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Abstract 
 
Epigenetic and Transcriptomic Signatures of Maternal and Neonatal Risk for Adverse Pregnancy 

Outcomes 
 

By Anna Kaitlyn Knight 
 
 

Pregnancy and delivery complications are remarkably common and put both the mother and the 
neonate at increased risk for both acute and chronic adverse health outcomes. Despite these well-
known risks, the underlying etiology of most pregnancy and delivery complications is not clear. 
The first step in understanding these etiologies is to examine changes over uncomplicated, full 
term pregnancies. We identify patterns of gene expression changes over pregnancy that are 
consistent with physiological changes, including changes in oxygen transport, immune factors, 
and response to microbes. In complicated pregnancies, we identify DNA methylation changes 
predictive of fetal intolerance of labor, a common pregnancy complication that may indicate the 
need for a Cesarean section. Thus, understanding the gene expression and gene regulatory 
changes associated with pregnancy can allow for better prediction of maternal risk. 
 
In addition to maternal DNA methylation changes, neonatal DNA methylation can also serve as 
a proxy for neonatal risk. We developed a predictor of gestational age at birth based on DNA 
methylation data from neonatal blood spots and cord blood. The difference between predicted 
age and clinically estimated gestational age, termed gestational age acceleration, is associated 
with a variety of factors related to developmental maturity. We show that neonates requiring 
oxygen, steroids, and surfactant in the neonatal intensive care unit have a lower developmental 
maturity than those who do not. Additionally, neonates with a lower developmental maturity are 
more likely to develop bronchopulmonary dysplasia. Gestational age acceleration, therefore, is a 
useful tool for both clinical and research applications to better quantify neonatal risk.  
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Chapter 1 
 

 Maternal and Neonatal Risk Associated with Pregnancy Complications 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Portions of this chapter have been adapted from the below publications:  
 

1. Parets SE, Knight AK, Smith AK. Insights into genetic susceptibility in the etiology of 
spontaneous preterm birth. Appl Clin Genet. 2015;8:283-90. doi: 10.2147/TACG.S58612. 
PubMed PMID: 26715857; PubMed Central PMCID: PMC4685889. 

2. Knight AK, Smith AK. Epigenetic Biomarkers of Preterm Birth and Its Risk Factors. 
Genes (Basel). 2016;7(4). doi: 10.3390/genes7040015. PubMed PMID: 27089367; 
PubMed Central PMCID: PMC4846845. 
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Introduction 

 Pregnancy and delivery complications put both the mother and the neonate at increased 

risks for acute and long-term adverse health outcomes [1-5]. Such complications are remarkably 

common, with complications such as preterm birth occurring in approximately 10% of all 

pregnancies in the United States, [6] and are the leading cause of infant death and major 

disability [5]. Risk factors for pregnancy and delivery complications include having a low 

socioeconomic status, African American race, smoking, stress, pre-pregnancy diabetes or 

hypertension, and having a previous pregnancy complication [7-10]. Despite these well-known 

risk factors and substantial research efforts, the etiology of pregnancy complications is not well 

understood. Studies of both complicated and uncomplicated pregnancies are required to better 

understand the underlying etiologies of pregnancy complications. 

 

Physiological Changes Over Pregnancy 

Immune Activation and Inflammation 

 Pregnancy is associated with shifts in the maternal inflammatory state, with the first 

trimester typically characterized as being proinflammatory, the second trimester characterized by 

a more quiescent state, and the third trimester is characterized by a return to the proinflammatory 

state for parturition to occur [11]. As part of the inflammatory response to pregnancy, changes in 

the proportions of T helper (Th) cell subtypes has been observed, with the Type I Th cells being 

associated with the production of pro-inflammatory cytokines such as TNF-a, IFN- γ, and IL-2 

and type 2 Th cells being associated with anti-inflammatory cytokines including IL-4, IL-5, IL-6, 

IL-10, and IL-12 [12]. However, the inflammatory state in pregnancy cannot be solely attributed 

to a simple shift in the Th1/Th2 ratio, as other immune cell types and regulatory systems have 
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also been shown to be important in maternal tolerance of the fetus [13]. The placenta also plays a 

major role in mediating inflammation, and can stimulate the production of various cytokines in 

response to an infection and stress [11].  

 The immune system during pregnancy is a precarious balance between tolerating the 

fetus and protecting the mother from infection and other threats [14]. As such, a disturbance in 

this balance has been associated with a variety of negative outcomes for both the mother and 

fetus [15-17]. Negative maternal outcomes associated with general inflammation include 

delivering preterm (and the subsequent accompanying lifetime risks), future preterm delivery, 

hypertensive disorders, high blood pressure long-term, preeclampsia, gestational diabetes, and 

potentially perinatal depression [18-21]. Increased inflammation associates with negative 

outcomes for the fetus as well, including placental dysfunction, being born preterm, and potential 

brain damage [22-26].  

Cardiopulmonary Changes 

  Among the vast physiological changes during pregnancy are changes related to 

hemodynamics. Blood volume increases by approximately 50% and is accompanied by a 

decrease in hemoglobin and hematocrit. Additionally, during pregnancy there are higher rates of 

erythropoiesis and coagulation, which promotes a healthy pregnancy by helping to limit 

complications like post-partum hemorrhage. Abnormal changes in coagulation have been 

associated with complications like preeclampsia, highlighting their importance of the regulation 

of hematological changes during pregnancy [27-30].  

 In addition to hematological changes, cardiac output increases, accompanied by 

vasodilation, increases in maternal heart rate, and decreases in blood pressure until the end of the 

third trimester [31, 32]. Abnormal cardiovascular changes are associated with hypertensive 
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disorders of pregnancy, including preeclampsia [33]. Changes to the respiratory system are also 

expected during normal pregnancy as oxygen demand, minute volume, and tidal volume increase 

and functional residual capacity and expiratory reserve volume decrease. Poor pulmonary 

function increases risk for adverse outcomes, including preterm delivery and growth restriction 

[34]. 

 

Adverse Health Outcomes Associated with Pregnancy Complications 

Maternal Outcomes  

 Complicated pregnancies and deliveries carry significant risks for the mother (Figure 1), 

the most severe of which is maternal death. For the purposes of this chapter, complications due 

to preterm delivery (<37 weeks gestation), preeclampsia, and gestational diabetes will be 

considered. Preterm delivery carries significant acute maternal risks. Women delivering between 

23-27 weeks gestation have the highest risk for severe complications including hemorrhage and 

infection, with women delivering by Cesarean-section having increased risks compared to 

women delivering vaginally [35]. Additionally, women delivering preterm are more likely to 

have post-partum anxiety, fatigue, and less contact with their neonate [36]. Long-term risks 

associated with preterm delivery include increased risk for developing cardiovascular disease, 

type II diabetes, and breast cancer [1, 3, 37]. 

 Preeclampsia, which is characterized by pregnancy-associated hypertension, proteinuria, 

and organ/uteroplacental dysfunction, is also associated with significant maternal risks, with the 

only cure being delivery. If left untreated, preeclampsia can progress to eclampsia where high 

blood pressure causes seizures, which can be fatal. The leading cause of death in women with 

preeclampsia is cerebral hemorrhage [38]. Long-term consequences of preeclampsia include 
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increased risks for cardiovascular disease and high blood pressure, white matter lesions, and 

visual disturbances [38, 39]. 

 Gestational diabetes, or diabetes diagnosed during pregnancy, like preterm delivery and 

preeclampsia, is also associated with an increased risk of cardiovascular disease. Additionally, 

gestational diabetes is associated with metabolic syndrome and type II diabetes [40]. Acute 

consequences of gestational diabetes include increased risk of other pregnancy complications, 

including preeclampsia [41]. Understanding the etiology of pregnancy complications may allow 

for the development of novel treatments or better identification of women most at risk.  

Neonatal Outcomes  

 Neonatal consequences of pregnancy complications are also severe (Figure 1). For the 

purposes of this chapter, complications due to preterm birth, preeclampsia, and gestational 

diabetes will be considered. Neonates born preterm are more likely to have a range of 

complications in the perinatal period, including neonatal death, respiratory distress and the 

development of bronchopulmonary dysplasia and retinopathy of prematurity [42-46]. Children 

born preterm are more likely to have cerebral palsy, sensory deficits, learning disabilities, and 

respiratory illnesses [47, 48]. Preterm birth also increases the risk of being hospitalized with 

infections during childhood [49].  Among school aged children, those born preterm show 

diminished cognitive performance and increased externalizing and internalizing behaviors, and 

are more likely to develop ADHD [4]. Preterm birth and reduced fetal growth have also been 

linked to a number of important chronic diseases of adulthood such as type 2 diabetes [50, 51]. 

 Neonates born to mothers with preeclampsia are also more likely to be born preterm, as 

delivery is the most effective intervention for preeclampsia [52]. Additionally, these neonates are 

at a higher risk for perinatal death, growth restriction, and oligohydramnios. In childhood and 
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adolescence, neonates born to mothers with preeclampsia are at increased risk for higher blood 

pressure, followed by an increased risk of hypertension as adults [38]. Cognitive functioning 

throughout life has also been shown to be more likely to be impaired in children whose mothers 

developed preeclampsia [38]. 

 Finally, neonates born to mothers with gestational diabetes are more likely to develop 

macrosomia, which is associated with birth injuries and respiratory distress [53]. These children 

are also more likely to be overweight, and have poor glucose tolerance and/or renal disease [40, 

53]. As pregnancy complications may result in severe adverse outcomes for neonates, future 

research should focus on how to decrease morbidity and mortality from pregnancy 

complications. 

 

Genetic, Epigenetic, and Transcriptomic Signatures of Pregnancy Complications 

 The physiological changes over pregnancy are well established, however, the etiology of 

pregnancy complications remains unclear. Clinical advancements can help mitigate the 

morbidity and mortality for the mother and neonate associated with pregnancy complications, 

but the overall pregnancy complication rate continues to rise [54, 55]. Known risk factors, such 

as smoking and low socioeconomic status, can explain some of the risk of pregnancy and 

delivery complications, but the physiological cause of these complications is largely unknown 

[56-60]. We will address changes in gene expression over uncomplicated, term pregnancies in 

Chapter 2. By evaluating changes in gene expression over uncomplicated, term pregnancies, we 

will be better able to understand changes associated with pregnancy complications. 

 One of the greatest risk factors for pregnancy complications is familial history. For 

example, the heritability of preterm birth is estimated at 17-35%, suggesting a genetic 
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component that may increase risk of pregnancy complications [61]. However, there is also a 

substantial environmental component involved in the development of pregnancy complications.   

Genetic Studies  

 Genetic studies of pregnancy complications have not yet identified causal genes with 

large effect sizes. The majority of genetic studies of pregnancy complications have focused on 

candidate genes which can test a specific hypothesis, but are limited to research questions 

surrounding known biological processes associated with pregnancy complications, such as 

inflammation [61]. While these studies have identified associations between genetic variation 

and pregnancy complications, they fail to explain the vast majority of pregnancy complication 

risk [62-66]. Additionally, these studies have yet to identify genetic variants that can be used to 

screen women at risk for pregnancy complications.   

 Genome-wide association studies (GWAS) allow for a hypothesis-free approach, but 

require large sample sizes and careful phenotyping, and are computationally intensive. 

Therefore, there are limited GWAS of pregnancy complications. Several recent GWAS and 

whole exome studies have identified single nucleotide polymorphisms (SNPs) associated with 

preterm birth [67, 68] and preeclampsia [69, 70], but they have yet to be replicated and validated. 

The inconsistent and somewhat sporadic findings associated with genetic studies of pregnancy 

complications suggest that there may be other mechanisms that explain a greater proportion of 

risk associated with pregnancy complications.  

Epigenetic Studies  

 As genetic studies have identified few associations with pregnancy complications, 

epigenetics has been proposed as a potential mechanism of pregnancy complications that may 

reflect a combination of genetic and environmental factors [71, 72]. Epigenetics refers to the 
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regulation of gene expression without changes in the underlying sequence of DNA. One 

commonly studied epigenetic mark is DNA methylation at the 5’ position of cytosine in a 

cytosine-guanine dinucleotide. Previous studies have identified associations between DNA 

methylation and a variety of pregnancy complications and risk factors [71, 73-77]. 

 For example, three studies have identified CpG sites related to preterm birth, identifying 

between 29 and 1,555 CpG sites associated with preterm birth in neonatal blood [78-80]. These 

findings support that there are substantial epigenetic changes that can be detected between term 

and preterm neonates at birth, and suggest that there are likely to be epigenetic differences 

present before birth that may be detectable in fetal or maternal tissues. Such differences may 

elucidate genes and pathways involved in preterm birth and may serve as biomarkers to identify 

women at risk for preterm delivery and neonates most likely to be poorly impacted by preterm 

birth. 

 For this dissertation, we will evaluate changes in DNA methylation associated with fetal 

intolerance of labor, which is a common delivery complication and indication for an emergency 

Cesarian-section, in Chapter 3. 

The development and utility of biomarkers for PC 

 A biomarker is a biological measure that is predictive of a normal or pathogenic process 

or response. In clinical practice, biomarkers can be used for risk assessment, early detection or 

onset of a disease or chronic illness.  Once a diagnosis is established, they can also be used as an 

indicator of symptom severity or response to treatment [81-83]. In general, a biomarker 

candidate must be reproducible and have sufficient sensitivity and specificity to provide 

clinically-relevant information [84]. Epigenetic-based biomarkers have become increasingly 

common as cost-effect methods for assessing the epigenome have been developed.  
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 One example of reproducible and validated epigenetic biomarker comes from studies of 

smoking. Smoking is a well-known, preventable, significant contributor to neonatal and maternal 

morbidity and mortality, yet 12.3% of pregnant women smoked in 2010 [85].  Smoking may 

cause complications for the fetus due to exposure to tobacco toxins, poor umbilical blood flow, 

oxidative stress, and changes in gene expression [59, 86, 87].  Conditions associated with 

maternal smoking in pregnancy for the neonate include PTB, fetal growth restriction, sudden 

infant death syndrome, stillbirth, paraventricular leukomalacia, bronchopulmonary dysplasia, 

intraventricular hemorrhage, placenta-associated syndrome as well as reduced academic 

performance and elevated blood pressure in adolescence [57, 85, 86, 88-93].  

 In adults, DNA methylation differences in the blood of smokers versus non-smokers have 

been reported [75, 94]. Maternal smoking during pregnancy may change the DNA methylation 

profile of neonates, and this change in methylation may mediate neonatal birthweight and 

immune function [95-98]. Stroud and colleagues found that maternal smoking during pregnancy 

was associated with decreased infant salivary cortisol levels in the first post-natal month, and 

that placental NR3C1 methylation was decreased in exposed fetuses [95]. They suggest that 

decreased placental methylation of the NR3C1 promoter mediates the lowered cortisol levels 

seen in neonates [95]. Other groups have found associations between maternal smoking in 

pregnancy and methylation through epigenome-wide association studies [96-98]. The association 

between maternal smoking and methylation in the offspring can be seen through adolescence, 

suggesting that there is the potential for long-term effects of this behavior on the child [99, 100]. 

One group, Kupers and colleagues, performing an EWAS with methylation data from cord blood 

and maternal smoking was able to establish the mediating effect of three CpG sites associated 

with growth factor independent 1 transcription repressor (GFI1) on low birth weight, concluding 
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that these CpGs could explain 12-19% of the lowered birth weight [98].  These studies serve as 

an example for future studies of epigenetic biomarkers for adverse acute and long-term 

outcomes. Having similar biomarkers for pregnancy and delivery complications may allow for 

early identification of mothers and neonates most at risk for adverse outcomes to allow for early 

interventions, monitoring, and personalized care. 

Age Acceleration 

 Recently, DNA methylation of a select group of CpG sites has been used to generate a 

promising new biomarker related to aging. It is widely accepted that aging influences DNA 

methylation across the genome, and several recent studies have taken advantage of age-related 

methylation changes to build a predictor of DNA methylation age (DNAm age) [101-103]. A 

DNAm age that is higher than a person’s chronological age may indicate accelerated aging, 

which is a potential metric of stress and general health, shown by recent studies of DNAm age in 

developmental and neurocognitive outcomes, as well as all-cause mortality [104, 105]. 

Measuring DNAm age has potential for use in predicting maternal risk during pregnancy, though 

this relationship has not yet been examined. 

 One study has examined the relationship between age acceleration and a range of 

phenotypes in a large, longitudinal cohort. Overall, they found that DNAm age became more 

correlated with most phenotypes as a child aged, suggesting that this predictor may not be as 

informative for neonates and young children.  Only maternal smoking and Cesarian-section 

associated with accelerated age at birth (p<.05), though birthweight and some maternal 

characteristics are associated with positive (BMI) and negative (selenium exposure, cholesterol 

level) accelerated aging in childhood and/or adolescence [106].  
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 Placental and cord blood samples were included when the DNAm age predictor was 

initially developed, but the age of all of these samples was set to 0.  Due to this, DNAm age, as 

initially operationalized, is not accurate enough to discriminate weeks of gestation. Gestational 

age has previously been associated with changes in methylation at various CpG sites [78, 107-

109], which could be used to develop a predictor accurate for neonates. Further studies on DNA 

methylation in neonatal cord blood are required for the development of a neonatal gestational age 

predictor, which we present in Chapter 4. Chapter 5 extends work on this neonatal gestational 

age predictor to studies of outcomes and interventions in the neonatal intensive care unit.  

Gene Expression Studies 

 Typically, an increase in DNA methylation at promoter regions correlates with a decrease 

in expression of that gene, though exceptions to this are commonly documented [110].  

Intragenic DNA methylation is also important to regulate alternative promoters and enhancers 

that define a variety of alternative transcripts and promote gene expression [111]. In light of 

these associations between DNA methylation and gene expression, it is widely accepted that 

methylation changes that are correlated with gene expression are more likely to be biologically 

relevant. One recent study found that there were 16,327 expression-associated cytosine guanine 

dinucleotide sites (CpG sites) in a large cohort, which both provides a resource for interpreting 

epigenetic associations that fall outside of genes and demonstrates that CpGs interacting with 

gene expression are most often found in enhancer regions [112]. 

