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Abstract 

Monkey See Computer Do:  
Simulation of Dynamic Behavior via the Evolutionary Theory of Behavior Dynamics 

By Cyrus N. Chi 

The Evolutionary Theory of Behavioral Dynamics (ETBD) is a computational instantiation of 

selection by consequences that allows the generation of simulated behavioral output in 

environments with known reinforcement schedules. This study extends the theory to examine its 

predictions within a dynamic concurrent random interval environment with unsignaled 

transitions between 33 unique pairs of reinforcement schedules. The results were compared with 

behavioral data from rhesus monkeys (n=2) that were placed in a similar environment over three 

different levels of analysis. At the macro-level, the generalized matching law (GLM; Baum, 

1974) fit the data from the virtual organisms animated by the ETBD well and returned 

parameters comparable to those from GML fits to the rhesus monkeys’ data. At the transition 

level, virtual organisms adapted more quickly at the unsignaled transitions between schedules 

than the rhesus monkeys. At the local level, the dynamic responses of virtual organism behavior 

to changes in reinforcement were comparable to that of rhesus monkeys. 
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I. Introduction 

 A good model of behavior is capable of reproducing patterns of behavior that are already 

known. Extension of the model’s predictions to other contexts, timescales, and organisms help to 

demonstrate the generalizability and test the falsifiability of the concepts that underlie it. This 

study’s purpose is to extend the evolutionary theory of adaptive behavioral dynamics (ETBD; 

McDowell, 2004) through a comparison with behavioral data generated by rhesus monkeys 

within a dynamic concurrent schedule paradigm (Corrado, Sugrue, Seung, & Newsome, 2005). 

Unlike the more typical theories of behavior, the ETBD generates sequences of behavior that are 

the theory’s predictions. These sequences of behavior can be used to validate the model through 

comparisons with known animal behavior and can also be used to predict the behavior of an 

organism in novel untested environments. The ETBD works by placing a virtual organism in a 

simulated environment that it interacts with to create behavioral predictions. The ETBD will be 

discussed in greater detail in the next section.  

The behavior of multiple species has been well modeled in static environments with 

continuous choice using Herrnstein’s Matching Law  (Herrnstein, 1961). This behavior is 

modeled at its equilibrium state after the organism has adapted to the environment in which it 

was placed. However, organisms do not exist naturally in unchanging environments. 

Investigation of the behavior of an organism as it adapts dynamically to changing environments 

may lead to insights that can support the development of more precise and functional models of 

behavior.  
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This study aims to examine the predictions of the ETBD within a dynamic environment 

and to compare the predictions of the theory with data collected from rhesus monkeys. Multiple 

levels of analysis are used in order to have a more comprehensive comparison of the theory with 

live data. 

  

Evolutionary Theory of Behavioral Dynamics 

 The ETBD was first developed as an instantiation of selection by consequences (Skinner, 

1981) using a genetic algorithm (McDowell, 2004). The ETBD is unique among behavioral 

models as it also qualifies as a complexity theory. Complexity theory systems have multiple 

components that interact with each other and the environment following simple rules. The 

interactions of the components create relationships or patterns that are not deducible from the 

basic rules that the agents follow. These relationships or patterns are considered emergent 

properties of the system. One example of an emergent property would be the shapes created by a 

starling murmuration (a clip of a murmuration of starlings can be found here.). While the 

patterns made by the starlings may seem complex, they can be generated if the starlings all 

follow three basic rules: (1) steer towards each other, (2) turn if any of your seven nearest 

neighbors turn, and (3) do not crowd other starlings (Ballerini, Cabibbo, et al., 2008; Ballerini, 

Calbibbo, et al., 2008). These basic rules do not make any assumptions about the starling flock as 

a whole, yet they still generate the flock shapes. Another example, a traffic jam (a clip of a traffic 

jam shockwave can be found here.), is also an emergent property of the interactions between 

drivers (Helbing, 2001). In order to generate the emergent property, the system’s agents must be 

allowed to interact repeatedly. ETBD differs from traditional theories in psychology because it 

requires an iterative computational simulation in order to uncover the theory’s predictions. This 

https://www.youtube.com/watch?v=M1Q-EbX6dso
https://www.youtube.com/watch?v=Suugn-p5C1M
https://www.youtube.com/watch?v=Suugn-p5C1M
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is unlike traditional theories, which derive dependent variables mathematically from independent 

variables. The following sections will review the elements of the ETBD: the virtual organism; 

the environment in which it operates; and the rules that govern the behavior of the organism.   

