
Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from
Emory University, I hereby grant to Emory University and its agents the non-exclusive
license to archive, make accessible, and display my thesis in whole or in part in all
forms of media, now or hereafter now, including display on the World Wide Web. I
understand that I may select some access restrictions as part of the online submission
of this thesis. I retain all ownership rights to the copyright of the thesis. I also retain
the right to use in future works (such as articles or books) all or part of this thesis.

Signature:

Peijian Ding April 8, 2021

Accelerated Alternating Minimization for X-ray Tomographic Reconstruction

By

Peijian Ding

James Nagy, Ph.D.
Advisor

Department of Mathematics

James Nagy, Ph.D.
Advisor

Yuanzhe Xi, Ph.D.
Committee Member

Gordon Berman, Ph.D.
Committee Member

2021

Accelerated Alternating Minimization for X-ray Tomographic Reconstruction

By

Peijian Ding

James Nagy, Ph.D.
Advisor

An abstract of
a thesis submitted to the Faculty of Emory College of Arts and Sciences of

Emory University in partial fulfillment
of the requirements of the degree of

Bachelor of Science with Honors

Department of Mathematics

2021

Abstract

Accelerated Alternating Minimization for X-ray Tomographic Reconstruction
By Peijian Ding

While Computerized Tomography (CT) images can help detect disease such as
Covid-19, regular CT machines are large and expensive. Cheaper and more portable
machines suffer from errors in geometry acquisition that downgrades CT image qual-
ity. The errors in geometry can be represented with parameters in the mathematical
model for image reconstruction. To obtain a good image, we formulate a nonlinear
least squares problem that simultaneously reconstructs the image and corrects for er-
rors in the geometry parameters. We develop an accelerated alternating minimization
scheme to reconstruct the image and geometry parameters.

Accelerated Alternating Minimization for X-ray Tomographic Reconstruction

By

Peijian Ding

James Nagy, Ph.D.
Advisor

A thesis submitted to the Faculty of Emory College of Arts and Sciences
of Emory University in partial fulfillment

of the requirements of the degree of
Bachelor of Science with Honors

Department of Mathematics

2021

Acknowledgments

I would like to thank my thesis advisor Dr. James Nagy for his consistent support

since the start of the honors program. Without his help, this work would not be

possible. I would also like to thank Dr. Yuanzhe Xi and Dr. Gordon Berman for

being on my honors committee and teaching me wonderful course material.

i

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Mathematics of Computed Tomography 3

1.3 Inverse Problem . 6

2 Alternating Minimization Scheme 10

2.1 Block Coordinate Descent . 10

2.2 Linear Least Squares Problem . 13

2.2.1 Normal Equations . 14

2.2.2 QR Factorization and Least Squares Problem 14

2.2.3 Regularization . 18

2.2.4 Parameter Choice Methods 24

2.3 The LSQR Algorithm . 26

2.3.1 Hybrid LSQR . 31

2.4 Nonlinear Least Squares . 32

2.4.1 Quasi-Newton and Gauss-Newton Method 33

2.4.2 Implicit Filtering . 36

3 Acceleration Schemes 38

3.1 Accelerated Block Coordinate Descent 38

3.2 Anderson Acceleration . 39

4 Numerical Experiments 42

4.1 BCD Exploiting Separability vs BCD 43

4.2 Number of Angles . 46

4.3 Acceleration . 48

4.3.1 Anderson acceleration . 49

4.3.2 imABCDS . 50

4.3.3 imABCDS and BCDS . 52

4.4 Regularization . 53

4.5 Imfil Budget . 54

5 Conclusion 56

Bibliography 58

iii

List of Figures

1.1 This is a simple illustration of our tomography problem. 2

1.2 32× 32 true image of a Shepp–Logan phantom (left), image computed

by taking into account the correct source-to-object distance (middle),

image computed by using incorrect source-to-object distance (right) . 3

1.3 Geometry of parallel beam projection [11]. 3

1.4 Fan beam projection (image from MATLAB). 4

2.1 The singular values plot of a 10 × 10 diagonal matrix whose singular

values are respectively 99, 98 ... 91, and 1 21

2.2 The singular values of the 256× 256 test problem heat generated from

Regularization Tools in MATLAB . 22

4.1 Comparison of relative errors of geometry parameters r: BCD (left) vs

BCDS (right). 44

4.2 Comparison of relative errors of image vector x: BCD (left) vs BCDS

(right). 44

4.3 Comparison of 32×32 Shepp-Logan phantom: true image (left), BCDS

image (middle), BCD image (right). 44

4.4 Comparison of relative errors of geometry parameter r: NA = 5 (left),

NA = 10 (middle), NA = 20 (right). 46

4.5 Comparison of relative errors of image vector x: NA = 5 (left), NA = 10

(middle), NA = 20 (right). 46

4.6 Comparison of 32×32 Shepp-Logan phantom: true image (0, 0), NA =

5 (0, 1), NA = 10 (1, 0), NA = 20 (1, 1). 47

4.7 Geometry error and reconstruction error when NA = 12. 48

4.8 Geometry errors of BCDS with Anderson acceleration using backslash

(left) and BCDS with Anderson acceleration using IRhybrid lsqr

(right). 49

4.9 Reconstruction errors of BCDS with Anderson acceleration using back-

slash (left) and BCDS with Anderson acceleration using IRhybrid lsqr

(right). 50

4.10 Geometry errors of imABCDS-b (left) and imABCDS-1 (right). . . . 51

4.11 Image errors of imABCDS-b (left) and imABCDS-1 (right). 51

4.12 Geometry errors of BCDS (left) and imABCDS (right). 52

4.13 Reconstruction errors of BCDS (left) and imABCDS (right). 52

4.14 Geometry errors: No regularization (left), GCV (middle), W-GCV

(right). 53

4.15 Reconstruction errors: No regularization (left), GCV (middle), W-

GCV (right). 53

4.16 Geometry errors: budget = 10 (0, 0), budget = 100 (0, 1), budget =

1000 (1, 0), budget = 10000 (1, 1). 54

4.17 Reconstruction errors: budget = 10 (0, 0), budget = 100 (0, 1), budget =

10000 (1, 0), budget = 10000 (1, 1). 55

v

List of Algorithms

1 Coordinate Descent Algorithm . 11

2 Alternating Minimization Scheme to Reconstruct Geometry and Image

Parameters . 12

3 Inexact majorized Accelerated Block Coordinate Descent 39

4 Fixed point iteration of image vector 40

5 Anderson Acceleration . 40

6 Modified Anderson Acceleration . 41

1

Chapter 1

Introduction

1.1 Motivation

Tomography is a technique of displaying representations of a cross section through

an object through the use of some penetrating waves such as X-ray or ultrasound.

In simple words, it allows us to see the inside of an object without breaking it.

Thus, tomography is widely used in medical imaging, seismic exploration, and mate-

rial science. In medical imaging, a Computerized Tomography (CT) Scan creates a

cross-sectional image of human body by combining X-ray images taken from differ-

ent angles. During a CT scan, the patient lies on a bed that slowly moves through

the gantry while the X-ray tube rotates around the patient and shoots X-ray beams

through the human body, received by a detector. See Figure 1.1. Then, an image of

the cross section of the human body is reconstructed following a mathematical proce-

dure. Although CT images can help doctors to diagnose and monitor diseases such as

Covid-19, regular CT machines are heavy and expensive and not widely available in

less developed areas. The goal of this project is to compensate for cheaper and more

portable machines by solving for geometry parameters such as the source-to-object

distance that may not be calibrated precisely during the imaging process.

2

Source-to-object distance measures how far away the center of the object is from

the X-ray source. Since the source-to-object distance may vary from angle to angle,

the restored image will be corrupted if a constant value of the geometry parameter is

assumed for all the angles. The source-to-object distance is an important factor that

determines the quality of images as illustrated in Figure 1.2. Thus, our algorithm

will significantly improve the image quality by taking into account the variation in

geometry parameters.

Figure 1.1: This is a simple illustration of our tomography problem.

This thesis is organized as follows. In the rest of the first chapter, we discuss

the mathematics of tomography and the setup of the inverse problem. In Chapter 2,

an alternating minimization scheme to solve the image and source-to-object distance

is introduced. In Chapter 3, we discuss the acceleration algorithms. In Chapter

3

Figure 1.2: 32× 32 true image of a Shepp–Logan phantom (left), image computed by
taking into account the correct source-to-object distance (middle), image computed
by using incorrect source-to-object distance (right)

4, numerical experiments are presented. Finally, concluding remarks are given in

Chapter 5.

1.2 Mathematics of Computed Tomography

This section introduces some concepts in computed tomography that will help readers

understand the background of this research. In this section, we primarily focus on 2D

computed tomography that uses X-ray beams to obtain cross section images inside

the human body. The most common types of 2D CT are parallel beam projection,

illustrated in Figure 1.3 and fan beam projection, illustrated in Figure 1.4.

Figure 1.3: Geometry of parallel beam projection [11].

4

Figure 1.4: Fan beam projection (image from MATLAB).

The projection is the line integral along the path in which the X-ray beam passes.

