  | 0.572 | 0.917 | 0.825 | 0.982 | 0.301 | 0.787 | 0.847 | 0.982 |
| MAPK14 | 280  | 0.589 | 0.917 | 0.154 | 0.982 | 0.878 | 0.952 | 0.803 | 0.982 |
| IRF5   | 113  | 0.617 | 0.917 | 0.444 | 0.982 | 0.444 | 0.833 | 0.552 | 0.982 |
| AKT1   | 96   | 0.625 | 0.917 | 0.772 | 0.982 | 0.496 | 0.842 | 0.820 | 0.982 |
| TLR5   | 134  | 0.636 | 0.917 | 0.080 | 0.982 | 0.127 | 0.778 | 0.497 | 0.982 |
| MAP2K7 | 59   | 0.643 | 0.917 | 0.571 | 0.982 | 0.538 | 0.856 | 0.156 | 0.982 |
| IFNA14 | 89   | 0.645 | 0.917 | 0.923 | 0.982 | 0.265 | 0.787 | 0.963 | 0.999 |
| MAP2K1 | 412  | 0.649 | 0.917 | 0.870 | 0.982 | 0.235 | 0.787 | 0.150 | 0.982 |
| CXCL8  | 49   | 0.653 | 0.917 | 0.264 | 0.982 | 0.447 | 0.833 | 0.871 | 0.982 |
| CD80   | 243  | 0.660 | 0.917 | 0.175 | 0.982 | 0.249 | 0.787 | 0.152 | 0.982 |
| IFNA17 | 133  | 0.666 | 0.917 | 0.885 | 0.982 | 0.240 | 0.787 | 0.753 | 0.982 |
| IFNA6  | 62   | 0.709 | 0.936 | 0.691 | 0.982 | 0.417 | 0.820 | 0.858 | 0.982 |
| CCL3   | 6    | 0.714 | 0.936 | 0.772 | 0.982 | 0.622 | 0.903 | 0.882 | 0.982 |
| IFNA16 | 166  | 0.719 | 0.936 | 0.805 | 0.982 | 0.335 | 0.787 | 0.744 | 0.982 |
| IKBKG  | 12   | 0.728 | 0.936 | 0.190 | 0.982 | 0.714 | 0.910 | 0.733 | 0.982 |
| CXCL11 | 175  | 0.732 | 0.936 | 0.355 | 0.982 | 0.070 | 0.778 | 0.152 | 0.982 |
| IL12B  | 73   | 0.733 | 0.936 | 0.266 | 0.982 | 0.742 | 0.910 | 0.293 | 0.982 |
| TICAM2 | 90   | 0.746 | 0.944 | 0.918 | 0.982 | 0.488 | 0.842 | 0.043 | 0.982 |
| JUN    | 34   | 0.773 | 0.953 | 0.650 | 0.982 | 0.754 | 0.910 | 0.279 | 0.982 |
| MYD88  | 36   | 0.792 | 0.953 | 0.191 | 0.982 | 0.131 | 0.778 | 0.214 | 0.982 |
| LBP    | 147  | 0.801 | 0.953 | 0.705 | 0.982 | 0.595 | 0.888 | 0.571 | 0.982 |
| MAP2K2 | 91   | 0.812 | 0.953 | 0.669 | 0.982 | 0.970 | 0.993 | 0.757 | 0.982 |
| IRF3   | 32   | 0.822 | 0.953 | 0.705 | 0.982 | 0.508 | 0.842 | 0.903 | 0.982 |
| MAPK10 | 1853 | 0.837 | 0.953 | 0.241 | 0.982 | 0.047 | 0.778 | 0.770 | 0.982 |
|        |      |       |       |       |       |       |       |       |       |

|     | RAC1     | 232                   | 0.839 | 0.953 | 0.913 | 0.982 | 0.437 | 0.833 | 0.284 | 0.982 |
|-----|----------|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|
|     | LY96     | 175                   | 0.839 | 0.953 | 0.063 | 0.982 | 0.285 | 0.787 | 0.771 | 0.982 |
|     | IL1B     | 52                    | 0.847 | 0.957 | 0.829 | 0.982 | 0.557 | 0.862 | 0.087 | 0.982 |
|     | PIK3R3   | 288                   | 0.896 | 0.973 | 0.021 | 0.982 | 0.897 | 0.963 | 0.171 | 0.982 |
|     | IRF7     | 93                    | 0.919 | 0.973 | 0.039 | 0.982 | 0.188 | 0.787 | 0.427 | 0.982 |
|     | CD14     | 65                    | 0.925 | 0.973 | 0.096 | 0.982 | 0.971 | 0.993 | 0.710 | 0.982 |
|     | MAPK1    | 335                   | 0.925 | 0.973 | 0.556 | 0.982 | 0.619 | 0.903 | 0.315 | 0.982 |
|     | IFNB1    | 71                    | 0.931 | 0.973 | 0.853 | 0.982 | 0.564 | 0.862 | 0.668 | 0.982 |
|     | TLR6     | 163                   | 0.940 | 0.973 | 0.203 | 0.982 | 0.842 | 0.932 | 0.825 | 0.982 |
|     | CCL4     | 9                     | 0.942 | 0.973 | 0.788 | 0.982 | 0.931 | 0.980 | 0.942 | 0.987 |
|     | TLR4     | 92                    | 0.954 | 0.976 | 0.399 | 0.982 | 0.073 | 0.778 | 0.767 | 0.982 |
|     | IFNA5    | 60                    | 0.981 | 0.981 | 0.730 | 0.982 | 0.273 | 0.787 | 0.824 | 0.982 |
|     | TAB2     | <b>0</b> <sup>c</sup> |       |       |       |       |       |       |       |       |
|     | CCL3L1   | <b>0</b> <sup>c</sup> |       |       |       |       |       |       |       |       |
|     | CCL3L3   | <b>0</b> <sup>c</sup> |       |       |       |       |       |       |       |       |
|     | CCL4L1   | <b>0</b> <sup>c</sup> |       |       |       |       |       |       |       |       |
|     | CCL4L2   | <b>0</b> <sup>c</sup> |       |       |       |       |       |       |       |       |
|     | MAPK11   | Od                    |       |       |       |       |       |       |       |       |
|     | MAPK12   | Od                    |       |       |       |       |       |       |       |       |
| TNF |          |                       | 0.050 |       | 0.260 |       | 0.135 |       | 0.493 |       |
|     | CREB3L4  | 30                    | 0.011 | 0.535 | 0.924 | 0.982 | 0.625 | 0.903 | 0.683 | 0.982 |
|     | CSF1     | 240                   | 0.036 | 0.535 | 0.870 | 0.982 | 0.346 | 0.789 | 0.468 | 0.982 |
|     | SELE     | 88                    | 0.045 | 0.535 | 0.849 | 0.982 | 0.660 | 0.910 | 0.860 | 0.982 |
|     | TNFRSF1B | 76                    | 0.046 | 0.535 | 0.838 | 0.982 | 0.130 | 0.778 | 0.015 | 0.982 |
|     | TRAF5    | 361                   | 0.052 | 0.570 | 0.401 | 0.982 | 0.470 | 0.838 | 0.309 | 0.982 |
|     | ATF2     | 62                    | 0.060 | 0.627 | 0.944 | 0.987 | 0.518 | 0.842 | 0.790 | 0.982 |
|     | CASP10   | 57                    | 0.071 | 0.667 | 0.193 | 0.982 | 0.351 | 0.789 | 0.192 | 0.982 |
|     | CCL20    | 81                    | 0.142 | 0.889 | 0.555 | 0.982 | 0.329 | 0.787 | 0.498 | 0.982 |
|     | CREB1    | 98                    | 0.147 | 0.889 | 0.204 | 0.982 | 0.981 | 0.994 | 0.249 | 0.982 |
|     | IL18R1   | 43                    | 0.149 | 0.889 | 0.813 | 0.982 | 0.327 | 0.787 | 0.737 | 0.982 |
|     | CASP3    | 39                    | 0.158 | 0.889 | 0.170 | 0.982 | 0.218 | 0.787 | 0.677 | 0.982 |
|     | CXCL5    | 116                   | 0.186 | 0.889 | 0.876 | 0.982 | 0.089 | 0.778 | 0.835 | 0.982 |
|     |          |                       |       |       |       |       |       |       |       | •     |

| CXCL6    | 104  | 0.201 | 0.889 | 0.185 | 0.982 | 0.412 | 0.820 | 0.075 | 0.982 |  |
|----------|------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| IL15     | 225  | 0.208 | 0.889 | 0.951 | 0.987 | 0.178 | 0.787 | 0.133 | 0.982 |  |
| VEGFC    | 33   | 0.265 | 0.889 | 0.608 | 0.982 | 0.624 | 0.903 | 0.241 | 0.982 |  |
| CSF2     | 203  | 0.265 | 0.889 | 0.116 | 0.982 | 0.351 | 0.789 | 0.270 | 0.982 |  |
| IRF1     | 104  | 0.282 | 0.889 | 0.510 | 0.982 | 0.696 | 0.910 | 0.715 | 0.982 |  |
| ATF6B    | 100  | 0.292 | 0.889 | 0.670 | 0.982 | 0.194 | 0.787 | 0.492 | 0.982 |  |
| EDN1     | 59   | 0.294 | 0.889 | 0.654 | 0.982 | 0.236 | 0.787 | 0.641 | 0.982 |  |
| MAP3K5   | 119  | 0.307 | 0.889 | 0.618 | 0.982 | 0.668 | 0.910 | 0.337 | 0.982 |  |
| TNF      | 1707 | 0.308 | 0.889 | 0.048 | 0.982 | 0.759 | 0.910 | 0.158 | 0.982 |  |
| TNFAIP3  | 38   | 0.323 | 0.889 | 0.063 | 0.982 | 0.657 | 0.910 | 0.696 | 0.982 |  |
| CREB3L2  | 270  | 0.329 | 0.889 | 0.897 | 0.982 | 0.689 | 0.910 | 0.439 | 0.982 |  |
| CREB5    | 20   | 0.382 | 0.889 | 0.786 | 0.982 | 0.888 | 0.959 | 0.896 | 0.982 |  |
| BAG4     | 168  | 0.386 | 0.889 | 0.407 | 0.982 | 0.101 | 0.778 | 0.813 | 0.982 |  |
| CREB3    | 336  | 0.423 | 0.889 | 0.576 | 0.982 | 0.284 | 0.787 | 0.896 | 0.982 |  |
| DAB2IP   | 104  | 0.446 | 0.889 | 0.905 | 0.982 | 0.460 | 0.836 | 0.543 | 0.982 |  |
| TRAF1    | 88   | 0.457 | 0.889 | 0.276 | 0.982 | 0.324 | 0.787 | 0.645 | 0.982 |  |
| TRAF2    | 28   | 0.457 | 0.889 | 0.360 | 0.982 | 0.995 | 0.995 | 0.731 | 0.982 |  |
| CASP7    | 65   | 0.469 | 0.889 | 0.474 | 0.982 | 0.245 | 0.787 | 0.383 | 0.982 |  |
| FAS      | 16   | 0.517 | 0.904 | 0.225 | 0.982 | 0.963 | 0.993 | 0.534 | 0.982 |  |
| CREB3L1  | 72   | 0.531 | 0.904 | 0.455 | 0.982 | 0.321 | 0.787 | 0.023 | 0.982 |  |
| MMP3     | 232  | 0.538 | 0.904 | 0.732 | 0.982 | 0.231 | 0.787 | 0.659 | 0.982 |  |
| RPS6KA4  | 102  | 0.549 | 0.907 | 0.038 | 0.982 | 0.411 | 0.820 | 0.607 | 0.982 |  |
| DNM1L    | 87   | 0.576 | 0.917 | 0.742 | 0.982 | 0.496 | 0.842 | 0.678 | 0.982 |  |
| PGAM5    | 142  | 0.583 | 0.917 | 0.388 | 0.982 | 0.796 | 0.918 | 0.920 | 0.982 |  |
| TNFRSF1A | 255  | 0.591 | 0.917 | 0.794 | 0.982 | 0.339 | 0.787 | 0.897 | 0.982 |  |
| MMP14    | 281  | 0.596 | 0.917 | 0.679 | 0.982 | 0.285 | 0.787 | 0.590 | 0.982 |  |
| RIPK3    | 118  | 0.614 | 0.917 | 0.638 | 0.982 | 0.013 | 0.762 | 0.040 | 0.982 |  |
| RPS6KA5  | 109  | 0.625 | 0.917 | 0.699 | 0.982 | 0.872 | 0.950 | 0.594 | 0.982 |  |
| TRAF3    | 36   | 0.652 | 0.917 | 0.731 | 0.982 | 0.092 | 0.778 | 0.924 | 0.982 |  |
| CX3CL1   | 353  | 0.662 | 0.917 | 0.296 | 0.982 | 0.854 | 0.936 | 0.470 | 0.982 |  |
| MLKL     | 91   | 0.668 | 0.917 | 0.093 | 0.982 | 0.990 | 0.995 | 0.691 | 0.982 |  |
| NOD2     | 162  | 0.673 | 0.917 | 0.521 | 0.982 | 0.841 | 0.932 | 0.208 | 0.982 |  |
|          |      |       |       |       |       |       |       |       |       |  |

| CCL2    | 251 | 0.749 | 0.944 | 0.249 | 0.982 | 0.228 | 0.787 | 0.857 | 0.982 |
|---------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| SOCS3   | 83  | 0.790 | 0.953 | 0.341 | 0.982 | 0.805 | 0.919 | 0.483 | 0.982 |
| BCL3    | 48  | 0.797 | 0.953 | 0.174 | 0.982 | 0.511 | 0.842 | 0.915 | 0.982 |
| CREB3L3 | 564 | 0.806 | 0.953 | 0.107 | 0.982 | 0.128 | 0.778 | 0.606 | 0.982 |
| JUNB    | 521 | 0.806 | 0.953 | 0.911 | 0.982 | 0.380 | 0.803 | 0.400 | 0.982 |
| CEBPB   | 175 | 0.831 | 0.953 | 0.619 | 0.982 | 0.697 | 0.910 | 0.007 | 0.982 |
| ITCH    | 131 | 0.857 | 0.963 | 0.515 | 0.982 | 0.570 | 0.862 | 0.430 | 0.982 |
| JAG1    | 73  | 0.899 | 0.973 | 0.581 | 0.982 | 0.359 | 0.798 | 0.357 | 0.982 |
| MMP9    | 10  | 0.909 | 0.973 | 0.748 | 0.982 | 0.051 | 0.778 | 0.580 | 0.982 |
| ATF4    | 184 | 0.939 | 0.973 | 0.597 | 0.982 | 0.336 | 0.787 | 0.632 | 0.982 |
| LIF     | 435 | 0.973 | 0.981 | 0.761 | 0.982 | 0.517 | 0.842 | 0.489 | 0.982 |

Abbreviations: TLR = toll-like receptor; NFkB = nuclear factor kappa B; TNF = tumor necrosis factor; EOC =

epithelial ovarian cancer; HGSOC = high grade serous ovarian cancer; AACES = African American Cancer

Epidemiology Study; OCAC = Ovarian Cancer Association Consortium;

<sup>a</sup>Aggregate P-value of MAGMA model results. Each model controls for age, and two ancestry principal components.

<sup>b</sup>Corrected for multiple testing by the number of genes tested using the Benjamini-Hochberg false discovery rate (FDR).

°No SNPs mapped to gene after QC filtering.

<sup>d</sup>Gene chromosomal locations not on raw data file.

|         | 0.        |        |                  | Tes      | st set          |                             |           | Valida   | ation set       |                             |
|---------|-----------|--------|------------------|----------|-----------------|-----------------------------|-----------|----------|-----------------|-----------------------------|
| Pathway | Gene      | # SNPs | P <sub>raw</sub> | $P_{BH}$ | $P_{BMI \ raw}$ | <b>P</b> <sub>BMI FDR</sub> | $P_{raw}$ | $P_{BH}$ | $P_{BMI \ raw}$ | <b>P</b> <sub>BMI FDF</sub> |
| NfkB    |           |        | 0.236            |          | 0.775           |                             | 0.523     |          | 0.925           |                             |
|         | PTGS2     | 115    | 0.016            | 0.755    | 0.573           | 1.000                       | 0.555     | 0.956    | 0.007           | 0.81                        |
|         | VCAM1     | 29     | 0.025            | 0.755    | 0.074           | 1.000                       | 0.012     | 0.628    | 0.020           | 0.82                        |
|         | PLCG2     | 1052   | 0.026            | 0.755    | 0.887           | 1.000                       | 0.197     | 0.916    | 0.914           | 1.0                         |
|         | GADD45B   | 30     | 0.038            | 0.755    | 0.508           | 1.000                       | 0.164     | 0.852    | 0.293           | 1.0                         |
|         | NFKBIA    | 83     | 0.082            | 0.878    | 0.734           | 1.000                       | 0.862     | 1.000    | 0.046           | 0.9                         |
|         | BIRC3     | 41     | 0.096            | 0.878    | 0.678           | 1.000                       | 0.499     | 0.956    | 0.309           | 1.0                         |
|         | BLNK      | 251    | 0.098            | 0.878    | 0.156           | 1.000                       | 0.899     | 1.000    | 0.639           | 1.0                         |
|         | CYLD      | 140    | 0.107            | 0.878    | 0.902           | 1.000                       | 0.021     | 0.628    | 0.791           | 1.0                         |
|         | CXCL12    | 158    | 0.120            | 0.878    | 0.653           | 1.000                       | 0.661     | 0.956    | 0.220           | 1.0                         |
|         | PARP1     | 217    | 0.135            | 0.878    | 0.694           | 1.000                       | 0.152     | 0.852    | 0.558           | 1.0                         |
|         | PLCG1     | 85     | 0.154            | 0.878    | 0.855           | 1.000                       | 0.572     | 0.956    | 0.396           | 1.0                         |
|         | EDA       | 707    | 0.158            | 0.878    | 0.498           | 1.000                       | 0.394     | 0.956    | 0.837           | 1.0                         |
|         | BCL2L1    | 123    | 0.173            | 0.878    | 0.992           | 1.000                       | 0.392     | 0.956    | 0.471           | 1.0                         |
|         | TRADD     | 21     | 0.185            | 0.878    | 0.914           | 1.000                       | 0.475     | 0.956    | 0.801           | 1.0                         |
|         | CCL13     | 61     | 0.208            | 0.895    | 0.782           | 1.000                       | 0.642     | 0.956    | 0.440           | 1.0                         |
|         | ICAM1     | 44     | 0.211            | 0.895    | 0.342           | 1.000                       | 0.366     | 0.956    | 0.920           | 1.0                         |
|         | TNFRSF11A | 336    | 0.222            | 0.895    | 0.077           | 1.000                       | 0.755     | 0.978    | 0.611           | 1.0                         |
|         | TAB3      | 67     | 0.223            | 0.895    | 0.385           | 1.000                       | 0.928     | 1.000    | 0.996           | 1.0                         |
|         | SYK       | 512    | 0.257            | 0.895    | 0.088           | 1.000                       | 0.265     | 0.951    | 0.262           | 1.0                         |
|         | ATM       | 286    | 0.302            | 0.895    | 0.342           | 1.000                       | 0.156     | 0.852    | 0.876           | 1.0                         |
|         | LTBR      | 38     | 0.307            | 0.895    | 0.415           | 1.000                       | 0.240     | 0.951    | 0.898           | 1.0                         |
|         | CSNK2A3   | 22     | 0.360            | 0.895    | 0.729           | 1.000                       | 0.895     | 1.000    | 0.845           | 1.0                         |
|         | GADD45G   | 69     | 0.361            | 0.895    | 0.979           | 1.000                       | 0.251     | 0.951    | 0.787           | 1.0                         |
|         | CHUK      | 158    | 0.374            | 0.895    | 0.812           | 1.000                       | 0.083     | 0.676    | 0.288           | 1.0                         |
|         | BIRC2     | 90     | 0.377            | 0.895    | 0.661           | 1.000                       | 0.039     | 0.637    | 0.864           | 1.0                         |
|         | CARD10    | 155    | 0.378            | 0.895    | 0.156           | 1.000                       | 0.311     | 0.951    | 0.763           | 1.0                         |
|         | IGH       | 398    | 0.378            | 0.895    | 0.614           | 1.000                       | 0.218     | 0.951    | 0.424           | 1.0                         |

Supplementary Table 5.4 Gene associations/BMI interactions within TLR. NfkB, and TNE nathways with HGSOC 5-year

| LTB      | 85   | 0.382 | 0.895 | 0.715 | 1.000 | 0.438 | 0.956 | 0.556 | 1.000 |  |
|----------|------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| BTK      | 126  | 0.404 | 0.895 | 0.402 | 1.000 | 0.162 | 0.852 | 0.634 | 1.000 |  |
| CSNK2A1  | 163  | 0.404 | 0.895 | 0.785 | 1.000 | 0.167 | 0.852 | 0.492 | 1.000 |  |
| LTA      | 154  | 0.418 | 0.895 | 0.678 | 1.000 | 0.656 | 0.956 | 0.675 | 1.000 |  |
| XIAP     | 111  | 0.424 | 0.895 | 0.683 | 1.000 | 0.684 | 0.967 | 0.860 | 1.000 |  |
| PRKCQ    | 578  | 0.426 | 0.895 | 0.698 | 1.000 | 0.548 | 0.956 | 0.979 | 1.000 |  |
| CSNK2B   | 77   | 0.448 | 0.895 | 0.724 | 1.000 | 0.316 | 0.953 | 0.849 | 1.000 |  |
| LYN      | 507  | 0.483 | 0.895 | 0.802 | 1.000 | 0.556 | 0.956 | 0.105 | 0.997 |  |
| LCK      | 55   | 0.494 | 0.895 | 0.589 | 1.000 | 0.293 | 0.951 | 0.185 | 1.000 |  |
| CCL19    | 58   | 0.521 | 0.901 | 0.845 | 1.000 | 0.163 | 0.852 | 0.435 | 1.000 |  |
| CCL21    | 56   | 0.537 | 0.901 | 0.764 | 1.000 | 0.149 | 0.852 | 0.106 | 0.997 |  |
| ZAP70    | 89   | 0.548 | 0.909 | 0.622 | 1.000 | 0.409 | 0.956 | 0.575 | 1.000 |  |
| EDA2R    | 56   | 0.570 | 0.909 | 0.580 | 1.000 | 0.912 | 1.000 | 0.420 | 1.000 |  |
| CD40LG   | 28   | 0.581 | 0.909 | 0.950 | 1.000 | 0.773 | 0.978 | 0.864 | 1.000 |  |
| PIDD1    | 65   | 0.584 | 0.909 | 0.532 | 1.000 | 0.306 | 0.951 | 0.625 | 1.000 |  |
| CXCL1    | 72   | 0.588 | 0.909 | 0.546 | 1.000 | 0.153 | 0.852 | 0.198 | 1.000 |  |
| LAT      | 33   | 0.592 | 0.909 | 0.982 | 1.000 | 0.733 | 0.978 | 0.707 | 1.000 |  |
| EDAR     | 171  | 0.594 | 0.909 | 0.329 | 1.000 | 0.026 | 0.628 | 0.316 | 1.000 |  |
| TNFSF14  | 87   | 0.596 | 0.909 | 0.518 | 1.000 | 0.512 | 0.956 | 0.096 | 0.997 |  |
| BCL10    | 123  | 0.648 | 0.947 | 0.131 | 1.000 | 0.581 | 0.956 | 0.029 | 0.820 |  |
| EDARADD  | 237  | 0.695 | 0.949 | 0.800 | 1.000 | 0.799 | 0.992 | 0.933 | 1.000 |  |
| MALT1    | 291  | 0.699 | 0.949 | 0.705 | 1.000 | 0.010 | 0.628 | 0.948 | 1.000 |  |
| NFKB1    | 302  | 0.700 | 0.949 | 0.746 | 1.000 | 0.829 | 1.000 | 0.390 | 1.000 |  |
| PIAS4    | 86   | 0.729 | 0.949 | 0.576 | 1.000 | 0.286 | 0.951 | 0.693 | 1.000 |  |
| PRKCB    | 1211 | 0.739 | 0.949 | 0.184 | 1.000 | 0.916 | 1.000 | 0.840 | 1.000 |  |
| TRIM25   | 22   | 0.740 | 0.949 | 0.503 | 1.000 | 0.788 | 0.992 | 0.176 | 1.000 |  |
| RIPK1    | 124  | 0.752 | 0.959 | 0.801 | 1.000 | 0.599 | 0.956 | 0.077 | 0.997 |  |
| TRAF6    | 95   | 0.770 | 0.971 | 0.142 | 1.000 | 0.988 | 1.000 | 0.957 | 1.000 |  |
| UBE2I    | 85   | 0.783 | 0.974 | 0.945 | 1.000 | 0.588 | 0.956 | 0.502 | 1.000 |  |
| TNFSF11  | 208  | 0.795 | 0.974 | 0.031 | 1.000 | 0.478 | 0.956 | 0.127 | 1.000 |  |
| TNFSF13B | 66   | 0.800 | 0.974 | 0.612 | 1.000 | 0.900 | 1.000 | 0.936 | 1.000 |  |
| IL1R1    | 417  | 0.834 | 0.974 | 0.937 | 1.000 | 0.092 | 0.676 | 0.922 | 1.000 |  |
|          |      |       |       |       |       |       |       |       |       |  |

|     | RELA             | 54                    | 0.838 | 0.974 | 0.643 | 1.000 | 0.548 | 0.956 | 0.991 | 1.000 |
|-----|------------------|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|
|     | BCL2A1           | 50                    | 0.843 | 0.974 | 0.398 | 1.000 | 0.717 | 0.977 | 0.662 | 1.000 |
|     | NFKB2            | 58                    | 0.868 | 0.974 | 0.040 | 1.000 | 0.667 | 0.956 | 0.066 | 0.997 |
|     | RELB             | 73                    | 0.879 | 0.974 | 0.565 | 1.000 | 0.446 | 0.956 | 0.573 | 1.000 |
|     | PLAU             | 55                    | 0.880 | 0.974 | 0.108 | 1.000 | 0.881 | 1.000 | 0.538 | 1.000 |
|     | BCL2             | 557                   | 0.882 | 0.974 | 0.331 | 1.000 | 0.984 | 1.000 | 0.658 | 1.000 |
|     | TNFRSF13C        | 61                    | 0.882 | 0.974 | 0.539 | 1.000 | 0.700 | 0.967 | 0.771 | 1.000 |
|     | CXCL3            | 10                    | 0.900 | 0.975 | 0.063 | 1.000 | 0.393 | 0.956 | 0.273 | 1.000 |
|     | GADD45A          | 84                    | 0.953 | 0.989 | 0.622 | 1.000 | 0.837 | 1.000 | 0.899 | 1.000 |
|     | ERC1             | 1966                  | 0.973 | 0.995 | 0.813 | 1.000 | 0.423 | 0.956 | 0.266 | 1.000 |
|     | CARD11           | 446                   | 0.984 | 0.995 | 0.481 | 1.000 | 0.131 | 0.852 | 0.765 | 1.000 |
|     | CXCL2            | 31                    | 0.985 | 0.995 | 0.349 | 1.000 | 0.089 | 0.676 | 0.175 | 1.000 |
|     | CSNK2A2          | 204                   | 0.986 | 0.995 | 0.590 | 1.000 | 0.121 | 0.836 | 0.278 | 1.000 |
|     | MAP3K14          | 166                   | 0.997 | 0.997 | 0.046 | 1.000 | 0.027 | 0.628 | 0.671 | 1.000 |
|     | CARD14           | <b>0</b> <sup>b</sup> |       |       |       |       |       |       |       |       |
| TLR |                  |                       | 0.241 |       | 0.655 |       | 0.098 |       | 0.185 |       |
|     | TAB1             | 86                    | 0.018 | 0.755 | 0.740 | 1.000 | 0.501 | 0.956 | 0.173 | 1.000 |
|     | TLR9             | 37                    | 0.026 | 0.755 | 0.860 | 1.000 | 0.491 | 0.956 | 0.359 | 1.000 |
|     | PIK3CA           | 335                   | 0.028 | 0.755 | 0.907 | 1.000 | 0.362 | 0.956 | 0.701 | 1.000 |
|     | TLR8             | 33                    | 0.036 | 0.755 | 0.947 | 1.000 | 0.532 | 0.956 | 0.836 | 1.000 |
|     | AKT3             | 541                   | 0.038 | 0.755 | 0.812 | 1.000 | 0.474 | 0.956 | 0.559 | 1.000 |
|     | CTSK             | 52                    | 0.055 | 0.878 | 0.252 | 1.000 | 0.700 | 0.967 | 0.648 | 1.000 |
|     | IFNAR2           | 163                   | 0.058 | 0.878 | 0.812 | 1.000 | 0.248 | 0.951 | 0.025 | 0.820 |
|     | MAP2K6           | 195                   | 0.090 | 0.878 | 0.099 | 1.000 | 0.067 | 0.676 | 0.570 | 1.000 |
|     | STAT1            | 172                   | 0.103 | 0.878 | 0.981 | 1.000 | 0.652 | 0.956 | 0.868 | 1.000 |
|     | CASP8            | 221                   | 0.126 | 0.878 | 0.100 | 1.000 | 0.503 | 0.956 | 0.483 | 1.000 |
|     | ΙΚΒΚΒ            | 138                   | 0.131 | 0.878 | 0.591 | 1.000 | 0.701 | 0.967 | 0.921 | 1.000 |
|     | TICAM2           | 92                    | 0.135 | 0.878 | 0.826 | 1.000 | 0.668 | 0.956 | 0.407 | 1.000 |
|     | IFNA2            | 31                    | 0.143 | 0.878 | 0.283 | 1.000 | 0.199 | 0.916 | 0.450 | 1.000 |
|     |                  | 68                    | 0.150 | 0.878 | 0.409 | 1.000 | 0.387 | 0.956 | 0.757 | 1.000 |
|     | MAPK13           | 60                    | 0.700 |       |       |       |       |       |       |       |
|     | MAPK13<br>MAP2K3 | 38                    | 0.150 | 0.878 | 0.473 | 1.000 | 0.332 | 0.956 | 0.777 | 1.000 |