The Virtual Organism. The virtual organism is defined by a population of one hundred 

behaviors that are drawn from a pool of 1024 potential behaviors. Each behavior has a phenotype 

and a genotype that impact the operation of the rules of the ETBD. The phenotype is a decimal 

integer between 0 and 1023. The genotype is a 10-digit bit string that is the binary representation 

of its phenotype. The ‘distance’ between two genotypes is determined by their Hamming 

distance (Hamming, 1950). The Hamming distance is the number of bits that must be flipped to 

change one genotype into another. For example, the numbers 0000000000 and 0000000001 have 

a Hamming distance of one since only the last of the 10 bits must be flipped to change one 

genotype to the other. The decimal integer values of these numbers, which are the phenotypes, 

are 0 and 1. In this case, the Hamming distance and the phenotypic distance are both one. In 

contrast, 511 and 512 are only one digit away in terms of their phenotypes but have a Hamming 

distance of 10 between their genotypes, which are 0111111111 and 1000000000 respectively. 

This is the largest Hamming distance possible using 10 digit genotypes. The distinction between 

phenotype and genotype is important because the two representations are used during different 

steps of the evolutionary process. The ability to have different phenotypic and genotypic 

distances allows the organism to have greater behavioral flexibility. See Figure 1 for a schematic 

of the relationship between the phenotypes and genotypes within the organism.  

 As mentioned earlier, the virtual organism has 1024 possible behaviors from which its 

100-behavior population is drawn. While the total number of potential behaviors may seem low 

given the diversity of behaviors possible for an organism, this is reasonable in terms of 
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environmental affordances. For example, there is a limited number of potential behaviors that a 

chair affords a person. A chair can be sat upon or stood upon, but it will not enable a person to 

fly or dig. A person may attempt to dig or fly using a chair, but it is highly unlikely to be 

effective and extremely unlikely to be rewarding. Due to their unrewarding nature, these 

behaviors are essentially interchangeable since the organism does not derive any benefit from 

them. Therefore, these types of behaviors may be combined with any number of other 

unrewarding behaviors and be represented together using a finite number of behaviors. 

Conversely, it is critical that the behaviors that can allow an organism to gather reward be 

represented within the environmental space. Within a virtual organism’s environment, it is 

possible to designate “target classes” that allow the organism to potentially obtain a reward. If 

the environmental space is defined as the afforded behaviors within an operant chamber, then the 

behaviors within the target class would be the behaviors that cause a lever to be depressed or a 

button to be pushed. The reason it is a class of behaviors rather than a single behavior is that 

there may be multiple behaviors that can depress a lever. For example, a rat can depress a lever 

by pressing on it with its left paw, or its right paw.  

The Rules of the ETBD.  There are four rules that govern the dynamics of the ETBD’s 

virtual organism and its interactions with its environment: Emission; Selection; 

Replication/Recombination; and Mutation. The sequence of the rules can be found in the 

flowchart in Figure 2.  

 The first rule in the sequence is emission. During the emission step, a behavior at random 

is emitted from the organism’s current population.  

The second rule is selection. The behavior emitted during the first step is checked to see 

if it is within a target class. If it is, then there is a second check to see if that behavior is 
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scheduled to be rewarded. If the behavior emitted in the first step is rewarded, then 200 parent 

behaviors are chosen out of the pool of 100 behaviors. The choice is based on the behaviors’ 

phenotypic similarity to the emitted behavior. The quantification of similarity is based on the 

absolute value of the phenotypic difference between the emitted behavior and the potential 

parent behavior. The similarity is additionally modified by linear density function in order to 

derive a fitness value for each behavior. The linear density function,    

    𝑝𝑝(𝑥𝑥) =  − 2
9𝜇𝜇2

𝑥𝑥 + 2
2𝜇𝜇

,     (1) 

expresses the probability of a behavior becoming a parent as a function of its fitness and is used 

to select fitness values at random. The behaviors that correspond to the drawn fitness values are 

chosen to be parents. In Equation 1, p(x) is the probability of the fitness value, x is the absolute 