In parallel beam projection, the projection is simply the line integral along the path of

the parallel beams. In the fan beam geometry, the projection is the line integral along

the paths that radiate from a single source. The idea of X-ray tomography is enabled

by Beer’s Law which relates the reduction of light intensity to the path length and

material dependent attenuation coefficient. Thus, the reduction of X-ray intensity is

proportional to the attenuation coefficient which increases with physical density of

the material. CT works by passing X-ray beams through human body and measuring

the reduced X-ray intensity due to object density at the detector. Intuitively, when

an X-ray beam passes through air, not much energy will be absorbed by the medium.

In contrast, tissues in the human body have higher density than air allowing the

soft tissues to be seen clearly when surrounded by a much lighter object such as air

[1]. The objective is to find attenuation coefficients, which depend on material and

location in the body, using Beer’s Law. Beer’s Law for a monochromatic X-ray beam

through a homogeneous material is:

5

I = I0e
−µx (1.1)

I0 is the intensity of the X-ray from the source, I is the intensity at the detector,

µ is the attenuation coefficient, and x is the length of the X-ray path through the

material [9]. In practice, materials are usually heterogeneous such as the different

tissues and bones inside a human body. Thus, the attenuation coefficient can be a

function of coordinates on a plane. We express it as µ(x, y) in the following equation:

I = I0e
∫
ray µ(x,y)ds (1.2)

Instead of the direct product of an attenuation coefficient of a homogeneous ma-

terial and the path length, we take an integral of the attenuation function along the

X-ray path for the heterogeneous material. Through some algebraic manipulation,

we can express the ray integral as:

P (θ, t) = log

(
I

I0

)
=

∫
ray

µ(x, y)ds (1.3)

θ is the angle of the X-ray source and t is the length of the perpendicular line to the

detector from the origin. Together, they are the normal representation of the position

of detector, which is represented by a line in x-y coordinates. Taking the ray integral

of µ(x, y) is called the Radon Transformation of µ(x, y). There are many different

methods to recover the image such as back-projection, filtered back-projection, and

iterative reconstruction. These methods assume the precise knowledge of the ray path

through the object, which is obtained by knowing precise geometric information, such

as distance from the X-ray source to the center of the object. In this thesis, we focus on

an iterative reconstruction approach by solving a nonlinear least squares problem that

will simultaneously reconstruct the image and correct for errors in certain geometrical

parameters. We introduce the inverse problem in the next section and set up the

6

inverse problem in X-ray CT imaging.

1.3 Inverse Problem

An inverse problem is the process of recovering the causal factors from a set of obser-

vations. Mathematically,1 we want to determine the vector x that produces the data

b by a forward map A. The goal is to recover the solution x by solving a system of

equations.

Ax = b (1.4)

A is a m × n matrix, b is a vector of length m, and x is the solution of length n

In practice, inverse problems, such as those considered in this thesis, arise from dis-

cretizing ill-posed problems. By the definition of 20th-century French mathematician

Jacques Hadamard, well-posedness is defined as the following:

• a solutions exists

• the solution is unique

• the solution’s behavior changes continuously with the initial conditions.

By the above definition, ill-posed problems are the problems that are not well-

posed. Typically, discretizing a ill-posed problem results in a very ill-conditioned

matrix A. Using the singular value decomposition (SVD), we can write the

1In this chapter, we admit an ambiguous use notation, using (x, y) to denote a coordinate in the
plane, and x to denote the vector representation of the unknown image. We hope this ambiguity is
not too confusing, and that the two usages are clear from the context.

7

solution x in the following form:

x = A−1b

= V Σ−1UT b

=
n∑
i=1

uTi b

σi
vi

(1.5)

Equation (1.5) assumes that A ∈ Rn×n is nonsingular, but a similar representation

holds for rectangular and singular matrices. A = UΣV T is the SVD of A, where U

and V are orthogonal matrices of size m×m and n× n respectively. Σ is a diagonal

matrix containing singular values on its diagonal. ui and vi are, respectively, column

vectors of the orthogonal matrices U and V . The singular values σi are ordered in a

way such that σ1 > σ2 > σ3 > > σn > 0. Ill-posed problems typically have small

singular values very close to zero. In practice, the data we obtain always contains

some noise. Therefore, b = btrue + η, where btrue is the noise free data and η is the

noise, usually modeled as a vector with random values. Then, small singular values

will amplify the error to our solution vector x. Thus, a regularization term is usually

added to filter out errors contributed by small singular values. More details about

regularization will be discussed in the second chapter where the linear least squares

problem is introduced.

Now that we have a basic understanding of the ill-posedness of inverse problems,

we formulate the X-ray CT imaging problem using matrix vector product. The data

vector b, which is called the Sinogram, contains the projections p(θ, t) we introduced

in the previous section. We formulate b as b = vec(P (θ, t)), where P (θ, t) is defined

8

as [9]:

P (θ, t) =

p(θ1, t1) p(θ1, t2) ... p(θ1, tn)

p(θ2, t1) p(θ2, t2) ... p(θ2, tn)

...
...

...

p(θn, t1) p(θn, t2) ... p(θn, tn)

(1.6)

The image vector x is represented as a vector2 form of the function f(x, y), which

represents the attenuation at the position (x, y) ∈ R2. [9].

f(x, y) =

f(x1, y1) f(x1, y2) ... f(x1, yn)

f(x2, y1) f(x2, y2) ... f(x2, yn)

...
...

...

f(xn, y1) f(xn, y2) ... f(xn, yn)

(1.7)

The forward operator A is generated based on discretizing the image into pixels

and taking into account the X-ray path through each pixel. The complete process to

generate the matrix A is convoluted and outside the scope of this thesis. In this thesis,

we utilize existing MATLAB software, IRtools and AIRtools [15][17], to generate

2D tomography images and test data.

From motivation presented in Section 1.1, we have explained that geometry ac-

quisition can vary from angle to angle. Since the forward operator A is determined

by geometry parameters r, we form the following nonlinear least squares problem:

arg min
x,r

||A(r)x− b|| (1.8)

x represents the image vector. A is the forward operator that is a function of r and

maps the true image x to the Sinogram b. In this work we consider only the source-

to-object distance, but this model extends to other geometry parameters, such as

2We apologize again for the abuse of notation in this chapter. Here the kth entry of the vector x
is the function value of f(xi, yi), where k = (j − 1)n+ i.

9

angles. Because the problem is ill-posed, we also need to incorporate a regularization

procedure to avoid amplifying noise when reconstructing x. This is discussed in more

detail in Section 2.2.3.

10

Chapter 2

Alternating Minimization Scheme

In order to solve the nonlinear least squares problem, an intuitive approach to consider

is the Block Coordinate Descent (BCD) algorithm. In this chapter, we discuss the

linear and nonlinear least squares problem involved in BCD. We also briefly discuss the

variable projection approach and argue the advantage of BCD over variable projection

for our problem in Equation (1.8).

2.1 Block Coordinate Descent

Block Coordinate Descent is a simple approach to solve an optimization problem. Its

idea is based on the general Coordinate Descent (CD) algorithm. Because of its lack

of sophistication, most optimization researchers have not focused on this approach

until recently when CD approaches were found to be computationally competitive to

other reputable alternatives in various applications such as machine learning [27]. The

iterative Coordinate Descent method has also been found to have fast convergence in

CT image reconstruction [28]. Therefore, the Coordinate Descent method is worth

investigating in our problem of reconstructing 2D X-ray images.

11

Consider an unconstrained minimization problem

arg min
y

f(y) (2.1)

where f : Rn → R is continuous and differentiable. The Coordinate Descent algorithm

minimizes the objective function along a single component ik of the gradient ∇f at

the current point while fixing the rest of the components. For each iteration k, the

objective function f is updated along the ik component of the gradient with a step

size of α. The component ik can be updated in a cyclic fashion in which i0 = 1 [27]:

ik+1 = [ik mod n] + 1, k = 0, 1, 2...

The algorithm for Coordinate Descent is the following:

Algorithm 1: Coordinate Descent Algorithm

1 set k ← 0 and choose y0 ∈ Rn;

2 repeat

3 choose index ik ∈ {1, 2, ..., n};

4 yk+1 ← yk − α[∇f(yk)]ikeik , α > 0;

5 k ← k + 1 ;

6 until termination criteria;

where [∇f(yk)]ik represents the ik component of the gradient evaluated at the point

yk.

In BCD, instead of updating the objective function along one gradient at a time,

minimization is done on a hyper-plane whose dimension is smaller than the dimension

of the vector y. In our problem, the solution vector w is composed of two components

(x, r), where x is the image vector and r is the geometry vector. We can simply use

an alternating minimization method with the vector x in one block whereas r is in

12

another. In each iteration x is updated while r is fixed and vice versa.

So, we write the algorithm as:

Algorithm 2: Alternating Minimization Scheme to Reconstruct Geometry

and Image Parameters

1 k ← 0, choose r0 ∈ Rn repeat

2 xk+1 = arg min
xk+1

||b− A(rk)x||;

3 rk+1 = arg min
Rk+1

||b− A(r)xk+1||;

4 until termination criteria;

We remark that for ill-posed problems, Step 2 typically requires incorporating

a regularization procedure to avoid amplifying noise when computing xk+1. This is

discussed further in Section 2.2.3. There is another property in our matrix that makes

this alternating minimization scheme favorable. The matrix A can be written as

A(r) =

A(r1)

...

A(ri)

...

