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Abstract

Statistical Methods for Robust Estimation of

Differential Protein Expression

By

Sameera R. Wijayawardana

In the post-genome world, where the sequences of most human genes are known,
proteomics has taken up the mantle of being the most promising field of research
for bio-marker discovery. Proteomics studies yield multi-layered data that pose chal-
lenges for statistical analyses due in part to the inherent complexity of the proteomes
of organisms, and due to the variability of mass spectrometry based methods that
form the back bone of modern proteomics methodologies. An active area of research
in proteomics is the assessment of differential expression of proteins in different bio-
logical samples, with careful attention being paid to the issue of multiple testing.

To date, little attention has been paid to ensuring the robustness of the statistical
results of proteomics data analyses. Nor have there been rigorous attempts to adjust
statistical results to account for the high technical variability found in proteomics
data. There is also a lack of methods that address the issue of missing values in a
model based framework.

In this dissertation, we develop statistical methods for estimating the relative ex-
pression level of proteins that are derived from isotopically labeled protein mixtures.
We develop an estimator for the overall relative protein expression using a random
effects model that uses a variant of the minimum norm quadratic unbiased estimation
method to estimate the associated variance components. By assuming different dis-
tributional choices for a two-groups model underlying the mechanisms generating the
relative expression values, we develop a robust and flexible finite mixture modeling
approach for the estimation of the posterior probability of each protein to be non-
differentially expressed. In this context, we further investigate the utility of several
non-standard statistical distributions: skew-normal, skew Student’s t, and the gen-
eralized hyperbolic distribution, as suitable candidate distributions for the mixture
components fitted to each two-groups model.

We are also interested in adjusting statistical estimation procedures to account
for latent error processes that generate a majority of the technical variability in pro-
teomics data. With this regard, we conduct a reliability analysis of the data to remove
a subset of the original data that are deemed less reliable, and then use a peptide ion
current area based method to estimate relative protein expression at the peptide level.
We then develop a novel class preserving nested resampling strategy, and a Huber
regression based error resampling strategy, to construct a bootstrap partial likelihood
estimator of the overall relative expression level of each protein. A significance as-
sessment of the estimated expression levels is obtained through the construction of
nested-bootstrap p-values and the specification of a Beta mixture model to locally



estimate a false discovery rate.
Furthermore, we illustrate the application of model based estimation strategies

when proteomics data are assumed to be missing at random. We present a multivari-
ate t model to robustly estimate the mean and covariance matrix of an incompletely
observed peptide level data set of a given protein. We also look at the same esti-
mation problem, when there is only a single peptide available to quantify a protein’s
relative expression level. This problem is handled in the context of a bivariate normal
model having a monotone missingness pattern, and a hierarchical Bayesian scheme
for constructing small sample confidence intervals.

We demonstrate the use of our proposed methodologies on three proteomics data
sets. Two of the data sets are derived from the yeast proteome and are technical
replicates of each other. These two data sets are mixed in a 1:1 ratio using the SILAC
(Stable Isotope Labeling using Amino acids in Cell culture) labeling strategy, and are
therefore ‘pure null’ control samples. That is, since we expect each protein in these
two data sets to have a relative expression ratio of one, we have a convenient means
of evaluating the performance of our proposed methods, using measures such as the
estimated proportion of non differentially expressed proteins, the false discovery rate,
and the observed number of false positives and negatives. The proteins in the third
SILAC data set are derived from the mammalian cellular proteome, in particular the
Hela cell line, where the cells were stimulated with epidermal growth factor for two
hours prior to mass spectrometric analysis.
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Chapter 1

Introduction

1.1 Overview

The totality of the proteins expressed in a specific cell, given a particular set of

conditions, is defined as the proteome. The study of the proteomes of organisms is

called proteomics, a term defined analogously to genomics or metabolomic, which are

concerned with the study of the genome and the metabolome, respectively.

Proteomics is a relatively recent field (the term was coined as recent as 1997) that

is primarily concerned with investigating how proteins are affected by cell processes

or the external environment. In particular, Expression proteomics is concerned with

the analysis of expression and differential expression of proteins and highlighting

differences between them under different settings. For example, the protein content

and expression levels of a cancerous cell is often different from that of a healthy

cell. Certain proteins in the cancerous cell may be up-regulated (more abundant)

or down-regulated (less abundant) compared to the healthy cell. Identifying these

differentially expressed proteins can lead to the discovery of bio-markers which have

the potential to assist in early diagnosis and formulation of new therapies, and a

better understanding of the cellular level functionality of those proteins.
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The actual realization of these goals is not simple. The purification and identifica-

tion of proteins in any organism is hindered by a multitude of biological and technical

factors. Proteomics experiments are high-throughput, often generating giga-bytes of

data. Extracting meaningful information from these data is fraught with both tech-

nical and statistical data analysis issues related to high variability, robustness, and

multiple testing. Fortunately, recent developments in high-throughput proteomics

methods such as tandem mass spectrometry and quantification by stable isotope la-

beling have greatly advanced our ability to effectively make use of these large amounts

data.

In this dissertation, we develop robust statistical methods, which when taken to-

gether form a proteomics data analysis ‘pipe-line’. This pipe-line receives the peptide

level expression profiles of one or more protein samples at its front-end, and outputs

a list of proteins that are significantly up or down regulated.

We begin this chapter with an introduction to the field of proteomics, and to

the history and background of high-throughput proteomics methods. In Section 1.4,

we briefly review some of the more frequent statistical questions that arise in the

context of analyzing proteomics data. In Section 1.5, we discuss some of the analytical

challenges posed by the inherent complexity of proteomics data. In Section 1.6, we

describe the data sets and problem formulations that motivated our research, and in

Section 1.7, we set out these research goals within the statistical framework in which

each research question will be addressed.

The second half of this chapter, starting with Section 2, will present relevant

background information on the use of Mass Spectrometry (MS) based techniques for

identifying proteins, with particular emphasis on labeling based methodologies, and

the use of MS based techniques for quantifying protein expression levels. In addition,

we present a brief overview of some of the common statistical methodologies used in

identifying and quantifying proteins.
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1.2 An Introduction to Proteins, the Proteome

and Proteomics

The word protein is derived from the Greek word prôtos, meaning primary or first

rank of importance. As its name implies, proteins perform and regulate a number of

vital tasks in all organisms, from regulating the cellular machinery to determining

the phenotype. Examples of proteins include whole classes of important molecules:

among them enzymes, hormones, and antibodies. There are an estimated 20, 000 ∼

25, 000 genes in the human genome. These genes possibly code for as many as one

million proteins. This great variety in the number and types of proteins comes from

a phenomenon known as alternative splicing, where by a particular gene in a cell’s

DNA can create multiple protein types, based on the demands of the cell at a given

time.

The term proteome, a portmanteau of proteins and genome, refers to the entire

complement of proteins expressed by a genome, cell tissue or organism. It is larger and

in many ways a more complicated entity than the genome. More importantly, unlike

an organism’s genome which is more or less constant, the proteome regularly differs

among individuals, cell types, and within the same cell depending on cell activity,

disease, or external stimuli.

Proteomics is the study of the proteome. It was defined by Marc Wilkins in 1994 as

”the study of proteins, how they’re modified, when and where they’re expressed, how

they’re involved in metabolic pathways and how they interact with one another”. In

the past, the determination of the set of proteins produced in a cell was done by mRNA

analysis. However, it is now known that mRNA is not always translated into protein,

and that there is an insufficient correlation between mRNA and protein abundance

(Gygi et al., (1999)) [53]. Proteomics on the other hand, attempts to confirm the

presence of the protein and provide a direct measure of its quantity present. The
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scope of proteomics studies have now evolved from simple biochemical analysis of

single proteins to measurements of complex protein mixtures. In addition to protein

expression studies, other key areas of proteomics include: the characterization of the

3-D structure of proteins, as illustrated by the 3-D crystalline structure of a protein

shown in Figure 1.1, protein/protein and protein/DNA interactions, and the analysis

of post-translational modifications.

Figure 1.1: 3D crystalline structure of the yeast prion protein Ure2P.

1.3 Mass Spectrometry (MS) based Proteomics

In proteomics, before analyzing the expression levels of proteins in a given sample, the

protein complement of that sample needs to be accurately and efficiently identified.

This is afforded by a suite of technological tools broadly called mass spectrometry.

Mass spectrometry is a powerful technique that is used to identify unknown com-

pounds, to quantify known compounds, and to elucidate the structure and chem-

ical properties of molecules. The introduction of two ionization techniques in the

mid-1980s: ESI (ElectroSpray Ionization) and MALDI (Matrix Assisted Laser Des-

orption/Ionization), transformed MS into an enabling technology in proteomics by

allowing ionization of large intact macromolecules such as peptides and proteins.

Mass spectrometry based proteomics has emerged as the preferred and most power-

ful technological approach in proteomics studies. many improvements over the last
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decade in both instrumentation and associated computing tools now allow the rapid

processing of high-throughput data, leading to accurate and routine protein identi-

fication, quantification, and determination of sites of post-translational modification

(Aebersold et al., (2003)) [1].

In proteomics, the typical output from a mass spectrometer are spectra that com-

prise of digitized arrays of the intensities of all discrete mass-to-charge ratios detected

over a discrete mass range. A specialized MS procedure known as tandem mass spec-

trometry (MS/MS) is widely used to sequence peptides in real-time during the MS

operation. Interpretable MS/MS spectra are usually produced after only about 1-2

seconds of data acquisition time, and the entire process of pre-cursor peptide selec-

tion and MS/MS analysis can be fully automated. This allows the high-throughput,

large-scale analysis of complex protein mixtures in a fairly rapid and sensitive manner.

The MS method of first ionizing intact proteins using either ESI or MALDI, and

then introducing them to a mass analyzer, is referred to as the ”top-down” strategy of

protein analysis. Conversely, the ”bottom-up” strategy first digests protein analytes

into smaller peptides, enzymatically or by chemical cleaving, before being fed into

the mass spectrometer.

1.4 Statistical Methods in Proteomics Data Anal-

ysis

Tandem MS coupled with database searching, has become the de facto standard

for identifying and quantifying proteins in complex mixtures. In general, a protein

mixture of interest is enzymatically digested, and the resulting peptides are further

fragmented through CID (Collision Induced Dissociation). The resulting tandem MS

spectrum contains information about the constituent amino acids of the peptides,

which in turn provide information about their pre-cursor or parent proteins. The
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format of the data that results from MS or MS/MS consists of a two dimensional grid

of paired data points of mass-to-charge ratio (m/z) and signal intensity. Figure 1.2,

shows an example of a raw MALDI-TOF (Time-of-Flight) MS spectrum. Note that

the total number of measured data points is usually extremely large (1̃06 for a conven-

tional MALDI-TOF instrument). The primary challenge in quantitative proteomics,

especially with respect to bio-marker discovery, is making efficient use of this richness

of data to find a few peptides/proteins that can distinguish between case and control

samples.

Figure 1.2: An example MALDI-TOF MS spectrum. The horizontal axis denotes the
m/z (mass/charge) ratio and the vertical axis denotes the intensity value.

The typical work flow of analyzing proteomics data consist of the following steps:

[1] preprocessing of the raw spectral data; [2] sequence identification; [3] translation

of the peptide information into protein expression levels; and [4] determining whether

the observed protein expression changes between two or more samples are accurate,

repeatedly observable, and are statistically significant under an assumed null hypoth-

esis. The focus of our research is only on steps 3 and 4. However, for completeness,
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we give a brief review of current statistical methods used in steps 1 and 2, in Sections

2.4 and 2.5.

A number of important statistical questions that arise in steps 3 and 4 are: how

should systematic shifts in MS/MS profiles across multiple samples be addressed?;

should ratios be calculated from the MS, or MS/MS level data?; how should peptide

ratios be combined to calculate protein levels?; should all peptides be treated the

same in calculating protein levels?; how should observed intensity levels be adjusted

to correct for background noise?; and how should account for multiple testing?. Any

solution or set of solutions that effectively answers any or all of these questions would

be a significant advancement in the field of quantitative proteomics. There have

been many attempts to answer each of these questions on their own, and a few

attempts at addressing more than one of them within a unified framework. However,

to our knowledge there is no one method or a collection of methods that has garnered

acceptance as the ‘gold standard’. We present a brief review of existing statistical

methods that have been widely adopted by the proteomics community in Chapter 2.

1.5 Proteomics - Analytical Challenges

The relative complexity of the proteome compared to the genome or the metabolome,

has so far meant that the development of proteome-wide analyses technologies has

lagged and proven more difficult than the development of DNA analyses technolo-

gies. A number of other reasons contribute to the relative complexity of proteomics

data. For a start, the basic alphabet for encoding proteins consists of twenty amino

acids, whereas there are only four different nucleotides in the alphabet of DNA. Also,

many proteins undergo modifications after they have been synthesized. These post-

translational modifications (e.g., phosphorylation, ubiquitination, methylation, etc.)

have the potential for profoundly affecting the functional activity of the protein.
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There are also a number of analytical challenges posed by the technical difficulties

associated with MS and MS/MS based high-throughput proteomics methods. The

most intractable of these being the ionization efficiency of the target molecules. Ba-

sically, the ionization efficiency of a particular molecule in a droplet eluting from the

LC system is directly related to its hydrophobicity and its susceptibility to receiving a

charge. For example, in ESI (Electrospray Ionization) and MALDI (Matrix-Assisted

Laser-Desorption Ionization), ionization efficiency can be quite variable for peptides

of different sequence, identical peptides from different MALDI spots, or even for ESI

under different HPLC (High Performance Liquid Chromatography) conditions. This

means that it is virtually impossible to perform tandem MS on every ion presenting in

a chromatographic window at any given time. Furthermore, while a specific peptide

ion is being selected for CID; other co-eluting ions cannot be selected for tandem MS.

These excluded ions may or may not be selected for tandem MS in subsequent itera-

tions of the process, leading to a set of ions that will be completely undetected during

the experiment. Karas et al., (2003) [62] demonstrated these and other factors im-

pairing ionization efficiency and quantification using model metabolites. However, to

our knowledge; there are currently no methods available that can accurately predict

the severity of ion suppression in any given MS run.

The quality of peptide MS/MS spectra is dependent on a number of factors: the

sequence location of amino acids; amino acid side chain basicity; amino acid side

chain structure; and charge state of the fragmented peptide ion. Also, one of the pre-

requisites of sequencing by MS/MS is that the peptide undergoes complete, or near

complete fragmentation. If there is incomplete fragmentation, or the products of other

fragmentation pathways constitute a large portion of the spectra, the data becomes

difficult to decipher. Fortunately, the advent of high-resolution, high-speed mass

spectrometers have improved things greatly in this context. These high-sensitivity in-

struments can separate signal from background as well as from co-eluting compounds
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with similar mass, and can capture signals associated with much weaker peaks while

quantifying the stronger peaks with greater accuracy.

In addition to the above complexities in protein samples and MS based technolo-

gies, there are questions of robustness of quantitative methods used in the analysis

of peptide and protein data. Statistical validity of reported quantification results is

often based on the standard deviations obtained in separate runs, from different pep-

tides quantifying the same protein, and for a single peptide, from consecutive scans of

co-eluting peptides or peptide pairs. Ideally, all sources of variability in quantification

should be tracked, and a compound standard deviation determined. This compound

standard deviation should account for instrument error, sample preparation error,

and the inherent variation in biological samples. The biological sample variation of-

ten goes un-investigated even though Molloy et al., (2003) [88] had shown a large

contribution of the biological sample variation on top of instrumental errors, that

may reach a total error of up to 70% percent CV in some proteomics applications.

Furthermore, many of the statistical challenges in proteomics are exacerbated by

the inconsistency of the detected peptide complement between different MS runs of

the same protein sample. The failure to identify or detect a peptide in any given MS

run, does not always indicate the absence of its pre-cursor protein. Therefore, it is

essential that we do not rely entirely on the boolean nature of peptide identifications

in formulating a robust protein identification or quantification scheme. Stable iso-

tope labeling methods, described in Section 2.3, can serve to reduce the complexity

of protein mixtures by minimizing the level of systematic and biological variation in-

troduced during sample preparation. The caveat being that, if we only use standard

post-hoc mean expression level comparisons to analyze the data, we then lose poten-

tially useful information that could have been associated with the biological sample

variation.
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1.6 Motivating Examples

Our motivation behind this research is the development of robust and flexible method-

ologies for identifying differentially expressed proteins. Towards this end, we make use

three data sets: a mammalian cellular proteomics data set that is publicly available,

and two proprietary yeast data sets collected from a control experiment.

1.6.1 Data Sets

The best benchmark for evaluating the efficiency and effectiveness of a particular

methodology for identifying differentially expressed proteins is to apply that method-

ology on a data set with known behavior, or on a control sample. In essence, all

protein expression ratios derived from these control data sets should be known in ad-

vance, with allowance made for random noise contamination. In this work, we make

use of LC-MS/MS labeling based protein expression data derived from a yeast protein

mixture. This mixture consists of light and heavy isotope labeled yeast samples that

were mixed in a 1:1 ratio and digested in solution using trypsin. Each of six result-

ing gel fractions were then run in duplicate as technical replicates. Peptide/Protein

identifications were made using the SEQUEST algorithm (cf. Section 2.5.1). We note

here that the use of specially designed control samples to validate statistical methods

is quite rare in proteomics.

The third data set we use was first published in Cox and Mann (2007) [28]. The

data come from a SILAC experiment, where HeLa cells were stimulated with EGF

(Epidermal Growth Factor) for 2 hours prior to mass spectrometric analysis. The

signal pairs (heavy, light), correspond to the EGF stimulated, and control samples,

respectively. The combined protein mixture was digested in solution using trypsin,

and the resulting peptides were separated into 24 gel fractions. Each gel fraction

was then purified and analyzed using LC-ESI (liquid chromatography - electrospray
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ionization) combined with MS/MS. Peptide/protein identifications were made using

the MASCOT algorithm (cf. Section 2.5.2).

1.7 Proposed Research

Typical proteomics studies yield large data sets that consist of multiple layers of data

corresponding to: MS/MS scans → peptides → proteins. Primarily, our focus is

on the top most layer of data, i.e., the proteins. The goal of statistical analysis of

such data is to quantify the expression level of proteins, by making maximum use

of the data available at all layers. Effectively combining data across multiple layers

is hampered by a number of factors: high variability in protein expression levels;

inherent variability in mass spectrometry based methods; lack of replicate data in

most cases; and the simultaneous testing of thousands of hypotheses.

Current statistical methods in proteomics have lagged behind the technological

evolution of MS and other ‘omics’ methodologies. This is partly due to the relative

complexity of the proteome compared to the genome. But, to a great extent is also

due to a dearth of methods that explicitly address robustness and repeatability of sta-

tistical results. This lack of robustness can be attributed primarily to the ubiquitous

use of unvalidated parametric assumptions about the distribution of protein expres-

sion levels, and/or the failure to explicitly account for the error variation present at

each layer of the data. The use of empirical hierarchical Bayes methods that capture

variability within and between each layer of data, and nonparametric methods that

estimate the distribution of protein expression levels from the data itself, may help

to mitigate these issues.

A vast majority of labeling based proteomics experiments are run as non-replicated

experiments. This absence of repeat measures means that, when there are missing

values, a complete case only analysis of the data is highly inefficient. To date, the
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extent to which this issue has been addressed is limited to simple multiple imputa-

tion methods that rely on the missing completely at random (MCAR) assumption.

Analyses based on a more rigorous and realistic setting, i.e., based on robust model

based estimation approaches under the less restrictive missing at random (MAR) as-

sumption, may provide a more solid platform for point estimation and/or conducting

inference on protein expression levels.

1.7.1 Robust Estimation of Labeling Based High-Throughput

Relative Protein Expressions

When the distribution of the relative protein expression levels contain one or more of

the issues: non-Gaussian tails, regions of data sparsity, excess kurtosis, or asymme-

try, standard distributional approximations such as the N(0, 1), or N(µ, σ2), do not

perform adequately. We propose to develop methodologies that make maximum use

of the available data; account for both within and between variations of each data

layer; and robustly capture the empirical distribution of the relative protein expres-

sion levels. To this end, we work within the framework of finite mixture models, and

maximize the flexibility in data modeling by empirically inferring the full shape of

the class-conditional probability distribution of each mixture component.

Furthermore, we propose to investigate the utility of skew normal, skew Student’s

t, and Generalized Hyperbolic (GH) distributions, as suitable approximations for the

distribution of relative protein expression levels, when the said distribution suffers

from one or more of the afore mentioned irregularities. To our knowledge, this is

the first work to explore the utility of these distributions from an ‘omics’ data anal-

ysis perspective. The fitting of these distributions is rigorously controlled for both

goodness-of-fit; the number of fitted mixture components; and for stable estimates of

mixture parameters. We discuss these methodologies using a step by step data analy-

sis procedure; where for each protein, we start with estimating its relative expression
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ratio, and end with calculating its posterior probability of being non-differentially

expressed.

1.7.2 Resampling Based Methods for Identifying Differen-

tially Expressed Proteins Using XIC Area

The observed protein profiles of two technical replicates of the same protein mixture

can differ both with respect to the number of proteins identified and their expres-

sion levels. The latent error mechanisms leading to these discrepancies are not well

understood. However, it is believed that experimental and/or physicochemical prop-

erties of the constituent peptides of the proteins themselves might account for much

of this variability. This variability can be reduced to some degree through careful

quality control at each stage of the experiment; by removing ‘unreliable’ data points;

and by using a more stable method to quantify the peptide level relative expression

ratios. In this context, we propose to use a bivariate mixture model based cluster-

ing analysis to cluster the data into ‘reliable’ and ‘unreliable’ groups; and to use

Savitzky-Golay filtered ion current (XIC) profile area ratios to quantify the relative

expression ratio of peptides. We propose to account for the latent error mechanisms

by a novel method that relies on drawing weighted nested-bootstrap samples, and

using a bootstrap partial maximum likelihood estimator (BPMLE) to estimate the

overall relative expression ratio of each protein. We also develop a novel method that

constructs a model - based BPMLE, through resampling the residuals from a robust

Huber regression of peptide level relative expression ratios. Finally, we assign a sig-

nificance value to each estimated protein expression ratio using a nested-bootstrap

p-value calculation, and then control the false discovery rate locally by modeling the

p-value distribution as a two component Beta mixture model.
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1.7.3 Estimating Relative Protein Expression Levels from In-

complete Data

Most statistical analyses of proteomics data do not address the issue of missing values

beyond simple missing value imputation schemes, under the MCAR assumption. We

believe that with proteomics data, MCAR is both too restrictive and unrealistic. We

propose model based estimation strategies that are based on the less restrictive MAR

assumption in two settings. First, we look at robustly estimating the true relative

expression ratio of a protein based on incompletely observed peptide level data, using

a multivariate t model. Secondly, we will look at a valid estimation strategy when only

one peptide is available to uniquely identify a protein, using a bivariate normal model

with a monotone missingness pattern. Since the sample sizes associated with single

peptide proteins is relatively small, inferences based on the inverse of the observed

information matrix are not ideal. Therefore, we also propose a Bayesian scheme for

constructing confidence intervals for the estimated parameters under the bivariate

normal model. We believe that our work is the first to investigate the use of these

types of model based approaches for estimating the relative protein expression under

MAR.
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Chapter 2

Background

In this chapter, we present briefly, relevant background information on some key MS

based methodologies; data generating mechanisms; and associated statistical tech-

niques for pre-processing and identification of protein data.

2.1 Mass Spectrometric Methods for Protein Iden-

tification

In proteomics, the interpretation of MS or tandem MS spectra requires the combined

use of many techniques. The standard strategy for identifying an unknown compound

is to compare its observed mass spectrum against a database of theoretical mass

spectra. In general, database searching methods compare the experimentally observed

tandem MS spectra with features predicted for hypothetical spectra from candidate

peptides in the database, and assigns a score that is proportional to the degree of

matching. Because of the large number of MS/MS spectra that are generated in

a typical MS-based protein analysis, highly automated searching methods are an

absolute necessity (Eng et al., (1994)[44], Perkins et al., (1999)[95]). These high-

throughput automated searches were only made possible with the development of
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computer algorithms that can correlate peptide fragmentation spectra with sequence

databases using fragment ion pattern and mass of the parent (or precursor) ion as

input for sequence database searching. The best known of these types of algorithms

are the SEQUEST (Eng et al. (1994)[44]), MASCOT (Perkins et al., (1999)[95]),

PeptideProphet (Keller et al., (2002)[63]) and ProteinProphet (Nesvizhskii et al.,

(2003)[89]). A brief discussion of these algorithms is given in Section 2.5.

In a typical MS run, it is not unusual to have peptides identified with high scores

that are identified simply due to random sequence matching. These matches are False

Positives (FPs). In recent years, many researchers have adopted an approach based

on the use of a ”target-decoy” database search for peptide identifications. In this

approach, spectral data are searched against a protein sequence database (the target)

and a database comprised of reversed or random amino acid sequences (the decoy).

The number of positive identifications from the decoy database is used to estimate

the expected number of FPs in the target database search, under the assumption

that the probability of an incorrect peptide spectrum match is the same for both

target and decoy databases. This assumption underlying the target-decoy strategy

was demonstrated to be valid by Elias and Gygi (2007)[43].

An alternative approach to database searching is de novo MS/MS sequencing

(Taylor and Johnson (1997) [114], Danč́ık et al. (1999)[30], Chen et al. (2001)[25]),

which attempts to derive the peptide sequence directly from tandem MS data. The

primary advantage of de novo sequencing is that it can handle situations where a

target sequence is not found in the protein database being searched. However, the

utility of the approach is dependent upon the quality of tandem MS data, such as the

level of noise and the number of predicted fragment ion peaks that are observed.
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2.2 Mass Spectrometric Methods for Protein Ex-

pression Profiling

Accurate quantification of proteins of different samples, such as diseased vs. healthy

tissue, plays a vital role in proteomics. This quantification can be either absolute

or relative. Absolute quantification involves the determination of the exact quantity

of a protein (peptide) in a given sample. Relative quantification involves estimating

the quantity of a protein (peptide) in relation to the quantity of the same protein

(peptide) in a different sample, or the same sample in an altered state.

The absolute signal intensity of a peptide ion does not always reflect the true

abundance of the peptide in the analyzed sample. This is due to differences in ion-

ization efficiency, ion suppression, and the inconsistency in the detection of analytes

across different MS runs. However, differences in the relative peak intensities of the

same analyte do accurately reflect differences in its expression. Various methodolo-

gies have been developed to quantify relative changes in protein abundance between

samples. These methods fall broadly into two categories: label-free methods, and

methods based on stable isotope labeling. In this work, we focus exclusively on the

latter category.

2.3 Quantification based on Stable Isotope Label-

ing

A reliable internal standard is often required to normalize the quantitative variations

across different MS measurements. Such a standard should ideally be as similar as

possible to the analyzed peptide both chemically and physically. A known analyte of

unknown concentration can be absolutely quantified by spiking in an isotopic variant

of the same analyte to the sample of interest at a pre-determined concentration. As
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the two compounds typically co-elute, a comparison of the highest peaks or the peak

areas of the two compounds, will enable the absolute quantification of the analyte.

In proteomics, a similar quantification strategy is based on the addition of an

isotopically labeled synthetic peptide to the digestion reaction as a internal standard

or reference. Quantitative protein profiling is accomplished by comparing a reference

protein sample to a second sample containing the same proteins that are labeled with

heavy stable isotopes. Theoretically, all the peptides in the mixture of the two samples

then exist in pairs of identical sequence but different mass. As the peptide pairs have

the same physicochemical properties, they are expected to behave identically during

isolation, separation, and ionization. Thus, the ratio of intensities of the lower and

higher mass components provides an accurate measure of the relative expression of the

peptides (and hence of their parent proteins) in the original protein samples. Since

the ion intensities of each pair is measured simultaneously, much of the systematic

variations present in different MS runs along with variabilities in measured intensities

due to; ion-suppression, dynamic exclusion, and differing amounts of injected sample,

are eliminated. This allows an ‘apples-to-apples’ comparison of intensities, resulting

in more accurate profiling of the relative protein expressions.

Currently, several methods exist for stable isotope based quantification that differ

mainly in the technical process used in the actual labeling. The labeling is done either:

in vivo through metabolic incorporation, where labeling of the peptide/protein is done

by growing cells in a media enriched with stable isotope-containing anabolites; or in

vitro through chemical incorporation of the stable isotopes and relying on the use of

re-agents for chemical modification of proteins in a site-specific manner.