value of the difference between a behavior and the emitted behavior (i.e., the behavior’s fitness), 

and μ is the mean of the density function. It is important to note that density functions can be 

defined solely by their means. Small means lead to higher selectivity, while large means lead to 

lower selectivity. Conceptually, the mean of the density function has been theorized to capture 

the properties of the resource acquired by the behavior and/or the properties of the target 

behavior itself, like the effort required to emit that behavior (McDowell, 2013). On the other 

hand, if the emitted behavior is not in the target class, or if the behavior is emitted in the target 

class but not rewarded, then the 200 parents are chosen at random from the current population of 

behaviors. 

 The third rule in the sequence is replication/recombination. After the 200 parent 

behaviors are chosen, they are recombined using bitwise recombination of their genotypes to 

generate 100 child behaviors. In bitwise recombination, there is a 50% chance that the 



6 
 

  

information in a particular bit location in a child behavior will come from the father behavior’s 

bit in the same location or the mother’s. Recombination of genotypes generally leads to child 

behaviors that are similar to the parents, which means that parents with high fitness values 

typically produce children with high fitness values.  

 Finally, during the fourth rule is mutation. The 100 behaviors produced by recombination 

undergo mutation using the bitflip-by-individual method. In the bitflip-by-individual method, a 

percentage of individual behaviors from the population is chosen, and then a random bit in each 

behavior’s genotype is flipped. The mutation rate indicates the percentage of the population of 

behaviors that undergo mutation. The resulting population of 100 behaviors then becomes the 

current population of behaviors and the cycle is repeated until the end of the experiment.  

Evidence Supporting the Theory. The ETBD, as described above, is a set of iterative 

rules for the generation of continuous behavior. It does not entail any assumptions about what 

behavioral characteristics may be generated from its processes. Thus, any patterns contained 

within the output of the theory can be considered an emergent property of the theory.  To date, 

there have been multiple studies that compare the output of the ETBD to the behavior of live 

organisms. In one study by McDowell and colleagues (2004), the behavior from virtual 

organisms was compared to live organism behavior using the original quantitative law of effect 

(Herrstein, 1970), 

 𝐵𝐵 =  𝑘𝑘𝑘𝑘
𝑘𝑘+𝑘𝑘𝑒𝑒

       (2)  

where B represents response rate, r represents reinforcement rate, and k and re are parameters of 

the equation.  Results indicated that the behavior of the virtual organism had the same hyperbolic 

form and violated the constant k assumptions of the classical law of effect the same way that live 
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organisms do (McDowell, 2004). When compared to the power function version of the 

quantitative law of effect (McDowell, 1986),  

𝐵𝐵 = 𝑘𝑘𝑘𝑘𝑎𝑎

𝑘𝑘𝑎𝑎+𝑟𝑟𝑒𝑒
𝑎𝑎

𝑏𝑏

 ,      (3) 

 behavior from the virtual organisms was found to be strictly consistent with this version and had 

exponents (a) around 0.8, consistent with the exponents generated from fits to data from live 

organisms (McDowell & Caron, 2007).  

Behavior from virtual organisms was also compared to behavior from live organisms 

using the power function matching law (Baum, 1974),  

     
𝐵𝐵1
𝐵𝐵2

= 𝑏𝑏 �𝑘𝑘1
𝑘𝑘2
�
𝑎𝑎

,     (4) 

where B1 and r1 represent the rates of behavior and acquired reinforcers respectively for one 

target class, B2 and r2 represent the rates of behavior and acquired reinforcers respectively for the 

alternative target class, b represents the bias towards one side, and a represents the sensitivity of 

the ratio of behaviors to the ratio of acquired reinforcers. The function was found to accurately 

describe virtual organism behavior and also generated exponents around 0.8, which were 

comparable to exponents obtained from fits to data from live organisms. In the same study, it 

was also found that asymmetry in density function means, which impacts the value of 

reinforcers, led to biased responding that was also consistent with the responding of live 

organisms (McDowell, Caron, Kulubekova, & Berg, 2008). Biased responding refers to an 

organism favoring one side over the other in concurrent continuous choice studies, which is also 

represented by a b value greater than or less than one in Equation 4.  
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In one study by McDowell and colleagues (2012), the ETBD was also evaluated using 