A(rk)

for i = 1, 2, 3..., k, where k is the number of the set of angles where the geometry

parameters differ. For example, consider the number of angles as a discrete set of

integer values from 0 to 359. If source-to-object distance differs at each angle, there

would be k = 360 parameters of r. If the source-to-object distance stays the same for

a set of angles and there are k such sets, the number of the set of angles where the

geometry parameters differ is k. To make the writing succinct, we refer to this as the

number of angles for the rest of the thesis.

13

The separability of the geometry parameters allows us to solve for a much smaller

system at a time, and they are completely independent so they can be updated simul-

taneously on a parallel computing architecture, which dramatically lowers the com-

puting time. In fact, the dimension of the parameter r(i) is one, where r(i) represents

the ith entry in the geometry parameter. Comparing to this alternating minimization

scheme, Variable Projection [20][22] would not be able to utilize this matrix property

because its matrix multiplication process would take away the separability property.

Thus, it makes this alternating minimization scheme more worthwhile to investigate.

In order to perform the alternating minimization algorithm, we introduce linear

least squares solvers and nonlinear least squares solvers respectively in the following

sections.

2.2 Linear Least Squares Problem

It is common in practice that the exact solution of a system of equations does not

exist. The method of least squares minimizes the sum of squared residuals to find

the best approximate solution. When an exact solution exists, the minimum of the

residual is zero. In our X-ray tomography problem, we have used IRhybrid lsqr

from IRTools package in MATLAB to solve the least squares problem when the

geometry parameter r is given:

min
x
||A(r)x− b||22

Before presenting the method, we provide some mathematical background including

normal equations, QR factorization for least squares, regularization, parameter choice

methods, and the LSQR algorithm in the following sections.

14

2.2.1 Normal Equations

A theoretical approach to compute a linear least squares solution of an over-determined

system is the normal equations,

ATAx̂ = AT b.

The intuition behind this approach is to find the projection p of the data vector

b on the column space of A. The smallest possible error e = b − p is orthogonal

to the column space. By this approach if A has full column rank, we obtain x =

(ATA)−1AT b. Since the condition number of ATA is the squared of condition number

of A, we can lose accuracy by forming the normal equations. Since our problem is

ill-posed and typically very ill-conditioned, for the purpose of this thesis, we do not

spend too much content on the normal equations approach. More details can be found

in [24].

2.2.2 QR Factorization and Least Squares Problem

In this subsection, we introduce a method to solve the least squares (LS) problem

using QR factorization. We write the QR factorization of a full column rank m × n

matrix as:

A = QR = Q

R1

0

15

where Q is m×m orthogonal matrix and R1 is an upper triangular matrix. The least

squares problem is equivalent to

||b− Ax||22 = ||QT b−Rx||22

=

∥∥∥∥∥∥∥b̂−
R1

0

x
∥∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥∥
b̂1 −R1x

b̂2

∥∥∥∥∥∥∥
2

2

= ||b̂1 −R1x||22 + ||b̂2||22

where b̂ = QT b and b̂1 is n× 1 and b̂2 is (m− n)× 1. Since ||b̂2||22 depends solely on

the data vector, we can easily see that minimizing ||b−Ax||22 is equivalent to finding

the solution to R1x = b̂1. Solving an upper triangular system is easily done by back

substitution. In MATLAB, the backslash operator will easily compute this for us. The

least squares problem can also be solved by using the SVD. Since the SVD is more

computationally expensive than QR, it is generally not used to solve least squares

problems, especially when A is a large matrix. The rest of this subsection focuses on

QR, but we return to the SVD in Section 2.2.3 when we discuss regularization.

In practice, it is very common to encounter a rank deficient matrix where A ∈

Rm×n and rank(A) < n. So, here we describe the QR factorization with column

pivoting to solve the rank deficient least squares problem. We write QR with column

pivoting as:

AΠ = QR = Q

R11 R12

0 0

 (2.2)

where Π is a permutation matrix. This process can be done by using Householder

reflections. A Householder reflection is a matrix of the form Qu = I − 2uuT where

||u||2 = 1. The matrix Qu is orthogonal and symmetric. The name reflection comes

16

from the fact that Qux is the reflection of x in the plane through 0 perpendicular

to u [10]. Given a vector x, it is easy to find a Householder reflection such that

all the entries are zeroed out in x except the first one. This is extremely helpful

in QR factorization because we can apply Householder reflections to zero out entries

below the diagonal entries in the matrix until we get an upper triangular matrix. The

procedure to do QR factorization with column pivoting using Householder reflections

is the following:

1. Set i = 1 and let m and n be the number of rows and columns in the matrix A

2. Choose the column with the largest 2-norm from sub-matrix A(i : m, i : n)

3. Swap with the ith column

4. Perform a Householder reflection to zero out every entry below the ith entry in

the ith column

5. i = i+ 1 Repeat step 2-4

6. Stop if the column with the largest 2-norm in the sub-matrix is equal to zero

where A(i : m, i : n) is MATLAB notation and represents rows of A from i to m

and columns of A from i to n. An illustration of this procedure can be shown in the

following steps to produce the QR factorization of A with column pivoting.

After choosing the column with the largest 2-norm and swapping it with the first

column by using the permutation matrix Π1, we multiply A with the Householder

reflection matrix QT
1

A← QT
1AΠ1 =

∗ ∗

0

...
A1

22

Then, we choose the column that has the largest 2-norm in the sub-matrix A1

22 and

swap it with the first column in A1
22 using a permutation matrix Π2. Then, we apply

17

the Householder reflection QT
2 .

A← QT
2Q

T
1AΠ1Π2 =

∗ ∗ ...

0 ∗ ...

0

...

0

...
A2

22

Now, we repeat the process on A2

22 until the matrix is the form:

A← QT
k · · ·QT

2Q
T
1AΠ1Π2 · · ·Πk =

R11 R12

0 0

We can write the QR factorization of the rank deficient matrix A as AΠ = QR where

Π = Π1Π2...Πk and Q = Q1Q2..Qk.

For a rank deficient least squares problem, we can write the least squares problem as:

||b− Ax||22 = ||b− AΠΠTx||22 = ||QT b−Rx̂||22

where x̂ = ΠTx.

Let c, y ∈ Rr, d ∈ Rm−r, z ∈ Rn−r where QT b =

c
d

 and x̂ =

y
z

 Then the least

squares problem becomes:

||b− Ax̂||22 =

∥∥∥∥∥∥∥
c
d

−
R11 R12

0 0

y
z

∥∥∥∥∥∥∥
2

2

= ||c−R11y −R12z||22 + ||d||22

The norm will be minimized if we minimize the first norm in the above equation for

some y and z. We can solve for y by letting z ∈ Rn−r be an arbitrary vector. So, we

minimize the original least squares problem by finding the solution to c = R11y+R12z.

18

A common choice for the sub-vector z is the zero vector which would simplify our

calculation of R12z. Then, the solution to the least squares problem is

x = Πx̂ = Π

y
z

Now that we established some basic tools to solve the rank deficient least squares

problem. We still need the tools that smooth the ill-posedness in our 2D X-ray

tomography problem.

2.2.3 Regularization

Typically in inverse problems, the data we obtain is not the exact data. This is also

the case in our X-ray tomography problem. Ideally, we want to solve Ax = b but the

linear system that we actually solve is:

Ax̂ = b = btrue + η (2.3)

where η is the noise in our measurement data, btrue is the noise-free data, A ∈ Rm×n,

and b ∈ Rm. For the simplicity of the following proofs, we assume A is full rank and

m = n. The observation will also hold for more general cases when we compute a

pseudo-inverse instead of an exact inverse.

By using the SVD of A where σi is the ith singular value and ui, vi are the ith

column of the left and right orthogonal matrix U and V , we first recall that Avi = σiui,

and we note that we can find scalars αi and ηi such that

x =
n∑
i=1

αivi and η =
n∑
i=1

ηiui

19

Using these relations, we obtain

b = Ax+ η

= A
n∑
i=1

αivi +
n∑
i=1

ηiui

=
n∑
i=1

αiAvi +
n∑
i=1

ηiui

=
n∑
i=1

αiσiui +
n∑
i=1

ηiui

=
n∑
i=1

(αiσi + ηi)ui

(2.4)

Then, notice that

A−1ui = V Σ−1UTui

= V Σ−1ei

=
1

σi
vi

(2.5)

Thus,

x̂ = A−1b

=
n∑
i=1

(αiσi + ηi)A
−1ui

=
n∑
i=1

(
αi +

ηi
σi

)
vi

(2.6)

From this result we observe that the noise in the data is magnified by the small

singular values. Since σ1 > σ2 > ... > σn > 0, larger indices correspond to smaller

singular values. The computed solution is dominated by noise amplified by division

of small singular values. Thus, we need regularization schemes to filter out this noise.

20

In particular, a regularized solution can be written as:

x̂reg =
n∑
i=0

φi

(
αi +

ηi
σi

)
vi (2.7)

where the scalar 0 6 φi 6 1 is called a filter factor. As σi decreases, the filter factors

should approach zero so that the noise contributed by the small singular values are

filtered out. In the following paragraphs, we introduce the Truncated Singular Value

Decomposition (TSVD) and Tikhonov Regularization.

Truncated Singular Value Decomposition

Since the noise is magnified by the small singular value, the most intuitive approach

is to cut off the small singular values by setting them to zero. This is called the

Trucated SVD regularization. The TSVD solution to the inverse problem is given by

x̂reg =
k∑
i=1

bTui
σi

vi (2.8)

where k 6 n. Equation (2.8) is equivalent to setting φi = 0, ∀i > k and φi = 1, ∀i 6 k.