| IL6    | 94  | 0.153 | 0.878 | 0.257 | 1.000 | 0.014 | 0.628 | 0.862 | 1.000 |
|--------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| MAP3K7 | 291 | 0.154 | 0.878 | 0.885 | 1.000 | 0.079 | 0.676 | 0.448 | 1.000 |
| IRAK4  | 123 | 0.167 | 0.878 | 0.775 | 1.000 | 0.334 | 0.956 | 0.306 | 1.000 |
| IL12B  | 74  | 0.178 | 0.878 | 0.037 | 1.000 | 0.886 | 1.000 | 0.239 | 1.000 |
| MAP2K7 | 58  | 0.178 | 0.878 | 0.724 | 1.000 | 0.967 | 1.000 | 0.354 | 1.000 |
| IFNA6  | 62  | 0.180 | 0.878 | 0.156 | 1.000 | 0.459 | 0.956 | 0.353 | 1.000 |
| CD86   | 206 | 0.184 | 0.878 | 0.443 | 1.000 | 0.092 | 0.676 | 0.240 | 1.000 |
| JUN    | 34  | 0.216 | 0.895 | 0.617 | 1.000 | 0.771 | 0.978 | 0.632 | 1.000 |
| PIK3CD | 219 | 0.225 | 0.895 | 0.856 | 1.000 | 0.308 | 0.951 | 0.867 | 1.000 |
| PIK3CB | 288 | 0.235 | 0.895 | 0.998 | 1.000 | 0.772 | 0.978 | 0.954 | 1.000 |
| TOLLIP | 184 | 0.237 | 0.895 | 0.187 | 1.000 | 0.944 | 1.000 | 0.742 | 1.000 |
| TICAM1 | 110 | 0.241 | 0.895 | 0.162 | 1.000 | 0.033 | 0.628 | 0.333 | 1.000 |
| IKBKG  | 12  | 0.263 | 0.895 | 0.479 | 1.000 | 0.716 | 0.977 | 0.242 | 1.000 |
| MAPK9  | 294 | 0.272 | 0.895 | 0.115 | 1.000 | 0.434 | 0.956 | 0.265 | 1.000 |
| IFNA7  | 149 | 0.289 | 0.895 | 0.976 | 1.000 | 0.352 | 0.956 | 0.219 | 1.000 |
| ΜΑΡΚ8  | 366 | 0.310 | 0.895 | 0.875 | 1.000 | 0.240 | 0.951 | 0.405 | 1.000 |
| IFNA10 | 155 | 0.310 | 0.895 | 0.656 | 1.000 | 0.426 | 0.956 | 0.167 | 1.000 |
| FADD   | 43  | 0.345 | 0.895 | 0.487 | 1.000 | 0.068 | 0.676 | 0.093 | 0.997 |
| IFNA21 | 79  | 0.370 | 0.895 | 0.833 | 1.000 | 0.303 | 0.951 | 0.532 | 1.000 |
| IFNA1  | 75  | 0.376 | 0.895 | 0.255 | 1.000 | 0.390 | 0.956 | 0.457 | 1.000 |
| TLR7   | 9   | 0.377 | 0.895 | 0.281 | 1.000 | 0.660 | 0.956 | 0.774 | 1.000 |
| IRF5   | 113 | 0.381 | 0.895 | 0.084 | 1.000 | 0.237 | 0.951 | 0.553 | 1.000 |
| CFLAR  | 200 | 0.413 | 0.895 | 0.058 | 1.000 | 0.663 | 0.956 | 0.278 | 1.000 |
| MAP2K4 | 218 | 0.417 | 0.895 | 0.698 | 1.000 | 0.859 | 1.000 | 0.931 | 1.000 |
| IL12A  | 68  | 0.418 | 0.895 | 0.612 | 1.000 | 0.948 | 1.000 | 0.285 | 1.000 |
| AKT2   | 163 | 0.420 | 0.895 | 0.328 | 1.000 | 0.306 | 0.951 | 0.774 | 1.000 |
| TBK1   | 138 | 0.433 | 0.895 | 0.818 | 1.000 | 0.443 | 0.956 | 0.253 | 1.000 |
| IFNA4  | 126 | 0.437 | 0.895 | 0.745 | 1.000 | 0.110 | 0.785 | 0.632 | 1.000 |
| IRAK1  | 18  | 0.438 | 0.895 | 0.074 | 1.000 | 0.463 | 0.956 | 0.339 | 1.000 |
| CCL5   | 78  | 0.447 | 0.895 | 0.593 | 1.000 | 0.992 | 1.000 | 0.041 | 0.944 |
| IKBKE  | 108 | 0.468 | 0.895 | 0.866 | 1.000 | 0.629 | 0.956 | 0.041 | 0.944 |
| MAP2K1 | 412 | 0.480 | 0.895 | 0.886 | 1.000 | 0.396 | 0.956 | 0.012 | 0.818 |
|        |     |       |       |       |       |       |       |       |       |

| CCL3   | 6   | 0.481 | 0.895 | 0.585 | 1.000 | 0.443 | 0.956 | 0.444 | 1.000 |  |
|--------|-----|-------|-------|-------|-------|-------|-------|-------|-------|--|
| TLR1   | 161 | 0.486 | 0.895 | 0.464 | 1.000 | 0.870 | 1.000 | 0.505 | 1.000 |  |
| CD40   | 102 | 0.491 | 0.895 | 0.167 | 1.000 | 0.520 | 0.956 | 0.998 | 1.000 |  |
| MAPK14 | 280 | 0.494 | 0.895 | 0.047 | 1.000 | 0.978 | 1.000 | 0.706 | 1.000 |  |
| CD14   | 65  | 0.496 | 0.895 | 0.568 | 1.000 | 0.645 | 0.956 | 0.625 | 1.000 |  |
| IRF7   | 93  | 0.497 | 0.895 | 0.137 | 1.000 | 0.042 | 0.648 | 0.196 | 1.000 |  |
| AKT1   | 96  | 0.502 | 0.897 | 0.954 | 1.000 | 0.734 | 0.978 | 0.751 | 1.000 |  |
| IFNAR1 | 157 | 0.512 | 0.901 | 0.845 | 1.000 | 0.602 | 0.956 | 0.102 | 0.997 |  |
| SPP1   | 95  | 0.519 | 0.901 | 0.823 | 1.000 | 0.004 | 0.628 | 0.758 | 1.000 |  |
| CXCL8  | 50  | 0.521 | 0.901 | 0.524 | 1.000 | 0.730 | 0.978 | 0.089 | 0.997 |  |
| CXCL10 | 101 | 0.571 | 0.909 | 0.499 | 1.000 | 0.534 | 0.956 | 0.236 | 1.000 |  |
| IFNA8  | 77  | 0.572 | 0.909 | 0.291 | 1.000 | 0.073 | 0.676 | 0.240 | 1.000 |  |
| MYD88  | 36  | 0.577 | 0.909 | 0.212 | 1.000 | 0.200 | 0.916 | 0.185 | 1.000 |  |
| IFNB1  | 71  | 0.612 | 0.920 | 0.947 | 1.000 | 0.456 | 0.956 | 0.226 | 1.000 |  |
| CXCL9  | 58  | 0.633 | 0.946 | 0.318 | 1.000 | 0.611 | 0.956 | 0.248 | 1.000 |  |
| FOS    | 48  | 0.646 | 0.947 | 0.728 | 1.000 | 0.079 | 0.676 | 0.251 | 1.000 |  |
| TLR4   | 92  | 0.660 | 0.947 | 0.273 | 1.000 | 0.071 | 0.676 | 0.562 | 1.000 |  |
| PIK3R2 | 98  | 0.663 | 0.947 | 0.411 | 1.000 | 0.803 | 0.992 | 0.778 | 1.000 |  |
| IFNA13 | 85  | 0.689 | 0.949 | 0.523 | 1.000 | 0.334 | 0.956 | 0.324 | 1.000 |  |
| CD80   | 245 | 0.716 | 0.949 | 0.352 | 1.000 | 0.813 | 0.996 | 0.076 | 0.997 |  |
| IFNA16 | 167 | 0.722 | 0.949 | 0.692 | 1.000 | 0.505 | 0.956 | 0.101 | 0.997 |  |
| TIRAP  | 102 | 0.723 | 0.949 | 0.478 | 1.000 | 0.132 | 0.852 | 0.785 | 1.000 |  |
| TLR5   | 138 | 0.731 | 0.949 | 0.216 | 1.000 | 0.258 | 0.951 | 0.583 | 1.000 |  |
| МАРКЗ  | 26  | 0.735 | 0.949 | 0.753 | 1.000 | 0.141 | 0.852 | 0.713 | 1.000 |  |
| RAC1   | 232 | 0.757 | 0.959 | 0.990 | 1.000 | 0.239 | 0.951 | 0.419 | 1.000 |  |
| LY96   | 172 | 0.778 | 0.974 | 0.349 | 1.000 | 0.032 | 0.628 | 0.654 | 1.000 |  |
| MAPK1  | 336 | 0.817 | 0.974 | 0.234 | 1.000 | 0.854 | 1.000 | 0.299 | 1.000 |  |
| PIK3R1 | 301 | 0.819 | 0.974 | 0.621 | 1.000 | 0.291 | 0.951 | 0.707 | 1.000 |  |
| IFNA17 | 133 | 0.823 | 0.974 | 0.879 | 1.000 | 0.619 | 0.956 | 0.265 | 1.000 |  |
| IRF3   | 32  | 0.824 | 0.974 | 0.975 | 1.000 | 0.483 | 0.956 | 0.770 | 1.000 |  |
| TLR3   | 128 | 0.859 | 0.974 | 0.255 | 1.000 | 0.805 | 0.992 | 0.390 | 1.000 |  |
| TLR6   | 163 | 0.860 | 0.974 | 0.195 | 1.000 | 0.765 | 0.978 | 0.728 | 1.000 |  |
|        |     |       |       |       |       |       |       |       |       |  |

|     | TLR2                                                                                                          | 105                                                                                   | 0.873                                                                                           | 0.974                                                                                  | 0.032                                                                                           | 1.000                                                                         | 0.865                                                                                                  | 1.000                                                                         | 0.660                                                                                                  | 1.000                                                                |
|-----|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|     | CXCL11                                                                                                        | 175                                                                                   | 0.883                                                                                           | 0.974                                                                                  | 0.668                                                                                           | 1.000                                                                         | 0.491                                                                                                  | 0.956                                                                         | 0.176                                                                                                  | 1.000                                                                |
|     | MAP2K2                                                                                                        | 91                                                                                    | 0.886                                                                                           | 0.974                                                                                  | 0.638                                                                                           | 1.000                                                                         | 0.879                                                                                                  | 1.000                                                                         | 0.837                                                                                                  | 1.000                                                                |
|     | IFNA14                                                                                                        | 89                                                                                    | 0.900                                                                                           | 0.975                                                                                  | 0.722                                                                                           | 1.000                                                                         | 0.578                                                                                                  | 0.956                                                                         | 0.239                                                                                                  | 1.000                                                                |
|     | PIK3R3                                                                                                        | 288                                                                                   | 0.908                                                                                           | 0.975                                                                                  | 0.076                                                                                           | 1.000                                                                         | 0.693                                                                                                  | 0.967                                                                         | 0.187                                                                                                  | 1.000                                                                |
|     | CCL4                                                                                                          | 9                                                                                     | 0.913                                                                                           | 0.975                                                                                  | 0.726                                                                                           | 1.000                                                                         | 0.793                                                                                                  | 0.992                                                                         | 0.377                                                                                                  | 1.000                                                                |
|     | LBP                                                                                                           | 146                                                                                   | 0.921                                                                                           | 0.975                                                                                  | 0.763                                                                                           | 1.000                                                                         | 0.993                                                                                                  | 1.000                                                                         | 0.333                                                                                                  | 1.000                                                                |
|     | IL1B                                                                                                          | 52                                                                                    | 0.922                                                                                           | 0.975                                                                                  | 0.639                                                                                           | 1.000                                                                         | 0.548                                                                                                  | 0.956                                                                         | 0.240                                                                                                  | 1.000                                                                |
|     | MAPK10                                                                                                        | 1854                                                                                  | 0.943                                                                                           | 0.985                                                                                  | 0.125                                                                                           | 1.000                                                                         | 0.737                                                                                                  | 0.978                                                                         | 0.702                                                                                                  | 1.000                                                                |
|     | IFNA5                                                                                                         | 60                                                                                    | 0.944                                                                                           | 0.985                                                                                  | 0.412                                                                                           | 1.000                                                                         | 0.196                                                                                                  | 0.916                                                                         | 0.330                                                                                                  | 1.000                                                                |
|     | TAB2                                                                                                          | <b>0</b> <sup>c</sup>                                                                 |                                                                                                 |                                                                                        |                                                                                                 |                                                                               |                                                                                                        |                                                                               |                                                                                                        |                                                                      |
|     | CCL3L1                                                                                                        | <b>0</b> <sup>c</sup>                                                                 |                                                                                                 |                                                                                        |                                                                                                 |                                                                               |                                                                                                        |                                                                               |                                                                                                        |                                                                      |
|     | CCL3L3                                                                                                        | 0 <sup>c</sup>                                                                        |                                                                                                 |                                                                                        |                                                                                                 |                                                                               |                                                                                                        |                                                                               |                                                                                                        |                                                                      |
|     | CCL4L1                                                                                                        | 0 <sup>c</sup>                                                                        |                                                                                                 |                                                                                        |                                                                                                 |                                                                               |                                                                                                        |                                                                               |                                                                                                        |                                                                      |
|     | CCL4L2                                                                                                        | 0 <sup>c</sup>                                                                        |                                                                                                 |                                                                                        |                                                                                                 |                                                                               |                                                                                                        |                                                                               |                                                                                                        |                                                                      |
|     |                                                                                                               |                                                                                       |                                                                                                 |                                                                                        |                                                                                                 |                                                                               |                                                                                                        |                                                                               |                                                                                                        |                                                                      |
|     | MAPK11                                                                                                        | <b>0</b> <sup>d</sup>                                                                 |                                                                                                 |                                                                                        |                                                                                                 |                                                                               |                                                                                                        |                                                                               |                                                                                                        |                                                                      |
|     | MAPK11<br>MAPK12                                                                                              | 0 <sup>d</sup><br>0 <sup>d</sup>                                                      |                                                                                                 |                                                                                        |                                                                                                 |                                                                               |                                                                                                        |                                                                               |                                                                                                        |                                                                      |
| TNF |                                                                                                               |                                                                                       | 0.050                                                                                           |                                                                                        | 0.157                                                                                           |                                                                               | 0.135                                                                                                  |                                                                               | 0.493                                                                                                  |                                                                      |
| TNF |                                                                                                               |                                                                                       | 0.050<br><b>0.003</b>                                                                           | 0.755                                                                                  | 0.157<br>0.740                                                                                  | 1.000                                                                         | 0.135<br>0.622                                                                                         | 0.956                                                                         | 0.493<br>0.963                                                                                         | 1.000                                                                |
| TNF | MAPK12                                                                                                        | <b>0</b> <sup>d</sup>                                                                 |                                                                                                 | 0.755<br>0.755                                                                         |                                                                                                 | 1.000<br>1.000                                                                |                                                                                                        | 0.956<br>0.951                                                                |                                                                                                        |                                                                      |
| TNF | MAPK12<br>MMP3                                                                                                | 0 <sup>d</sup>                                                                        | 0.003                                                                                           |                                                                                        | 0.740                                                                                           |                                                                               | 0.622                                                                                                  |                                                                               | 0.963                                                                                                  | 1.000<br>0.818<br>1.000                                              |
| TNF | MAPK12<br>MMP3<br>CX3CL1                                                                                      | 0 <sup>d</sup><br>88<br>104                                                           | 0.003<br>0.033                                                                                  | 0.755                                                                                  | 0.740<br>0.306                                                                                  | 1.000                                                                         | 0.622<br>0.228                                                                                         | 0.951                                                                         | 0.963<br><b>0.014</b>                                                                                  | 0.818<br>1.000                                                       |
| TNF | MAPK12<br>MMP3<br>CX3CL1<br>CREB3L1                                                                           | 0 <sup>d</sup><br>88<br>104<br>100                                                    | 0.003<br>0.033<br>0.047                                                                         | 0.755<br>0.859                                                                         | 0.740<br>0.306<br>0.923                                                                         | 1.000<br>1.000                                                                | 0.622<br>0.228<br>0.277                                                                                | 0.951<br>0.951                                                                | 0.963<br><b>0.014</b><br>0.779                                                                         | 0.818<br>1.000<br>1.000                                              |
| TNF | MAPK12<br>MMP3<br>CX3CL1<br>CREB3L1<br>BAG4                                                                   | 0 <sup>d</sup><br>88<br>104<br>100<br>83                                              | <b>0.003</b><br><b>0.033</b><br><b>0.047</b><br>0.096                                           | 0.755<br>0.859<br>0.878                                                                | 0.740<br>0.306<br>0.923<br>0.325                                                                | 1.000<br>1.000<br>1.000                                                       | 0.622<br>0.228<br>0.277<br>0.629                                                                       | 0.951<br>0.951<br>0.956                                                       | 0.963<br><b>0.014</b><br>0.779<br>0.842                                                                | 0.818                                                                |
| TNF | MAPK12<br>MMP3<br>CX3CL1<br>CREB3L1<br>BAG4<br>TNFRSF1A                                                       | 0 <sup>d</sup><br>88<br>104<br>100<br>83<br>37                                        | 0.003<br>0.033<br>0.047<br>0.096<br>0.104                                                       | 0.755<br>0.859<br>0.878<br>0.878                                                       | 0.740<br>0.306<br>0.923<br>0.325<br>0.312                                                       | 1.000<br>1.000<br>1.000<br>1.000                                              | 0.622<br>0.228<br>0.277<br>0.629<br><b>0.008</b>                                                       | 0.951<br>0.951<br>0.956<br>0.628                                              | 0.963<br><b>0.014</b><br>0.779<br>0.842<br>0.775                                                       | 0.818<br>1.000<br>1.000<br>1.000                                     |
| TNF | MAPK12<br>MMP3<br>CX3CL1<br>CREB3L1<br>BAG4<br>TNFRSF1A<br>CEBPB                                              | 0 <sup>d</sup><br>88<br>104<br>100<br>83<br>37<br>40                                  | 0.003<br>0.033<br>0.047<br>0.096<br>0.104<br>0.112                                              | 0.755<br>0.859<br>0.878<br>0.878<br>0.878                                              | 0.740<br>0.306<br>0.923<br>0.325<br>0.312<br>0.056                                              | 1.000<br>1.000<br>1.000<br>1.000<br>1.000                                     | 0.622<br>0.228<br>0.277<br>0.629<br><b>0.008</b><br>0.620                                              | 0.951<br>0.951<br>0.956<br>0.628<br>0.956                                     | 0.963<br><b>0.014</b><br>0.779<br>0.842<br>0.775<br>0.856                                              | 0.818<br>1.000<br>1.000<br>1.000<br>1.000                            |
| TNF | MAPK12<br>MMP3<br>CX3CL1<br>CREB3L1<br>BAG4<br>TNFRSF1A<br>CEBPB<br>TRAF1                                     | 0 <sup>d</sup><br>88<br>104<br>100<br>83<br>37<br>40<br>162                           | 0.003<br>0.033<br>0.047<br>0.096<br>0.104<br>0.112<br>0.175                                     | 0.755<br>0.859<br>0.878<br>0.878<br>0.878<br>0.878<br>0.878                            | 0.740<br>0.306<br>0.923<br>0.325<br>0.312<br>0.056<br>0.606                                     | 1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000                            | 0.622<br>0.228<br>0.277<br>0.629<br><b>0.008</b><br>0.620<br>0.516                                     | 0.951<br>0.951<br>0.956<br>0.628<br>0.956<br>0.956                            | 0.963<br><b>0.014</b><br>0.779<br>0.842<br>0.775<br>0.856<br>0.712                                     | 0.818<br>1.000<br>1.000<br>1.000<br>1.000                            |
| TNF | MAPK12<br>MMP3<br>CX3CL1<br>CREB3L1<br>BAG4<br>TNFRSF1A<br>CEBPB<br>TRAF1<br>IL18R1                           | 0 <sup>d</sup><br>88<br>104<br>100<br>83<br>37<br>40<br>162<br>270                    | 0.003<br>0.033<br>0.047<br>0.096<br>0.104<br>0.112<br>0.175<br>0.182                            | 0.755<br>0.859<br>0.878<br>0.878<br>0.878<br>0.878<br>0.878                            | 0.740<br>0.306<br>0.923<br>0.325<br>0.312<br>0.056<br>0.606<br>0.394                            | 1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000                   | 0.622<br>0.228<br>0.277<br>0.629<br><b>0.008</b><br>0.620<br>0.516<br>0.257                            | 0.951<br>0.951<br>0.956<br>0.628<br>0.956<br>0.956<br>0.951                   | 0.963<br><b>0.014</b><br>0.779<br>0.842<br>0.775<br>0.856<br>0.712<br>0.686                            | 0.818<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000                   |
| TNF | MAPK12<br>MMP3<br>CX3CL1<br>CREB3L1<br>BAG4<br>TNFRSF1A<br>CEBPB<br>TRAF1<br>IL18R1<br>CXCL6                  | 0 <sup>d</sup><br>88<br>104<br>100<br>83<br>37<br>40<br>162<br>270<br>40              | 0.003<br>0.033<br>0.047<br>0.096<br>0.104<br>0.112<br>0.175<br>0.182<br>0.183                   | 0.755<br>0.859<br>0.878<br>0.878<br>0.878<br>0.878<br>0.878<br>0.878<br>0.878          | 0.740<br>0.306<br>0.923<br>0.325<br>0.312<br>0.056<br>0.606<br>0.394<br>0.653                   | 1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000                   | 0.622<br>0.228<br>0.277<br>0.629<br><b>0.008</b><br>0.620<br>0.516<br>0.257<br>0.286                   | 0.951<br>0.951<br>0.956<br>0.628<br>0.956<br>0.956<br>0.951                   | 0.963<br><b>0.014</b><br>0.779<br>0.842<br>0.775<br>0.856<br>0.712<br>0.686<br>0.547                   | 0.818<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000          |
| TNF | MAPK12<br>MMP3<br>CX3CL1<br>CREB3L1<br>BAG4<br>TNFRSF1A<br>CEBPB<br>TRAF1<br>IL18R1<br>CXCL6<br>EDN1          | 0 <sup>d</sup><br>88<br>104<br>100<br>83<br>37<br>40<br>162<br>270<br>40<br>119       | 0.003<br>0.033<br>0.047<br>0.096<br>0.104<br>0.112<br>0.175<br>0.182<br>0.183<br>0.218          | 0.755<br>0.859<br>0.878<br>0.878<br>0.878<br>0.878<br>0.878<br>0.878<br>0.878<br>0.878 | 0.740<br>0.306<br>0.923<br>0.325<br>0.312<br>0.056<br>0.606<br>0.394<br>0.653<br>0.250          | 1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000          | 0.622<br>0.228<br>0.277<br>0.629<br><b>0.008</b><br>0.620<br>0.516<br>0.257<br>0.286<br>0.762          | 0.951<br>0.951<br>0.956<br>0.956<br>0.956<br>0.951<br>0.951<br>0.951<br>0.978 | 0.963<br><b>0.014</b><br>0.779<br>0.842<br>0.775<br>0.856<br>0.712<br>0.686<br>0.547<br>0.369          | 0.818<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000          |
| TNF | MAPK12<br>MMP3<br>CX3CL1<br>CREB3L1<br>BAG4<br>TNFRSF1A<br>CEBPB<br>TRAF1<br>IL18R1<br>CXCL6<br>EDN1<br>TRAF2 | 0 <sup>d</sup><br>88<br>104<br>100<br>83<br>37<br>40<br>162<br>270<br>40<br>119<br>64 | 0.003<br>0.033<br>0.047<br>0.096<br>0.104<br>0.112<br>0.175<br>0.182<br>0.183<br>0.218<br>0.239 | 0.755<br>0.859<br>0.878<br>0.878<br>0.878<br>0.878<br>0.878<br>0.878<br>0.878<br>0.895 | 0.740<br>0.306<br>0.923<br>0.325<br>0.312<br>0.056<br>0.606<br>0.394<br>0.653<br>0.250<br>0.789 | 1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000 | 0.622<br>0.228<br>0.277<br>0.629<br><b>0.008</b><br>0.620<br>0.516<br>0.257<br>0.286<br>0.762<br>0.274 | 0.951<br>0.951<br>0.956<br>0.956<br>0.956<br>0.951<br>0.951<br>0.978<br>0.951 | 0.963<br><b>0.014</b><br>0.779<br>0.842<br>0.775<br>0.856<br>0.712<br>0.686<br>0.547<br>0.369<br>0.428 | 0.818<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000 |

| ATF6B    | 76   | 0.285 | 0.895 | 0.992 | 1.000 | 0.531 | 0.956 | 0.000 | 0.041 |  |
|----------|------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| CREB3L2  | 241  | 0.289 | 0.895 | 0.505 | 1.000 | 0.364 | 0.956 | 0.631 | 1.000 |  |
| TNFRSF1B | 102  | 0.297 | 0.895 | 0.187 | 1.000 | 0.629 | 0.956 | 0.066 | 0.997 |  |
| TNF      | 81   | 0.318 | 0.895 | 0.731 | 1.000 | 0.645 | 0.956 | 0.646 | 1.000 |  |
| JAG1     | 142  | 0.320 | 0.895 | 0.705 | 1.000 | 0.622 | 0.956 | 0.831 | 1.000 |  |
| NOD2     | 104  | 0.322 | 0.895 | 0.966 | 1.000 | 0.063 | 0.676 | 0.744 | 1.000 |  |
| FAS      | 226  | 0.373 | 0.895 | 0.612 | 1.000 | 0.688 | 0.967 | 0.621 | 1.000 |  |
| MLKL     | 175  | 0.384 | 0.895 | 0.616 | 1.000 | 0.620 | 0.956 | 0.069 | 0.997 |  |
| VEGFC    | 351  | 0.392 | 0.895 | 0.265 | 1.000 | 0.745 | 0.978 | 0.672 | 1.000 |  |
| CSF1     | 86   | 0.416 | 0.895 | 0.635 | 1.000 | 0.606 | 0.956 | 0.909 | 1.000 |  |
| RPS6KA4  | 89   | 0.439 | 0.895 | 0.660 | 1.000 | 0.213 | 0.951 | 0.975 | 1.000 |  |
| IL15     | 251  | 0.441 | 0.895 | 0.630 | 1.000 | 0.501 | 0.956 | 0.876 | 1.000 |  |
| CASP3    | 117  | 0.446 | 0.895 | 0.504 | 1.000 | 0.088 | 0.676 | 0.974 | 1.000 |  |
| DNM1L    | 361  | 0.446 | 0.895 | 0.109 | 1.000 | 0.880 | 1.000 | 0.716 | 1.000 |  |
| CREB5    | 1701 | 0.451 | 0.895 | 0.470 | 1.000 | 0.402 | 0.956 | 0.185 | 1.000 |  |
| DAB2IP   | 564  | 0.479 | 0.895 | 0.021 | 1.000 | 0.175 | 0.871 | 0.850 | 1.000 |  |
| MMP9     | 98   | 0.485 | 0.895 | 0.849 | 1.000 | 0.755 | 0.978 | 0.159 | 1.000 |  |
| PGAM5    | 118  | 0.525 | 0.901 | 0.105 | 1.000 | 0.029 | 0.628 | 0.222 | 1.000 |  |
| CCL20    | 10   | 0.533 | 0.901 | 0.897 | 1.000 | 0.036 | 0.628 | 0.808 | 1.000 |  |
| JUNB     | 43   | 0.534 | 0.901 | 0.824 | 1.000 | 0.086 | 0.676 | 0.698 | 1.000 |  |
| CSF2     | 48   | 0.555 | 0.909 | 0.405 | 1.000 | 0.884 | 1.000 | 0.313 | 1.000 |  |
| CCL2     | 59   | 0.563 | 0.909 | 0.551 | 1.000 | 0.583 | 0.956 | 0.318 | 1.000 |  |
| ATF2     | 281  | 0.602 | 0.911 | 0.886 | 1.000 | 0.091 | 0.676 | 0.074 | 0.997 |  |
| CREB1    | 165  | 0.662 | 0.947 | 0.187 | 1.000 | 0.456 | 0.956 | 0.695 | 1.000 |  |
| CREB3    | 33   | 0.662 | 0.947 | 0.234 | 1.000 | 0.637 | 0.956 | 0.427 | 1.000 |  |
| RPS6KA5  | 521  | 0.665 | 0.947 | 0.457 | 1.000 | 0.155 | 0.852 | 0.749 | 1.000 |  |
| CXCL5    | 16   | 0.669 | 0.948 | 0.417 | 1.000 | 0.506 | 0.956 | 0.238 | 1.000 |  |
| CASP10   | 131  | 0.680 | 0.949 | 0.050 | 1.000 | 0.353 | 0.956 | 0.254 | 1.000 |  |
| CASP7    | 232  | 0.703 | 0.949 | 0.717 | 1.000 | 0.286 | 0.951 | 0.625 | 1.000 |  |
| MMP14    | 71   | 0.725 | 0.949 | 0.557 | 1.000 | 0.501 | 0.956 | 0.109 | 0.997 |  |
| RIPK3    | 104  | 0.735 | 0.949 | 0.718 | 1.000 | 0.557 | 0.956 | 0.404 | 1.000 |  |
| MAP3K5   | 437  | 0.802 | 0.974 | 0.660 | 1.000 | 0.773 | 0.978 | 0.375 | 1.000 |  |
|          |      |       |       |       |       |       |       |       |       |  |

| TRAF3   | 336 | 0.829 | 0.974 | 0.405 | 1.000 | 0.902 | 1.000 | 0.518 | 1.000 |
|---------|-----|-------|-------|-------|-------|-------|-------|-------|-------|
|         |     |       |       |       |       |       |       |       |       |
| IRF1    | 109 | 0.854 | 0.974 | 0.761 | 1.000 | 0.973 | 1.000 | 0.385 | 1.000 |
| TNFAIP3 | 72  | 0.865 | 0.974 | 0.965 | 1.000 | 0.652 | 0.956 | 0.631 | 1.000 |
| ATF4    | 20  | 0.889 | 0.974 | 0.252 | 1.000 | 0.310 | 0.951 | 0.941 | 1.000 |
| LIF     | 65  | 0.919 | 0.975 | 0.928 | 1.000 | 0.896 | 1.000 | 0.025 | 0.820 |
| ITCH    | 255 | 0.926 | 0.975 | 0.703 | 1.000 | 0.066 | 0.676 | 0.858 | 1.000 |
| TRAF5   | 184 | 0.970 | 0.995 | 0.661 | 1.000 | 0.450 | 0.956 | 0.528 | 1.000 |
| CREB3L4 | 36  | 0.984 | 0.995 | 0.738 | 1.000 | 0.088 | 0.676 | 0.996 | 1.000 |
| BCL3    | 91  | 0.995 | 0.997 | 0.207 | 1.000 | 0.840 | 1.000 | 0.432 | 1.000 |

Abbreviations: TLR = toll-like receptor; NFkB = nuclear factor kappa B; TNF = tumor necrosis factor; EOC = epithelial ovarian cancer; HGSOC = high grade serous ovarian cancer; AACES = African American Cancer

Epidemiology Study; OCAC = Ovarian Cancer Association Consortium;

<sup>a</sup>Aggregate P-value of MAGMA model results. Each model controls for age, and two ancestry principal components.