 However, associations are also commonly identified with gene expression that are not 

associated with DNA methylation, as there are many mechanisms regulating RNA transcription 

and degradation [113, 114]. These studies are also essential for identifying genes and pathways 

involved in pregnancy and delivery complications. However, to date, there have been very few 
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genome-wide studies of gene expression and pregnancy complications.  It is vital to understand 

how gene expression changes over normal pregnancy to put changes in gene expression 

associated with pregnancy and delivery complications into context.  

 

Conclusions 

 Pregnancy complications pose a significant health risk for both the mother and the 

neonate. Genome-wide studies of epigenetics and gene expression have the potential to provide 

insight into novel genes and pathways involved in pregnancy complications, and may identify 

potential biomarkers that could be used in clinical practice, and could substantially improve our 

ability to identify and treat women at the highest risk for adverse outcomes. Targeted 

interventions could reduce multiple health burdens associated with pregnancy complications for 

the mother and the neonate. Such a biomarker does not yet exist, in part due to the complexity of 

the intrauterine environment. Gene regulation varies over the course of pregnancy and that 

regulation is likely influenced by a number of independent environmental factors.  Thus, 

potential biomarkers would need to be capable of distinguishing health outcomes within diverse 

contexts. Studies that simultaneously evaluate multiple risk factors for pregnancy complications 

will have the most potential to identify epigenetic or expression-based predictors of pregnancy 

complications that can be developed into biomarkers.  Recent studies have made substantial 

progress towards identifying and replicating epigenetic associations in diverse cohorts, and it is 

important that basic and epidemiological researchers develop partnerships though which the 

most promising results from their work can be extended into prospective and clinical studies. 

In addition to individual CpG sites, summary measures that integrate information from 

multiple regions of the genome may also be informative.  The use of the DNAm age predictor to 
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evaluate future health risk in adults demonstrates that this type of epigenetic predictor, which 

combines several hundred CpG sites, may be useful for predicting perinatal development, if 

optimized for use in neonates. Once appropriate biomarkers are identified, targeted and cost-

effective assays could be developed to prospectively screen for adverse outcomes. Successful 

development and clinical implementation of such a biomarker could greatly improve clinical 

recommendations and allowed for more personalized treatment. 
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Figure 1-1: Pregnancy complications influence long and short-term maternal and neonatal risk. 
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Introduction 

Pregnancy is characterized by extensive physiological changes including increased blood 

volume, elevated levels of estrogen and progesterone, changes in metabolism, and shifts in the 

maternal immune system in order to accommodate the demands of the growing fetus [1, 2]. 

Despite these carefully regulated physiological changes that occur throughout the 40 weeks of an 

average pregnancy, no study has yet described accompanying changes in maternal blood gene 

expression among healthy women with full term, uncomplicated pregnancies.  

To date, studies of gene expression focus on comparisons of pregnant women who are 

healthy to those with autoimmune disorders.  This has been prompted, in part, by the observation 

that women with some autoimmune disorders report alleviation of their symptoms during 

pregnancy [3].  For example, a recent study of peripheral blood from 20 women with rheumatoid 

arthritis and 5 healthy controls identified 4,710 genes that differed in their expression over 

pregnancy and the postpartum period. The genes identified were enriched for a variety of 

pathways including immune pathways, signal transduction, and disease-related pathways. 

Interestingly, several of the genes identified by this study, are members of the alpha defensin 

family and are involved in immune and defense responses [4]. Another study identified 1,286 

transcripts whose expression levels changed over three timepoints in pregnancy and the 

postpartum period for women with rheumatoid arthritis and controls. These transcripts were 

enriched for a variety of pathways including hematopoietic cell lineage and toll-like receptor 

signaling. The authors concluded that the identified pathways may contribute to 

immunomodulation and thus a reduction in rheumatoid arthritis symptoms during pregnancy 

with these changes in gene expression being largely reversed postpartum [5].  Gilli and 

colleagues sampled multiple sclerosis patients and healthy controls before pregnancy, during 
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each trimester, and post-partum to identify 404 transcripts whose expression differed between 

multiple sclerosis patients and healthy controls. A refined signature of 347 transcripts was then 

used to evaluate gene expression in patients and controls in the ninth month of pregnancy, at 

which time the signature could no longer distinguish patients from controls [6]. These studies 

indicate that gene expression does change over pregnancy, potentially leading to alleviation of 

some of the symptoms of autoimmune disorders.  

Although such studies have been informative for identifying pathways that change in 

women with autoimmune disorders during pregnancy, if the groups are not sampled at 

comparable stages of gestation, the findings may be more difficult to interpret or replicate in 

independent studies.  This study sought to characterize gene expression changes over pregnancy 

in a cohort of healthy women with uncomplicated term deliveries. The pathways identified 

provide further insight into the connection between gene expression and physiological changes 

that occur over the course of a healthy, full term pregnancy, and will serve as a resource for 

ongoing studies of pregnancy complications and adverse pregnancy outcomes. 

 

Methods 

Study Subjects 

Pregnant African American women were recruited, enrolled, and underwent data 

collection as part of the Emory University African American Vaginal, Oral, and Gut Microbiome 

in Pregnancy Cohort Study, as described previously [7].  To summarize, women were recruited 

from March 2014 through August 2016 at outpatient prenatal care clinics affiliated with two 

Atlanta metro area hospitals, Emory University Midtown Hospital and Grady Memorial 

Hospital. Women were eligible for inclusion if they self-identified as African American, were 
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between 18-40 years of age, had a singleton pregnancy, had less than four previous births, and 

were able to understand written and spoken English. Additional exclusion criteria for this 

analysis included the following indicators of high-risk pregnancy or pregnancy complications: 

gestational diabetes, hypertension, intrauterine growth restriction, preterm birth, preeclampsia, 

eclampsia, hemolysis, elevated liver enzymes, low platelet count (HELLP) syndrome, 

hyperemesis gravidarum, oligohydramnios, chorioamnionitis, macrosomia, preterm premature 

rupture of membranes (pPROM), or fetal intolerance of labor.  Fetal death before labor and 

congenital abnormalities of the fetus were criteria for post-enrollment exclusion. Demographic 

data were collected through self-report questionnaires. Clinical obstetrical data (including 

estimated due date, gestational age at delivery, pregnancy complications, labor and delivery 

course) were ascertained via abstraction of the prenatal and labor and delivery medical chart by a 

qualified physician. All participants gave written informed consent. This study was approved by 

the Emory University Institutional Review Board. 

Biological Sample Collection 

 63 women contributed two samples each over the course of their pregnancy. The first 

sample was collected at 6-15 weeks, and the second sample was collected at 22-33 weeks. 

During each prenatal visit, an additional 12 mL of venous blood was drawn using the same 

needle stick as for the routine blood draws. PBMCs were isolated from whole blood using a 

Ficoll density gradient and were stored in AllProtect Buffer (Qiagen) at -80 °C until a 

simultaneous DNA and RNA extraction using the AllPrep RNA/DNA Mini Kit (Qiagen) was 

performed according to manufacturer’s instructions. DNA quantification and quality was 

assessed using the Quant-it Pico Green kit (Invitrogen). RNA quantification and quality was 

assessed using the Aligent RNA Nano 6000 Kit and Bioanalyzer 2100. 
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RNA Expression Analysis 

 For each subject, gene expression was assessed for ~47,000 transcripts using the 

HumanHT-12 v4 BeadChip (Illumina). Briefly, 750 ng of RNA was directly hybridized to the 

BeadChip according to manufacturer’s instructions. The BeadChips were scanned using the 

iScan scanner, and the raw data was analyzed using the Expression Module of GenomeStudio 

Software (Illumina). Two samples with detection p values >.01 for more than 90% of probes 

were excluded. Probes detected in less than 10% of samples were also excluded; 16,311 probes 

passed quality control. Data was then quantile-normalized and log2 transformed prior to 

association testing. RNA expression data can be accessed through NCBI’s Gene Expression 

Omnibus, GSE107437. 

Cell type composition estimation 

DNA methylation was interrogated for each subject using either the 

HumanMethylation450 or MethylationEPIC BeadChip, which measures methylated and 

unmethylated signal for >450,000 and >850,000 CpG sites across the genome, respectively.  

Initial data quality control was performed using the R package CpGassoc [8]. Any CpG site with 

low signal or missing data for greater than 10% of samples was removed, and any sample with 

missing data for greater than 5% of CpG sites was removed. Cross-reactive probes were removed 

[9]. Following quality control, 449,094 probes were included in subsequent analyses. Beta values 

(b) were calculated for each CpG site as the ratio of methylated (M) to methylated and 

unmethylated (U) signal: b=M/(M+U). Beta-mixture quantile normalization was performed as 

previously described [10]. Cell type proportions (CD8+T, CD4+T, natural killer, B cell, 

monocytes, and granulocytes) were estimated as previously described from DNA methylation 

data [11]. Associations between cell type proportions and gestational age were examined using a 
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linear-mixed effects model with cellular proportions included as fixed effects and a unique 

identifier for each person included as a random effect. DNA methylation data can be accessed 

through NCBI’s Gene Expression Omnibus, GSE107459. 

Whole Transcriptome Analysis 

 We used linear mixed-effects modeling implemented in the R package “nlme” to 

interrogate associations between gene expression and weeks gestation at sample collection 

[12].The R package sva was used to estimate surrogate variables to control for potentially 

confounding factors, including cell type [13]. Surrogate variable analysis was used instead of a 

covariate adjustment as only a few cellular subtypes are well defined using current methods, and 

changes in the composition of unmeasured cell types may have a large influence during 

pregnancy. The 15 significant surrogate variables were included as covariates in the model as 

fixed effects (Equation 1). 

Eq. 1: !"# = %& + 	%)*)+, + 	%-./)+, + 	%0./-+, + ⋯+	%)2./)3+, + 4" + 	5"#; 		4"~8 0, ;- , 5"#~8(0, =-) 

Where SV1-15 represent each included surrogate variable, which model unmeasured factors 

inferred from the genome-wide methylation signatures (Fig 2-1).  X represents the independent 

variable. %)?)2 represent fixed effects parameters. 4 is the individual specific error term, and @ 

represents the unique subject identifier, and j represents the observation number. A random 

effects term was included in the model to account for repeated sampling of the same person. 5 

refers to random error. ;-  and =-  are the variances of the person specific and random error 

terms, respectively. A Bonferroni correction was applied to account for multiple testing. Pathway 

analysis was performed using DAVID for both the entire set of associated genes as well as for 

upregulated and downregulated genes separately [14]. Gene-ontology enrichment p-values 

presented used. 
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Results  

Study Subjects 

 63 pregnant African American women provided venous blood samples between 6-15 

weeks and again between 22-33 weeks gestation, representing the late first/early second 

trimesters and the late second/early third trimesters. The clinical and demographic features of 

these women are summarized in Table 2-1.  At the time of enrollment, 7 women (12%) report 

using tobacco within the last 30 days, and 4 women (7%) report drinking alcohol within the last 

30 days.  Despite this, no woman delivered a neonate that was small for gestational age or 

experienced any complications over their pregnancies (see Methods for additional details). 

Changes in cell proportions over pregnancy 

 Studies have reported changes in a range of cell types and immune activation profiles 

over pregnancy [15-17].  Consistent with those previous reports, we observed changes in the 

proportion of cell types in maternal PBMCs over the course of pregnancy.  There was a 

significant increase in the proportion of monocytes (p=.001), along with a significant decrease in 

the proportion of B cells (p=.03), and natural killer cells (p=.004) based on week of gestation 

(Fig 2-1.  Estimates of cell composition used for this study are not comprehensive, and there may 

be additional changes in cell composition or function that are not currently captured.  To account 

for such changes in cell type and the potential for other known (i.e. age) or unknown 

confounders, we used surrogate variable analysis (SVA), which identifies and estimates sources 

of expression heterogeneity to increase power to detect true and replicable associations. Post-hoc 

evaluation of surrogate variables suggests that they reflect changes in cell composition, age, and 

control for technical variables such as batch  (Fig 2-2).   
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Gene expression changes over pregnancy 

 Of the 16,311 transcripts that were evaluated in this transcriptome-wide analysis (Fig 2-

3), 439 associated with weeks of gestation at sample collection, after adjusting for multiple 

testing. The majority (69.6%) of these genes increased in expression over the course of 

pregnancy. Genes whose expression changed were enriched for multiple biological processes 

(Table 2-2). Of note, many of these genes are in involved in oxygen transport or the hemoglobin 

complex (e.g. AHSP, HBD, HBM, and HBQ1).  In addition to increased expression of genes 

involved in oxygen transport, other associated biological processes emphasize changes in the 

immune system known to occur over pregnancy. Several of these immune processes are 

associated with response to microbes, including the antibacterial humoral response and the innate 

immune response in mucosa (Table 2-2). Key genes in these pathways are members of the alpha 

defensin family, including DEFA1, DEFA4, and DEFA1B (Fig 2-4). Similar pathways were 

identified for genes that increased over pregnancy, though there was no enrichment for biological 

processes in genes whose expression decreased over pregnancy (Table 2-3). 

 In contextualizing our study findings with the existing literature, we attempted to 

compare the genes whose expression levels change in healthy pregnancies to those that have 

been reported to change in women with autoimmune disorders.  In some cases, complete gene 

lists were not provided [5, 6], limiting our ability to make direct comparisons.  For example, 

Weix and colleagues reported 19 selected candidate genes that differed in pregnancy and differed 

to a greater degree in pregnant women with rheumatoid arthritis.  Of those candidate genes, only 

1 (STAT1) differed in our transcriptome-wide analysis.  The study by Mittal and colleagues 

reported the change in expression of 256 genes over pregnancy in women with rheumatoid 

arthritis and controls [4], 179 of which were evaluated in our study (Fig 2-5).  Of these, 55.3% 
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change over pregnancy in our cohort of healthy women. This is a substantially higher number 

than would be expected by chance (99/179; p<2.2x10-16). Of note, both this study and the one 

conducted by Mittal and colleagues report changes in genes involved in oxygen transport (e.g. 

AHSP and HBD) and immune response to microbes (CEACAM8 and DEFA4). 

 
Discussion 
 
 In this study, we identified 439 transcripts that were associated with weeks gestation at 

sample collection in uncomplicated term pregnancies. These transcripts were enriched for several 

key pathways that provide insight into the mechanisms underlying the physiological changes 

necessary to support a healthy pregnancy. 

 A widely accepted phenomenon in pregnancy is a change in the maternal immune 

system. In general, pregnancy is associated with a shift from a pro-inflammatory state in the first 

trimester to an anti-inflammatory state in the second trimester, with renewed inflammation 

during the third trimester and at parturition [2]. The pro-inflammatory state in the first trimester 

is likely a result of implantation and placentation with the anti-inflammatory state of the second 

trimester being a period of rapid fetal growth and development during which a more symbiotic 

relationship between mother, fetus, and placenta exists.  Finally, in the third trimester, renewed 

inflammation leads to the processes which can initiate labor and delivery.   Consistent with this 

and other studies, our results suggest that monocytes increase over the course of pregnancy, 

while B cell and natural killer cell proportions decrease [18, 19].  This shift has been further 

explored in studies of autoimmune disorders and pregnancy, with several pathways involved 

being identified that may contribute to reductions, or in other cases, increases in autoimmune 

symptoms during pregnancy [3-6].  However, such studies often do not control for differences in 

cellular proportions, increasing the chance that they will identify genes whose expression is not 
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entirely attributable to the disorder of interest or are otherwise difficult to interpret.  Thus, it is 

vital for future studies to estimate and adjust for cellular heterogeneity, as cell type changes over 

pregnancy.   

 In this longitudinal analysis of transcriptome-wide changes across gestational week, we 

identified gene expression changes that supports functional differences in the immune system 

during pregnancy. Such immune system changes must be carefully regulated so that the mother 

is protected from bacterial and viral infection without negatively impacting the body’s tolerance 

of the fetus. However, the immune systems of pregnant women are less able to appropriately 

respond to several types of bacterial infections and related complications, including Listeria 

monocytogenes and Neisseria gonorrhoeae [20-22]. Bacterial infections have been associated 

with preterm birth and spontaneous abortion [23-25]. Evidence of host-microbe interactions in 

pregnancy is demonstrated in both the gene-level results and through enrichment of genes 

involved in antibacterial humoral response and innate immunity in the gene ontology analysis.  

Specific genes related to bacterial response include several alpha defensin genes.  These genes 

encode antimicrobial peptides (AMPs) that have been associated with microbicidal activity and 

host defense, and are present in the female reproductive tract during pregnancy [26, 27]. 

Understanding changes in the immune system and host-microbe interactions during pregnancy 

may provide future insight into how the immune system acts to protect both the mother and the 

fetus thus allowing us to more effectively treat and prevent potential maternal and fetal effects of 

systemic infection. 

 This study also identified genes involved in oxygen transport that change over pregnancy, 

which support the physiological changes identified in previous studies [28-31]. Some of the most 

pronounced adaptations in pregnancy are related to increased blood volume, higher rates of 
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erythropoiesis, and increased coagulation. Maternal physiology tends toward a more 

hypercoagulable state during pregnancy, likely in an effort to limit delivery complications such 

as post-partum hemorrhage.  Previous studies have linked abnormal coagulation, specifically 

within the placental complex, with preeclampsia, demonstrating the importance of regulation of 

coagulation for healthy pregnancies [32, 33].  

Erythropoiesis increases over the course of pregnancy, potentially to accommodate larger 

blood volumes and prepare for the acute loss of this volume which occurs at the time of delivery.  

However, this study evaluated PBMCs, which do not include mature erythrocytes [34].  Still, 

recent studies have reported the expression of hemoglobin in non-erythroid cells, such as 

macrophages, epithelial, mesangial, cervical, and endometrial cells, and have also reported 

functions of hemoglobin other than oxygen transport including antioxidant defense, nitrite 

reduction, and reactive oxygen species scavenging [35, 36]. We hypothesize that the 

hemoglobin-associated genes identified in this study reflect non-canonical expression in response 

to the physiological strain that pregnancy places on the body, potentially resulting in further 

demands for such alternative functions.  