The critical part in the TSVD is identifying the threshold k. One approach is the

elbow method – choosing k at a significant drop-off of singular values, as illustrated

by Figure 2.1.

21

Figure 2.1: The singular values plot of a 10 × 10 diagonal matrix whose singular
values are respectively 99, 98 ... 91, and 1

In this case, k = 9 can be easily identified as the threshold for the TSVD approach.

However, typically in inverse problems, singular values decay smoothly, as illustrated

by Figure 2.2.

22

Figure 2.2: The singular values of the 256 × 256 test problem heat generated from
Regularization Tools in MATLAB

In cases like Figure 2.2, a reliable cut-off threshold for singular values is hard to

find. Note that k = 250 is not a good choice for the cut-off because the singular

values are very close to zero for smaller indices k (e.g. σ200 ≈ 10−8). Also, since the

matrix A can be very large in practice, it is not feasible to compute the SVD of large

matrices. Therefore, we need more advanced regularization techniques to deal with

smoothly decaying singular values.

Tikhonov Regularization

We introduce the classical Tikhonov Regularization to solve ill-posed problems. The

regularized solution x̂reg is the unique solution to the following:

min
x
||Ax− b||22 + λ2||x||22 (2.9)

23

where λ is the regularization parameter that controls the smoothness of the regular-

ized solution. Equation (2.9) is equivalent to the following:

min
x

∥∥∥∥∥∥∥
A
λI

x−
b

0

∥∥∥∥∥∥∥
2

2

(2.10)

Then the normal equations for this least squares problem can be written as:

(ATA+ λ2I)x̂reg = AT b. (2.11)

From the normal equations, we can obtain the following:

x̂reg = (ATA+ λ2I)−1AT b

= (V Σ2V T + λ2I)−1AT b

= (λ2(
1

λ2
V Σ2V T + V IV T))−1AT b

= (λ2V (
1

λ2
Σ2 + I)V T)−1AT b

= (V (Σ2 + λ2I)V T)−1AT b

= V (Σ2 + λ2I)−1V TV ΣUT b

=
n∑
i=1

σi
σ2 + λ2

viu
T
i b

=
n∑
i=1

φi
bTui
σi

vi

(2.12)

where the filtering factor is φi =
σ2
i

σ2
i +λ

2 . We assumed A has full rank for the simplicity

of the proof. The pseudo-inverse can be used for the rank deficient case and the

resulting equation would sum from i = 1 to rank(A) = r instead of the full column

rank n. The modified Tikhonov regularization is not too much different from the

classical Tikhonov except that it uses the 2-norm of Lx instead of x in Equation(2.9),

24

where L is a p× n matrix with p 6 n.

min
x
||Ax− b||22 + λ2||Lx||22

In contrast to TSVD where singular values after σk are cut off, the Tikhonov

regularization applies a smoother filter to all the singular values. Given a good

regularization parameter, the large singular values would not be affected too much

whereas the small values would be gradually filtered more as they approach zero. The

quality of the filtering depends on how we choose the regularization parameter. If

λ = 0, then φ = 1 and we are directly calculating the inverse (or pseudo-inverse)

solution. If we select a very large λ� σ1, φi would approach zero and we would have

over-smoothed the solution. In the next section, we introduce some methods that

choose the regularization parameters.

2.2.4 Parameter Choice Methods

The choice of regularization parameter is critical to the quality of the regularized

solution. Parameter choice methods can usually be divided into two classes depending

on their assumption about error norm ||η||22 = ||b − btrue||22 where b is the measured

data and btrue is the noise free data [16]. The first class contains methods based on

a good estimate of ||η||22. The second class includes methods that are not based on a

good estimate of ||η||22, but seek to extract this information from the given right hand

side b. In this section, we introduce the Generalized Cross-Validation method (GCV)

which is a popular method in the second class. The underlying idea of GCV is that

a good regularization parameter should predict missing values. For example, if some

data point bi is missing in the right hand side, the regularized solution should predict

this missing value well. GCV can be written as:

25

G(λ) =
n||Ax̂reg − b||22

trace(Im − AA†F)2
(2.13)

where x̂reg is the regularized solution, A†F =
∑n

i=1 φi
viu

T
i

σi
= V Σ†FU

T , and Σ†F =

diag(φ1
σ1
, φ2
σ2
, ..., φn

σn
). The goal is to find λ such that G(λ) is minimized. Now we

simplify the numerator and the denominator of G(λ) respectively:

||Ax̂reg − b||22 = ||ΣV Txreg − UT b||22

= ||ΣV TV Σ†FU
T b− UT b||22

= ||(ΣΣ†F − I)UT b||22

trace(Im − AA†F) = trace((Im − UΣΣ†FU
T))

= trace(U(Im − ΣΣ†F)UT)

= trace(Im − ΣΣ†F)

Thus, G(λ) becomes:

G(λ) =
n||(ΣΣ†F − I)UT b||22
trace(Im − ΣΣ†F)

(2.14)

Since φi =
σ2
i

σ2
i +λ

2 in the Tikhonov case,

Σ†F = diag

(
φ1

σ1
,
φ2

σ2
, ...,

φn
σn

)
= diag

(
σ1

σ2
1 + λ2

,
σ2

σ2
2 + λ2

, ...,
σn

σ2
n + λ2

)

Then we can write G(λ) in the case of Tikhonov regularization as:

G(λ) =
n
∑n

i=1(
b̂i

σ2
i +λ

2)2

(
∑n

i=1
1

σ2
i +λ

2)2
(2.15)

where b̂ = UT b. Now we can solve for λ by using the function fminbnd in

26

MATLAB which is based on golden section search and parabolic interpolation. In

practical applications, several studies have found that occasionally GCV would dras-

tically under-smooth the solution by choosing the regularization parameter too small

[8] [13] [25]. In [5], GCV has been found to over-smooth the solution in Lanczos-hybrid

methods. Thus, here we describe the weighted GCV method:

G(w, λ) =
n||Ax̂reg − b||22

trace(Im − wAA†F)2
(2.16)

where w is the weight parameter that determines the function G(w, λ) along with

λ. When w = 1, we have the non-weighted version of GCV like in Equation (2.13).

When w > 1, the solution is smoother. When w < 1, the solution is less smooth.

So far in weighted-GCV literature, only experimental approaches have been used to

determine the value for w. The function IRhybrid lsqr that we use to solve the

linear least squares problem chooses w through an adaptive process [5]. This update

process utilizes the earlier well-conditioned components to stabilize the impact from

small singular values. Although the solution can be over-smoothed in the first few

iterations due to a relatively large λ used for well-conditioned problem, these solutions

are discarded. While this update method for w under-smooths values for large k, a

method like GCV will be used to choose a stopping iteration so that k will not be too

large. In the next subsection, we introduce the LSQR algorithm which would finally

lead us to the hybrid LSQR algorithm [5].

2.3 The LSQR Algorithm

To introduce the LSQR algorithm, we need to first illustrate the Golub-Kahan

bidiagonalization process [2].

27

Golub-Kahan bidiagonalization

We want to find the following factorization of matrix A ∈ Rm×n:

A = U

B
0

V T (2.17)

where U = (u1, u2, ..., um) and V = (v1, v2, ..., vn) are orthogonal matrices. B is a

bidiagonal matrix:

B = Bn =

α1

β2 α2

β3
. . .

. . . αn

βn+1

(2.18)

where Bn stands for the bidiagonal matrix produced from the nth iteration of the

Golub-Kahan bidiagonalization.

If we set U1 = (u1, u2, ..., un+1), then we have:

AV = U1B, ATU1 = V BT (2.19)

Equating the jth columns in these two equations we get:

ATuj = βjvj−1 + αjvj

Avj = αjuj + βj+1uj+1

(2.20)

We set β1v0 ≡ 0 and αn+1vn+1 ≡ 0. In the Golub-Kahan bidiagonalization, a starting

vector v1 ∈ Rn is chosen. Here, we introduce a variant of this algorithm which is

more suited for solving least squares problems. We choose a starting vector u1 ∈ Rm

instead [2] [21]. Given u1 ∈ Rm, ||u1||2 = 1, we recursively generate the vectors

28

v1, u2, v2, ..., um+1 and corresponding elements in Bn respectively for j = 1, 2, ...,

rj = ATuj − βjvj−1, αj = ||rj||2, vj = rj/αj (2.21)

pj = Avj − αjuj, βj+1 = ||pj||2, uj+1 = pj/βj+1 (2.22)

For this bidiagonalization scheme we have

uj ∈ Kj(AA
T , u1), vj ∈ Kj(A

TA,ATu1)

where u1, ..., uj and v1, ..., vj are orthogonal bases for these two Krylov spaces.

Best Approximation in the Krylov subspace

Given the linear least squares problem, we compute a sequence of approximate solu-

tions [2].

We set

β1u1 = b, α1v1 = ATu1 (2.23)

and for j = 1, 2...,

βj+1uj+1 = Avj − αjuj

αj+1vj+1 = ATuj+1 − βj+1vj

(2.24)

where αj+1 > 0 and βj+1 > 0 are determined so that ||uj+1||2 = ||vj+1||2 = 1. After

k steps we have

Vk = (v1, ..., vk), Uk+1 = (u1, ...uk+1)

29

and

Bk =

α1

β2 α2

β3
. . .