the concatenated generalized matching law (Killeen, 1972; Rachlin, 1971),  

𝐵𝐵1
𝐵𝐵2

= 𝑏𝑏 �𝑘𝑘1
𝑘𝑘2
�
𝑎𝑎𝑟𝑟
�𝑚𝑚1
𝑚𝑚2
�
𝑎𝑎𝑚𝑚

,   (5) 

that takes into account magnitudes, m, of reinforcement as well as the rates, r, of acquired 

reinforcement. From this study, it was found that Equation 5 accurately described the behavior of 

virtual organisms animated by the theory with exponents of 0.83 and 0.68 for ar and am 

respectively. These exponents are nearly identical to the values obtained from live organisms 

(McDowell, Popa, & Calvin, 2012). 

In addition, the ETBD was found to have multiple environmental interactions that mirror 

data collected from live organisms. The Hamming distance, which is the number of bit flips 

required to change one genotype into another, as mentioned earlier, has been considered 

analogous to a changeover delay (COD) (Popa & McDowell, 2010). CODs are used to punish 

switching between different target classes in operant paradigms in order to avoid continuous 

switching. CODs can take the form of requiring an extra action to collect a reinforcer after 

switching, or they can take the form of increased travel distance between levers. In the 

concurrent schedule paradigm, as the Hamming distance between target classes decreases, the 

exponent, a, in Equation 4 decreases rapidly and stabilizes at a value that reflects near 

indifference to either alternative (Popa & McDowell, 2010). This relationship between the 

Hamming distance and the exponent in virtual organism experiments mirrors the relationship 

between the COD and the exponent in live organism experiments. The changeover patterns in 

live organisms also show a lower rate of changeovers when the rewards rates on concurrent 

schedules are highly asymmetrical. The rate of changeovers increases as the reinforcement rates 
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become more similar, and peak when the reinforcement rates are nearly equal. This changeover 

pattern is present in virtual organisms as well (McDowell, 2013). 

The ETBD has relatively fewer comparisons with dynamic live organism data, although 

there are several notable findings. Virtual organisms animated by the ETBD require only a few 

reinforcer allocations in order to increase the number of behaviors in the target class. Once 

reinforcers are no longer being allocated to the target class, the amount of behavior in the target 

class declines slowly with irregular features. These behaviors by the virtual organism mirror 

behaviors seen in rats (McDowell, 2013).  

One way of viewing dynamic behavior is to look at the distribution of time between 

responses. It was found that these distributions for virtual organisms were comparable to those of 

live organisms under low response cost situations (Kulubekova & McDowell, 2008). It was also 

found that virtual organism behavior and the way in which it changes its preference immediately 

following a transition between different concurrent schedules were indistinguishable from live 

organism behavior and preference change (Kulubekova & McDowell, 2013). 

In summary, the ETBD has been found to predict a range of behavioral patterns including 

both steady state phenomena, like the power function form of the matching law, and dynamic 

phenomena, like the patterns of preference change following a transition. The theory is further 

able to predict the environmental interactions, such as the impact of the COD on the sensitivity 

exponent and the impact that asymmetrical rates of reinforcement have on changeover rates. In 

order to test the limits of the theory, it is useful to have additional comparisons between the 

theory’s predictions and live organism data. Dynamic behavior is one area with additional 

findings that the predictions of the theory can be compared.  
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Dynamic Behavior 

 While observations of dynamic behavior and organism learning are not new, there are 

only a few research groups currently engaged in the study of dynamic behavior from an operant 

behavioral perspective. Davison and Baum (2000) and their colleagues have focused on the 

behavior of organisms on dynamic variable interval (VI) schedules, using pigeons and rats. 

Studies that focused on preference stabilization found that preference between target classes 

changes rapidly, and begins approaching equilibrium quickly (Aparicio, 2008; Banna & 

Newland, 2009; Gallistel, Mark, King, & Latham, 2001; Hunter & Davison, 1979; Mazur, 1992). 

Studies that focused on molecular level dynamics, that is, changes over a small number of 

reinforcers, found that pigeons and rats rapidly respond to reinforcement or nonreinforcement 

(Aparicio, 2008; Davison & Baum, 2000), and that the relative difference between the 

reinforcement ratios, rather than absolute difference between ratios, determines the rate of 

acquisition (Mazur, 1992).  