This is the first study to comprehensively characterize transcriptome-wide changes 

longitudinally over the course of uncomplicated pregnancies. This cohort has been prospectively 

recruited and characterized, resulting is an invaluable asset for studying pregnancy progression 

[7]. However, this study does have limitations.  Though it is the largest longitudinal study of 

gene expression changes in pregnancy, it still has a modest sample size.  A larger group of 

subjects is likely to identify more genes that change over the course of pregnancy.  Despite this, 

we were able to identify hundreds of genes whose expression change in PBMCs after accounting 

for confounding factors and multiple testing.  However, we cannot extrapolate these changes to 
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other cell types that may be relevant for pregnancy. This study also uses array-based technology, 

which does not allow for characterization of novel or alternatively spliced transcripts that may 

play vary during pregnancy. Finally, we did not have access to samples spanning the entirety of 

pregnancy, including before 8 weeks and after 33 weeks gestation.  

Despite these limitations, we show that gene expression changes significantly over the 

course of pregnancy, especially in pathways related to oxygen transcript and response to 

microbes. Our results provide a framework for future studies on changes in gene expression over 

pregnancy.  Knowledge of genes associated with normal changes may potentially allow for 

identification of abnormal patterns of gene expression associated with pregnancy and delivery 

complications that could be tested as potential biomarkers. Future studies should examine gene 

expression over pregnancy in the context of pregnancy complications and other pre-existing 

conditions, while acknowledging that very subtle changes in the timing of sample collection may 

confound the results or complicate their interpretation.  
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Table 2-1: Demographic table of 63 paired gene expression samples  
 

 Mean ± SD 
Maternal Age (years) 25.4 ± 4.5 
Parity 1.2 ± 1.1 
Gravidity 2.8 ± 1.6 
Length of Gestation (weeks) 39.4 ± 1.0 
Birthweight (grams) 3318 ± 411.8 

 N (%) 
Delivery Type 
     Vaginal 
     C-section  

 
55 (87) 
8 (13) 

Insurance Type 
     Medicaid 
     Private 

 
46 (73) 
17 (37)  

Education 
     Some High School    
     High School Graduate 
     Some College 
     College Graduate 
     Graduate School 

 
11 (17) 
17 (27) 
25 (40) 
7 (11) 
3(5) 
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Table 2-2: Biological Processes associated with genes whose expression changes over 
pregnancy. 
 

Term GO Identifier Count p-value* 
oxygen transport GO:0015671 6 0.0074 

defense response to fungus GO:0050832 7 0.0081 
antibacterial humoral response GO:0019731 8 0.012 

leukocyte migration GO:0050900 13 0.012 
killing of cells of other organism GO:0031640 5 0.041 

innate immune response in mucosa GO:0002227 6 0.044 
 
* p-values presented after a Benjamini-Hochberg correction for multiple testing. 
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Table 2-3: Biological Processes associated with genes whose expression increases over 

pregnancy. 
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Figure 2-1: Cellular composition changes over pregnancy. Monocytes increase over pregnancy, 

whereas B cells and natural killer cells decrease over pregnancy. Other evaluated cell types do 

not change. The x-axis represents the weeks of gestation at sample collection and the y-axis 

represents cell proportions. 
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Figure 2-2: Association of surrogate variables and variables typically controlled for in EWAS.  

The grid consists of the correlation coefficient (r) for each pair on top with the p-value indicating 

significance of the correlation below.  ExpressionRound indicates batch.  Comp.1 indicates the 

first principal component for ancestry.  Maternal age was measured in years.  Cell composition 

(NK, CD4+ T cells, monocytes, B cells, granulocytes and CD8+ T cells) were estimated as 

described in the Methods. The intensity of the shading represents the correlation coefficient, with 

darker shading being associated with a higher correlation coefficient. Red shading represents a 

positive correlation coefficient and green shading represents a negative correlation coefficient. 
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Figure 2-3: Transcriptome-wide distribution of transcripts that change over pregnancy. Volcano 

plot depicting associations with gene transcripts that change over pregnancy. The x-axis 

represents the effect size. The y-axis represents the significance level for each test.  Light blue 

points represent experiment-wide significance. 
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Figure 2-4: Genes in the alpha defensing family that change over pregnancy. 

The x-axis represents weeks gestation at sample collection, and the y-axis represents the log2-

transfomed expression levels for each transcript. a) DEFA4 (ILMN_1753347; p=2.45x10-15) b) 

CEACAM8 (ILMN_1806056; p=1.57x10-14) c) DEFA1 (ILMN_1679357; p=3.37x10-14) d) 

DEFA1B (ILMN_2102721; p=1.79x10-13). 
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Figure 2-5: Venn diagram showing the overlapping genes between this and previous studies [4, 
5].  
 

  



	

	

54	

References 

1. Moya J, Phillips L, Sanford J, Wooton M, Gregg A, Schuda L. A review of physiological 

and behavioral changes during pregnancy and lactation: potential exposure factors and data gaps. 

J Expo Sci Environ Epidemiol. 2014;24(5):449-58. doi: 10.1038/jes.2013.92. PubMed PMID: 

24424408. 

2. Mor G, Cardenas I. The immune system in pregnancy: a unique complexity. American 

journal of reproductive immunology. 2010;63(6):425-33. doi: 10.1111/j.1600-

0897.2010.00836.x. PubMed PMID: 20367629; PubMed Central PMCID: PMC3025805. 

3. Piccinni MP, Lombardelli L, Logiodice F, Kullolli O, Parronchi P, Romagnani S. How 

pregnancy can affect autoimmune diseases progression? Clin Mol Allergy. 2016;14:11. doi: 

10.1186/s12948-016-0048-x. PubMed PMID: 27651750; PubMed Central PMCID: 

PMC5025626. 

4. Mittal A, Pachter L, Nelson JL, Kjaergaard H, Smed MK, Gildengorin VL, et al. 

Pregnancy-Induced Changes in Systemic Gene Expression among Healthy Women and Women 

with Rheumatoid Arthritis. PloS one. 2015;10(12):e0145204. doi: 

10.1371/journal.pone.0145204. PubMed PMID: 26683605; PubMed Central PMCID: 

PMC4684291. 

5. Weix J, Forger F, Haupl T, Surbek D, Ostensen M, Villiger PM. Influence of pregnancy 

on the adipocytokine and peroxisome proliferator-activated receptor pathways in peripheral 

blood mononuclear cells from healthy donors and rheumatoid arthritis patients. Arthritis Rheum. 

2012;64(7):2095-103. doi: 10.1002/art.34375. PubMed PMID: 22231457. 

6. Gilli F, Lindberg RL, Valentino P, Marnetto F, Malucchi S, Sala A, et al. Learning from 

nature: pregnancy changes the expression of inflammation-related genes in patients with multiple 



	

	

55	

sclerosis. PloS one. 2010;5(1):e8962. doi: 10.1371/journal.pone.0008962. PubMed PMID: 

20126412; PubMed Central PMCID: PMC2813302. 

7. Corwin EJ, Hogue CJ, Pearce B, Hill CC, Read TD, Mulle J, et al. Protocol for the 

Emory University African American Vaginal, Oral, and Gut Microbiome in Pregnancy Cohort 

Study. BMC pregnancy and childbirth. 2017;17(1):161. doi: 10.1186/s12884-017-1357-x. 

PubMed PMID: 28571577; PubMed Central PMCID: PMCPMC5455081. 

8. Barfield RT, Kilaru V, Smith AK, Conneely KN. CpGassoc: an R function for analysis of 

DNA methylation microarray data. Bioinformatics. 2012;28(9):1280-1. doi: 

10.1093/bioinformatics/bts124. PubMed PMID: 22451269; PubMed Central PMCID: 

PMC3577110. 

9. Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, et al. 

Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium 

HumanMethylation450 microarray. Epigenetics : official journal of the DNA Methylation 

Society. 2013;8(2):203-9. doi: 10.4161/epi.23470. PubMed PMID: 23314698; PubMed Central 

PMCID: PMC3592906. 

10. Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, et al. 

A beta-mixture quantile normalization method for correcting probe design bias in Illumina 

Infinium 450 k DNA methylation data. Bioinformatics. 2013;29(2):189-96. doi: 

10.1093/bioinformatics/bts680. PubMed PMID: 23175756; PubMed Central PMCID: 

PMC3546795. 

11. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et 

al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC 



	

	

56	

bioinformatics. 2012;13:86. doi: 10.1186/1471-2105-13-86. PubMed PMID: 22568884; PubMed 

Central PMCID: PMC3532182. 

12. Pinheiro J BD, DebRoy S, Sarkar D, R Core Team nlme: Linear and Nonlinear Mixed 

Effects Models. 2016. 

13. Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by surrogate 

variable analysis. PLoS genetics. 2007;3(9):1724-35. doi: 10.1371/journal.pgen.0030161. 

PubMed PMID: 17907809; PubMed Central PMCID: PMC1994707. 

14. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. DAVID Bioinformatics 

Resources: expanded annotation database and novel algorithms to better extract biology from 

large gene lists. Nucleic Acids Res. 2007;35(Web Server issue):W169-75. doi: 

10.1093/nar/gkm415. PubMed PMID: 17576678; PubMed Central PMCID: PMC1933169. 

15. Burke SD, Seaward AV, Ramshaw H, Smith GN, Virani S, Croy BA, et al. Homing 

receptor expression is deviated on CD56+ blood lymphocytes during pregnancy in Type 1 

diabetic women. PLoS One. 2015;10(3):e0119526. doi: 10.1371/journal.pone.0119526. PubMed 

PMID: 25793768; PubMed Central PMCID: PMC4368780. 

16. Kuo PL, Guo HR. Nucleated red blood cells in maternal blood during pregnancy. Obstet 

Gynecol. 1999;94(3):464-8. PubMed PMID: 10472878. 

17. Wegienka G, Havstad S, Bobbitt KR, Woodcroft KJ, Zoratti EM, Ownby DR, et al. 

Within-woman change in regulatory T cells from pregnancy to the postpartum period. J Reprod 

Immunol. 2011;88(1):58-65. doi: 10.1016/j.jri.2010.06.157. PubMed PMID: 20961621; PubMed 

Central PMCID: PMC3008215. 



	

	

57	

18. Faas MM, de Vos P. Maternal monocytes in pregnancy and preeclampsia in humans and 

in rats. Journal of reproductive immunology. 2017;119:91-7. doi: 10.1016/j.jri.2016.06.009. 

PubMed PMID: 27396500. 

19. Veenstra van Nieuwenhoven AL, Bouman A, Moes H, Heineman MJ, de Leij LF, 

Santema J, et al. Cytokine production in natural killer cells and lymphocytes in pregnant women 

compared with women in the follicular phase of the ovarian cycle. Fertil Steril. 2002;77(5):1032-

7. PubMed PMID: 12009363. 

20. Gellin BG, Broome CV, Bibb WF, Weaver RE, Gaventa S, Mascola L. The 

epidemiology of listeriosis in the United States--1986. Listeriosis Study Group. American 

journal of epidemiology. 1991;133(4):392-401. PubMed PMID: 1899779. 

21. Centers for Disease C, Prevention. Vital signs: Listeria illnesses, deaths, and outbreaks--

United States, 2009-2011. MMWR Morbidity and mortality weekly report. 2013;62(22):448-52. 

PubMed PMID: 23739339. 

22. Bardin T. Gonococcal arthritis. Best Pract Res Clin Rheumatol. 2003;17(2):201-8. 

PubMed PMID: 12787521. 

23. Leitich H, Bodner-Adler B, Brunbauer M, Kaider A, Egarter C, Husslein P. Bacterial 

vaginosis as a risk factor for preterm delivery: a meta-analysis. American journal of obstetrics 

and gynecology. 2003;189(1):139-47. PubMed PMID: 12861153. 

24. Donders GG, Van Calsteren K, Bellen G, Reybrouck R, Van den Bosch T, Riphagen I, et 

al. Predictive value for preterm birth of abnormal vaginal flora, bacterial vaginosis and aerobic 

vaginitis during the first trimester of pregnancy. BJOG. 2009;116(10):1315-24. doi: 

10.1111/j.1471-0528.2009.02237.x. PubMed PMID: 19538417. 



	

	

58	

25. Hyman RW, Fukushima M, Jiang H, Fung E, Rand L, Johnson B, et al. Diversity of the 

vaginal microbiome correlates with preterm birth. Reprod Sci. 2014;21(1):32-40. doi: 

10.1177/1933719113488838. PubMed PMID: 23715799; PubMed Central PMCID: 

PMC3857766. 

26. De Smet K, Contreras R. Human antimicrobial peptides: defensins, cathelicidins and 

histatins. Biotechnol Lett. 2005;27(18):1337-47. doi: 10.1007/s10529-005-0936-5. PubMed 

PMID: 16215847. 

27. Yarbrough VL, Winkle S, Herbst-Kralovetz MM. Antimicrobial peptides in the female 

reproductive tract: a critical component of the mucosal immune barrier with physiological and 

clinical implications. Hum Reprod Update. 2015;21(3):353-77. doi: 10.1093/humupd/dmu065. 

PubMed PMID: 25547201. 

28. Silversides CK, Colman JM. Physiological changes in pregnancy. Heart Disease in 

Pregnancy, 2nd Edition. 2007:6-17. doi: DOI 10.1002/9780470994955.ch2. PubMed PMID: 

WOS:000298401200003. 

29. Jwa SC, Fujiwara T, Yamanobe Y, Kozuka K, Sago H. Changes in maternal hemoglobin 

during pregnancy and birth outcomes. BMC pregnancy and childbirth. 2015;15. doi: ARTN 80 

10.1186/s12884-015-0516-1. PubMed PMID: WOS:000352346300001. 

30. Heilmann L. Blood rheology and pregnancy. Baillieres Clin Haematol. 1987;1(3):777-99. 

PubMed PMID: 3327565. 

31. Gaillard R, Eilers PH, Yassine S, Hofman A, Steegers EA, Jaddoe VW. Risk factors and 

consequences of maternal anaemia and elevated haemoglobin levels during pregnancy: a 

population-based prospective cohort study. Paediatric and perinatal epidemiology. 

2014;28(3):213-26. doi: 10.1111/ppe.12112. PubMed PMID: 24506330. 



	

	

59	

32. Townsley DM. Hematologic complications of pregnancy. Semin Hematol. 

2013;50(3):222-31. doi: 10.1053/j.seminhematol.2013.06.004. PubMed PMID: 23953339; 

PubMed Central PMCID: PMC3748382. 

33. Han L, Liu X, Li H, Zou J, Yang Z, Han J, et al. Blood coagulation parameters and 

platelet indices: changes in normal and preeclamptic pregnancies and predictive values for 

preeclampsia. PloS one. 2014;9(12):e114488. doi: 10.1371/journal.pone.0114488. PubMed 

PMID: 25464515; PubMed Central PMCID: PMC4252147. 

34. Mallone R, Mannering SI, Brooks-Worrell BM, Durinovic-Bello I, Cilio CM, Wong FS, 

et al. Isolation and preservation of peripheral blood mononuclear cells for analysis of islet 

antigen-reactive T cell responses: position statement of the T-Cell Workshop Committee of the 

Immunology of Diabetes Society. Clin Exp Immunol. 2011;163(1):33-49. doi: 10.1111/j.1365-

2249.2010.04272.x. PubMed PMID: 20939860; PubMed Central PMCID: PMC3010910. 

35. Saha D, Patgaonkar M, Shroff A, Ayyar K, Bashir T, Reddy KV. Hemoglobin expression 

in nonerythroid cells: novel or ubiquitous? Int J Inflam. 2014;2014:803237. doi: 

10.1155/2014/803237. PubMed PMID: 25431740; PubMed Central PMCID: PMC4241286. 

36. Butcher JT, Johnson T, Beers J, Columbus L, Isakson BE. Hemoglobin alpha in the blood 

vessel wall. Free Radic Biol Med. 2014;73:136-42. doi: 10.1016/j.freeradbiomed.2014.04.019. 

PubMed PMID: 24832680; PubMed Central PMCID: PMC4135531. 

 

  



	

	

60	

Chapter 3 
 

SLC9B1 Methylation Predicts Fetal Intolerance of Labor 
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Introduction 

 Fetal intolerance of labor, which is also referred to as fetal distress and non-reassuring 

fetal status, is the most common indication for emergency Caesarean section (C-section) [1, 2]. It 

is characterized by the presence of an abnormal fetal heart rate pattern, a category III tracing, 

detected through electronic fetal heart rate monitoring during labor [3, 4]. Category III fetal heart 

rate patterns indicative of fetal intolerance of labor include absent baseline fetal heart rate 

variability and recurrent late and/or variable decelerations and/or bradycardia or the presence of 

a sinusoidal pattern, typically after the onset of contractions during the second stage of labor [4, 

5].   

 A category III tracing is considered abnormal as studies have demonstrated that these 

heart rate patterns are associated with an increased risk of fetal hypoxia and metabolic acidemia, 

though such tracings are not absolutely indicative of fetal hypoxia and/or acidemia [6]. In the 

case of fetal intolerance of labor, expedited delivery, often through a C-section, is indicated to 

avoid fetal hypoxia, acidemia, and their subsequent consequences [6-10]. Fetal hypoxia and 

acidemia can have drastic consequences for the fetus in the perinatal period and throughout life 

including severe brain damage [11], and has been previously associated with diagnosis of 

cerebral palsy [12]. Accurate recognition and prompt management of fetal intolerance of labor is 

essential for decreasing the risk of fetal hypoxia and acidemia and thereby providing the best 

possible pregnancy outcome. 