. . . αk

βk+1

∈ R(k+1)×k (2.25)

The recurrence relation from Equation (2.23) and (2.24) can be written in the

matrix form:

β1Uk+1e1 = b (2.26)

AVk = Uk+1Bk, ATUk+1 = VkB
T
k + αk+1vk+1e

T
k+1 (2.27)

xk ∈ Kk is an approximate solution to x in the Krylov space, whereKk = Kk(A
TA,AT b).

Since Kk = span(Vk), we can write

xk = Vkyk. (2.28)

Then multiplying yk with the first equation in Equation (2.27), we obtain Axk =

AVkyk = Uk+1Bkyk, and then from Equation (2.26)

b− Axk = Uk+1tk+1, tk+1 = β1e1 −Bkyk. (2.29)

Then ||b−Axk||2 is minimized over all xk ∈ span(Vk) by taking yk to be the solution

to the least squares problem:

min
yk
||Bkyk − β1e1||2. (2.30)

Note that we use the fact that 2-norm is invariant under orthogonal transformation

30

of Uk+1.

The LSQR algorithm

Since Bk is bidiagonal the sub-problem above can be solved by QR decomposition of

Bk,

QT
kBk =

Rk

0

 , QT
k (β1e1) =

 fk

φk+1

 (2.31)

where Rk is upper bidiagonal and

fk =

φ1

φ2

...

φk

The matrix Qk is the product of Givens rotations Qk = Gk,k+1Gk−1,k, ..., G1,2 chosen

to eliminate one subdiagonal element at a time. The solution vector yk and the

residual vector tk+1 are obtained from

Rkyk = fk, tk+1 = QT
k

 0

φk+1

 (2.32)

Then, we can solve for yk by doing backward-substitution. Note that the QR fac-

torization does not have to be computed from scratch every single iteration. Once a

column is added, we can simply use a Givens rotation to eliminate the subdiagonal

element.

Then, the best approximation xk in Krylov space Kk can be computed by xk = Vkyk.

It is also important to note that we do not have to store all the vectors v1, .., vk in

Vk. Instead, only storing one extra n-vector is needed. This can be done by using a

31

simple recursion for computing xk from xk−1 [21].

2.3.1 Hybrid LSQR

All the subsections up till now have prepared the background in understanding the

Hybrid LSQR algorithm (a weighted-GCV method for Lanczos-Hybrid Regulariza-

tion). In Section 2.2.3, we discussed that regularization methods are needed to solve

the ill-posed inverse problem in Equation (2.5). Since quality of regularization meth-

ods depends on the regularization parameter, it is helpful to consider various methods

such as the discrepancy principle, generalized cross-validation, and L-curve. While

having their merits, they all have disadvantages. The discrepancy principle requires

information about the noise. Efficient implentation of GCV requires the singular

value decomposition of A, which is impractical for large scale problems like ours. In

L-curve, it’s necessary to solve for several regularization parameters although this can

be alleviated by exploiting redundancies in certain iterative methods [5] [4] [14].

In the previous subsection, we have shown that LSQR projects the linear least

squares problem onto a Krylov subspace of small (increasing) dimensions. When be-

ing applied to ill-posed problems, LSQR exhibits a semi-convergence behavior which

means that early iterations construct information related to the solution while later

iterations construct information related to noise [5]. This can be compensated by ap-

plying a direct regularization method such as Tikhonov or TSVD, which can be solved

cheaply on a small scale problem of the reduced linear least squares in the Krylov

subspace. Comparing to LSQR, this hybrid method can effectively stablize the itera-

tions [5]. Although at each iteration a new regularization parameter must be chosen,

it is not computationally expensive for the projected problem. As mentioned in Sec-

tion 2.2.4, GCV can occasionally overestimate or underestimate the regularization

parameters, which would result in over-smoothing or under-smoothing the solutions.

Thus, the adaptive weighted GCV, Equation (2.16), is used as the parameter choice

32

method in this hybrid approach.

To summarize the method, we project the large scale linear least squares problem

onto a low-dimensional Krylov subspace where we can inexpensively apply a direct

regularization method like the adaptive weighted-GCV.

In practice, we can directly use the IRhybrid lsqr method from IRTools in MAT-

LAB. The code is very user friendly and large linear least squares problems can be

solved using various iterative methods that it provides.

2.4 Nonlinear Least Squares

In the alternating minimization scheme we proposed, we iteratively solve the image

and the geometry parameters. While we have discussed methods to solve the lin-

ear least squares problem in the previous section, we need other tools to solve the

nonlinear least squares problem:

min
r
||A(r)x− b||2 (2.33)

where x is approximated by the linear least squares solution we obtained by using

hybrid LSQR in Section 2.3.

We utilize the implicit filtering method which solves the bound-constraint opti-

mization problem for which the derivative information is not available [18]. Since

we do not have the derivative information of our objective function and a reasonable

bound can be established for the geometry parameters in our tomographic reconstruc-

tion problem, implicit filtering serves as a good tool to solve our problem. In contrast

to coordinate search, implicit filtering builds the local model of the objective function

using a quasi-Newton method.

The implicit filtering uses a quasi-Newton method or a Gauss-Newton method to

accelerate convergence. To establish some background knowledge, we introduce the

33

quasi-Newton method, Gauss-Newton method, and implicit filtering respectively.

2.4.1 Quasi-Newton and Gauss-Newton Method

To provide a foundation for understanding quasi-Newton and Gauss-Newton methods,

we first introduce Newton’s method.

Newton’s Method

Newton’s method is an iterative method for finding the roots f(x) = 0 of the differ-

entiable function f(x). The most basic version of Newton’s method is described here.

Given a single variable function f defined for real variable x, an initial guess x0, and

the derivative f ′, we employ the following iterative scheme to solve for the root, for

k = 0, 1, 2...

xk+1 = xk −
f(xk)

f ′(xk)

If the function satisfies sufficient assumptions and the initial guess is close, xk+1 is

a better approximation than xk. Eventually, the iteration converges. The geometric

interpretation of Newton’s method is that the coordinate (xk+1, 0) is the intersection

of the x-axis and the tangent line of f(x) at point (xk, f(xk)).

In optimization, we apply Newton’s method to the derivative of f(x) and find

the solution to f ′(x) = 0. Suppose f : R → R is a twice-differentiable function and

we want to minimize f(x) on x ∈ R. The second order derivative of f around xk is

approximated as:

f(xk + t) ≈ f(xk) + f ′(xk)t+
1

2
f ′′(xk)t

2

where t = xk+1− xk. If the second derivative is positive, we can find the minimum of

this quadratic convex function by setting the derivative to zero

0 =
d

dt
(f(xk) + f ′(xk)t+

1

2
f ′′(xk)t

2) = f ′(xk) + f ′′(xk)t

34

Then, the iteration scheme can be written as

xk+1 = xk + t = xk −
f ′(xk)

f ′′(xk)
(2.34)

Quasi-Newton Method

Quasi-Newton methods are used to either find the root or the minima (maxima) of a

function. While the full Newton’s method requires the Jacobian when finding zeros

or Hessian when finding minima (maxima), quasi-Newton methods can be used when

the Jacobian or Hessian is unavailable or too expensive to compute at each iteration.

As in Newton’s method, one uses a second-order approximation to find the minimum

of the function f(x):

f(xk +4x) ≈ f(xk) +∇fT4x+
1

2
4xTB4x

where ∇f is the gradient, B is an approximate to the Hessian matrix. The gradient

of this approximation is:

∇f(xk +4x) ≈ ∇f(xk) +B4x

Setting this gradient to zero gives

4x = −B−1∇f(xk)

xk+1 = xk +4x

Strictly speaking, any method that replaces the exact Jacobian in the Newton method

with an approximation is a quasi-Newton method. There are many methods to update

the approximate Hessian matrix B [12][3][6].

35

Gauss-Newton Method

The Gauss-Newton method is a modification of Newton’s method to solve nonlinear

least squares problems. It can only be used to minimize the sum of squared function

values but it does not require the second derivative information [19].

Given m functions ρ = (ρ1, ρ2, .., ρm) and n variables (β = β1, β2, ..., βn) with

m > n, the Gauss-Newton method iteratively solve for variables that minimize the

function

S(β) =
m∑
i=1

ρi(β)2

The Gauss-Newton method can be derived from Taylor series at some value β(s):

ρ(β) = ρ(β(s)) + Jρ(β
(s))4

where 4 = β − β(s) and Jρ is a Jacobian matrix with entries

(Jρ)ij =
∂ρi(β

(s))

∂βj

Thus, the minimization problem of ρ(β) is converted to a linear least squares problem

min ||ρ(β(s)) + Jρ(β
(s))4||22

Using the normal equation, we derive the Gauss-Newton iterative scheme

β(s+1) = β(s) − (JTρ Jρ)
−1JTρ ρ(β(s))

36

2.4.2 Implicit Filtering

Implicit filtering extends coordinate search by approximating a gradient using the

values of f on the stencil, uses that approximate gradient to build a model of f , and

then searches for a better point using information from the model [18].