 Dynamic behavior gives the opportunity to explore behavioral phenomena as part of a 

spectrum. Behavior can be observed from the local level all the way up to the macro-level. At the 

local level, it is possible to observe the moment to moment interactions of behavior with the 

environment. At the macro-level, phenomena such as the Matching Law relationship are 

observable. There are generally two types of possible relationships between the macro-level 

phenomena and smaller time scale behavior. They can show self-similarity i.e., the macro-level 

phenomena are observable at smaller time scales as well, or reduction i.e., the micro-level 

phenomena demonstrate smaller scale regularities that are not consistent with macro-level 

phenomena (Baum, 2010). In the case of reduction, the micro-level phenomena can be used to 

derive the macro-level phenomena, while the reverse is not true. For example, a self-similar 
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relationship across levels would suggest that the Matching Law relationship would exist at all 

levels of observation, no matter how few behaviors are considered. A reductive relationship 

would be one where the Matching Law relationship is only present at the macro-level. At the 

local-level, other behavioral phenomena would be present instead. Studying dynamic behavior at 

multiple levels is beneficial because unique phenomena may potentially be observed at the local 

level that cannot be deduced from macro-level phenomena.  

Monkey Experimental Paradigm 

 Modeling of behavior on the micro-level in monkeys on concurrent VI schedules has also 

been attempted using various models (Corrado et al., 2005; Sugrue, Corrado, & Newsome, 

2004). Both of Corrado et al.’s studies tested models that were descriptive in nature rather than 

causal, but their findings suggested that previous behavior can impact present behavior. From the 

monkey data, it was found that local behavior allocation between two alternative VI schedules 

was sensitive to local fluctuations in reward within schedules and was fully adapted to new 

schedules within 40 trials of the transition point.  

The current study is based on the paradigm used by Corrado et al. (2005). The parameters 

of that study follow. Two adult male rhesus monkeys were given a simulated foraging task. They 

had a choice between two targets, one red and one green, which they chose by gazing at one 

target or the other. Their gaze was continuously tracked via computer monitoring. The monkey 

was free to look in any direction. If it gazed at a target that was scheduled for a reward, then it 

would be rewarded with drops of juice. If a reward was scheduled on a target, it would be 

considered “setup” and the monkey would receive the reward the next time it looked at the 

target. If the monkey looked in any other direction during the trial, it would receive a brief two-

four second timeout. The probabilities of reward for the targets were independent of each other, 
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and the VI schedules were implemented using a Poisson process. A COD was implemented by 

not rewarding the first choice to a color if the previous choice had been the other color. For 

example, if the monkey’s last choice was red and the current choice was green, then the monkey 

would not get a reward for choosing green, even if the reward was setup on that side. Only if the 

monkey chose the green target a second time immediately after choosing the green target would 

the setup reward be dispensed. The COD in this model can be considered weak, due to the high 

level of switching between targets. Using a run length distribution to show how many times a 

monkey would pick the same color in a row, Corrado and colleagues found that approximately 

40% of the run lengths for one monkey had a length of two, and the other monkey predominantly 

had run lengths of two or three, signifying that the monkey would choose the same target only 

two or three times before switching to the other target. In other words, the monkeys continued 

switching back and forth for a significant portion of the time, only staying on a side long enough 

to satisfy the COD rule. The monkeys were exposed to blocks with a set reward schedule for 40-

350 trials with approximately 0.3 rewards per trial (both sides combined). The overall reward 

rate was held constant while the ratio of reward was scheduled to vary between 1:8, 1:6, 1:3, 1:2, 

1:1, 2:1, 3:1, 6:1, and 8:1 a majority of the time. Additional schedule ratios were also used, with 

the most extreme ratio being approximately 14:1. The schedule ratios used in this study can be 

found in Table 1. In order to have unpredictable transitions, the number of trials per schedule 

varied unpredictably, along with the schedule ratio. The transitions were also unsignaled.  