Early identification of pregnant women at elevated risk for having a pregnancy 

complicated by fetal intolerance of labor would provide clinical benefits including maternal 

preparations to deliver at hospitals with the required resources to perform advanced monitoring 

and an emergency C-section, if required [1]. Another potential benefit of early identification of 
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those at risk for fetal intolerance of labor is a decrease in the time from decision to deliver until 

emergency C-section, which might promote adherence to the American College of Obstetricians 

and Gynecologists (ACOG) recommendation of a 30-minute timeframe, though previous studies 

have not demonstrated substantial differences in outcome due to decision to delivery time greater 

than 30 minutes [1, 2, 13]. Beyond the immediate clinical utility, identification of biological 

pathways underlying the development of fetal intolerance of labor may provide insight for 

development of novel treatments and preventive strategies. Previous studies have identified 

potential biomarkers associated with fetal intolerance of labor including pregnancy-associated 

plasma protein-A (PAPP-A) and combinations of fetal indices, such as estimated fetal weight, 

serum placental growth factor, and soluble fms-like tyrosine kinase-1 [14, 15]. These studies 

suggest an early pathogenesis for fetal intolerance that can be detected by screening prior to 

labor.  

Previous studies have also reported associations between DNA methylation and 

pregnancy complications, including preeclampsia and gestational diabetes [16, 17]. DNA 

methylation, the addition of a methyl group to the 5’ position of cytosine in a cytosine-guanine 

dinucleotide (CpG site), serves as a mechanism to regulate gene expression. This study utilizes 

an epigenome-wide association study to assess the relationship between individual CpG sites and 

fetal intolerance of labor. 

 
Methods 
 
Study Subjects  

 Subjects included in this study (N=69) are being enrolled into an ongoing pregnancy 

cohort study investigating the microbiome and epigenome and the outcome of preterm birth 

(R01NR014800, R01MD009064) for which pregnant African American women are being 
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recruited from outpatient prenatal care clinics affiliated with two Atlanta metro area hospitals: 

Emory University Midtown Hospital and Grady Memorial Hospital. These two hospitals 

represent private and public hospitals, respectively, that serve women of a wide range of 

socioeconomic status. Eligible women for this study were African American by self-report, 

between 18-35 years of age, having a singleton pregnancy, having fewer than four previous 

births, are able to understand written and spoken English, without chronic medical conditions, 

enrolled between March 2014 and August 2015 and experiencing labor (spontaneous or 

induced). Not experiencing labor, fetal death before labor and congenital abnormalities of the 

fetus were criteria for post-enrollment exclusion. Demographic and clinical obstetrical data 

(including estimated date of confinement, gestational age at delivery, pregnancy complications, 

labor and delivery course, and blood pressure) were collected through self-report questionnaires 

and prenatal, labor, and delivery medical chart abstraction under the supervision of a qualified 

physician (ALD).  The diagnosis of fetal intolerance of labor was based upon the medical record 

documentation by the attending obstetrician or midwife determining the presence of a category 

III fetal heart rate tracing during labor, and after delivery each chart was reviewed by a qualified 

physician to confirm the diagnosis. All subjects provided written informed consent. This study 

was approved by the Emory Institutional Review Board.  

Biological Sample Collection and DNA extraction 

 Venous blood samples were collected during each of two prenatal visits (between 7-15 

weeks and 24-32 weeks), when an additional 12 mL of peripheral blood was drawn into a tube 

containing EDTA using the same needle stick as for the routine blood draws. Blood was 

transferred into SepMate tubes with a Ficoll density gradient to isolate peripheral blood 

mononuclear cells (PBMCs) from whole blood. PBMCs were stored in AllProtect Buffer 
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(Qiagen) at -80 °C until a simultaneous DNA and RNA extraction using the AllPrep RNA/DNA 

Mini Kit (Qiagen) was performed according to manufacturer’s instructions. DNA quantification 

and quality was assessed using the Quant-it Pico Green kit (Invitrogen). RNA quantification was 

assessed using the Agilent 2100 Bioanalyzer. The average RIN score was 8.6, with a standard 

deviation of 1.4. 

DNA Methylation  

DNA methylation from samples of maternal PBMCs was interrogated for each subject 

using the HumanMethylation450 BeadChip, which evaluates >450,000 CpG sites across the 

genome.  Briefly, 1 µg of DNA was processed and hybridized to the HumanMethylation450 

BeadChip (Illumina) according to manufacturer’s instructions. Initial data quality control was 

performed using the R package CpGassoc [18]. Any CpG site with low signal or missing data for 

greater than 10% of samples was removed, and any sample with missing data for greater than 5% 

of CpG sites was removed.  Cross-reactive probes were removed [19]. Following quality control, 

449,094 probes were included in subsequent analyses. One sample collected between 7-15 weeks 

gestation failed quality control. Beta values (b) were calculated for each CpG site as the ratio of 

methylated (M) to methylated and unmethylated (U) signal: b=M/M+U. Beta-mixture quantile 

normalization was performed as previously described [20].  Briefly, BMIQ involves fitting a 

three-state beta-mixture model, transforming the distribution of type 2 probes to match the type 1 

distribution, followed by a dilation transformation [20]. DNA methylation data can be accessed 

through NCBI’s Gene Expression Omnibus, GEO107459. 

RNA Expression 

 RNA expression from maternal PBMCs was interrogated for a subset of subjects for 

which RNA was available. Briefly, 750 ng of RNA was directly hybridized to the HumanHT-12 
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v4 BeadChip (Illumina, San Diego, CA) according to manufacturer’s instructions. The 

BeadChips were scanned using the iScan scanner, and the raw data was analyzed using the 

Expression Module of GenomeStudio Software (Illumina, San Diego, CA). Samples with probe 

detection rates <90% or with an average intensity of <50% of the experiment-wide sample mean 

were excluded, resulting in one sample collected between 24-32 weeks being dropped due to 

quality control. Probes with detection p-values >.01 in >90% of the samples were excluded. Data 

was then quantile-normalized and log2 transformed. Following quality control, 18,634 

expression probes were included in subsequent analyses. RNA expression data can be accessed 

through NCBI’s Gene Expression Omnibus, GEO107437. 

Statistical Analysis 

Demographic characteristics were compared between women with and without 

pregnancies complicated by fetal intolerance of labor using Student’s t tests. The R package 

CpGassoc was used to perform an epigenome-wide association study (EWAS) to assess the 

associations between maternal DNA methylation at each CpG site on the array and fetal 

intolerance of labor for samples collected between 24-32 weeks gestation. For each CpG site, the 

methylation proportion was regressed on an indicator for fetal intolerance and covariates, which 

included chip, maternal age, and cell type proportions (CD8+T, monocytes, B cells, natural 

killer), estimated using the referenced dataset developed by Reinius and colleagues and 

implemented used the approach described by Houseman and colleagues [21-23]. CpG sites that 

were significantly associated with fetal intolerance for labor in samples collected between 24-32 

weeks were assessed for associations earlier in pregnancy, between 7-15 weeks gestation, using a 

linear regression that controlled for maternal age, chip, and cellular heterogeneity as above. The 

false discovery rate (FDR) was controlled at .05. Gene symbols and probe locations were 
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assigned using the HumanMethylation450 BeadChip annotation file distributed by Illumina. To 

determine whether methylation of these CpG sites was influenced by cellular heterogeneity, 

linear regressions were performed that modeled methylation at each CpG site as a function of 

estimated cell type proportions. Pearson’s correlation coefficient was calculated for each pair of 

CpG sites, and between each CpG site at the two timepoints. Predictive accuracy was assessed 

using the area under the curve (AUC), sensitivity, and specificity calculations, as determined by 

the R package pROC. Longitudinal associations between each CpG site and gene expression 

were assessed using a linear mixed-effects model that regressed the log2 expression signal for 

each gene on methylation of a single CpG site with subject as a random effect and adjustment for 

maternal age and cellular heterogeneity. Similarly, a linear mixed-effects model was used to 

interrogate associations between fetal intolerance and gene expression over pregnancy. Subject 

samples were included in this analysis if participants contributed blood at 24-32 weeks, a subset 

of which also contributed blood at 7-15 weeks (N=54).  As an additional confirmation of the 

associations between fetal intolerance and DNA methylation, we performed differential 

methylated region (DMR) analysis using the R package ChAMP [24]. 

To assess the associations between fetal intolerance and gene expression, 65 women, 

recruited from the same study, were used. The log2 of the gene expression signal was regressed 

on fetal intolerance of labor after adjusting for cellular heterogeneity and maternal age. Subjects 

with available measures for blood pressure values were used to assess associations between gene 

expression and these cardiovascular measures. Blood pressure was dichotomized as being above 

or below 90 for diastolic blood pressure at least once during pregnancy and above or below 140 

for systolic blood pressure at least once during pregnancy. Each outcome was regressed on the 

log2 gene expression signal, after adjusting for maternal age and cellular heterogeneity. Gene 
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expression was interrogated by two probes that differed by only 2 base pairs, thus, data from the 

probe with the highest number of samples that met the detection p-value threshold 

(ILMN_1724931) is presented. 

Replication Cohort and Analysis 

A replication cohort of 43 women was recruited as part of the Johns Hopkins Prospective 

PPD cohort recruited at the Women’s Mood Disorders Center at Johns Hopkins. Subjects were 

prospectively followed during pregnancy and after delivery in order to identify genetic and 

clinical characteristics that precede the development of a postpartum depressive episode. The 

average age of the participants was 31.3 years. This cohort was ethnically diverse; 65% of 

participants were Caucasian, 23% of participants were African American, and the remainder 

participants identified as Hispanic (2%), Asian or Pacific Islander (5%), or other (5%). In this 

cohort, 8 women experienced pregnancies complicated by fetal intolerance to labor (21%), and 4 

had missing data. Epigenetic data were generated on the HumanMethylation450 BeadChip as 

described previously [25]. The presence of fetal intolerance of labor was determined through 

medical record abstraction. Briefly, sample quality assessment and microarray analysis were 

conducted at The Sidney Kimmel Cancer Center Microarray Core Facility at Johns Hopkins 

University. Images were processed in Illumina’s iScan scanner and data were extracted using 

Methylation Module of GenomeStudio v1.0 Software. Background and Illumina probe type 

correction and normalization were performed by the Dasen function in the wateRmelon package 

in R.[26] The association between methylation at each of the CpG sites to be replicated and fetal 

intolerance was assessed using a linear regression. Pearson’s correlation coefficients were 

calculated for each pair of CpG sites. 
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Results 

Of the 57 women included in this study, 12 had deliveries complicated by fetal 

intolerance of labor (21%). Maternal age, smoking, gestational hypertension, and gestational age 

at birth and gestational age at sample collection did not differ between those subjects who did 

and did not experience deliveries complicated by fetal intolerance of labor (.59<p<.98). 

However, the group experiencing fetal intolerance of labor was more likely to undergo delivery 

by C-section (p=2.70x10-5; Table 3-1), which would be expected given that fetal intolerance of 

labor is an indication for C-section delivery.  

Methylation of SLC9B1 predicts fetal intolerance of labor 

 Four CpG sites associated with fetal intolerance of labor in maternal samples collected 

between 24 and 32 weeks gestation, after adjusting for maternal age and PBMC cell type 

(FDR<.05; Fig 3-1, Table 3-2). All four sites were annotated to the CpG island of solute carrier 

family 9, subfamily B, member 1 (SLC9B1), alternatively known as NHEDC1, a NA+/ H+ 

exchanger. Methylation of these four sites was highly correlated (r=.86-.98, Fig 3-1), and was 

not associated with PBMC cell type or maternal age (p>.05). In a separate analysis of these four 

CpG sites in samples collected between 7-15 weeks gestation (N=45), each site associated with 

fetal intolerance of labor to a lesser degree (.001<p< .003), suggesting that the methylation 

differences associated with fetal intolerance of labor may be detectable even earlier in early 

pregnancy. Differential methylation region analysis (DMR) identified 18 differentially 

methylated regions, including chr4:103940711-103941205, which contains the four CpG sites 

identified above. In the Johns Hopkins Prospective PPD cohort these four CpG sites were also 

highly correlated (r=.91-.97), and associated with fetal intolerance of labor (.036<p<.048), 

replicating our initial finding (Fig 3-2-Fig 3-5). 
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Methylation of SLC9B1 associates with gene expression 

 We next sought to assess whether methylation differences of these CpG sites associate 

with expression of SLC9B1, and whether gene expression alone can predict fetal intolerance of 

labor. We therefore examined paired methylation and expression data for a subset of subjects 

with available expression data. Expression of SLC9B1 was represented by two probes, 

(ILMN_1673417 and ILMN_1724931), that passed quality control. Changes in DNA 

methylation over time were associated with changes in gene expression for all CpG sites and 

SLC9B1 expression (.003<p<.03, Fig 3-2-Fig 3-5).  Gene expression data was available for 65 

women who also had DNA methylation data at one or more timepoints. Gene expression alone 

did not predict fetal intolerance of labor between 24 and 32 weeks gestation (p=NS), or over the 

whole of pregnancy (p= NS), suggesting that the CpG sites identified in SLC9B1 are better 

predictors of fetal intolerance of labor. 

Predictive Accuracy 

 Each of the four CpG sites was interrogated for its predictive accuracy of fetal intolerance 

of labor in maternal PBMC samples collected between 24-32 weeks gestation. The area under 

the receiver operating characteristic curve ranged from .85 to .87 for the four sites, representing a 

predictive accuracy of 85-87% (Fig 3-2-Fig 3-5).  

Gene expression and cardiovascular remodeling  
 
All of the 56 women with gene expression data available underwent blood pressure measurement 

between 24-32 weeks. Gene expression, but not DNA methylation, was associated with both 

high systolic (>140; p=.003) and diastolic (>90; p=.003) blood pressure (ILMN_1724931).  

 
Discussion 
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 We identify four CpG sites in SLC9B1 whose DNA methylation levels detected in the 

late second and early third trimesters are predictive of fetal intolerance of labor at delivery and 

was replicated in an independent sample. Each of these CpG sites was highly correlated with one 

another, indicating that any of these sites could serve as a proxy for the other three. As an 

additional line of evidence, SLC9B1 was also identified as being associated with fetal intolerance 

of labor in a differentially methylated region analysis. This region, and the other DMRs 

identified should be further investigated as potential contributors to the etiology of fetal 

intolerance of labor. Women enrolled in this study were medically low-risk as they had singleton 

pregnancies with early initiation of prenatal care and did not have chronic health conditions. 

Thus, we believe these results are generalizable to other low risk populations. 

Few studies have examined the role of SLC9B1, also known as NHEDC1. The SLC9 

family of genes encodes Na+/H+ exchangers (NHE) that play a role in regulating pH and cell 

volume [27, 28]. A recent study suggests that DNA methylation of SLC9B1 regulates its 

expression [29], which is consistent with our finding that methylation was associated with gene 

expression of SLC9B1 over pregnancy. This gene was previously thought to be expressed 

specifically in the testes based on a limited panel of 18 tissues, which did not include immune 

cells [28, 30]. Data from the Genotype-Tissue Expression (GTEx) Project shows low-level 

expression of SLC9B1 in a variety of tissues, including whole blood [31]. Localization to the 

mitochondria, as shown in the Human Protein Atlas [32], suggests a role for this gene in 

processes associated with the electron transport chain, which produce the energy required for the 

cell, as well as reactive oxygen species (ROS) as byproducts.  

Early in normal pregnancy, a relative hypoxic state is essential for proper placentation 

and embryogenesis, but oxygen requirements increase around 11-12 weeks gestation [33]. 
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Oxygen tension is regulated by transcription factors, including the hypoxia-inducible factor 1 

(HIF-1). In normal pregnancy, HIF-1 is rapidly degraded [33]. However, increased ROS 

production by the mitochondria can inhibit the degradation of HIF-1, which may impair placental 

function and lead to pregnancy complications [34, 35]. Additionally, ROS production may result 

in insufficient energy generation and sodium ion influx into the cell, which has been associated 

with both cardiac pathology and mitochondrial function [34, 36]. We hypothesize that alterations 

in the methylation and expression of sodium-hydrogen transporters that contribute to proper 

mitochondrial function, including SLC9B1, may contribute to cardiac pathology and changes in 

pH, which are both risk factors for fetal intolerance of labor [37, 38]. This hypothesis is further 

supported by our findings that gene expression of SLC9B1 is associated with high maternal 

systolic and diastolic blood pressure, and with a report from the literature that showed 

preeclampsia, which is characterized by high blood pressure, is associated with abnormal fetal 

heart rate [39]. Previous studies have also shown increased ROS production in both the mother 

and fetus is associated with fetal intolerance of labor [40]. Future studies should further examine 

the role of SLC9B1 in human fertility and pregnancy outcomes, especially in the context of 

cardiovascular dysfunction.  

This study has several limitations. First, the difference in methylation between women 

with pregnancies complicated by fetal intolerance of labor and those not complicated by fetal 

intolerance of labor is relatively small, making the development of a targeted assay for 

methylation of these CpG sites difficult due to the limited discriminatory power available for 

common techniques. Additionally, although methylation of these CpG sites was associated with 

fetal intolerance of labor in the PPD cohort, the range of methylation at these sites was higher in 

this cohort, potentially due to differences in processing or quality control, or inherent differences 
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in methylation between PBMCs in the original cohort and whole blood in the Johns Hopkins 

Prospective PPD cohort.  Finally, type III fetal heart rate tracings are not absolutely indicative of 

fetal hypoxia or metabolic acidemia, but there are not currently standards for further evaluation 

of fetuses intra-labor. Other methods to diagnose fetal intolerance of labor are not routinely 

performed and lack sufficient clinical evidence for routine implementation. Despite these 

limitations, receiver operator characteristic curves of the 4 CpG sites in SLC9B1 suggested that 

the positive and negative predictive values, sensitivity, and specificity, are all well within the 

range for potential development into a clinically useful diagnostic test  (Table 3-3).  