The basic idea behind the simplest possible form of implicit filtering is the follow-

ing:

Given a base point x, a function value f(x), a scale h, the algorithm begins

evaluating at the 2N points on the stencil

S(x, h) = {z|z = x± hei}

where ei is the unit vector at the ith direction. Let the minimum of the evaluated

function at those 2N points be fmin. If fmin > fbase, reduce the scale h and signal

stencil failure. Otherwise, calculate the stencil gradient of the function f , set the

search direction d as the negative of the stencil gradient and perform the Armijo line

search which takes in a starting point and a search direction, and determines the

amount to move in a given direction that adequately reduces the objective function.

Let the output value of the line search be fnewt. We then compare the value fmin,fnewt,

and fbase. Clearly, if fnewt < fmin, we accept the line search result as the new point. If

would be less clear if fmin < fnewt < fbase. In the default setting of the MATLAB code

imfil, it accepts the quasi-Newton step if fnewt < fbase because numerical experiments

suggest this setting performs better than favoring the stencil.

To accelerate convergence, Gauss-Newton or quasi-Newton method is used to

update the search direction d. Also, bound constraints are used to scale the variables

to roughly the same size.

To apply imfil to our problem, we can directly use the following line of code after

providing a cost function, budget, bounds, and additional data.

37

options=imfil_optset(’simple_function’,1,’least_squares’,1);

r(j) = imfil(r_0(j),@CostFun, budget, bounds, options, extra)

where r(j) is the jth entry of the geometry vector r ∈ Rk, where k is the number of

angles.

The development of implicit filtering and its implementation in MATLAB is a

multi-year collaborative effort led by Dr. C. T. Kelley. An attempt to explain it

comprehensively and clearly is beyond the scope of this thesis. More information on

implicit filtering can be found on the Implicit Filtering book [18].

38

Chapter 3

Acceleration Schemes

In the previous chapter, we have introduced the alternating minimization scheme and

the methods we use to solve least squares problems. In this chapter, we introduce

methods that will accelerate the convergence of our minimization scheme.

3.1 Accelerated Block Coordinate Descent

Since we can divide variables in our least squares problem into two blocks – geometry

parameters r and image x, it makes sense for us to directly investigate methods that

accelerate the alternating minimization. We implemented an inexact majorized

Accelerated Block Coordinate Descent (imABCD), which is an accelerated as

well as inexact version of alternating minimization. This method can be applied to

a four-block problem by dividing it into two larger blocks, but in our problem we

do not have to do so. Theoretically, the proposed inexact acceleration method has a

complexity of O(1
k2

) [7]. In our implementation, we simplify the accelerated algorithm

as the following:

39

Algorithm 3: Inexact majorized Accelerated Block Coordinate Descent

Step 1 Initialization Let t0 = 1 given r0 ∈ RN and x0 ∈ Rn, perform the following

step for k > 1:

Step 2 r̃k = arg min
r
||b− A(r)xk−1||22;

x̃k = arg min
x
||b− A(r̃k)x||22 + λ2||x||22;

Step 3 w̃k = (x̃k, r̃k) ;

tk = 1
2
(1 +

√
1 + 4t2k−1) ;

wk = ˜wk−1 + tk−1

tk+1
(w̃k − ˜wk−1), where wk = (xk, rk)

where N stands for the number of angles. n is the length of the image vector.

Note that in practice an initial estimate r0 is given. With this information, we

can easily obtain x0 by solving the linear least squares problem,

x0 = arg min
x
||b− A(r̃0)x||22 + λ2||x||22

As discussed in previous sections, the Tikhonov regularized least squares problems

for x0 and x̃k are solved using the hybrid scheme IRhybrid lsqr. The nonlinear

least squares problem for r̃k is solved using imfil. We have found that accelerating

the solution vector x alone has yielded stabler results with slightly better accuracy

than performing acceleration on both x and r. We show the numerical experiments

in Chapter 4.

3.2 Anderson Acceleration

Anderson Acceleration, also called Anderson mixing, is a method used to accelerate

the convergence of fixed point iteration. Note that we can write out alternating min-

imization scheme as a fixed point iteration

40

Algorithm 4: Fixed point iteration of image vector

1 Initialization Given xk ∈ Rn, output xk+1 = g(xk) from the following;

2 rk+1 = arg min
r
||b− A(r)xk||22 ;

3 xk+1 = arg min
x
||b− A(rk+1)x||22 + λ2||x||22 ;

where g : Rn → Rn is the fixed point iteration of image vector x.

For this fixed point iteration, the general form of Anderson Acceleration is formed

as the following:

Algorithm 5: Anderson Acceleration

1 Given x0 and m > 1 ;

2 Set x1 = g(x0), using Algorithm 4;

3 for k=1,2,... do

4 mk = min(m, k) ;

5 Set Fk = (fk−mk
, ..., fk), where fi = gi(xi)− xi and gi(xi) comes from

Algorithm 4;

6 Determine α(k) = (α
(k)
0 , ..., α

(k)
mk)T that solves

7 min
α
||Fkα||2 s.t

∑mk

i=0 αi = 1

8 Set xk+1 =
∑mk

i=0 α
(k)
i g(xk−mk+i), where g(xk−mk+i) is from Algorithm 4

9 end

We can cast the linear constrained optimization problem in Step 7 of the Algorithm

5 into an unconstrained form which is straightforward to solve and convenient for

efficient implementation [26].

We define ∇fi = fi+1− fi for each i and set ∇F = (∇fk−mk
, ...,∇fk−1). Then the

least squares problem is equivalent to

min
γ=(γ0,...γmk−1)T

||fk − Fkγ||2

41

where α0 = γ0 and αi = γi − γi−1, for 1 6 i 6 mk − 1 and αmk
= 1− γmk−1

This unconstrained least squares problem leads to a modified version of Anderson

Acceleration:

Algorithm 6: Modified Anderson Acceleration

1 Given x0 and m > 1 ;

2 Set x1 = g(x0), using Algorithm 4;

3 for k=1,2,... do

4 mk = min(m, k) ;

5 Determine γ(k) = (γ
(k)
0 , ..., γ

(k)
mk−1)

T that solves

6 min
γ=(γ0,...γmk−1)T

||fk − Fkγ||2

7 Set xk+1 = g(xk)−Gkγ
(k), where g(xk) comes from Algorithm 4.

8 end

where

xk+1 = g(xk)−
mk−1∑
i=1

γ
(k)
i [g(xk−mk+i+1)− g(xk−mk+i)] = g(xk)−Gkγ

(k)

with G = (∇gk−mk
, ...,∇gk−1), ∇gi = g(xi+1)− g(xi)

Homer Walker proposed implementation that efficiently updates the QR factors

in the decomposition Fk = QkRk. The basic logic is the following: every Fk is

obtained from Fk−1 with a column added on the right. If the resulting matrix has

more columns than m, then delete one from the left. The column addition can be

achieved by a modified Gram–Schmidt process. The deletion process is a little more

complicated. We delete the first column on the left when mk−1 = m. If Fk−1 = QR,

then Fk−1(:, 2 : m) = QR(:, 2 : m), where R(:, 2 : m) is upper-Hessenberg. Then, we

can determine m Givens rotations to cancel out the entries in the sub-diagonal.

42

Chapter 4

Numerical Experiments

In this chapter, we make a few comparisons of different methods to solve the X-ray

tomography problem illustrated in Equation (1.8). Firstly, we compare the speed of

BCD exploiting the separability of geometry and the speed of BCD without using such

property. Secondly, we compare results produced from different number of angles.

Thirdly, we make comparisons of all the acceleration schemes. Fourthly, different

regularization parameters in the linear least squares solvers are compared. Lastly, we

compare the effects of different budgets on the results.

As mentioned in the first chapter, we use fan-beam projection for all our to-

mography problems for the sake of consistency. Note that we can easily adapt our

code to solve for parallel beam projection by changing the PRoptions parameter for

PRtomo problem in the IRtools.

In practice, a good initial guess of r is available and prior knowledge can help us

set the bounds of r. We generate a test problem where true r values, rtrue, are random

numbers (chosen from a uniform distribution) between 1.5 and 2.5. We use a constant

initial guess of r = 2 for all angles and set the bounds for the geometry parameters

from 1.5 to 2.5. For consistency, we denote the forward operator as A, image size as n,

number of angles as NA, and noise level as ||η||2 for the rest of the chapter, where η is

43

a vector with random entries chosen from a normal distribution and ||η||2 = ||noise(:)||2
||b(:)||2 .

Budget is a hyper-parameter in imfil that stands for the maximum number of function

evaluations in the nonlinear least squares solver. Moreover, 0th iteration is included

in the relative errors figures below. This represents the relative error of the initial

guesses with regard to the true solution.

4.1 BCD Exploiting Separability vs BCD

Let BCD that exploits separability be called BCDS. In this section, we compare the

running time of BCD and that of BCDS. As we see in Figure 4.1 and Figure 4.2,

BCDS dramatically speeds up the convergence because the separability allows us to

solve a much smaller problem independently for one r(i) at a time. The running

time of image restoration using BCD is 16.985s, about 5 seconds longer than BCDS’s

11.888s. The time of geometry reconstruction using BCD is 2226.581s, much longer

than BCDS’s 115.922s. This is also the reason BCDS is discussed first in this nu-

merical experiment chapter. In our following experiments, we always use the BCDS

to reduce the running time. We also notice semi-convergence behavior in the BCD

algorithm, whereas BCDS do not run into such issues in our numerical experiments.