2.3.1 In Vitro Labeling via Chemical Incorporation

In vitro labeling involves incorporation of stable isotopic tags at selective sites on

peptides via in vitro chemical reactions. These site-specific incorporations include
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labeling of target peptides at their amino-(N-) or carboxyl-(C-) termini or on specific

amino acid residues, such as cysteine, lysine, tyrosine etc. The most popular of these

methods to data is ICAT (Isotope-Coded Affinity Tags), first introduced by Gygi

et al., (1999) [53]. In a typical ICAT experiment, proteins from two samples are la-

beled at their cysteine residues with either isotopically light (1H) or heavy (2H) ICAT

reagents. The light- and heavy- labeled samples are then combined, proteolyzed to

peptides, fractionated by multidimensional chromatography and then quantitatively

analyzed by MS. Then the ratio of ion intensities of the co-eluting ICAT-labeled

peptide pairs (with a mass shift of 8 Da per labeled cysteine residue) allows the

quantification of the relative expression of the peptides in the two samples. A sub-

sequent MS/MS scan is used to generate CID spectra that will be used for protein

identifications.

2.3.2 In Vivo Labeling via Metabolic Incorporation

In vivo labeling approaches involve metabolic incorporation of stable isotopes into

proteins of cells grown in special media containing these isotopes. We describe here

only one such approach, SILAC, that has recently garnered popularity due to the

high level of predictability of the mass shifts generated by the approach.

SILAC (Stable isotope labeling with amino acids in cell culture) is a straight-

forward approach for in vivo incorporation of a ‘label’ into proteins through the

metabolic incorporation of given ‘light’ or ‘heavy’ forms of amino acids with sub-

stituted stable isotopic nuclei (e.g., 2H, 13C, 15N). In a typical experiment, two cell

populations are grown in culture media that are identical except for the fact that one

population contains a ‘light’ and the other a ‘heavy’ form of a particular amino acid

(e.g., 12C and 13C labeled L-lysine). When the labeled analog of an amino acid is

supplied to cells in culture instead of the natural amino acid, it is incorporated into

all newly synthesized proteins. After a number of cell divisions, each instance of this
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particular amino acid will be replaced by its isotope labeled counterpart. Since there

is virtually no chemical difference between the labeled amino acid and the natural

amino acid isotopes, the cells behave exactly like the control cell population grown

in the presence of the normal amino acid.

There are several advantages of the SILAC approach compared to chemical in-

corporation methods. The accuracy of the approach is only limited by the quality

of the peptide signals observed; and the level of systematic and biological variation

introduced during sample preparation and MS processing is considerably less. The

labeling process is straightforward and highly efficient since usually 100% of the sam-

ple is available for MS analysis. SILAC also allows unlabeled and labeled samples

to be combined prior to lysis of the cells and to be treated as a single sample in all

subsequent steps. This affords the experimenter the flexibility to choose any method

of protein or peptide purification (after enzymatic digestion), without introducing

additional error components into the final compound standard error of the protein

expression levels.

The typical work flows of the ICAT and SILAC strategies are shown in Figure 2.1.

2.4 Statistical Methods in Preprocessing Proteomics

Data

The typical first step in proteomics data analysis is the removal or reduction of sys-

tematic artifacts introduced by the instrumentation and experimental protocols, and

by the random background fluctuations produced by chemical and electronic noise.

Secondly, spectra from multiple MS runs need to be aligned with respect to reten-

tion time of the compounds. These prerequisite data adjustment steps are known as

preprocessing, and at a minimum, involve the following steps: spectrum calibration;

base-line correction; smoothing; peak identification; and intensity normalization and
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Figure 2.1: Stable isotope labeling - (A) SILAC and (B) ICAT flow diagrams.

peak alignment.

Preprocessing generally starts with aligning individual spectra based on the max-

imum observed intensity of an internal calibrant. Removal of high frequency back-

ground noise is usually achieved with some form of local smoothing. For example,

with MALDI data, Wu et al., (2003)[119] uses a local linear regression method to es-

timate the background intensity values, and then subtract the fitted values from the

local linear regression result. Baggerly et al., (2003)[13] consider a semi-monotonic

baseline correction method in their analysis of SELDI data. Liu et al., (2003)[76]

compute the convex hull of the peak spectrum, and subtract the estimated convex

hull from the original spectrum to get the baseline noise-corrected spectrum.

In the following sections, we give a brief overview of peak selection and alignment

methods, which are arguably the two most important preprocessing steps.
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2.4.1 Peak Selection

Most peak selection methods are based on simple heuristics. In general, spectral

peaks are identified as the local maxima in predefined neighborhoods of intensity

values. It is also common that these local maxima are required to be higher than the

average intensity level of its neighborhood by a certain margin. For example, Liu et

al., (2003)[76] declare a point in the spectrum as a selected peak if the intensity is

a local maximum; its absolute value is larger than a threshold; and the intensity is

larger than a threshold times the average intensity in the neighborhood surrounding

the peak. Coombes et al., (2003) [27] consider two peak identification procedures. In

the simple peak detection procedure, local maxima are identified, and nearby maxima

that likely represent the same peptides are merged after filtering out local maxima

that are likely to be noise. In the simultaneous peak detection and baseline correction

procedure; simple peak detection is first used to obtain a preliminary list of peaks,

after which a baseline is calculated by removing these preliminary candidate peaks.

A final set of peaks is selected by iterating the above steps, until all peaks selected

are above a chosen signal-to-noise ratio threshold.

The success of these peak selection methods depend largely on whether or not

the noise model is correctly specified. Often, a particular noise model is assumed

without attempting to validate the assumed model. Coombes et al., (2003)[27] define

noise as the median absolute value of intensities. Satten et al., (2004)[108] use the

negative part of the normalized MS data to estimate the variance of noise. Yasui

et al., (2003a)[120] argue that binary peak/non-peak data is more useful than the

absolute values of intensities in quantifying noise, based on the observation that the

measured intensities are susceptible to substantial measurement error. Wavelets based

approaches for de-noising have also been proposed in Coombes et al., (2004)[? ], and

Randolph and Yasui (2006)[99].

All peak selection algorithms are limited by the resolution of the MS data and the
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consequent overlapping effect of neighboring peaks. There is also the issue of false

positive and false negative selections. Yasui et al., (2003b)[121] address this issue by

adding a peak width constraint. Randolph and Yasui (2004)[99]) choose a specific

scale level after a wavelets based decomposition of the original MS data. In the case

of high resolution data, Yu et al., (2004)[122]) propose that more than one isotopic

variant of a peptide peak should be present before a spectral peak can be selected as

originating from true peptide ionization.

2.4.2 Peak Alignment

After a set of suitable spectral peaks have been selected from multiple data sets,

they need to be aligned before they can be compared against each other or combined

to form an average peak profile. The variations in peak location between data sets

generated by the same MS protocol have been well demonstrated in several studies

(Torgrip et al., (2003)[117], Eilers (2004)[42]). According to Yu et al., (2006)[122],

this variation exists even among the selected peak profiles of technical replicates,

i.e., replicates of the same sample run under similar conditions. The reasons for this

variability are not well understood and are quite often not of primary interest, at

least as far as the functionality of the peak alignment algorithms are concerned.

Current peak alignment algorithms range from fairly simple to extremely com-

plicated. Johnson et al., (2003) assumes that peak variation is less than the typical

distance between peaks and uses a closest point matching method for peak align-

ment. Yu et al., (2006)[122] uses the same concept of peak distance to address the

alignment of multiple peak sets. Coombes et al., (2003)[27] align spectral peaks by

pooling the list of detected peaks that differed in location by three clock ticks in the

retention time axis or by 0.05% of the mass. Yasui et al., (2003a)[120] extrapolate

each peak to its local neighborhood with a peak width equal to 0.4% of the m/z

value of the middle point based on the observation that the shift of peaks is approx-
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imately 0.1% to 0.2% of the corresponding m/z value. In a separate study, Yasui et

al., (2003b)[121] first calculates the number of peaks in all samples allowing certain

shifts, and selected m/z values with the largest number of peaks. Next, this set of

peaks is removed from all spectra and the procedure is iterated until all peaks are

exhausted from all samples. Tibshirani et al., (2004)[115] propose the use of com-

plete linkage hierarchical clustering to cluster peaks. All peaks that fall into the same

cluster are considered to represent the same peak. Randolph and Yasui (2006)[99]

uses wavelets to represent the MS data in a multiscale frequency domain and use a

coarse-to-fine decomposition method to first align peaks at a dominant scale and then

refine the alignment of other peaks at a finer scale. Eilers (2004)[42] propose a para-

metric warping model with polynomial or spline functions to align chromatograms by

adding calibration sequences into chromatograms. Peak alignment approaches based

on dynamic programming (Nielsen et al., (1998)[91], Torgrip et al., (2003)[117]) have

also been proposed.

2.5 Statistical Methods in Identification of Pep-

tides/Proteins

Most algorithms for protein identification from MS/MS spectra consist of the fol-

lowing three elements (Bafna and Edwards (2001))[12]: [1] interpretation, where the

input MS/MS data are interpreted; [2] filtering, where the interpreted MS/MS data

are used as templates in a database search to identify a set of candidate peptides; [3]

scoring, where the candidate peptides are ranked with a score.

In the following sections, we present a brief review of the statistical methods

employed by two of the most popular peptide/protein identification algorithms.
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2.5.1 SEQUEST (Eng et al., (1994))

SEQUESTr is perhaps the most popular sequence identification algorithm in current

use. The algorithm first creates a list of peptide masses, isobaric to the observed

mass on which CID was carried out, by searching the database of choice for possible

amino acid sequences that could have generated peptide masses to match the mass of

the parent peptide. For each of these candidate peptides, the algorithm generates a

theoretical CID mass spectrum that is then compared to the observed fragment ion

spectrum using a cross-correlation algorithm. Similarity of the theoretical spectrum

to the observed is quantified using both a correlation coefficient and a correlation

factor. The correlation coefficient represents the quality of the match while the corre-

lation factor represents the difference between the best-matched peptide and the next

possible candidate. Each comparison is then ranked relative to all other possibilities,

based on the score of the correlation coefficient, the correlation factor, and other pa-

rameters such as the number of fragment ions predicted versus found. However, since

the algorithm does not calculate a probabilistic significance for the cross-correlation

score, it is not possible to determine the probability that the top-ranked match was

not simply the result of random chance. Based on empirical evidence, Eng et al.,

(1994) [44] suggest that a difference greater than 0.1 between the normalized cross-

correlation functions of the first- and second-ranked peptides indicates a successful

match between the top-ranked theoretical peptide sequence and the observed spec-

trum.

2.5.2 MASCOT (Perkins et al., (1999))

Unlike SEQUEST, the MASCOTr algorithm is based on a probability-based scoring

scheme. The probability that a match between the experimental MS/MS data and

each sequence database entry is a chance event is calculated and the match with the

lowest probability is reported as the best match. MASCOT iteratively searches for
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the set of the most intense ion peaks that provide the highest score (reported as -10

log(P ), where P is the probability of the match resulting from a chance event). In

addition, MASCOT considers many other factors in its probability calculations: the

number of missed cleavages; quantitative and non-quantitative modifications; mass

accuracy; the particular ion series to be searched; and peak intensities. Perkins et

al., (1999) [95] suggest that the validity of the MASCOT probabilities be tested by

repeating the search against a randomized sequence database and/or by comparing

the MASCOT results with those obtained via the use of other search engines.

2.5.3 Other Methods

Mann and Wilm (1994)[78] propose a peptide sequence tag approach to extract a

short, unambiguous amino acid sequence from the peak pattern that, when combined

with the mass information, infers the composition of the peptide. PeptideProphet

(Keller et al., (2002)[63]) and ProteinProphet (Nesvizhskii et al., (2003)[89]), are

two methods that validate the peptide and protein identifications using robust sta-

tistical models. After scores are derived from a database search, PeptideProphet

models the distribution of these scores as a mixture of two distributions, where the

two mixture components correspond to the distributions of the correct and incorrect

matches. ProteinProphet takes as input the list of peptides and probabilities from

PeptideProphet, adjusts the probabilities for observed protein grouping information,

and then discriminates correct from incorrect protein identifications.
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Chapter 3

Robust Estimation of Labeling

Based High-Throughput Relative

Protein Expression

3.1 Introduction

Once a list of putative proteins have been identified, the next step in data analysis

is the calculation of the expression level of each of the identified proteins. Recent

advances in the field of quantitative proteomics have led to the development of many

algorithms and methods that deal with this issue. These methods all have different

advantages and disadvantages; and are often better suited to a specific setting, thereby

reducing their generalizability across multiple proteomics platforms.

There are two broad categories of estimation methods in quantitative proteomics:

relative, and absolute. Absolute quantification methods attempt to measure the ab-

solute expression level of a protein using one or more characteristic peptides unique

to that protein (Gerber et al., (2003)[49], Beynon et al., (2005)[18], Anderson et al.,

(2004)[4]). In this work, we focus on relative quantification methods, with particular
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emphasis on estimating the relative expression of proteins originating from labeling

based proteomics experiments. Due to availability and accessability, we have cho-

sen to work with proteomics data from SILAC experiments. However, the developed

methodologies are easily adaptable to data from other stable isotope labeling strate-

gies such as iTRAQ (Ross et al., (2004)[105], and ICAT (Gygi et al., (1999)[53]).

Previous studies analyzing proteomics data have often relied on techniques which

do not account for experiment-specific data variabilities. For example, applying a

universal fold-change threshold to identify differentially expressed proteins (Blagoev

et al., (2003)[20], Ong et al., (2003)[92]). Other studies analyze differential pro-

tein expression without considering the confidence level of each estimated expression

level(Han et al., (2001)[54], Ranish et al., (2003)[100], Blagoev et al., (2003)[19]), or

without fitting a distribution to all expression levels (Lin et al., (2006)[68], Mertins et

al., (2008)[87]). A criticism of these types of analyses is the failure to appropriately

isolate the expression levels that correspond to the truly differentially expressed or

non-differentially expressed proteins. Another criticism is the use of Bonferroni or

q-value type multiple testing adjustments, which are known to be too conservative.

In our work, we explore the application of empirical Bayes hierarchical modeling

of SILAC data within the framework of finite mixture models. We adjust for multiple

testing by controlling the false discovery rate locally, using an approach first proposed

by Efron (Efron (2002)[37], Efron (2008)[39]) in the context of gene expression anal-

yses. In our previous research, we found that these methods, off the shelf, could not

robustly model proteomics data, when the data contained non-Gaussian tails, regions

of data sparsity, excess kurtosis, or were asymmetrically distributed. Non-Gaussian

tails and excess kurtosis are the norm with proteomics data due to the presence of

extreme observations and the fact that a significant majority of proteins have a rela-

tive expression ratio of one. Asymmetry is typically the by product of discrete errors

associated with sample preparation and mass spectrometric processing of proteomics
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data. At the sample preparation stage, the main discrete error sources are the differ-

ences in the level of trypsin digestion and the efficiency of incorporating isotopic tags.

At the mass spectrometric level, the significant discrete error sources are ionization

efficiency and ion suppression. In addition, asymmetry could result if of the proteins

that are differentially expressed, a majority are down-regulated with only a few that

are up-regulated, or vice versa. This would lead the distribution of the calculated

expression ratio statistic to be skewed to the left or to the right.

In subsequent sections of this chapter, we develop methodologies for both quan-

tification and significance assessment of relative protein expression, when data come

from non-replicated experiments. In fact, most labeling based proteomics experi-

ments are not run with replicates due to cost and time constraints. Therefore, we

discuss methodologies that make maximum use of the available data to efficiently es-

timate relative expression levels; and maximize the flexibility to infer the true shape

of the mixture components beyond the capacity provided by standard symmetrical

distributions.

3.2 Identifying Differentially Expressed Proteins

in Non-replicated Experiments

3.2.1 Data Structure

In SILAC experiments, isotopically-labeled amino acids are used to ‘pair’ peptide

signals arising from two or more samples. The hierarchical structure of the resultant

data can be outlined as follows. Let F 1, . . . , F n denote the data vectors originating

from n gel fractions that are analyzed in an experiment. At the gel fraction level,

the structure of the data can be described as follows. Assuming that we observe ni

individual proteins in gel fraction i, we have F i = {Pri1, . . . , P rini}; i = ı, . . . , n,
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where Prij denotes the jth protein observed from the ith gel fraction. Prij in turn

represents the set of nij individual peptides {Ppij1 , . . . , Ppijnij} that are derived from

Prij. However, we do not observe the same set of proteins in each gel fraction.

Similarly, the derived peptide complement of a protein will not be the same from one

gel fraction to another.

Let m be the total number of individual proteins detected over all n gel fractions,

and let the set of these proteins be Pr = {Pr1, . . . , P rm}. For a given protein Prj ∈

Pr; j = 1, . . . , m, let mj be the total number of individual peptides derived from

that protein across all gel fractions, represented by the set Ppj = {Ppj1, . . . , Ppjmj}.

Now for each Ppjk ∈ Ppj; k = 1, . . . , mj; let mjk be the number of times peptide

Ppjk is detected across all gel fractions. In proteomics the sum, SCj =
∑mj

k=1mjk is

known as the spectral count of protein j. Furthermore, if we denote the rth occurrence

of the peptide Ppjk as Ppjkr; r = 1, . . . , mjk, then throughout the full duration of the

scan in which Ppjkr is detected, we observe mjkr signal intensity pairs (ljkr,hjkr) =

{(ljkrh , hjkrh ) : h = 0, . . . , mjkr} in which the corresponding light and heavy signals

are quantified. Each of these mjkr data pairs provide an independent estimate of the

relative expression ratio for the rth occurrence of peptide Ppjk.

The observed ion intensities for a given peptide level scan are assumed to be

composed of three parts: the true intensity corresponding to the light or heavy iso-

topologue, a background intensity that is uniformly present during the scan, and a

random noise component. Then for the rth occurrence of peptide k of protein j,

ljkrObserved = ljkrTrue + ljkrBackground + ljkrNoise (3.1)

hijkObserved = hjkrTrue + hjkrBackground + hjkrNoise (3.2)

Assuming that within each full scan: background component is the same for both

the light and heavy signals; and both noise components have zero-mean, we can
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extract the true signal from the observed through careful preprocessing of the data.

If we now denote the post-processed peptide signal pairs as Ljkr and Hjkr, then the

ratios

Rj =

{
Ljkrh

Hjkr
h

; k = 1, . . . , mj, r = 1, . . . , mjk, h = 1, . . . , mjkr

}
(3.3)

each provide an estimate of the true relative expression of the jth protein between

the light and heavy isotopically labeled samples. Note that signal pairs in which

Hjkr
h = 0, have to be removed from this set, since we have chosen to define the relative

expression ratio as light/heavy. Now for a given Ppjkr, we represent its estimated

relative expression ratio using a summary measure derived from its corresponding

mjkr pre-processed signal intensity pairs. The summary measure we consider here is

the relative expression ratio derived from the signal intensity pair that has the highest

signal-to-noise ratio.

Let, sjkr denote the summary relative expression ratio for the rth occurrence

of peptide Ppjk, and let the set of all mjk summary ratios available for peptide

Ppjk be denoted by sjk. = {sjk1, . . . , sjkmjk}, where the dot notation is used to

indicate the aggregation of all data over the index that is being represented by the

dot. At the protein level, let Sj = {sj1., . . . , sjmj.} denote the union of all mj

aggregate peptide sets that constitute all available data for protein j. Each peptide

set sjk. ∈ Sj, k = 1, . . . , mj provides mjk separate peptide level relative expression

ratios, and Sj, Mj =
∑mj

k=1mjk ratios altogether, for the estimation of the relative

expression ratio of protein j. The question then is, how best to utilize Sj, which

carries peptide level information, to arrive at a summary estimator g(Sj) of the

true relative expression of protein j, g(Sj)= lj..True
hj..True

, that has an associated measure of

determining statistical significance of the estimated ratio.
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3.2.2 A Random Effects Model for Estimating Relative Pro-

tein Expression

After aggregation, let the set of all scan level peptide relative expression ratios avail-

able from the experiment be S =
{
Ljkr

Hjkr : j = ı, . . . , m; k = ı, . . . , mj; r = ı, . . . , mjk

}
.

The form of g that we apply on S is based on the idea of a one-way random-effects

ANOVA model, that is allowed to be both unbalanced and heteroscedastic. More

specifically, let the log base-2 transformed elements of the set S corresponding to

protein j be denoted by xjkr, for k = ı, . . . , mj and r = ı, . . . , mjk. In quantitative

proteomics, log transformation makes intuitive sense since it treats the magnitude of

both over and under expression symmetrically around the zero point; i.e., the point

corresponding to equal expression. We assume that xjkr is a realization of a random

variable Xjkr constructed as

Xjkr = µjk + εjkr = µj + βjk + εjkr (3.4)

where µjk is the true relative expression ratio of the kth peptide derived from protein

j, and εjkr is a random error term representing the sampling error of Xjkr as an esti-

mate of µjk. We can further decompose µjk into the mean µj of the population from

which the µjk’s are sampled and the error βjk of µjk as an estimate of µj. In this

decomposition, we make the following distributional assumptions: βjk ∼ N(0, σ2
j ),

εjkr ∼ N(0, σ2
jk), and the βjk and εjkr are mutually independent. The two variance

components σ2
j and σ2

jk can be thought of as the between peptide and within peptide

variances. The term σ2
jk allows for heteroscedasticity of the within peptide variances

derived from the same protein. This is important since the variance of peptide ex-

pression levels are typically associated with their mean expression levels, leading to

differential variability for different peptides. In the formulation of model 3.4, the

choice of the random effect βjk for the peptide level error reflects the fact that each
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protein’s relative expression is quantified based only on a sample of peptides (i.e.,

based only on the peptides that were observed in the experiment) out of the popula-

tion of all peptides that are indicative of that protein. Similarly, the random effect

εjkr reflects the fact that each peptides’s relative expression is quantified based only

on a sample of expression level pairs out of the population of all expression pairs that

are indicative of that peptide.

3.2.3 Estimation of Model Parameters

Our interest is in estimating µj, σ
2
j , and σ2

jk from all available data for protein j.

Here we make use of a variant of the minimum norm quadratic unbiased estima-

tion (MINQUE) method, developed by C.R. Rao [101, 102, 103] for the estimation

of variance components in random effects models. P.S.R.S. Rao et al., (1981)[104]

called this variant the average of the squares residuals (ASR) type estimators and

demonstrated that when σ2
j > 0, ASR estimates of σ2

j and µj have the lowest and

second lowest MSE’s, respectively, among eight different estimators that includes the

maximum likelihood estimator. Furthermore, ASR estimators are always nonnegative

and can be easily estimated from the data, without resorting to iterative procedures;

which is often the case with MLE, REML or Bayesian estimators.

Let,

ljk = mjk/(mjk + 1)

x̄jk =

mjk∑
r=1

xjkr/mjk

ŵjk = mjk/(σ̂
2
jk +mjk σ̂

2
j )

Ŵj =

mj∑
k=1

ŵjk

¯̄xj =

∑mj
k=1 ljk x̄jk∑mj
k=1 ljk
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Then the ASR estimators are given by

σ̂2
jk =

1

mjk

mjk∑
h=1

(xjkr − x̄jk)2 +
l2jk
m2
jk

(x̄jk − ¯̄xj)
2 (3.5)

σ̂2
j =

1

mj

mj∑
k=1

l2jk(x̄jk − ¯̄xj)
2 (3.6)

µ̂j =

∑mj
k=1 ŵjk x̄jk∑mj
k=1 ŵjk

(3.7)

V ar(µ̂j) = σ̂2
µj

=
1

Ŵj

(3.8)

The ASR estimate of µj; i.e., the true relative expression ratio of protein j, is

therefore a weighted sum of the peptide specific relative expression ratios, x̄jk, k =

ı, . . . , mj, where the weights are the reciprocal of an estimate of the total variance of

x̄jk that encompasses both between and within peptide variance components. Having

obtained the estimates µ̂j and V ar(µ̂j), we can construct an approximate test of

whether µj differs from unity (i.e., equal abundances of the protein j in the two

samples), using the test statistic

zj =
µ̂j − log2(1)

Ŵ
1/2
j

=
µ̂j

Ŵ
1/2
j

∼ f(z) (3.9)

where f(z) is the distribution of the test statistic Z. Relatively high or low values of

the test statistic indicate proteins whose expression levels are significantly different

between the light and heavy labeled samples.

3.2.4 Simultaneous Testing of Relative Protein Expression

Levels

Let Z be the set of all test statistics Zj; j = ı, . . . , m. The goal is then to identify a

relatively small set of interesting non-null proteins, after adjusting for multiple testing

considerations. The simplest means of achieving this objective is to set a simple
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fold-change cutoff rule (Ong et al., (2002)[92], Blagoev et al., (2004)[20]). In this

approach, proteins with a fold-change larger than a pre-defined cut off (e.g., 1.5-fold,

or 2-fold) are classified as differentially expressed. While this is an intuitively simple

approach; there are a number of limitations of the approach that have been widely

discussed in the context of micro-array data (Gusnanto et al., (2007)[51]), which are

equally relevant in quantitative proteomics. A more statistically rigorous method

uses the Student’s t-test and corresponding p-values to identify significant changes in

expression level, after a Bonferroni or q-value type multiple testing adjustment (Cox

et al., (2008)[29], Chang et al., (2004)[24], Hendrickson et al., (2006)[55]).

Let f(z) denote the distribution of all the z’s, and f0(z) denote the distribution

of z’s under the null hypothesis of non differential expression. We would expect

f0(z), to be nearly N(0, 1). However, the standard normal distribution rarely holds

in practice. In our experience, we have encountered data where the distribution of

zj’s is better approximated by a N(µ, σ2), a skewed and/or kurtotic normal or even a

distribution with heavier tails than the normal, such as the Student’s t. On occasion,

f0(z) can even be multi-modal. In addition f(z), the distribution of all the z’s,

can also be asymmetric and have longer tails than a normal, especially if the data

contain outliers. There is also the issue of sparsity of data towards the tail ends of the

distribution of zj’s. This is typically the case when a majority of proteins (typically

upwards of 90%) are not differentially expressed and are tightly packed around the

center of the distribution with a few non-null proteins spread out thinly at the tail

edges. Therefore methods based on fitting a single distribution to the zj’s, without

robustly capturing the null and non-null components is likely to be too conservative

in identifying significant proteins, or may not identify any significant proteins at all.

Since a large majority of proteomics experiments are not run in replicate, strong

parametric assumptions are often the only recourse. However, since in high through-

put experiments, m is usually large, it seems unnecessary to restrict oneself to strictly
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parametric approaches. In the field of microarray gene expression analyses; empirical

Bayes and mixture models based methods have been suggested as alternatives to mak-

ing strong parametric assumptions about the distribution of zj’s (Efron (2002)[37],

Pan et al., (2003)[94], Allison et al., (2002)[3], McLachlan et al., (2006)[84]). In pro-

teomics, Marelli et al., (2004)[79], Kim et al., (2007)[64], and Chen et al., (2008)[26]

have used gaussian mixtures to model protein expression levels. In this work, we

adopt a similar line of thought to that of the ‘two-groups model’ adopted by Efron

(2008)[39], for the simultaneous testing of all hypotheses concerning differential ex-

pression; {Hj}j=ı, ...,m, without the need for strong Bayesian or frequentist assump-

tions. In particular, we extend the empirical Bayes framework of Efron (2002, 2008),

where Gaussian mixture models were used as approximations to f(z) and f0(z) in

the context of microarray gene expression analyses.

3.2.4.1 The Two-Groups Model

The two-groups model is a simple Bayesian construction that facilitates empirical

Bayes analyses. It has been widely adopted in the Bayesian microarray literature, as

in Lee et al., (2000)[65], Newton et al., (2001)[90], and Efron (2008)[39]. Simply put,

the two-groups model assumes that the m proteins are each either null or non-null

with prior probability p0 or p1 = 1− p0, and with the corresponding z-values having

density either f0(z) or f1(z). Then the distribution of all zj’s, f(z), can be given as

f(z) = p0 f0(z) + p1f1(z) (3.10)

3.2.4.2 Local False Discovery Rate

The idea of using the mixture distribution in (3.10) is also closely related to FDR.