 

The Present Study 

 Previous studies have examined dynamic behavior in multiple organisms and have been 

able to describe patterns of behavior that are present on differing levels of analysis (Corrado et 
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al., 2005; Davison & Baum, 2000). However, these studies are often descriptive in nature and 

rarely look into causal mechanisms. The present study extends the body of literature dealing with 

dynamic behavior by demonstrating that the dynamic patterns of behavior can be predicted using 

the ETBD. The study also represents an extension of the ETBD itself. This study is the first to 

compare the predictions of the ETBD with the behavior of rhesus macaque monkeys. 

Additionally, the present study examines the predictions of the ETBD within an extended 

dynamic paradigm that has not yet been used with the ETBD.  

The simulated environment in this study is modified to better simulate the paradigm set 

by Corrado et al. (2005). After generating the ETBD’s behavioral prediction, the prediction was 

analyzed on three levels. Virtual organism behavior was examined on the macro-level, by testing 

the overall behavioral output data’s conformance to the power function matching law (Equation 

4). The virtual organism’s ability to adapt to continuous, unsignaled transitions was examined 

using a transition-level analysis. The results of the analysis were then compared to monkey 

behavior. Finally, the virtual organism’s ability to track acquired reinforcers at the “local-level” 

was examined. Observations at this level examine behavior without averaging, unlike analysis at 

the previous levels. Local-level analysis also maintains the basic temporal flow of the 

experiment. The results of the local-level analysis were then compared to monkey behavior. 

 II. Methods 

 

Subjects 

The experiment was conducted on 15 virtual organisms starting with a population of 100 

potential behaviors from a pool of 1024 possible behaviors. The computational algorithm that 
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animates the aforementioned organisms is described above, in the Evolutionary Theory of 

Behavioral Dynamics section. 

Simulated Environment 

 The experimental environment was designed to mirror the environment used in the prior 

studies (Corrado et al., 2005; Sugrue et al., 2004). In these two papers, concurrent VI schedules 

were used to deliver rewards with differing ratios of reinforcement between the two target 

classes, but with a constant overall rate of reinforcement. Reinforcers were delivered 

approximately once every three trials for both schedules combined. Once a reinforcer was 

scheduled, that target would be considered “setup” and would remain set up until the reinforcer 

was received. The reinforcement ratio between the two VI schedules was dynamically set, 

switching among the 33 unique schedule ratios for one monkey and 21 unique schedule ratios for 

the other monkey. In the present study, the more complicated sequence of schedules, the one 

with 33 unique ratios, was followed. The 33 unique schedule ratios are listed in Table 1. During 

the experiment, the reward ratio remained constant during a ‘block’ of trials from 50 to 300 trials 

long. During the transitions between blocks, the monkey was given no indication that the ratio of 

reinforcement between the two choices was changed except through the change in the amounts 

of reward it acquired from either choice. A changeover delay (COD) was used to punish 

switching behavior. The COD rule prevented the reinforcer from being given for the choice of a 

target when that choice also constituted a switch between the two available targets. If the target 

was setup to give a reinforcer, it would additionally remain setup so a second choice on that 

target would allow the reinforcer to be obtained.  

 While the monkeys were given extensive training to familiarize them with the testing 

apparatus, the targets, the COD, and to reproduce reliable matching behavior, the ETBD 
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organism did not undergo any training. The following steps were followed to generate the 

simulated environment. First, the exact schedules used in the Corrado et al., paradigm were 

followed to create a comparable environment for the virtual organisms. The transitions between 

schedules were also unsignaled. Second, the same COD rule was implemented. Third, reward 

setting was set on a trial basis, which matched the reward setting scheme used in the Corrado 

study. 

ETBD Adaptations to fit the Experimental Paradigm  

An important issue that needed to be addressed in this study was the COD. The current 

parameters for the virtual organisms were designed to fit behavior-analytic studies that typically 

use a robust COD. In the Corrado et al. (2005) study, however, the COD was found to not as 

robust, as discussed earlier. Adjustments to the Hamming distance of the behaviors’ genotype 

has been shown to act similarly to changes in the COD length (Popa & McDowell, 2010). Thus, 

to compensate for the weaker COD, the target classes in the computational experiment were set 

at the phenotype ranges, 128-168 and 896-936. For these target classes, the genotype of a 

behavior in one target class has a minimum Hamming distance of two relative to the genotypes 

in the other target class. These target classes, in effect, make switching between them much more 

likely compared to the target classes used in previous research. See Figure 1 for a schematic of 

the target classes.  