Moreover, the geometry errors and reconstruction errors of BCDS are both better

than that of BCD. The geometry errors are defined as the relative errors of geometry

parameters, ||r−rtrue||2||rtrue||2 . The reconstruction errors are defined as the relative errors of

image, ||x−xtrue||2||xtrue||2 . In Figure 4.3, we compare the 32 × 32 Shepp-Logan phantom, a

standard test image of a human head [23]. The phantom reconstructed by BCDS is

much closer to the true image than the one from BCD.

44

Figure 4.1: Comparison of relative errors of geometry parameters r: BCD (left) vs
BCDS (right).

Figure 4.2: Comparison of relative errors of image vector x: BCD (left) vs BCDS
(right).

Figure 4.3: Comparison of 32 × 32 Shepp-Logan phantom: true image (left), BCDS
image (middle), BCD image (right).

In this numerical experiment, n = 32 × 32, budget = 1000, ||η||2 = 0.01, and

45

NA = 10. A typical CT image using fan beam x-ray sources collects data at angles

of one degree increment, from 0 to 359 degrees. In a perfect machine, the geometry

parameters are precisely known each time the source is rotated to a new angle. In our

experimental scenario, we assume the geometry parameters are only known approxi-

mately. To experiment with various scenarios, we assume that errors are introduced

into the geometry parameters once every 360
NA

degrees. That is, with NA = 10, errors

occur once every 36 degrees.

Partially, NA depends on the precision of machine calibration. For a good ma-

chine, NA may be small. Also, NA may depend on how precise we measure the data.

For example, two geometry parameters that are different in terms of double precision

may be rounded to the same number in single precision. In this scenario, the differ-

ence could be small enough that we can treat the two geometry parameters as being

equal. If the number of angles is larger than the true number of angles, we may end

up solving a larger problem than we need. For example, if for every 36 degrees only

one geometry error is introduced, that is NAtrue = 10. If we assume NA = 20, the

average of the two geometry errors per 36 degrees would approximate the one true

geometry error introduced in that set of angles. If the number of angles is smaller

than the true number of angles, we end up solving a low dimension approximation.

We do not seek to solve for the image exactly but aim to compute good approxima-

tions that yield much better results than not considering geometry parameters at all.

In practice, we can think of number of angles as a hyper-parameter that practitioners

can set based on their expertise and knowledge of the machine calibration. In our

problems, we assume to know the number of angles.

46

4.2 Number of Angles

We compare the case where the number of angles is 5, 10, and 20 respectively. We want

to explore the differences in relative error of r, relative error of x, the convergence,

and the image quality.

In this comparison test, n = 32× 32, ||η||2 = 0.01, budget = 10. The reason that

we can use a such small budget is we are essentially solving one scalar of r at a time.

The dimension of that problem is one and the recommended formula to set up a good

guess for budget is 10 ∗N2, where N is the length of the solution vector. Adjusting

budget according to each particular problem as a hyper-parameter will further im-

prove the quality of the result. Since we try to make apple-to-apple comparison, we

keep budget the same for all three cases.

Figure 4.4: Comparison of relative errors of geometry parameter r: NA = 5 (left),
NA = 10 (middle), NA = 20 (right).

Figure 4.5: Comparison of relative errors of image vector x: NA = 5 (left), NA = 10
(middle), NA = 20 (right).

47

Figure 4.6: Comparison of 32× 32 Shepp-Logan phantom: true image (0, 0), NA = 5
(0, 1), NA = 10 (1, 0), NA = 20 (1, 1).

Note that both geometry and image parameters converge for NA = 5 and NA = 10.

When NA = 20, geometry error has a huge spike at the first iteration. Although our

algorithm has gradually decreased the geometry error after the first iteration, the

resulting geometry error is almost the same as the geometry error of the initial guess.

The reconstruction error drops from more than 100% at the initial guess to below

85%, but the error climbed back up in the next few iterations. In the end, there was a

10% drop in relative error of the image comparing to the initial guess. There are two

explanations for this unusual phenomenon happened when NA = 20. Let r(k) and x(k)

represent the value of r and x at kth iteration in BCDS. First, r(1) is calculated from

x(0) and an initial guess r(0). r(1) is particularly bad because how bad x(0) is. Despite

this x(0), BCDS is still improving the geometry parameter after the first iteration.

48

Second, there seems to be an instability related to the size of NA. This could be due

to the fact that if NA is large, the separable blocks have more columns than rows.

For example, the size of A in a 32× 32 test problem is 16200× 1024. The number of

rows in the separable block is 16200/20 = 810, smaller than number of columns 1024.

For this particular problem, the largest number of angles we can use without running

into such instability issues is 12, which also have good convergent results. See Figure

4.7.

Figure 4.7: Geometry error and reconstruction error when NA = 12.

When NA > 12, we can use BCD to directly solve the problem.

4.3 Acceleration

In this section, we compare BCDS, imABCDS, and BCDS with Anderson accelera-

tion, where imABCDS represents the inexact majorized accelerated block coordinate

descent that exploits separability of geometry parameters. For all the comparisons

made in this section, we use n = 32× 32, NA = 10, ||η||2 = 0.01, and budget = 100.

The memory size we use for all the Anderson accelerations is m = 5. We do not have

to worry about rank deficiency because the row size 1024 is far greater than m = 5

and we always solve an over-determined problem.

49

Since we can implement Anderson acceleration in different ways depending on

the usages of inner linear least squares solvers, we first compare different versions

of Anderson acceleration before making comparisons with other methods. Moreover,

there are also two implementations of imABCDS that we compare. After making

those comparisons, we compare the best implementation of Anderson acceleration,

the best implementation of imABCDS, and the BCDS method.

4.3.1 Anderson acceleration

In this section, we compare MATLAB backslash operator with IRhybrid lsqr as

two different inner linear least squares solvers for Anderson acceleration.

Figure 4.8: Geometry errors of BCDS with Anderson acceleration using backslash
(left) and BCDS with Anderson acceleration using IRhybrid lsqr (right).

50

Figure 4.9: Reconstruction errors of BCDS with Anderson acceleration using back-
slash (left) and BCDS with Anderson acceleration using IRhybrid lsqr (right).

We notice that the geometry errors of Anderson acceleration using IRhybrid lsqr

has a faster and stabler convergence than backslash. Due to its lack of regulariza-

tion, the geometry errors of Anderson acceleration using backslash exhibits semi-

convergence behavior in the first 15 iterations.

The reconstruction errors of Anderson acceleration using IRhybrid lsqr also has

a faster and stabler convergence than backslash. On the other hand, the reconstruc-

tion errors of Anderson acceleration using backslash gradually decreases over time

with some spikes at iteration 14 and 28. Thus, IRhybrid lsqr has a clear advantage

in terms of both stability and speed of convergence over backslash when it is used

to compute the linear least squares problems in Anderson acceleration, as described

in Algorithm 6.

4.3.2 imABCDS

Since we can choose to apply the inexact majorized acceleration scheme on the image

vector x only or apply it on both geometry parameter r and image vector x, we

compare the two versions of imABCDS. We denote the former version of imABCDS

as imABCDS-1. We denote the latter version that applies the acceleration on both

51

image and geometry parameters as imABCDS-b.

Figure 4.10: Geometry errors of imABCDS-b (left) and imABCDS-1 (right).

Figure 4.11: Image errors of imABCDS-b (left) and imABCDS-1 (right).

From the above figures, we can tell that although both approaches converge and

produce similar results at the end of iterations, the geometry error of imABCDS-b

oscillates more comparing to that of imABCDS-1. Thus, applying the acceleration

scheme on image vector x alone is enough to produce stable and convergent results.

For the sake of simplicity, when we mention imABCDS in the rest of the thesis, it

always refers to imABCDS-1 .

52

4.3.3 imABCDS and BCDS

Figure 4.12: Geometry errors of BCDS (left) and imABCDS (right).

Figure 4.13: Reconstruction errors of BCDS (left) and imABCDS (right).

In BCDS, the geometry error converges at the 14th iteration and the reconstruction

error converges at 15th iteration. The imABCDS and the Anderson Acceleration

converge around the same iteration for both geometry and reconstruction errors.

However, the levels of geometry and reconstruction errors of imABCDS are more

superior to those of Anderson acceleration. One reason that Anderson acceleration

does not work too well is our problem is not strictly a fixed point iteration of x.

The nonlinear least squares solver depends on both x and a good initial guess of r.

Another reason is Anderson Acceleration without safeguards cannot guarantee the

53

convergence of our original iterative scheme [29].

4.4 Regularization

In this section, we compare BCDS with different regularization parameters: no regu-

larization, GCV, and adaptive weighted-GCV. The reason we use BCDS without the

acceleration methods is that we want to see the direct impact of regularization on the

alternating minimization scheme. We use n = 32 × 32, NA = 10, ||η||2 = 0.01, and

budget = 100.

Figure 4.14: Geometry errors: No regularization (left), GCV (middle), W-GCV
(right).

Figure 4.15: Reconstruction errors: No regularization (left), GCV (middle), W-GCV
(right).

When there is no regularization, IRhybrid lsqr is essentially an LSQR algo-

rithm, which exhibits semi-convergence behavior. When GCV is used instead of

the adaptive weighted-GCV, the geometry and image parameter errors also exhibit

54

semi-convergence behavior. The adaptive weighted-GCV helps stabilize LSQR’s con-

vergence and thus produces the best result.