In particular to the local false discovery rate of Efron et al., (2001)[41], and Efron

and Tibshirani (2002)[40]. By definition, the local false discovery rate, locfdr, is the
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posterior probability of population f0(z), given the mixture model in (3.9), and is

given by

locfdrj(z
∗) = Pr(protein j is null | zj = z ∗)

= p0f0(z∗)/f(z∗) = f+
0 (z∗)/f(z∗) (3.11)

= f+
0 (z∗)/(f+

0 (z∗) + p1f1(z∗)) (3.12)

where the sub-density f+
0 (.) corresponds to the distribution of the null proteins.

Why a local false discovery rate ? In proteomics data analyses, the above

Bayesian definition of locfdr has several advantages over the frequentist FDR. Firstly,

it can be implemented at the test statistic value level, when a p-value computation is

either cumbersome or not feasible. Secondly, since it only depends on the marginal

distribution of the z values, independence of the zj’s is not required. Assumptions

about the distribution of the z values under H1 are also not required.

In essence, the FDR gives an estimate of the number of false positive hypotheses

that a practitioner can expect if the experiment is done an infinite number of times,

and as such is a less reliable estimate of the number of false discovery hypotheses

in any given experiment. The q-value approach of Storey and Tibshirani (2003)[113]

is an improvement in this sense since it assigns to each protein its own measure of

significance. However, the q-value is not a true estimate of the probability for an

individual protein, say protein A, to be a false positive since it is computed using all

the proteins that are more significant than protein A. Clearly a protein whose p-value

is near to a chosen cutoff, for example 0.05, does not have the same probability to be

differentially expressed as a protein whose p-value is close to zero. This ‘averaging’

behavior of the q-value tends to yield inflated probabilities for a protein to be a false

positive.

The local false discovery rate on the other hand gives an estimate of the false
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discovery rate attached to each protein. The estimated local false discovery rate

for a given protein provides a measure of belief in the jth protein’s significance that

depends only on the value of zj, and not on its inclusion in a larger set of possible

values, Z ≤ zj. Therefore the locfdr is much preferable in situations where the

primary interest is in identifying proteins that show some evidence of differential

expression for further biological study. We refer to Aubert et al., (2004)[8] for a more

substantial discussion on the need for information at the individual observation level

for a given observation to be considered a false positive.

3.2.5 Proposed Two-Groups Models

Many approaches have been proposed for locfdr estimation by fitting the two-groups

model. These include fully parametric, nonparametric, Bayesian and empirical Bayes,

and semi-parametric approaches. With any of these approaches, fitting the model

requires knowledge of p0, f0(z), and of either f1(z) or f(z).

The marginal distribution of all zj’s, f(z), is estimated using the data for all the

proteins in the experiment. The sub-density f0(z) is typically estimated using only

the central part of the distribution of zj’s in the neighborhood of the zero point. The

rationale being that this central part consists mainly of null proteins. In microarray

gene expression analyses; Allison et al., (2002)[3] estimates f(z) by fitting a mixture

of beta distributions, when the two-group model is specified using p-values. Efron

(2002)[37] estimates f(z) by maximum likelihood estimates of high-order polynomials

and natural spline basis with 7 degrees of freedom.

In Allison et al., (2002)[3], the distribution of the null genes, f0(z), is simply

the beta(1,1) component of the mixture of beta distributions, since under the null

hypothesis for a well defined test statistic; the p-values follow a uniform distribution

on [0,1], which is equivalent to a beta(1,1). Efron (2002)[37] estimates f0(z) using

an empirical null distribution using both central matching and maximum likelihood
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estimates, where the estimation is done using a fixed-sized window around the peak

corresponding to the 0 point of the empirical distribution of the zj’s. Pan et al.,

(2003)[94] used a normal mixture model with the number of mixture components

estimated by a likelihood ratio test based procedure for the estimation of both f(z)

and f0(z).

We propose to investigate the performance of several distributional choices for

both f0(z) and f(z), including normal, skew-normal (sN) and skew-t (sT), and finite

mixtures of them. Finite mixtures of distributions have found wide recognition in

modeling heterogeneous data and as approximations to complicated probability den-

sities, presenting multimodality, skewness and heavy tails. Comprehensive surveys of

the application of mixture models are available in Böhning (2000) [21], McLachlan

and Peel (2000) [86], and from a Bayesian perspective, in Frühwirth-Schnatter (2006)

[47]. Furthermore, we propose to investigate the utility of the Generalized Hyperbolic

(GH) distribution, as a means of dealing with the excess kurtosis that is sometimes

observed in the central peak region of the distribution of z, while at the same time

effectively capturing heavier tailed behavior.

The above choices are motivated by our experience in our previous research, where

we used mixtures of nonparametric (kernel) densities as an approximation to the dis-

tribution of f(z), in combination with mixtures of normals as an approximation to

f0(z). However, the local false discovery strategy using these model setups did not pro-

duce robustly reproducible results, mainly due to issues of skewness, multi-modality,

outliers, and sparsity of data points beyond the central region of the distribution of

the test statistic z and over fitting. We say an estimated distribution is over fitted

if it assigns high likelihood to the data, but does not generalize to new samples sim-

ilarly drawn. However, over fit is not synonymous with inconsistency. The use of

simple models (for instance models involving the normal distribution) is convenient

and computationally cheaper. But this simplicity comes at the expense of relatively
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low likelihood (unless the true distribution is of the assumed form), i.e., under fitting

complex data distributions. On the other hand, even when the need for accurate

nonparametric fits (consistency) is recognized, the use of such techniques as kernel

density estimates leads to over fitting (though consistent), through the use of a dis-

tribution that is significantly more nuanced than is required to accurately represent

the data. In this sense, kernel estimators provide little understanding of the data or

practical usefulness since all of the data is retained rather than summarized, leading

to non generalizable results.

Our approach is to seek a middle ground between these two extremes by em-

ploying sufficient insight and computational resources to consider a rich variety of

distributions and find a distributional setting which best explains the data, without

sacrificing generalizability. We achieve this goal by considering generalized forms of

normal, Student’s t, and hyperbolic distributions, and where necessary finite mixtures

of them. These distributions allow the fitting of skewed and kurtotic distributions

while providing a heavier or lighter tailed fit as compared to the normal.

We consider three pairs of distributional choices,

Nmix-Tmix ≡ f0(z) ∼ Mixture ofNDT (µ, σ2); f(z) ∼ Mixture of t(µ, σ2)

sN-sTmix ≡ f0(z) ∼ sNDT (µ, σ2, λ); f(z) ∼ Mixture of sT (µ, σ2, λ, τ)

sNmix-GH ≡ f0(z) ∼ Mixture of sNDT (µ, σ2, λ); f(z) ∼ GH,

where the subscript ‘DT’ refers to Doubly Truncated, indicating the fact that the

support for the mixture components considered for f0(z) is truncated to the left and

right over a pre-specified interval.

The motivation for considering a mixture model for f0(z) is that it allows us to ac-

commodate multi-modality and asymmetry of the distribution around the zero point

that results from the fact that experimental sources of error include not only those
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that are symmetric and continuously distributed (e.g., pipette and other sampling

handling perturbances) but also errors that are asymmetric and/or discontinuously

distributed (e.g., peptides matched to the wrong protein, co-eluting peptides that are

suppressed). The use of a mixture model to fit f(z) allow the left tail (corresponding

to under expressed proteins) and the right tail (corresponding to over expressed pro-

teins) to be modeled separately. This helps in capturing atypical observations that

usually would have been considered outliers and removed from further analyses. As

noted previously, atypical observations that are detected far away from the central

peak region is a common phenomenon in proteomics data.

Although these three model setups are considered separately, in practice any of

the above choices for f0(z) can be used in conjunction with any of the choices for

f(z). Typically the only restriction is the availability of a sufficiently large number

of data points to reliably estimate all model parameters. We also note that, to our

knowledge, this work is the first that attempts to model proteomics data within the

framework of skew-Normal, Skew-t, or GH distributions.

3.2.6 Fitting a Two-Groups Model

Fitting any two-groups model involves, at a minimum, the following four steps:

1. Selecting a subset of the data as belonging to the null distribution of the test

statistic

2. Estimating the proportion of null cases, p̂0

3. Fitting f0 and f distributions to the data, and

4. Evaluating the goodness of fit of each fitted distribution

The above four steps yield (p̂0, f̂0(z), f̂(z)), which are the required components

needed to calculate the local false discovery rate of each protein using (3.11). The
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analytical methods that we employ in steps 1 through 4 are described in detail in the

following sections.

3.2.6.1 Identifying the Null Region

As mentioned earlier, a majority of proteins will not be differentially expressed in

any given SILAC experiment. These null proteins have an expected log-2 relative

expression ratio of zero and are tightly packed around the center of the distribution

of z. A simplistic method of identifying this central ‘null’ region is to use a cutoff

such as ±1 SD or |z| ≤ 2. Turnbull (2007)[118], developed a method of optimally

calculating this center region that produces consistent FDR estimates under the weak

zero assumption. This assumption states that there exists an optimal cutoff t such

that f1(z) = 0 for z ∈ [−t, t]. We adopt the same strategy in our work since this

approach minimizes the MSE of the estimator f̂+
0 (z) and is asymptotically unbiased,

when f0(z) is assumed to be N(µ0, σ
2
0). Under this approach, the optimal cutoff rule,

as a function of the total number of proteins, m, is

t∗ ≈ µ̂0 + bσ̂0 (3.13)

where µ̂0 = median(z), σ̂0 = IQR(z)/1.349, and b = max(1 , 4.3m−0.112966).

In the following sections, let, z0 = {z : z ∈ [−t∗, t∗]}, l0 = 2bσ̂0, and m0 =

# (proteins inz0), denote the assumed null protein set, the length of the null region

of z, and the number of assumed null proteins, respectively.

3.2.6.2 Proportion of null proteins

The strong zero assumption underlying the two-groups model states that: f1(z) =

0 ∀ z ∈ [−t∗, t∗] for some fixed t∗. Turnbull (2007)[118] and Efron [38, 39]), estimate

p0 using the following simple construction.
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Let, f0 ∼ N(µ0, σ0) and H0(µ0, σ0) =

∫ t∗

−t∗
f0 = Φ

(
t∗ − µ0

σ0

)
− Φ

(
−t∗ − µ0

σ0

)
, and

define the truncated normal distribution with density proportional to the normal

distribution over [−t∗, t∗] and zero else where as,

f t
∗

0 (z) =
f0(z)

H0(µ0, σ0)
, z ∈ [−t∗, t∗] (3.14)

Define,

θt∗ ≡
∫ t∗

−t∗
p0f0(z) = p0H0(µ0, σ0). (3.15)

Then under the strong zero assumption,

m0 ∼ Bin(m, θt∗)

and the elements of z0 are i.i.d. with distribution given in (3.14), giving the likelihood

Lt∗(m, z0 | µ0, σ0, θt∗) =

(
m

m0

)
θm0
t∗ (1− θt∗)m−m0

∏
z∈z0

f t
∗

0 (z). (3.16)

Maximizing Lt∗ yields, θ̂t∗ =
m0

m
. Then by definition (3.15),

p̂0 =
θ̂t∗

H0(µ̂0, σ̂0)
. (3.17)

In this work, we extend the work of Turnbull and Efron by allowing for more ro-

bust and flexible distributions other than the truncated normal. I.e., in the con-

struction of (3.14 - 3.17), we consider f0 to be either a mixture of truncated nor-

mals, a truncated skew-Normal or a truncated general logistic distribution. Then

H0(Ψ0) =

∫ t∗

−t∗
f0 = F (t∗; Ψ0)− F (−t∗; Ψ0), where Ψ0 denotes the set of parameters
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needed to uniquely define f0, and p̂0 =
θ̂t∗

H0(Ψ̂0)
.

3.2.6.3 Evaluating the goodness of fit of fitted distributions

We evaluate the goodness-of-fit of the fitted mixture distributions by performing the

well known χ2 goodness-of-fit test that tests the null hypothesis that the relative

frequencies of occurrence of observed events follow a specified frequency distribution.

The test is applied to binned data with the bin width selected to ensure the expected

frequency within each bin is sufficiently large. For k bins, the test statistic is defined

as

χ2 =
k∑
i=1

(Oi − Ei)2

Ei
(3.18)

where Oi is the observed frequency for bin i and Ei is the expected frequency for bin

i. The expected frequency is calculated by

Ei = m
(
F̃ (Yup)− F̃ (Ylo)

)

where where F̃ is the cumulative distribution function for the mixture distribution

being tested, Yup is the upper limit for bin i, Ylo is the lower limit for bin i, and m

is the total number of proteins in the sample. The test statistic follows, approxi-

mately, a chi-square distribution with k − v − 1 degrees of freedom, where v is the

number of estimated parameters corresponding to a particular fitted mixture. A non-

significant p-value for the test indicates a reasonable fit between the data and the

fitted distribution.

Plotting the Empirical Cumulative Distribution Function (ECDF) against the

CDF of the hypothesized mixture can also provide a rough indication of the adequacy

of model fit.
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Where appropriate and practical, we will also make use of the Anderson-Darling

test to measure the fit of the model. The A-D test statistic pays more attention to

the tails of the distribution (Hurst et al., (1995)[60]), and therefore offers a means

of measuring the fit of the model to extreme events in the data. In our work, this

assessment is quite informative, especially with respect to the fitting of f(z). The

A-D test statistic is given by

A-D = −m−
m∑
i=1

(2i− 1)

m

[
lnF̃ (Z(i)) + ln(1− F̃ (Z(m+1−i)))

]
, (3.19)

where the Z(i) are the ordered data. The p-value of the test is derived using a recursive

algorithm that was developed by Marsaglia et al., (2004)[80]).

3.2.6.4 Selecting the number of mixture components

There are a multitude of methods that have been suggested for the selection of the

number of mixture components, g. Among them, those based on the information

criterion: AIC of Akaike (1974)[2], and BIC of Schwarz (1978)[110] are the most

widely used. However, McLachlan and Peel (2000)[86], showed that the justification

for both AIC and BIC, other than as an informal guide, do not hold in this context,

since regularity conditions are not satisfied. A test based on the likelihood ratio test

statistic, λ, is also not applicable since regularity conditions do not hold for −2 log λ

to asymptotically follow a null distribution of chi-squared (McLachlan and Basford,

1988[83]). An alternative approach that is based on re-sampling and provides a formal

test of the number of components is that of McLachlan (1987), where parametric

bootstrapping of the likelihood ratio test statistic is done for sequentially testing the
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hypothesis

H0 : k = k0 (3.20)

H1 : k = k0 + 1

for k0 = 1, 2, . . . , terminating after the bootstrapped P-value for one of these tests

exceeds a specified significance level. Briefly, this approach proceeds as follows.

1. A bootstrap sample is generated from the mixture density under H0, with un-

known parameter vector, Ψk0 . Let Ψ̂k0 be the estimated maximum likelihood

under this model.

2. The value of the likelihood ratio test statistic, −2 log λ, is calculated for the

bootstrap sample in step 1, after fitting a mixture model for k = k0 and k =

k0 + 1 in turn to it.

3. Steps 1, 2 are then independently repeated B times, yielding B estimates of

−2 log λ, the distribution of which gives an approximation to the true null dis-

tribution of −2 log λ.

4. The achieved significance of testing the hypothesis in (3.20) is then obtained

by referencing the −2 log λ estimate from the original sample against this null

distribution.

In our analyses, we make use of the above procedure in making a decision about

the correct number of mixture components for f(z). It has been our experience

that the number of mixture components required to adequately model f0(z) or f(z)

is never more than two. Therefore we restrict ourselves to testing between k = 1

or k = 2. For comparison purposes, we also report the BIC criterion for selecting

between k = 1 or k = 2. For the most part, we expect the results based on these two

approaches to be the similar since (McLachlan (1987)[82]) had observed that when
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the number of mixture components is relatively small, the results of the BIC criterion

in selecting the optimal number of components is in general identical to that of the

above re-sampling procedure.

3.2.6.5 EM algorithms for finite mixtures

Let Ψ be the vector of unknown parameters consisting of the mixing proportions and

the other unknown component density specific parameters. We use the Expectation-

Maximization (EM) algorithm of Dempster et al., (1977)[32] to estimate Ψ for both

f0(z) and f(z). The EM algorithm is applied in the framework where each observed

value of z is thought to have come from one of the mixture components, but the

indicator variable denoting this component membership is missing. The E- and M-

steps are alternated repeatedly until the likelihood changes by an arbitrarily small

amount in the case of convergence.

An important consideration in using the EM algorithm is the specification of

starting values for the algorithm. The EM algorithm is known to have reliable global

convergence in the sense that regardless of initial values, the likelihood function of

Ψ is increased after each EM iteration. However, we need to guard against the algo-

rithm converging to ‘spikes’ in the likelihood function that may be far from the actual

global maximum. For Gaussian and skew-t mixture distributions, we initialize the

EM algorithm for a given number of mixture components (identified using the pro-

cedure described in section (3.2.6.4), with empirical means and standard deviations

of clusters of z values that are identified by a normal mixture model based cluster

analyses. If the number of clusters is g, the initial estimates of mixing proportions

are taken to be 1/g, i.e., we assume equal mixing. In the case of fitting the doubly

truncated normal or the doubly truncated skew normal mixture models, starting val-

ues are derived using procedures that will be described in Section (3.3.1) and Section

(3.4.1), respectively.
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The main difficulty with fitting mixture models is finding the global maximizer

of Ψ. For instance, the likelihood function L(Ψ|z) might be unbounded or relatively

flat in certain situations. It is also well known that EM-type procedures tend to

gravitate towards local modes. A convenient way to address these issues is to try

several EM iterations under a variety of starting values. The resulting EM estimates

with different starting values can then be used to assess the stability of the final

parameter estimates. If multiple modes do exist, the global mode can be found by

comparing their respective log-likelihood values.

3.2.6.6 Identifiability of Mixture Distributions

Mixture models can present particular difficulties with identifiability. Let

F =
{
f(x, θ)|θ ∈ Ω, x ∈ Rd

}
,

be the class of distribution functions from which mixtures are to be formed. Then

if M = {M,M ′}, where M =
∑c

j=1 πjfj and M ′ =
∑c′

j=1 πj′fj′ , and fj(·), fj′(·) ∈ F,

then we say M is identifiable if M ≡M ′ ⇔ c = c′, and we can order the summations

such that πj = πj′ , fj = fj′ , for j = 1, . . . , c = c′.

Everitt and Hand (1981)[45], Titterington, Smith and Makov (1985)[116] discuss a

number of sufficient conditions for identifiability with regards to univariate Gaussian,

Exponential and Poisson mixtures. In particular, they note that Gaussian mixtures

are identifiable provided the θjs are all different. However, to our knowledge, the

issue of identifiability has not been addressed rigorously for mixtures of more compli-

cated distributions such as the skew normal, skew t, and truncated versions thereof.

Therefore, we conduct our analyses under the assumption that for mixtures of no

more than two components, identifiability criteria are satisfied, as long as the θj’s are

well separated from each other.
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3.2.6.7 Estimating the local false discovery rate

Once f0(z) and f(z) have been estimated from the data, and their goodness of fit veri-

fied, then together with the estimate of p0, the local false discovery rate corresponding

to each protein j can be calculated using (3.11) as

locfdrj(z
∗) = Pr(protein j is null | zj = z ∗)

= f̂+
0 (z∗)/f̂(z∗) (3.21)

Choosing a cutoff value. Typically the appropriate cutoff value for the local false

discovery rate is set a priori, based on the experimenter’s expert knowledge. Standard

cutoff values are 0.2, 0.1 or 0.05. The cutoff can also be chosen based on the objective

evaluation of a cost function. The estimated cutoff would be the value at which the

cost function optimally balances the cost of false positive protein validations and the

cost of not discovering a differentially expressed protein.

Alternatively, the cutoff can be chosen based on mathematical considerations. For

example, the cutoff can be set to the value that corresponds to the maximum second

derivative of the monotone curve of the ordered locfdr values. The maximum second

derivative corresponds to the point on the curve at which the instantaneous change

in the rate of change of the local false discovery rate is highest.

In the following sections, we describe the details of fitting each of the pairs of

distributional choices, discussed in Section 3.2.5.

3.3 Nmix - Tmix Model

In the Nmix-Tmix two-groups model setup, we estimate the distribution of the z

values associated with the null proteins using a finite mixture of univariate normal

densities, and the full distribution of all z values using a finite mixture of univariate
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Student’s t densities. The primary advantage of using the t distribution to model

f(z) is that it provides a longer and heavier tailed alternative to that provided by a

normal distribution. Another potential advantage of using the t-distribution instead

of the normal to form the mixture f(z) is that due to its greater flexibility, one may

require fewer terms (mixing densities) to achieve a given accuracy of approximation

to the true density. In essence, this particular combination of mixture models for

f0(z) and f(z) provide a way to flexibly model the central region of the distribution

of z values, while providing more stable estimates of tail probabilities.

3.3.1 Estimating f0(z) and f(z)

The empirical distribution of the true null proteins, f0(z), can be estimated by fitting

a mixture of normal densities to the null protein set, z0, each with it’s own mean and

variance. Assuming that we use a maximum of 2 components, we can represent f0(z)

as

f0(z; Θ0)
.
=

2∑
k=1

π0kφ
∗(z0;µ0k, σ

2
0k) (3.22)

where φ∗(.) denotes the doubly truncated normal distribution with support [−t∗, t∗],

Θ0 = (π01, µ01, σ
2
01, µ02, σ

2
02) denotes the unknown parameters corresponding to the

two mixture components, and
2∑

k=1

π0k = 1. Following the work of Shah et al., (1966)[111],

we can obtain the method of moments estimates of a doubly truncated normal dis-

tribution as follows.

Let Z =
z − µ
σ

be the standardized form of random variable Z with support −∞ ≤

−t < t ≤ +∞. The value of t ∈ R is given by (3.22), using the fact that f0(z) is

now φ(z). If mr(−t, t) = E (Zr| − t < Z ≤ t) denotes the rth moment of the doubly
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truncated Z, then,

m2k(−t, t) = (2k − 1)!!

(
1−

k∑
i=1

1

(2i− 1)!!

[z2i−1φ(z)]
t
−t

[Φ(z)]t−t

)
, for k = 1, 2, . . . ,

(3.23)

m2k+1(−t, t) = −
k∑
i=0

(2k)!!

(2i)!!

[z2iφ(z)]
t
−t

[Φ(z)]t−t
, for k = 0, 1, . . . , (3.24)

where n!! denotes the double factorial defined as

n!! =

 1, if n = −1, 0, 1;

n× (n− 2)!!, if n ≥ 2.

Now, assuming a total of g mixture components, we can represent f(z) as a

mixture of standard t-distributions as

f(z; Θ)
.
=

g∑
k=1

πk t(z;µk, σ
2
k, νk) (3.25)

where Θ = (θ1, . . . , θg) with θk = (πk, µk, σ
2
k, νk), denoting the unknown parameters

corresponding to mixture component k, with

g∑
k=1

πk = 1.

We fit the mixture model in (3.22) using the EM algorithm by adopting the

methodological developments of McLachlan and Jones (1988)[85] for fitting mixture

models to truncated data. Starting values for the EM algorithm are derived using

(3.23) and (3.24), separately for the two doubly truncated distributions supported

over [−t,median(z)] and [median(z), t] .

Mixture model (3.25) is fitted using a variant of the EM algorithm due to Hooger-

heide et al., (2007)[57]; and Hoogerheide and van Dijk (2008)[58].
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3.4 sN - sTmix Model

The distribution of z values can sometimes exhibit skewness. As mentioned in Section

3.2.5, this asymmetry is mostly due to errors that are asymmetric and/or discontin-

uously distributed. For example, Ramos-Fernández et al., (2007)[98] found that the

distribution of 18O labeled log-2 ratios was not correctly centered on zero but was sig-

nificantly biased toward the non-labeled sample, displaying a significant asymmetry

comprising of an extended right tail. The authors found that this asymmetry was due

to the presence of a small number of peptides having a low but significant proportion

of non-labeled species. These types of distortions in the symmetry of the distribution

is often not effectively captured by mixture models that use symmetric components,

unless allowance is made for the asymmetry introduced by the skewness. In the sN-

sTmix model setup, we extend the Nmix-Tmix model by allowing the component

normal and t distributions to have an additional shape parameter that determines

skewness. This provides a more flexible approach to the fitting of asymmetric sub-

classes that exhibit varying degrees of skewness. For the most part, the additional

flexibility provided by the skew-Normal distribution allows us to fit f0(z) accurately

with only a single component model. Similarly, the additional flexibility afforded by

the skew-t distribution usually results in fewer mixture components needed in the

fitting of f(z).

3.4.1 The Skew-Normal (sN) Distribution

The sN distribution, developed by Azzalini [9, 10] is a class of density functions

dependent on an additional shape parameter, and includes the normal density as

a special case. With the additional skewness parameter, λ ∈ R, a skew normally
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distributed random variable Z has the density

sN(z |µ, σ2, λ) =
2

σ
φ

(
z − µ
σ

)
Φ

(
λ
z − µ
σ

)
, (3.26)

where φ(.) and Φ() denote the standard normal density function and cumulative

distribution function, respectively. Note that if λ = 0, the density of Z reduces to the

N(µ, σ2) density.

For a sample of size n, Arnold et al., (1993)[6], derived the following method of

moments estimators for the parameters (µ, σ2, λ) of the skew normal distribution:

µ̃ = m1 − a1

(
m3

b1

) 1
3

, (3.27)

σ̃2 = m2 + a2
1

(
m3

b1

) 2
3

, (3.28)

δ̃(λ) =

[
a2

1 +m2

(
b1

m3

) 2
3

]− 1
2

, (3.29)

where a1 =
√

2/π, b1 = (4/π−1)a1, m1 = n−1
∑n

i=1 Zi, m2 = (n−1)−1
∑n

i=1 (Zi −m1)2,

m3 = (n− 1)−1
∑n

i=1 (Zi −m1)3, and δ(λ) = λ/
√

(1 + λ2).

3.4.2 The Doubly Truncated Skew-Normal (DTsN) Distri-

bution

Let, fµ,σ,λ(z) and Fµ,σ,λ(z) represent the p.d.f. and c.d.f. of a random variable Z,

following (3.26). Then,

fµ,σ,λ (z| − t∗ < Z ≤ t∗) =


1

[Fµ,σ,λ(z)]
t∗

−t∗

fµ,σ,λ(z), if −t∗ < z ≤ t∗;

0, elsewhere,

(3.30)

gives the p.d.f. of a doubly truncated skew-Normal (DTsN) distribution, truncated
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at −∞ ≤ −t∗ < t∗ ≤ +∞. The moments of the DTsN distribution can be derived

following the works of Martinez et al., (2008)[81], Genton et al., (2001)[48], and

Flecher et al., (2009)[46], as follows. Let Z ∼ DTsN(µ, σ, λ). Then we have,

E [Zm| − t∗ < Z ≤ t∗] =
m∑
r=0

(
r

m

)
µm−rσrsλ,r(u, v), (3.31)

where u = (−t∗ − µ)/σ, v = (t∗ − µ)/σ and sλ,r(u, v) = E [Xr|u < X ≤ v] is the rth

moment of a random variable X, distributed as DTsN(0, 1, λ), and sλ,0(u, v) = 1.

From Flecher et al., (2009)[46], we get

sλ,2p(u, v) = (2p− 1)!! +

p∑
k=1

(2p− 1)!!

(2k − 1)!!
rλ,2k(u, v), with p = 1, 2, . . . , (3.32)

sλ,2p+1(u, v) =

p∑
k=0

(2p)!!