<sup>b</sup>Corrected for multiple testing by the number of genes tested using the Benjamini-Hochberg false

discovery rate (FDR).

°No SNPs mapped to gene after QC filtering.

<sup>d</sup>Gene chromosomal locations not on raw data file.

## Supplementary Table ST6.1. RNASeq meta data.

|          |                     |                  |                  |                  |               |               |               | main_metadata               | table |                               |            |             |          |           |         |              |               |                       |
|----------|---------------------|------------------|------------------|------------------|---------------|---------------|---------------|-----------------------------|-------|-------------------------------|------------|-------------|----------|-----------|---------|--------------|---------------|-----------------------|
| ID       | ran_in_way_pipeline | ClusterK2_kmeans | ClusterK3_kmeans | ClusterK4_kmeans | ClusterK2_NMF | ClusterK3_NMF | ClusterK4_NMF | ClusterK4_kmeans_TCGA_names | suid  | external_HGSCsubtype_estimate | failed_seq | resequenced | under35M | low_start | version | REMOVE_WHITE | REMOVE_NEOADJ | REMOVE_LOW_EXPRESSION |
| 18341X1  | NA                  | NA               | NA               | NA               | NA            | NA            | NA            | NA                          | 41580 | C4.DIF                        | NA         | NA          | NA       | NA        | pilot   | TRUE         | NA            | NA                    |
| 18341X10 | TRUE                | 1                | 1                | 1                | 1             | 2             | 2             | Mesenchymal                 | 45369 | C4.DIF                        | NA         | NA          | NA       | NA        | pilot   | NA           | NA            | NA                    |
| 18341X11 | NA                  | NA               | NA               | NA               | NA            | NA            | NA            | NA                          | 46327 | C1.MES                        | NA         | NA          | NA       | NA        | pilot   | TRUE         | NA            | NA                    |
| 18341X12 | TRUE                | 2                | 2                | 2                | 2             | 2             | 2             | Proliferative               | 47261 | C5.PRO                        | NA         | NA          | NA       | NA        | pilot   | NA           | NA            | NA                    |
| 18341X13 | TRUE                | 1                | 2                | 2                | 2             | 2             | 4             | Proliferative               | 47791 | C4.DIF                        | NA         | NA          | NA       | NA        | pilot   | NA           | NA            | NA                    |
| 18341X14 | TRUE                | 2                | 3                | 3                | 2             | 3             | 3             | Immunoreactive              | 47916 | C4.DIF                        | NA         | NA          | NA       | NA        | pilot   | NA           | NA            | NA                    |
| 18341X15 | TRUE                | 1                | 1                | 1                | 1             | 2             | 2             | Mesenchymal                 | 48002 | C1.MES                        | NA         | NA          | NA       | NA        | pilot   | NA           | NA            | NA                    |
| 18341X17 | TRUE                | 2                | 3                | 3                | 2             | 3             | 3             | Immunoreactive              | 46782 | C2.IMM                        | NA         | NA          | NA       | NA        | pilot   | NA           | NA            | NA                    |
| 18341X18 | NA                  | NA               | NA               | NA               | NA            | NA            | NA            | NA                          | 48123 | C1.MES                        | NA         | NA          | NA       | NA        | pilot   | TRUE         | NA            | NA                    |
| 18341X19 | NA                  | NA               | NA               | NA               | NA            | NA            | NA            | NA                          | 45327 | C2.IMM                        | NA         | NA          | NA       | NA        | pilot   | TRUE         | NA            | NA                    |
| 18341X2  | NA                  | NA               | NA               | NA               | NA            | NA            | NA            | NA                          | 41764 | C4.DIF                        | NA         | NA          | NA       | NA        | pilot   | TRUE         | NA            | NA                    |
| 18341X20 | NA                  | NA               | NA               | NA               | NA            | NA            | NA            | NA                          | 47289 | C5.PRO                        | NA         | NA          | NA       | NA        | pilot   | TRUE         | NA            | NA                    |
| 18341X21 | NA                  | NA               | NA               | NA               | NA            | NA            | NA            | NA                          | 48557 | C5.PRO                        | NA         | NA          | NA       | NA        | pilot   | TRUE         | NA            | NA                    |
| 18341X22 | TRUE                | 2                | 3                | 3                | 2             | 3             | 3             | Immunoreactive              | 41736 | C2.IMM                        | NA         | NA          | NA       | NA        | pilot   | NA           | NA            | NA                    |
| 18341X23 | TRUE                | 1                | 1                | 1                | 2             | 3             | 3             | Mesenchymal                 | 42282 | C1.MES                        | NA         | NA          | NA       | NA        | pilot   | NA           | NA            | NA                    |

## Full tables available at:

https://github.com/greenelab/hgsc\_characterization/blob/master/reference\_data/main\_AA\_meta data\_table.tsv

https://github.com/greenelab/hgsc\_characterization/blob/master/reference\_data/main\_white\_me tadata\_table.tsv

|         | Bla  | ack women                    |       | Wh              | iite women |                              |         |               |
|---------|------|------------------------------|-------|-----------------|------------|------------------------------|---------|---------------|
|         | Mean | Log fold changeª<br>(95% CI) | Р     | $P_{FDR}{}^{b}$ | Mean       | Log fold changeª<br>(95% CI) | Р       | $P_{FDR}^{b}$ |
| CXCL1   | 358  | -0.2 (-0.5, 0.1)             | 0.454 | 0.853           | 362        | -1.1 (-1.4, -0.9)            | 0.00003 | 0.003         |
| CSF2    | 3    | 0.2 (-0.4, 0.9)              | 0.729 | 0.956           | 3          | -2.2 (-2.7, -1.7)            | 0.00002 | 0.003         |
| CXCL6   | 32   | 0.6 (0.2, 1)                 | 0.132 | 0.637           | 29         | -1.3 (-1.6, -1)              | 0.0001  | 0.006         |
| BLNK    | 438  | 0.1 (-0.1, 0.2)              | 0.621 | 0.932           | 395        | -0.5 (-0.7, -0.4)            | 0.0001  | 0.006         |
| LTB     | 30   | -0.4 (-0.8, 0.1)             | 0.381 | 0.822           | 32         | -1.3 (-1.7, -1)              | 0.0002  | 0.009         |
| TLR8    | 125  | -0.3 (-0.5, -0.1)            | 0.092 | 0.637           | 98         | -0.5 (-0.7, -0.4)            | 0.0004  | 0.016         |
| LBP     | 18   | -0.2 (-1.2, 0.8)             | 0.862 | 0.968           | 25         | 1.8 (1.2, 2.3)               | 0.002   | 0.066         |
| CCL21   | 85   | 0.5 (0.2, 0.9)               | 0.128 | 0.637           | 76         | 0.9 (0.6, 1.2)               | 0.003   | 0.076         |
| CTSK    | 1388 | 0.3 (0.1, 0.4)               | 0.057 | 0.637           | 921        | 0.4 (0.2, 0.5)               | 0.003   | 0.076         |
| MAPK13  | 1132 | -0.1 (-0.3, 0)               | 0.233 | 0.689           | 1221       | -0.3 (-0.4, -0.2)            | 0.003   | 0.076         |
| IL12A   | 112  | -0.4 (-0.6, -0.1)            | 0.125 | 0.637           | 118        | -0.6 (-0.8, -0.4)            | 0.005   | 0.099         |
| CX3CL1  | 245  | 0.3 (0.1, 0.5)               | 0.070 | 0.637           | 290        | -0.4 (-0.6, -0.3)            | 0.006   | 0.113         |
| EDARADD | 189  | -0.6 (-0.9, -0.4)            | 0.013 | 0.407           | 161        | 0.5 (0.3, 0.8)               | 0.011   | 0.191         |
| BCL2A1  | 123  | -0.2 (-0.4, 0)               | 0.226 | 0.686           | 81         | -0.4 (-0.6, -0.2)            | 0.017   | 0.267         |
| CREB3   | 969  | -0.1 (-0.2, 0)               | 0.189 | 0.655           | 1180       | -0.2 (-0.3, -0.1)            | 0.021   | 0.304         |
| CXCL12  | 1127 | 0.3 (0.1, 0.5)               | 0.082 | 0.637           | 976        | 0.3 (0.2, 0.5)               | 0.027   | 0.308         |
| CARD11  | 1154 | 0.1 (-0.1, 0.3)              | 0.506 | 0.888           | 1185       | 0.4 (0.2, 0.5)               | 0.028   | 0.308         |
| AKT3    | 1120 | 0.1 (-0.1, 0.3)              | 0.545 | 0.904           | 845        | 0.4 (0.2, 0.6)               | 0.028   | 0.308         |
| TRAF5   | 2145 | 0 (-0.2, 0.1)                | 0.693 | 0.956           | 2093       | -0.3 (-0.4, -0.1)            | 0.024   | 0.308         |
| TNFSF11 | 14   | 0 (-0.4, 0.4)                | 0.978 | 0.999           | 12         | 0.9 (0.5, 1.4)               | 0.026   | 0.308         |
| CD40LG  | 22   | -0.4 (-0.7, -0.2)            | 0.101 | 0.637           | 14         | -0.5 (-0.7, -0.3)            | 0.034   | 0.345         |
| CXCL8   | 427  | -0.4 (-0.6, -0.1)            | 0.135 | 0.637           | 286        | -0.5 (-0.7, -0.2)            | 0.040   | 0.345         |
| PLCG1   | 9728 | 0.1 (0, 0.2)                 | 0.164 | 0.642           | 10004      | 0.2 (0.1, 0.3)               | 0.039   | 0.345         |
| IFNA2   | 2    | -1.6 (-3, -0.3)              | 0.223 | 0.686           | 2          | 1.6 (0.8, 2.3)               | 0.043   | 0.345         |
| NOD2    | 481  | -0.1 (-0.2, 0.1)             | 0.665 | 0.956           | 529        | -0.3 (-0.4, -0.1)            | 0.035   | 0.345         |
| CREB3L3 | 2    | 0 (-0.8, 0.8)                | 0.988 | 0.999           | 3          | -1.3 (-2, -0.7)              | 0.037   | 0.345         |
| NFKB2   | 3119 | 0 (-0.1, 0.1)                | 0.961 | 0.999           | 3868       | -0.2 (-0.2, -0.1)            | 0.042   | 0.345         |

| SELE     | 30   | 0.9 (0.6, 1.2)    | 0.002   | 0.132 | 22   | 0.6 (0.3, 0.9)    | 0.053 | 0.356 |
|----------|------|-------------------|---------|-------|------|-------------------|-------|-------|
| MMP14    | 5287 | 0.2 (0.1, 0.3)    | 0.074   | 0.637 | 4188 | 0.2 (0.1, 0.3)    | 0.051 | 0.356 |
| VCAM1    | 856  | 0.2 (0, 0.3)      | 0.205   | 0.671 | 763  | -0.3 (-0.4, -0.1) | 0.051 | 0.356 |
| MAPK1    | 2840 | 0.1 (0, 0.2)      | 0.502   | 0.888 | 2361 | -0.2 (-0.3, -0.1) | 0.050 | 0.356 |
| CXCL2    | 134  | -0.1 (-0.3, 0.2)  | 0.780   | 0.956 | 223  | -0.5 (-0.7, -0.2) | 0.047 | 0.356 |
| RAC1     | 3319 | 0 (0, 0.1)        | 0.659   | 0.956 | 2550 | 0.2 (0.1, 0.2)    | 0.055 | 0.361 |
| CARD14   | 167  | 0.5 (0.3, 0.7)    | 0.022   | 0.407 | 282  | -0.3 (-0.5, -0.2) | 0.057 | 0.364 |
| TNFSF13B | 209  | -0.2 (-0.4, -0.1) | 0.168   | 0.642 | 193  | -0.2 (-0.4, -0.1) | 0.065 | 0.401 |
| CCL5     | 698  | -0.2 (-0.4, -0.1) | 0.114   | 0.637 | 714  | -0.2 (-0.3, -0.1) | 0.073 | 0.440 |
| CXCL9    | 379  | -0.8 (-1.1, -0.6) | 0.002   | 0.124 | 385  | -0.4 (-0.7, -0.2) | 0.078 | 0.444 |
| MLKL     | 330  | -0.1 (-0.2, 0.1)  | 0.576   | 0.909 | 354  | -0.2 (-0.3, -0.1) | 0.076 | 0.444 |
| MMP9     | 1221 | -0.2 (-0.5, 0)    | 0.387   | 0.822 | 905  | -0.4 (-0.6, -0.2) | 0.082 | 0.455 |
| GADD45B  | 608  | 0.2 (0.1, 0.4)    | 0.133   | 0.637 | 713  | 0.2 (0.1, 0.4)    | 0.088 | 0.457 |
| CREB3L1  | 1279 | 0.2 (0, 0.4)      | 0.254   | 0.713 | 1311 | 0.3 (0.1, 0.4)    | 0.088 | 0.457 |
| IRAK1    | 4574 | 0 (-0.1, 0.2)     | 0.724   | 0.956 | 5566 | -0.2 (-0.3, -0.1) | 0.087 | 0.457 |
| EDA      | 189  | 0.3 (0.1, 0.5)    | 0.109   | 0.637 | 225  | 0.3 (0.1, 0.5)    | 0.094 | 0.460 |
| CXCL3    | 70   | -0.5 (-0.7, -0.2) | 0.056   | 0.637 | 83   | -0.4 (-0.6, -0.1) | 0.093 | 0.460 |
| MAP2K1   | 1388 | 0 (-0.1, 0.1)     | 0.860   | 0.968 | 1341 | -0.1 (-0.2, 0)    | 0.095 | 0.460 |
| VEGFC    | 422  | 0.2 (0, 0.4)      | 0.249   | 0.710 | 366  | -0.3 (-0.4, -0.1) | 0.100 | 0.466 |
| MAPK14   | 1547 | -0.1 (-0.2, 0)    | 0.363   | 0.811 | 1282 | -0.1 (-0.2, -0.1) | 0.101 | 0.466 |
| ВТК      | 301  | -0.2 (-0.3, -0.1) | 0.137   | 0.637 | 306  | -0.2 (-0.3, -0.1) | 0.106 | 0.471 |
| MAP2K2   | 3643 | -0.1 (-0.2, 0)    | 0.604   | 0.925 | 3827 | -0.1 (-0.2, 0)    | 0.106 | 0.471 |
| CCL13    | 16   | -1.8 (-2.2, -1.3) | 0.00002 | 0.005 | 15   | -0.6 (-1, -0.2)   | 0.109 | 0.471 |
| PLAU     | 1413 | 0.4 (0.2, 0.5)    | 0.028   | 0.470 | 1291 | 0.2 (0.1, 0.3)    | 0.113 | 0.471 |
| RELB     | 1174 | 0.1 (-0.1, 0.2)   | 0.687   | 0.956 | 1248 | -0.2 (-0.3, -0.1) | 0.111 | 0.471 |
| TRAF3    | 1519 | -0.1 (-0.2, 0)    | 0.340   | 0.787 | 1411 | -0.1 (-0.2, 0)    | 0.118 | 0.483 |
| LAT      | 381  | -0.1 (-0.3, 0)    | 0.326   | 0.763 | 523  | -0.2 (-0.3, -0.1) | 0.124 | 0.497 |
| BCL10    | 914  | -0.2 (-0.3, -0.1) | 0.056   | 0.637 | 838  | -0.1 (-0.2, 0)    | 0.135 | 0.516 |
| TNF      | 79   | -0.5 (-0.8, -0.2) | 0.108   | 0.637 | 87   | -0.4 (-0.6, -0.1) | 0.142 | 0.516 |
| ITCH     | 7029 | -0.1 (-0.1, 0)    | 0.403   | 0.822 | 6604 | 0.1 (0, 0.2)      | 0.143 | 0.516 |
| CXCL5    | 33   | -0.3 (-0.7, 0.1)  | 0.410   | 0.822 | 40   | -0.6 (-1, -0.2)   | 0.143 | 0.516 |

| BIRC3    | 2106 | -0.1 (-0.3, 0.1)  | 0.724 | 0.956 | 2486 | -0.3 (-0.4, -0.1) | 0.132 | 0.516 |
|----------|------|-------------------|-------|-------|------|-------------------|-------|-------|
| TRAF1    | 447  | 0 (-0.2, 0.1)     | 0.755 | 0.956 | 507  | 0.2 (0, 0.3)      | 0.141 | 0.516 |
| JUNB     | 3168 | 0.3 (0.1, 0.5)    | 0.064 | 0.637 | 4242 | 0.2 (0.1, 0.3)    | 0.150 | 0.532 |
| CSNK2A3  | 64   | 0.3 (0, 0.5)      | 0.315 | 0.752 | 48   | -0.3 (-0.5, -0.1) | 0.160 | 0.535 |
| TRADD    | 224  | -0.1 (-0.3, 0)    | 0.427 | 0.831 | 250  | -0.2 (-0.3, 0)    | 0.157 | 0.535 |
| GADD45A  | 485  | 0 (-0.2, 0.1)     | 0.713 | 0.956 | 541  | -0.2 (-0.3, 0)    | 0.160 | 0.535 |
| CASP7    | 701  | 0 (-0.1, 0.1)     | 0.891 | 0.972 | 646  | -0.1 (-0.2, 0)    | 0.160 | 0.535 |
| LYN      | 1536 | -0.1 (-0.2, 0)    | 0.363 | 0.811 | 1438 | -0.1 (-0.2, 0)    | 0.166 | 0.547 |
| TNFRSF1A | 5894 | -0.1 (-0.2, 0)    | 0.311 | 0.752 | 6120 | 0.1 (0, 0.2)      | 0.174 | 0.564 |
| TLR7     | 280  | -0.1 (-0.3, 0)    | 0.306 | 0.752 | 224  | 0.1 (0, 0.3)      | 0.180 | 0.575 |
| CCL19    | 27   | 0.6 (0.3, 1)      | 0.042 | 0.637 | 25   | 0.4 (0.1, 0.8)    | 0.192 | 0.605 |
| IFNAR1   | 3595 | -0.2 (-0.3, -0.1) | 0.102 | 0.637 | 2709 | 0.1 (0, 0.2)      | 0.201 | 0.605 |
| MALT1    | 2874 | 0.1 (0, 0.2)      | 0.382 | 0.822 | 2159 | -0.1 (-0.2, 0)    | 0.195 | 0.605 |
| TIRAP    | 281  | 0 (-0.1, 0.1)     | 0.998 | 0.999 | 334  | -0.1 (-0.2, 0)    | 0.198 | 0.605 |
| CFLAR    | 4891 | -0.1 (-0.1, 0)    | 0.315 | 0.752 | 5695 | -0.1 (-0.2, 0)    | 0.208 | 0.610 |
| TLR4     | 1143 | 0 (-0.2, 0.1)     | 0.779 | 0.956 | 884  | 0.1 (0, 0.2)      | 0.207 | 0.610 |
| CXCL11   | 201  | -0.5 (-0.8, -0.2) | 0.101 | 0.637 | 171  | -0.3 (-0.6, -0.1) | 0.215 | 0.623 |
| AKT2     | 6983 | 0.1 (0, 0.2)      | 0.247 | 0.710 | 7273 | 0.1 (0, 0.2)      | 0.255 | 0.628 |
| PIDD1    | 539  | -0.2 (-0.3, 0)    | 0.312 | 0.752 | 866  | 0.1 (0, 0.2)      | 0.231 | 0.628 |
| CASP10   | 638  | -0.1 (-0.2, 0)    | 0.359 | 0.811 | 710  | -0.1 (-0.3, 0)    | 0.239 | 0.628 |
| CSNK2A2  | 2259 | 0.1 (0, 0.1)      | 0.508 | 0.888 | 2306 | -0.1 (-0.2, 0)    | 0.233 | 0.628 |
| TRIM25   | 3568 | -0.1 (-0.1, 0)    | 0.493 | 0.888 | 3812 | -0.1 (-0.2, 0)    | 0.254 | 0.628 |
| IFNB1    | 2    | 0.3 (-0.2, 0.8)   | 0.562 | 0.909 | 1    | -0.6 (-1.1, -0.1) | 0.237 | 0.628 |
| TICAM2   | 10   | 0.2 (-0.2, 0.6)   | 0.596 | 0.919 | 5    | 0.5 (0.1, 0.9)    | 0.233 | 0.628 |
| CARD10   | 939  | -0.1 (-0.2, 0.1)  | 0.619 | 0.932 | 1160 | -0.2 (-0.3, 0)    | 0.244 | 0.628 |
| UBE2I    | 3720 | 0 (-0.1, 0.1)     | 0.801 | 0.968 | 3072 | -0.1 (-0.2, 0)    | 0.252 | 0.628 |
| CCL20    | 127  | -0.1 (-0.4, 0.3)  | 0.835 | 0.968 | 148  | -0.4 (-0.7, -0.1) | 0.226 | 0.628 |
| RIPK1    | 1588 | 0 (-0.1, 0.1)     | 0.851 | 0.968 | 1689 | -0.1 (-0.2, 0)    | 0.253 | 0.628 |
| CREB3L2  | 1847 | 0 (-0.1, 0.1)     | 0.815 | 0.968 | 2141 | -0.1 (-0.2, 0)    | 0.237 | 0.628 |
| CEBPB    | 3421 | 0 (-0.1, 0.1)     | 0.985 | 0.999 | 5088 | -0.1 (-0.2, 0)    | 0.242 | 0.628 |
| CXCL10   | 839  | -0.6 (-0.8, -0.3) | 0.020 | 0.407 | 756  | -0.2 (-0.4, 0)    | 0.269 | 0.641 |

| DIVODO    | 017   | 0.1 ( 0.0.0.1)    | 0.004 | 0.050 | 740   | 0.1 ( 0.2, 0)     | 0.000 | 0.044 |
|-----------|-------|-------------------|-------|-------|-------|-------------------|-------|-------|
| PIK3R3    | 917   | -0.1 (-0.2, 0.1)  | 0.684 | 0.956 | 743   | -0.1 (-0.3, 0)    | 0.266 | 0.641 |
| IFNA21    | 0     | 1.1 (-2, 4.2)     | 0.724 | 0.956 | 2     | 3.5 (0.4, 6.7)    | 0.265 | 0.641 |
| MMP3      | 31    | 0.1 (-1.2, 1.4)   | 0.946 | 0.990 | 24    | -0.6 (-1.2, 0)    | 0.284 | 0.669 |
| IL1R1     | 5195  | 0 (-0.1, 0.2)     | 0.871 | 0.968 | 4266  | 0.1 (0, 0.2)      | 0.289 | 0.674 |
| CSNK2B    | 3     | 1.2 (-0.2, 2.7)   | 0.396 | 0.822 | 2     | -1.6 (-3.1, -0.1) | 0.294 | 0.678 |
| LTBR      | 3988  | 0 (-0.1, 0.1)     | 0.739 | 0.956 | 5052  | 0.1 (0, 0.2)      | 0.300 | 0.686 |
| LY96      | 140   | -0.1 (-0.2, 0.1)  | 0.690 | 0.956 | 73    | 0.1 (0, 0.3)      | 0.309 | 0.699 |
| CD80      | 68    | 0 (-0.2, 0.2)     | 0.992 | 0.999 | 75    | -0.2 (-0.3, 0)    | 0.317 | 0.710 |
| RPS6KA5   | 826   | 0 (-0.1, 0.1)     | 0.827 | 0.968 | 791   | -0.1 (-0.2, 0)    | 0.327 | 0.723 |
| RELA      | 4709  | 0.1 (0.1, 0.2)    | 0.075 | 0.637 | 4538  | -0.1 (-0.1, 0)    | 0.337 | 0.726 |
| NFKBIA    | 6278  | 0.2 (0, 0.3)      | 0.182 | 0.653 | 6887  | -0.1 (-0.2, 0)    | 0.333 | 0.726 |
| IKBKB     | 3996  | 0 (-0.1, 0.1)     | 0.745 | 0.956 | 4738  | 0.1 (0, 0.2)      | 0.338 | 0.726 |
| TAB3      | 2896  | -0.1 (-0.2, 0)    | 0.265 | 0.726 | 2661  | -0.1 (-0.2, 0)    | 0.354 | 0.741 |
| SOCS3     | 1088  | 0.2 (0, 0.4)      | 0.283 | 0.738 | 1738  | -0.1 (-0.3, 0)    | 0.354 | 0.741 |
| RPS6KA4   | 1032  | 0 (-0.1, 0.1)     | 0.905 | 0.972 | 1332  | 0.1 (0, 0.2)      | 0.355 | 0.741 |
| PIK3CA    | 5849  | -0.1 (-0.2, -0.1) | 0.125 | 0.637 | 4864  | 0.1 (0, 0.2)      | 0.383 | 0.750 |
| MAPK10    | 473   | 0.2 (0.1, 0.4)    | 0.158 | 0.642 | 456   | -0.1 (-0.3, 0)    | 0.382 | 0.750 |
| IFNA13    | 5     | -1.5 (-2.7, -0.4) | 0.167 | 0.642 | 2     | 0.7 (-0.1, 1.5)   | 0.368 | 0.750 |
| EDN1      | 272   | -0.2 (-0.4, 0)    | 0.218 | 0.686 | 319   | -0.2 (-0.3, 0)    | 0.375 | 0.750 |
| TBK1      | 2863  | -0.1 (-0.2, 0)    | 0.407 | 0.822 | 2186  | -0.1 (-0.2, 0)    | 0.370 | 0.750 |
| GADD45G   | 94    | -0.2 (-0.4, 0.1)  | 0.491 | 0.888 | 103   | -0.2 (-0.3, 0)    | 0.374 | 0.750 |
| TNFRSF13C | 53    | 0 (-0.2, 0.2)     | 0.860 | 0.968 | 61    | 0.1 (0, 0.3)      | 0.382 | 0.750 |
| BCL2      | 227   | 0.1 (-0.1, 0.3)   | 0.518 | 0.892 | 176   | 0.1 (0, 0.3)      | 0.398 | 0.762 |
| NFKB1     | 2224  | 0 (0, 0.1)        | 0.669 | 0.956 | 2240  | 0.1 (0, 0.1)      | 0.395 | 0.762 |
| ATF2      | 5713  | 0 (-0.1, 0.1)     | 0.910 | 0.972 | 5197  | -0.1 (-0.1, 0)    | 0.401 | 0.762 |
| LCK       | 137   | -0.1 (-0.3, 0.1)  | 0.579 | 0.909 | 143   | -0.1 (-0.3, 0)    | 0.417 | 0.786 |
| PIK3R2    | 3378  | 0.1 (0, 0.2)      | 0.415 | 0.822 | 4530  | 0.1 (0, 0.2)      | 0.441 | 0.808 |
| DAB2IP    | 4088  | 0.1 (0, 0.2)      | 0.419 | 0.823 | 5308  | 0.1 (0, 0.2)      | 0.435 | 0.808 |
| TNFAIP3   | 3734  | -0.1 (-0.2, 0)    | 0.439 | 0.833 | 4393  | -0.1 (-0.2, 0)    | 0.437 | 0.808 |
| MAP3K8    | 1456  | -0.1 (-0.2, 0)    | 0.546 | 0.904 | 1795  | -0.1 (-0.2, 0)    | 0.443 | 0.808 |
| STAT1     | 16431 | -0.2 (-0.3, -0.1) | 0.058 | 0.637 | 15719 | -0.1 (-0.2, 0)    | 0.454 | 0.814 |