4.5 Imfil Budget

We explore the effect of evaluation budgets in the nonlinear least squares solver on

the geometry and reconstruction errors. We set n = 32 × 32, NA = 10, and ||η||2 =

0.01. We use budget = 10, 100, 1000, 10000. Since the budget size may greatly affect

the nonlinear least squares solutions, we explore its effects on BCDS without any

acceleration.

Figure 4.16: Geometry errors: budget = 10 (0, 0), budget = 100 (0, 1), budget = 1000
(1, 0), budget = 10000 (1, 1).

55

Figure 4.17: Reconstruction errors: budget = 10 (0, 0), budget = 100 (0, 1), budget =
10000 (1, 0), budget = 10000 (1, 1).

As we can see in the above figures, 100, 1000, and 10000 are almost equally good.

The geometry errors and reconstruction errors are very small when 100, 1000, 10000

are used. Thus, 100 is the best budget out of the four because any more evaluation

beyond 100 does not make the solution better. When budget is 1000 and 10000

respectively, we wasted many evaluations without making any progress. When 10 is

used, even though we get convergent results earlier, the small budget terminate the

algorithms before it finds a better minimization solution.

56

Chapter 5

Conclusion

In this thesis, we used an alternating minimization scheme to solve a tomographic im-

age reconstruction problem. The linear least squares problem is solved by an adaptive

weighted hybrid LSQR algorithm with Tikhonov regularization. The nonlinear least

squares problem is solved by implicit filtering, a constrained optimization method

that does not require derivative information. We also investigated imABCDS and

Anderson mixing to accelerate the convergence. We have the following findings:

1. BCDS runs and converges much faster than the normal BCD because the sepa-

rability of parameters allow us to solve each entry of r independently. However,

there seems to be an instability when NA is greater than a threshold calculated

as t = m
n

, where t is the largest integer such that n divides m, and m and n are

the row and column size of the forward operator. In this case, we can directly

apply BCD to solve the tomographic reconstruction problem.

2. Solving the linear least squares problem in Anderson acceleration with IRhy-

brid lsqr produces a better result than using the backslash operator in terms

of convergence and stability.

3. imABCDS is much less computationally costly than BCDS with Anderson ac-

celeration because Anderson requires solving a linear least squares problem in

57

each iteration. imABCDS found better solutions for geometry and image than

Anderson Acceleration in our tomographic reconstruction problem because the

fixed point iteration of x also requires an update of r as input, and Anderson

Acceleration without safeguards may encounter numerical instability.

4. The adaptive weighted hybrid LSQR algorithm with Tikhonov regularization

stablizes the convergence more than applying an unweighted GCV to the LSQR

algorithm. When no regularization method is used, the LSQR algorithm ex-

hibits semi-convergence behavior. It reconstructs the solution at earlier itera-

tions but noise at later iterations.

5. Choosing an appropriate budget for implicit filtering is important. When the

budget is chosen too small, better solutions are not explored. When budget is

chosen too big, many function evaluations are wasted without making progress.

A suggested number from the imfil author is 10 ∗N2, where N is the length of

r. We found this formula does not always give appropriate budget. Since we

solve for each entry in the geometry parameter using separability, the dimension

of each small problem is one. But, we have found 100 to be the best budget for

32× 32 test problem with NA = 10.

The imABCDs method has shown its success in our tomographic reconstruction

problems. We believe this algorithm can be used to effectively solve X-ray tomography

problems that have variations in the geometry parameter. A future direction towards

more improvement would be adapting, applying, and advancing this algorithm on

X-ray images produced in clinical trials.

58

Bibliography

[1] R. Bibb, D. Eggbeer, and A. Paterson. Chapter 2: Medical imaging. In Medical

Modelling, pages 7–34. Woodhead Publishing, Oxford, 2 edition, 2015.

[2] Å. Björck. Numerical Methods for Least Squares Problems. Society for Industrial

and Applied Mathematics, 1996.

[3] C. G. Broyden. A class of methods for solving nonlinear simultaneous equations.

Mathematics of Computation, 19(92), 1965.

[4] D. Calvetti, G. H. Golub, and L. Reichel. Estimation of the L-curve via Lanczos

bidiagonalization. BIT Numerical Mathematics, 39(4):603–619, 1999.

[5] J. Chung, J. G. Nagy, and D. P. O’Leary. A weighted GCV method for Lanczos

hybrid regularization. Electronic Transactions on Numerical Analysis, 28, 2008.

[6] A. R. Conn, N. I. M. Gould, and P. L. Toint. Convergence of quasi-Newton ma-

trices generated by the symmetric rank one update. Mathematical Programming,

50(1), 1991.

[7] Y. Cui, D. Sun, and K. Toh. Computing the best approximation over the inter-

section of a polyhedral set and the doubly nonnegative cone. SIAM Journal on

Optimization, 29(4):2785–2813, 2019.

[8] D. Cummins, T. Filloon, and D. Nychka. Confidence intervals for nonparamet-

59

ric curve estimates: Toward more uniform pointwise coverage. Journal of the

American Statistical Association, 96:233–246, 02 2001.

[9] D. Delgado. Iterative reconstruction methods of CT images using a statistical

framework. Oregon State University, 2010.

[10] J. W. Demmel. Applied Numerical Linear Algebra. Society for Industrial and

Applied Mathematics, 1997.

[11] A. Dogandzic, R. Gu, and K. Qiu. Mask iterative hard thresholding algorithms

for sparse image reconstruction of objects with known contour. Circuits, Systems

and Computers, 1977. Conference Record. 1977 11th Asilomar Conference on,

12 2011.

[12] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, New York,

2 edition, 1987.

[13] J. H. Friedman and B. W. Silverman. Flexible parsimonious smoothing and

additive modeling. Technometrics, 31(1), 1989.

[14] A. Frommer and P. Maass. Fast CG-based methods for Tikhonov–Phillips reg-

ularization. SIAM Journal on Scientific Computing, 20(5):1831–1850, 1999.

[15] S. Gazzola, P. C. Hansen, and J. G. Nagy. IR tools: A MATLAB package of

iterative regularization methods and large-scale test problems, 2018.

[16] P. C. Hansen. Rank-Deficient and Discrete Ill-Posed Problems: Numerical As-

pects of Linear Inversion. Society for Industrial and Applied Mathematics,

Philadelphia, 1998.

[17] P. C. Hansen and M. Saxild-Hansen. AIR tools — a MATLAB package of alge-

braic iterative reconstruction methods. Journal of Computational and Applied

60

Mathematics, 236(8):2167–2178, 2012. Inverse Problems: Computation and Ap-

plications.

[18] C. T. Kelley. Implicit filtering. Society for Industrial and Applied Mathematics,

2011.

[19] R. Mittelhammer, G. Judge, and D. Miller. Econometric Foundations Pack with

CD-ROM. 01 2000.

[20] D. P. O’Leary and B. W. Rust. Variable projection for nonlinear least squares

problems. Computational Optimization and Applications, 54(3):579–593, 2013.

[21] C. Paige and M. Saunders. LSQR: An algorithm for sparse linear equations and

sparse least squares. ACM Transactions on Mathematical Software, 8(1).

[22] V. Pathuri-Bhuvana, S. Schuster, and A. Och. Joint calibration and tomography

based on separable least squares approach with constraints on linear and non-

linear parameters. In 2020 28th European Signal Processing Conference (EU-

SIPCO), pages 1931–1935. IEEE, 2021.

[23] L. Shepp and B. F. Logan. The Fourier reconstruction of a head section. IEEE

Transactions on Nuclear Science., 1974.

[24] G. Strang. Introduction to Linear Algebra. Cambridge Press, Wellesley, 5 edition,

2016.

[25] R. Vio, P. Ma, W. Zhong, J. G. Nagy, L. Tenorio, and W. Wamsteker. Estimation

of regularization parameters in multiple-image deblurring. A&A, 423(3):1179–

1186, 2004.

[26] H. F. Walker. Anderson acceleration: Algorithms and implementations. WPI

Math. Sciences Dept. Report MS-6-15-50, 2011.

61

[27] S. J. Wright. Coordinate descent algorithms. Mathematical Programming,

151(1):3–34, 2015.

[28] Z. Yu, J. Thibault, C. A. Bouman, K. D. Sauer, and J. Hsieh. Fast model-

based X-ray CT reconstruction using spatially nonhomogeneous ICD optimiza-

tion. IEEE Transactions on Image Processing, 20(1):161–175, 2011.

[29] J. Zhang, B. O’Donoghue, and S. Boyd. Globally convergent type-i anderson ac-

celeration for nonsmooth fixed-point iterations. SIAM Journal on Optimization,

30(4):3170–3197, 2020.

	Introduction
	Motivation
	Mathematics of Computed Tomography
	Inverse Problem

	Alternating Minimization Scheme
	Block Coordinate Descent
	Linear Least Squares Problem
	Normal Equations
	QR Factorization and Least Squares Problem
	Regularization
	Parameter Choice Methods

	The LSQR Algorithm
	Hybrid LSQR

	Nonlinear Least Squares
	Quasi-Newton and Gauss-Newton Method
	Implicit Filtering

	Acceleration Schemes
	Accelerated Block Coordinate Descent
	Anderson Acceleration

	Numerical Experiments
	BCD Exploiting Separability vs BCD
	Number of Angles
	Acceleration
	Anderson acceleration
	imABCDS
	imABCDS and BCDS

	Regularization
	Imfil Budget

	Conclusion
	Bibliography