(2k)!!
rλ,2k+1(u, v), with p = 0, 1, . . . , (3.33)

where with λ∗ = (1 + λ2)1/2 and r = 1, 2, . . .; rλ,r(u, v) is given by

rλ,r(u, v) = −
[xr−1f0,1,λ(x)]

v

u

[F0,1,λ(x)]vu
+

2√
2π

λ

λr∗

[Φ(λ∗x)]vu
[F0,1,λ(x)]vu

mr−1(λ∗u, λ∗v) (3.34)

3.4.3 The Skew-t (sT) Distribution

The sT distribution, introduced by Azzalini and Capitaino (2003)[11], simultaneously

allows for both heavier tails and skewness. This allows for more robust fitting in the

presence of outlying observations, while accounting for asymmetry in each component

distribution. A random variable T is said to follow the sT distribution sT (µ, σ2, λ, ν),

with skewness parameter λ ∈ R and degrees of freedom ν ∈ (0,∞), if it has the

following representation

T = µ+ σ
Z√
τ
, Z ∼ sN(µ, σ2, λ), τ ∼ Γ(ν/2, ν/2), Z⊥τ, (3.35)



55

However, it is computationally more convenient to use the following representation

of the sT model, due to Azzalini (1986)[10] and Henze (1986)[56]. Adopting the

stochastically equivalent representation of Z ∼ sN(µ, σ2, λ) given by Z = δλ|U1| +√
1− δ2

λ U2, where δλ = λ/
√

1 + λ2, and U1 and U2 are independent N(0, 1) random

variables, we get the following hierarchical representation of sT (µ, σ2, λ, ν) given by

T |γ, τ ∼ N

(
µ+ δλγ,

1− δ2
λ

τ
σ2

)
,

γ|τ ∼ TN

(
0,
σ2

τ
; (0,∞)

)
, (3.36)

τ ∼ Γ(ν/2, ν/2),

where, TN (µ, σ2; (a, b)) represents the the truncated normal distribution withN(µ, σ2)

lying within the truncated interval (a, b).

3.4.4 Estimating f0(z) and f(z)

Adopting the representation in (3.30) for f0(z), the method of moments estimates of

(µ, σ, λ) can be obtained by equating the sample moments to the first three moments

of the DTsN distribution and solving (3.31) using the L-BFGS-B algorithm (Byrd et

al., (1995))[23], a non-linear optimization procedure with bound constraints on the

variables. A key feature of this nonlinear solver is that it does not require second

derivatives or knowledge of the structure of the objective function. I.e., knowledge of

the Hessian matrix is not required. The solver computes search directions by keeping

track of a quadratic model of the objective function with a limited-memory BFGS

(Broyden-Fletcher-Goldfarb-Shanno) approximation to the Hessian. The algorithm

allows lower and upper bounds to be set for each variable. In our work, we make use

of the implementation of the L-BFGS-B algorithm provided in the optim function in

R. Initial values for the parameters to be optimized over are obtained using (3.27) -

(3.29), ensuring that they satisfy the boundary constraints.
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Given the representation in (3.35), and a total of g mixture components, we can

represent f(z) as

f(z; Θ)
.
=

g∑
k=1

πk sT (z;µk, σ
2
k, λk, νk), (3.37)

where Θ = (θ1, . . . , θg); θk = (πk, µk, σ
2
k, λk, νk), denotes the unknown parameters of

mixture component k; and

g∑
k=1

πk = 1.

Let, Ij = (I1j, . . . , Igj) be a multinomial random vector with 1 trial and cell

probabilities π1, . . . , πg, corresponding to the jth observation from a sample of size

m. Then using the hierarchical representation given in (??), we can re-express (3.37)

as

Tj|γj, τj, Ikj = 1 ∼ N

(
µk + δλkγj,

1− δ2
λk

τj
σ2
k

)
,

γj|τj, Ikj = 1 ∼ TN

(
0,
σ2
k

τj
; (0,∞)

)
, (3.38)

τj|Ikj = 1 ∼ Γ(νk/2, νk/2),

where, Ij ∼Multinomial (1;π1, π2, . . . , πg), and j = 1, . . . , m.

It follows from (3.38) that the complete data log-likelihood of Θ, ignoring con-

stants, is given by

`(Θ) =
n∑
j=1

g∑
k=1

Ikj

{
logπk −

νkτj
2
−

τjη
2
kj

2(1− δ2
λk

)
+

δλkηkjγjτj
(1− δ2

λk
)σk
−

γ2
j τj

2(1− δ2
λk

)σ2
k

− 1

2
log (1− δ2

λk
)− logσ2

k +
νk
2

log
νk
2
− log Γ

(νk
2

)
+
νk
2

log τj

}
, (3.39)

where, ηkj = (zj − µk)/σk and δλk = λk/
√

1 + λ2
k.
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3.5 sNmix-GH Model

In the sNmix-GH two-groups model, we estimate f0(z) using a mixture of doubly

truncated skew normal distributions and f(z) using a generalized hyperbolic distri-

butions. The GH distribution provides a flexible framework for modeling data that

exhibit skew and/or leptokurtic properties in the neighborhood of the central peak of

the z distribution, and tail behavior that decays slower than the normal. Leptokurtic

distributions have higher peaks around the mean compared to normal distributions,

which leads to thick tails on both sides. These peaks result from the data being

highly concentrated around the mean, due to lower variations within observations.

This behavior is not unexpected, since under the ‘strong zero assumption’ underlying

the two groups model, we expect roughly over 90% of the data to to be tightly packed

around the central region of the support of the z distribution. The main motivation

behind using a mixture of skew normals for modeling f0(z) is to demonstrate its abil-

ity to capture leptokurtic behavior more accurately compared to a single component

skew-Normal or a mixture of Gaussians.

The GH distribution can be thought of as a normal mean-variance mixture dis-

tribution with the Generalized Inverse Gaussian (GIG) as the mixing density. The

various distributions that can be derived from the GH, differ in the behavior of the

central peak of the density and in the type of decay at the tail ends. This flexibility

also means that a single component GH distribution usually suffices for fitting both

f0(z) and f(z), as opposed to mixtures of standard statistical distributions such as

the normal or Student’s t.

3.5.1 The Generalized Hyperbolic (GH) Distribution

The Generalized Hyperbolic (GH) distribution, first introduced by Barndorff-Nielsen

(1977)[14], is a class of distributions that have found a wide audience among econometrists
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in the areas of modeling the log return distributions of financial assets and the pricing

of derivatives. The one-dimensional generalized hyperbolic distribution is defined by

the following density

gh(z;λ, α, β, δ, µ) = a(λ, α, β, δ)
(
δ2 + (z − µ)2

)(λ− 1
2

)/2
(3.40)

×Kλ− 1
2

(
α
√
δ2 + (z − µ)2

)
exp (β(z − µ)) ,

where,

a(λ, α, β, δ) =
(α2 − β2)λ/2

√
2π αλ−

1
2 δλKλ

(
δ
√
α2 − β2

) , and (3.41)

Kλ(x) is a modified Bessel function of the second kind, which gives the solutions

to the modified Bessel’s equation

x2 d
2λ

dx2
+ x

dλ

dx
− (x2 + λ2)λ = 0, and (3.42)

There are many possible parameterizations of the GH distribution. Under the pa-

rameterization we have adopted for (3.40), the domain of variation of the parameters

is µ ∈ R and

δ ≥ 0 , |β| < α if λ > 0

δ > 0 , |β| < α if λ = 0

δ > 0 , |β| ≤ α if λ < 0

Under this parameterization, The parameters µ, δ describe the location and the

scale, and β describes the skewness. Decreasing ᾱ (= αδ) reflects an increase in

the kurtosis. Normal distributions are characterized only by the scale and location

parameters. The additional parameters of GH distributions allow us to specify in
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particular the tail of the distribution more exactly. Another important aspect of GH

distributions is that they embrace many special cases. When β = 0, the distributions

in (3.45) become symmetric. The normal distribution is obtained as a limiting case

when δ → ∞ and δ/α → σ2 (Barndorff-Nielsen, 1977)[14]; and for λ = −υ/2, α =

β = µ = 0, δ =
√
υ, we get the Student’s t distribution (Eberlein and Hammerstein,

2003)[36].

All moments of (3.40) exist (Gut, 1995)[52]. In particular, the mean and variance

of the GH distribution are given by

E(Z) = µ+
βδ√
α2 − β2

Kλ+1(ζ)

Kλ(ζ)
(3.43)

V(Z) = δ2

(
Kλ+1(ζ)

ζKλ(ζ)
+

β2

α2 − β2

[
Kλ+2(ζ)

Kλ(ζ)
−
(
Kλ+1(ζ)

Kλ(ζ)

)2
])

, (3.44)

where, ζ = δ
√
α2 − β2.

3.5.2 Estimating f0(z) and f(z)

A mixture of DTsN’s can be fitted using the computational techniques developed

by Lin et al., (2007)[67] and McLachlan and Jones (1988)[85]. Initial values for the

parameters to be optimized over are obtained using the method of moments estimates

(3.27) - (3.29), separately for each identified cluster.

The log-likelihood function for the GH distribution for observations z1, . . . , zm is

L = log a(λ, α, β, δ) +

(
λ

2
− 1

4

) m∑
j=1

log
(
δ2 + (zj − µ)2

)
(3.45)

+
m∑
j=1

[
logKλ− 1

2

(
α
√
δ2 + (zj − µ)2

)
+ β(zj − µ)

]

An important point concerning the speed of the ML estimation of (3.45) is the

selection of starting values. Let, (λ0, α0, β0, δ0, µ0) be the vector of starting values. We
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choose these starting values by re-scaling a symmetric GH distribution (i.e, β = 0),

with a reasonable kurtosis, e.g. the kurtosis of the observed data under symmetry,

κ̂emp, such that the empirical variance σ̂2
emp and the variance of the GH distribution

given in (3.44) are equal. That is, when β = 0, we have ˆ̄α = α0δ0 = κ̂emp. Then from

(3.43) and (3.44) we get,

β0 = 0

µ0 = µ̂emp

σ̂2
emp = δ2

0

(
Kλ+1( ˆ̄α)

ˆ̄αKλ( ˆ̄α)

)
α0 = ˆ̄α/δ0

We set λ0 = 1. This setting corresponds to a hyperbolic distribution (Eberlein and

Keller, 1995)[35], and is a reasonable starting point for estimating the GH distribution

(Barndorff-Nielsen and Shephard, 1998[15]).

A second important factor for the speed of the estimation is the number of modified

Bessel functions to compute. We estimate the modified Bessel functions using the

besselk routine in MATLAB, which implements a numerical approximation method,

described in Press, Teukolsky, Vetterling, and Flannery (1992)[97].

3.6 Results

The typical choices for fitting the empirical distribution of f include the normal, a

mixture of normals, a kernel density estimate, or a polynomial or natural spline fit.

Our choices for f are (a) Student’s t mixture, (b) a skew-t mixture, and (c) the

generalized hyperbolic distribution.

We begin by applying our methods to the three motivating SILAC data sets. The

two control data sets consist of light and heavy isotope labeled yeast samples that
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were mixed in a 1:1 ratio. All yeast protein expression ratios derived from these

control data sets should be equal to one, with allowance made for random noise

contamination. The first control data set consists of 614 identified proteins. The

second sample is essentially a technical replicate of the same 1:1 protein mixture and

consists of 588 identified proteins. The mammalian cellular proteome - Hela cell line

data set consists 1536 proteins. Hereafter, we will refer to these three data sets as

Sample A, Sample B, and HCL, respectively. We conduct separate analysis on all

three data sets, by first estimating the true relative expression level of each protein

using the MINQUE methodology, and then fitting different two-groups models to the

empirical distribution of the MINQUE statistic, z.

3.6.1 Fitting the Null Distribution, f0(z)

The standard practice when using the local false discovery approach is to fit a trun-

cated normal distribution to the subset of proteins that are deemed non-differentially

expressed. We considered four choices for f0, namely: (a) a truncated normal distri-

bution, (b) a mixture of truncated normals, (c) a truncated skew-normal distribution,

and (d) a mixture of truncated skew normals.

Sample A. The empirical mean, median, and variance of the data are -0.191, -0.172,

and 0.738, respectively (as opposed to an expected value of zero for both the mean

and the median). The sample estimate of excess skewness compared to a normal

distribution is 0.59, indicating that the distribution has a longer right tail. The fit of

these four distributional choices (Figure 3.1) to the central region of z, clearly indicate

the inadequacy of single component distributions in fully capturing the observed

asymmetry in the data.

On the other hand, mixture distributions do a much better job of approximating

the empirical distribution compared to their single component alternatives. Of the

four fits, the skew normal mixture is the best, followed closely by the mixture of
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normals. The parameter estimates and the estimated proportion of non-differentially

expressed proteins corresponding to the fitted truncated mixtures are given in Ta-

ble 3.1. Both mixtures consist of components with estimated means on either side

of zero. The truncated skew normal mixture is able to capture the longer right tail

in the data through its skewness parameter, λ, for the first fitted component. The

estimated proportion of non-differentially expressed proteins are 92.1% and 87.1% for

the normal and skew normal mixtures, respectively.

Sample B. Data analysis of Sample B revealed similar findings to that of Sample A.

The empirical mean, median, and the variance of the data are -0.135, -0.047, and

0.667, respectively. The sample estimate of excess skewness is 1.08, again indicating

the longer right tail of the data. The fits of single and two component mixtures and

the estimated parameters of the two component mixtures are given in Figure 3.2 and

Table 3.2, respectively.

HCL. The empirical mean, median, and variance of the HCL data are -0.288, -0.099,

and 1.89, respectively. The higher variability of the HCL data compared to the control

data sets is to be expected. The sample estimate of excess skewness is -1.59. This

suggests that the data are negatively skewed, i.e., the data exhibit a longer left tail

compared to symmetrically distributed data. The fits of single and two component

mixtures (Figure 3.3) and the estimated parameters of the two component mixtures

(Table 3.3) are again illustrative of the superiority of the two component mixtures

in fitting the f0 distribution and of the superiority of the skew normal mixture in

capturing asymmetry.
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f_0 ~ TN(mu0, sigma0) on [−t , t ]
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f_0 ~ { p * TN(mu1, sigma1) + (1 − p) * TN(mu2, sigma2) } on [ −t , t ]
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(b) The fit of a truncated skew normal and a mixture of truncated skew normals to f0(z)

Figure 3.1: Sample A : The fit of a truncated normals and skew normals as ap-
proximations to the distribution of non-differentially expressed proteins, f0, having
support [−0.579, 0.579]. A visual comparison of the ECDF to the CDF indicate:
the lack-of-fit of single component models and the excellent fit of the skew normal
mixture.
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(a) The fit of a truncated normal and a mixture of truncated normals to f0(z)

f_0 ~ TSN(mu0, sigma0, skew0) on [−t , t ]
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(b) The fit of a truncated skew normal and a mixture of truncated skew normals to f0(z)

Figure 3.2: Sample B : The fit of truncated normals and skew normals as approxima-
tions to the distribution of non-differentially expressed proteins, f0, having support
[−0.429, 0.429].
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f_0 ~ TN(mu0, sigma0) on [−t , t ]
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(a) The fit of a truncated normal and a mixture of truncated normals to f0(z)

f_0 ~ TSN(mu0, sigma0, skew0) on [−t , t ]
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(b) The fit of a truncated skew normal and a mixture of truncated skew normals to f0(z)

Figure 3.3: HCL : The fit of truncated normals and skew normals as approxima-
tions to the distribution of non-differentially expressed proteins, f0, having support
[−1.143, 1.143]. A visual comparison of the ECDF to the CDF again indicate: the
lack-of-fit of single component models and the excellent fit of the skew normal mix-
ture.
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f0 p̂0 p̂ Parameter Estimates

p ∗Nt (µ1, σ1) +
(1− p) ∗Nt (µ2, σ2)

0.871 0.139
µ̂1 = 0.498

σ̂1 = 2.021

µ̂2 = −0.135

σ̂2 = 0.228

p ∗ SNt (µ1, σ1, λ1) +
(1− p) ∗ SNt (µ2, σ2, λ2)

0.921 0.892

µ̂1 = 0.153

σ̂1 = 0.534

λ̂1 = −1.765

µ̂2 = −0.105

σ̂2 = 0.613

λ̂2 = −0.081

Table 3.1: Sample A : Parameter estimates under each of the fitted mixture models
for f0. p̂0 is the estimated proportion of non-differentially expressed proteins under
each model.

f0 p̂0 p̂ Parameter Estimates

p ∗Nt (µ1, σ1) +
(1− p) ∗Nt (µ2, σ2)

0.899 0.117
µ̂1 = 0.311

σ̂1 = 1.821

µ̂2 = −0.128

σ̂2 = 0.428

p ∗ SNt (µ1, σ1, λ1) +
(1− p) ∗ SNt (µ2, σ2, λ2)

0.951 0.829

µ̂1 = 0.079

σ̂1 = 0.301

λ̂1 = −1.961

µ̂2 = −0.705

σ̂2 = 2.858

λ̂2 = 6.868

Table 3.2: Sample B : Parameter estimates under each of the fitted mixture models
for f0.

f0 p̂0 p̂ Parameter Estimates

p ∗Nt (µ1, σ1) +
(1− p) ∗Nt (µ2, σ2)

0.921 0.335
µ̂1 = −0.120

σ̂1 = 1.775

µ̂2 = 0.061

σ̂2 = 0.639

p ∗ SNt (µ1, σ1, λ1) +
(1− p) ∗ SNt (µ2, σ2, λ2)

0.960 0.382

µ̂1 = 0.018

σ̂1 = 1.751

λ̂1 = −0.064

µ̂2 = −0.256

σ̂2 = 0.550

λ̂2 = 0.947

Table 3.3: Hela Cell Line : Parameter estimates under each of the fitted mixture
models for f0.
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3.6.2 Fitting the Full Distribution, f(z)

Sample A and Sample B. The fit of a mixture of Student’s t, a mixture of skew-t

and the generalized hyperbolic distribution as approximations to the full empirical

distribution of the z values is shown in Figure 3.4. For comparison, the fit of a two

component normal is also shown. the estimated parameters for each model setup is

given in Table 3.4. The two component Student’s t mixture, whilst capturing the

extreme values in the data fairly well, fails to approximate the remaining ‘normal’

data. The two component normal mixture is comparably much better. However, it

performs poorly in the vicinity of the central peak of the data. The skew-tmixture and

the generalized hyperbolic both fit the full range of the data quite well, as illustrated

by the overlapping curves of the ECDF and CDF for these two models.
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Figure 3.4: Fit of distributions to f , the full distribution of the z values (Sample
A and Sample B). The skew-t mixture and the generalized hyperbolic fit the full
distribution of z much better than mixtures of Student’s t’s or Gaussians.



68

Model Sample A Sample B

t - mixture

p̂ = 0.908
v̂1 = 29.953
v̂2 = 1.787

p̂ = 0.901
v̂1 = 35.969
v̂2 = 1.561

Skew-t mixture

p̂ = 0.532 p̂ = 0.413
µ̂1 = 0.171
σ̂1 = 0.635
λ̂1 = −2.298
τ̂1 = 3.040

µ̂2 = −0.421
σ̂2 = 0.581
λ̂2 = 8.024
τ̂2 = 3.207

µ̂1 = 0.082
σ̂1 = 0.444
λ̂1 = −5.113
τ̂1 = 3.479

µ̂2 = −0.322
σ̂2 = 0.299
λ̂2 = 1.312
τ̂2 = 1.706

Gaussian mixture
p̂ = 0.886 p̂ = 0.877

µ̂1 = −0.107
σ̂1 = 0.264

µ̂2 = 0.608
σ̂2 = 2.204

µ̂1 = −0.185
σ̂1 = 0.363

µ̂2 = −0.289
σ̂2 = 2.220

Generalized
Hyperbolic

α̂1 = 0.134
β̂1 = −0.033
δ̂1 = 0.392
µ̂1 = −0.181
λ̂1 = −0.853

α̂2 = 0.256
β̂2 = 0.161
δ̂2 = 0.213
µ̂2 = −0.113
λ̂2 = −0.655

Table 3.4: Parameter estimates for the fitted models for f - Sample A and Sample B

HCL. The results of fitting the same four distributions to the f distribution of the

HCL data is shown in Figure 3.5. The estimated parameters for each model setup is

given in Table 3.5. Here again the two component Student’s t mixture fails to capture

the middle part of the density histogram of the z values. The two component normal

mixture estimates the central region and the left tail reasonably well, but the density

estimate drops to zero two quickly at the right tail. The skew-t mixture and the

generalized hyperbolic both approximate the data quite well. However, compared to

the skew-t mixture, the fit of the generalized hyperbolic is smoother. This is because

the generalized hyperbolic, since it is a single component model, does not follow the

peaks of the histogram too closely.

3.6.3 Number of Mixture Components and Goodness of Fit

We evaluated the goodness-of-fit of the fitted mixture distributions by performing χ2

goodness-of-fit tests. The appropriate number of mixture components was selected

using two methods: the BIC, and by parametric bootstrapping of the likelihood ratio

test statistic (λ) for testing between one and two component mixtures. The results
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Figure 3.5: Fit of distributions to f (HCL).

Model Parameter Estimates

t - mixture

p̂ = 0.908
v̂1 = 29.953
v̂2 = 1.787

Skew-t mixture

p̂ = 0.532
µ̂1 = 0.171
σ̂1 = 0.635
λ̂1 = −2.298
τ̂1 = 3.040

µ̂2 = −0.421
σ̂2 = 0.581
λ̂2 = 8.024
τ̂2 = 3.207

Gaussian mixture
p̂ = 0.886

µ̂1 = −0.107
σ̂1 = 0.264

µ̂2 = 0.608
σ̂2 = 2.204

Generalized
Hyperbolic

α̂1 = 0.134
β̂1 = −0.033
δ̂1 = 0.392
µ̂1 = −0.181
λ̂1 = −0.853

Table 3.5: Parameter estimates for the fitted models for f - HCL.
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of these tests for fitting a one/two component normal/skew normal distribution to

f0(z) are shown in Table 3.6, and provide significant evidence to support the decision

to fit a two component mixture of skew normals to all three data sets.

Sample-A

m0 = 548, K = 18

Sample-B

m0 = 465, K = 18

HCL

m0 = 1367, K = 25

Truncated Normal

Number of Components 1 2 1 2 1 2

χ2(value , df) 22.714 , 15 b 16.317 , 12 c 20.341 , 15 c 14.303 , 12 28.449 , 22 c 13.468 , 19

BIC 246.881 242.156 191.962 185.3466 1700.762 1659.888

-2 log(λ), p* 23.644 , 0.03 25.041 , 0.02 62.535 , < 0.01

Truncated Skew Normal

Number of Components 1 2 1 2 1 2

χ2(value , df) 17.940 , 14 6.730 , 10 17.512 , 14 6.007 , 10 27.915 , 21 c 11.086 , 17

BIC 246.109 241.024 189.537 184.449 1641.291 1633.689

-2 log(λ), p* 30.310 , 0.01 29.656, 0.04 36.483 , < 0.01

Table 3.6: Number of mixture components and goodness of fit of fitted models for
f0(z). (b, c indicate significance at the 0.1, 0.2 level, respectively; p∗ indicates the attained signifi-

cance level of the likelihood ratio test based on 250 bootstrap replicates; K = number of bins used

in the χ2 test; and m0 = number of proteins used to fit f0(z)).

The results of the χ2, BIC, and likelihood ratio tests for fitting a one/two com-

ponent normal/sdutent’s t/skew-t distribution to f(z) are shown in Table 3.7. In

addition to these three criteria, the fit of the generalized hyperbolic was evaluated

using the Anderson-Darling (A-D) test. The Student’s t distribution does not provide

an adequate fit except in the case of fitting a two component mixture to the HCL

data. In fact, all three two-component mixtures provide a good fit to the HCL data.

Based on the χ2 criterion alone, a single component skew-t model appears adequate

for fitting f . However, both the likelihood ratio test and the BIC clearly favor a

two component model. Both the χ2 and the A-D test results confirm the fit of the

generalized hyperbolic distribution to all three data sets. Additionally, the A-D test

provides assurance that the generalized hyperbolic distribution adequately fits the

extreme values in the data.
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Sample-A
m = 614, K = 21

Sample-B
m = 588, K = 21

HCL
m = 1536, K = 30

Normal
Number of Components 1 2 1 2 1 2

χ2(value, df) 35.120, 18 a 23.300, 15 c 34.707, 18 a 21.509, 15 48.430, 27 a 28.736, 24

BIC 1148.774 1104.570 1161.070 1142.845 1753.637 1730.844
-2 log(λ), p* 63.464 , < 0.01 37.355 , < 0.01 44.804 , < 0.01

Student’s t
Number of Components 1 2 1 2 1 2

χ2(value, df) 39.114, 19 a 30.020, 17 b 37.581, 19 a 28.661, 17 b 41.362, 28 b 23.728, 26

BIC 1162.525 1130.974 1202.376 1180.768 1767.284 1733.900
-2 log(λ), p* 44.391 , < 0.01 34.361, 0.03 48.058 , < 0.01

Skew t
Number of Components 1 2 1 2 1 2

χ2(value, df) 18.943, 16 10.115, 11 19.217, 16 9.849, 11 31.475, 25 16.977, 20

BIC 1088.393 1072.056 1101.442 1096.575 1710.321 1707.761
-2 log(λ), p* 48.437 , < 0.01 36.751, 0.01 39.245 , < 0.01

Generalized Hyperbolic

χ2(value, df) 12.443, 15 12.559, 15 18.842, 24

A-D (value, p) 1.301, 0.237 0.821, 0.399 0.699, 0.559

Table 3.7: Number of mixture components and goodness of fit of fitted models for
f(z). (a indicates significance at the 0.05 level; and m = number of proteins used to fit f(z)).

3.6.4 Local False Discovery Rate

We calculate a false discovery rate for all the proteins in each of the three data

sets, and identify the set of proteins that are deemed significant using two cut-off

points. The first cut-off point chooses as significant all proteins with local fdr ≤

0.1. The second cut-off is taken to be the value that corresponds to the maximum

second derivative of the smoothed-monotonic local fdr curve. In these calculations

we omitted the two groups model, truncated normal mixture - Student’s t mixture,

since this particular combination of distributional components produced significantly

worse results compared to the other combinations. Table 3.8 gives the number and

proportion of proteins declared significant under each of the cut-offs.

3.6.5 False Positive and False Negative Rates

The two control samples, Sample A and Sample B, allows us to evaluate the false

positive and false negative rates associated with each of the fitted two-groups models.
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f0 ∼ Truncated Normal Mixture, f ∼ Normal Mixture

Local fdr < 0.1 Local fdr < 0.051
Sample-A 56 (9.12%) 49 (7.98%)
Sample-B 47 (7.99%) 42 (7.14%)

HCL 226 (14.71%) 201 (13.09%)
f0 ∼ Truncated Skew-Normal Mixture, f ∼ Skew-t Mixture

Local fdr < 0.1 Local fdr < 0.043
Sample-A 39 (6.35%) 37 (6.03%)
Sample-B 31 (5.27%) 27 (4.59%)

HCL 105 (6.84%) 91 (5.92%)
f0 ∼ Truncated Skew-Normal Mixture, f ∼ GH

Local fdr < 0.1 Local fdr < 0.089
Sample-A 21 (3.42%) 20 (3.26%)
Sample-B 16 (2.72%) 16 (2.72%)

HCL 87 (5.66%) 84 (5.47%)

Table 3.8: Number and proportion of significant proteins under each of the fitted
two-groups models.

Since we know that all proteins in these two samples were mixed in a 1:1 ratio, all

proteins that are declared as significant are by default, false positives. However,

not all the identified proteins in these two data sets are yeast proteins. There are

9 identified contaminants in Sample A and 7 identified contaminants in Sample B.

These contaminants are highly unlikely to be present in equal amounts in the light

and heavy labeled samples. In fact, the log-2 relative expression ratios of these

contaminants are all significantly different than zero. In this sense, the presence of

these contaminants provides us a way to also calculate a false negative rate for our

methods. I.e., we declare as a false negative any of the contaminant proteins that

our methods fail to identify as being differentially expressed. However, since the

number of false negatives are quite small, the estimates of the false negative rate

are likely to be less reliable compared to the false positive rates. The results given

in Table 3.9 demonstrates the improved performance of the two two-groups models

fitted with asymmetric components: the skew normal - skew-t, and the skew normal

- generalized hyperbolic combinations. With our data, the performance of the skew

normal - generalized hyperbolic two-groups model, at least with respect to the false

positive rate, is clearly superior to the other model setups considered.
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Sample A, m = 614 Sample B, m = 588

TNM, NM TSNM,
STM

TSNM, GH TNM, NM TSNM,
STM

TSNM, GH

Proteins with locfdr < 0.1 56 39 21 47 31 16

False Positives 50 31 13 42 26 11
False Negatives 3 1 1 2 2 2

False Positive Rate 8.26 % 5.12 % 2.15 % 7.23 % 4.48 % 1.89 %
False Negative Rate 33.33 % 11.11 % 11.11 % 28.57 % 28.57 % 28.57 %

Table 3.9: False positive and false negative rates for the three two-groups models.
TNM-NM = Truncated Normal Mixture - Normal Mixture, TSNM-STM = Truncated Skew Normal

Mixture - Skew-t Mixture, TSNM-GH = Truncated Skew Normal Mixture - Generalized Hyperbolic.