| [        |       |                   |       |       |       |                  |       |       |
|----------|-------|-------------------|-------|-------|-------|------------------|-------|-------|
| TLR1     | 602   | -0.1 (-0.2, 0)    | 0.229 | 0.686 | 498   | -0.1 (-0.2, 0)   | 0.451 | 0.814 |
| BCL3     | 2820  | 0.1 (0, 0.3)      | 0.365 | 0.811 | 3473  | -0.1 (-0.2, 0)   | 0.476 | 0.815 |
| IL12B    | 4     | -0.3 (-0.8, 0.2)  | 0.513 | 0.890 | 3     | 0.3 (-0.1, 0.8)  | 0.471 | 0.815 |
| RIPK3    | 283   | 0 (-0.1, 0.2)     | 0.780 | 0.956 | 381   | 0.1 (0, 0.2)     | 0.472 | 0.815 |
| MAPK12   | 299   | 0 (-0.2, 0.1)     | 0.775 | 0.956 | 333   | 0.1 (0, 0.2)     | 0.476 | 0.815 |
| TLR3     | 950   | 0 (-0.1, 0.2)     | 0.868 | 0.968 | 837   | 0.1 (0, 0.2)     | 0.477 | 0.815 |
| CCL4     | 87    | -0.1 (-0.3, 0.2)  | 0.829 | 0.968 | 71    | 0.2 (-0.1, 0.4)  | 0.465 | 0.815 |
| CCL2     | 1416  | 0 (-0.1, 0.2)     | 0.823 | 0.968 | 1058  | -0.1 (-0.2, 0)   | 0.483 | 0.819 |
| FOS      | 11158 | 0.4 (0.2, 0.6)    | 0.022 | 0.407 | 14841 | 0.1 (-0.1, 0.3)  | 0.549 | 0.822 |
| TRAF2    | 1359  | -0.2 (-0.3, -0.1) | 0.048 | 0.637 | 1806  | -0.1 (-0.2, 0)   | 0.517 | 0.822 |
| JUN      | 7169  | 0.2 (0.1, 0.3)    | 0.116 | 0.637 | 8752  | -0.1 (-0.2, 0)   | 0.510 | 0.822 |
| СНИК     | 1605  | -0.1 (-0.2, 0)    | 0.145 | 0.637 | 1109  | -0.1 (-0.1, 0)   | 0.540 | 0.822 |
| PIK3CD   | 1445  | -0.1 (-0.3, 0)    | 0.272 | 0.727 | 1656  | -0.1 (-0.1, 0)   | 0.549 | 0.822 |
| MAP2K7   | 1044  | -0.1 (-0.2, 0)    | 0.292 | 0.752 | 1120  | -0.1 (-0.2, 0)   | 0.513 | 0.822 |
| PIAS4    | 911   | 0.1 (0, 0.2)      | 0.383 | 0.822 | 1102  | -0.1 (-0.1, 0)   | 0.511 | 0.822 |
| EDAR     | 71    | -0.3 (-0.6, 0.1)  | 0.414 | 0.822 | 75    | 0.2 (-0.1, 0.5)  | 0.546 | 0.822 |
| AKT1     | 8755  | 0.1 (0, 0.2)      | 0.398 | 0.822 | 8850  | 0 (-0.1, 0)      | 0.523 | 0.822 |
| ICAM1    | 2389  | -0.1 (-0.3, 0.1)  | 0.479 | 0.880 | 2369  | -0.1 (-0.2, 0.1) | 0.527 | 0.822 |
| CYLD     | 2661  | -0.1 (-0.1, 0)    | 0.498 | 0.888 | 2416  | 0 (-0.1, 0)      | 0.509 | 0.822 |
| PGAM5    | 910   | 0.1 (0, 0.2)      | 0.535 | 0.904 | 1014  | -0.1 (-0.1, 0)   | 0.541 | 0.822 |
| TNFRSF1B | 489   | 0.1 (-0.1, 0.2)   | 0.562 | 0.909 | 604   | -0.1 (-0.2, 0)   | 0.524 | 0.822 |
| TLR6     | 309   | 0.1 (-0.1, 0.2)   | 0.568 | 0.909 | 251   | -0.1 (-0.2, 0)   | 0.537 | 0.822 |
| PIK3CB   | 4550  | 0 (-0.1, 0.1)     | 0.872 | 0.968 | 3903  | -0.1 (-0.1, 0)   | 0.506 | 0.822 |
| MAPK8    | 1453  | 0 (-0.1, 0.1)     | 0.911 | 0.972 | 1098  | -0.1 (-0.1, 0)   | 0.496 | 0.822 |
| FADD     | 721   | 0 (-0.1, 0.1)     | 0.908 | 0.972 | 660   | 0 (-0.1, 0)      | 0.515 | 0.822 |
| TLR9     | 70    | -0.2 (-1.3, 0.8)  | 0.822 | 0.968 | 69    | 0.2 (-0.2, 0.6)  | 0.554 | 0.824 |
| ZAP70    | 201   | -0.1 (-0.3, 0.1)  | 0.649 | 0.956 | 246   | -0.1 (-0.2, 0.1) | 0.562 | 0.829 |
| MAPK11   | 110   | 0.4 (0.2, 0.5)    | 0.060 | 0.637 | 131   | 0.1 (-0.1, 0.2)  | 0.573 | 0.833 |
| ATF6B    | 4104  | -0.3 (-0.4, -0.1) | 0.068 | 0.637 | 3445  | -0.1 (-0.3, 0.1) | 0.576 | 0.833 |
| TLR2     | 739   | -0.1 (-0.2, 0)    | 0.224 | 0.686 | 716   | -0.1 (-0.2, 0)   | 0.572 | 0.833 |
| CASP8    | 1484  | -0.2 (-0.3, -0.1) | 0.015 | 0.407 | 1421  | 0 (-0.1, 0)      | 0.594 | 0.847 |

| MAP3K7    | 3579  | 0 (-0.1, 0)       | 0.542 | 0.904 | 3136  | 0 (0, 0.1)       | 0.593 | 0.847 |
|-----------|-------|-------------------|-------|-------|-------|------------------|-------|-------|
| CREB3L4   | 828   | 0 (-0.1, 0.1)     | 0.834 | 0.968 | 874   | 0.1 (0, 0.1)     | 0.604 | 0.857 |
| IRF3      | 2329  | -0.2 (-0.3, 0)    | 0.173 | 0.642 | 2797  | 0 (0, 0.1)       | 0.635 | 0.862 |
| PIK3R1    | 5051  | 0.2 (0.1, 0.3)    | 0.160 | 0.642 | 4313  | -0.1 (-0.2, 0.1) | 0.635 | 0.862 |
| TOLLIP    | 517   | 0.1 (0, 0.2)      | 0.431 | 0.833 | 574   | 0 (-0.1, 0)      | 0.628 | 0.862 |
| МАРКЗ     | 2910  | 0.1 (0, 0.2)      | 0.436 | 0.833 | 2816  | 0 (-0.1, 0)      | 0.622 | 0.862 |
| SPP1      | 11058 | -0.1 (-0.2, 0.1)  | 0.723 | 0.956 | 8657  | -0.1 (-0.2, 0.1) | 0.635 | 0.862 |
| ATF4      | 4463  | 0 (-0.1, 0.1)     | 0.772 | 0.956 | 5985  | 0 (-0.1, 0)      | 0.630 | 0.862 |
| IKBKE     | 1403  | 0 (-0.1, 0.1)     | 0.876 | 0.968 | 1583  | -0.1 (-0.2, 0.1) | 0.623 | 0.862 |
| TICAM1    | 925   | -0.2 (-0.3, -0.1) | 0.140 | 0.637 | 1031  | 0 (-0.1, 0.1)    | 0.663 | 0.876 |
| IFNA5     | 1     | 1.4 (0.4, 2.4)    | 0.162 | 0.642 | 1     | -0.3 (-1, 0.4)   | 0.659 | 0.876 |
| CD14      | 644   | 0 (-0.1, 0.2)     | 0.722 | 0.956 | 635   | 0 (-0.2, 0.1)    | 0.662 | 0.876 |
| BCL2L1    | 2416  | 0 (-0.1, 0.1)     | 0.765 | 0.956 | 2129  | 0 (-0.1, 0)      | 0.666 | 0.876 |
| LTA       | 4     | 0.1 (-1.8, 1.9)   | 0.974 | 0.999 | 7     | 0.4 (-0.5, 1.4)  | 0.656 | 0.876 |
| TRAF6     | 1019  | -0.1 (-0.2, 0)    | 0.197 | 0.663 | 956   | 0 (-0.1, 0)      | 0.679 | 0.888 |
| IFNA8     | 2     | 0 (-3.1, 3.2)     | 0.991 | 0.999 | 0     | -1.3 (-4.4, 1.9) | 0.687 | 0.893 |
| JAG1      | 4935  | 0.4 (0.2, 0.5)    | 0.009 | 0.407 | 4451  | 0 (-0.1, 0.2)    | 0.696 | 0.896 |
| МАРК9     | 1685  | -0.1 (-0.2, 0)    | 0.119 | 0.637 | 1382  | 0 (-0.1, 0.1)    | 0.699 | 0.896 |
| IRF5      | 257   | 0.1 (0, 0.3)      | 0.472 | 0.874 | 347   | 0 (-0.2, 0.1)    | 0.706 | 0.896 |
| FAS       | 2295  | 0 (-0.1, 0.1)     | 0.999 | 0.999 | 1765  | 0 (-0.1, 0.2)    | 0.702 | 0.896 |
| DNM1L     | 7247  | -0.2 (-0.3, -0.1) | 0.016 | 0.407 | 5932  | 0 (-0.1, 0.1)    | 0.776 | 0.920 |
| MAP2K6    | 678   | -0.2 (-0.4, -0.1) | 0.143 | 0.637 | 521   | 0 (-0.1, 0.2)    | 0.745 | 0.920 |
| IRF1      | 2204  | -0.2 (-0.3, -0.1) | 0.142 | 0.637 | 2727  | 0 (-0.1, 0.1)    | 0.769 | 0.920 |
| IFNAR2    | 1075  | -0.2 (-0.3, 0)    | 0.146 | 0.637 | 857   | 0 (-0.1, 0.1)    | 0.759 | 0.920 |
| CCL3L1    | 36    | 0.6 (0.2, 1.1)    | 0.173 | 0.642 | 14    | -0.2 (-1, 0.5)   | 0.768 | 0.920 |
| TAB2      | 17354 | -0.1 (-0.2, 0)    | 0.185 | 0.653 | 13306 | 0 (-0.1, 0.1)    | 0.770 | 0.920 |
| TNFRSF11A | 109   | 0.2 (0.1, 0.4)    | 0.185 | 0.653 | 125   | 0 (-0.1, 0.2)    | 0.752 | 0.920 |
| TNFSF14   | 47    | -0.3 (-0.6, -0.1) | 0.206 | 0.671 | 92    | 0.1 (-0.2, 0.3)  | 0.754 | 0.920 |
| XIAP      | 9666  | -0.1 (-0.2, 0)    | 0.214 | 0.686 | 6847  | 0 (-0.1, 0.1)    | 0.737 | 0.920 |
| LIF       | 751   | -0.2 (-0.4, 0)    | 0.391 | 0.822 | 950   | 0.1 (-0.1, 0.2)  | 0.745 | 0.920 |
| PARP1     | 10820 | 0 (-0.1, 0)       | 0.625 | 0.932 | 9814  | 0 (-0.1, 0.1)    | 0.775 | 0.920 |

| IFNA1   | 1     | -0.6 (-2.7, 1.4)  | 0.761  | 0.956 | 1     | -0.4 (-1.8, 0.9) | 0.752 | 0.920 |
|---------|-------|-------------------|--------|-------|-------|------------------|-------|-------|
| TLR5    | 896   | 0.2 (0, 0.3)      | 0.250  | 0.710 | 813   | 0 (-0.2, 0.1)    | 0.801 | 0.940 |
| CREB1   | 1922  | 0 (-0.1, 0)       | 0.612  | 0.930 | 1798  | 0 (0, 0.1)       | 0.801 | 0.940 |
| TAB1    | 779   | 0.3 (0.1, 0.4)    | 0.021  | 0.407 | 942   | 0 (-0.1, 0.1)    | 0.808 | 0.942 |
| EDA2R   | 49    | -0.4 (-0.6, -0.1) | 0.123  | 0.637 | 35    | 0 (-0.2, 0.2)    | 0.820 | 0.945 |
| CSNK2A1 | 5836  | -0.1 (-0.2, 0)    | 0.172  | 0.642 | 4793  | 0 (-0.1, 0.1)    | 0.823 | 0.945 |
| CD40    | 516   | 0 (-0.2, 0.1)     | 0.880  | 0.968 | 654   | 0 (-0.1, 0.1)    | 0.818 | 0.945 |
| BIRC2   | 2794  | 0.1 (0, 0.2)      | 0.581  | 0.909 | 2601  | 0 (-0.1, 0.1)    | 0.845 | 0.960 |
| SYK     | 2973  | 0 (-0.1, 0.2)     | 0.747  | 0.956 | 2627  | 0 (-0.1, 0.1)    | 0.845 | 0.960 |
| IL6     | 134   | 0 (-0.3, 0.2)     | 0.915  | 0.972 | 152   | 0 (-0.3, 0.2)    | 0.854 | 0.966 |
| IKBKG   | 529   | 0 (-0.1, 0.2)     | 0.848  | 0.968 | 726   | 0 (-0.1, 0.1)    | 0.862 | 0.969 |
| CREB5   | 1113  | 0.6 (0.4, 0.7)    | 0.0002 | 0.018 | 1210  | 0 (-0.1, 0.2)    | 0.885 | 0.976 |
| CASP3   | 594   | -0.2 (-0.3, 0)    | 0.138  | 0.637 | 401   | 0 (-0.1, 0.1)    | 0.893 | 0.976 |
| PLCG2   | 4337  | 0.1 (0, 0.3)      | 0.271  | 0.727 | 5083  | 0 (-0.1, 0.1)    | 0.891 | 0.976 |
| PRKCQ   | 1134  | -0.2 (-0.3, 0)    | 0.304  | 0.752 | 1047  | 0 (-0.2, 0.1)    | 0.895 | 0.976 |
| IFNA16  | 0     | 0.6 (-2.5, 3.7)   | 0.851  | 0.968 | 0     | 0.4 (-2.7, 3.6)  | 0.886 | 0.976 |
| IRF7    | 128   | 0.2 (-2.1, 2.5)   | 0.933  | 0.982 | 205   | -0.1 (-0.6, 0.5) | 0.884 | 0.976 |
| IFNA6   | 1     | 0.7 (-1.7, 3.2)   | 0.757  | 0.956 | 0     | 0.2 (-1.4, 1.8)  | 0.903 | 0.977 |
| MAP2K3  | 1489  | 0 (-0.1, 0.1)     | 0.837  | 0.968 | 1747  | 0 (-0.1, 0.1)    | 0.905 | 0.977 |
| BAG4    | 2383  | 0.2 (0.1, 0.3)    | 0.072  | 0.637 | 2383  | 0 (-0.1, 0.1)    | 0.916 | 0.984 |
| CD86    | 184   | -0.2 (-0.4, -0.1) | 0.091  | 0.637 | 161   | 0 (-0.1, 0.1)    | 0.929 | 0.988 |
| IL1B    | 243   | 0.1 (-0.1, 0.3)   | 0.466  | 0.869 | 261   | 0 (-0.1, 0.2)    | 0.929 | 0.988 |
| CSF1    | 1000  | 0.1 (0, 0.3)      | 0.325  | 0.763 | 1217  | 0 (-0.1, 0.1)    | 0.940 | 0.990 |
| ERC1    | 9795  | 0.1 (0, 0.2)      | 0.529  | 0.904 | 11550 | 0 (-0.1, 0.1)    | 0.939 | 0.990 |
| IRAK4   | 681   | 0 (-0.2, 0.1)     | 0.673  | 0.956 | 572   | 0 (-0.1, 0.1)    | 0.945 | 0.991 |
| IL15    | 121   | -0.2 (-0.4, -0.1) | 0.193  | 0.658 | 123   | 0 (-0.2, 0.2)    | 0.957 | 0.994 |
| MYD88   | 1030  | 0 (-0.1, 0.1)     | 0.712  | 0.956 | 887   | 0 (-0.1, 0.1)    | 0.957 | 0.994 |
| MAP2K4  | 876   | -0.1 (-0.2, 0)    | 0.585  | 0.909 | 701   | 0 (-0.1, 0.1)    | 0.963 | 0.995 |
| MAP3K5  | 2762  | 0 (-0.1, 0.1)     | 0.702  | 0.956 | 2465  | 0 (-0.1, 0.1)    | 0.970 | 0.998 |
| IL18R1  | 186   | -0.2 (-0.4, 0)    | 0.261  | 0.725 | 149   | 0 (-0.2, 0.2)    | 0.986 | 0.999 |
| ATM     | 17847 | -0.1 (-0.2, 0)    | 0.281  | 0.738 | 15600 | 0 (-0.1, 0.1)    | 0.995 | 0.999 |

| PRKCB   | 355  | 0.2 (0, 0.3)     | 0.296 | 0.752 | 348  | 0 (-0.1, 0.1)   | 0.999 | 0.999 |
|---------|------|------------------|-------|-------|------|-----------------|-------|-------|
| MAP3K14 | 1278 | 0.1 (0, 0.2)     | 0.575 | 0.909 | 1419 | 0 (-0.1, 0.1)   | 0.985 | 0.999 |
| CCL3    | 108  | -0.1 (-0.3, 0.1) | 0.763 | 0.956 | 105  | 0 (-0.2, 0.2)   | 0.994 | 0.999 |
| PTGS2   | 400  | -0.1 (-0.3, 0.2) | 0.810 | 0.968 | 367  | 0 (-0.2, 0.2)   | 0.979 | 0.999 |
| IFNA4   | 0    | 1.7 (-1.4, 4.9)  | 0.581 | 0.909 | 0    | 0.1 (-3, 3.3)   | 0.969 | 1.00  |
| IFNA14  | 0    | 0.9 (-2.2, 4)    | 0.774 | 0.956 | 0    | 0.3 (-2.9, 3.4) | 0.933 | 1.00  |
| IFNA17  | 0    | -0.3 (-3.5, 2.8) | 0.912 | 0.972 | 0    | 0 (-3.2, 3.1)   | 0.994 | 1.00  |
| IFNA7   | 0    | 0.3 (-2.9, 3.4)  | 0.932 | 0.982 | 0    | 0.4 (-2.8, 3.5) | 0.912 | 1.00  |
| IFNA10  | 0    | 0.1 (-3, 3.2)    | 0.976 | 0.999 | 0    | -0.8 (-4, 2.4)  | 0.801 | 1.00  |

Abbreviations: TLR = toll-like receptor; NFkB = nuclear factor kappa B; TNF = tumor necrosis factor; EOC = epithelial ovarian cancer; HGSOC = high

grade serous ovarian cancer; AACES = African American Cancer Epidemiology Study; OCAC = Ovarian Cancer Association Consortium;

<sup>a</sup>Adjusted for age, tumor purity, and two ancestry principal components.

<sup>b</sup>Corrected for the number of genes tested using the Benjamini-Hochberg false discovery rate (FDR).

**Supplementary Table ST6.3.** Cox proportional hazard models to assess high/low RNA expression in association with 5-year Survival (no/yes) in TLR, NFkB, TNF genes among Black and White HGSOC cases.

| Gene     | Black cases       | 3     | White cases       |       |
|----------|-------------------|-------|-------------------|-------|
| Gene     | HR (95% CI)ª      | р     | HR (95% CI)ª      | р     |
| BLNK     | 1.02 (0.74, 1.41) | 0.899 | 0.63 (0.48, 0.83) | 0.001 |
| CD80     | 1.02 (0.73, 1.41) | 0.921 | 0.64 (0.48, 0.84) | 0.001 |
| MLKL     | 1 (0.72, 1.38)    | 0.997 | 0.64 (0.49, 0.84) | 0.002 |
| NOD2     | 0.89 (0.64, 1.23) | 0.473 | 0.69 (0.52, 0.9)  | 0.007 |
| CXCL9    | 0.67 (0.48, 0.93) | 0.017 | 0.68 (0.51, 0.9)  | 0.007 |
| TICAM1   | 1.23 (0.89, 1.71) | 0.213 | 0.7 (0.53, 0.92)  | 0.010 |
| CXCL6    | 0.98 (0.71, 1.36) | 0.908 | 0.7 (0.53, 0.92)  | 0.012 |
| CX3CL1   | 1.1 (0.8, 1.52)   | 0.565 | 0.71 (0.54, 0.93) | 0.014 |
| MAPK13   | 0.95 (0.69, 1.31) | 0.745 | 0.72 (0.55, 0.94) | 0.018 |
| FADD     | 0.98 (0.71, 1.35) | 0.909 | 0.72 (0.54, 0.95) | 0.018 |
| PIK3R2   | 1.18 (0.85, 1.65) | 0.324 | 1.37 (1.04, 1.8)  | 0.024 |
| MAP3K7   | 0.74 (0.54, 1.03) | 0.071 | 1.32 (1.01, 1.73) | 0.043 |
| LYN      | 0.85 (0.61, 1.19) | 0.356 | 0.75 (0.57, 0.99) | 0.044 |
| TNFSF13B | 0.84 (0.6, 1.17)  | 0.294 | 0.76 (0.58, 1)    | 0.047 |
| TAB2     | 0.77 (0.56, 1.07) | 0.119 | 1.32 (1, 1.75)    | 0.047 |
| CCL21    | 1 (0.72, 1.38)    | 0.996 | 1.32 (1, 1.74)    | 0.047 |
| MAP2K1   | 0.95 (0.69, 1.31) | 0.760 | 0.76 (0.58, 1)    | 0.049 |
| TRADD    | 1 (0.73, 1.38)    | 0.976 | 0.76 (0.58, 1)    | 0.051 |
| IL6      | 1.05 (0.76, 1.45) | 0.751 | 0.77 (0.58, 1.01) | 0.058 |
| ICAM1    | 1.02 (0.74, 1.41) | 0.907 | 0.77 (0.59, 1.01) | 0.060 |
| CASP7    | 0.84 (0.61, 1.15) | 0.276 | 0.77 (0.59, 1.01) | 0.060 |
| TNFAIP3  | 1 (0.72, 1.38)    | 0.977 | 0.77 (0.59, 1.01) | 0.061 |
| CREB5    | 1.89 (1.36, 2.62) | 0.000 | 1.29 (0.99, 1.7)  | 0.063 |
| CTSK     | 1.1 (0.8, 1.52)   | 0.563 | 1.29 (0.99, 1.7)  | 0.063 |
| ZAP70    | 1.05 (0.76, 1.45) | 0.779 | 0.78 (0.59, 1.02) | 0.072 |
| CXCL10   | 0.72 (0.52, 1)    | 0.047 | 0.78 (0.59, 1.03) | 0.079 |

| IRAK1  |            | 1.31 (0.94, 1.82 | 2) 0.113 | 0.78 (0.59, 1.03) | ) 0.082 |
|--------|------------|------------------|----------|-------------------|---------|
| TICAM2 | 2          | 1.22 (0.88, 1.68 | 3) 0.233 | 1.28 (0.97, 1.69) | ) 0.084 |
| PIK3R3 |            | 1.03 (0.75, 1.43 | B) 0.852 | 0.79 (0.6, 1.03)  | 0.084   |
| TLR8   |            | 0.8 (0.58, 1.11) | 0.184    | 0.78 (0.59, 1.03) | ) 0.084 |
| ITCH   |            | 0.83 (0.6, 1.16) | 0.277    | 1.27 (0.97, 1.67) | ) 0.088 |
| CXCL1  | 1          | 0.67 (0.49, 0.93 | 3) 0.017 | 0.79 (0.6, 1.04)  | 0.090   |
| RELB   |            | 1.46 (1.05, 2.04 | ) 0.026  | 0.79 (0.6, 1.04)  | 0.090   |
| CREB3  | <u>L</u> 1 | 1.21 (0.87, 1.67 | ') 0.254 | 1.26 (0.96, 1.66) | ) 0.090 |
| CARD1  | 4          | 1.49 (1.06, 2.08 | 3) 0.021 | 0.79 (0.6, 1.04)  | 0.097   |
| PIDD1  |            | 0.89 (0.65, 1.23 | 3) 0.474 | 1.26 (0.96, 1.65) | ) 0.100 |
| MAPK14 | 4          | 0.92 (0.67, 1.27 | ') 0.633 | 0.8 (0.61, 1.05)  | 0.111   |
| CXCL1  |            | 0.76 (0.54, 1.05 | 6) 0.097 | 0.8 (0.61, 1.05)  | 0.113   |
| CARD1  | 0          | 0.75 (0.54, 1.04 | ) 0.084  | 0.81 (0.62, 1.05) | ) 0.115 |
| TLR3   |            | 1.08 (0.78, 1.5) | 0.640    | 1.24 (0.94, 1.63) | ) 0.123 |
| МАРК9  |            | 0.79 (0.57, 1.1) | 0.161    | 1.24 (0.94, 1.62) | ) 0.123 |
| CCL13  |            | 0.74 (0.53, 1.02 | 2) 0.068 | 0.8 (0.61, 1.06)  | 0.124   |
| XIAP   |            | 0.9 (0.65, 1.24) | 0.515    | 0.81 (0.61, 1.07) | ) 0.130 |
| CCL5   |            | 0.95 (0.69, 1.31 | ) 0.752  | 0.81 (0.62, 1.07  | ) 0.138 |
| AKT3   |            | 1.22 (0.89, 1.69 | ) 0.215  | 1.23 (0.94, 1.61) | ) 0.140 |
| TNFRSF | =1A        | 1.11 (0.81, 1.53 | 8) 0.513 | 1.22 (0.93, 1.6)  | 0.148   |
| LCK    |            | 1.13 (0.82, 1.56 | 6) 0.455 | 0.82 (0.62, 1.07) | ) 0.148 |
| TNFSF1 | 1          | 0.94 (0.68, 1.3) | 0.716    | 1.22 (0.93, 1.6)  | 0.149   |
| BCL2A1 | 1          | 0.86 (0.62, 1.18 | 3) 0.346 | 0.82 (0.62, 1.08) | ) 0.155 |
| BCL10  |            | 0.66 (0.48, 0.93 | 3) 0.016 | 0.82 (0.63, 1.08  | ) 0.161 |
| RIPK3  |            | 1.24 (0.9, 1.72) | 0.195    | 0.83 (0.63, 1.09) | ) 0.181 |
| IRF1   |            | 0.99 (0.71, 1.36 | 6) 0.936 | 0.83 (0.63, 1.09) | ) 0.181 |
| CCL2   |            | 0.86 (0.62, 1.19 | ) 0.352  | 0.83 (0.63, 1.09) | ) 0.183 |
| GADD4  | 5A         | 1 (0.72, 1.38)   | 0.988    | 0.83 (0.64, 1.09  | ) 0.191 |
| RIPK1  |            | 0.92 (0.67, 1.27 | ') 0.606 | 0.84 (0.64, 1.1)  | 0.204   |
| GADD4  | 5G         | 0.99 (0.72, 1.36 | 6) 0.926 | 0.84 (0.64, 1.1)  | 0.210   |
| TRAF3  |            | 0.88 (0.63, 1.23 | 8) 0.454 | 0.84 (0.64, 1.11) | ) 0.221 |
| TNF    |            | 0.84 (0.61, 1.16 | 6) 0.290 | 0.84 (0.64, 1.11) | ) 0.223 |
|        |            |                  |          |                   |         |