DNA methylation patterns in maternal blood at four CpG sites in SLC9B1 are predictive 

of fetal intolerance of labor during the late second and early third trimester. These sites have 

highly positive and negative predictive values, indicating that they may be clinically relevant for 

the detection and management of fetal intolerance of labor. Future studies should work to 

develop a robust targeted assay to measure DNA methylation at one or more of these CpG sites 

so that the clinical utility of DNA methylation at these sites can be further evaluated for its 

predictive power in other studies throughout pregnancy. 
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Table 3-1: Cohort demographics for women with samples collected between 24-32 weeks 

gestation (N=57). Those experiencing fetal intolerance of labor were more likely to have a 

Cesarean section. No other characteristic differed by group. SD: Standard deviation 

 

 
Fetal Intolerance 
Mean±SD 

Control 
Mean±SD P value 

Maternal Age 25.97±4.1 25.2±4.5 NS 
GA at sample collection 26.8±2.2 27.3±2.3 NS 
GA at birth 38.6±1.8 38.6±2.9 NS 

 
Fetal Intolerance (%) 
(N=12) 

Control (%) 
(N=45) P value 

Cesarean Section 83.3 11.1 2.70x10-5 
Hypertension 16.7 13.3 NS 
Maternal Smokinga 8.3 6.81 NS 
 
aMissing data for one subject 
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Table 3-2: CpG sites significantly associated with fetal intolerance of labor. FDR was computed 

using the Benjamini-Hochberg method. Coordinates are based on GRCh37/hg19.  

 

CpG site Gene Symbol Position T statistic P-value FDR 
cg21197425 SLC9B1 chr4: 103940854 7.70 2.69x10-10 9.58x10-05 
cg05605371 SLC9B1 chr4: 103940876 7.29 1.25x10-9 1.40x10-04 
cg19672271 SLC9B1 chr4: 103940878 7.48 6.05x10-10 9.58x10-05 
cg06999381 SLC9B1 chr4: 103940936 7.47 6.40x10-10 9.58x10-05 
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Table 3-3: Threshold, sensitivity, specificity, positive predicate value (PPV), and negative 

predictive value (NPV) for each CpG site. 

 

CpG site Threshold (% methylation) Sensitivity Specificity PPV NPV 
cg06999381 .038 .67 .98 .89 .92 
cg21197425 .097 .67 .98 .89 .92 
cg05605371 .063 .67 .96 .80 .91 
cg19672271 .065 .67 .96 .80 .91 

 

  



	

	

76	

Figure 3-1: Manhattan plot showing the association of CpG sites across the genome. Each CpG 

site that passed quality control was assessed for associations with fetal intolerance of labor. Sites 

falling above the horizontal line indicate experiment-wide significance. The x-axis represents the 

chromosome number and the y axis is the negative log of the p-value, which is indicative of the 

significance level. The plot is further zoomed in to chromosome four, and the SLC9B1 gene. In 

the gene diagram, yellow boxes represent exons and the green box represents the location of the 

CpG island. The heatmap indicates the correlation between CpG sites.  
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Figure 3-2: DNA methylation associates with fetal intolerance of labor. A) DNA methylation of 

cg06999381 associates with fetal intolerance of labor between 24-32 weeks gestation in the 

original cohort, B) Association with fetal intolerance of labor in the replication cohort, C) 

Receiver operator characteristic curve, D) DNA methylation associates with gene expression 

over pregnancy (ILMN_1724931). Red indicates fetal intolerance to labor. Open circles are 

samples from visit 1, closed circles are samples from visit 2. All associations are statistically 

significant (p<.05). 
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Figure 3-3: Cg21197425 associates with fetal intolerance of labor. A) DNA methylation of 

cg21197425 associates with fetal intolerance of labor between 24-32 weeks gestation in the 

original cohort, B) Association with fetal intolerance of labor in the replication cohort, C) 

Receiver operator characteristic curve, D) DNA methylation associates with gene expression 

over pregnancy (ILMN_1724931). Red indicates fetal intolerance to labor. Open circles are 

samples from visit 1, closed circles are samples from visit 2.

 

Control Fetal Intolerance

0.
00

0.
10

0.
20

Fetal Intolerance

cg
21

19
74

25

● ●

●

●

●
●●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●●
●

●
●

●

●

●●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

A.

Control Fetal Intolerance

0.
05

0.
15

0.
25

Fetal Intolerance

cg
21

19
74

25

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

B.

cg21197425

1 − Specificity

Se
ns

iti
vi

ty

0 0.5 1

0
0.

2
0.

4
0.

6
0.

8
1

●

0.097 (0.978, 0.667)

AUC: 0.874 (0.749...0.999)AUC: 0.874 (0.749...0.999)

C.

●
●●●● ●

●

●●●

●
●

●

●●●

●

●

●
●

●
●

●

●● ●

●
● ●

●

● ●

●●
●●

●

●

●

●
●

●●●
●●

●●
●

●●
●●

●
●

●

●

●

●

●●

● ●

●● ●

●

●
● ●

●

●

●

●

●
●

● ●

● ●
●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●●

●● ●● ●
●

●

●

●

●●

●
●

3.0 3.5 4.0 4.5

0.
00

0.
10

0.
20

0.
30

log SLC9B1 expression

cg
21

19
74

25

D.



	

	

79	

Figure 3-4: Cg05605371 associates with fetal intolerance of labor. A) DNA methylation of 

cg05605371 associates with fetal intolerance of labor between 24-32 weeks gestation in the 

original cohort, B) Association with fetal intolerance of labor in the replication cohort, C) 

Receiver operator characteristic curve, D) DNA methylation associates with gene expression 

over pregnancy (ILMN_1724931). Red indicates fetal intolerance to labor. Open circles are 

samples from visit 1, closed circles are samples from visit 2.
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Figure 3-5: Cg19672271 associates with fetal intolerance of labor. A) DNA methylation of 

cg19672271 associates with fetal intolerance of labor between 24-32 weeks gestation in the 

original cohort, B) Association with fetal intolerance of labor in the replication cohort, C) 

Receiver operator characteristic curve, D) DNA methylation associates with gene expression 

over pregnancy (ILMN_1724931). Red indicates fetal intolerance to labor. Open circles are 

samples from visit 1, closed circles are samples from visit 2.
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Introduction 

Differences in gestational age as small as one week have been shown to have significant 

impacts on neonatal morbidity and mortality, as well as long-term outcomes [1-6]. In light of 

this, the American College of Obstetricians and Gynecologists (ACOG) recently recommended 

revising the categorization of births from term (>37 weeks gestation) and preterm (≤ 37 weeks 

gestation) into several subcategories (early preterm, preterm, early term, full term, late term, and 

post term) that better reflect the developmental differences associated with gestational age at 

each of these time points [7, 8].  Accurate classification systems that reflect both developmental 

time and maturity may improve our ability to predict neonatal risk.  

Traditionally, GA is estimated using one or more of the following methods: early 

obstetric ultrasound, last menstrual period (LMP), or neonatal estimation [9]. Ultrasound-based 

methods are considered to be the gold standard and have proven to be a better predictor of 

delivery date [10] as LMP estimates may be influenced by uncertainty regarding LMP dates, 

normal variations in ovulation timing, atypical bleeding, and contraceptive use [9]. Neonatal 

estimation, which is based on a combination of physical appearance, muscular tone, flexibility, 

and reflexes, is the only available method for determining gestational age after birth but is less 

precise than LMP and ultrasound [9, 11, 12]. In circumstances where LMP date is uncertain and 

ultrasounds are not available, a more accurate method for estimating gestational age may be 

beneficial. 

Recently, DNA methylation has been used to accurately predict chronological age in 

children and adults [13-16].  Later work revealed that a methylation-based prediction of age may 

also associate with physiological consequences in adults when a study reported that an increased 

methylation age relative to chronological age was associated with an increase in mortality risk 
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[17-22].  However, the predictors optimized in these studies were not designed to estimate GA, 

and did not attempt to differentiate between different GA, as samples taken at birth were either 

assigned an age of zero or were excluded from the model [13, 14]. Because the accuracy and 

precision of a prediction model is, in general, the weakest at the extremes of the distribution, a 

predictor developed from primarily adult samples would, by nature, be less accurate in neonates 

than one that is optimized for that purpose. 

DNA methylation differences in specific CpG sites have been associated with GA at birth 

in multiple studies [23-26].  We hypothesize that a predictor designed specifically for use with 

umbilical cord blood or blood spots already routinely collected for newborn screening could 

allow for accurate neonatal estimation of GA that may also be informative of developmental 

stage.  The objective of this study was to develop such a predictor to estimate GA from DNA 

methylation data using umbilical cord blood or blood spot samples and to assess its ability to 

predict other indicators of developmental maturity.   

 

Methods 
 
Description of Cohorts 

Training datasets were selected to include a wide range of gestational ages and ancestries. 

Publically available datasets were downloaded from the Gene Expression Omnibus (GEO): 

GSE36642, GSE62924 [27], GSE51180 [28] and GSE30870 [29].  Methylation data for all of 

these datasets were generated on either the Illumina Infinium HumanMethylation27 BeadChip or 

Infinium HumanMethylation450 BeadChip (Table 4-1).  These methods have been shown to be 

highly reproducible and consistent with the results of other epigenetic methods [30, 31]. For 

umbilical cord blood samples, gestational age was defined as the gestational age at birth.  For 
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blood spot samples, gestational age was defined as the gestational age plus the number of days 

that occurred between birth and sampling.   

Emory Women’s Mental Health Program (WMHP) 

Women with a history of neuropsychiatric illnesses who participated in prospective 

studies to examine the perinatal course of illness, perinatal pharmacokinetic alterations, and 

impact of maternal stress on offspring were screened for inclusion in the current study.  Details 

of this study has been described elsewhere [24, 32, 33]. Each woman’s obstetrician estimated 

GA based on the date of her last menstrual period and ultrasound dating.  Birth weight in 

kilograms was assessed at delivery and extracted from the medical records. Umbilical cord blood 

samples were collected at birth, stored on ice, and processed within 2 hours of delivery.  Forty 

samples were run on the HumanMethylation450 array (abbreviated as WMHP1), and 251 were 

run on the HumanMethylation27 array (abbreviated as WMHP2).  All women provided written 

informed consent prior to study enrollment following procedures approved by the Institutional 

Review Board of Emory University.   

Conditions Affecting Neurocognitive Development & Learning in Early Childhood (CANDLE) 

 Neonates were selected from the Urban Child Institute’s CANDLE study, a longitudinal 

cohort study of human development from pregnancy to age three conducted in Shelby County, 

Tennessee.  This cohort has been described in detail elsewhere [24, 34-36].  A combination of 

obstetrician report (60%) or LMP (40%) was used to estimate GA.  Whole umbilical cord blood 

samples were stored at 40C and processed within 24 hours of delivery.  Samples from this cohort 

were interrogated using the HumanMethylation27 BeadChip (N= 198).  

Nashville Birth Cohort (NBC) 
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All subjects were recruited at Centennial Women’s Hospital and the Perinatal Research 

Center in Nashville, TN beginning in 2003. Pregnant women were enrolled during their first 

clinical visit after obtaining informed consent as described previously [23]. Demographic and 

clinical data specific to the fetus was collected from clinical records. Gestational age of the 

neonate was determined by maternal reporting of the last menstrual period and corroboration by 

ultrasound dating.  Umbilical cord blood samples were collected in EDTA tubes soon after 

placental delivery. Blood samples were centrifuged at 3,000 RPM to separate plasma, and buffy 

coats were aliquoted and stored at -80oC. Samples were processed on the HumanMethylation450 

BeadChip (N=36).  

Programming Research in Obesity, GRowth Environment and Social Stress (PROGRESS) 
 

All participants were recruited at 12–24 weeks’ gestation through the Mexican social 

security system after obtaining informed consent between 2007 and 2011. Women had to be 

greater than 18 years old that have an access to a telephone and a plan to reside within Mexico 

City for the following 3 years to be enrolled. The study was approved by the Institutional Review 

Boards of the participating institutions (Brigham and Women’s Hospital and The National 

Institute of Public Health in Mexico). Gestational age was based on the difference between the 

birth date and the mother’s report on enrollment of her last menstrual period. Umbilical cord 

blood samples were aliquoted and frozen until manual DNA extraction including a red blood cell 

lysis step followed by isopropanol and ethanol extraction of DNA from total white blood cells. 

Resulting DNA samples were randomized for plating and bisulfite converted and analyzed on the 

HumanMethylation450 BeadChip by Illumina FastTrack Services (Illumina Inc., San Diego 

CA), prior to preprocessing and quality control with the methylumi package (N=148).  
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Victorian Infant Collaborative Study (VICS) 

All 298 survivors born either <1000 g or <28 weeks’ gestation in the state of Victoria 

were enrolled in a longitudinal follow-up study [37], which was approved by the Human 

Research Ethics Committees at the Royal Women’s Hospital, the Mercy Hospital for Women, 

Monash Medical Centre, and the Royal Children’s Hospital, Melbourne, Australia.  Gestational 

age was determined by ultrasound estimation before 20 weeks of gestation, or by menstrual 

history in the minority if no ultrasound dating was available.  DNA samples were derived from 

dried blood spots taken for newborn screening when infants were several days of age, after 

obtaining permission from the participants when they were aged 18 years, or from their parents if 

they were younger than 18 years. 183 samples were processed on the HumanMethylation450 

BeadChip and passed sample quality control.   

Danish neonatal screening biobank trios (DNSBtrios) 

This cohort was recruited as a subset of samples in the Lundbeck Foundation funded 

initiative for integrative psychiatric research (iPSYCH). Trios (Mother/Father/child) were 

identified for a psychiatric study where all children and one or both parents had been diagnosed 

with a psychiatric illness (phenotype data not disclosed for the current study). All samples were 

isolated within the Danish Neonatal Screening Biobank (DNSB), which stores excess blood from 

the Danish Neonatal Screening Program. DNSB stores samples from almost every Dane born 

since 1982.  

DNSBtrios study inclusion criteria was known GA as determined via last menstrual 

period until the late 1990s after which crown rump was used. The samples were also selected 

based on being collected relatively shortly after birth (<39 days).  The samples were collected 
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via heel prick onto filter paper and then stored at -20⁰C. DNA was extracted from two punches 

of 3.2mm before being processed with the HumanMethylation450 BeadChip (N=264).  

 

Prediction and Prevention of Preeclampsia (PREDO) 

The mothers participating in the PREDO study come from one of ten hospital maternity 

clinics participating in the PREDO project in Finland [38]. They were recruited in conjunction of 

the first screening ultrasound at 12+0 to 13+6 weeks of gestation, based on which gestational age 

was also determined. Umbilical cord samples were collected in EDTA-tubes and stored 

immediately at -80oC. 91 samples were processed on the HumanMethylation450 BeadChip and 

passed sample quality control.  

EpiPrem 

 Longitudinal samples were collected from neonates in the NICU at the Royal Women’s 

Hospital in Melbourne, Australia. Blood collection occurred by heel stick and was collected on 

Whatman paper shortly after birth at 25 weeks gestation, one day post birth, and at the equivalent 

of 28, 32, 36, and 40 weeks’ gestation (N=2).  

Folic Acid supplementation in Pregnancy (FAP) 

 Healthy young (18-40 years old) pregnant women were recruited from Athens Regional 

Midwifery Clinic (Athens, GA) at their initial prenatal visit (<12 weeks gestation). In this study, 

the participants were selected based on the following exclusion criteria: 1) pre-existing chronic 

condition including anemia, diabetes or hypertension, 2) smokers, 3) those using prescription 

drugs, 4) those who were carrying more than one fetus. Participants were not allowed to take any 

vitamins/mineral supplements other than those provided by the research team for the study. Two 

doses of folic acid (400ug per day, 800ug per day) were provided to participants during 
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gestation. The study regimen includes all the vitamins/minerals/DHA recommended for pregnant 

women. Cord blood samples were collected at delivery. 24 samples were processed on the 

HumanMethylation450 BeadChip and passed sample quality control.  

Quality Control and Normalization 

All analyses were performed using R version 3.1.2. Datasets used in this study underwent 

several quality control measures. The DNAm age predictor developed by Horvath was initially 

run on all samples to establish predicted age and gender [13].   Samples with gender discordance 

or estimated age >1.5 years were excluded from further analysis. After this initial quality control 

step, datasets were subjected to standard quality control through the use of the R package 

CpGassoc [39]. A data frame consisting of β values (methylated signal/(methylated signal + 

unmethylated signal)) was supplied as input to CpGassoc. Any data point with a detection p-

value above .001 was set to missing. CpG sites with >5% missing data were excluded; 

subsequently samples with > 5% missing data were excluded.  These quality control measures 

were performed to ensure that the predictor is built based on high quality probes and samples. 

Any probe missing entirely from one of the datasets was excluded from the remaining datasets, 

so only probes passing quality control in all training datasets, and probes present on both the 

HumanMethylation450 and HumanMethylation27 arrays were included, for a total of 16,838 

probes.  Finally, datasets were normalized according to Horvath’s modified beta-mixture 

quantile (BMIQ) normalization [13, 40]. While the original BMIQ is a within-sample 

normalization method to address probe type bias by modifying the type II distribution to match 

that of type I probes, Horvath modified this BMIQ procedure for a different purpose: the 

distribution of each given array is related to that of a “gold standard” array (defined here as the 

mean across all of the training datasets). Thus, Horvath's modification of the BMIQ method 
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could be interpreted as a form of between-sample normalization. All training datasets were 

normalized together, as a single group.  After normalization, missing values for each sample 

were imputed by the k-nearest neighbors method where k=10, using the R package impute so that 

no missing values remain in the dataset after pipeline completion [41]. Test datasets were 

normalized separately, following the same procedures as above.  One test cohort, PROGRESS, 

which was processed with an out of band background correction, dye bias correction and then the 

original BMIQ procedure, was excluded from the quality control pipeline as raw files were not 

available. Principal components analysis (PCA) was used to assess the potential impact of 

BeadChip on the CpG sites selected for inclusion in the predictor.  We did not observe clustering 

by chip, suggesting that chip was not a confounding factor. 

Estimation of Cellular Composition  

Proportions of white blood cells and nucleated red blood cells were estimated from 

genome-wide DNA methylation patterns using the method proposed by Houseman et al. [42], 

with reference samples from homogenous cell populations for white blood cells (CD4+ T cells, 

CD8+ T cells, natural killer cells, B cells, monocytes, and granulocytes), nucleated red blood 

cells [43], and whole blood (GSE80310). 