3.6.6 Robustness of Results

Since Sample B is a technical replicate of Sample A, we can assess the degree to

which results of data analysis on Sample A agrees with those of Sample B. In other

words we can assess the degree to which our methods produce reproducible results.

Here we use the term agreement in the general sense of consistency of the set of

proteins declared significant or not significant across the two repeat samples. Since

the proteins identified in Sample B are a subset of the proteins in Sample A, we define

the percentage of agreement as

Agreement (%) =
Number significant in both samples + Number not significant in both samples

Number of proteins in common
∗100

The statistics shown in Table 3.10 indicate that agreement of results is generally

good for all three model setups: TNM - NM, STNM - STM, and STNM - GH. This

is to be expected since both Sample A and Sample B are in fact control samples.

However there is a clear separation of the level of agreement between the model that

used symmetric mixture components (TNM - NM) and the two models that used

asymmetric mixture components (TSNM-STM, STNM-GH).
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Sample B

TNM - NM Significant Not significant Agreement (%)

Sample A Significant 30 19 93.9
Not significant 17 522

TSNM - STM Significant Not significant

Sample A Significant 24 10 97.1
Not significant 7 547

TSNM - GH Significant Not significant

Sample A Significant 13 4 98.8
Not significant 3 568

Table 3.10: Reproducibility of results under each of the fitted two-groups models.

3.7 Discussion

In this work, we undertook an extensive exploration of the application of empirical

Bayes methods for both estimating the relative protein expressions and controlling

the false discovery rate. A large majority of proteomics experiments are not run

in replicate. Therefore strong parametric assumptions are often the only recourse.

However, since the typical sample sizes are quite large, there is no need to restrict

data analyses to strictly parametric approaches. An alternative to fully parametric

methods is to base analysis on empirical Bayes methods. However, current empirical

Bayes methods lack flexibility and robustness when the data contain non-Gaussian

tails, regions of data sparsity, excess kurtosis, or are asymmetrically distributed. Our

work focuses on developing methodologies that make maximum use of the available

data and maximizing the flexibility in using empirical Bayes models by fitting a

richer variety of distributional components to the full shape of the class-conditional

probability distributions.

Our empirical Bayes approaches are founded on the distribution of a summary

statistic that accurately represents the true relative expression ratio of the proteins.

For this purpose, we formulate a random effects model that allows between and within

peptide heterogeneity, and propose an estimation scheme based on a variant of the

minimum norm quadratic unbiased estimation (MINQUE) method. This estimation

scheme should be particularly appealing to proteomics practitioners since parameter

estimates can be derived without resorting to iterative procedures or specialized sta-
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tistical software. It is sometimes the practice to apply a skewness or kurtosis reduction

transformation on the data, and then fit the resulting symmetric distribution using

a normal or normal mixture model. However, we believe that this practice should be

discouraged, at least in the field of proteomics. If present, the observed skewness and

kurtosis of the data provide valuable information regarding the data generating mech-

anisms. In proteomics, leptokurtic data are the norm, and skewness can point out

unusual grouping of proteins, which for example could be the result of an imbalance

in the labeling efficiency between the light and heavy labeled samples. Therefore, a

more reasonable and accurate estimation procedure should consider modeling both

skewness and kurtosis, as is. In our work, we propose to model the distribution of

the MINQUE based estimates of relative expression ratios by considering generalized

forms of normal, Student’s t, and hyperbolic distributions, and where necessary finite

mixtures of them. These distributions allow the fitting of skewed and kurtotic distri-

butions, while also providing a heavier or lighter tailed fit as compared to the normal.

This modeling is done under the framework of a ‘two-groups model’ that assumes a

two component mixture model for the distribution of the estimated protein ratios.

We make use of the local false discovery strategy to identify a list of significant

proteins at a pre-specified false discovery rate cut-off or at a cut-off estimated from

the data. We believe that the local false discovery rate is preferable in situations

where the primary interest is in identifying proteins that show some evidence of

differential expression for further biological study. This is primarily because the

local false discovery rate attaches an individual false discovery rate to each protein

which does not depend on the significance level of other proteins. This individuality

is particularly useful for calculating a combined false discovery rate for a group of

proteins. For example, the false discovery rate associated with a group of proteins

along the same network pathway is simply the sum of their individual local false

discovery rates. This type of aggregation is not possible with the classical formulations
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of a false discovery rate.

We demonstrate our methods on three protein data sets. Two of these data sets

are control data sets derived from yeast. The third data set consists of proteins

derived from the Hela cell line. We apply our methods to each data set separately

and evaluate the performance of several two-groups models on each of them. At each

stage of model fitting, we test for the appropriate number of mixture components and

the goodness of fit of fitted models. ’

Data analysis demonstrated the improved performance of the two-groups models

fitted with asymmetric components. The combination of a mixture of truncated

skew normal distributions and the generalized hyperbolic distribution was found to

performs particularly well. The generalized hyperbolic distribution fits the data just

as well or better than a two component mixture of skew t distributions. Since the

generalized hyperbolic only requires five parameters to be estimated (as opposed

to nine parameters for a two component skew t mixture), it should be preferred in

situations where adequate sample size requirements are not met. None of the mixture

models considered in the analysis required the fitting of more than two components.

An assessment of the number of false positives, false negatives, and the degree of

agreement of results for the two control data sets also show the improved ability of

asymmetric mixtures to capture important features in the data while ignoring spurious

artifacts. In essence, our methods offer a compromise between over-fitting (as is the

case with kernel density estimates and spline or polynomial fits), and under-fitting

(as is the case with a normal or normal mixture) the data.

In summary, we developed flexible empirical Bayes methods for accurately and

robustly estimating the number of significant proteins by controlling the false dis-

covery rate locally. These methods do not require the calculation of a p-value for

the estimated protein abundances or making assumptions about the distribution of

the protein abundances under the alternative hypothesis of differential expression.
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Furthermore, since the local false discovery strategy is only based on the marginal

distribution of the estimated protein expression levels, independence of the protein

expression estimates is not a strong requirement. Both skew normal, skew t and gen-

eralized hyperbolic distributions reduce to their symmetric versions, when the data

are symmetric and mesokurtic. Therefore it is advisable to start a model fitting exer-

cise with these asymmetric components, and let the data itself determine if symmetric

components will suffice.

3.8 Future Work

In this chapter, we developed methodologies for the quantification and significance

assessment of protein relative expression ratios, when data come from non-replicated

proteomics experiments. In our future research, we propose to investigate incorporat-

ing data across replicate samples using a Bayesian hierarchical modeling approach.

In this section, we present a detailed outline of this planned research.

3.8.1 Bayesian Hierarchical Modeling of Replicated SILAC

Data

When a SILAC experiment is conducted in replicate, we have additional layers of

data that we can use to estimate the true relative expression ratio of each protein.

Let the true relative expression ratio of the jth protein in the sth replicated sample

be denoted by µjs and the sample estimate of this quantity by yjs; j = ı, . . . , m∗,

s = ı, . . . , S, where S is the number of replicate samples and m∗ is the number of

proteins identified in common in all replicate samples. These additional layers of data

can be brought into the framework discussed in Section 3.2.2 by augmenting the two

level hierarchical model in (3.4) as follows
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Let,

yjs ∼ N(µjs, σ
2
µjs

) (3.46)

µjs ∼ tv(θj, %
2
j) (3.47)

θj ∼
C∑
c=1

πcN(ηc, δ
2
c ) (3.48)

where tv is the Student’s t-distribution with v degrees of freedom and θj is assumed to

come from a Gaussian mixture distribution with C components, each having mixing

probability πc. The hierarchical setup above can be explained as follows, The repli-

cate level estimates of relative protein expression for protein j, yjs’s, are thought to

come from a normally distributed population with expected value equal to the true

population relative expression µjs, with sampling error σ2
µjs

. We assume that, for each

replicate sample, µjs and σ2
µjs

are given by the estimated mean and variance given in

(3.7) and (3.8), respectively. We further assume that the µjs’s are in turn sampled

from a t-distribution with location parameter θj and v degrees of freedom, where v

is taken to be S − 1. Here we use the t distribution as a heavier tailed and more

robust alternative to the normal, since S is typically small in practice. At the final

stage, we assume a that the θj’s are sampled from a normal mixture prior with mixing

proportion πc. This assumption is again based on the ”two-groups model” hypothesis

discussed in Section 3.2.4.1, which states that differentially expressed proteins follow

a separate distribution to that of non differentially expressed proteins.

Ideally, this mixture would only contain two components, one corresponding to

null proteins and the other corresponding to non-null. However, as was the case

with data from non-replicated SILAC experiments, we often find that one or both of

these components can in turn be better approximated using a mixture of distributions.

Note that our primary interest is in the θj parameter, which represents the expression

level of the jth protein, averaged over all available data. In (5.3), we have assumed
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that all component distributions are Gaussian and that the number of component

distributions in the mixture, C, is not known a priori.

The posterior densities of the unknown parameters specified in the above hierarchi-

cal model setup are not analytically tractable. Here we have chosen to estimate them

using the computationally convenient MCMC algorithm of Jung et al., (2006)[61],

which they used in the context of meta-analyses of microarray data. Implementation

details of the Gibbs sampler based MCMC method are presented in Section 3.8.2.

Let, for j = 1, . . . , m∗ and c = 1, . . . , C ,

%2
j ∼ IG(α, β)

(π1, . . . , πc) ∼ D(α1, . . . . αC)

ηc ∼ N(a0, b
2
c)

δ2
c ∼ IG(c0, d0)

where IG and D denote the inverse gamma, and Dirichlet distributions, which are

the conjugate priors for normal variances %2
j , δ

2
c ; and the Multinomial weights, πc;∑C

c=1 πc = 1, respectively.

3.8.2 Estimation of Model Parameters

Adopting the same convenient presentations of the t-distribution for µsj; and the

mixture prior of θj using latent variables, as Jung et al., (2006); and assuming inde-

pendence for all the prior distributions of the unknown parameters, we can derive the

the full conditional posterior distribution for each unknown parameter as described

below.
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Let,

µjs | ξ ∼ N(θj, vξ%
2
j/2)

ξ ∼ IG(v/2, 1)

Vj ∼Multinomial(1, πc, . . . , πc)

Ijc =

 1, if Vj = c

0, if Vj 6= c

nc =
m∗∑
j=1

Ijc

θj | Ijc = 1 ∼ N(ηc, δ
2
c )

Then the joint posterior density function,f(Ω | y), of all the unknown parameters,

Ω = ({µjs}, ξ, {%2
j}, {µj}, {Vj},Λ = {πc, ηc, δ2

c})

given the data y = {yjs}j=1, ...,m∗ ; s=1, ..., S, is given as

f(Ω | y) ∝
m∗∏
j=1

S∏
s=1

f(µ̂js | µjs) .
m∗∏
j=1

S∏
s=1

f(µjs | ξ, θj, %2
j) . π(ξ) .

m∗∏
j=1

π(%2
j) .

m∗∏
j=1

π(θj, Vj | Λ) . π(Λ)
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The full conditional posterior distributions are:

[µjs | Ω−] ∼ N

yjs/σ2
µjs

+ (2/vξ%2
j)θj

1/σ2
µjs

+ 2/vξ%2
j

,

(
1

σ2
µjs

+
2

vξ%2
j

)−1


[ξ | Ω−] ∼ IG

(
m∗S + v

2
, 1 +

m∗∑
j=1

S∑
s=1

(µjs − θj)2

v%2
j

)

[%2
j | Ω−] ∼ IG

(
S

2
+ α ,

S∑
s=1

(µjs − θj)2/vξ + β

)

[θj | Vj = c,Ω−] ∼ N

(2S/vξ%2
j)

∑S
s=1 µjs
S

+ ηc/δ
2
c

2S/vξ%2
j + 1/δ2

c

,

(
2S

vξ%2
j

+
1

δ2
c

)−1


[{πc}c=1, ..., C | Ω−] ∼ D (n1 + α1, . . . , nC + αC)

[ηc | Ω−] ∼ N

(∑m∗

j=1 θjIjc/δ
2
c + a0/b

2
c

nc/δ2
c + 1/b2

c

,

(
nc
δ2
c

+
1

b2
c

)−1
)

[δ2
c | Ω−] ∼ IG

(
nc
2

+ c ,
m∗∑
j=1

(θj − ηc)2Ijc/2 + d0

)

Vj ∼Multinomial(1, pj1, . . . , pjC)

pjc = P (Vj = c | Ω−) =
πcφ(θj; ηc, δ

2
c )∑C

t=1 πtφ(θj; ηt, δ2
t )

where Ω− represents all unknown parameters in Ω minus the parameter(s) being

conditioned upon, and φ(.; η, δ2) is the normal density function of N(η, δ2).

3.8.3 Estimating the local fdr

If we restrict the the number of mixture components, C, in (3.48) to be just two, i.e.,

θj ∼ π0N(η0, δ
2
0) + π1N(η1, δ

2
1),

then this extended hierarchical setup falls conveniently into the local fdr framework

given in Section 3.2.4.2. Then, from the model in (3.12) and by plugging in the

posterior estimates, the local false discovery rate associated with protein j, given
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that θj = θ∗ is given as

locfdrj(θ
∗) =

π̂0 φ(θ∗; η̂0, δ̂
2
0)(

π̂0 φ(θ∗; η̂0, δ̂2
0) + π̂1 φ(θ∗; η̂1, δ̂2

1)
) . (3.49)
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Chapter 4

Resampling Based Methods for

Identifying Differentially Expressed

Proteins using XIC Area

4.1 Introduction

The robustness of the results of proteomics data analyses is greatly affected by the

inherent variability in LC/MS-MS based proteomics strategies. Even under a con-

trolled setting, the observed protein profiles from two replicates of the same protein

sample will differ, both in terms of the set of proteins identified and in their observed

signal intensity levels. Typically, low-abundance proteins may or may not be detected

in a given MS run, and higher abundance proteins are detected at varying levels in

different runs. For instance, a reproducibility study by Durr et al., (2004)[34] per-

formed on rat lung endothelial cell plasma membranes concluded that ten replicate

runs would be necessary to reach completeness of protein detections with 95% con-

fidence. As discussed in Section 1.5, this variability is in part due to the nature of

proteins themselves (biological variability) and also in part to the variability of MS as
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a high throughput technique (technical variability). Furthermore, the processes and

interactions between processes responsible for both biological and technical variabil-

ity are not well understood. Although the need for replicate samples in proteomics

have been widely noted, the increased costs and time required for stable isotope la-

beling of samples has meant that most labeling-based proteomics data come from

non replicated experiments. Standard statistical analyses of these data sets, often

do not account for the cumulative effects of the underlying biological and technical

variability in the data, yielding results that are hard to reproduce. From a statistical

point of view, attempting to quantify this error, for example through a error propaga-

tion model, has two major road blocks: availability of data from a properly designed

experiment that consists of both technical and biological replicate samples, and the

fact that any such estimated model would be very hard to generalize since the error

processes are specific to the lab, protein sample, and the MS platform that produced

the data. Much of this variability can be reduced through careful quality control at

each stage of the experiment; by removing ‘unreliable’ data points; and by using a

more stable method to quantify the peptide level relative expression ratios.

A drawback of the type of statistical analysis of relative protein abundances dis-

cussed in Chapter 1 is that the analysis is based only on ‘complete’ peptide and protein

level data. For example, in any given gel fraction, if a subset of constituent peptides

of a particular protein only have either the light or the heavy signal observed, or if

both signals are not observed, then these peptides would be removed from further

analysis. This seems inefficient considering that these same set of peptides are likely

to be fully observed in a number of other gel fractions.

In the above context, we propose in this chapter a set of nonparametric statistical

methodologies that are based on capturing the inherent variability in labeling based

proteomics data through class preserving resampling. In these methods, our interest is

in estimating an ‘error - adjusted’ expression level for each identified protein, through
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resampling of all available peptide level data. Prior to the resampling analysis, we

pre-process the data to remove ‘less reliable’ data points, through a bivariate mixture

model based cluster analysis. We note here that this reliability analysis step can

precede any type of analysis involving labeling based proteomics data. We then

proceed to introduce a method for quantification of relative expression ratios, through

a ‘area under the curve’ approach that for a given peptide, down-weights data points

that are observed farther away from the highest observed peak in its MS/MS elution

profile. Finally, we develop two resampling based strategies for estimating the overall

relative expression ratio of a protein, a method for calculating a p-value for quantifying

the significance of each protein, and a two-groups model based local false discovery

rate estimation procedure.

4.2 Reliability Analysis of SILAC Data

Not all the data that results from a proteomics experiment are equally reliable. Low

reliability data could be the result of many factors that affected the data starting

from sample preparation to preprocessing. However, unreliable data are mostly a by

product of low signal intensities. In other words, signals that meet a pre-specified

signal-to-noise ratio cutoff, but by only a small margin. The use of less reliable data

is a major reason that affects the reproducibility of statistical data analyses results

in proteomics. Therefore the use of a subset of the available data that are deemed

more reliable could potentially mean that more accurate and robust ratios of protein

expression can be obtained.

In this section, we propose a statistical approach based on bivariate normal mix-

ture modeling to separate the available set of data into two groups, namely groups of

reliable and unreliable data. This type of reliability analysis was proposed by Asyali

et al. (2004)[7], in the context of testing the reproducibility of two dye channel
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(red and green) data resulting from cDNA microarray experiments. We adapt this

methodology to SILAC data, by recognizing that the (light, heavy) signal streams

can be treated the same way as the dye channels in cDNA microarray experiments.

We note here that, even though our adaptation of this method is based on SILAC

data, it would work equally well for any type of proteomics data generated using a

labeling strategy.

Adopting the same nomenclature and data structure that was described in Sec-

tion 3.2.1, we again denote the peptide level signal intensity pairs corresponding

to protein j by Rj =
{
Ljkrh

Hjkr
h

; k = 1, . . . , mj, r = 1, . . . , mjk, h = 1, . . . , mjkr

}
. Let,

Ijk =
∑mjk

r=1 mjkr denote the total number of intensity pairs available for the jkth pep-

tide across its mjk repeat occurrences, and Ij =
∑mj

k=1 Ijk denote the total number

of intensity pairs available for protein j across the mj peptides that are derived from

protein j. Now let yt = (lt, ht), t = ı, . . . , Ij be the 2-dimensional random sample of

size Ij. As mentioned in the previous section, not all of the Ij signal intensity pairs are

equally reliable. If we assume that the Ij signal intensity pairs come from two groups;

one group corresponding to signal pairs that have higher reliability compared to the

other, then we can frame this scenario within the framework of a bivariate normal

mixture model. Under this approach, each intensity pair is assumed to be a real-

ization of the random 2-dimensional vector y = (y1, . . . , yIj) with the 2-component

bivariate normal mixture probability density function

f(y; Ψ) =
2∑
g=1

πgφ(y;µg,Σg), (4.1)

where, Ψ = (π1, π2;θ
′
)
′
, π1, π2 are the mixing weights of the two component densi-

ties each representing a reliability group (either high or low); and θ consists of the

elements of µg and the distinct elements of the Σg, for g = 1, 2; and φ(y;µg,Σg) =

(2π)−1|Σg|−
1
2 × exp

{
−1

2
(y − µg)TΣg

−1(y − µg)
}

.
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We estimate (4.1) using the EM algorithm, with initial estimates of the parameters

obtained by a simple application of the k-Means clustering algorithm. From the

estimated mixture model, the posterior probability of group membership of each

observation yt can be derived as

P (observation yt ∈ group g) = π̂gt =
π̂gφ(yt; µ̂g, Σ̂g)∑2
g=1 π̂gφ(yt; µ̂g, Σ̂g)

, (4.2)

where t = 1, . . . , Ij and g = 1, 2.

Additionally, we can obtain a decision boundary for group membership by equat-

ing the group posterior probabilities and solving for yt for t = 1, . . . , Ij. I.e., the

decision boundary is the set of all points y such that π̂1φ(y; µ̂1, Σ̂1) = π̂2φ(y; µ̂2, Σ̂2).

If we represent the (l, h) signal intensity pairs on a 2-dimensional Cartesian coordi-

nate system, with the l-signal on the y-axis and the h-signal on the x-axis, then this

decision boundary typically takes the form of a hyper-ellipsoid, lying mostly on the

45◦ line, above the 45◦ line, or below it, depending on whether or not the protein

under consideration is non-differentially expressed, over expressed in the light isotope

labeled sample, or under expressed in the light isotope labeled sample, respectively.

Now let,

δ(y,µ; Σ) = (y − µ)TΣ−1(y − µ) (4.3)

π̃ = max (π̂1, π̂2), (4.4)

where (4.3) denote the Mahalanobis squared distance between y and µ (with Σ as

the covariance matrix). Then we treat an observation yt as unreliable if the quantity

δ(yt, µ̂π̃; Σ̂π̃) exceeds the 90th percentile of the chi-squared distribution with 2 degrees

of freedom, where µ̂π̃, and Σ̂π̃ represent the mean vector and covariance matrix of

the more reliable group. Unreliable pairs of intensity signals thus identified, are then

removed from the original set of scans, Rj. After repeating the above procedure for
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all proteins, we are left with a ‘reduced in size, but improved in quality’ data set,

which we will make use of in all down-stream analyses.

We note here that this approach can be made more robust by using mixtures of

bivariate t distributions instead of the bivariate normal. In our data, it is the norm

that not all the proteins in any given data set will have sufficiently large number of

scans to allow the reliable fitting of a bivariate t mixture. However, when sufficient

sample sizes are available, extending this analysis to a t mixture framework is fairly

straight forward, with model fitting easily achieved by the augmented EM based

methods of either Liu and Rubin (1995)[75], or McLachlan and Peel (2000)[86].

4.3 Evaluation of the Protein Relative Expression

Ratio using Extracted Ion Current (XIC) Area

Up to now, we have used individual chromatographic peaks to calculate the relative

expression ratios of peptides. I.e., given a heavy and light signal intensity pair corre-

sponding to a particular peptide, an estimate of the relative expression ratio of that

peptide is given by the actual ratio of the heavy and light chromatographic peaks.

However, the variability of the relative expression ratios estimated using individual

peak ratios is still quite high, even when all signal pairs are derived from the same

peptide and same gel fraction. This variability can be reduced by the elimination of

less reliable signal pairs, as discussed in Section 4.2. We can further reduce this vari-

ability by considering ratios of chromatographic peak areas (or ion current areas),

instead of ratios of individual peaks. The relative expression ratio of a peptide is

then estimated using the ratio of the chromatographic peak areas of heavy and light

signals eluting over a range of time in which chromatographic peaks corresponding

to that peptide were detected by the mass spectrometer. Before calculating the chro-

matographic peak area for either the heavy or the light signals, we obtain a smooth
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demarcation of the chromatographic peak profile using a second order Savitzky-Golay

smoothing filter [97]. This smoothing filter was also used in Li et al., (2003)[66] and

Ryu et al., (2008)[107] for estimating the peptide ion current area.

4.3.0.1 The Savitzky-Golay smoothing filter

The premise of data smoothing is that one is measuring a variable that is both slowly

varying and also corrupted by random noise. This is exactly the case with the typical

peak elution pattern, or the extracted ion chromatogram (XIC; peptide ion signal as

a function of elution time), of peptides. As illustrated in Figure 4.1, the XIC starts

at around the 36.6 minute mark, peaking at around the 36.8 mark and completely

disappears at around the 37.0 minute mark. During this 0.4 minute interval, five

(light, heavy) signal intensity pairs are observed. The five individual (h/l) ratios are

all estimating the same relative peptide expression ratio, with possible added variation

introduced by the slowly varying growth and decay rates and random (experimental)

noise present in the XIC. The ratio given by, area (red curve)
area (black curve)

, is expected to provide a

much more reliable estimate of the true peptide relative expression ratio, compared

to simply picking the highest peak in the elution profile. Simply put, the purpose

of using a smoothing filter is to replace the separate peaks shown in Panel A with a

smooth curve as in Panel B.

Figure 4.1: Example of an Extracted Ion Chromatogram (XIC).
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Let, fi ≡ f(ti), represent a set of equally spaced data values, where ti ≡ t0 + i∆ for

some constant sample spacing ∆ and i is represents a sequence that extends sym-

metrically in opposite directions of a pre-specified point. A smoothing filter basically

replaces each data value fi by a linear combination gi of itself and some number of

it’s closest neighbors,

gi =

nR∑
n=−nL

cnfi+n, (4.5)

where, nL, nR are the number of points used to the left and right of a given datum i.

The basic idea behind the Savitzky-Golay filtering (Savitzky and Golay, 1964[109])

is to find filter coefficients cn, by approximating the underlying function by a polyno-

mial of higher order, typically quadratic or quartic, within a moving window of fixed

size. For each point fi, a polynomial is fit using least squares fitting to all nL+nR+1

points in the moving window, and gi is set to be the value of the fitted polynomial at

position i. Starting with f−nL , this procedure is repeated, each time within a shifted

window from the previous, until the procedure terminates at the point fnR . With

SILAC data nL, nR is usually at least three, yielding at a minimum seven data points

for the fitting procedure.

4.3.0.2 Estimating the relative expression ratio using XIC area

For our data, we use a Savitzky-Golay filter with third-order polynomial smoothing

and a moving window of width nine for both light and heavy XIC’s. This essentially

means that we replace the observed intensity peak at Time = t∗, say, with a fitted

value obtained from a polynomial fit to nine neighboring points, which includes the

peak at Time = t∗ and the four closest peaks to the left and right of Time = t∗. For

each XIC, we select t0 to be the point that corresponds the highest observed peak.

This allows the Savitzky-Golay filter to capture the central region of the XIC, which
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has the desirable properties of: having the most reliable peaks, since they have large

signal-to-noise ratios; and having the least variable peaks, since growth/decay rates

are typically slower near the center of the elution profile. Now let, f̃l, f̃h denote the

smoothed estimates of the light and heavy XIC’s, respectively. Then the peptide

expression levels for light and heavy samples can be determined by numerical estima-

tion of the chromatographic peak areas of f̃l, and f̃h. The relative expression ratio

of the peptide is then given by the ratio area (f̃h)

area (f̃l)
. Usually these ratios are log 2-base

transformed, for reasons mentioned in Section 3.2.2.

4.4 Resampling Based Estimation of Overall Pro-

tein Relative Expression using XIC area

Let Ãjkr be the XIC area ratio derived from the mjkr signal intensity pairs corre-

sponding to Ppjkr, where Ãjkr = log2

(
area (f̃hjkr)

area (f̃ ljkr)

)
, and f̃ ljkr, f̃

h
jkr are the estimated

smooth profiles of the light and heavy XIC’s, respectively. Now let Rjk denote the

set of all XIC area ratios for Ppjk and Rj denote the union of all such sets for protein

j. It now remains for us to estimate an overall relative expression ratio for protein j

using all peptide level area ratios in the set Rj.

Let ŵjk =
|Rjk|
|Rj|

, where |.| represents the cardinality of the set and
∑mj

k=1wjk = 1.

Then ŵjk is indicative of the empirical probability of observing peptide k as being

derived from protein j, under the experimental setup that generated this set of XIC

area ratios. The higher the value of ŵjk, the higher the chance that peptide k is

more ‘proteotypic’. I.e, that this peptide has certain desirable properties, either

physicochemical and/or experimental, that makes peptide k more likely to be observed

for protein j, compared to a peptide that has a smaller ŵ. This concept of the

existence of ‘proteotypic’ peptides was first espoused by Mallick et al., (2007)[77].

In subsequent discussions, we make use of the following notations and definitions.
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Let, for some protein j,

Rj = {Ãjkr : k = 1, . . . , mj; r = 1, . . . , mjk}, (4.6)

wj = {ŵjk : k = 1, . . . , mj}, (4.7)

where, Rj denotes the set of all available peptide level XIC based relative expression

ratios for protein j, and wj denotes the set of estimated weights corresponding to

each unique peptide in set Rj.