| IFNAR2        | 0.82 (0.59, 1.13) | 0.222 | 1.18 (0.9, 1.55)  | 0.228 |
|---------------|-------------------|-------|-------------------|-------|
| IKBKB         | 1.3 (0.94, 1.8)   | 0.111 | 1.18 (0.9, 1.56)  | 0.237 |
| <i>РІКЗСВ</i> | 1.04 (0.76, 1.43) | 0.810 | 1.18 (0.9, 1.55)  | 0.240 |
| TNFRSF11A     | 1.44 (1.04, 2.01) | 0.029 | 0.85 (0.65, 1.12) | 0.240 |
| CCL19         | 1.16 (0.83, 1.61) | 0.380 | 0.85 (0.64, 1.12) | 0.240 |
| CARD11        | 1.32 (0.95, 1.84) | 0.095 | 1.17 (0.9, 1.54)  | 0.244 |
| STAT1         | 0.8 (0.58, 1.1)   | 0.167 | 0.85 (0.64, 1.12) | 0.244 |
| TLR9          | 1.06 (0.77, 1.46) | 0.725 | 1.18 (0.89, 1.55) | 0.250 |
| BCL3          | 0.93 (0.67, 1.3)  | 0.669 | 0.85 (0.65, 1.12) | 0.261 |
| LIF           | 0.88 (0.63, 1.21) | 0.433 | 1.17 (0.89, 1.54) | 0.263 |
| ERC1          | 0.99 (0.72, 1.37) | 0.973 | 1.17 (0.89, 1.53) | 0.269 |
| PIK3R1        | 1.06 (0.77, 1.46) | 0.731 | 1.17 (0.89, 1.54) | 0.269 |
| MYD88         | 1.33 (0.96, 1.86) | 0.086 | 0.86 (0.65, 1.13) | 0.273 |
| NFKB2         | 1.13 (0.82, 1.57) | 0.462 | 0.86 (0.66, 1.13) | 0.278 |
| PRKCQ         | 0.96 (0.69, 1.33) | 0.796 | 1.16 (0.88, 1.51) | 0.288 |
| CD40          | 0.98 (0.71, 1.35) | 0.894 | 0.86 (0.66, 1.13) | 0.295 |
| CXCL3         | 0.7 (0.51, 0.97)  | 0.033 | 0.86 (0.66, 1.14) | 0.297 |
| NFKBIA        | 1.13 (0.81, 1.58) | 0.471 | 0.87 (0.66, 1.14) | 0.302 |
| BIRC2         | 1.07 (0.78, 1.48) | 0.675 | 1.15 (0.88, 1.51) | 0.304 |
| MAPK1         | 0.97 (0.7, 1.34)  | 0.864 | 0.87 (0.66, 1.14) | 0.307 |
| LTB           | 0.86 (0.62, 1.18) | 0.347 | 1.15 (0.88, 1.5)  | 0.309 |
| CCL3          | 0.98 (0.71, 1.35) | 0.885 | 0.87 (0.66, 1.14) | 0.310 |
| IL12A         | 0.79 (0.57, 1.09) | 0.143 | 0.87 (0.65, 1.14) | 0.312 |
| BCL2          | 1.02 (0.74, 1.41) | 0.908 | 1.15 (0.87, 1.52) | 0.320 |
| TNFSF14       | 0.9 (0.64, 1.25)  | 0.514 | 0.87 (0.66, 1.14) | 0.323 |
| RPS6KA4       | 1.01 (0.73, 1.4)  | 0.961 | 0.87 (0.66, 1.15) | 0.326 |
| RELA          | 1.16 (0.82, 1.64) | 0.414 | 0.88 (0.67, 1.15) | 0.339 |
| CREB1         | 0.91 (0.66, 1.26) | 0.562 | 1.14 (0.87, 1.5)  | 0.343 |
| ATF6B         | 0.88 (0.64, 1.21) | 0.424 | 1.14 (0.87, 1.49) | 0.348 |
| CSF1          | 1.32 (0.95, 1.82) | 0.096 | 0.88 (0.67, 1.16) | 0.354 |
| PLCG1         | 1.08 (0.78, 1.51) | 0.635 | 1.13 (0.86, 1.49) | 0.371 |
| MAP2K7        | 0.91 (0.66, 1.27) | 0.583 | 0.88 (0.67, 1.16) | 0.378 |
|               |                   |       |                   |       |

| CFLAR    | 0.89 (0.64, 1.23) | 0.481 | 0.89 (0.68, 1.16) | 0.378 |
|----------|-------------------|-------|-------------------|-------|
| PRKCB    | 1.06 (0.76, 1.48) | 0.714 | 0.89 (0.67, 1.17) | 0.391 |
| PLCG2    | 1.24 (0.9, 1.71)  | 0.186 | 0.89 (0.67, 1.17) | 0.397 |
| PLAU     | 1.49 (1.08, 2.06) | 0.015 | 1.12 (0.86, 1.47) | 0.398 |
| CXCL8    | 0.57 (0.41, 0.79) | 0.001 | 0.89 (0.68, 1.17) | 0.400 |
| IKBKE    | 1.01 (0.72, 1.41) | 0.963 | 0.89 (0.68, 1.17) | 0.400 |
| CEBPB    | 0.88 (0.64, 1.22) | 0.454 | 0.89 (0.68, 1.17) | 0.407 |
| JUN      | 1.33 (0.96, 1.84) | 0.090 | 1.12 (0.85, 1.47) | 0.411 |
| BAG4     | 0.98 (0.71, 1.35) | 0.904 | 0.9 (0.68, 1.17)  | 0.419 |
| IKBKG    | 0.82 (0.59, 1.14) | 0.239 | 1.12 (0.85, 1.46) | 0.421 |
| LTBR     | 0.81 (0.58, 1.12) | 0.196 | 0.89 (0.68, 1.18) | 0.423 |
| CD40LG   | 1.05 (0.75, 1.46) | 0.781 | 0.9 (0.68, 1.19)  | 0.442 |
| TRAF5    | 1.16 (0.84, 1.6)  | 0.379 | 1.11 (0.85, 1.46) | 0.443 |
| TRAF2    | 0.82 (0.59, 1.13) | 0.228 | 0.9 (0.68, 1.19)  | 0.457 |
| PARP1    | 0.81 (0.58, 1.12) | 0.197 | 0.9 (0.69, 1.18)  | 0.464 |
| CD86     | 0.77 (0.55, 1.08) | 0.127 | 0.9 (0.69, 1.19)  | 0.464 |
| IL15     | 1.06 (0.77, 1.47) | 0.705 | 1.1 (0.84, 1.45)  | 0.472 |
| CREB3    | 0.84 (0.61, 1.16) | 0.293 | 0.91 (0.69, 1.19) | 0.473 |
| CXCL5    | 0.86 (0.63, 1.19) | 0.376 | 0.91 (0.69, 1.19) | 0.477 |
| FOS      | 1.24 (0.89, 1.71) | 0.203 | 1.1 (0.84, 1.45)  | 0.478 |
| RPS6KA5  | 0.98 (0.71, 1.37) | 0.927 | 0.91 (0.69, 1.19) | 0.483 |
| FAS      | 0.81 (0.59, 1.12) | 0.208 | 1.1 (0.84, 1.45)  | 0.489 |
| VEGFC    | 1.24 (0.9, 1.71)  | 0.179 | 1.1 (0.84, 1.44)  | 0.493 |
| TOLLIP   | 1.21 (0.88, 1.67) | 0.244 | 1.1 (0.84, 1.45)  | 0.493 |
| TNFRSF1B | 1.13 (0.82, 1.56) | 0.454 | 0.91 (0.69, 1.19) | 0.494 |
| IRAK4    | 0.87 (0.63, 1.21) | 0.417 | 0.91 (0.69, 1.2)  | 0.500 |
| ATF2     | 0.98 (0.71, 1.35) | 0.910 | 1.1 (0.83, 1.44)  | 0.504 |
| CYLD     | 0.81 (0.59, 1.11) | 0.191 | 0.91 (0.7, 1.2)   | 0.509 |
| DNM1L    | 0.81 (0.58, 1.12) | 0.195 | 1.09 (0.83, 1.44) | 0.513 |
| EDN1     | 0.93 (0.67, 1.28) | 0.653 | 0.92 (0.7, 1.2)   | 0.518 |
| TLR1     | 0.86 (0.62, 1.19) | 0.364 | 1.1 (0.83, 1.44)  | 0.519 |
| IL18R1   | 0.98 (0.71, 1.35) | 0.896 | 1.09 (0.84, 1.43) | 0.520 |
|          |                   |       |                   |       |

| TLR6    | 1.18 (0.86, 1.64) | 0.304 | 0.91 (0.7, 1.2)   | 0.521 |
|---------|-------------------|-------|-------------------|-------|
| MAPK10  | 1.16 (0.84, 1.6)  | 0.374 | 1.09 (0.83, 1.43) | 0.525 |
| TRIM25  | 0.99 (0.71, 1.36) | 0.928 | 1.09 (0.83, 1.44) | 0.526 |
| CASP3   | 0.81 (0.58, 1.12) | 0.203 | 0.92 (0.7, 1.2)   | 0.537 |
| SELE    | 1.09 (0.79, 1.5)  | 0.598 | 1.09 (0.83, 1.43) | 0.538 |
| TLR5    | 1.28 (0.93, 1.77) | 0.129 | 0.92 (0.7, 1.2)   | 0.542 |
| MAPK11  | 1.28 (0.93, 1.77) | 0.128 | 0.92 (0.7, 1.21)  | 0.559 |
| CSNK2A3 | 1.12 (0.81, 1.54) | 0.493 | 0.92 (0.71, 1.21) | 0.563 |
| EDARADD | 1.01 (0.73, 1.4)  | 0.940 | 1.08 (0.83, 1.42) | 0.571 |
| BTK     | 1 (0.72, 1.38)    | 0.987 | 0.93 (0.7, 1.22)  | 0.579 |
| DAB2IP  | 0.97 (0.7, 1.34)  | 0.845 | 1.08 (0.82, 1.42) | 0.582 |
| CD14    | 1.08 (0.79, 1.49) | 0.624 | 0.93 (0.7, 1.22)  | 0.583 |
| PIAS4   | 1.26 (0.92, 1.74) | 0.155 | 0.93 (0.7, 1.22)  | 0.589 |
| EDA     | 1.02 (0.74, 1.41) | 0.886 | 0.93 (0.71, 1.22) | 0.590 |
| MMP9    | 0.83 (0.6, 1.14)  | 0.250 | 0.93 (0.71, 1.22) | 0.594 |
| CSNK2A1 | 1.04 (0.75, 1.45) | 0.808 | 1.08 (0.82, 1.41) | 0.596 |
| JUNB    | 0.98 (0.71, 1.35) | 0.886 | 1.08 (0.82, 1.42) | 0.601 |
| PTGS2   | 1.12 (0.81, 1.54) | 0.494 | 0.93 (0.71, 1.22) | 0.606 |
| CHUK    | 0.89 (0.64, 1.25) | 0.504 | 1.07 (0.82, 1.41) | 0.612 |
| CXCL2   | 0.79 (0.57, 1.1)  | 0.170 | 0.93 (0.71, 1.22) | 0.623 |
| VCAM1   | 1.16 (0.84, 1.61) | 0.353 | 1.07 (0.82, 1.4)  | 0.623 |
| GADD45B | 0.96 (0.69, 1.34) | 0.823 | 1.07 (0.81, 1.4)  | 0.639 |
| UBE2I   | 1.42 (1.03, 1.97) | 0.033 | 0.94 (0.72, 1.23) | 0.640 |
| PIK3CD  | 1.1 (0.8, 1.51)   | 0.569 | 0.94 (0.71, 1.24) | 0.648 |
| IRF5    | 1.26 (0.91, 1.74) | 0.160 | 0.94 (0.71, 1.23) | 0.649 |
| CXCL12  | 1.14 (0.82, 1.57) | 0.437 | 1.06 (0.81, 1.4)  | 0.650 |
| TBK1    | 0.94 (0.68, 1.3)  | 0.693 | 0.94 (0.72, 1.24) | 0.663 |
| TAB1    | 1.23 (0.89, 1.69) | 0.216 | 0.94 (0.72, 1.24) | 0.671 |
| EDAR    | 1.07 (0.77, 1.5)  | 0.690 | 1.06 (0.81, 1.39) | 0.678 |
| MAP2K4  | 0.98 (0.71, 1.36) | 0.903 | 1.06 (0.81, 1.38) | 0.680 |
| IL1B    | 1.07 (0.77, 1.49) | 0.684 | 1.06 (0.81, 1.39) | 0.680 |
| MAP2K6  | 0.88 (0.64, 1.22) | 0.452 | 1.06 (0.81, 1.39) | 0.685 |
|         |                   |       |                   |       |

| CREB3L4   | 0.9 (0.65, 1.25)  | 0.515 | 1.05 (0.81, 1.38) | 0.699 |
|-----------|-------------------|-------|-------------------|-------|
| MAP3K5    | 1.05 (0.76, 1.46) | 0.757 | 0.95 (0.73, 1.24) | 0.709 |
| IFNAR1    | 0.88 (0.64, 1.22) | 0.450 | 1.05 (0.8, 1.38)  | 0.716 |
| LAT       | 0.98 (0.71, 1.36) | 0.923 | 0.95 (0.73, 1.25) | 0.718 |
| ATM       | 0.92 (0.66, 1.29) | 0.637 | 0.95 (0.73, 1.25) | 0.727 |
| MAPK12    | 0.86 (0.63, 1.19) | 0.378 | 0.95 (0.72, 1.25) | 0.732 |
| TLR7      | 1.05 (0.75, 1.45) | 0.792 | 1.05 (0.8, 1.37)  | 0.739 |
| CREB3L2   | 1.03 (0.75, 1.43) | 0.846 | 0.96 (0.73, 1.26) | 0.745 |
| CASP8     | 0.92 (0.66, 1.28) | 0.610 | 0.96 (0.73, 1.26) | 0.746 |
| МАРЗК8    | 1.04 (0.75, 1.44) | 0.807 | 0.96 (0.73, 1.26) | 0.765 |
| CCL4      | 1 (0.72, 1.38)    | 1.000 | 0.96 (0.73, 1.26) | 0.780 |
| ΜΑΡΚ8     | 0.98 (0.71, 1.37) | 0.926 | 1.04 (0.79, 1.36) | 0.783 |
| МАРКЗ     | 1.17 (0.84, 1.63) | 0.341 | 1.04 (0.79, 1.36) | 0.783 |
| EDA2R     | 0.98 (0.71, 1.35) | 0.912 | 1.04 (0.79, 1.36) | 0.793 |
| TRAF6     | 0.92 (0.66, 1.28) | 0.624 | 0.96 (0.74, 1.26) | 0.796 |
| IL1R1     | 1.12 (0.81, 1.54) | 0.493 | 1.03 (0.79, 1.36) | 0.806 |
| SYK       | 1.01 (0.74, 1.39) | 0.938 | 1.03 (0.79, 1.36) | 0.813 |
| TNFRSF13C | 0.84 (0.61, 1.16) | 0.292 | 1.03 (0.79, 1.36) | 0.814 |
| BIRC3     | 0.94 (0.67, 1.32) | 0.735 | 0.97 (0.74, 1.27) | 0.828 |
| AKT1      | 1.09 (0.79, 1.51) | 0.604 | 0.97 (0.74, 1.28) | 0.838 |
| TLR4      | 0.79 (0.57, 1.1)  | 0.159 | 1.03 (0.78, 1.35) | 0.841 |
| JAG1      | 1.36 (0.98, 1.88) | 0.069 | 0.97 (0.74, 1.27) | 0.842 |
| NFKB1     | 1.34 (0.96, 1.86) | 0.084 | 1.03 (0.78, 1.35) | 0.842 |
| MAP2K3    | 1.14 (0.82, 1.59) | 0.421 | 0.97 (0.74, 1.29) | 0.855 |
| TIRAP     | 1.02 (0.74, 1.41) | 0.920 | 1.02 (0.78, 1.34) | 0.859 |
| ATF4      | 0.83 (0.59, 1.15) | 0.260 | 0.98 (0.75, 1.28) | 0.862 |
| MAP2K2    | 1.21 (0.87, 1.66) | 0.252 | 0.98 (0.75, 1.28) | 0.868 |
| TLR2      | 0.92 (0.67, 1.27) | 0.627 | 1.02 (0.78, 1.34) | 0.870 |
| MALT1     | 0.72 (0.53, 1)    | 0.050 | 0.98 (0.74, 1.3)  | 0.880 |
| CSNK2A2   | 0.89 (0.65, 1.23) | 0.485 | 1.02 (0.78, 1.33) | 0.890 |
| LY96      | 0.88 (0.63, 1.22) | 0.435 | 1.02 (0.77, 1.33) | 0.905 |
| CASP10    | 1.32 (0.95, 1.83) | 0.098 | 1.02 (0.77, 1.34) | 0.908 |
|           |                   |       |                   |       |

| SPP1    | 0.85 (0.61, 1.17) | 0.315 | 0.98 (0.75, 1.29) | 0.912 |
|---------|-------------------|-------|-------------------|-------|
| TAB3    | 0.8 (0.58, 1.1)   | 0.174 | 1.01 (0.77, 1.33) | 0.918 |
| SOCS3   | 1.04 (0.75, 1.44) | 0.826 | 0.99 (0.74, 1.31) | 0.922 |
| BCL2L1  | 1.07 (0.77, 1.49) | 0.690 | 0.99 (0.75, 1.3)  | 0.936 |
| MMP14   | 1.07 (0.77, 1.48) | 0.698 | 1.01 (0.77, 1.33) | 0.939 |
| MAP3K14 | 1.06 (0.76, 1.46) | 0.741 | 1.01 (0.77, 1.32) | 0.946 |
| PGAM5   | 1 (0.72, 1.39)    | 0.991 | 0.99 (0.76, 1.3)  | 0.949 |
| CCL20   | 0.89 (0.64, 1.23) | 0.478 | 1.01 (0.76, 1.33) | 0.962 |
| AKT2    | 1.07 (0.77, 1.48) | 0.692 | 1.01 (0.77, 1.32) | 0.966 |
| TRAF1   | 0.97 (0.71, 1.34) | 0.860 | 1 (0.77, 1.31)    | 0.984 |
| RAC1    | 0.83 (0.6, 1.15)  | 0.262 | 1 (0.76, 1.31)    | 0.995 |
| IRF3    | 1.11 (0.8, 1.53)  | 0.542 | 1 (0.76, 1.31)    | 0.996 |
| PIK3CA  | 0.83 (0.6, 1.15)  | 0.263 | 1 (0.76, 1.32)    | 1.000 |
| LBP     | 0.78 (0.56, 1.07) | 0.128 | 0 (0, 0)          |       |
| CCL3L1  | 1.24 (0.9, 1.73)  | 0.194 | 0 (0, 0)          |       |

Abbreviations: TLR = toll-like receptor; NFkB = nuclear factor kappa B; TNF = tumor necrosis factor; EOC = epithelial ovarian cancer; HGSOC = high grade serous ovarian cancer; AACES = African American Cancer Epidemiology Study; OCAC = Ovarian Cancer Association Consortium; <sup>a</sup>Adjusted for age, stage at diagnosis, and two ancestry principal components.

|         |       |                                          | Black Cases  |                 |         | White Cases                  |          |               |  |
|---------|-------|------------------------------------------|--------------|-----------------|---------|------------------------------|----------|---------------|--|
| Gene    | Mean  | Log fold change <sup>a</sup><br>(95% CI) | Р            | $P_{FDR}{}^{b}$ | Mean    | Log fold changeª<br>(95% CI) | Р        | $P_{FDR}^{b}$ |  |
| BLNK    | 438   | -1 (-1.2, -0.9)                          | 0.0000000004 | 0.0000008       | 367     | -1.33 (-1.6,-1.1)            | 0.000002 | 0.0005        |  |
| CEBPB   | 3421  | 0.7 (0.5, 0.8)                           | 0.000001     | 0.0001          | 921.4   | 0.84 (0.7,1)                 | 0.00008  | 0.001         |  |
| PIK3R1  | 5051  | -0.6 (-0.7, -0.4)                        | 0.00003      | 0.002           | 4451.4  | -0.66 (-0.8,-0.5)            | 0.00008  | 0.006         |  |
| PIK3CD  | 1445  | 0.6 (0.4, 0.7)                           | 0.00003      | 0.002           | 521.4   | -0.68 (-0.9,-0.5)            | 0.00034  | 0.012         |  |
| TLR4    | 1143  | -0.5 (-0.7, -0.4)                        | 0.00005      | 0.002           | 1031.3  | -0.5 (-0.6,-0.4)             | 0.00034  | 0.012         |  |
| MMP14   | 5287  | 0.5 (0.4, 0.6)                           | 0.0002       | 0.005           | 384.5   | -1.26 (-1.6,-0.9)            | 0.00026  | 0.012         |  |
| JUN     | 7169  | 0.5 (0.4, 0.6)                           | 0.0005       | 0.015           | 4188.2  | 0.52 (0.4,0.7)               | 0.001    | 0.029         |  |
| ICAM1   | 2389  | 0.7 (0.5, 0.8)                           | 0.0007       | 0.016           | 8751.5  | 0.53 (0.4,0.7)               | 0.001    | 0.029         |  |
| MAPK10  | 473   | -0.7 (-0.9, -0.5)                        | 0.0007       | 0.016           | 98.1    | -0.71 (-0.9,-0.5)            | 0.001    | 0.029         |  |
| TRAF6   | 1019  | -0.3 (-0.4, -0.2)                        | 0.001        | 0.022           | 653.7   | -0.53 (-0.7,-0.4)            | 0.002    | 0.040         |  |
| SOCS3   | 1088  | 0.6 (0.4, 0.8)                           | 0.001        | 0.023           | 1438    | -0.39 (-0.5,-0.3)            | 0.004    | 0.055         |  |
| FAS     | 2295  | -0.4 (-0.6, -0.3)                        | 0.001        | 0.023           | 529.4   | -0.53 (-0.7,-0.3)            | 0.004    | 0.055         |  |
| XIAP    | 9666  | -0.4 (-0.5, -0.3)                        | 0.002        | 0.023           | 365.6   | 0.65 (0.4,0.9)               | 0.003    | 0.055         |  |
| CARD14  | 167   | 0.8 (0.5, 1)                             | 0.002        | 0.023           | 245.8   | -0.52 (-0.7,-0.3)            | 0.004    | 0.055         |  |
| CFLAR   | 4891  | -0.2 (-0.3, -0.1)                        | 0.002        | 0.031           | 290.4   | -0.66 (-0.9,-0.4)            | 0.004    | 0.055         |  |
| CD40    | 516   | 0.5 (0.3, 0.6)                           | 0.004        | 0.046           | 249.5   | -0.48 (-0.6,-0.3)            | 0.003    | 0.055         |  |
| PIK3R2  | 3378  | 0.3 (0.2, 0.5)                           | 0.004        | 0.046           | 2485.5  | -0.73 (-1,-0.5)              | 0.004    | 0.055         |  |
| LBP     | 18    | 1.6 (1, 2.1)                             | 0.004        | 0.046           | 2627    | 0.49 (0.3,0.7)               | 0.005    | 0.061         |  |
| PARP1   | 10820 | 0.3 (0.2, 0.4)                           | 0.004        | 0.046           | 14840.8 | 0.65 (0.4,0.9)               | 0.006    | 0.067         |  |
| CSNK2B  | 3     | 4.6 (3, 6.2)                             | 0.004        | 0.046           | 1160.3  | -0.52 (-0.7,-0.3)            | 0.008    | 0.091         |  |
| EDARADD | 189   | 0.8 (0.5, 1)                             | 0.005        | 0.048           | 726.4   | -0.44 (-0.6,-0.3)            | 0.009    | 0.092         |  |
| МАРКЗ   | 2910  | 0.3 (0.2, 0.4)                           | 0.006        | 0.053           | 142.9   | -0.56 (-0.8,-0.3)            | 0.010    | 0.098         |  |
| JUNB    | 3168  | 0.5 (0.3, 0.7)                           | 0.007        | 0.061           | 260.7   | 0.57 (0.3,0.8)               | 0.013    | 0.126         |  |
| DAB2IP  | 4088  | 0.3 (0.2, 0.4)                           | 0.007        | 0.062           | 11.6    | 1.5 (0.9,2.1)                | 0.014    | 0.128         |  |
| TRAF5   | 2145  | -0.3 (-0.5, -0.2)                        | 0.008        | 0.064           | 883.7   | -0.33 (-0.5,-0.2)            | 0.018    | 0.134         |  |
| CXCL12  | 1127  | 0.5 (0.3, 0.7)                           | 0.009        | 0.070           | 756     | -0.71 (-1,-0.4)              | 0.018    | 0.134         |  |
| CASP8   | 1484  | -0.3 (-0.3, -0.2)                        | 0.009        | 0.071           | 353.8   | -0.34 (-0.5,-0.2)            | 0.016    | 0.134         |  |

| CREB3   | 969   | 0.3 (0.2, 0.4)    | 0.010 | 0.075 | 152.2  | 0.78 (0.5,1.1)    | 0.016 | 0.134 |
|---------|-------|-------------------|-------|-------|--------|-------------------|-------|-------|
| PLAU    | 1413  | 0.5 (0.3, 0.7)    | 0.010 | 0.075 | 13.8   | -0.81 (-1.1,-0.5) | 0.017 | 0.134 |
| FOS     | 11158 | 0.5 (0.3, 0.7)    | 0.012 | 0.083 | 836.7  | -0.43 (-0.6,-0.2) | 0.018 | 0.134 |
| ATM     | 17847 | -0.3 (-0.4, -0.2) | 0.013 | 0.085 | 176.1  | -0.51 (-0.7,-0.3) | 0.021 | 0.140 |
| CASP10  | 638   | -0.3 (-0.5, -0.2) | 0.016 | 0.099 | 5082.5 | -0.38 (-0.6,-0.2) | 0.021 | 0.140 |
| LYN     | 1536  | -0.3 (-0.4, -0.2) | 0.016 | 0.099 | 24.4   | 2.01 (1.1,2.9)    | 0.020 | 0.140 |
| ATF4    | 4463  | -0.2 (-0.3, -0.1) | 0.018 | 0.108 | 8657.2 | -0.5 (-0.7,-0.3)  | 0.024 | 0.147 |
| MAP2K6  | 678   | -0.4 (-0.6, -0.2) | 0.018 | 0.109 | 224.4  | -0.35 (-0.5,-0.2) | 0.024 | 0.147 |
| LIF     | 751   | 0.5 (0.3, 0.7)    | 0.022 | 0.124 | 170.9  | -0.79 (-1.2,-0.4) | 0.028 | 0.160 |
| RPS6KA4 | 1032  | 0.3 (0.2, 0.4)    | 0.022 | 0.124 | 14.9   | -1.24 (-1.8,-0.7) | 0.028 | 0.160 |
| CASP3   | 594   | -0.3 (-0.4, -0.1) | 0.023 | 0.124 | 540.6  | 0.36 (0.2,0.5)    | 0.028 | 0.160 |
| CSF1    | 1000  | 0.4 (0.2, 0.5)    | 0.023 | 0.124 | 347.3  | -0.36 (-0.5,-0.2) | 0.036 | 0.201 |
| IFNB1   | 2     | 1.3 (0.7, 1.9)    | 0.024 | 0.125 | 1795.1 | 0.26 (0.1,0.4)    | 0.040 | 0.209 |
| LY96    | 140   | -0.4 (-0.6, -0.2) | 0.025 | 0.130 | 0.9    | -3.97 (-5.9,-2)   | 0.039 | 0.209 |
| BCL2L1  | 2416  | 0.2 (0.1, 0.4)    | 0.026 | 0.130 | 394.6  | -0.41 (-0.6,-0.2) | 0.045 | 0.227 |
| CTSK    | 1388  | 0.3 (0.2, 0.5)    | 0.028 | 0.134 | 3135.9 | 0.22 (0.1,0.3)    | 0.045 | 0.227 |
| СНИК    | 1605  | -0.2 (-0.3, -0.1) | 0.031 | 0.146 | 1221.4 | -0.32 (-0.5,-0.2) | 0.046 | 0.227 |
| TOLLIP  | 517   | 0.3 (0.1, 0.4)    | 0.038 | 0.171 | 161.2  | 0.62 (0.3,0.9)    | 0.048 | 0.230 |
| TNFSF11 | 14    | -0.9 (-1.4, -0.5) | 0.037 | 0.171 | 1108.7 | 0.25 (0.1,0.4)    | 0.051 | 0.241 |
| IRF5    | 257   | 0.4 (0.2, 0.5)    | 0.042 | 0.171 | 523.3  | -0.28 (-0.4,-0.1) | 0.055 | 0.254 |
| AKT1    | 8755  | 0.2 (0.1, 0.3)    | 0.041 | 0.171 | 955.7  | 0.22 (0.1,0.3)    | 0.067 | 0.279 |
| EDA     | 189   | 0.4 (0.2, 0.6)    | 0.040 | 0.171 | 4529.8 | -0.24 (-0.4,-0.1) | 0.066 | 0.279 |
| CCL19   | 27    | 0.7 (0.4, 1.1)    | 0.042 | 0.171 | 975.7  | 0.38 (0.2,0.6)    | 0.062 | 0.279 |
| MAP3K5  | 2762  | -0.2 (-0.3, -0.1) | 0.039 | 0.171 | 763    | 0.39 (0.2,0.6)    | 0.064 | 0.279 |
| IKBKE   | 1403  | 0.3 (0.1, 0.4)    | 0.045 | 0.182 | 1098.1 | 0.22 (0.1,0.3)    | 0.064 | 0.279 |
| IKBKG   | 529   | 0.3 (0.2, 0.5)    | 0.046 | 0.182 | 1746.5 | -0.22 (-0.3,-0.1) | 0.074 | 0.285 |
| AKT3    | 1120  | -0.4 (-0.6, -0.2) | 0.049 | 0.191 | 5196.9 | 0.2 (0.1,0.3)     | 0.072 | 0.285 |
| CSF2    | 3     | 1.4 (0.7, 2.2)    | 0.061 | 0.233 | 92.3   | -0.57 (-0.9,-0.3) | 0.072 | 0.285 |
| RELB    | 1174  | 0.3 (0.1, 0.4)    | 0.065 | 0.237 | 4793.4 | 0.18 (0.1,0.3)    | 0.075 | 0.285 |
| CXCL5   | 33    | -0.8 (-1.3, -0.4) | 0.065 | 0.237 | 4863.8 | 0.21 (0.1,0.3)    | 0.074 | 0.285 |
| TLR6    | 309   | -0.2 (-0.4, -0.1) | 0.066 | 0.237 | 844.9  | 0.44 (0.2,0.7)    | 0.078 | 0.285 |