Epigenome-wide association study 

 The R package CpGassoc [39] was used to perform epigenome-wide association studies 

(EWAS) to assess associations between gestational age and DNA methylation. Two separate 

EWAS were performed, with and without the inclusion of cellular composition covariates. Each 

EWAS was performed as a meta-analysis across all cohorts by including indicators for each 

study as covariates. Test statistics from the two EWAS were plotted to assess the robustness of 

results to potential cell type heterogeneity.   
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Elastic Net Regression and Age Prediction 
 
 The six training datasets (GSE36642, WMHP1, GSE62924, NBC, GSE51180 and 

GSE30870) were combined to perform an elastic net regression of gestational age on the 16,838 

CpG probes remaining after quality control and filtering. The regression was performed using the 

R package glmnet to select a parsimonious set of CpG sites predictive of gestational age.  

Following Horvath [13], the elastic net mixing parameter, alpha, was set to .5 allowing for equal 

contribution of the ridge and lasso methods [44]. The lambda parameter was chosen through a 

10-fold cross validation, which involves randomly partitioning the training dataset into 10 

equally-sized subsamples.  The cross-validation procedure is then performed 10 times, retaining 

a different subsample as a validation dataset each time   In the procedure, data from the other 

nine subsamples is used to build a predictor based on a particular value of lambda, and the fit of 

the predictor is then tested in the omitted validation set.  The mean squared error is calculated for 

the validation set in each iteration, and then averaged over the 10 subsamples.  This procedure is 

performed for a sequence of lambda values to determine the lambda that yields the minimum 

mean squared error. No additional covariates were included in the analysis, consistent with the 

development of the DNAm age predictor by Horvath [13].  The training coefficient values and 

CpG probes selected from this regression were used to fit a linear model to generate predicted 

values of GA, based on a modified version of the R code in the DNAm age tutorial published by 

Horvath [13].  The accuracy of predicted values of gestational age was determined from 

correlation coefficients obtained through linear regression of DNAm GA and clinical GA.  

Analysis of GA acceleration 

GA acceleration was calculated as the residual from a linear regression of DNAm GA on 

clinical estimates of GA for the combined testing dataset.  Analysis of DNAm GA with birth 
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weight and birth weight percentile was then conducted using linear regression of birthweight and 

birthweight percentile on GA acceleration and covariates for race, estimated cell type 

proportions, and cohort. Clinically estimated GA was included as a covariate in the analysis for 

birthweight, but not birthweight percentile as birthweight percentile is already adjusted for 

clinically estimated gestational age. Maternal insurance status (as a proxy for income) was 

analyzed in the CANDLE cohort through logistic regression of maternal insurance status on GA 

acceleration, adjusting for estimated clinical GA, race (African American v Caucasian), and 

estimated cell type proportions.  

Enrichment tests 

To assess whether the CpG sites selected for the DNAm GA predictor were more likely 

than others to be located in functionally relevant regions, two approaches were used. First, CpG 

positions were intersected the with the hg19 CpG island annotation track from UCSC Genome 

Browser (http://genome.ucsc.edu), to define whether each site was located in a CpG island, CpG 

shore (+/- 1.5 kb from island) or CpG shelf (+/- 1.5 kb from shore). Second, the CpG positions 

were intersected with ENCODE's ChromHMM annotation for lymphoblastoid cell line 

GM12878, which uses a hidden Markov model to assign genomic features based on the 

combinatorial pattern of various chromatin marks [45]. The ChromHMM annotation allowed 

identification of CpGs located in promoters and enhancers. Fisher’s exact test was used to assess 

whether there was significant enrichment of each feature in CpG sites selected for the predictor 

compared to the full set of 16,838 sites included in the elastic net model. A similar analysis was 

preformed to assess whether these CpG sites were enriched for sites containing a genetic variant 

in the 50-bp probe (using annotation derived from the Thousand Genomes Project in [46]), or 
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sites previously reported to associate with race [36].  DAVID was used to evaluate whether CpG 

sites used to estimate DNAm GA were located genes enriched for any biological pathways [47].  

 

Results 

DNA methylation data from 1,434 neonates, representing 15 independent cohorts, were 

used for this study.  For each sample, HumanMethylation27 or HumanMethylation450 

BeadChips (Table 4-1,4-2) were used to generate data from DNA extracted from umbilical cord 

blood or blood spots. Of the 16,676 CpG sites that passed quality control in the testing and 

training datasets referenced in Table 4-1, 3,155 (19%) were at least nominally associated with 

GA in an epigenome-wide association study (p<.05, Fig 4-1), and adjustment for proportions of 

white blood cell subtypes and nucleated red blood cells had little effect on the results (Fig 4-2). 

Associated CpGs were enriched for a range of biological processes, including cell proliferation 

and chordate embryonic development (Table 4-3).  

Predicting DNAm GA in neonates 

To train the DNAm GA predictor, six independent cohorts were selected to sample a 

wide range of gestational ages and ancestries. Consistent with the approach described by Horvath 

[13], elastic net regression was used to select a set of 148 CpG sites predictive of GA from a set 

of 16,838 CpG sites that were available in all training datasets. Although some of the individual 

studies report associations between the perinatal environment and DNA methylation, no CpG 

site reported to associate with environmental exposures in these cohorts were among the sites 

selected for this predictor [27, 32, 33, 48]. Overall, 90 out of 148 CpG sites selected for the 

predictor (61%) showed some evidence for association with gestational age in the cell-type-

adjusted epigenome-wide association study (p<.05). In the training datasets, correlation between 
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the resulting predictor (DNAm GA) and clinically estimated GA was .99 (Figure 4-3A), 

indicating a strong fit of the model.  The 148 CpG sites selected by the elastic net were 

uniformly distributed across the genome, and were not located in genes more likely to be 

represented among specific biological pathways (data not shown). They were more likely to 

reside in CpG island shores than the remaining 16,690 CpG sites that were eligible for inclusion 

in the predictor (OR=1.73; p=.00096) and less likely to reside in CpG islands (OR=0.53; 

p=.00019) or active promoters (OR=0.59; p=.0028).  The 148 sites showed no significant 

enrichment or depletion for CpG island shelves or enhancers (Table 4-4).  They were also not 

enriched or depleted for sites with genetic variants located in the probe sequence, or sites 

previously reported to associate with African American or Caucasian race (Table 4-4) [36, 46, 

47].  

Predictive accuracy of the model was tested in 1,135 samples from 6 independent 

datasets. The testing and training datasets had comparable GA distributions (Fig 4-4).  In the 

testing datasets, overall correlation between DNAm GA and GA was .91 (p < 2.20 × 10-16; 

Figure 4-3B).  Within individual test datasets, correlation between GA and DNAm GA remained 

high (.52 < r < .65; Fig 4-5) though appeared lower than in the combined dataset due to lower 

sample sizes and GA range. We were not able to obtain similar predictive power using the 

DNAm age predictor proposed by Horvath, which has a highly significant but much weaker 

correlation with GA (r=.14, p= 4.89 × 10-6; Fig 4-6). This correlation coefficient is similar to that 

observed for prenatal brain samples (r=0.15) [49].  

We did not evaluate the Hannum predictor [14] since it is less accurate than the Horvath 

predictor in children [14, 50]. Of note, only 6 CpG sites included in the DNAm GA predictor 

overlap with CpG sites in the predictor designed by Horvath, and no sites overlap with the 



	

	

101	

predictor designed by Hannum.  However, one would not necessarily expect overlap. Elastic net 

regression selects a parsimonious set of the full list of CpG sites, and among highly correlated 

CpG sites only one may be chosen, introducing an element of chance into CpG selection.  

Moreover, the late gestational period is associated with unique developmental changes that 

cannot be discriminated by the adult predictor, which did not include measures of gestational age 

in its training dataset.  Thus, this lack of overlap may indicate that the CpG sites predictive of 

gestational age in neonates are distinct from CpG sites predicting age in adults because of their 

association with changes specific to gestational development. 

The average absolute difference between DNAm GA and gestational age in test samples 

was 1.49 weeks, with a standard deviation of 1.16 weeks.  The median absolute difference 

(‘median error’) between DNAm GA and GA was 1.24 weeks.  This falls well within the range 

of error for clinical estimates of GA based on either LMP or ultrasound, as each of these clinical 

measures has an inherent variability due to recall bias and natural phenotypic variation 

associated with development [9, 10, 51].  However, it was interesting to note that DNAm GA 

correlated more strongly with clinical GA estimates based on ultrasound that on those based 

exclusively on LMP (Fig 4-7).  Error rates for ultrasound range from 5-7 days if performed 

during the first trimester to 3.0-4.3 weeks when performed in the third trimester. This predictor is 

closer to clinical estimates of GA than post-birth measures using neonatal estimation, which can 

overestimate the GA of preterm neonates by up to 2.57 weeks [52-56].  

The accuracy of this predictor is consistent with that of established clinical methods for 

estimating GA, though its accuracy can only be interpreted in context of the available clinical 

measurements. Predictive accuracy was not influenced by neonatal sex as there was no 

difference between the median errors in males versus females (p=.76).  The median error 
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between DNAm GA and clinically-estimated GA was 1.07 for the cord blood datasets and 1.57 

for blood spot datasets. This discrepancy may be due to differences in precision of GA, as 

sample collection for blood spots was performed up to 39 days after birth (Fig 4-4 and Fig 4-8).  

It is also possible that there may be differences in sample quality, as some blood spot samples 

were stored for more than 30 years, although there was no difference in the number of samples 

that failed quality control between the cord blood and blood spot datasets. The correlation 

between DNAm GA and clinically estimated GA was .94 (m.e.=1.4) for samples processed on 

the HumanMethylation450 array and .55 (m.e.=1.02) for samples processed on the 

HumanMethylation27 array (Fig 4-9). This discrepancy is likely due to the differences in 

gestational age range between samples run on the two arrays (19.3 and 11.1 weeks, respectively). 

Finally, the partial correlation from regressions of DNAm GA on clinically estimated GA did not 

substantially change when cell composition covariates were included, suggesting that the 

accuracy of the predictor is not confounded by cellular heterogeneity (roriginal=.91, rcell type 

adjusted=.81). 

To limit concerns regarding the potential for overfitting of the models, we next validated 

the predictor in a second testing dataset, comprised of 92 samples from three cohorts (FAP, 

GSE66459, and GSE69633) that were not included in the initial testing or training sets. Cohort 

demographics are provided in Table 4-2. The correlation in these datasets is similar to that of the 

first testing dataset (r=.89, m.e.=.89; Fig 4-10), further indicating that this model fits well when 

applied to novel datasets and should be generalizable to other studies.  

Accuracy of DNAm GA in the same subjects 

 Serial blood sampling was conducted from two neonates admitted to the Neonatal 

Intensive Care Unit (NICU), independent of the testing and training samples.  Seven timepoints 
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were collected between birth at 25 weeks and discharge at 40 weeks.  DNAm GA increased as 

expected over time from birth until term equivalency (Figure 4-11). These pilot data demonstrate 

that the predictor has the sensitivity required to detect changes in DNAm GA in the magnitude of 

days or weeks, and that methylation patterns change from birth to term equivalency in a 

predictable manner.  

DNAm GA as a measure of developmental age 

In adults, the difference between DNA methylation-based age estimates and 

chronological age associates with all cause mortality, HIV status, and Down syndrome [17, 21, 

57].  This difference is usually described as age acceleration [13]. We calculated a similar 

measure, which we will subsequently refer to as GA acceleration, in our cohorts by using the 

residual of a linear model regressing DNAm GA on clinically estimated GA. Because 

accelerated GA may indicate increased developmental maturity, we sought to evaluate whether 

GA acceleration associated with perinatal measures of health and development in the cohorts 

with available data.   

Birthweight is widely used as a proxy of developmental maturity in studies assessing the 

association between the prenatal environment and short-term or long-term neonatal risk, with 

those born at the lowest birthweight generally having the highest risk for mortality over the first 

year of life and for cardio-metabolic conditions as adults [58, 59]. Birthweight is positively 

correlated with GA so birthweight percentile, which is calculated based on birthweight averages 

for a given GA corrected for fetal sex, is commonly used as an indicator of perinatal health [60, 

61]. Previous studies have shown that infants in the lowest birthweight percentiles have an 

increased risk of perinatal death and other adverse outcomes, and are often defined as growth 

restricted [62, 63]. In cohorts with available data, GA acceleration significantly predicted 
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birthweight percentile (p=4.5×10-4; Fig 4-12A) and birthweight (p=.033; Fig 4-12B) after 

correcting for clinically estimated GA, race, estimated cell type proportions, and cohort. 

Consistent with the idea that DNAm GA may reflect maturity, the fitted regression model 

predicts approximately the fiftieth percentile to have GA acceleration of 0. Thus, neonates falling 

in the lowest birthweight percentiles are lower, while neonates falling in the highest percentiles 

show higher, or accelerated GA. There was no association between GA acceleration calculated 

using the DNAm age predictor of Horvath [13] and either birthweight or birthweight percentile 

(Fig 4-13). 

One study by Appleton and colleagues suggests that socioeconomic adversity promotes 

adverse health outcomes through epigenetic programming of neonatal DNA methylation [64]. 

We hypothesize that factors related to early life adversity might influence the developmental age 

of the neonate. One such factor is socioeconomic status, which is essential to examine as 

children born into socioeconomically disadvantaged families, often operationalized by insurance 

status (Medicaid versus private health insurance), have poorer health in childhood and early 

adulthood [65, 66]. In the most socioeconomically diverse cohort (CANDLE), developmental 

aging associated with maternal Medicaid status (p=.023) after adjusting for race, clinically 

estimated GA, and estimated cell type proportions (Fig 4-14). Specifically, methylation-based 

estimates of GA were lower than clinical estimates for the neonates of women on Medicaid 

compared with women with private health insurance. This association supports the hypothesis 

that prenatal adversity associates with changes in neonatal methylation consistent with a delayed 

developmental age, which may have consequences later in life.   

 

Discussion 
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GA can be accurately predicted between 24 and 44 weeks gestation using DNA 

methylation values obtained from both umbilical cord blood and blood spot samples. DNAm GA 

is more concordant with GA based estimates performed with the gold standard of ultrasound 

with estimates based on LMP. However, the question remains as to whether GA acceleration is 

truly a measure of maturity versus a reflection of the relative accuracy of DNAm GA compared 

clinical estimates. We consider three possibilities for interpreting the difference between DNAm 

GA and clinically-estimated GA. First, an accelerated GA may reflect differences in 

physiological development of the neonate such that neonates with a higher DNAm GA are more 

developmentally mature than their chronological age suggests. A second possibility is that the 

differences between DNAm GA and chronological GA reflect epigenetic programming by early 

life environmental exposures, such as maternal prenatal stress or pregnancy disorders, which 

may affect neonatal outcomes and development [67]. Finally, any difference may simply be 

reflective of the variable nature of clinical GA estimations; evaluation of DNAm GA in neonates 

conceived through in vitro fertilization (IVF) would be helpful for delineating these different 

possibilities. These models may be interrelated, such that the true interpretation is likely a 

combination of these possibilities. A future study examining other prediction methods, including 

the use of non-linear models or transformations, may facilitate this interpretation by further 

delineating developmental differences between early and late gestational ages.  Overall, our 

results suggest that DNAm GA and GA acceleration are promising tools for evaluating neonatal 

developmental maturity.   

A targeted assay of the CpG sites necessary to compute DNAm GA could provide a rapid 

and robust estimator of GA at birth, and the framework described in this paper could be used to 

develop and validate a predictor based on other tissues that may be sampled prior to delivery, 
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such as chorionic villi or amniotic fluid. Our results suggest that DNAm GA is highly 

reproducible and can predict measures of developmental maturity, such as birthweight, better 

than clinical estimates of GA alone.  As such, it has the potential to serve as a biomarker for GA 

and the rate of neonatal development.  Recent studies of GA and DNA methylation [23-26] 

support that shifts in methylation underlie the aging process, further supporting the development 

of methylation-based biomarkers.  DNA methylation is a convenient molecular marker for GA in 

that umbilical cord blood and blood sampling are routinely performed to monitor neonatal health 

in humans, and it can be readily sampled repeatedly in the same person, as demonstrated by the 

time course data in the subjects from preterm birth through term equivalency.  

As a biomarker, DNAm GA and GA acceleration would have numerous clinical, research 

and forensic applications.  It would serve as a molecular marker of GA that complements clinical 

estimates, when available, and provides additional information when clinical estimates are 

unavailable or unreliable.  For example, it could be used to estimate GA in women who seek 

prenatal care late in pregnancy, are unsure of the date of their last menstrual period, or did not 

have ultrasounds performed early in pregnancy. DNAm GA is more precise than the estimation 

methods typically performed at birth, which rely on biometric measurements. Precise knowledge 

of GA would be most informative for neonates born extremely preterm, when parents and 

clinicians are confronted with decisions regarding active intensive care interventions versus 

providing comfort care. GA based on an epigenetic developmental profile may also complement 

clinical estimates of GA, providing a screening tool to identify children who may benefit from 

additional monitoring and care.  Studies to explore the extent to which DNAm GA reflects 

developmental maturity, and thus may be a more reliable predictor of outcomes after preterm 

birth compared to time or growth-based methods, are needed.   
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DNAm GA may also serve as a surrogate marker for developmental maturity in research 

studies of neonatal development, interventions, and disease.  Our results already demonstrate that 

it will be fruitful to study antenatal and perinatal factors that associate with DNAm GA and GA 

acceleration, and to determine whether these metrics are better prognosticators of neonatal well-

being than conventional measures. Future studies should evaluate the effects of maternal stress, 

nutrition, and interventions such as vitamin supplementation that are highly relevant to fetal 

development and pregnancy outcomes. Future research could also explore whether GA 

acceleration relates to risk of developing pediatric disorders such as autism, and whether it can 

predict health outcomes later in life.   Finally, establishing precise gestational age is important 

for forensic, anthropologic or other medico-legal investigations.  Indeed, DNA methylation-

based predictors of adult age are already under investigation for forensic applications [68]. In 

summary, we have identified a potential biomarker for GA with an abundance of applications 

that warrant further investigation and development. 
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Table 4-1: Description of testing and training cohorts. Training datasets and test datasets were 

chosen to represent a similar range of gestational ages.  
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Table 4-2: Description of additional testing cohorts. Additional cohorts were identified to further 

validate the accuracy of the predictor. 
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Table 4-3: Enrichment for the top 20 biological processes in genes containing GA-associated 

CpG sites.  The p-value is adjusted using a Benjamini- Hochberg correction. 