If only a single peptide was found for a particular protein, i.e, mu = 1 for some

protein u and if that peptide was observed only once across all gel fractions, then we

simply pass on the calculated XIC area ratio for that peptide as the final estimate of

the overall relative expression ratio for protein u for all down-stream analyses. When

there is more than one peptide available for a protein j, i.e., when mj > 1), and each

of these peptides is observed multiple times, then we take the overall average of all

available peptide level relative expression ratios as the overall estimate, θ̂j, of the true

relative expression ratio, θj, of protein j,

θ̂j =

∑mj
k=1

∑mjk
r=1 Ãjkr

|Rj|
(4.8)

4.4.1 Estimation of Relative Protein Expression using a Boot-

strap Partial Maximum Likelihood Estimator (BPMLE)

The bootstrap partial likelihood (BPL) method (Davison et al., (1992)[31], affords

a way for us to seek an approximate likelihood function for θj, p
(
θ̂j|θj

)
, using a

nested bootstrap procedure. In other words, we seek an estimate of the sampling

distribution of θ̂j, when the true parameter is θj. The BPMLE method proceeds as

follows. First, we draw B1 first stage bootstrap samples Rj
∗1, . . . , Rj

∗B1 , from Rj.
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Each bootstrap sample is drawn in two steps. First, we draw mj peptide blocks with

replacement, where the kth peptide block consists of the mjk ion current ratios corre-

sponding to Ppjk, and has probability ŵjk of being drawn. If the kth peptide block is

selected in the peptide block sampling step, then from that peptide block, we again

draw with replacement a random sample of size mjk. At the end of this process, we

obtain the first stage bootstrap replications θ̂∗1j , . . . , θ̂
∗B1
j . Next, from each of the first

stage bootstrap samples, Rj
∗b, b = 1, . . . , B1, we generate B2 second stage bootstrap

samples, again following the same two step drawing procedure. These second stage

bootstrap replicates are denoted as θ̂∗∗1bj , . . . , θ̂
∗∗B2
bj . Note that our analysis here differs

from a typical BPL construction in the sense that we are drawing weighted samples

at both the first and second stages, with drawing probabilities taken to be given by

wj. Consequently, these weighted bootstrap samples are more representative of the

actual phenomena governing the size and characteristics of the peptide complement

that is detected in any given MS run. Finally, we form the kernel density estimates

p̂
(
θj|θ̂∗bj

)
=

1

B2s

B2∑
t=1

k

(
θj − θ∗∗tbj

s

)
, for b = 1, . . . , B1, (4.9)

where, k(.) is any kernel function with window width s. In this work, we use a

standard normal density kernel, and estimate the optimal bandwidth s, by the version

of solve-the-equation plug-in method proposed by Sheather and Jones (1991)[112].

Next, we evaluate p̂(θj|θ̂∗bj ) for θj = θ̂j , b = ı, . . . , B1. Each p̂(θ̂j|θ̂∗bj ) provides

an estimate of the likelihood of θj for parameter value θj = θ̂∗bj . We then apply a

loess smoother to the pairs [θ̂∗bj , p̂(θ̂j|θ̂∗bj )], b = ı, . . . , B1, to get a smooth estimate of

the likelihood, L. The BPL-based estimate of the overall relative expression ratio of

protein j is then given by θ̂BPLME
j = argmaxθj L.
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4.4.2 Estimation of Relative Protein Expression using a Model-

based Bootstrap

In this section, we make use of covariate information, viz. four physicochemical/ex-

perimental properties of peptides, to generate bootstrap samples that are ’adjusted’

for these covariates. For the kth peptide derived from the jth protein, we denote these

four properties as: CHjk - the charge associated with each peptide , TPjk - trypticity

(i.e., the extent to which the peptide is digested in the mixture), LNjk - the length

of the its amino acid sequence, and XCjk - the cross correlation score for the peptide

outputted by The SEQUEST algorithm.

Let, εjk = Ãjk − θj represent the error in estimating the overall relative protein

expression ratio, θj, using the peptide level estimator Ãjk =

∑mjk
r=1 Ãjkr
|Rjk|

. Ideally, this

error should be a white noise process. However, as discussed previously, a major

part of this variation is due to physicochemical/experimental properties of peptides

themselves and the inherent variability in mass spectrometry based methods. Let

ε̃jk = Ãjk − θ̂j be the dependent variable in the following linear model

ε̃jk = β0 + β1 CHjk + β2 TPjk + β3 LNjk + β4 XCjk + εjk ; k = ı, . . . , mj (4.10)

= X′jkβ + εjk (4.11)

and let the fitted model be

ε̃jk = b0 + b1 CHjk + b2 TPjk + b3 LNjk + b4 XCjk + ejk ; k = ı, . . . , mj (4.12)

= X′jkb + ejk (4.13)

The accuracy of the least squares estimates, b, depend on the distribution of εjk

being normal. When this is not the case, in particular if the error distribution is

heavier tailed compared to the normal, we need to consider a fitting criterion that is
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more robust to unusual data.

4.4.2.1 Robust regression using M-estimation

A convenient method of robust regression is M-estimation, introduced by Huber

(1964)[59]. The general M-estimator is calculated by minimizing a pre-specified ob-

jective function

mj∑
k=1

δ (ejk) =

mj∑
k=1

δ
(
ε̃jk −X′jkb

)
(4.14)

where the function δ represents the contribution of each residual to the objective

function. Note that the standard least squares estimation corresponds to, δ (ejk) =

e2
jk.

Now let ψ be the derivative of δ, the weight function ω(e) = ψ(e)/e, and ωjk =

ω(ejk). Then for the coefficients, b, in (4.21), we can form a system of five estimating

equations

mj∑
k=1

ωjk
(
ε̃jk −X′jkb

)
X′jk = 0 (4.15)

Solving the estimating equations is a weighted least-squares problem involving the

minimizing of
∑

k ω
2
jke

2
jk, and can be achieved by the iteratively reweighted least-

squares (IRLS) method.

The M-estimator we consider for our data is the Tukey bi-square (or biweight)
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estimator. The objective and weight functions corresponding to this estimator are

δ(e) =


λ2

6

{
1−

[
1−

(
e
λ

)2
]3
}
, for |e| ≤ λ

λ2

6
, for |e| > λ,

(4.16)

ω(e) =


[
1−

(
e
λ

)2
]2

, for |e| ≤ λ

0, for |e| > λ,
(4.17)

where λ is a tuning constant governing the level of resistance to outliers. Smaller

values of λ produce more resistance to outliers, but at the expense of lower efficiency

when the errors are normally distributed. In practice, λ is set at 4.685σ̂, where σ̂

is the standard deviation of the errors. This value of λ yields 95-percent efficiency

when the errors are normal, while still offering reasonable protection against outliers.

Note that for the bi-square estimator the objective function eventually levels off (for

|e| > λ) and the weights decline as soon as e diverges from 0, and are 0 for |e| > λ.

Let the set of predicted values for protein j from (4.20) be ˆ̃εj = {ˆ̃εj1, . . . , ˆ̃εjmj}.

We now use the same procedure described in Section 4.4.1, but now, instead of draw-

ing first stage weighted samples from Rj, we draw random samples from ˆ̃εj. After

the bth first stage draw, we re-construct the bth first stage sample Rj
∗b as θ̂j + ˆ̃εjk,

k = ı, . . . , mj. Upon completion of this process for B1 first stage samples and B2

second stage samples, we obtain the first stage bootstrap replications θ̂∗1j , . . . , θ̂
∗B1
j ,

and second stage bootstrap replicates θ̂∗∗1bj , . . . , θ̂
∗∗B2
bj , for b = ı, . . . , B1. Subsequent

steps needed for the estimation of the BPL estimate, θ̂BPLME
j , of the overall relative

expression ratio of protein j, are identical to those that were presented under Section

4.4.1.
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4.4.2.2 Influence of covariates on protein expression estimation

As an interesting aside, we also investigate the influence of the covariates CH, TP, LN,

and XC on the overall protein expression ratio estimates. This is done by a standard

bootstrap M-estimation of the peptide level data available for all the proteins on the

covariates. I.e., we extend the regression model (4.10) to include all m identified

proteins. This extended regression model is

ε̃jk = β0 + β1 CHjk + β2 TPjk + β3 LNjk + β4 PCjk + εjk ; j = ı, . . . , m ; k = ı, . . . , mj

(4.18)

This regression model is particularly useful as a baseline reference for the behavior

of null proteins. We can compare the results of a regression done on the data from

a single protein (using model ??) against this reference. A protein that is behaving

in a manner that is inconsistent with the reference can be considered for further

investigation.

4.4.3 p-value Estimation and FDR

If we let zj = θ̂j for j = ı, . . . , m, then we could adopt any of the methods of Chapter

3, to fit a two-groups model to the z values, leading to the estimation of a local

false discovery rate for each protein. Alternatively, we can construct a bootstrap

p-value for each statistic θ̂j, and use the estimated p-values to control for multiple

testing by any of the standard false discovery rate methods. For example, we can

use the classical FDR method of Benjamini and Hochberg (1995)[16], or the q - value

method of Storey (2003)[113]. In this work, we have chosen to remain within the

two-groups model framework, whereby we estimate local false discovery rates using

the nested-bootstrap p-values of the θ̂j’s.
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4.4.3.1 A p-value based on the nested-bootstrap samples

We can construct a bootstrap p-value for testing the two sided hypothesis H0 : θj = 0,

by using the B1 first stage bootstrap replications θ̂∗1j , . . . , θ̂
∗B1
j as

p̂∗j = 2 min

(
1

B1

B1∑
b=1

I(θ̂∗bj < 0) ,
1

B1

B1∑
b=1

I(θ̂∗bj > 0)

)
(4.19)

In (4.19), we calculate the p-values for one-tailed tests in each tail and reject H0

if either of these p-values is less than α/2, where α is the level of the test. Note that

this formulation of the bootstrap p-value does not assume θj is symmetric around

zero in finite samples. The p-value in (4.19) can be improved upon, by making use

of the information afforded by the B2 second stage samples. This approach of using

the second stage samples to estimate a p-value is called the nested-bootstrap or the

double-bootstrap p-value (Beran, 1988)[17]. The method proceeds as follows. For

each first-level bootstrap sample indexed by b, we can compute the second-stage

bootstrap p-value

p̂∗∗bj = 2 min

(
1

B2

B2∑
l=1

I(θ̂∗∗lbj < θ̂∗bj ) ,
1

B2

B2∑
l=1

I(θ̂∗∗lbj > θ̂∗bj )

)
(4.20)

The p-value in (4.20) corresponds to the bootstrap replicate θ̂∗bj , based on the

empirical distribution of the second level replicates θ̂∗∗lbj ; l = 1, . . . , B2. We then use

the p̂∗∗bj to calculate the nested-bootstrap p-value as

p̂∗∗j =
1

B1

B1∑
b=1

I(p̂∗∗bj ≤ p̂∗j). (4.21)

Therefore the nested-bootstrap p-value, p̂∗∗j , is equal to the proportion of the

second-level bootstrap p-values that are smaller (and hence more extreme) than the

first-level bootstrap p-value.
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The nested-bootstrap p-value is an improvement on the standard bootstrap p-

value in the following heuristic sense. If the bootstrapping process causes the distri-

bution of the θ̂∗bj to contain fewer extreme values than the distribution of θj itself,

then the p-values associated with moderately extreme values of θ̂j would tend to be

too small. However, we can still reasonably expect that the distributions of the θ̂∗∗lbj

would contain even fewer extreme values than the distribution of the θ̂∗bj . Therefore,

the p̂∗∗bj should tend to be too small, at least for small values of p̂∗j . The implication

being that the nested-bootstrap p-value p̂∗∗j will be larger than p̂∗j , which is what we

want. Similarly, p̂∗∗j will tend to be smaller than p̂∗j when the distribution of the θ̂∗bj

contains more extreme values than the distribution of θj.

4.4.3.2 Local False Discovery Rate Estimation

The two-groups model that we use is the same as that of Allison et al., 2002[3]; the

only difference being that instead of traditional p-values derived from a t-test like

statistic, we use nested-bootstrap derived p-values to construct our mixture model.

Under this approach, we model the distribution of the nested-bootstrap p-values,

p̂∗∗j ; j = ı, . . . , m, as a mixture of a uniform distribution on [0,1], with weight π0,

for proteins that are non differentially expressed and a Beta (a, b) distribution, with

weight 1 − π0, for proteins that are differentially expressed. This particular mix-

ture model has been shown to perform exceptionably well with p-values in previous

studies (Pounds and Morris (2003)[96], Allison et al., (2002)[3], Pan (2002)[93]). For

simplicity of notation, let p = p̂∗∗. Then, using (3.10), the density function for all

nested-bootstrap p-values can be given as

f(p; a, b) = π0 + (1− π0)
Γ(a+ b)

Γ(a)Γ(b)
pa−1(1− p)b−1 (4.22)
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Method of moments estimates of a, b, which serve as starting values, are given by

amom = p̄

(
p̄(1− p̄)

v
− 1

)
(4.23)

bmom = (1− p̄)
(
p̄(1− p̄)

v
− 1

)
, (4.24)

where p̄ gives the mean p-value and v = m−1
m

Var(p). Now using EM estimates of

(π0, a, b) and definition (3.12), the local false discovery rate corresponding to protein

j can be calculated as

locfdrj(p∗) =
π̂0

π̂0 + (1− π̂0)Beta(p∗; â, b̂)
(4.25)

Since, by definition, locfdrj(p
∗) gives the posterior probability of being ‘null’

given that we observed pj = p∗, we can choose a probability cut-off (say, 0.05), and

choose all proteins with a local false discovery rate below this cut-off to select a list

of proteins that are significantly differentially expressed between the light and heavy

isotope labeled samples.

4.5 Results

We begin by selecting a more reliable set of data points for each protein through

the bivariate mixture model based clustering method presented in Section 4.2. The

resulting cluster plot for a randomly chosen protein from Sample A, YPL240C, is

shown in Figure 4.2. As expected for a non-differentially expressed protein, the

hyper-ellipsoid demarcating the class membership decision boundary lies primarily

on the 45◦ line. Note that if we divide the scatter plot of the data into four quadrants

based on the average noise level, then we expect that most of the reliable data points

would lie within the first quadrant (top-right). This quadrant corresponds to signal

pairs that have the highest signal-to-noise ratio. Conversely, most of the less reliable
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data points should lie within the third quadrant (bottom-left). We select a data point

as unreliable if its Mahalanobis squared distance from the mean of the more reliable

cluster exceeds the 90th percentile of the chi-squared distribution with 2 degrees of

freedom. For YPL240C, this criterion identified 19 data points (out of 271 total) as

less reliable. The plot of cluster membership scores (figure 4.3) shows that there are

only a few data points with nearly equal scores.

Figure 4.2: Choosing a reliable subset of the data. Red and blue ellipses indicate the two

identified clusters; solid black contour indicates the hyper-ellipsoid demarcating the class membership

decision boundary; vertical and horizontal lines represent the average noise level in the heavy and

light signals, respectively.

After removing the unreliable data points, we smooth the elution profiles of the

constituent peptides of each of the proteins in Sample A and Sample B by using

the Savitzky-Golay filter with third-order polynomial smoothing and a moving win-

dow of maximum width nine, on both the light and heavy signals separately. As

an illustrative case, the observed and filtered elution profiles corresponding to pep-

tide DFELEETDEEK of protein YPL240C are shown in Figure 4.4. The ratio of
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Figure 4.3: Cluster membership scores. Membership scores clearly separate the data into two

classes, with relatively few data points having nearly equal scores.

the AUCs of the filtered profiles is 1.015. The matching ratio for DFELEETDEEK

obtained from Sample B is 1.044. The two ratios are fairly consistent in both magni-

tude and direction. On the other hand, the ratio of the light and heavy signals of the

highest observed peak is 1.108 in Sample A, and 0.893 in Sample B. In this case, the

two estimates reverse direction, going from an estimate of up-regulation in Sample

A to an estimate indicating down-regulation in Sample B. In general, the estimates

obtained using AUCs of the filtered profiles are far more robust compared to the

highest peak ratio based estimates. This behavior is expected since we set up our

filtering algorithm to capture the region of the elution profile surrounding its highest

peak, thereby ensuring that we work with only the most stable and reliable intensity

signals.
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Figure 4.4: Savitzky-Golay filtered ion-current profile of DFELEETDEEK.

4.5.1 Estimation of Relative Protein Expression using a Boot-

strap Partial Maximum Likelihood Estimator (BPMLE)

After applying the soothing filter to the data, we make use of the weighted double

bootstrap methodology presented in Section 4.4.1 to draw B1 = 200 first stage boot-

strap samples and B2 = 50 second stage samples, and estimate the bootstrap partial

likelihood based estimator of overall relative protein expression ratio for each protein.

We calculate a significance value for each expression ratio using the nested bootstrap

p-value estimation method discussed in Section 4.4.3.1. Finally, we obtain a list of

significant proteins by applying the local false discovery strategy on the estimated

p-values using a Beta-Uniform mixture model.

The fitted Beta-Uniform mixture, posterior probability of non-differential expres-

sion, and the Quantile-Quantile plot assessing the fit of the mixture to the data are

shown in Figure 4.5.
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Beta−Uniform Mixture (Sample A)
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Figure 4.5: A Beta-Uniform mixture for bootstrap partial likelihood based p-values.
The QQ-plots show the fit of the to the estimated Beta-Uniform mixture; the dotted horizontal line

traces the p-value corresponding to a local false discovery rate cut-off of 0.1.
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Parameter estimates of the mixture model, the number of significant proteins

identified, and the nested bootstrap p-value corresponding to a local false discovery

rate cut-off of 0.1 are shown in Table 4.1. The BPMLE - local fdr based significance

analysis identified 7 proteins from Sample A and 5 proteins from Sample B as being

significantly up or down regulated. Of the 7 proteins identified from Sample A, 3 are

known contaminants. Of the 5 proteins identified from Sample B, only 1 is a known

contaminant.

Sample A (m = 614) Sample B ( m = 588)

Estimation Method Bootstrap Partial Maximum Likelihood

â 0.490 0.404

b̂ 1.020 0.979
π̂0 0.933 0.952

p-value cutoff (locfdr < 0.1) 0.00061 0.00098
Number Significant 7 5

Table 4.1: Bootstrap partial likelihood based assessment of significant differential
expression

4.5.2 Estimation of Relative Protein Expression using a Model-

based Bootstrap

We start by separately fitting the reference regression model (4.18) using the Tukey

bisquare M-estimator to all available peptide level data in Sample A and Sample B.

Scatter plots of bootstrap replications corresponding to all possible two-way pairings

of regression coefficients are shown in Figure 4.6 and Figure 4.7. The over-laid con-

centration ellipses correspond to 50, 90, and 99-percent levels and are drawn using a

robust estimate of the covariance matrix of the coefficients. A concentration ellipse

with a nearly horizontal major axis indicates that the two regression coefficients are

unaffected by each other. Of note, are the inverse relationships observed between the

coefficients for peptide length and charge, and peptide length and Xcorr, in predict-

ing the distance of a given peptide’s relative expression ratio from the overall mean
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estimate. In general, we observe the same patterns of interaction between two-way

pairings of coefficients in Sample A and sample B.
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Figure 4.6: Scatterplot of bootstrap replications of the different combinations of re-
gression coefficients from the Huber-Tukey bisquare regression for Sample A data.
The concentration ellipses are drawn at the 50, 90, and 99-percent levels using a robust estimate of

the covariance matrix of the coefficients.

Next, we fit the regression model (4.10) to each of the proteins in Sample A

and Sample B. The results of this regression are shown for a selected yeast protein

and a contaminant protein from Sample B: YAL005C, and keratin 2.a, respectively.

The scatter plots of regression coefficients for these two proteins (Figures 4.8, 4.9)

illustrate the consistent behavior of a protein that is homogenous with a majority of

the proteins in the sample, and the deviant behavior a protein which is not.

The bootstrap statistics for the two fitted reference models and proteins YAL005C,

keratin 2.a are given in Table 4.2. The estimated intercept term in each regression

model represents the overall relative expression ratio. For the null yeast protein

YAL005C and the contaminant keratin 2.a, the overall estimated relative protein
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Figure 4.7: Scatterplot of bootstrap replications of the different combinations of re-
gression coefficients from the Huber-Tukey bisquare regression for Sample B data.
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Figure 4.8: Behavior of Huber regression coefficients for YAL005C.The behavior of this

non-differentially expressed protein is quite similar to the reference of its parent sample, Sample B,

shown in Figure 4.7..
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Figure 4.9: Behavior of Huber regression coefficients for keratin 2.a. The behavior of

the known contaminant keratin 2.a is markedly different from the reference of its parent sample,

Sample B (see Figure 4.7)
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expression ratios are 2(−0.0613) = 0.958, and 2(3.5967) = 12.098, respectively. For both

proteins, the Charge, Trypticity, and Xcorr coefficients are negative. This indicates

that the relative expression ratio of a peptide with a higher charge state, better trypsin

digestion, and a more reliable SEQUEST identification, will tend to be closer to the

overall relative expression ratio of its parent protein. The peptide length coefficient

seems to indicate that smaller peptides are preferable for obtaining a more reliable

protein level estimate.

Bootstrap Statistics ( R = 2000 )
Original Bias Std. Error 95% C.I.

Sample A – Reference (N = 6074)
Intercept 0.0937 0.0003 0.0962 (-0.0952, 0.2818)
Charge -0.0415 0.0001 0.0361 (-0.1124, 0.0292)

Trypticity -0.0234 0.0002 0.0273 (-0.0772, 0.0300)
Length 0.0096 -0.0001 0.0049 (0.0001, 0.0194)

Xcorr -0.0495 0.0002 0.0195 (-0.0880, -0.0114)
Sample B – Reference (N = 3790)

Intercept 0.0596 -0.0010 0.1009 (-0.1373, 0.2584)
Charge -0.0542 0.0013 0.0384 (-0.1307, 0.0197)

Trypticity -0.0125 -0.0006 0.0262 (-0.0634, 0.0394)
Length 0.0020 -0.0001 0.0041 (-0.0058, 0.0101)

Xcorr -0.0233 < 0.0001 0.0186 (-0.0597, 0.0131)
YAL005C (N = 85) B1 = 200

Intercept -0.0613 0.0683 0.0833 (-0.2249, 0.1023)
Charge -0.0898 -0.0329 0.0367 (-0.2404, -0.0608)

Trypticity -0.0317 0.0543 0.0224 (-0.0419, -0.0095)
Length 0.0364 < 0.0000 0.0294 (0.0103, 0.1531)

Xcorr -0.0026 -0.0316 0.0242 (-0.0501, 0.0449)
Keratin 2.a (N = 82)

Intercept 3.5967 -0.7224 6.6806 ( -8.775, 17.413)
Charge -0.0746 -0.1794 2.2630 (-4.3308, 4.5402)

Trypticity -0.2250 0.1984 1.9424 (-4.2304, 3.3836)
Length 0.3711 0.0350 0.2434 (-0.1069, 0.8491)

Xcorr -0.1449 0.1186 1.1181 (-2.4549, 1.9278)

Table 4.2: Bootstrap statistics for Huber regression coefficients. R = number of bootstrap

replications used for the reference models; B1 is the number of first stage samples drawn for each

protein; 95% C.I. are based on the 2.5th to 97.5th percentiles of the distribution of the bootstrap

replicates.

After carrying out the Huber bootstrap regression on each protein, we again make

use of the double bootstrap sampling methodology presented in Section 4.4.2.1 to

draw B1 = 200 first stage re-constructed bootstrap samples and B2 = 50 second stage

samples, and estimate the bootstrap partial likelihood estimator of overall relative

protein expression ratio for all proteins. Associated p-values are obtained by the

bootstrap p-value estimation method presented in Section 4.4.3.1. Finally, we carry
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out the local false discovery rate estimation using a Beta-Uniform mixture model

on the estimated p-values. The fitted Beta-Uniform mixture, posterior probability

of non-differential expression, and the Quantile-Quantile plot assessing the fit of the

mixture to the data are shown in Figure 4.10.

Beta−Uniform Mixture (Sample A)
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Beta−Uniform Mixture (Sample B)
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Figure 4.10: A Beta-Uniform mixture for Huber regression based bootstrap p-values.
The QQ-plots show the fit of the to the estimated Beta-Uniform mixture; the dotted horizontal line

traces the p-value corresponding to a local false discovery rate cut-off of 0.1.

Parameter estimates and the number of significant proteins identified are given in

Table 4.3. The data analysis identified 15 proteins from Sample A and 12 proteins

from Sample B as being significantly up or down regulated. Seven out of fifteen,

and six out of the twelve of the identified proteins from Sample A and Sample B are

known contaminants.
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Sample A (m = 614) Sample B ( m = 588)

Estimation Method Robust Regression based Bootstrap

â 0.276 0.237

b̂ 1.119 1.513
π̂0 0.931 0.948

p-value cutoff (locfdr < 0.1) 0.0023 0.0028
Number Significant 15 12

Table 4.3: Bootstrap regression based assessment of significant differential expression.

4.6 Discussion

The validity and robustness of the results of proteomics data analyses are affected by

the inherent variabilities in LC/MS-MS based proteomics strategies. While there have

been some studies that looked into the processes and interactions between processes

responsible for both biological and technical variability, there is a dearth of research

in to the actual impact of this variability on peptide and protein expression estimates.

Some of this variability can be reduced through careful quality control at each stage of

a proteomics experiment. At the data analysis stage, we propose two additional steps

that can be used to further reduce variability: removal of ‘unreliable’ data points

through a bivariate mixture model based cluster analysis; and quantifying a peptide

level relative expression ratio based on the ratio of the area under the filtered ion

current profiles. These two steps together improve the robustness of the peptide level

estimates that are then used to estimate a protein level overall relative expression

ratio.

We propose two resampling based methods for estimating the relative protein ex-

pression from peptide level expression estimates. The first method is an extension

of the bootstrap partial likelihood approach. The standard bootstrap partial likelihood

estimates the likelihood for a parameter of interest θ based on the sampling den-

sity p
(
θ̂ | θ

)
, which is estimated directly from the data using a nested bootstrap

computation. We propose to improve the efficiency of this standard construction by

introducing a weighted resampling mechanism, at each level of nesting. The second

method combines the bootstrap partial likelihood approach with a robust regression
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of the error in estimating the overall relative protein expression ratio on covariate

information available at the peptide level. We implement robust regression through

the use of the Tukey bi-square M-estimator. For each peptide, considered covariates

are: charge state, length of the amino acid sequence, level of trypsin digestion, and

the peptide cross correlation score generated by the SEQUEST algorithm. We assign

a p-value to each protein based on a strategy that makes use of the same nested

bootstrap samples that are used to derive its bootstrap partial likelihood estimate of

relative expression. We also propose to identify the set of significant proteins by

locally controlling the false discovery rate using a Beta-Uniform mixture model.

With our proposed methods, our primary interest is in estimating an ‘error - ad-

justed’ expression level for each protein, through weighted resampling of all available

peptide level data for that protein. From a different point of view, this process can be

thought of as a missing value imputation problem since we are essentially imputing

missing peptide values based on information gathered across all gel fractions in which

that peptide is fully observed.

We demonstrate the use of these methods on two control data sets derived from

the yeast proteome. The fact that all proteins in these data sets are mixed in a 1:1

ratio, allows us the ability to gauge the efficacy of the proposed methods, since the

expected number of significant proteins in either data set (other than contaminants) is

zero. Our analysis demonstrated that both resampling based approaches cut down on

the number of false positives to a remarkable degree. This is not surprising since both

resampling methods, over the long run, average out the highest and lowest peptide

level estimates for each protein which are typically responsible for generating false

positives.

A limitation of our methods is that they can be computer resource intensive, when

using standard statistical software such as R or SAS and/or when run on a 32-bit

system. We used the x86 Open64 C++ compiler on a 64 bit operating system to run
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our programs. On this platform, average program run time from start of identifying

and removal of less reliable data points to fitting of the Beta-Uniform mixture model,

is about 40 minutes. Average run time on a 32-bit system running R is about 380

minutes. Another limitation is the limited number of covariates considered in the

Huber regressions. The four covariates we use are merely the ones that are currently

available to us, and may not be the best covariates that are predictive of peptide level

estimation error in estimating protein expression.

In summary, our proposed resampling approaches provide an appealing alternative

to traditional parametric approaches. Our methods do not require any assumptions

about the distribution of the peptide level data. In fact, the only assumption we make

is that a statistical model that accounts for the underlying error processes governing

much of the variability in proteomics data, either through imposing weights on the

peptide level data or through modeling the actual error as a function of peptide level

covariate information, can reduce the number of false positives and false negatives

observed from the data. This assumption seems reasonable given the small number

of false positives found from each of the data sets.
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Chapter 5

Estimating Relative Protein

Expression Levels from Incomplete

Data

5.1 Introduction

Current statistical analyses of proteomics data do not adequately consider the issue

of dealing with non-expressed or undetected observations. For any given protein,

we typically only observe a subset of the peptides that are theoretically predicted

for that protein. The peptides that are not observed are missing in the sense that

an observation that carries useful information towards estimating our outcome of

interest, i.e., the true relative expression ratio of the protein, is not observed due to

reasons outside of the experimenter’s control.