| TNFRSF1A  | 5894 | 0.2 (0.1, 0.3)    | 0.067 | 0.237 | 4265.6  | -0.3 (-0.5,-0.1)  | 0.077 | 0.285 |
|-----------|------|-------------------|-------|-------|---------|-------------------|-------|-------|
| MAP2K2    | 3643 | 0.2 (0.1, 0.3)    | 0.068 | 0.237 | 1382.2  | 0.23 (0.1,0.4)    | 0.079 | 0.285 |
| MAP2K3    | 1489 | 0.2 (0.1, 0.3)    | 0.070 | 0.241 | 950.1   | -0.44 (-0.7,-0.2) | 0.084 | 0.298 |
| TNFRSF13C | 53   | 0.4 (0.2, 0.6)    | 0.075 | 0.252 | 362     | -0.67 (-1.1,-0.3) | 0.090 | 0.314 |
| TLR1      | 602  | -0.2 (-0.3, -0.1) | 0.078 | 0.260 | 125.2   | -0.35 (-0.6,-0.1) | 0.093 | 0.320 |
| TIRAP     | 281  | -0.2 (-0.3, -0.1) | 0.084 | 0.274 | 4312.6  | 0.27 (0.1,0.4)    | 0.098 | 0.330 |
| NFKBIA    | 6278 | 0.2 (0.1, 0.4)    | 0.088 | 0.281 | 3867.8  | -0.18 (-0.3,-0.1) | 0.100 | 0.330 |
| LTBR      | 3988 | 0.2 (0.1, 0.3)    | 0.090 | 0.282 | 2727    | -0.26 (-0.4,-0.1) | 0.100 | 0.330 |
| BCL2      | 227  | -0.4 (-0.6, -0.1) | 0.091 | 0.282 | 1421    | -0.2 (-0.3,-0.1)  | 0.105 | 0.340 |
| TICAM2    | 10   | -0.7 (-1.1, -0.3) | 0.099 | 0.305 | 3811.7  | -0.2 (-0.3,-0.1)  | 0.107 | 0.341 |
| RPS6KA5   | 826  | -0.2 (-0.3, -0.1) | 0.113 | 0.331 | 25.4    | -1.33 (-2.2,-0.5) | 0.111 | 0.344 |
| CCL2      | 1416 | -0.3 (-0.5, -0.1) | 0.111 | 0.331 | 333.1   | -0.26 (-0.4,-0.1) | 0.111 | 0.344 |
| RELA      | 4709 | 0.1 (0, 0.2)      | 0.112 | 0.331 | 75.7    | 0.72 (0.3,1.2)    | 0.114 | 0.347 |
| CYLD      | 2661 | -0.1 (-0.2, 0)    | 0.118 | 0.342 | 348.2   | -0.33 (-0.5,-0.1) | 0.122 | 0.367 |
| BAG4      | 2383 | 0.2 (0.1, 0.3)    | 0.126 | 0.360 | 5051.5  | -0.18 (-0.3,-0.1) | 0.126 | 0.374 |
| IRAK4     | 681  | -0.2 (-0.3, -0.1) | 0.132 | 0.374 | 1290.7  | 0.29 (0.1,0.5)    | 0.131 | 0.376 |
| IFNAR1    | 3595 | -0.2 (-0.3, -0.1) | 0.137 | 0.381 | 3903    | 0.2 (0.1,0.3)     | 0.130 | 0.376 |
| NOD2      | 481  | -0.2 (-0.4, -0.1) | 0.146 | 0.402 | 1310.8  | 0.35 (0.1,0.6)    | 0.132 | 0.376 |
| EDA2R     | 49   | -0.4 (-0.7, -0.1) | 0.151 | 0.410 | 225.3   | -0.36 (-0.6,-0.1) | 0.144 | 0.397 |
| CREB3L2   | 1847 | -0.1 (-0.2, 0)    | 0.157 | 0.421 | 5566    | -0.22 (-0.4,-0.1) | 0.142 | 0.397 |
| MAP3K14   | 1278 | 0.2 (0, 0.3)      | 0.181 | 0.443 | 102.8   | -0.39 (-0.7,-0.1) | 0.144 | 0.397 |
| PRKCQ     | 1134 | -0.2 (-0.4, -0.1) | 0.187 | 0.443 | 21.7    | 0.6 (0.2,1)       | 0.157 | 0.420 |
| MAP2K7    | 1044 | 0.2 (0, 0.3)      | 0.185 | 0.443 | 6603.5  | 0.13 (0,0.2)      | 0.156 | 0.420 |
| CD86      | 184  | -0.2 (-0.4, 0)    | 0.185 | 0.443 | 715.6   | -0.23 (-0.4,-0.1) | 0.161 | 0.427 |
| IL1R1     | 5195 | -0.2 (-0.3, 0)    | 0.187 | 0.443 | 2368.6  | 0.28 (0.1,0.5)    | 0.165 | 0.432 |
| IL18R1    | 186  | -0.3 (-0.4, -0.1) | 0.174 | 0.443 | 2185.5  | 0.17 (0,0.3)      | 0.171 | 0.442 |
| PLCG1     | 9728 | 0.2 (0, 0.3)      | 0.186 | 0.443 | 857.3   | 0.18 (0,0.3)      | 0.174 | 0.445 |
| CXCL6     | 32   | 0.6 (0.2, 1)      | 0.178 | 0.443 | 75      | -0.56 (-1,-0.1)   | 0.177 | 0.446 |
| BCL2A1    | 123  | -0.3 (-0.5, -0.1) | 0.173 | 0.443 | 75      | -0.3 (-0.5,-0.1)  | 0.180 | 0.449 |
| FADD      | 721  | -0.2 (-0.3, 0)    | 0.171 | 0.443 | 790.7   | 0.16 (0,0.3)      | 0.188 | 0.462 |
| CXCL10    | 839  | -0.4 (-0.6, -0.1) | 0.189 | 0.443 | 13306.3 | 0.15 (0,0.3)      | 0.189 | 0.462 |

| PIK3CB   | 4550 | -0.1 (-0.2, 0)    | 0.196 | 0.445 | 333.7   | -0.2 (-0.4,0)     | 0.197 | 0.476 |
|----------|------|-------------------|-------|-------|---------|-------------------|-------|-------|
| IRF3     | 2329 | 0.2 (0, 0.3)      | 0.195 | 0.445 | 812.5   | -0.25 (-0.5,0)    | 0.221 | 0.526 |
| TLR2     | 739  | -0.1 (-0.3, 0)    | 0.196 | 0.445 | 5694.6  | -0.12 (-0.2,0)    | 0.242 | 0.540 |
| CXCL11   | 201  | -0.4 (-0.7, -0.1) | 0.198 | 0.445 | 15600.4 | 0.14 (0,0.3)      | 0.255 | 0.540 |
| PTGS2    | 400  | -0.3 (-0.5, -0.1) | 0.222 | 0.484 | 3827.2  | -0.13 (-0.2,0)    | 0.250 | 0.540 |
| GADD45B  | 608  | 0.2 (0, 0.4)      | 0.221 | 0.484 | 498.2   | -0.2 (-0.4,0)     | 0.244 | 0.540 |
| PIK3R3   | 917  | -0.2 (-0.3, 0)    | 0.222 | 0.484 | 2383.1  | 0.16 (0,0.3)      | 0.241 | 0.540 |
| EDAR     | 71   | -0.5 (-0.9, -0.1) | 0.227 | 0.487 | 2796.5  | 0.13 (0,0.2)      | 0.256 | 0.540 |
| IRAK1    | 4574 | 0.2 (0, 0.3)      | 0.228 | 0.487 | 712.8   | 0.23 (0,0.4)      | 0.255 | 0.540 |
| TNFSF13B | 209  | 0.2 (0, 0.4)      | 0.239 | 0.505 | 192.8   | -0.21 (-0.4,0)    | 0.240 | 0.540 |
| CSNK2A3  | 64   | 0.3 (0, 0.6)      | 0.244 | 0.510 | 305.7   | -0.17 (-0.3,0)    | 0.256 | 0.540 |
| TAB3     | 2896 | -0.1 (-0.2, 0)    | 0.255 | 0.528 | 222.7   | 0.39 (0.1,0.7)    | 0.247 | 0.540 |
| PGAM5    | 910  | 0.1 (0, 0.3)      | 0.262 | 0.536 | 645.9   | -0.17 (-0.3,0)    | 0.241 | 0.540 |
| RAC1     | 3319 | -0.1 (-0.2, 0)    | 0.269 | 0.546 | 204.6   | -0.93 (-1.7,-0.1) | 0.248 | 0.540 |
| NFKB2    | 3119 | 0.1 (0, 0.2)      | 0.272 | 0.546 | 11550.3 | -0.16 (-0.3,0)    | 0.269 | 0.561 |
| UBE2I    | 3720 | 0.1 (0, 0.2)      | 0.281 | 0.559 | 3.1     | -0.69 (-1.3,-0.1) | 0.278 | 0.575 |
| MAP2K4   | 876  | -0.1 (-0.2, 0)    | 0.284 | 0.559 | 1765.4  | -0.17 (-0.3,0)    | 0.294 | 0.596 |
| TBK1     | 2863 | -0.1 (-0.2, 0)    | 0.286 | 0.559 | 1058.2  | 0.17 (0,0.3)      | 0.292 | 0.596 |
| BIRC2    | 2794 | -0.1 (-0.2, 0)    | 0.303 | 0.581 | 104.9   | 0.24 (0,0.5)      | 0.298 | 0.598 |
| BCL10    | 914  | -0.1 (-0.2, 0)    | 0.302 | 0.581 | 2240.3  | -0.1 (-0.2,0)     | 0.302 | 0.602 |
| IL15     | 121  | -0.2 (-0.4, 0)    | 0.306 | 0.581 | 1.4     | -0.71 (-1.4,0)    | 0.307 | 0.604 |
| IL1B     | 243  | 0.2 (0, 0.4)      | 0.337 | 0.625 | 286.2   | 0.34 (0,0.7)      | 0.309 | 0.604 |
| TICAM1   | 925  | -0.1 (-0.2, 0)    | 0.338 | 0.625 | 1689.4  | -0.11 (-0.2,0)    | 0.318 | 0.615 |
| CCL3     | 108  | 0.2 (0, 0.4)      | 0.332 | 0.625 | 1102.1  | -0.13 (-0.3,0)    | 0.320 | 0.615 |
| LTB      | 30   | -0.4 (-0.9, 0)    | 0.343 | 0.628 | 4737.7  | -0.11 (-0.2,0)    | 0.324 | 0.618 |
| VCAM1    | 856  | 0.2 (0, 0.3)      | 0.347 | 0.631 | 574.1   | -0.12 (-0.2,0)    | 0.339 | 0.619 |
| CD80     | 68   | -0.2 (-0.4, 0)    | 0.354 | 0.631 | 2.9     | 0.76 (0,1.6)      | 0.338 | 0.619 |
| RIPK1    | 1588 | 0.1 (0, 0.2)      | 0.356 | 0.631 | 1185.1  | -0.22 (-0.5,0)    | 0.339 | 0.619 |
| PIDD1    | 539  | 0.2 (0, 0.3)      | 0.356 | 0.631 | 117.7   | 0.29 (0,0.6)      | 0.338 | 0.619 |
| ВТК      | 301  | -0.1 (-0.3, 0)    | 0.360 | 0.633 | 887     | -0.13 (-0.3,0)    | 0.339 | 0.619 |
| CCL5     | 698  | -0.1 (-0.3, 0)    | 0.366 | 0.638 | 1582.6  | -0.14 (-0.3,0)    | 0.352 | 0.637 |

| VEGFC    | 422   | 0.2 (0, 0.3)     | 0.372 | 0.643 | 5.1    | -0.51 (-1.1,0)   | 0.360 | 0.646 |
|----------|-------|------------------|-------|-------|--------|------------------|-------|-------|
| SYK      | 2973  | 0.1 (0, 0.3)     | 0.381 | 0.653 | 2416.3 | -0.09 (-0.2,0)   | 0.372 | 0.658 |
| RIPK3    | 283   | -0.2 (-0.4, 0)   | 0.385 | 0.654 | 2.1    | -0.99 (-2.1,0.1) | 0.373 | 0.658 |
| SELE     | 30    | 0.3 (-0.1, 0.6)  | 0.401 | 0.672 | 713.6  | -0.13 (-0.3,0)   | 0.406 | 0.710 |
| AKT2     | 6983  | 0.1 (0, 0.2)     | 0.408 | 0.672 | 2709   | 0.1 (0,0.2)      | 0.414 | 0.718 |
| MAP3K7   | 3579  | 0.1 (0, 0.2)     | 0.411 | 0.672 | 9813.9 | 0.09 (0,0.2)     | 0.431 | 0.725 |
| MLKL     | 330   | -0.1 (-0.2, 0)   | 0.403 | 0.672 | 1119.7 | -0.11 (-0.3,0)   | 0.432 | 0.725 |
| CCL3L1   | 36    | 0.4 (-0.1, 1)    | 0.412 | 0.672 | 635.3  | -0.12 (-0.3,0)   | 0.434 | 0.725 |
| CD14     | 644   | 0.1 (0, 0.3)     | 0.416 | 0.674 | 5931.6 | 0.11 (0,0.2)     | 0.431 | 0.725 |
| TNFRSF1B | 489   | 0.1 (0, 0.2)     | 0.439 | 0.695 | 3472.8 | 0.14 (0,0.3)     | 0.428 | 0.725 |
| MAPK14   | 1547  | -0.1 (-0.2, 0)   | 0.437 | 0.695 | 6847.2 | 0.09 (0,0.2)     | 0.443 | 0.729 |
| IL12B    | 4     | 0.4 (-0.1, 1)    | 0.437 | 0.695 | 122.7  | -0.19 (-0.4,0.1) | 0.447 | 0.729 |
| MAPK8    | 1453  | -0.1 (-0.2, 0)   | 0.450 | 0.707 | 904.6  | -0.23 (-0.5,0.1) | 0.449 | 0.729 |
| NFKB1    | 2224  | -0.1 (-0.1, 0)   | 0.458 | 0.715 | 7      | -1.07 (-2.5,0.3) | 0.450 | 0.729 |
| ІКВКВ    | 3996  | 0.1 (0, 0.2)     | 0.466 | 0.717 | 1209.8 | -0.15 (-0.4,0.1) | 0.457 | 0.735 |
| SPP1     | 11058 | 0.1 (0, 0.3)     | 0.467 | 0.717 | 0.2    | -1.64 (-3.9,0.6) | 0.470 | 0.750 |
| CXCL2    | 134   | 0.2 (-0.1, 0.5)  | 0.474 | 0.722 | 47.7   | 0.23 (-0.1,0.6)  | 0.475 | 0.752 |
| ATF2     | 5713  | 0.1 (0, 0.1)     | 0.493 | 0.741 | 4537.9 | 0.06 (0,0.2)     | 0.485 | 0.763 |
| CARD11   | 1154  | 0.1 (-0.1, 0.3)  | 0.490 | 0.741 | 1216.9 | -0.12 (-0.3,0.1) | 0.500 | 0.764 |
| ZAP70    | 201   | 0.1 (-0.1, 0.3)  | 0.497 | 0.742 | 149.1  | -0.16 (-0.4,0.1) | 0.489 | 0.764 |
| CX3CL1   | 245   | 0.1 (-0.1, 0.3)  | 0.531 | 0.745 | 742.9  | -0.13 (-0.3,0.1) | 0.496 | 0.764 |
| TRIM25   | 3568  | 0.1 (0, 0.2)     | 0.522 | 0.745 | 1.6    | 3.09 (-1.5,7.6)  | 0.498 | 0.764 |
| TNFSF14  | 47    | 0.2 (-0.1, 0.5)  | 0.504 | 0.745 | 1.9    | -0.73 (-1.8,0.4) | 0.506 | 0.767 |
| GADD45G  | 94    | 0.2 (-0.1, 0.4)  | 0.528 | 0.745 | 2549.7 | -0.08 (-0.2,0)   | 0.511 | 0.770 |
| IL6      | 134   | 0.2 (-0.1, 0.5)  | 0.508 | 0.745 | 572.4  | 0.08 (0,0.2)     | 0.520 | 0.778 |
| CXCL3    | 70    | -0.2 (-0.5, 0.1) | 0.529 | 0.745 | 1282.1 | -0.07 (-0.2,0)   | 0.535 | 0.793 |
| IL12A    | 112   | 0.2 (-0.1, 0.5)  | 0.511 | 0.745 | 3445.2 | 0.17 (-0.1,0.5)  | 0.537 | 0.793 |
| CXCL8    | 427   | -0.2 (-0.4, 0.1) | 0.528 | 0.745 | 2816.2 | 0.06 (0,0.2)     | 0.560 | 0.797 |
| CCL4     | 87    | 0.2 (-0.1, 0.5)  | 0.515 | 0.745 | 4241.5 | -0.11 (-0.3,0.1) | 0.562 | 0.797 |
| MALT1    | 2874  | -0.1 (-0.2, 0)   | 0.535 | 0.745 | 710.3  | 0.1 (-0.1,0.3)   | 0.544 | 0.797 |
| TRAF2    | 1359  | 0.1 (-0.1, 0.2)  | 0.565 | 0.783 | 659.5  | -0.06 (-0.2,0)   | 0.554 | 0.797 |

| МАРЗК8  | 1456  | 0.1 (-0.1, 0.2)  | 0.571 | 0.786 | 7272.5  | 0.08 (-0.1,0.2)  | 0.556 | 0.797 |
|---------|-------|------------------|-------|-------|---------|------------------|-------|-------|
| MAPK11  | 110   | 0.1 (-0.1, 0.3)  | 0.583 | 0.797 | 70.6    | 0.18 (-0.1,0.5)  | 0.558 | 0.797 |
| ATF6B   | 4104  | 0.1 (-0.1, 0.2)  | 0.598 | 0.811 | 603.6   | -0.08 (-0.2,0.1) | 0.589 | 0.821 |
| TRADD   | 224   | -0.1 (-0.3, 0.1) | 0.606 | 0.817 | 2159.3  | 0.07 (-0.1,0.2)  | 0.589 | 0.821 |
| BIRC3   | 2106  | -0.1 (-0.3, 0.1) | 0.624 | 0.825 | 1806.1  | 0.07 (-0.1,0.2)  | 0.590 | 0.821 |
| CSNK2A2 | 2259  | 0 (0, 0.1)       | 0.617 | 0.825 | 5088.3  | -0.08 (-0.2,0.1) | 0.610 | 0.828 |
| PIAS4   | 911   | 0.1 (-0.1, 0.2)  | 0.622 | 0.825 | 1655.9  | 0.06 (-0.1,0.2)  | 0.611 | 0.828 |
| MAPK13  | 1132  | -0.1 (-0.2, 0.1) | 0.628 | 0.825 | 5985.4  | 0.06 (-0.1,0.2)  | 0.616 | 0.828 |
| DNM1L   | 7247  | 0 (-0.1, 0.1)    | 0.648 | 0.833 | 80.9    | -0.13 (-0.4,0.1) | 0.602 | 0.828 |
| JAG1    | 4935  | -0.1 (-0.2, 0.1) | 0.646 | 0.833 | 1013.7  | -0.07 (-0.2,0.1) | 0.619 | 0.828 |
| STAT1   | 16431 | 0.1 (-0.1, 0.2)  | 0.648 | 0.833 | 82.5    | -0.16 (-0.5,0.2) | 0.622 | 0.828 |
| CREB5   | 1113  | -0.1 (-0.3, 0.1) | 0.650 | 0.833 | 1797.7  | 0.05 (0,0.1)     | 0.615 | 0.828 |
| TAB2    | 17354 | 0 (-0.1, 0.1)    | 0.665 | 0.843 | 24.5    | 0.23 (-0.2,0.7)  | 0.631 | 0.836 |
| ITCH    | 7029  | 0 (-0.1, 0)      | 0.666 | 0.843 | 160.8   | -0.08 (-0.2,0.1) | 0.651 | 0.847 |
| TLR8    | 125   | -0.1 (-0.3, 0.1) | 0.679 | 0.849 | 10004.1 | 0.07 (-0.1,0.2)  | 0.655 | 0.847 |
| CCL20   | 127   | 0.2 (-0.2, 0.5)  | 0.675 | 0.849 | 319.1   | 0.11 (-0.1,0.4)  | 0.656 | 0.847 |
| MYD88   | 1030  | 0 (-0.1, 0.2)    | 0.685 | 0.852 | 69      | 0.24 (-0.3,0.8)  | 0.654 | 0.847 |
| TAB1    | 779   | 0 (-0.1, 0.2)    | 0.696 | 0.861 | 942.3   | -0.05 (-0.2,0.1) | 0.687 | 0.877 |
| TRAF1   | 447   | 0.1 (-0.1, 0.2)  | 0.708 | 0.871 | 1341.1  | 0.04 (-0.1,0.2)  | 0.687 | 0.877 |
| CD40LG  | 22    | -0.1 (-0.4, 0.2) | 0.719 | 0.878 | 401.3   | -0.05 (-0.2,0.1) | 0.696 | 0.883 |
| TNF     | 79    | 0.1 (-0.2, 0.5)  | 0.741 | 0.900 | 1046.8  | -0.08 (-0.3,0.1) | 0.700 | 0.883 |
| PLCG2   | 4337  | 0 (-0.1, 0.2)    | 0.745 | 0.900 | 34.6    | 0.11 (-0.2,0.4)  | 0.709 | 0.890 |
| TRAF3   | 1519  | 0 (-0.1, 0.1)    | 0.753 | 0.904 | 455.7   | 0.07 (-0.1,0.3)  | 0.730 | 0.891 |
| MAPK1   | 2840  | 0 (-0.1, 0.1)    | 0.767 | 0.914 | 1737.8  | 0.07 (-0.1,0.3)  | 0.745 | 0.891 |
| CARD10  | 939   | 0.1 (-0.1, 0.2)  | 0.770 | 0.914 | 281.8   | -0.09 (-0.4,0.2) | 0.723 | 0.891 |
| EDN1    | 272   | -0.1 (-0.3, 0.2) | 0.790 | 0.919 | 1.9     | 0.67 (-1.5,2.9)  | 0.760 | 0.891 |
| MMP9    | 1221  | -0.1 (-0.3, 0.2) | 0.795 | 0.919 | 2093.1  | -0.06 (-0.2,0.1) | 0.725 | 0.891 |
| MMP3    | 31    | 0.4 (-1, 1.8)    | 0.790 | 0.919 | 2129.1  | -0.04 (-0.2,0.1) | 0.728 | 0.891 |
| CASP7   | 701   | 0 (-0.1, 0.1)    | 0.794 | 0.919 | 8850.2  | -0.04 (-0.1,0.1) | 0.747 | 0.891 |
| LCK     | 137   | -0.1 (-0.3, 0.2) | 0.798 | 0.919 | 6887    | 0.04 (-0.1,0.2)  | 0.744 | 0.891 |
| TLR9    | 70    | 0.3 (-0.9, 1.5)  | 0.800 | 0.919 | 2661.1  | 0.04 (-0.1,0.2)  | 0.752 | 0.891 |