 
Biological Process Count % p-value 
Biological adhesion 172 6.3 7.60E-07 

Cell adhesion 172 6.3 1.40E-06 
Regulation of cell proliferation 184 6.7 6.60E-06 
Regulation of phosphorylation 116 4.2 1.00E-04 

Cell motion 118 4.3 1.00E-04 
Regulation of phosphorus metabolic process 120 4.4 1.20E-04 
Regulation of phosphate metabolic process 120 4.4 1.20E-04 

Cell migration 78 2.8 1.20E-04 
Cell motility 83 3 1.80E-04 

Localization of cell 83 3 1.80E-04 
Vasculature development 71 2.6 1.90E-04 

Intracellular signaling cascade 260 9.5 1.90E-04 
Chemical homeostasis 123 4.5 2.00E-04 

Regulation of cell motion 58 2.1 2.50E-04 
Blood vessel development 69 2.5 2.50E-04 
Regulation of cell adhesion 45 1.6 3.30E-04 

Positive regulation of cell proliferation 102 3.7 4.70E-04 
Regulation of cell death 177 6.4 5.20E-04 

Chordate embryonic development 85 3.1 6.10E-04 
Cell activation 76 2.8 6.30E-04 
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Table 4-4: Enrichment tests for 148 CpG sites selected by elastic net regression. 

Significant enrichment (OR > 1) or depletion (OR < 1) after adjustment for 12 tests (p < .05/12) 

is indicated by bold text. 

 
Enrichment/depletion for: OR 95% C.I. p-value 
CpG islands 0.53 (0.37, 0.75) .00019 
CpG island shores 1.73 (1.24, 2.43) .00096 
CpG island shelves 0.76 (0.34, 1.49) .54 
Promoter regions 0.70 (0.50, 0.99) .038 
     - Active promoters 0.59 (0.41, 0.84) .0028 
     - Weak promoters 1.26 (0.74, 2.03) .36 
     - Poised promoters 1.26 (0.65, 2.24) .42 
Enhancer regions 1.38 (0.76, 2.33) .23 
     - Strong enhancers 1.79 (0.75, 3.65) .14 
     - Weak enhancers 1.09 (0.46, 2.21) .71 
Race-associated CpG sites  0.97 (0.57, 1.57) .99 
CpG sites with genetic variants in probe 0.78 (0.45, 1.27) .37 
 
OR: odds ratio. 
C. I.: confidence interval  
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Figure 4-1:  Correlation between DNAm GA and GA. (A) DNAm GA and estimated clinical 

GA (EGA) are highly correlated in the training dataset: r=.99, median error (m.e.) =.35. (B) 

DNAm GA and estimated clinical GA were also highly correlated in the testing dataset: r =.91, 

median error = 1.24.  Solid line = regression line; dotted line indicates equivalence. 
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Figure 4-2: Manhattan plot showing the distribution of GA-associated CpG sites across the 

genome. Points falling above the dashed horizontal line indicate experiment-wide significance 

FDR<.05; points above the solid horizontal line are significant according to a more conservative 

step-down Bonferroni adjustment for 16,676 CpG sites. 
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Figure 4-3: Comparison of t-statistics from two epigenome-wide associations studies (EWAS) 

of gestational age to assess robustness of results to cell type heterogeneity. The x-axis shows t-

statistics from an EWAS for gestational age adjusting for estimated cellular composition 

(proportions of six white blood cell subtypes and nucleated red blood cell counts) while the y-

axis shows t-statistics unadjusted for cell composition. 
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Figure 4-4: Distribution of clinically estimated gestational age (EGA) ranges in the training (A) 

and testing (B) datasets.  
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Figure 4-5:  Correlation between clinically estimated gestational age (EGA) and DNAm GA for 

each testing dataset. Solid line = regression line; dotted line indicates equivalence. Median 

absolute difference (‘median error’) = m.e. 
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Figure 4-6: Correlation between clinically estimated GA (EGA) and DNAm age estimated using 

the Horvath predictor [2] (r=.14, p= 4.89 × 10-6, median error=9.19).  DNAm age is represented 

in equivalent weeks gestation. Red= VICS, fuchsia= CANDLE, cyan= WMHP2, black= 

DNSBtrios, green= PREDO, blue= PROGRESS. Solid line = regression line; dotted line 

indicates equivalence.   
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Figure 4-7: Comparison of DNAm GA with clinical GA estimates based on LMP (last menstrual 

period) or ultrasound in WMHP2. (rLMP=.41, pLMP= 5.5 × 10-8, median errorLMP=.93; 

rUltrasound=.54, pUltrasound= 4.79 × 10-14, median errorUltrasound=1.01).   
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Figure 4-8:  Predictive accuracy of DNAm GA in cord blood and blood spot samples. Clinically 

estimated GA (EGA) is depicted on the x-axis. rCordBlood=.57, pCordBlood < 2.2 × 10-16, median 

errorCordBlood=1.57; rBloodSpot=.95, pBloodSpot p < 2.2 × 10-16, median errorUltrasound=1.07 
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Figure 4-9: Predictive accuracy of DNAm GA on the HumanMethylation27 array (A) and 

HumanMethylation450 array (B). The x-axis represents clinically estimated gestational age 

(EGA) and the y-axis represents DNA methylation gestational age (DNAm GA). 
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Figure 4-10: Predictive accuracy of DNAm GA on three additional testing datasets (FAP, 

GSE66459, GSE69633). The x-axis represents clinically estimated gestational age (EGA) and 

the y-axis represents DNA methylation gestational age (DNAm GA).  
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Figure 4-11: Reproducibility of DNAm GA.  DNAm GA from birth until term equivalency for 2 

subjects recruited through the EpiPrem study, gestational age at birth 25 weeks. DNAm GA 

increases appropriately with gestational age in weeks. Change in DNAm GA over equivalent 

weeks gestation.  
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Figure 4-12: GA acceleration associates with birthweight.  The association between GA 

acceleration and (A) birthweight percentile (p=4.5×10-4) or (B) birthweight (p=.033) adjusted for 

race, cellular composition, cohort and gestational age in CANDLE, WMHP, and PROGRESS.  

Solid line = regression line. 
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Figure 4-13: Association between birthweight percentile (A) and birthweight (B) and age 

acceleration calculated using the DNAm age predictor [2]. rbirthweight= .0014, pbirthweight = .79; 

rbirthweightpercentile=  .05, pbirthweightpercentile= .28 Solid line = regression line. 
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Figure 4-14: Maternal insurance status and GA acceleration. Neonates born to mothers with 

private insurance have higher GA acceleration than neonates born to mothers on Medicaid 

(p=.023) after adjusting for race, gestational age, and cellular composition. 
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Introduction 
 

Preterm infants, especially those born very (<32 weeks’ gestation) or extremely (<28 

weeks’ gestation) preterm are at an increased risk of developing acute and long-term health 

complications, including acute respiratory distress and failure [1-3]. Most require respiratory 

interventions such as mechanical ventilation, continuous positive airway pressure (CPAP), high 

flow oxygen, or treatment with surfactant or postnatal corticosteroids [3, 4]. Advances in these 

supportive therapies have improved neonatal survival, but many infants develop 

bronchopulmonary dysplasia (BPD) as a consequence of the developmental immaturity of their 

lungs and the respiratory interventions required [3, 5, 6]. BPD is a chronic lung disorder most 

often defined as a requirement for supplemental oxygen at 36 weeks’ postmenstrual age [3, 7, 8].  

Additionally, preterm infants may also face long-term neurodevelopmental and pulmonary 

morbidities [9, 10].  

Gestational age (GA) is a major determinant of neonatal morbidity and mortality [11], 

including the risk of developing BPD.  GA is clinically determined either by the date of the last 

menstrual period or, more accurately, by early obstetrical ultrasound assessment [12, 13]. 

However, individual variations in outcome are observed for infants with the same GA, for 

reasons not clearly understood; biological variability in development and maturity between 

babies of the same GA may be a contributing factor.  

Epigenetic modifications such as variations in DNA methylation are important biological 

mechanisms regulating developmental processes [14].  Methylation levels at cytosine-guanosine 

dinucleotides (CpG) vary at hundreds of thousands of locations genome wide and can be 

determined by array technologies [15].  We have recently developed a method to predict GA at 

birth using DNA methylation (DNAm GA) at 148 CpG sites across the genome [16].  DNAm 
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GA is highly correlated with clinically estimated gestational age. The residual between DNAm 

age and clinical GA, known as GA acceleration, has previously been associated with birth 

weight, which may reflect developmental maturity [16].  The aim of this study was to explore the 

relationships between GA acceleration and respiratory interventions and outcomes after birth in 

infants born extremely preterm.  As higher GA acceleration may indicate increased 

developmental maturity, we hypothesized that it may be associated with less respiratory 

intervention in the neonatal intensive care unit and lower likelihood of developing BPD.  

 

Methods 

All surviving preterm babies born at less than 28 weeks’ gestation by best obstetrical 

estimate in the state of Victoria, Australia, during 1991 and 1992 were enrolled in a longitudinal 

follow-up study.  The study was approved by the Human Research Ethics Committees of the 

Royal Women’s Hospital, the Mercy Hospital for Women, Monash Medical Centre, and the 

Royal Children’s Hospital, Melbourne, Australia (HREC No. 23034C). Details of this cohort 

have been previously described [17].  

Blood samples and clinical data 

The 143 subjects included in this analysis represent probands born in the state of Victoria 

at less than 28 weeks’ gestational age in 1991-1992 and who survived to 18 years of age, and for 

whom consent was obtained for the current study.  Initial enrollment into the above-mentioned 

study was performed with parental consent. The study probands had reached adulthood and gave 

informed consent for the analysis of their neonatal blood spots, which were collected at an 

average of 9.9 days after birth.  Blood spots were stored at ambient temperatures after collection.  

Data relevant to this study were recorded during the perinatal period, including neonatal sex, 
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surfactant administration, use of postnatal corticosteroids, duration of assisted ventilation 

(including intermittent positive pressure ventilation via an endotracheal tube or nasal continuous 

positive airway pressure), and incidence of BPD (defined as receiving oxygen at 36 weeks’ 

postmenstrual age).  Decisions to give surfactant (Exosurf was the only surfactant available) or 

postnatal corticosteroids (predominantly dexamethasone) were made by the treating clinicians.   

DNA methylation analysis 

DNA was extracted from dried blood spot cards using the ZR DNA Card Extraction Kit 

manufactured by Zymo Research (Irvine, California USA).  Sample quality and DNA 

concentration were assessed through spectrophotometry (Nanodrop).  Samples with sufficient 

quality and concentration were processed on the Illumina Infinium HumanMethylation450 

BeadChip (Illumina, San Diego, CA USA) per manufacturer’s recommendation as in our 

previous work [18].  Data were subjected to standard quality control through the use of the R 

package CpGassoc [19]. Data frames of the raw signal values were supplied as input to 

CpGassoc.  Any data point with a detection p-value above 0.001 was set to missing.  CpG sites 

with >5% missing data and subsequently, samples with >5% missing data were excluded. After 

quality control, β values were determined by the ratio of methylation to total signal. Cellular 

heterogeneity (proportions of CD4, CD8, CD14, CD19, CD56, neutrophils, and eosinophils) was 

estimated as previously described [20]. 

Determination of DNAm GA and GA acceleration  

DNA methylation gestational age (DNAm GA) was estimated using our previously 

published method [16], implemented in the publicly available software 

(https://github.com/akknight/PredictGestationalAge).  Briefly, we estimate gestational age based 

on DNA methylation at 148 CpG sites across the genome.  Prior to gestational age estimation, a 
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data frame of all CpG sites passing quality control is supplied as input for the predictive 

algorithm, and undergoes a modified beta-mixture quantile normalization as described 

previously [16, 21, 22].  DNAm GA was compared with clinically estimated gestational age 

(GA). GA acceleration was determined as the residual of a linear model regressing all DNAm 

GA values on clinically determined GA values, after adjusting for time to sample collection (9.9 

± standard deviation (SD) of 3.9 days) [16].  Table 5-1 gives an overview of the definitions and 

descriptions of all measures used to describe GA and GA acceleration. 

Statistical analyses  

To assess associations between GA acceleration and common neonatal complications, 

logistic regressions were performed to determine the associations between each binary outcome 

(surfactant administration, use of postnatal corticosteroids, and incidence of BPD) and GA 

acceleration, adjusting for cellular heterogeneity and neonatal sex.  Linear regression was 

performed to evaluate the association between duration of assisted ventilation and GA 

acceleration, adjusting for cellular heterogeneity and neonatal sex. To assess the additional 

contribution of GA acceleration to models including GA for neonatal outcome predictions, linear 

regressions, adjusting for neonatal sex and cell type, with and without the inclusion of the GA 

acceleration term were compared.  As male infants have been shown to fare worse, interaction 

terms were created for GA acceleration by multiplying GA acceleration and an indicator variable 

for sex. Models with significant interaction terms were further investigated in a subgroup 

analysis, where linear regressions were performed on male subjects and female subjects 

separately. Confidence intervals reflect the change in slope.  To ensure individual CpG sites were 

not driving the associations between the outcomes and DNAm age, linear regressions were 

performed for each of the 148 CpG sites included in the predictor and each outcome with the 
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false discovery rate controlled at 5%.  All analyses were performed using R version 3.3.0 and the 

R package ppcor [23]. 

 

Results 

Cohort characteristics 

A total of 225 infants born at less than 28 weeks’ gestational age in the state of Victoria 

during 1991 and 1992 survived to 18 years of age.  Cohort demographics for the 143 extremely 

preterm survivors who participated in this study are presented in Table 5-2.  Almost one-half 

received exogenous surfactant, just over one third were treated with postnatal corticosteroids, 

and 41% developed BPD.  

DNAm age and GA acceleration calculations 

DNAm GA and subsequently GA acceleration were determined for each subject. GA was 

correlated with DNAm GA (Fig 5-1, r=0.43, p=8.7x10-8), but not GA acceleration (Fig 5-2, 

r=2.0x10-17, p=0.99).  

Associations of GA acceleration with respiratory outcomes and interventions 

Extremely preterm infants who received surfactant had lower GA acceleration values 

compared with those who did not (mean difference -0.057, 95% CI [-0.099,-0.015] weeks, 

p=0.009; Fig 5-3A); GA acceleration was lower in infants who were treated with postnatal 

corticosteroids compared with those who did not receive postnatal corticosteroids (mean 

difference -0.056 weeks, 95% CI [-0.098,-0.015], p=0.008; Fig 5-3B), and was negatively 

associated with days of assisted ventilation (-1.79 days per week of GA acceleration, 95% CI [-

3.28,-0.30], p=0.02; Fig 5-3C).  Additionally, infants who developed BPD had lower GA 

acceleration (mean difference -0.055 weeks, 95% CI [-0.098, -0.012], p=0.01; Fig 5-3D).  
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For each model assessing the association of GA and each respiratory outcome and 

intervention, the inclusion of the GA acceleration added significantly to the amount of variance 

explained by the model when compared with GA alone, indicating that the models including GA 

acceleration are better predictors of outcome than GA alone (Table 5-3).  

GA acceleration variation between the sexes 

Previous studies have shown sex-specific differences in outcomes after preterm birth, 

prompting us to consider whether GA acceleration was associated with infant sex. Males had a 

mean GA acceleration of -0.40 and females had a mean GA acceleration of 0.35, indicating that 

females were potentially developmentally more mature than males (mean difference=0.75 weeks, 

95% CI [0.14, 1.36], p=0.02; Fig 5-4); this is further illustrated in Fig 5-5, which shows the 

distribution of GA acceleration in the overall cohort. The interaction term for sex was significant 

only for BPD (p=0.007).  In subsequent subgroup analysis stratified by sex, development of BPD 

was significantly related to lower GA acceleration only in males (mean difference -0.154 weeks, 

95% CI [-0.230, -0.079], p<0.008) but not in females (mean difference 0.27 weeks, 95% CI [-

.05,.05], p=0.9). 

Analysis of individual CpG sites 

To ensure results were not driven by CpG sites comprising the predictor that were also 

independently associated with the outcome or intervention of interest, we used linear models to 

assess associations with each of the 148 CpG sites.  Two CpG sites were experiment-wide 

significant. One site (cg15856055, ZNF511) was associated with BPD (p=0.002), and one site 

was associated with days of assisted ventilation (p=0.0001, cg27258399, HTRA4).  No individual 

CpG site was significantly associated with surfactant or postnatal corticosteroid administration, 
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supporting our hypothesis that the relationship between the outcome and GA acceleration was 

not due to associations with individual CpG sites. 

 

Discussion 

In our study of infants born at <28 weeks’ gestational age, increased DNAm age was 

strongly related to reduced respiratory morbidity and fewer respiratory interventions after birth.  

Importantly, GA acceleration explained these outcomes over and above knowledge of gestational 

age at birth alone.  To our knowledge, this is the first study to use a metric based on DNA 

methylation (which we postulate represents developmental maturity in utero and up to ten days 

after birth) to assess associations between the postulated measure of developmental maturity and 

respiratory outcomes that is independent of gestational age.  

The clinical interventions selected for inclusion in this study mark several critical 

benchmarks in treating respiratory distress in infants. The demographic characteristics and 

frequency of respiratory interventions and BPD in our cohort are similar to other cohorts from 

this era [24, 25].  Infants admitted to the Neonatal Intensive Care Unit (NICU) often require 

respiratory support [26] and the risk for BPD and long term adverse effects on pulmonary 

function is generally higher the earlier the infant is born [11]. 