To recap, in relative protein quantification methods such as SILAC, a relative

expression estimate for a protein is typically constructed based on the calculated ratios

between the light and heavy signals corresponding to peptides that are indicative of

that protein. Typically, we observe four patterns of data for each peptide: (a) both the
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light and the matching heavy signal is quantified; (b) only the light signal is quantified;

(c) only the heavy signal is quantified; and (d) both signals are not quantified. Note

here the distinction we are making between quantifiability and detectability of peptide

signals. The set of quantifiable peptide signals is a sub set of the detected signals. For

example, signals that are detected but are below a threshold set by the pre-processing

algorithms may not be quantified, or a detected peptide signal may be designated as

missing because it was incorrectly assigned to a different protein.

The issue of missing values may be addressed through the incorporation of suitably

substituted values for the missing observations and/or by accounting for the mecha-

nism responsible for generating missing values in data analyses. Typical approaches

for handling missing values broadly fall under three categories: (1) complete-case only

; (2) imputation based; and (3) model based. For data from a SILAC experiment, a

complete-case only analysis would use data corresponding to pattern (a) only. This

is generally the most expedient means of dealing with missing values, since standard

statistical analyses can be applied without modifications. The biggest disadvantage

of this approach is the potential loss of information in discarding all incomplete cases.

As Little and Rubin (2002)[73] have noted, this loss of information has two aspects:

loss of precision; and bias that is introduced when the missing data mechanism is

not MCAR (Missing Completely At Random). Imputation based procedures fill in

the missing values before analyzing the resultant complete data by standard meth-

ods. However for valid inferences to be made, additional modifications are required

that account for imputation uncertainty. The last category, and the one that we will

pursue in this chapter, is the model based procedures for handling missing values.

These procedures are characterized by defining a model for the observed data and the

missingness mechanism and basing inferences on the likelihood under that model.

In this chapter, we look at the issue of missing values in proteomics experiments

in several contexts. First in Section (5.2), we look at robustly estimating the true rel-
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ative expression ratio of a protein based on incompletely observed peptide level data.

Secondly, in Section (5.3) we look at the same estimation problem in situations where

only one peptide is available to uniquely identify a protein. In both situations, we do

not assume that our data is MCAR. This alone signifies a major advancement since

most existing methods are either based on only the complete-cases or use imputation

strategies that are only valid when the data are truly MCAR.

5.1.1 Setup of the data

Suppose in a proteomics experiment, we are interested in quantifying the relative

expression of observed proteins, where the ith protein’s relative expression is estimated

using the relative expression of pi constituent peptides. This subset of pi peptides

would be determined separately for each protein based on the expert judgement of the

experimenter as to which set of peptides are considered proteotypic and/or needed to

make a high precision identification of the protein.

More formally, let ni denote the number of times protein i is quantified in the

experiment. For example, if data for protein i are observed in gi gel fractions and

rgi scans within each gel fraction, then ni = gi × rgi . Hereafter, we will refer to each

of these ni instances as a separate case of that protein. Now let, yk = (y1, . . . , ypi)

be a (1 × pi) vector of values of the continuous variables Y = (Y1, . . . , Ypi), rep-

resenting the pi peptide level relative expression ratios for protein i. Typically, yk;

k = 1, . . . , ni, is not observed fully due to the presence of data patterns (b), (c), and

(d) as described in Section (5.1). We can represent this missingness by constructing

a missing-data indicator matrix, M = (mkj), such that mkj = 1 if ykj is missing

and mkj = 0 if ykj is available; k = 1, . . . , ni, j = 1, . . . , pi. In addition, we define

Yk = Yobs
k

⋃
Ymis
k and Y =

{
Yobs⋃Ymis

}
, where Yobs =

{
Yobs
k : k = 1, . . . , ni

}
de-

notes the set of all available peptide level estimates for protein i across the ni cases,

and Ymis =
{
Ymis
k : k = 1, . . . , ni

}
denotes the missing estimates.
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5.1.2 Types of Missing Data Patterns and Mechanisms

The missing-data indicator matrix, M, makes it easier to identify patterns in the

missing data. Some of the more well known missing data patterns include univariate

non-response where missingness is confined to a single variable, monotone where the

variables can be arranged such that yk,j+1, . . . , yk,pi are missing for cases where ykj

is missing, for all j = 1, . . . , pi− 1, and general where there is no discernible pattern

to the missingness in the data.

Another important aspect to consider with missing data is the mechanism that

lead to the missingness. In particular, it is important to know whether or not the

reasons for missingness in variables is dependent upon the underlying values of the

variables in the data set.

If Y is observed completely, the data setup described in Section (5.1.1) falls within

the likelihood-based methods that assume a model for the distribution f (Y,λ) with

unknown parameters λ. If the ni cases behave independently, then we can write:

f (Y,λ) =

ni∏
k=1

f (Yk,λ) ,

and the full likelihood of the unknown parameters given the data is

L (λ | Y) = c

ni∏
k=1

f (Yk | λ) (5.1)

where c is an arbitrary factor that does not depend on λ.

When the data are incomplete, our interest is in estimating λ based on the

incomplete data set
(
M,Ymis

)
=
{(

Mk,Y
mis
k

)
: k = 1, . . . , ni

}
. Under indepen-

dence, the joint distribution of the incomplete data can be written as f (M,Y | θ) =∏ni
k=1 f (Mk,Yk | θ), where θ = (λ,φ): λ characterizes the model for data Y and φ

characterizes the model for the missing data indicators M. Likelihood inferences in
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the presence of missing data are based on the observed-data likelihood, which is ob-

tained by integrating out the missing data component out of the density of (Mk,Yk):

L
(
θ |M,Yobs

)
= c

ni∏
k=1

∫
f (Mk,Yk | θ) dYmis

k (5.2)

Similar to the complete data model, large-sample maximum likelihood inferences

can be made under the normal approximation

(
θ − θ̂

)
∼ N (0,Σθ) ,

where Σθ is now given by

{−∂2 logL
(
θ |M,Yobs

)
/∂θ∂θ′}−1.

Rubin (1976)[106]; Little and Rubin (2002)[73], discuss a number of complica-

tions that arise with respect to the missing data likelihood in (5.2) compared to the

complete data likelihood in (5.1). Clearly, specification of the joint distribution in

(5.2) requires knowledge of the mechanism leading to missing values. If the data are

missing at random (MAR), in the sense that missingness only depends on the data

through the observed values Yobs, and the parameters λ and φ are distinct, then the

missingness mechanism is called ignorable.

Ignorability implies

f (Mk | Yk,φ) = f
(
Mk, | Yobs

k ,φ
)
∀ Ymis

k . (5.3)

On the other hand non-ignorable missingness mechanisms require the specifi-

cation of a missing data mechanism and the maximization of the full likelihood

L
(
θ |M,Yobs

)
. In particular, in the context of pattern-mixture models (Glynn,
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Laird, and Rubin (1986)[50]; Little (1993)[72]), the joint distribution of Mk and

Yk is factored into the marginal distribution of Mk and the conditional distribution

of Yk given Mk as

f (Mk,Yk | ν, δ) = fM (Mk, | δ) fY |M (Yk |Mk,ν) . (5.4)

In (5.37), the first factor models the incidence of the different patterns and the sec-

ond factor characterizes the the distribution of Yk in the strata defined by different

patterns of missing data, Mk, and ν, δ are assumed distinct.

5.2 Estimating Relative Protein Expression Levels

from Incomplete Peptide Data

Most proteomics analyses to date have relied on a complete data model. This ap-

proach leads to valid inferences only if missing data are missing completely at random

(MCAR). I.e., a peptide measurement being missing is not dependent on other ob-

served or unobserved peptide measurements. This is an unrealistic assumption since

in reality the missing set of peptide measurements cannot be considered a random

subset of the hypothetically complete data. While it is quite difficult to articulate the

exact mechanism that is responsible for missingness in the peptide data, there is no

reason to limit ourselves to the restrictive MCAR assumption. In fact we believe that

a stronger argument can be made in favor of proteomics analyses that are based on

the less restrictive MAR assumption. For the data setup described in Section (5.1.1),

the MAR assumption implies that the probability of an observation being missing

does not depend on the missing values Ymis of Y but can depend on the observed

values Yobs in the data set. This assumption is justifiable given the recent findings of

Mallick et. al [77] with regards to proteotypic peptides.
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5.2.1 A Test of MCAR for Multivariate Data

Statistically validating the MAR assumption for multivariate data with a general pat-

tern of missingness is quite complicated and beyond the scope of our work envisaged

under missing data methods in proteomics. However we believe that a formal test

of the MCAR assumption can still be very useful. For example, such a test provides

guidance as to what type of standard errors are preferable. In particular, standard

errors for the parameter estimates based on the expected information matrix are not

valid unless the data are MCAR. On the other hand standard errors based on the

observed information matrix are valid only when the data are MAR. In addition,

we believe that establishing a test of the MCAR assumption as a standard prereq-

uisite will further the field of proteomics data analyses, at least as far as convincing

researchers that the peptide data are indeed not missing completely at random.

A simple test of the MCAR assumption can be based on the two sample t tests for

differences in means. For each variable Yk with missing values, this can be achieved by

splitting the data into cases with that variable observed and cases with that variable

missing. The means of observed values of the remaining variables in the two groups

are then compared using two sample t tests. If the tests show that the groups are

significantly different with respect to their means, then the MCAR assumption clearly

does not hold. While this approach is simple and intuitive, there are significant issues

associated with multiple testing and with the complex correlation structure of the t

statistics themselves.

In our data analyses, we make use of an alternative test of the MCAR assumption

that was proposed by Little (1988)[71].

5.2.2 A likelihood Ratio Based Test of MCAR

For protein i, let the population mean vector and covariance matrix of yk be denoted

by µ(1×pi) and Σ(pi×pi). Now let mk = (mk1, . . . , mkpi) ; k = 1, . . . , ni be the vector
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of missing data indicators for case k; B = number of distinct missing data patterns

mk in the data set; Sb ≡ set of cases corresponding to pattern b, b = 1, . . . , B; rb =

number of cases in Sb,
∑
rb = ni; vb = number of observed variables for the cases in

Sb; and Db be the (pi×vb) matrix indicating which variables are observed for pattern

b. Each column of Db represents a variables that was observed for pattern b and

consists of pi − 1 zeros and one 1 corresponding to the variable identified.

Now let, ȳobsb ≡ r−1
b

∑
h∈Sb yobsh be the (1×vb) vector of means of observed variables

for pattern b, and µ̂, Σ̂ be the maximum likelihood estimates of µ, Σ. Then a

likelihood ratio based test for testing the MCAR assumption can be based on the test

statistic

d2 =
B∑
b=1

rb
(
ȳobsb − µ̂

obs
b

)
Σ̃
obs−1

b

(
ȳobsb − µ̂

obs
b

)T
, (5.5)

where, µ̂obsb = µ̂Db, Σ̃
obs

b = DT
b Σ̃Db, and Σ̃ = niΣ̂/(ni−1) is the maximum likelihood

estimate of Σ with a correction for degrees of freedom.

Under the null hypothesis that the data are MCAR, and assuming that the distri-

bution of yk has finite fourth moments, d2 is asymptotically chi-squared distributed

with degrees of freedom,
∑B

b=1 vb − pi. For large d2, we reject the null hypothesis in

favor of an alternative model in which the means of the observed variables are allowed

to vary across the missingness patterns.

5.2.3 A Multivariate General-MAR Model for Incomplete

Peptide Data

In this section, we present a statistical framework for estimating the mean and covari-

ance matrix of Y under a multivariate model that assumes an ignorable mechanism

and has a general pattern of missingness. Our interest here is only in obtaining valid

estimates of peptide means, variances and covariances, and not in making inferences
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about these estimated parameters.

Under the ignorability assumption, the likelihood takes the form

Lign
(
λ | Yobs

)
= c

ni∏
k=1

∫
f (Yk | λ) dYmis

k = c

ni∏
k=1

f
(
Yobs
k | λ

)
(5.6)

Note that (5.6) does not require a model for M to be specified and does not

have many of the identifiability issues associated with model (5.2) (Little and Rubin,

2002)[73].

We now make the additional assumptions that the yk are independent and

(yk | θ, wk) ∼ Npi (µ,Ψ/wk) ; k = 1, . . . , ni, (5.7)

where the wk are unobserved i.i.d. positive scalar random variables with known

density h(wk), and θ = (µ,Ψ). Letting each case have it’s own dispersion factor wk

enables us to assign a weighting mechanism that downweights cases that are outside

of the normative range of values. Note that this model setup we requires ni ≥ 2.

For our data, this condition is satisfied since even if only one peptide is available, the

elution profile of that peptide will contain multiple peak pairs. So, in practice, ni is

always greater than one.

Under this setup, likelihood inferences about θ can be based on the marginal dis-

tribution of Yobs, without modeling the missing data mechanism (Little (1988b))[70].

Maximum likelihood estimates of µ and Ψ can be found by applying the EM algo-

rithm, treating Ymis and w = (w1, . . . , wni) as missing data.

When the data are complete and w is observed, the maximum likelihood estimates

of (µ,Ψ) can be constructed using the complete-data sufficient statistics

s0 =

ni∑
k=1

wk, sy =

ni∑
k=1

wk yk and syy =

ni∑
k=1

wk yk yTk .
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These estimates are given by

µ̂ = sy/s0 =

∑ni
k=1 wkyk∑ni
k=1 wk

, (5.8)

Ψ̂ =
(
syy − sy sTy /s0

)
/ni =

1

ni

ni∑
k=1

wk (yk − µ̂) (yk − µ̂)T . (5.9)

Note that µ̂ and Ψ̂ are in fact the classical weighted least squares estimators of (µ,Ψ) .

When Ymis and w are unobserved, the maximum likelihood estimates can be ob-

tained by applying the EM theory for exponential families. The (t+ 1)st iteration of

the EM algorithm proceeds as follows:

E-step : Estimate s0, sy and syy by their conditional expectations, given Yobs and

current estimates θ(t) =
(
µ(t),Ψ(t)

)
of θ.

(1) E
(
s0 | θ(t),Yobs

)
= E

(∑ni
k=1wk | θ

(t),Yobs
)

=
∑ni

k=1E
(
wk | θ(t),yobsk

)
=
∑ni

k=1 w
(t)
i

(2) The jth component of E
(
sy | θ(t),Yobs

)
is

E

(
ni∑
k=1

wk ykj | θ(t),Yobs

)
=

ni∑
k=1

E
[
wk E

(
ykj | θ(t),yobsk , wk

)
| θ(t),yobsk

]
=

ni∑
k=1

w
(t)
k E

(
ykj | θ(t),yobsk

)
=

ni∑
k=1

w
(t)
k ŷ

(t)
kj , and

(3) The (j, l)th element of E
(
syy | θ(t),Yobs

)
is
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E

(
nk∑
k=1

wk ykj ykl | θ(t),Yobs

)
=

nk∑
k=1

E
[
wk E

(
ykjykl | θ(t),yobsk , wk

)
|θ(t),yobsk

]
=

nk∑
k=1

E
[
wk

{
ŷ

(t)
kj ŷ

(t)
kl + cov

(
ykj, ykl | yobsk , wk

)}
| θ(t),yobsk

]
=

nk∑
k=1

(
w

(t)
k ŷ

(t)
kj ŷ

(t)
kl + ψ

(t)
jl.obs,k

)

where w
(t)
k = E

(
wk | θ(t),yobsk

)
and ψ

(t)
jl.obs,i is zero if yij or yil are observed, and

wi times the residual covariance of yij and yil given yobsi , if both yij and yil are

missing.

M-step : Compute new estimates θ(t+1) =
(
µ(t+1),Ψ(t+1)

)
from (1) and (2), with

s0, sy, and syy replaced by their estimates from the E-step.

5.2.4 A Robust Alternative to the Multivariate Normal Es-

timation

The estimates discussed in the previous section are affected to a certain degree by

violations of the multivariate normal assumption, and hence tend to be sensitive to

outliers. Robust alternatives to the multivariate normal model have been suggested

previously by Little and Smith (1987)[74], and Devlin et al., (1981)[33]. These meth-

ods were primarily ad hoc modifications to complete-data procedures, and do not

possess the optimal asymptotic properties associated with maximum likelihood. In

this section, we present an alternative representation of the model given in (5.6) due

to Little (1988b)[70] that is based on a multivariate t model.

The multivariate t extension can be achieved with only minor modification to

the EM algorithm described in the previous section. More specifically, the extension

is achieved by declaring a model for wk, and attributing a particular form for the
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weights, w
(t)
k . We have chosen a model for wk that lets the marginal distribution of

yk to be the t distribution with v degrees of freedom.

Suppose that wk is such that wkv is distributed as χ2
v. Then marginally

yk ∼ tpi (µ,Ψ, v) ,

with unknown degrees of freedom v. Under the t model, the weights w
(t)
k are given by

w
(t)
k = E

(
wk | θ(t),yobsk

)
= (v(t) + pik)/(v

(t) + d
2(t)
k ), (5.10)

where pik ; 0 ≤ pik ≤ pi is the number of peptides observed at the kth time protein i

was quantified, and

d
2(t)
k =

(
yobsk − µ

(t)
obs,k

)T
Ψ

(t)−1

obs,k

(
yobsk − µ

(t)
obs,k

)
,

is the squared Mahalanobis distance from the mean of the observed peptides, evalu-

ated at the current estimates of the parameters,
(
µ

(t)
obs,k,Ψ

(t)
obs,k

)
. The EM algorithm

for the t model requires an additional computational step in the M-step for computing

the degrees of freedom, v(t+1). This is a one-dimensional maximization problem and

can be achieved by maximizing the observed loglikelihood `
(
µ(t+1),Ψ(t+1), v | Yobs

)
with respect to v using a grid search or a Newton-Raphson step.

Note that the above model downweights cases with large squared distances. There-

fore the t model can be expected to yield maximum likelihood estimates of the mean,

µ and covariance matrix, vΨ/(v − 2) of yk that are more resistant to non-normality

and outliers in the observed data. However, if the data are in fact normal, the t model

is less efficient. Fortunately, this loss in efficiency has been shown to be relatively

small (Little (1988b)[70].
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5.2.5 Estimating the True Relative Protein Expression Ratio

Once we have valid estimates for the means and variances of the constituent peptides,

they can be used to construct many different summary estimates for the true relative

protein expression ratio. For example, we can obtain many summary estimates by us-

ing the following property of linear transformations of the multivariate t distribution.

If Y ∼ tpi (µ,Ψ; v) and X = aY, where a is a (1× pi) non-empty vector, then

X ∼ t1
(
aµ, aΨaT ; v

)
.

Choosing a = (1/pi, . . . , 1/pi) yields the common mean µ̃ of the pi variables Y1, . . . , Ypi ,

each representing a peptide level estimate for protein i as µ̃i = aµ̂ with associated

variance σ2
µ̃i

= aΨ̂aT .

5.3 A Missing Data Model for Single Peptide Pro-

teins

In Section (5.2.3), we presented a multivariate general-MAR model that yields valid

estimates about the true peptide level protein abundances when we can assume that

data are MAR and have a general pattern of missingness. In that model we declared

as missing any peptide for which we were not able to quantify both the light and

corresponding heavy signals. Furthermore, partially observed peptides, i.e., peptides

for which the light signal is quantified but the matching heavy signal is not, or vice

versa, were also considered as missing.

However, when pi = 1, i.e., when protein i is only identified using a single peptide,

the multivariate model loses its appeal since it reduces to an univariate complete-case

only analysis. In this section we develop a more efficient data analysis framework for
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dealing with these single peptide proteins that makes use of not just the information

available from the complete-cases but also at least some information recovered from

the partially observed cases.

5.3.1 Setup of the data

Let, Y∗ = (L,H) be the bivariate normal random variable representing the observed

light and heavy signals corresponding to the single peptide that is available for iden-

tifying a given protein. Suppose that we have n such bivariate observations or cases

across the experiment. Now let M = {mi}, where mi = (mil,mih) denotes the miss-

ing data pattern for case i with four possible values (0,0), (0,1), (1,0), and (1,1). For

simplicity, we adopt an the integer labeling scheme for these four patterns; ri = r(mi)

such that r(0, 0) = 0, r(1, 0) = 1, r(0, 1) = 2, and r(1, 1) = 3. Under this scheme

ri = 0 and ri = 1 correspond to the complete-case pattern and the completely-

missing pattern, respectively. We also define the notation: P (ri = r) = πr, π = {πr};

n =
∑3

r=0 nr, where nr = number of cases falling under each pattern; and Sr ≡ set

of sample cases following pattern r.

Let θ = (µ∗,Σ), where µ∗ = (µl, µh), Σ = (σjk); j, k = l, h be the mean vec-

tor and unrestricted covariance matrix of Y∗. For each missingness pattern r, let

φ(r) =
(
µ

(r)
l , µ

(r)
h , σ

(r)
ll , σ

(r)
hh , σ

(r)
lh

)
denote the means, variances, and covariance of L

and H. We also define the notation: φ
(r)
l and φ

(r)
h.l to represent the parameters of the

marginal distribution of L and the conditional distribution of H given L; and φ
(r)
h ,

φ
(r)
l.h to represent the parameters of the marginal distribution of H and the conditional

distribution of L given H.

When all four patterns are present in the data, i.e., when the data are saturated

with respect to missingness patterns, the dimension of φ = {φ(r)} is 5×4 = 20. When

nr, is small, as is the case with our single peptide proteins, estimates for a majority

of these 20 parameters become unreliable. However, an effective compromise can be
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found if we restrict the analysis to only the cases corresponding to pattern r = 0 or

r = 1. The choice of these two patterns is motivated by the fact that upwards of

90% of our data consist of these two patterns. In essence, this restricted analysis is

an improvement on a complete-case only analysis in all situations, and is an effective

compromise when the two patterns r = 0, 1 account for a majority of the data.

More formally, let N be the number of cases corresponding to the two patterns,

r = 0, 1. Of the N cases, N0 are complete on L and H, say Y∗0 = {(li, hi) , i =

1, . . . , N0}, and N1 = N −N0 are complete {li, i = N0 + 1, . . . , N} on L only. Note

that this data setup corresponds to a monotone pattern of missingness as described

in Section 5.1.2. Now let M = {mi} be the missing-data indicator variable for

this reduced data set. For case i, mi = 0 if hi is observed, and mi = 1 if hi is

missing, i = 1, . . . , N , Our ultimate interest is in estimating the true relative protein

expression ratio, R = log2 (µl/µh) = log2 µl − log2 µh. Possible estimates for this

quantity include the (a) complete-case (CC) estimate log2l̄ − log2h̄, where l̄, h̄ are

the sample means of L, H from the n0 complete cases; and (b) available-case (AC)

estimate log2µ̂l − log2h̄, where µ̂l =
∑N

i=1 li/N is the sample mean of L from all the

cases.

5.3.2 A Test of MCAR for Bivariate Normal Monotone-Missing

Data

As already mentioned in Section (5.2.1), a test of the MCAR assumption can be

based on a two sample t test that allows for unequal variances. In fact the t test is

a simple and quite effective approach especially for our bivariate normal data with

only two patterns of missingness. However, for completeness, we note here that the

test statistic discussed in Section (5.2.2) can also be adapted to yield a small sample

version of d2 that is applicable to a monotone pattern of missingness. Little (1988)[71]
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showed that for bivariate data the test statistic reduces to

d2 = (N − 1)F/(N − 2 + F), (5.11)

where, F ∼ F1,N−2, is the F statistic from the ANOVA of L on the missingness

pattern r, under the null hypothesis of MCAR and assuming that values of L are

normal. This test is in fact equivalent to the classical two sample t test that assumes

equal variances.

5.3.3 A Bivariate Normal Monotone-MAR Model

If we assume that the missingness in the data is MAR, i.e., missingness of H can

depend on L, but conditional on L it does not depend on H, then we can consider the

maximum likelihood estimates under independence and the ignorable normal model

parameterized by θ = (µ,Σ) ,

Y ≡ (L,H) ∼ N2 (µ,Σ) (5.12)

θ = (µl, µh, σll, σhh, σlh) (5.13)

The likelihood equations for this model do not have an obvious solution. Anderson

(1957)[5], and Little and Rubin (2002)[73] derived the maximum likelihood estimates

by factoring the joint distribution of Li and Hi into the marginal distribution of Li

and the conditional distribution of Hi given Li as:

f (li, hi | θ) = f (li | µl, σll) f (hi | li, βh0.l, βhl.l, σhh.l) (5.14)

≡ N(µl, σll)×N(βh0.l + βhl.lli, σhh.l) (5.15)
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where,

βhl.l = σlh/σll (5.16)

βh0.l = µh − σlhβhl.l µl (5.17)

σhh.l = σhh − σ2
lh/σll (5.18)

Under this setup, we get

µh = βh0.l + βhl.lµl (5.19)

σlh = βhl.lσll (5.20)

σhh = σhh.l + β2
hl.lσll (5.21)

and the new transformed parameter space Φ = (µl, σll, βh0.l, βhl.l, σhh.l). We can now

factor the density of the observed data as:

f (Yo | Φ) =
N∏
i=1

f (li | µl, σll)
N0∏
i=1

f (hi | li, βh0.l, βhl.l, σhh.l) . (5.22)

Since given the data, we assume that knowledge of (µl, σll) does not provide any

information about (βh0.l, βhl.l, σhh.l), maximum likelihood estimates of Φ can be ob-

tained by independently maximizing the likelihood of the marginal and conditional

components. If Φ̂ are the resultant MLEs, then since Φ is a one-to-one function of
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θ, we recover the MLEs of θ as

µ̂l =
N∑
i=1

li/N (5.23)

σ̂ll =
N∑
i=1

(li − µ̂l)2 /N (5.24)

µ̂h = h̄+ β̂hl.l
(
µ̂l − l̄

)
(5.25)

σ̂lh = β̂hl.lσ̂ll (5.26)

σ̂hh = shh.l + β̂2
hl.l (σ̂ll − sll) , (5.27)

where l̄, h̄ are now the sample means of L, H from the N0 complete cases, sll =∑N0

i=1

(
li − l̄

)2
/N0, shh =

∑N0

i=1

(
hi − h̄

)2
/N0, slh =

∑N0

i=1

(
li − l̄

) (
hi − h̄

)
/N0, shh.l =

shh − s2
lh/sll, and β̂hl.l = slh/sll is the regression coefficient of Li from a regression of

Hi on Li, based only on the N0 complete cases.

Note that the maximum likelihood estimate (5.25) of µh is also the average of observed

and imputed values when the missing values of hi are imputed with predictions from

the regression of Hi on Li, computed only from the N0 complete cases. Finally, we

get

R̂ = log2 µ̂l − log2 µ̂h.

5.3.4 Small sample inference

Under the MAR assumption, large-sample maximum likelihood inferences can be

made under the normal approximation

(
θ − θ̂

)
∼ N (0,Σθ) ,
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where Σθ is now given by

{−∂2 logL
(
θ |M,Yobs

)
/∂θ∂θ′}−1.

However, these estimates are not ideal when N is relatively small, which is typi-

cally the case with proteomics data. We therefore use a Bayesian approach to estimate

the standard error of R̂ using its posterior distribution. This Bayesian approach was

motivated by results that were first derived by Lindley (1965)[69].

If we assume µl, σll, βh0.l, βhl.l, and σhh.l are a priori independent with reference

prior

f (µl, σll, βh0.l, βhl.l, σhh.l) ∝ σ−all σ
−c
hh.l , (5.28)

then Lindley (1965) showed that the following results hold:

(1) N σ̂ll/σll ∼ χ2
N+2a−3

(2) Posterior distribution of µl given σll is N (µ̂l , σll/N)

(3) N0 σ̂hh.l/σhh.l ∼ χ2
N0+2c−4

(4) Posterior distribution of βhl.l given σhh.l is N
(
β̂hl.l , σhh.l/ (N0sll)

)
(5) Posterior distribution of βh0.l given (βhl.l, σhh.l) is N

(
h̄− βhl.l l̄ , σhh.l/N0

)
, and

(6) (µl, σll) and (βh0.l, βhl.l, σhh.l) are a posteriori independent.