| 3734 | 0(-0, 1, 0, 2)                                                                                                                                                                                                           | 0.815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3071.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.03 (-0.1.0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ( , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.957                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.957                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ( , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | 3734<br>16<br>1685<br>2820<br>9795<br>5836<br>485<br>85<br>1279<br>1075<br>358<br>950<br>355<br>381<br>5<br>4<br>1388<br>5849<br>1922<br>2204<br>828<br>896<br>280<br>128<br>109<br>299<br>379<br>2<br>1<br>2<br>20<br>4 | 16 $0.1 (-0.4, 0.6)$ 1685 $0 (-0.1, 0.1)$ 2820 $0 (-0.1, 0.2)$ 9795 $0 (-0.1, 0.1)$ 5836 $0 (-0.1, 0.1)$ 485 $0 (-0.1, 0.2)$ 85 $-0.1 (-0.4, 0.3)$ 1279 $0 (-0.2, 0.2)$ 1075 $0 (-0.1, 0.1)$ 358 $-0.1 (-0.4, 0.2)$ 950 $0 (-0.2, 0.2)$ 381 $0 (-0.1, 0.2)$ 5 $-0.2 (-1.5, 1)$ 4 $-0.3 (-2.4, 1.7)$ 1388 $0 (-0.1, 0.1)$ 5849 $0 (-0.1, 0.1)$ 5849 $0 (-0.1, 0.1)$ 5849 $0 (-0.1, 0.1)$ 5849 $0 (-0.1, 0.1)$ 1922 $0 (-0.2, 0.1)$ 828 $0 (-0.2, 0.2)$ 280 $0 (-0.2, 0.2)$ 280 $0 (-0.2, 0.2)$ 299 $0 (-0.2, 0.2)$ 379 $0 (-0.3, 0.3)$ 2 $-0.2 (-1.1, 0.7)$ 1 $1 (-1.6, 3.6)$ 2 $0.1 (-3.4, 3.6)$ | 16 $0.1 (-0.4, 0.6)$ $0.813$ 1685 $0 (-0.1, 0.1)$ $0.845$ 2820 $0 (-0.1, 0.2)$ $0.840$ 9795 $0 (-0.1, 0.1)$ $0.825$ 5836 $0 (-0.1, 0.1)$ $0.851$ 485 $0 (-0.1, 0.2)$ $0.858$ 85 $-0.1 (-0.4, 0.3)$ $0.869$ 1279 $0 (-0.2, 0.2)$ $0.874$ 1075 $0 (-0.1, 0.1)$ $0.832$ 358 $-0.1 (-0.4, 0.2)$ $0.854$ 950 $0 (-0.2, 0.1)$ $0.861$ 355 $0 (-0.2, 0.2)$ $0.874$ 381 $0 (-0.1, 0.2)$ $0.857$ 5 $-0.2 (-1.5, 1)$ $0.850$ 4 $-0.3 (-2.4, 1.7)$ $0.880$ 1388 $0 (-0.1, 0.1)$ $0.930$ 1922 $0 (-0.1, 0.1)$ $0.935$ 2204 $0 (-0.2, 0.1)$ $0.953$ 280 $0 (-0.2, 0.2)$ $0.953$ 280 $0 (-0.2, 0.2)$ $0.973$ 299 $0 (-0.2, 0.2)$ $0.973$ 299 $0 (-0.2, 0.2)$ $0.973$ 299 $0 (-0.2, 0.2)$ $0.973$ 299 $0 (-0.2, 0.2)$ $0.973$ 299 $0 (-0.2, 0.2)$ $0.973$ 299 $0 (-0.2, 0.2)$ $0.973$ 299 $0 (-0.2, 0.2)$ $0.973$ 299 $0 (-0.2, 0.2)$ $0.973$ 299 $0 (-0.2, 0.2)$ $0.973$ 299 $0 (-0.2, 0.2)$ $0.973$ 299 $0 (-0.2, 0.2)$ $0.978$ 1 $1 (-1.6, 3.6)$ $0.710$ 2 $0.1 (-3.4, 3.6)$ $0.978$ <td>16<math>0.1(-0.4, 0.6)</math><math>0.813</math><math>0.925</math>1685<math>0(-0.1, 0.1)</math><math>0.845</math><math>0.928</math>2820<math>0(-0.1, 0.2)</math><math>0.840</math><math>0.928</math>9795<math>0(-0.1, 0.1)</math><math>0.825</math><math>0.928</math>5836<math>0(-0.1, 0.1)</math><math>0.851</math><math>0.928</math>485<math>0(-0.1, 0.2)</math><math>0.858</math><math>0.928</math>85<math>-0.1(-0.4, 0.3)</math><math>0.869</math><math>0.928</math>1279<math>0(-0.2, 0.2)</math><math>0.874</math><math>0.928</math>1075<math>0(-0.1, 0.1)</math><math>0.832</math><math>0.928</math>1075<math>0(-0.1, 0.1)</math><math>0.832</math><math>0.928</math>358<math>-0.1(-0.4, 0.2)</math><math>0.854</math><math>0.928</math>355<math>0(-0.2, 0.2)</math><math>0.874</math><math>0.928</math>355<math>0(-0.2, 0.2)</math><math>0.874</math><math>0.928</math>355<math>0(-0.2, 0.2)</math><math>0.874</math><math>0.928</math>381<math>0(-0.1, 0.2)</math><math>0.857</math><math>0.928</math>4<math>-0.3(-2.4, 1.7)</math><math>0.880</math><math>0.929</math>1388<math>0(-0.1, 0.1)</math><math>0.909</math><math>0.955</math>5849<math>0(-0.1, 0.1)</math><math>0.930</math><math>0.972</math>1922<math>0(-0.1, 0.1)</math><math>0.952</math><math>0.977</math>896<math>0(-0.2, 0.2)</math><math>0.953</math><math>0.977</math>896<math>0(-0.2, 0.2)</math><math>0.953</math><math>0.977</math>280<math>0(-0.2, 0.2)</math><math>0.973</math><math>0.983</math>109<math>0(-0.2, 0.2)</math><math>0.973</math><math>0.983</math>299<math>0(-0.2, 0.2)</math><math>0.973</math><math>0.983</math>299<math>0(-0.2, 0.2)</math><math>0.979</math><math>0.984</math>379<math>0(-0.3, 0.3)</math><math>0.985</math><math>1.00</math>1<math>1(-1.6, 3.6)</math><math>0.7</math></td> <td>16<math>0.1(-0.4, 0.6)</math><math>0.813</math><math>0.925</math><math>130.5</math>1685<math>0(-0.1, 0.1)</math><math>0.845</math><math>0.928</math><math>701</math>9795<math>0(-0.1, 0.2)</math><math>0.840</math><math>0.928</math><math>701</math>9795<math>0(-0.1, 0.1)</math><math>0.825</math><math>0.928</math><math>0.4</math>5836<math>0(-0.1, 0.1)</math><math>0.851</math><math>0.928</math><math>837.9</math>485<math>0(-0.1, 0.2)</math><math>0.858</math><math>0.928</math><math>835.9</math>485<math>0(-0.1, 0.2)</math><math>0.858</math><math>0.928</math><math>13.5</math>1279<math>0(-0.2, 0.2)</math><math>0.874</math><math>0.928</math><math>2361</math>1075<math>0(-0.1, 0.1)</math><math>0.832</math><math>0.928</math><math>1179.7</math>950<math>0(-0.2, 0.2)</math><math>0.874</math><math>0.928</math><math>2465.2</math>355<math>0(-0.2, 0.2)</math><math>0.874</math><math>0.928</math><math>2306.4</math>5<math>-0.2(-1.5, 1)</math><math>0.857</math><math>0.928</math><math>2306.4</math>5<math>-0.2(-1.5, 1)</math><math>0.850</math><math>0.928</math><math>0.99</math>4<math>-0.3(-2.4, 1.7)</math><math>0.880</math><math>0.929</math><math>15718.6</math>1388<math>0(-0.1, 0.1)</math><math>0.930</math><math>0.972</math><math>6120.3</math>1922<math>0(-0.1, 0.1)</math><math>0.935</math><math>0.972</math><math>147.9</math>2204<math>0(-0.2, 0.1)</math><math>0.952</math><math>0.977</math><math>0.2</math>828<math>0(-0.1, 0.1)</math><math>0.954</math><math>0.977</math><math>1332.4</math>896<math>0(-0.2, 0.2)</math><math>0.973</math><math>0.983</math><math>1247.5</math>299<math>0(-0.2, 0.2)</math><math>0.973</math><math>0.983</math><math>1247.5</math>299<math>0(-0.2, 0.2)</math><math>0.979</math><math>0.984</math><math>2141.3</math>379<math>0(-0.3, 0.3)</math><math>0.985</math><math>1.00</math><math>4393.1</math><tr<< td=""><td>160.1 (<math>-0.4</math>, <math>0.6</math>)0.8130.925130.5-0.06 (<math>-0.3</math>, <math>0.1</math>)16850 (<math>-0.1</math>, <math>0.1</math>)0.8450.9282.60.32 (<math>-0.6</math>, <math>1.2</math>)28200 (<math>-0.1</math>, <math>0.2</math>)0.8400.928701-0.04 (<math>-0.2</math>, <math>0.1</math>)97950 (<math>-0.1</math>, <math>0.1</math>)0.8250.9280.41.23 (<math>-3.15.6</math>)58360 (<math>-0.1</math>, <math>0.1</math>)0.8510.928837.9-0.03 (<math>-0.2</math>, <math>0.1</math>)4850 (<math>-0.1</math>, <math>0.2</math>)0.8580.928866-0.04 (<math>-0.2</math>, <math>0.1</math>)185-0.1 (<math>-0.4</math>, <math>0.3</math>)0.8690.928135.50.28 (<math>-0.8, 1.3</math>)12790 (<math>-0.2</math>, <math>0.2</math>)0.8740.92823610.03 (<math>-0.1, 0.2</math>)10750 (<math>-0.1</math>, <math>0.1</math>)0.8320.928250.7-0.04 (<math>-0.2, 0.1</math>)358-0.1 (<math>-0.4</math>, <math>0.2</math>)0.8540.9281179.7-0.02 (<math>-0.1, 0.1</math>)3550 (<math>-0.2</math>, <math>0.1</math>)0.8670.9282366.2-0.03 (<math>-0.2, 0.1</math>)3550 (<math>-0.2</math>, <math>0.1</math>)0.8570.9282306.4-0.03 (<math>-0.2, 0.1</math>)3550 (<math>-0.2</math>, <math>0.1</math>)0.8570.9280.90.2 (<math>-0.8, 1.2</math>)4-0.3 (<math>-2.4, 1.7</math>)0.8800.92915718.60.03 (<math>-0.1, 0.1</math>)5-0.2 (<math>-1.5, 1</math>)0.8500.9280.90.2 (<math>-0.8, 1.2</math>)4-0.3 (<math>-2.4, 1.7</math>)0.8800.92915718.60.03 (<math>-0.1, 0.1</math>)19220 (<math>-0.1, 0.1</math>)0.9350.972147.9-0.07 (<math>-0.5, 0.4</math>)22040 (<math>-0.2, 0.1</math>)0.95</td><td>160.1 (<math>0.4</math>, 0.6)0.8130.925130.50.006 (<math>0.3</math>, 0.1)0.74716850 (<math>-0.1</math>, 0.1)0.8450.9282.60.32 (<math>-0.6</math>, 1.2)0.73328200 (<math>-0.1</math>, 0.2)0.8400.928701<math>-0.04</math> (<math>-0.2</math>, 0.1)0.76697950 (<math>-0.1</math>, 0.1)0.8250.9280.41.23 (<math>-3.1,5.6</math>)0.77758360 (<math>-0.1</math>, 0.1)0.85710.928837.9<math>-0.03</math> (<math>-0.2,0.1</math>)0.7844850 (<math>-0.1</math>, 0.2)0.8580.928866<math>-0.04</math> (<math>-0.2,0.1</math>)0.80185<math>-0.1</math> (<math>-0.4</math>, 0.3)0.8690.92823610.03 (<math>-0.1,0.2</math>)0.80310750 (<math>-0.2, 0.2</math>)0.8740.92823610.03 (<math>-0.1,0.2</math>)0.80310750 (<math>-0.1, 0.1</math>)0.8520.9282465.2<math>-0.03</math> (<math>-0.2,0.1</math>)0.8379500 (<math>-0.2, 0.1</math>)0.8610.9282465.2<math>-0.03</math> (<math>-0.2,0.1</math>)0.8253550 (<math>-0.2, 0.2</math>)0.8740.928380.70.04 (<math>-0.2,0.2</math>)0.8233810 (<math>-0.1, 0.2</math>)0.8550.9280.90.2 (<math>-0.3, 0.1</math>)0.8355<math>-0.2</math> (<math>-1.5, 1</math>)0.8500.9280.90.2 (<math>-0.8, 1.2</math>)0.82413880 (<math>-0.1, 0.1</math>)0.9350.9771332.4<math>-0.02</math> (<math>-0.1, 0.1</math>)0.83719220 (<math>-0.1, 0.1</math>)0.9550.9770.20.77 (<math>-3.8, 5.3</math>)0.8668280 (<math>-0.1, 0.1</math>)0.9550.9770.20.77 (<math>-3.8, 5.3</math>)&lt;</td></tr<<></td> | 16 $0.1(-0.4, 0.6)$ $0.813$ $0.925$ 1685 $0(-0.1, 0.1)$ $0.845$ $0.928$ 2820 $0(-0.1, 0.2)$ $0.840$ $0.928$ 9795 $0(-0.1, 0.1)$ $0.825$ $0.928$ 5836 $0(-0.1, 0.1)$ $0.851$ $0.928$ 485 $0(-0.1, 0.2)$ $0.858$ $0.928$ 85 $-0.1(-0.4, 0.3)$ $0.869$ $0.928$ 1279 $0(-0.2, 0.2)$ $0.874$ $0.928$ 1075 $0(-0.1, 0.1)$ $0.832$ $0.928$ 1075 $0(-0.1, 0.1)$ $0.832$ $0.928$ 358 $-0.1(-0.4, 0.2)$ $0.854$ $0.928$ 355 $0(-0.2, 0.2)$ $0.874$ $0.928$ 355 $0(-0.2, 0.2)$ $0.874$ $0.928$ 355 $0(-0.2, 0.2)$ $0.874$ $0.928$ 381 $0(-0.1, 0.2)$ $0.857$ $0.928$ 4 $-0.3(-2.4, 1.7)$ $0.880$ $0.929$ 1388 $0(-0.1, 0.1)$ $0.909$ $0.955$ 5849 $0(-0.1, 0.1)$ $0.930$ $0.972$ 1922 $0(-0.1, 0.1)$ $0.952$ $0.977$ 896 $0(-0.2, 0.2)$ $0.953$ $0.977$ 896 $0(-0.2, 0.2)$ $0.953$ $0.977$ 280 $0(-0.2, 0.2)$ $0.973$ $0.983$ 109 $0(-0.2, 0.2)$ $0.973$ $0.983$ 299 $0(-0.2, 0.2)$ $0.973$ $0.983$ 299 $0(-0.2, 0.2)$ $0.979$ $0.984$ 379 $0(-0.3, 0.3)$ $0.985$ $1.00$ 1 $1(-1.6, 3.6)$ $0.7$ | 16 $0.1(-0.4, 0.6)$ $0.813$ $0.925$ $130.5$ 1685 $0(-0.1, 0.1)$ $0.845$ $0.928$ $701$ 9795 $0(-0.1, 0.2)$ $0.840$ $0.928$ $701$ 9795 $0(-0.1, 0.1)$ $0.825$ $0.928$ $0.4$ 5836 $0(-0.1, 0.1)$ $0.851$ $0.928$ $837.9$ 485 $0(-0.1, 0.2)$ $0.858$ $0.928$ $835.9$ 485 $0(-0.1, 0.2)$ $0.858$ $0.928$ $13.5$ 1279 $0(-0.2, 0.2)$ $0.874$ $0.928$ $2361$ 1075 $0(-0.1, 0.1)$ $0.832$ $0.928$ $1179.7$ 950 $0(-0.2, 0.2)$ $0.874$ $0.928$ $2465.2$ 355 $0(-0.2, 0.2)$ $0.874$ $0.928$ $2306.4$ 5 $-0.2(-1.5, 1)$ $0.857$ $0.928$ $2306.4$ 5 $-0.2(-1.5, 1)$ $0.850$ $0.928$ $0.99$ 4 $-0.3(-2.4, 1.7)$ $0.880$ $0.929$ $15718.6$ 1388 $0(-0.1, 0.1)$ $0.930$ $0.972$ $6120.3$ 1922 $0(-0.1, 0.1)$ $0.935$ $0.972$ $147.9$ 2204 $0(-0.2, 0.1)$ $0.952$ $0.977$ $0.2$ 828 $0(-0.1, 0.1)$ $0.954$ $0.977$ $1332.4$ 896 $0(-0.2, 0.2)$ $0.973$ $0.983$ $1247.5$ 299 $0(-0.2, 0.2)$ $0.973$ $0.983$ $1247.5$ 299 $0(-0.2, 0.2)$ $0.979$ $0.984$ $2141.3$ 379 $0(-0.3, 0.3)$ $0.985$ $1.00$ $4393.1$ <tr<< td=""><td>160.1 (<math>-0.4</math>, <math>0.6</math>)0.8130.925130.5-0.06 (<math>-0.3</math>, <math>0.1</math>)16850 (<math>-0.1</math>, <math>0.1</math>)0.8450.9282.60.32 (<math>-0.6</math>, <math>1.2</math>)28200 (<math>-0.1</math>, <math>0.2</math>)0.8400.928701-0.04 (<math>-0.2</math>, <math>0.1</math>)97950 (<math>-0.1</math>, <math>0.1</math>)0.8250.9280.41.23 (<math>-3.15.6</math>)58360 (<math>-0.1</math>, <math>0.1</math>)0.8510.928837.9-0.03 (<math>-0.2</math>, <math>0.1</math>)4850 (<math>-0.1</math>, <math>0.2</math>)0.8580.928866-0.04 (<math>-0.2</math>, <math>0.1</math>)185-0.1 (<math>-0.4</math>, <math>0.3</math>)0.8690.928135.50.28 (<math>-0.8, 1.3</math>)12790 (<math>-0.2</math>, <math>0.2</math>)0.8740.92823610.03 (<math>-0.1, 0.2</math>)10750 (<math>-0.1</math>, <math>0.1</math>)0.8320.928250.7-0.04 (<math>-0.2, 0.1</math>)358-0.1 (<math>-0.4</math>, <math>0.2</math>)0.8540.9281179.7-0.02 (<math>-0.1, 0.1</math>)3550 (<math>-0.2</math>, <math>0.1</math>)0.8670.9282366.2-0.03 (<math>-0.2, 0.1</math>)3550 (<math>-0.2</math>, <math>0.1</math>)0.8570.9282306.4-0.03 (<math>-0.2, 0.1</math>)3550 (<math>-0.2</math>, <math>0.1</math>)0.8570.9280.90.2 (<math>-0.8, 1.2</math>)4-0.3 (<math>-2.4, 1.7</math>)0.8800.92915718.60.03 (<math>-0.1, 0.1</math>)5-0.2 (<math>-1.5, 1</math>)0.8500.9280.90.2 (<math>-0.8, 1.2</math>)4-0.3 (<math>-2.4, 1.7</math>)0.8800.92915718.60.03 (<math>-0.1, 0.1</math>)19220 (<math>-0.1, 0.1</math>)0.9350.972147.9-0.07 (<math>-0.5, 0.4</math>)22040 (<math>-0.2, 0.1</math>)0.95</td><td>160.1 (<math>0.4</math>, 0.6)0.8130.925130.50.006 (<math>0.3</math>, 0.1)0.74716850 (<math>-0.1</math>, 0.1)0.8450.9282.60.32 (<math>-0.6</math>, 1.2)0.73328200 (<math>-0.1</math>, 0.2)0.8400.928701<math>-0.04</math> (<math>-0.2</math>, 0.1)0.76697950 (<math>-0.1</math>, 0.1)0.8250.9280.41.23 (<math>-3.1,5.6</math>)0.77758360 (<math>-0.1</math>, 0.1)0.85710.928837.9<math>-0.03</math> (<math>-0.2,0.1</math>)0.7844850 (<math>-0.1</math>, 0.2)0.8580.928866<math>-0.04</math> (<math>-0.2,0.1</math>)0.80185<math>-0.1</math> (<math>-0.4</math>, 0.3)0.8690.92823610.03 (<math>-0.1,0.2</math>)0.80310750 (<math>-0.2, 0.2</math>)0.8740.92823610.03 (<math>-0.1,0.2</math>)0.80310750 (<math>-0.1, 0.1</math>)0.8520.9282465.2<math>-0.03</math> (<math>-0.2,0.1</math>)0.8379500 (<math>-0.2, 0.1</math>)0.8610.9282465.2<math>-0.03</math> (<math>-0.2,0.1</math>)0.8253550 (<math>-0.2, 0.2</math>)0.8740.928380.70.04 (<math>-0.2,0.2</math>)0.8233810 (<math>-0.1, 0.2</math>)0.8550.9280.90.2 (<math>-0.3, 0.1</math>)0.8355<math>-0.2</math> (<math>-1.5, 1</math>)0.8500.9280.90.2 (<math>-0.8, 1.2</math>)0.82413880 (<math>-0.1, 0.1</math>)0.9350.9771332.4<math>-0.02</math> (<math>-0.1, 0.1</math>)0.83719220 (<math>-0.1, 0.1</math>)0.9550.9770.20.77 (<math>-3.8, 5.3</math>)0.8668280 (<math>-0.1, 0.1</math>)0.9550.9770.20.77 (<math>-3.8, 5.3</math>)&lt;</td></tr<<> | 160.1 ( $-0.4$ , $0.6$ )0.8130.925130.5-0.06 ( $-0.3$ , $0.1$ )16850 ( $-0.1$ , $0.1$ )0.8450.9282.60.32 ( $-0.6$ , $1.2$ )28200 ( $-0.1$ , $0.2$ )0.8400.928701-0.04 ( $-0.2$ , $0.1$ )97950 ( $-0.1$ , $0.1$ )0.8250.9280.41.23 ( $-3.15.6$ )58360 ( $-0.1$ , $0.1$ )0.8510.928837.9-0.03 ( $-0.2$ , $0.1$ )4850 ( $-0.1$ , $0.2$ )0.8580.928866-0.04 ( $-0.2$ , $0.1$ )185-0.1 ( $-0.4$ , $0.3$ )0.8690.928135.50.28 ( $-0.8, 1.3$ )12790 ( $-0.2$ , $0.2$ )0.8740.92823610.03 ( $-0.1, 0.2$ )10750 ( $-0.1$ , $0.1$ )0.8320.928250.7-0.04 ( $-0.2, 0.1$ )358-0.1 ( $-0.4$ , $0.2$ )0.8540.9281179.7-0.02 ( $-0.1, 0.1$ )3550 ( $-0.2$ , $0.1$ )0.8670.9282366.2-0.03 ( $-0.2, 0.1$ )3550 ( $-0.2$ , $0.1$ )0.8570.9282306.4-0.03 ( $-0.2, 0.1$ )3550 ( $-0.2$ , $0.1$ )0.8570.9280.90.2 ( $-0.8, 1.2$ )4-0.3 ( $-2.4, 1.7$ )0.8800.92915718.60.03 ( $-0.1, 0.1$ )5-0.2 ( $-1.5, 1$ )0.8500.9280.90.2 ( $-0.8, 1.2$ )4-0.3 ( $-2.4, 1.7$ )0.8800.92915718.60.03 ( $-0.1, 0.1$ )19220 ( $-0.1, 0.1$ )0.9350.972147.9-0.07 ( $-0.5, 0.4$ )22040 ( $-0.2, 0.1$ )0.95 | 160.1 ( $0.4$ , 0.6)0.8130.925130.50.006 ( $0.3$ , 0.1)0.74716850 ( $-0.1$ , 0.1)0.8450.9282.60.32 ( $-0.6$ , 1.2)0.73328200 ( $-0.1$ , 0.2)0.8400.928701 $-0.04$ ( $-0.2$ , 0.1)0.76697950 ( $-0.1$ , 0.1)0.8250.9280.41.23 ( $-3.1,5.6$ )0.77758360 ( $-0.1$ , 0.1)0.85710.928837.9 $-0.03$ ( $-0.2,0.1$ )0.7844850 ( $-0.1$ , 0.2)0.8580.928866 $-0.04$ ( $-0.2,0.1$ )0.80185 $-0.1$ ( $-0.4$ , 0.3)0.8690.92823610.03 ( $-0.1,0.2$ )0.80310750 ( $-0.2, 0.2$ )0.8740.92823610.03 ( $-0.1,0.2$ )0.80310750 ( $-0.1, 0.1$ )0.8520.9282465.2 $-0.03$ ( $-0.2,0.1$ )0.8379500 ( $-0.2, 0.1$ )0.8610.9282465.2 $-0.03$ ( $-0.2,0.1$ )0.8253550 ( $-0.2, 0.2$ )0.8740.928380.70.04 ( $-0.2,0.2$ )0.8233810 ( $-0.1, 0.2$ )0.8550.9280.90.2 ( $-0.3, 0.1$ )0.8355 $-0.2$ ( $-1.5, 1$ )0.8500.9280.90.2 ( $-0.8, 1.2$ )0.82413880 ( $-0.1, 0.1$ )0.9350.9771332.4 $-0.02$ ( $-0.1, 0.1$ )0.83719220 ( $-0.1, 0.1$ )0.9550.9770.20.77 ( $-3.8, 5.3$ )0.8668280 ( $-0.1, 0.1$ )0.9550.9770.20.77 ( $-3.8, 5.3$ )< |

| IFNA5  | 1 | 0.7 (-0.4, 1.8)  | 0.511 | 1.00 | 61    | -0.01 (-0.2,0.2) | 0.967 | 0.983 |
|--------|---|------------------|-------|------|-------|------------------|-------|-------|
| IFNA16 | 0 | -0.3 (-3.8, 3.2) | 0.936 | 1.00 | 32.1  | 0.01 (-0.5,0.5)  | 0.983 | 0.983 |
| IFNA10 | 0 | 0.1 (-3.3, 3.6)  | 0.969 | 1.00 | 507.3 | 0.01 (-0.1,0.2)  | 0.974 | 0.983 |
| IFNA2  | 2 | 0 (-1.5, 1.5)    | 0.983 | 1.00 | 86.9  | 0.01 (-0.4,0.4)  | 0.981 | 0.983 |
| IFNA1  | 1 | 0.8 (-1.4, 3.1)  | 0.712 | 1.00 | 0.1   | 0.22 (-4.3,4.8)  | 0.962 | 1.00  |
| IFNA7  | 0 | 0.3 (-3.2, 3.8)  | 0.927 | 1.00 | 0.1   | 0.46 (-4.1,5)    | 0.919 | 1.00  |
| IFNA14 | 0 | 0.8 (-2.6, 4.3)  | 0.810 | 1.00 | 0.1   | 0.07 (-4.5,4.6)  | 0.988 | 1.00  |
| IFNA17 | 0 | 0.7 (-2.8, 4.1)  | 0.849 | 1.00 | 0     | 0.02 (-4.5,4.6)  | 0.996 | 1.00  |
| IFNA4  | 0 | 1.6 (-1.9, 5.1)  | 0.648 | 1.00 | 0.1   | 0.35 (-4.2,4.9)  | 0.939 | 1.00  |

Abbreviations: TLR = toll-like receptor; NFkB = nuclear factor kappa B; TNF = tumor necrosis factor; EOC = epithelial ovarian cancer;

HGSOC = high grade serous ovarian cancer; AACES = African American Cancer Epidemiology Study; OCAC = Ovarian Cancer Association Consortium;

<sup>a</sup>Adjusted for age, tumor purity and two ancestry principal components.

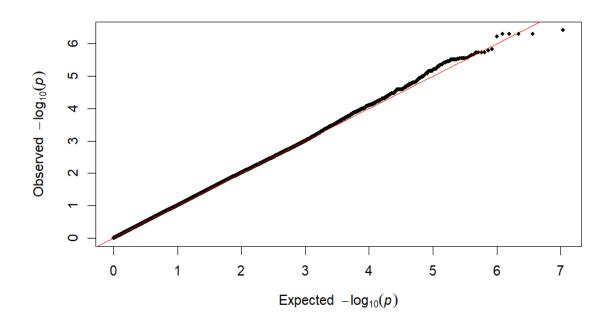
<sup>b</sup>Corrected for the number of genes tested using the Benjamini-Hochberg false discovery rate (FDR).

| nd White HGSOC | cases.                   |       | -                        |      |
|----------------|--------------------------|-------|--------------------------|------|
|                | Black                    |       | White                    |      |
|                | OR (95% CI) <sup>a</sup> | Р     | OR (95% CI) <sup>a</sup> | Р    |
| CTSK           | 1.73 (0.89, 3.36)        | 0.104 | 4.52 (1.76, 11.6)        | 0.00 |
| MMP14          | 2.12 (1.09, 4.13)        | 0.027 | 4.07 (1.63, 10.16)       | 0.00 |
| CD40LG         | 0.84 (0.43, 1.62)        | 0.598 | 0.27 (0.11, 0.67)        | 0.00 |
| CD40           | 1.97 (1.02, 3.83)        | 0.045 | 0.27 (0.11, 0.67)        | 0.00 |
| IL6            | 1.56 (0.81, 2.99)        | 0.183 | 3.58 (1.47, 8.73)        | 0.00 |
| CCL13          | 0.84 (0.44, 1.6)         | 0.588 | 0.28 (0.11, 0.69)        | 0.00 |
| BCL2           | 0.72 (0.37, 1.38)        | 0.322 | 0.28 (0.12, 0.69)        | 0.00 |
| CASP8          | 0.73 (0.37, 1.41)        | 0.342 | 0.31 (0.13, 0.73)        | 0.00 |
| MLKL           | 1.39 (0.72, 2.69)        | 0.326 | 0.33 (0.14, 0.79)        | 0.01 |
| TLR8           | 0.91 (0.47, 1.74)        | 0.768 | 0.34 (0.14, 0.8)         | 0.01 |
| TNFSF11        | 1.24 (0.65, 2.37)        | 0.520 | 2.93 (1.24, 6.92)        | 0.01 |
| PIK3R1         | 0.6 (0.31, 1.16)         | 0.126 | 2.93 (1.24, 6.92)        | 0.01 |
| ZAP70          | 1.22 (0.63, 2.35)        | 0.552 | 0.34 (0.14, 0.81)        | 0.01 |
| BIRC3          | 0.76 (0.39, 1.47)        | 0.414 | 0.37 (0.16, 0.86)        | 0.02 |
| TLR3           | 0.81 (0.42, 1.54)        | 0.518 | 0.38 (0.16, 0.87)        | 0.02 |
| CXCL10         | 1.14 (0.59, 2.19)        | 0.693 | 0.39 (0.17, 0.91)        | 0.02 |
| TLR4           | 0.53 (0.27, 1.03)        | 0.061 | 0.4 (0.17, 0.92)         | 0.03 |
| JUN            | 2.36 (1.19, 4.65)        | 0.014 | 2.51 (1.09, 5.81)        | 0.03 |
| GADD45G        | 1.04 (0.54, 2)           | 0.905 | 0.4 (0.17, 0.93)         | 0.03 |
| FOS            | 1.7 (0.88, 3.28)         | 0.115 | 2.48 (1.08, 5.72)        | 0.03 |
| MAP2K7         | 1.99 (1.02, 3.86)        | 0.043 | 0.41 (0.18, 0.94)        | 0.03 |
| SYK            | 1.12 (0.59, 2.16)        | 0.726 | 2.45 (1.06, 5.65)        | 0.03 |
| GADD45A        | 1.46 (0.76, 2.82)        | 0.255 | 2.4 (1.04, 5.52)         | 0.03 |
| PRKCB          | 0.94 (0.48, 1.82)        | 0.852 | 0.41 (0.18, 0.96)        | 0.04 |
| PLCG2          | 0.87 (0.46, 1.67)        | 0.684 | 0.42 (0.18, 0.97)        | 0.04 |
| MAPK13         | 1.02 (0.53, 1.94)        | 0.962 | 0.45 (0.2, 1.02)         | 0.05 |
| NOD2           | 0.82 (0.43, 1.57)        | 0.547 | 0.46 (0.2, 1.04)         | 0.06 |
| IKBKE          | 1.31 (0.68, 2.52)        | 0.425 | 0.46 (0.2, 1.04)         | 0.06 |
| CX3CL1         | 1.12 (0.58, 2.14)        | 0.742 | 0.46 (0.2, 1.04)         | 0.06 |
| SOCS3          | 2.56 (1.29, 5.07)        | 0.007 | 2.17 (0.95, 4.95)        | 0.06 |
| TIRAP          | 0.82 (0.43, 1.58)        | 0.557 | 0.47 (0.21, 1.06)        | 0.06 |
| ATF2           | 1.22 (0.64, 2.35)        | 0.543 | 2.13 (0.94, 4.83)        | 0.06 |
| MAPK1          | 0.6 (0.31, 1.15)         | 0.125 | 0.47 (0.21, 1.07)        | 0.07 |
| EDARADD        | 2.36 (1.2, 4.65)         | 0.013 | 2.11 (0.93, 4.78)        | 0.07 |
| MAP3K7         | 0.94 (0.49, 1.82)        | 0.864 | 2.1 (0.93, 4.73)         | 0.07 |

**Supplementary Table ST6.5.** Logistic Regression assessing high/low RNA expression in association with stage at diagnosis (late/early) in TLR, NFkB, and TNF genes among Black and White HGSOC cases.