The decision to treat an infant with surfactant was made by a neonatologist based on 

clinical criteria. Surfactant was administered in this cohort only as rescue treatment and infants 

had to be intubated, receiving intermittent positive airway pressure respiratory support, and 

require >50% oxygen. Our result, which reported infants who received surfactant had a lower 

GA acceleration than infants not administered surfactant, is consistent with developmental 
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physiology which implies that more immature preterm infants are expected to be more surfactant 

deficient [27].   

Infants experiencing more severe respiratory failure may require postnatal corticosteroids 

during their NICU course [28].  Postnatal corticosteroids were widely used in the early 1990s 

after they had been shown to improve respiratory function and facilitate extubation of very 

immature preterm babies [28, 29]. This is consistent with our observation that infants who 

received postnatal corticosteroids had a lower GA acceleration than those who were never given 

corticosteroids. Practice changed in the late 1990s when it became evident that postnatal 

corticosteroid use carried significant long-term risks [28, 30, 31].  They are now used with 

caution and are generally only administered to a select group of babies after prolonged periods of 

assisted ventilation [28, 30]; the effect of this practice change is not captured in our cohort due to 

recruitment in the early 1990s. 

Finally, this study examined two markers of long-term pulmonary outcomes associated 

with extremely preterm birth: duration of assisted ventilation and development of BPD.  

Extremely preterm infants require disproportionately more assisted ventilation with diminishing 

maturity; for each week of decrease in gestational age, survivors born <28 weeks’ gestation 

required 13 days more assisted ventilation after birth in one study [32]. In the current study, we 

found that longer duration of assisted ventilation was associated with lower GA acceleration.  

Similarly, we also found that GA acceleration was lower in infants who developed BPD. 

All four indicators of preterm birth-associated respiratory mortality were substantially 

correlated with GA acceleration. This supports our hypothesis that GA acceleration is a marker 

of developmental maturity, including that of the lung.  Although there is some overlap between 

subjects with multiple interventions, these four indicators are not collinear. Fig 5-6, shows 
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overlap between three respiratory interventions. This correlation of respiratory outcomes (-0.44 < 

r < 0.65) in this cohort is likely to reduce our power to detect statistically significant associations 

between GA acceleration and each outcome individually.  However, even assuming a stringent 

Bonferroni correction for the number of outcomes tested (0.05 / 4 = 0.0125), inclusion of GA 

acceleration in models predicting each of the 4 outcomes remains significant (Table 5-2).   

Further research is needed to determine if these associations remain if samples are taken 

closer to birth, such as in cord blood, or even before birth, if in utero fetal blood sampling is 

performed.  One recent study reported associations between GA acceleration estimated from 

cord blood methylation and several pregnancy-associated outcomes, including maternal 

preeclampsia and prenatal betamethasone treatment [33]. Antenatal betamethasone was 

associated with increased GA acceleration, which is consistent with antenatal corticosteroids 

being used to accelerate maturity before birth [33]. 

Interestingly, males had lower GA acceleration than females.  Males are more likely to 

experience complications due to respiratory disorders, have poorer psychomotor development 

when born preterm, and have higher mortality rates than females [34-38].  Thus, this observation 

is consistent with our hypothesis that DNAm age is reflective of neonatal morbidity.  Our 

previous study16 did not show a significant sex difference in accuracy based on the median error, 

but did not examine the association between sex and GA acceleration.  However, a recent study 

also showed increased GA acceleration in females [33]. Lack of associations with neonatal 

interventions in the analyses stratified by sex could be due to a reduction in power from 

decreased sample size in our study. 

We assessed if any of the 148 CpG sites were associated with the outcome variables. 

Only two variables showed associations, one with BPD and one with days of assisted ventilation. 
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No individual CpG site was significantly associated with surfactant or postnatal corticosteroid 

administration. We conclude that associations between CpG sites and variables examined did 

thus not adversely affect our study outcome. 

Our study has several limitations.  As this cohort was recruited between 1991 and 1992, 

clinical care given to these infants may vary from current practice. Surfactant therapy has 

“dramatically reduced mortality and morbidity [28]”; as surfactant was available as therapy to 

our 1991-1992 cohort, we feel that this major change in clinical practice was captured in our 

study. In our cohort surfactant use was limited to infants requiring supplemental oxygen at over 

50%; thus, surfactant was given to babies with more severe respiratory distress syndrome. 

Today, surfactant is given at a lower oxygen requirement; the potential effect of this change in 

practice could only be determined by repeating our study with a more contemporary cohort. 

With a rate of 73% for our 1991-1992 cohort, the antenatal corticosteroid rate was very 

similar to many current day cohorts [6]. Since the 1990s, ventilation strategies have changed and 

new ventilator modes have been introduced, but we agree with Owen et al. [28] that “most 

interventions have had little effect on the risk of bronchopulmonary dysplasia”. We therefore feel 

that results from our 1991-1992 cohort remain relevant until superseded by more contemporary 

data. 

A further limitation was that DNA methylation was measured from blood spots, which 

were collected at an average of 9.9 days after birth.  Although we have adjusted for postnatal age 

in our analyses, methylation may have been affected by the days and care received between birth 

and sample collection, and thus may not have been fully representative of developmental 

maturity at birth alone. Further information on how rapidly the epigenome changes after birth 

would also be most relevant; we have initiated a prospective study (The EpiPrem Study) that 
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addresses longitudinal changes in genome wide DNA methylation and GA acceleration over 

several weeks of NICU care with multiple analyses between birth and term equivalence.  We 

hope to identify unique epigenetic signatures which could assist in identifying patients who are at 

risk for specific acute and long-term morbidities associated with preterm birth. 

We anticipate that assessment of GA acceleration will be informative in studies of long-

term outcomes.  As GA acceleration is independent of gestational age at birth, this metric 

provides another clinical and research tool to evaluate developmental maturity, regardless of the 

gestation at which the infant was born. Future studies should investigate the development and 

use of GA acceleration during pregnancy based on cells obtained from amniotic fluid or other 

fetal cells, which could assist to inform clinical decisions at the limits of viability.   

If further studies determine that use of DNAm GA has clinical utility in predicting more 

neonatal morbidity, targeted assays to rapidly return results of the assessment of DNA 

methylation-based developmental maturity to clinicians would be needed; technically, it should 

be possible to perform the DNA methylation analysis and provide results to clinicians within 48 

hours.  

In summary, a measure of GA acceleration based on DNA methylation in preterm babies’ 

blood correlates with respiratory interventions and morbidities and may reflect a preterm infant’s 

developmental maturity.  The use of surfactant, postnatal corticosteroids, and assisted 

ventilation, and the rate of BPD were all lower in epigenetically more mature extremely preterm 

infants. The potential clinical utility of such a DNA methylation based assessment of 

developmental maturity and its potential contribution to personalized neonatal care interventions 

and outcome predictions should be further investigated. 
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Table 5-1: Definitions and description of measures used to quantify gestational age and 

gestational age acceleration.  

 
1. Clinically estimated gestational age (GA): Gestational age at birth as determined in 

routine clinical care through measurements on ultrasound before 20 weeks, or menstrual 

history if no ultrasound dating was available 

2. DNA methylation gestational age (DNAm GA): Gestational age at sample collection 

predicted from DNA methylation. This measure is highly correlated with GA, but 

differences between GA and DNAm GA are observed and may reveal an infant’s 

developmental maturity.  

3. Gestational Age acceleration (GA acceleration): Calculated as residual of an individual 

proband’s DNAm GA onto the regression curve of GA and DNAm GA for the complete 

cohort. This measure is used to assess an infant’s developmental maturity. A positive GA 

acceleration indicates a more mature infant than their GA suggests and a negative GA 

acceleration indicates a less mature infant than their GA suggests. It is important to note 

that GA acceleration is independent of GA. 
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Table 5-2 – VICS cohort demographics (n=143) 
 

General Characteristics 
Male, N (%) 66 (46.2) 
Gestational Age (weeks), mean ± SD 25.8 ± 1.1 

Male 25.64 ± 1.1 
Female 25.94 ± 1.1 

Postmenstrual Age at sampling*, mean ± SD 27.2 ± 1.2 
Male 27.1 ± 1.1 

Female 27.3 ± 1.3 
DNAm Age (weeks), mean ± SD 28.8 ± 2.1 

Male 28.3 ± 1.7 
Female 29.2 ± 2.4 

Birth weight (g), mean ± SD 883 ± 178 
Respiratory Outcomes/Interventions 

Surfactant Administration, N (%) 67 (46.8) 
Male, N (%) 35 (63.6) 

Corticosteroid Administration, N (%) 55 (38.4) 
Male, N (%) 34 (50.7) 

Days of Assisted Ventilation, mean ± SD 23.2 ± 17.3 
Male 28.6 ± 18.6 

Female 18.56 ± 14.8 
Bronchopulmonary Dysplasia, N (%) 58 (40.6) 

Male, N (%) 30 (44.8) 
*Fractional week when blood sample collected plus GA 
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Table 5-3: Coefficients of determination with and without inclusion of GA acceleration in the 

model. P-value for comparison of the models. 

 Adjusted r* Adjusted r, GA 
acceleration 

p-value for 
addition of GA 

acceleration 
Surfactant Administration 0.35 0.40 0.004 

Corticosteroid Administration 0.36 0.42 0.002 
Days Assisted Ventilation 0.61 0.64 0.009 

BPD 0.34 0.40 0.004 
 

* r is computed as the square root of R2 for linear regression models, and the square root of 

McFadden’s pseudo-R2 for logistic regression models. 
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Figure 5-1: Correlation between clinically estimated gestational age (GA), adjusted for days to 

sample collection, and DNA methylation based gestational age (DNAm GA). Both measured in 

weeks. Solid line represents the regression line; dotted line indicates equivalence.  
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Figure 5-2:  GA acceleration is not associated with GA (p>.05).  
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Figure 5-3: Respiratory interventions and outcomes of 143 preterm infants born at less than 28 

weeks’ gestation. (A) Infants administered surfactant have a lower GA acceleration (p=0.009); 

(B) Infants administered postnatal corticosteroids have a lower GA acceleration (p=0.008). (C) 

GA acceleration is negatively associated with days of associated ventilation (p=0.02. (D) Infants 

who develop Bronchopulmonary dysplasia (BPD) have a lower GA acceleration (p=0.01). 
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Figure 5-4: GA acceleration is associated with neonatal sex (p=0.02), with males having lower 

gestational age acceleration. 
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Figure 5-5: Histogram of the distribution of GA acceleration (GAacc) for the entire cohort and 

separately for males and females. 
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Figure 5-6: Venn diagram demonstrating the overlap between three respiratory interventions.  
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Chapter 6 
 

Conclusions and Recommendations for Future Studies 
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 Pregnancy and delivery complications are associated with a wide range of adverse health 

outcomes for both the mother and her neonate. For example, women delivering preterm are more 

likely to develop cardiovascular disease and breast cancer [1-4]. Neonates born preterm are more 

likely to experience respiratory distress and admission to the neonatal intensive care unit in the 

perinatal period and are more likely to develop chronic disorders in adulthood [5, 6]. Thus, the 

morbidity and mortality associated with pregnancy complications make this a vital area of 

research to improve health for women and their children. 

 African Americans are at an increased risk of developing pregnancy and delivery 

complications, even when controlling for known risk factors such as low socioeconomic status 

[7-9], and thus would benefit most from a reduction in adverse pregnancy outcomes. African 

Americans are also traditionally understudied in biomedical research. Therefore, we chose to 

focus our studies of maternal pregnancy and delivery complications on a cohort of pregnant 

African American women, the Emory University African American Microbiome in Pregnancy 

(AAMP) cohort. While this may limit the generalizability of these results to another population, 

this high-risk cohort may also better powered to detect associations between DNA methylation 

or gene expression and pregnancy complications while controlling for potential confounding by 

race. Replication in cohorts of other racial/ethnic backgrounds will be essential to assess 

generalizability of these results. 

 The overarching objective of these studies is to improve maternal and neonatal risk 

prediction that may subsequently be used to develop strategies and treatments to promote 

healthy, full term pregnancies. There are two key ways these studies advance the goal of 

improving maternal risk. First, identifying changes in gene expression in uncomplicated 

pregnancies lays the groundwork for identifying gene expression changes in complicated 
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pregnancies. Changes in gene expression associated with pregnancy complications will provide 

novel targets for interventions and support the development of clinically-useful tests. Expression-

based biomarkers of pregnancy and delivery complications are uncommon in the field, and there 

is no previous study we are aware of examining expression changes over pregnancy in healthy 

women. Our results are somewhat consistent with those of a small study in women with 

rheumatoid arthritis [10], but the genes and pathways we identified that change over pregnancy 

are largely novel. As the gene expression array used in these studies has been discontinued by 

the company, other techniques such as RNA-seq will need to be employed for future studies. 

Studies using RNA-seq would allow investigation of other research questions in addition to 

potentially validating these findings, including the role of alternative transcripts and transcripts 

not present on the gene expression array. 

 Second, DNA methylation-based signatures of delivery complications can be used to 

predict risk prior to the onset of labor, allowing for adequate time for a detailed and personalized 

treatment plan to be implemented. The use of DNA methylation-based biomarkers in predicting 

pregnancy complications, such as preterm birth, has largely focused on candidate gene studies to 

date. While there are several small epigenome-wide studies of preterm birth, large cohort-based 

studies are only beginning to be performed. Our epigenome-wide study of associations with fetal 

intolerance resulting in the identification of SLC9B1 as a potential biomarker sets the stage for 

other epigenome-wide association studies in the AAMP cohort, which will provide greater power 

than previous studies and has been carefully phenotyped. Unfortunately, at the time of this 

dissertation, we did not have sufficient power to assess other pregnancy and delivery 

complications, but recruitment is ongoing and future studies in AAMP will examine 

complications such as preterm birth and preeclampsia. The issue of power is related to the 
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number of subjects enrolled as well as the heterogeneity of the phenotype. We were adequately 

powered to study fetal intolerance of labor as a substantial proportion of women experienced this 

delivery complication, which was well defined by set criteria. However, other pregnancy 

complications are less common and have more heterogeneous presentations. For example, in 

AAMP, preterm birth can be spontaneous, medically-indicated, or the result of premature rupture 

of membranes. These complexities will be further explored in future studies.  

 Of note, the DNA methylation arrays used in this study, and in our studies of neonatal 

development, the HumanMethylation450 and HumanMethylation27 BeadChip have also been 

discontinued and replaced with the MethylationEPIC BeadChip. These changes in technology 

are to be expected with a rapidly-advancing field. The EPIC array is much more similar to the 

450K array than the gene expression array is to RNA-seq, but there are still challenges associated 

with its adoption. While there is a high correlation overall between probes on the 450K and EPIC 

arrays, individual CpG sites are much less correlated [11]. This will require careful replication 

and scrutiny of results generated on both platforms. However, the EPIC array interrogates 

approximately double the number of CpG sites that were present on the 450K array, including 

gene regulatory regions not previously examined, so this change in technology is likely to benefit 

the field. 

 These studies also advance the goal of promoting neonatal health by providing the 

research community with a tool to study the impact of risk factors, such as smoking and low 

socioeconomic status, and novel interventions on neonatal development. After birth, knowledge 

of neonatal developmental maturity could be used by clinicians and parents to make 

individualized treatment decisions and better understand acute and long-term risks of a neonate 

who is born preterm.  
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 One significant advancement in the field of epigenetics has been the development and use 

of “epigenetic clocks” to assess age acceleration. The first epigenetic clock was developed by 

Steve Horvath [12] and was promptly followed by the development of several other epigenetic 

clocks [13-15]. Follow-up studies using this metric show associations between age acceleration 

and numerous adverse health outcomes, including psychiatric disorders, cancer, and all-cause 

mortality. However, the current predictors do not have the necessary specificity for use in 

neonates as the error rates range from three to greater than seven years [12, 13]. Recognizing the 

need for a neonatal predictor of age, we developed a DNA methylation gestational age (DNAm 

age) predictor [16]. We optimized this predictor based on previous work in the adult literature, 

utilizing 15 cohorts with the widest possible gestational ages for testing and training datasets. 

Unlike our previous studies focused on African Americans, these cohorts were collected around 

the world to represent as many races/ethnicities as possible.  

 Since the development of this predictor, we have begun to study the impact of 

developmental maturity on neonatal health after birth. In the Victorian Infants Collaborative 

Study, developmental maturity is associated with neonatal outcomes and interventions in the 

neonatal intensive care unit (NICU), including the need for respiratory support and the 

development of bronchopulmonary dysplasia [17]. However, this cohort was recruited from 

1991-1992, and current NICU interventions have since advanced. This provides an opportunity 

for future studies to examine the impact of modern interventions and biobehavioral risk factors 

on developmental maturity.  

 This work has already begun using the Prediction and Prevention of Preeclampsia and 

Intrauterine Growth Restriction (PREDO) cohort, where studies have identified associations with 
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maternal biobehavioral risk factors such as depression [18] and childhood psychiatric outcomes 

with developmental maturity [18]. As the field continues to expand, there are applications of this 

work for surveillance of preterm birth and determining cause of death in low and middle income 

countries as well as for other public health applications. 

 The approach of using combinations of CpG sites to predict age can be applied to 

numerous other phenotypes, which may also be relevant for studies of pregnancy and delivery 

complications. If few predictive CpG sites are epigenome-wide significant, combining multiple 

CpG sites to predict a phenotype may serve as a more robust predictor. The framework presented 

in this study can be applied to other facets of maternal and neonatal health research.    

 Overall, this dissertation outlines the potential utility of gene expression and DNA 

methylation-based biomarkers to improve maternal and neonatal health. The results of these 

studies add to the body of knowledge surrounding pregnancy and delivery complications, and 

their potential consequences in the perinatal period. These studies suggest that an interplay 

between epigenetics, gene expression, and the environment likely contributes to pregnancy and 

delivery complications and neonatal health. Future studies should examine relationships between 

these factors to better understand the complex etiologies of pregnancy and delivery 

complications.   
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