The posterior distribution of any function g (Φ) of Φ can then be simulated by creat-

ing draws gd, d = 1, . . . , D, where gd = g
(
Φ(d)

)
and Φ(d) =

(
µ

(d)
l , σ

(d)
ll , β

(d)
h0.l, β

(d)
hl.l, σ

(d)
hh.l

)
.

If we take g (Φ) = R ≡ log2 µl − log2 µh = log2 µl − log2 (βh0.l + βhl.lµl), then we can

draw from the posterior distribution of R using the scheme outlined below:
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(1) Draw independently x2
1t and x2

2t from chi-squared distributions with N + 2a− 3

and N0 + 2c− 4 degrees of freedom, respectively.

(2) Draw independently three standard normal deviates z1t, z2t, and z3t.

(3) For the dth draw, compute Φ(d), where

σ
(d)
ll = N σ̂ll/χ

2
1t (5.29)

µ
(d)
l = µ̂l + z1t

√(
σ

(d)
ll /N

)
(5.30)

σ
(d)
hh.l = N0 σ̂hh.l/χ

2
2t (5.31)

β
(d)
hl.l = β̂hl.l + z2t

√
σ

(d)
hh.l/ (N0sll) (5.32)

β
(d)
h0.l = h̄− β(d)

hl.l l̄ + z3t

√
σ

(d)
hh.l/N0 (5.33)

µ
(d)
h = h̄+ β

(d)
hl.l

(
µ

(d)
l − l̄

)
(5.34)

σ
(d)
lh = β

(d)
hl.lσ

(d)
ll (5.35)

σ
(d)
hh = shh.l + β

2(d)
hl.l

(
σ

(d)
ll − sll

)
(5.36)

(4) Compute gd = g
(
Φ(d)

)
= R(d) = log2 µ

(d)
l − log2 µ

(d)
h .

5.4 Results

5.4.1 Estimating Relative Protein Expression from Incom-

plete Peptide Data

We illustrate our multivariate incomplete data methods on a number of selected

proteins obtained from either Sample A or Sample B.
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First, we randomly select three yeast proteins that have different levels of miss-

ingness, and apply the test described in Section 5.2.2 to test for violations of the

MCAR assumption. The set of constituent peptides for each of the proteins is set

at five; these five peptides being the ones that have the highest empirical frequency

of observation for the protein in this particular experiment. Note that a proteomics

practitioner can use many other scientific criteria and expert judgement in choosing

these set of peptides. Secondly, we select a single protein, YGR192C (again with data

limited to five proteotypic peptides), that has no missing values and artificially create

three incomplete versions of the protein by introducing 10%, 20%, and 30% miss-

ingness. Missing data are created using a random number generator that randomly

selects peptide level data points for deletion. The four proteins under investigation

and their five most proteotypic peptides are listed in Table 5.1. We then apply the

estimation procedure described in Section 5.2.3 to the four data sets: the original data

set with no missing values, and the three incomplete versions with different levels of

missingness. For comparison, we also derive complete-case (CC) only estimates for

each of the data sets using the MINQUE procedure presented in Section 3.2.3.

Peptide List Protein List

YAL038W YGR254W YHR174W YGR192C

Peptide 1 AIIVLSTSGTTPR AADALLLK AADALLLK HIDAGAK

Peptide 2 GDLGIEIPAPEVLAVQK AVDDFLISLDGTANK AVYAGENFHHGDK IVSNASCTTNCLAPLAK

Peptide 3 GVFPFVFEK GNPTVEVELTTE IEEELGDK TASGNIIPSSTGAAK

Peptide 4 LTSLNVVAGSDLR IGLDCASSEFFK IGLDCASSEFFK VPTVDVSVVDLTVK

Peptide 5 YRPNCPIILVTR IGSEVYHNLK PTVEVELTTEK YDSTHGR

Table 5.1: Four yeast proteins and their proteotypic peptides.

The missingness patterns for each of the three proteins with missing values are

graphically presented in Figure 5.4.1. The results of applying the likelihood ratio test

described in Section 5.2.2 are shown in Table 5.2. The test provides more evidence

against the MCAR assumption as the proportion of missing values in the data in-

creases. When the proportion of missing values is greater than ten percent, the test
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rejects the null hypothesis of equality of the peptide means across the B missingness

patterns at the 0.1 level of significance.

The estimated peptide means and variances are presented in Table 5.3. The

estimated overall relative expression ratio of protein YGR192C and it’s variance

corresponding to different levels of missingness are given in Table 5.4.
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(c) YHR174W

Figure 5.1: Multivariate missingness patterns observed in three selected yeast pro-
teins. Gray colored cells represent missing data values; gray colored bars represent the proportion

of missing data in each peptide; horizontal rows represent missing data patterns; and the vertical

bar to the right of each figure, indicates the relative frequency of each pattern.
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Protein Missing (%) N-obs , N-miss B d2 χ2(df, p-value)

YAL038W 6.0 296 , 19 9 39.0306 ( 29 , 0.1011 )

YGR254W 11.0 276 , 34 17 65.7350 ( 50 , 0.0670 )

YHR174W 14.1 318 , 52 20 97.3933 ( 54 , 0.0003 )

Table 5.2: Likelihood ratio test results for testing MCAR. B = number of missing data

patterns; d2 = value of the likelihood ratio test statistic.

Relative Peptide Expression Ratio Estimates

Missingness (%) Multivariate t Estimates (µ̂ , σ̂)

Peptide 1 Peptide 2 Peptide 3 Peptide 4 Peptide 5

0 0.112, 0.706 0.121, 1.115 -0.126, 0.992 0.015, 0.593 -0.031, 1.306

10 0.132, 0.747 0.089, 1.078 -0.100, 1.031 0.086, 0.525 -0.206, 1.072

20 0.066, 0.717 0.014, 1.161 -0.316, 1.060 0.026, 0.733 -0.025, 1.238

30 0.124, 0.572 0.199, 1.478 -0.118, 0.937 -0.104, 0.887 -0.117, 1.566

Missingness (%) Complete-Case Only Estimates (µ̂ , σ̂)

Peptide 1 Peptide 2 Peptide 3 Peptide 4 Peptide 5

0 -0.191, 1.007 -0.001, 0.827 -0.116, 0.729 -0.089, 1.028 0.021, 0.933

10 -0.111, 0.883 0.065, 0.850 0.227, 0.705 0.001, 0.732 0.029, 0.876

20 0.095, 1.204 0.101, 1.246 0.023, 1.037 -0.095, 0.933 -0.044, 0.891

30 -0.094, 0.781 -0.027, 0.848 -0.006, 1.076 -0.086, 0.971 -0.145, 1.135

Table 5.3: Relative Peptide Expression Ratio Estimates based on the MINQUE
methodology and the robust multivariate t model.

YGR192C
(
µ̃, σ2

µ̃

)
Missingness (%) Complete-Case Multivariate t

0 -0.0756 , 0.1941 0.0182 , 0.1989

10 0.0423 , 0.1566 0.0001 , 0.1553

20 0.0160 , 0.1609 -0.0471 , 0.2011

30 -0.072 , 0.1714 -0.0034 , 0.2543

Table 5.4: Complete-case and robust multivariate t estimates of the relative expression
ratio of YGR192C.
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5.4.2 Estimating Relative Protein Expression from Single

Peptide Data

Similar to the multivariate t analysis, we demonstrate the single peptide methods

only on a few selected proteins. We illustrate the utility of the two sample t test

as a means of testing the MCAR assumption in bivariate data with a monotone

missingness pattern using three randomly selected single-peptide yeast proteins. Then

we select a single protein, YBL030C, that has no missing values for its single detected

peptide, GFLPSVVGIVVYR, and artificially created three incomplete data sets with

10%, 20%, and 30% missingness. The four proteins and the single peptide used to

identify each of them are listed in Table 5.5. We then apply the estimation procedure

discussed in Section 5.3.3 for bivariate monotone data to each of the four data sets

separately.

Protein Peptide

YGR155W LSGLVTLSELLR
YGR159C GYGYVDFENK
YGR180C IITEAVEIEK
YBL030C GFLPSVVGIVVYR

Table 5.5: Four yeast proteins identified using a single peptide.

The missingness pattern for each of the three proteins with missing values are

graphically presented in Figure 5.4.2. The results of applying the two sample t test

to the three proteins (YGR155W, YGR159C, YGR180C) are shown in Table 5.6.

The test provides some evidence against the MCAR assumption, when the number

of missing values is relatively high for the heavy signal. The evidence is not definitive

when there is only a few missing values.

The estimated means, variances, and covariances of the light and heavy signals for

YBL030C corresponding to different levels of missingness are presented in Table 5.7.

Both sample estimates of these quantities and ML estimates under our bivariate

monotone-MAR model are given. The estimated overall relative expression ratio of
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the protein, R̂ = log2(µ̂l) − log2(µ̂h), is given in Table 5.8. At each level of miss-

ingness: 10%, 20%, and 30%, the Bivariate-Monotone-MAR (B-M-MAR) estimate of

the relative protein expression ratio is closer to its 0% missingness value compared

to its CC estimate. However, there is no clear pattern of divergence of the estimates

from their 0% missingness values, as the proportion of missing values goes up.
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Figure 5.2: Bivariate monotone missingness patterns.
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Protein Missing (%) N-obs , N-miss t ( value , d.f. , p-value )

YGR155W 8.8 31 , 3 t = -6.3858, d.f. = 8.564, p-value = 0.0002

YGR159C 13.2 33 , 5 t = 2.0964, d.f. = 3.474, p-value = 0.1270

YGR180C 23.4 36 , 11 t = 1.9195, d.f. = 15.893, p-value = 0.0731

Table 5.6: Two sample t test results for testing Bivariate - MCAR.

Missingness (%)
Parameters

µl µh σll σhh σlh
Sample Estimates

0

14.0789

13.9977

3.6258

4.4199 2.8553
10 13.9703 4.6917 2.9599
20 13.5053 3.5266 1.9782
30 14.1204 4.3325 3.0578

ML Estimates
0

14.0789

13.9977

3.6258

4.4199 2.8553
10 14.0120 4.5941 2.8351
20 13.7189 3.7753 2.3602
30 14.1653 4.1998 2.8914

Table 5.7: Estimated means, variances, and covariances of the light and heavy signals
for YBL030C.

Missingness (%) Estimated Relative Protein Expression Ratio, R̂
Complete-Case B-M-MAR

0 0.0083 0.0083
10 0.0112 0.0069
20 0.0600 0.0373
30 -0.0104 -0.0088

Table 5.8: Estimated Relative Protein Expression Ratio, R̂.
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5.4.2.1 Small Sample Confidence Intervals

We calculate small sample 95% confidence intervals for the parameters, µh, σhh, σlh,

and R, by obtaining the 2.5th to 97.5th percentiles of their Bayesian posterior distri-

butions, each with 100,000 simulated values. The prior distribution of the parameters

is set to the Jeffrey’s prior for a factored density (Box and Tiao, 1973[22]), by setting

a = c = 1 in the reference prior (5.28). Plots of the posterior draws and distribution

for each parameter are given in Appendix 5.2.2. For comparison, we also calculate

asymptotic 95% confidence intervals based on the inverse of the observed information

matrix. The numerical results of the analysis are shown in Table 5.9.

Parameter estimates and 95% Confidence Intervals
ML Estimate Asymptotic C.I. Small Sample C.I.

Missingness (%) = 10
µh 14.0120 13.2746 , 14.7494 13.2722 , 14.7541
σhh 4.5941 2.0731 , 7.1151 2.9996 , 8.0229
σlh 2.8351 1.0007 , 4.6695 1.5509 , 5.1926

R 0.0069 -0.3307 , 0.3445 ∆ -0.0513 , 0.0657

Missingness (%) = 20
µh 13.7189 13.0104 , 14.4274 13.0093 , 14.4347
σhh 3.7753 1.4512 , 6.0994 2.3306 , 6.9234
σlh 2.3602 0.6269 , 4.0935 0.9906 , 4.4529

R 0.0373 -0.3045 , 0.3791 ∆ -0.0685 , 0.05198

Missingness (%) = 30
µh 14.1653 13.4087 , 14.9219 13.4065 , 14.9341
σhh 4.1998 1.6039 , 6.7957 2.6182 , 7.7610
σlh 2.8914 1.0184 , 4.7644 1.5783 , 5.2999

R -0.0088 -0.3687 , 0.3511 ∆ -0.0269 , 0.1061

Table 5.9: Asymptotic and small sample confidence intervals. ∆ indicates a C.I. based

on a second order delta method approximation.

The asymptotic interval for µh is shorter than its small sample counterpart for all

levels of missingness. The opposite is true for all other parameters. The small sample

interval for R is noticeably shorter than it’s asymptotic delta method approximation.

Another advantage of the small sample intervals is that unlike the asymptotic inter-

vals, they are not constrained to be symmetric. The small sample intervals are also

adequately adjusted for simulation error since we draw a large number of posterior
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draws for each parameter (i.e, 100,000).

5.5 Discussion

Standard statistical methodologies used in proteomics data analyses, do not consider

the issue of dealing with non-expressed or undetected observations, beyond simple

missing value imputation schemes such as mean or median imputation. In this work,

we describe a model based framework for estimating the relative protein expression

ratios from incompletely observed peptide level data, under the assumption that

the data are missing at random (MAR). This type of data analyses is a significant

improvement on complete-case only analyses, or multiple imputation schemes that

rely on the overly restrictive missing completely at random (MCAR) assumption. In

the MAR context, we propose both a multivariate t model for robustly estimating

the true relative protein expression ratio when the data have a general pattern of

missingness, and a bivariate normal model when the missingness pattern is monotonic.

We also propose a Bayesian scheme for deriving small sample confidence intervals for

parameters derived under the bivariate normal model.

The exact mechanisms responsible for generating missing values in proteomics

data is not known. However there is no reason to assume that the data are missing

completely at random. In our investigations, we propose to use a formal test of the

MCAR assumption due to Little (1988)[71]. This test is limited to testing for differ-

ences in variable means across different missingness patterns in the data. However, we

believe that any evidence the test can provide for or against the MCAR assumption

is quite informative. For example, this information can be helpful in deciding which

asymptotic inferences are applicable and valid since this decision depends on whether

or not the data are MCAR.

The multivariate t model’s primary utility is its ability to be more resistant to
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outliers. We let each data vector representing the peptide level data observed for a

protein have its own dispersion factor, thereby allowing the downweighting of cases

that have a large squared Mahalanobis distance from their estimated peptide means.

Our proposed model for the dispersion factors allows each data vector to be marginally

distributed as t with an unknown number of degrees of freedom that is estimated from

the data it self.

When a protein is identified using only one peptide, the multivariate t model loses

its appeal since it reduces to an univariate complete-case only analysis. Therefore, we

propose a bivariate normal model that works at the observed light and heavy signal

level, assuming, without loss of generality, that only the light signal is fully observed

for all cases. This assumption is reasonable since upwards of 90% of our data have

at least one of the two signals recorded. Under this model, asymptotic confidence

intervals based on the inverse of the observed information matrix are valid (under

MAR). However, these estimates are not ideal since single-peptide proteins usually

have small sample sizes. In our work, we propose an alternative Bayesian approach

for constructing confidence intervals for the estimated model parameters.

We demonstrate our methods by artificially introducing different levels of miss-

ingness to a small number of selected proteins that have no missing values to begin

with. Both the multivariate t model and the bivariate normal model, when applied to

data with different levels of missingness, produce results that are generally consistent

with estimates obtained from the original data with no missing values. In particular,

the bivariate normal model estimate of the relative protein expression ratio is closer

to its 0% missingness value compared to its CC estimate, for all considered levels of

missingness. However, there is no clear pattern of divergence of the other parameter

estimates from their values corresponding to 0% missingness, as the proportion of

missing values increases. The small sample Bayesian intervals generally out perform

their asymptotic counterparts except in the case of the interval for the estimated



143

mean of the variable with missingness, i.e., the heavy signal.

To summarize, in this work, we develop a data analysis framework for estimating

relative protein expression ratios when data are allowed to be missing at random.

We also propose methods for data analysis when only a single peptide is available to

identify a protein. In this work, our intention is simply to demonstrate the applica-

bility of these methods, and not arriving at definitive conclusions. Such conclusions

will have to come from rigorous and extensive simulation studies, and is beyond the

scope of our current research.

5.6 Future Work

The bivariate ignorable missing data method that we presented in Section 5.3.3 relied

on the MAR assumption. That is, we allowed missingness of H to depend on the value

of L, which is always observed, but not on the value of H, which is sometimes missing.

While this is a much more reasonable assumption to make compared to the MCAR

assumption, it is still worthwhile investigating other plausible missing-data models.

For example, we could hypothesize that missingness could be related to not just L,

but to some unknown extent on H. This scenario however clearly violates the MAR

assumption, and needs to be studied under a Not Missing At Random (NMAR) or

non-ignorable missing-data model. In our future research, we propose to investigate

this problem within the context of fitting a Pattern Mixture Model - PMM (Glynn,

Laird, and Rubin (1986)[50]; Little (1993)[72]). In this section, we present a detailed

outline of this planned research.
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5.6.1 A Pattern Mixture Model (PMM) for Single Peptide

Proteins

PMMs explicitly model the effect of missing data mechanism by first identifying dif-

ferent patterns of missing data and then including parameters in a non-ignorable

model that accounts for this effect.

Let us again make the assumptions that for our monotone data described in Section

(5.3.1) that:

(a) (Li, Hi | mi = r) = N2

(
µ(r),Σ(r)

)
with parameters

φ(r) =
(
µ

(r)
l , µ

(r)
h , σ

(r)
ll , σ

(r)
lh , σ

(r)
hh

)
, (r = 0, 1);

and also make the additional assumptions:

(b) mi is marginally Bernoulli with Pr (mi = 1) = π; Pr (mi = 0) = 1− π = π0.

(c) Missingness of H given L and H depends only on an arbitrary function g (H∗),

H∗ = L+ λH, for λ 6= 0.

Then under (a) and (b), we can specify a PMM for our data by re-expressing the

joint distribution of Y andM as the product of the missing data pattern,M, and a

model of Y conditional on M:

f (L,H,M | φ, π) = f (L,H, | M,φ) f (M | π) , (5.37)

where φ = {φ(r)} and π are unknown parameters as defined in assumption (a), (b)

above. This model setup implies that marginally (L,H) is a mixture of two normal

distributions and that the marginal mean of (Li, Hi) averaged over the two missingness

patterns is µ = (1−π)µ(0) +πµ(1). The parameter of interest R = log2 (µl/µh) is not
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a parameter of the PMM, but is expressible as a function of the model parameters as

R = log2

(
µl
µh

)
(5.38)

An important feature of PMMs is that they are by construction under-identified.

Of the eleven parameters that define model (5.37), only eight can be identified from

the data in the sense of appearing in the likelihood and having unique maximum

likelihood estimates. The remaining three parameters of the regression of H on L for

pattern r = 1 are not identifiable. Namely

φid =
(
π, µ

(0)
l , µ

(0)
h , σ

(0)
ll , σ

(0)
lh , σ

(0)
hh , µ

(1)
l , σ

(1)
ll

)
(5.39)

φunid =
(
µ

(1)
h , σ

(1)
lh , σ

(1)
hh

)
(5.40)

The likelihood under (5.37) takes the form

L (φid) = πN0
0 πN1

N0∏
i=1

f
(
li, hi | mi = 0, φ(0)

) N∏
i=N0+1

f
(
li | mi = 1, µ

(1)
l , σ

(1)
ll

)
, (5.41)

and yields maximum likelihood estimates

π̂ = (N −N0)/N (5.42){
µ̂

(0)
l , µ̂

(0)
h , σ̂

(0)
ll , σ̂

(0)
lh , σ̂

(0)
hh

}
=
{
l̄, h̄, sll, slh, shh

}
(5.43){

µ̂
(1)
l , σ̂

(1)
ll

}
=
{
l̄(1), s

(1)
ll

}
. (5.44)

The set of statistics (5.43) is estimated from the N0 complete cases while the sec-

ond set (5.44) is estimated from the N1 incomplete cases. Note that the three pa-

rameters of the conditional distribution of H given L for incomplete cases, φ
(1)
h.l =(

β
(1)
h0.l, β

(1)
hl.l, σ

(1)
hh.l

)
, do not appear in the likelihood given in (5.41) and need to be

identified through imposing restrictions on the parameters or through prior informa-
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tion.

In the absence of prior information, we can address this situation through the use

of parameter restrictions, which can be imposed by setting inestimable parameters of

the incomplete patterns equal to functions of the parameters describing the distribu-

tion of the complete cases. Under (c), the conditional distribution of L given H∗ is

independent of pattern, that is:

f
(
L | H∗, φ(1),M = 1

)
= f

(
L | H∗, φ(0),M = 0

)
(5.45)

Little (1994) used the fact that

φ
(1)
h.h∗ = φ

(0)
h.h∗ , (5.46)

where φ
(r)
h.h∗ =

(
β

(r)
h0.h∗ , β

(r)
hl.h∗ , σ

(r)
hh.h∗

)
are the parameters representing the intercept,

slope and residual covariance of the distribution of H given H∗ for pattern r, to show

that (5.46) leads to three parameter constraints on
(
µ(0),Σ(0)

)
that are just sufficient

to identify our bivariate PMM. The resulting maximum likelihood estimates of the

mean and variance of H∗ and the covariance of L and H∗ are given by

µ̂h = h̄+ b
(λ)
hl.l

(
µ̂l − l̄

)
(5.47)

σ̂hh = shh +
(
b

(λ)
hl.l

)2

(σ̂ll − sll) (5.48)

σ̂lh = slh + b
(λ)
hl.l (σ̂ll − sll) , (5.49)

where µ̂l =
∑N

i=1 li/N , and b
(λ)
hl.l =

λshh + slh
λslh + sll

.

We can then obtain an estimate for R by plugging in these maximum likelihood
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estimates in (5.46):

R̂(λ) = log2

(
µ̂l
µ̂h

)
(5.50)

= log2

(
µ̂l

h̄+ b̂
(λ)
hl.l

(
µ̂l − l̄

)) (5.51)

= log2

[ (
1− N0

N

)
l̄(0) + N0

N
l̄

h̄+
(
1− N0

N

)
b̂

(λ)
hl.l

(
l̄(0) − l̄

)] , (5.52)

where l̄(0) is the mean of L for the N1 cases missing H.

5.6.2 Choice of λ

Different choices of λ lead to different estimates of R̂(λ). Note however that we are

only interested in situations where slh > 0, since L and H, i.e, the matching light

and heavy peptide signals for a given protein are always positively correlated. In

this case, it is reasonable to assume that λ serves as a measure of the severity of the

non-ignorability in the data. For positive λ, the value zero implies that missingness

depends entirely on L, i.e., the data are MAR. This situation was discussed in Section

(5.3.3) under a bivariate monotone MAR model. Higher values of λ are indicative of

more extreme departures from MAR; and λ → ∞ implies that missingness depends

entirely on H.

The situation when λ = 1 is of particular interest since it corresponds to a sce-

nario where the missingness mechanism depends on the sum of L and H. This is

a reasonable characterization of empirical behavior since in practice the probability

of missingness tends to be inversely proportional to the sum of the light and heavy

signals. For example, in the case of a low abundant peptide, the sum of l and h is

typically small, and the probability that h would not be detected above the signal-

to-noise ratio even when l is detected, tends to be higher. On the other hand, if the

sum of the two signals is large, then at least one of l, h must be relatively high. Then
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given that l is detected h is also more likely to be non-missing.

An additional point of interest is the fact that the maximum likelihood estimate,

R̂(λ) reduces to the Complete-Case only (CC) estimate, log2

[
µ̂l/
(
µ̂l + h̄− l̄

)]
, when

b̂
(λ)
hl.l = 1, and λ = (sll − slh)/(shh − slh). This value of λ reduces to λ = 1 when

sll = shh. In other words, when the CC sample variances of L and H are equal and

the missingness depends on the sum of L and H, the CC estimate of R is optimal.

5.6.3 Sensitivity Analysis

Since there is no data available to estimate the distribution of H given L for the

incomplete cases, it is not possible to estimate λ from the data itself. In fact, the

fit of the model to the observed data is identical for all choices of λ (Little and

Rubin, (2002))[73]. The standard solution for handling this uncertainty about the

choice of λ is to either specify a prior distribution or conduct a sensitivity analysis

by specifying a range of plausible values for λ. In our analyses, we plan to adopt the

latter approach to illustrate the sensitivity of results to three different choices for λ.

Namely, λ = {0.5, 1,∞}.

We are particularly interested in studying the effect of λ on inference for µh =

E(hi). This is because for any ’null’ protein, we expect E(li) = E(hi), and given that

we have an estimate of E(li) = µ̂l from all N complete cases, we have a convenient

means of investigating how close µ̂h is to µ̂l under different assumptions made about

the missingness mechanism. Note that our choice of λ allows us to look at the

behavior of µ̂h for progressively more severe violations of the MAR assumption. The

planned sensitivity analysis requires that we construct normal 95% intervals for µ̂
(λ)
h .

We achieve these intervals by using a Taylor series approximation to compute the

variance of µ̂
(λ)
h :

Var
(
µ̂

(λ)
h

)
=

1

N
σ̂hh +

(
µ̂l − l̄

)2
var

(
b

(λ)
hl.l

)
+

N1

N0N
{shh − 2b

(λ)
hl.lslh + b

(λ)2

hl.l sll}, (5.53)
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where,

Var
(
b

(λ)
hl.l

)
=

(sllshh − s2
lh) (λ2shh + 2λslh + sll)

2

N0 (λslh + sll)
4 . (5.54)
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Appendices

5.1 Appendix

5.2 Chapter 5 - Appendices

5.2.1 Appendix A: Parameter Estimates of the Multivariate

t Models Fitted to YGR192C

A.1. Estimated parameters corresponding to 0% missingness

v̂ = 119.354 ; µ̂ =



0.112

0.121

−0.126

0.015

−0.031


; Ψ̂ =



0.706 −0.015 0.201 −0.049 0.064

−0.015 1.115 0.127 −0.055 0.090

0.201 0.127 0.992 −0.096 −0.036

−0.049 −0.055 −0.096 0.593 −0.098

0.064 0.090 −0.036 −0.098 1.306



A.2. Estimated parameters corresponding to 10% missingness
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v̂ = 75.797 ; µ̂ =



0.132

0.089

−0.100

0.086

−0.206


; Ψ̂ =



0.747 −0.087 0.170 −0.074 0.069

−0.087 1.078 0.084 −0.032 −0.036

0.170 0.084 1.031 −0.151 −0.084

−0.074 −0.032 −0.151 0.525 −0.143

0.069 −0.036 −0.084 −0.143 1.072



A.3. Estimated parameters corresponding to 20% missingness

v̂ = 67.033 ; µ̂ =



0.066

0.014

−0.316

0.026

−0.025


; Ψ̂ =



0.717 −0.055 0.038 −0.117 0.046

−0.055 1.161 0.153 −0.005 0.011

0.038 0.153 1.060 −0.031 0.127

−0.117 −0.005 −0.031 0.733 −0.109

0.046 0.011 0.127 −0.109 1.238



A.4. Estimated parameters corresponding to 30% missingness

v̂ = 46.197 ; µ̂ =



0.124

0.199

−0.118

−0.104

−0.117


; Ψ̂ =



0.572 0.142 0.134 0.161 0.336

0.142 1.478 −0.026 −0.707 0.261

0.134 −0.026 0.937 0.010 0.138

0.161 −0.707 0.010 0.887 0.005

0.336 0.261 0.138 0.005 1.566
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5.2.2 Appendix B: Posterior Distribution and Draws of µh,

σhh, σlh, and R̂

Figure 5.3: Draws of µh with 10%, 20%, and 30% missingness.
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Figure 5.4: Posterior distribution of µh with 10%, 20%, and 30% missingness.

Figure 5.5: Draws of σhh with 10%, 20%, and 30% missingness.
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Figure 5.6: Posterior distribution of σhh with 10%, 20%, and 30% missingness.

Figure 5.7: Draws of σlh with 10%, 20%, and 30% missingness.
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Figure 5.8: Posterior distribution of σlh with 10%, 20%, and 30% missingness.

Figure 5.9: Draws of R with 10%, 20%, and 30% missingness.
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Figure 5.10: Posterior distribution of R with 10%, 20%, and 30% missingness.
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