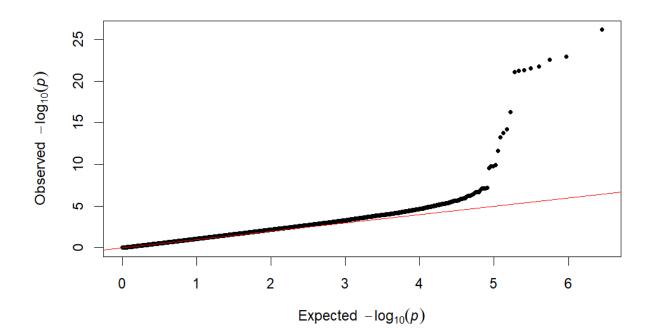
| IRF5     | 1.38 (0.72, 2.64) | 0.335 | 0.48 (0.21, 1.08) | 0.075 |  |
|----------|-------------------|-------|-------------------|-------|--|
| IKBKG    | 1.58 (0.82, 3.05) | 0.176 | 0.48 (0.21, 1.08) | 0.075 |  |
| VEGFC    | 1.12 (0.59, 2.15) | 0.725 | 2.06 (0.91, 4.64) | 0.082 |  |
| LTBR     | 1.72 (0.89, 3.32) | 0.109 | 0.49 (0.22, 1.1)  | 0.082 |  |
| AKT3     | 0.98 (0.52, 1.88) | 0.960 | 2.06 (0.91, 4.63) | 0.082 |  |
| CD80     | 0.82 (0.43, 1.56) | 0.538 | 0.48 (0.21, 1.1)  | 0.083 |  |
| MAP2K3   | 1.43 (0.73, 2.8)  | 0.293 | 0.49 (0.22, 1.1)  | 0.084 |  |
| IL1R1    | 0.56 (0.29, 1.09) | 0.088 | 0.49 (0.22, 1.1)  | 0.084 |  |
| LCK      | 1.03 (0.54, 1.96) | 0.939 | 0.49 (0.22, 1.11) | 0.087 |  |
| CREB3L2  | 1 (0.52, 1.92)    | 0.989 | 0.49 (0.22, 1.11) | 0.089 |  |
| CXCL9    | 1.25 (0.65, 2.4)  | 0.497 | 0.49 (0.22, 1.12) | 0.092 |  |
| CCL19    | 1.59 (0.81, 3.09) | 0.175 | 0.5 (0.22, 1.13)  | 0.095 |  |
| TRAF6    | 0.29 (0.14, 0.59) | 0.001 | 1.97 (0.87, 4.47) | 0.103 |  |
| CCL20    | 0.93 (0.48, 1.79) | 0.833 | 0.51 (0.23, 1.16) | 0.110 |  |
| MYD88    | 1.37 (0.7, 2.67)  | 0.359 | 0.53 (0.24, 1.19) | 0.124 |  |
| ITCH     | 0.42 (0.21, 0.85) | 0.015 | 1.85 (0.83, 4.15) | 0.135 |  |
| RIPK1    | 1.29 (0.67, 2.47) | 0.444 | 0.54 (0.24, 1.22) | 0.139 |  |
| TRIM25   | 1.01 (0.53, 1.94) | 0.971 | 0.55 (0.24, 1.22) | 0.141 |  |
| MAPK10   | 0.49 (0.25, 0.96) | 0.039 | 1.83 (0.82, 4.09) | 0.143 |  |
| IL15     | 0.72 (0.38, 1.38) | 0.325 | 0.55 (0.25, 1.23) | 0.144 |  |
| CXCL12   | 1.71 (0.88, 3.3)  | 0.112 | 1.83 (0.81, 4.1)  | 0.145 |  |
| TNFSF13B | 1.15 (0.59, 2.23) | 0.678 | 0.55 (0.25, 1.23) | 0.146 |  |
| CASP7    | 1.14 (0.6, 2.19)  | 0.682 | 0.55 (0.25, 1.23) | 0.147 |  |
| CFLAR    | 0.51 (0.26, 1)    | 0.051 | 0.56 (0.25, 1.23) | 0.148 |  |
| CCL21    | 1.12 (0.59, 2.13) | 0.734 | 1.81 (0.81, 4.08) | 0.150 |  |
| FADD     | 0.9 (0.47, 1.73)  | 0.759 | 0.56 (0.25, 1.24) | 0.151 |  |
| CASP3    | 0.67 (0.35, 1.28) | 0.225 | 0.56 (0.25, 1.24) | 0.151 |  |
| JUNB     | 1.12 (0.59, 2.14) | 0.729 | 1.81 (0.8, 4.08)  | 0.152 |  |
| PLAU     | 1.55 (0.81, 2.97) | 0.188 | 1.79 (0.8, 4.01)  | 0.159 |  |
| TICAM2   | 0.58 (0.3, 1.12)  | 0.105 | 0.56 (0.25, 1.26) | 0.162 |  |
| BLNK     | 0.41 (0.21, 0.81) | 0.010 | 0.57 (0.26, 1.27) | 0.168 |  |
| CARD10   | 1.38 (0.72, 2.63) | 0.336 | 0.58 (0.26, 1.27) | 0.173 |  |
| ATF6B    | 0.85 (0.44, 1.63) | 0.616 | 1.74 (0.78, 3.86) | 0.173 |  |
| TBK1     | 0.47 (0.24, 0.91) | 0.025 | 1.74 (0.78, 3.88) | 0.174 |  |
| TNFRSF1A | 1.75 (0.91, 3.38) | 0.094 | 0.57 (0.26, 1.28) | 0.175 |  |
| GADD45B  | 1.7 (0.87, 3.31)  | 0.122 | 1.75 (0.78, 3.97) | 0.178 |  |
| CEBPB    | 3.1 (1.55, 6.22)  | 0.001 | 0.58 (0.26, 1.28) | 0.178 |  |
| MMP9     | 0.92 (0.48, 1.76) | 0.810 | 0.58 (0.26, 1.29) | 0.182 |  |
| VCAM1    | 1.41 (0.74, 2.71) | 0.301 | 1.71 (0.77, 3.81) | 0.190 |  |
| TOLLIP   | 2.13 (1.1, 4.16)  | 0.026 | 0.59 (0.26, 1.31) | 0.194 |  |
| IL12A    | 1.58 (0.82, 3.04) | 0.172 | 1.67 (0.74, 3.78) | 0.216 |  |
| TAB3     | 0.72 (0.38, 1.39) | 0.331 | 1.64 (0.72, 3.72) | 0.236 |  |
| IRAK1    | 2.54 (1.28, 5.04) | 0.008 | 0.62 (0.28, 1.38) | 0.240 |  |
|          |                   |       |                   |       |  |

| TICAM1  | 0.81 (0.41, 1.59) | 0.540 | 0.62 (0.28, 1.39) | 0.247 |
|---------|-------------------|-------|-------------------|-------|
| FAS     | 0.52 (0.27, 1.01) | 0.052 | 0.63 (0.28, 1.39) | 0.253 |
| XIAP    | 0.46 (0.24, 0.9)  | 0.024 | 0.63 (0.28, 1.4)  | 0.255 |
| TLR1    | 0.74 (0.39, 1.43) | 0.378 | 0.64 (0.29, 1.41) | 0.264 |
| LYN     | 0.41 (0.21, 0.83) | 0.013 | 0.64 (0.29, 1.41) | 0.267 |
| IKBKB   | 1.28 (0.67, 2.46) | 0.451 | 0.65 (0.29, 1.43) | 0.279 |
| TLR2    | 0.74 (0.38, 1.42) | 0.361 | 0.65 (0.29, 1.43) | 0.282 |
| TRADD   | 1.03 (0.54, 1.96) | 0.937 | 0.65 (0.29, 1.44) | 0.288 |
| CREB3   | 1.92 (0.99, 3.72) | 0.054 | 0.66 (0.3, 1.44)  | 0.294 |
| BIRC2   | 0.58 (0.3, 1.12)  | 0.106 | 0.66 (0.3, 1.44)  | 0.295 |
| CXCL11  | 1.58 (0.82, 3.05) | 0.176 | 0.66 (0.3, 1.45)  | 0.297 |
| PRKCQ   | 0.98 (0.51, 1.88) | 0.940 | 0.66 (0.3, 1.45)  | 0.299 |
| CREB5   | 1 (0.52, 1.9)     | 0.991 | 1.52 (0.69, 3.34) | 0.300 |
| BCL2A1  | 0.82 (0.43, 1.57) | 0.554 | 0.66 (0.3, 1.46)  | 0.307 |
| BTK     | 1.26 (0.66, 2.42) | 0.487 | 0.66 (0.3, 1.46)  | 0.310 |
| TAB2    | 0.64 (0.33, 1.23) | 0.177 | 1.51 (0.68, 3.34) | 0.312 |
| MALT1   | 0.73 (0.38, 1.4)  | 0.342 | 1.5 (0.68, 3.3)   | 0.316 |
| CXCL5   | 0.73 (0.38, 1.4)  | 0.351 | 0.67 (0.3, 1.48)  | 0.317 |
| EDA2R   | 0.7 (0.36, 1.34)  | 0.277 | 1.49 (0.67, 3.28) | 0.326 |
| MAPK12  | 0.74 (0.39, 1.43) | 0.370 | 0.67 (0.3, 1.49)  | 0.327 |
| LAT     | 0.99 (0.52, 1.9)  | 0.988 | 0.68 (0.31, 1.48) | 0.327 |
| RELA    | 1.51 (0.77, 2.96) | 0.226 | 1.48 (0.67, 3.28) | 0.328 |
| STAT1   | 0.8 (0.42, 1.52)  | 0.490 | 0.67 (0.31, 1.49) | 0.329 |
| CXCL2   | 1.44 (0.75, 2.78) | 0.275 | 1.48 (0.67, 3.26) | 0.334 |
| CREB3L1 | 1.2 (0.63, 2.3)   | 0.584 | 1.46 (0.66, 3.23) | 0.345 |
| PIAS4   | 1.01 (0.53, 1.92) | 0.980 | 0.68 (0.31, 1.52) | 0.351 |
| CHUK    | 0.99 (0.51, 1.93) | 0.984 | 1.45 (0.66, 3.2)  | 0.352 |
| CSNK2A1 | 1.09 (0.57, 2.09) | 0.787 | 1.45 (0.66, 3.19) | 0.356 |
| CREB3L4 | 1.34 (0.69, 2.57) | 0.385 | 0.69 (0.31, 1.52) | 0.358 |
| PIK3CA  | 1.38 (0.72, 2.64) | 0.336 | 1.45 (0.66, 3.19) | 0.358 |
| CARD11  | 0.73 (0.37, 1.41) | 0.343 | 1.45 (0.65, 3.21) | 0.361 |
| CCL5    | 1.24 (0.64, 2.39) | 0.518 | 0.69 (0.31, 1.53) | 0.365 |
| CSNK2A3 | 0.92 (0.48, 1.75) | 0.794 | 1.44 (0.65, 3.16) | 0.367 |
| MAPK9   | 1.25 (0.65, 2.4)  | 0.502 | 1.44 (0.65, 3.18) | 0.369 |
| BCL3    | 1.33 (0.68, 2.6)  | 0.399 | 1.42 (0.64, 3.14) | 0.392 |
| BCL10   | 1.05 (0.54, 2.04) | 0.886 | 0.73 (0.33, 1.61) | 0.434 |
| CSF1    | 2.04 (1.05, 3.99) | 0.036 | 0.74 (0.34, 1.64) | 0.461 |
| TNFSF14 | 2.68 (1.34, 5.37) | 0.005 | 0.74 (0.34, 1.64) | 0.462 |
| CYLD    | 0.78 (0.41, 1.5)  | 0.462 | 0.74 (0.34, 1.64) | 0.464 |
| IRF1    | 1.42 (0.74, 2.73) | 0.293 | 0.75 (0.34, 1.64) | 0.469 |
| IRAK4   | 0.57 (0.3, 1.1)   | 0.095 | 0.75 (0.34, 1.65) | 0.474 |
| ATM     | 0.37 (0.18, 0.73) | 0.004 | 0.75 (0.34, 1.65) | 0.480 |
| EDN1    | 1.31 (0.68, 2.51) | 0.423 | 0.75 (0.34, 1.66) | 0.482 |
|         |                   |       |                   |       |

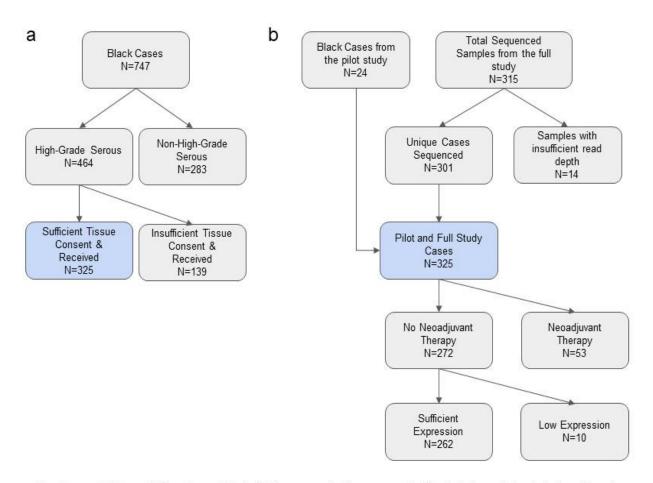

| NFKBIA    | 2.65 (1.33, 5.3)  | 0.006 | 0.76 (0.34, 1.67) | 0.491 |
|-----------|-------------------|-------|-------------------|-------|
| RPS6KA4   | 1.29 (0.67, 2.5)  | 0.445 | 0.76 (0.35, 1.67) | 0.496 |
| CCL2      | 0.48 (0.24, 0.93) | 0.030 | 0.76 (0.35, 1.67) | 0.497 |
| AKT2      | 1.24 (0.65, 2.37) | 0.515 | 1.31 (0.6, 2.86)  | 0.505 |
| RPS6KA5   | 0.59 (0.3, 1.14)  | 0.114 | 0.77 (0.35, 1.68) | 0.505 |
| CREB1     | 1.42 (0.74, 2.73) | 0.297 | 1.3 (0.59, 2.85)  | 0.513 |
| NFKB1     | 0.67 (0.35, 1.31) | 0.242 | 0.78 (0.36, 1.7)  | 0.527 |
| ATF4      | 0.28 (0.14, 0.57) | 0.000 | 0.78 (0.36, 1.7)  | 0.530 |
| CCL3      | 1.54 (0.8, 2.97)  | 0.192 | 1.29 (0.58, 2.84) | 0.532 |
| TLR7      | 1.13 (0.59, 2.16) | 0.717 | 0.78 (0.36, 1.7)  | 0.535 |
| JAG1      | 0.73 (0.38, 1.4)  | 0.337 | 0.78 (0.36, 1.7)  | 0.537 |
| UBE2I     | 1.66 (0.86, 3.21) | 0.132 | 1.28 (0.58, 2.8)  | 0.538 |
| PIK3R2    | 3.52 (1.73, 7.16) | 0.001 | 1.27 (0.58, 2.78) | 0.545 |
| BAG4      | 0.99 (0.52, 1.89) | 0.980 | 0.79 (0.36, 1.72) | 0.550 |
| MAP3K5    | 0.63 (0.33, 1.22) | 0.172 | 0.8 (0.36, 1.74)  | 0.566 |
| RAC1      | 0.91 (0.48, 1.74) | 0.781 | 0.79 (0.36, 1.75) | 0.567 |
| NFKB2     | 1.29 (0.67, 2.47) | 0.451 | 0.8 (0.37, 1.74)  | 0.568 |
| IL1B      | 1.3 (0.68, 2.51)  | 0.431 | 1.25 (0.57, 2.72) | 0.577 |
| LIF       | 1.77 (0.92, 3.43) | 0.089 | 1.25 (0.57, 2.74) | 0.578 |
| MAP2K4    | 0.43 (0.22, 0.85) | 0.016 | 0.8 (0.37, 1.75)  | 0.581 |
| MAP3K8    | 0.9 (0.47, 1.72)  | 0.755 | 1.24 (0.57, 2.71) | 0.586 |
| PARP1     | 2.74 (1.38, 5.46) | 0.004 | 0.81 (0.37, 1.76) | 0.589 |
| TRAF1     | 1.14 (0.6, 2.18)  | 0.687 | 1.24 (0.57, 2.7)  | 0.590 |
| TAB1      | 0.9 (0.47, 1.72)  | 0.760 | 0.81 (0.37, 1.78) | 0.598 |
| ERC1      | 0.78 (0.41, 1.49) | 0.452 | 0.81 (0.37, 1.78) | 0.599 |
| SPP1      | 1.63 (0.84, 3.14) | 0.148 | 1.22 (0.55, 2.7)  | 0.617 |
| PIK3CB    | 0.88 (0.46, 1.69) | 0.706 | 1.21 (0.55, 2.67) | 0.632 |
| CARD14    | 1.78 (0.91, 3.47) | 0.091 | 0.86 (0.39, 1.89) | 0.703 |
| PLCG1     | 1.74 (0.89, 3.4)  | 0.108 | 1.16 (0.53, 2.58) | 0.707 |
| IFNAR1    | 0.73 (0.38, 1.39) | 0.336 | 0.86 (0.39, 1.89) | 0.707 |
| TLR5      | 1 (0.52, 1.9)     | 0.988 | 0.87 (0.39, 1.9)  | 0.719 |
| RIPK3     | 0.92 (0.48, 1.76) | 0.800 | 0.88 (0.4, 1.92)  | 0.744 |
| PTGS2     | 0.92 (0.48, 1.76) | 0.798 | 1.13 (0.52, 2.49) | 0.753 |
| TNFRSF11A | 1.59 (0.82, 3.09) | 0.168 | 0.88 (0.4, 1.93)  | 0.754 |
| PIK3CD    | 1.94 (1, 3.76)    | 0.051 | 1.13 (0.51, 2.48) | 0.760 |
| TNFRSF13C | 1.9 (0.98, 3.69)  | 0.058 | 1.13 (0.51, 2.47) | 0.765 |
| MAP2K6    | 0.69 (0.36, 1.33) | 0.270 | 1.12 (0.51, 2.45) | 0.778 |
| LTB       | 1.12 (0.59, 2.14) | 0.729 | 0.9 (0.41, 1.95)  | 0.785 |
| SELE      | 1.1 (0.57, 2.1)   | 0.778 | 1.11 (0.51, 2.43) | 0.787 |
| MAPK14    | 0.7 (0.37, 1.36)  | 0.295 | 0.9 (0.41, 1.96)  | 0.788 |
| MAP3K14   | 1.4 (0.73, 2.68)  | 0.309 | 0.9 (0.41, 1.96)  | 0.789 |
| MAP2K1    | 1.4 (0.73, 2.68)  | 0.312 | 0.9 (0.41, 1.96)  | 0.792 |
| PIDD1     | 1.22 (0.64, 2.33) | 0.548 | 1.11 (0.51, 2.42) | 0.801 |
|           |                   |       |                   |       |

| PGAM5    | 1.95 (1.01, 3.8)  | 0.048 | 1.1 (0.51, 2.42)  | 0.803 |
|----------|-------------------|-------|-------------------|-------|
| EDA      | 1.25 (0.66, 2.4)  | 0.494 | 0.91 (0.42, 1.97) | 0.805 |
| CD14     | 1.4 (0.73, 2.69)  | 0.306 | 1.1 (0.5, 2.39)   | 0.813 |
| TNF      | 1.37 (0.72, 2.63) | 0.337 | 0.91 (0.42, 1.99) | 0.817 |
| MAPK3    | 2.56 (1.28, 5.11) | 0.008 | 0.91 (0.42, 1.98) | 0.817 |
| IRF3     | 1.27 (0.66, 2.45) | 0.474 | 0.92 (0.42, 1.99) | 0.823 |
| CCL4     | 1.75 (0.9, 3.38)  | 0.096 | 1.09 (0.5, 2.38)  | 0.823 |
| CXCL3    | 0.93 (0.48, 1.78) | 0.823 | 0.92 (0.42, 2)    | 0.825 |
| MAPK8    | 0.97 (0.5, 1.87)  | 0.922 | 1.09 (0.5, 2.37)  | 0.825 |
| DNM1L    | 0.69 (0.36, 1.33) | 0.263 | 1.09 (0.5, 2.38)  | 0.825 |
| TNFRSF1B | 1.02 (0.54, 1.95) | 0.944 | 1.09 (0.5, 2.37)  | 0.827 |
| CXCL1    | 0.85 (0.44, 1.64) | 0.629 | 0.92 (0.42, 2.01) | 0.834 |
| TRAF5    | 0.65 (0.34, 1.25) | 0.195 | 0.92 (0.42, 2)    | 0.836 |
| MAPK11   | 0.82 (0.43, 1.56) | 0.543 | 0.92 (0.42, 2.03) | 0.837 |
| IFNAR2   | 1.02 (0.53, 1.94) | 0.963 | 0.92 (0.43, 2.01) | 0.841 |
| CD86     | 0.81 (0.43, 1.56) | 0.532 | 1.07 (0.49, 2.33) | 0.857 |
| LY96     | 0.72 (0.37, 1.38) | 0.322 | 0.93 (0.43, 2.03) | 0.861 |
| RELB     | 2.08 (1.06, 4.1)  | 0.033 | 0.93 (0.43, 2.04) | 0.866 |
| ICAM1    | 1.8 (0.93, 3.5)   | 0.082 | 1.07 (0.49, 2.33) | 0.866 |
| MAP2K2   | 1.51 (0.78, 2.91) | 0.221 | 1.07 (0.49, 2.32) | 0.869 |
| TNFAIP3  | 1.78 (0.92, 3.44) | 0.088 | 1.06 (0.49, 2.32) | 0.878 |
| IL18R1   | 0.73 (0.38, 1.4)  | 0.343 | 1.06 (0.49, 2.31) | 0.881 |
| CXCL6    | 1.3 (0.68, 2.5)   | 0.426 | 1.06 (0.48, 2.32) | 0.883 |
| DAB2IP   | 3.65 (1.78, 7.49) | 0.000 | 1.06 (0.48, 2.31) | 0.890 |
| TLR9     | 1.12 (0.59, 2.14) | 0.725 | 0.95 (0.43, 2.08) | 0.898 |
| CXCL8    | 0.82 (0.43, 1.57) | 0.549 | 1.05 (0.48, 2.29) | 0.906 |
| AKT1     | 1.32 (0.68, 2.55) | 0.411 | 1.05 (0.48, 2.28) | 0.907 |
| BCL2L1   | 3.26 (1.61, 6.6)  | 0.001 | 0.96 (0.44, 2.1)  | 0.917 |
| CSNK2A2  | 0.64 (0.33, 1.23) | 0.180 | 1.04 (0.47, 2.27) | 0.926 |
| TLR6     | 0.47 (0.24, 0.91) | 0.026 | 1.04 (0.48, 2.26) | 0.928 |
| PIK3R3   | 0.59 (0.31, 1.15) | 0.121 | 1.03 (0.47, 2.25) | 0.942 |
| TRAF2    | 1.38 (0.71, 2.65) | 0.340 | 1.02 (0.46, 2.23) | 0.967 |
| EDAR     | 0.81 (0.42, 1.58) | 0.536 | 1.01 (0.46, 2.22) | 0.975 |
| TRAF3    | 0.84 (0.44, 1.62) | 0.606 | 1 (0.45, 2.21)    | 0.997 |
| LBP      | 1.35 (0.71, 2.59) | 0.363 | 0 (0, 0)          |       |
| CCL3L1   | 1.26 (0.65, 2.45) | 0.485 | 0 (0, 0)          |       |

Abbreviations: TLR = toll-like receptor; NFkB = nuclear factor kappa B; TNF = tumor necrosis factor; EOC = epithelial ovarian cancer; HGSOC = high grade serous ovarian cancer; AACES = African American Cancer Epidemiology Study; OCAC = Ovarian Cancer Association Consortium;

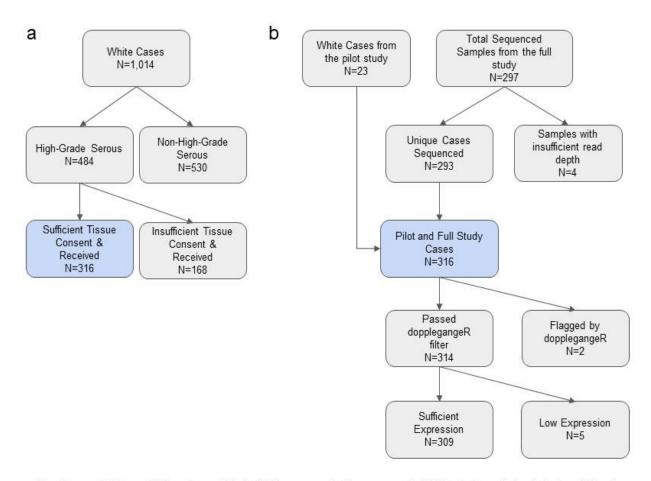

<sup>a</sup>Adjusted for age and two ancestry principal components.

**Supplementary Figure SF1.** Genome-wide association QxQ plot assessing inflation due to population admixture among Black women.



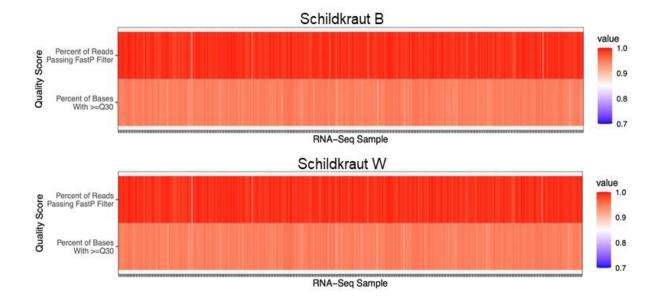



**Supplementary Figure SF2**. Genome-wide association QxQ plot assessing inflation due to population admixture among White women.




## Supplementary Figure SF6.1.




Supplemental Figure 1. Panels a and b depict the case selection process for Black study participants before (a) and after (b) sequencing. Blue rectangles indicate the cases that are the same in panels a and b, and are included in Supplemental Table 3. All cases listed as "samples with insufficient read depth" were successfully resequenced with sufficient read depth so, while 14 samples were excluded, no participants were excluded between "Total Sequenced Samples from the full study" and "Unique Cases Sequenced."

## Supplementary Figure SF6.2.



Supplemental Figure 2. Panels a and b depict the case selection process for White study participants before (a) and after (b) sequencing. Blue rectangles indicate the cases that are the same in panels a and b, and are included in Supplemental Table 4. All cases listed as "samples with insufficient read depth" were successfully resequenced with sufficient read depth so, while 4 samples were excluded, no participants were excluded between "Total Sequenced Samples from the full study" and "Unique Cases Sequenced."

## **Supplementary Figure SF6.3**



Supplemental Figure 3. This figure depicts the percentage of reads that passed the FastP filtering (top), and the percentage of bases that had a quality score ≥30 in the SchildkrautB and SchildkrautW datasets. Each column is an RNA-seq sample and its coloring is based upon its quality score for each metric. For SchildkrautB the sample with the minimum percent of reads passing the FastP filter was 89.8%, and the sample with the minimum percent of reads passing the FastP filter was 89.8%. For SchildkrautW the sample with the minimum percent of reads passing the FastP filter was 92.4% and the sample with the minimum percent of passes with a quality score ≥30 was 88.2%.