Time in the ETBD is typically based on the number of iterations of the rules that underlie 

the theory. Reinforcement setup follows the same time convention, that is, the alternatives are set 

up to dispense a reward based on the number of iterations that have passed. Within each 

iteration, there is a chance of a behavior being emitted from a target class, but it is by no means 

certain that it will be from the target class. However, the Corrado et al. (2005) followed a trial 
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based system. In this system, each trial is based on the organism choosing one of the two target 

classes. In order to allow a more exact comparison with the Corrado et al. experiment, the ETBD 

computer algorithm was adapted to record data on a trial based system. Under this system, 

behavior being emitted from the target class would increment the trial counter while any 

behavior emitted outside of the target class was ignored. Between trials, there can be multiple 

iterations of the rules of the ETBD and the organism was allowed to evolve as usual. Only when 

a behavior is emitted from the target class will it be recorded. The rate of reinforcement and the 

length of each schedule was based on the trial number, like in the experiment by Corrado et al. 

The virtual organism was set to have the following specific function parameters. 

Emission of behavior was at random, per usual. Selection was based on phenotypic distance 

using a linear continuous probability density function, with a mean of 80. This is within the 

normal range of density function means, although on the weaker end in order to produce a 

weaker selection of target behaviors (McDowell et al., 2008). This potentially allows a greater 

number of behaviors outside of the target classes to be parent behaviors. Replication was 

completed using bitwise recombination, per usual. Mutation was accomplished using bitflip-by-

individual mutation, with a 20% mutation rate. This mutation rate is larger than what has been 

typically used in previous research.  It generates a larger number of changeovers because 

mutation results in greater randomness in the resulting population of behaviors. Although the 

density function mean and mutation rate differ from values used in previous concurrent schedule 

studies of the ETBD organism (Kulubekova & McDowell, 2013; McDowell et al., 2008), they 

are not outside the typical range of parameters. These changes do not alter the operation of the 

basic rules of the evolutionary theory inasmuch as the methods used for emission, selection, 

replication, and mutation are identical to those used in previous studies.  
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Data Analysis 

 The data generated by the evolutionary theory was analyzed on three levels. First, all of 

the data collected was analyzed together using a macro-level analysis, as described earlier. 

Second, the adaptation of behavior and acquired reinforcers following a transition between 

schedules were analyzed using a transition level analysis. Finally, the within schedule adaption 

of behavior to local acquired reinforcer changes was analyzed using a local-level analysis. The 

methodology for each analysis depends on the specific goals and challenges for the specific level 

of analysis. The analysis was completed on the trial-based output data from the ETBD and 

monkey behavior. The monkey output data contains three major components for each trial: (1) 

the ratio of scheduled reinforcement, (2) the target chosen by the monkey for that trial, and (3) 

the acquired reinforcement if any. In the ETBD output, the monkey behavior was replaced by its 

ETBD analog, i.e. the target class from which the behavior was emitted. The two other output 

parameters were identical for both monkey and ETBD output data.  

Macro-level analysis. The first level of comparison between the virtual organism and the 

monkey was at the macro-level. The power function matching law is an ideal macro-level 

comparison tool because it draws from all of the data generated in the study and describes the 

relationship between the ratio of acquired reinforcers and the ratio of behaviors. Fits of power 

function matching law to the monkey data have already been published by Corrado et al. (2005). 

The following data analysis steps were used to generate power function matching law fits to the 

data from the virtual organism. The power function matching law equation,   

log �𝐵𝐵1
𝐵𝐵2
� = log(𝑏𝑏) + 𝑎𝑎log �𝑘𝑘1

𝑘𝑘2
�,   (6) 



18 
 

  

was fitted to the ratios of acquired reinforcers and the ratio of behavior between the two target 

classes. In Equation 6, B1 and r1 are the numbers of behaviors and acquired reinforcers for target 

class one, and B2 and r2 are the numbers of behaviors and acquired reinforcers for target class 

two. Equation 6 is a logarithmic transformation of Equation 4. Equation 6 is often used instead of 

Equation 4 since the resulting plot is linear, which allows the function to be fitted with a linear 

regression. As mentioned earlier, 33 unique pairs of reinforcement schedules were used in the 

study. These unique scheduled reinforcement rates were alternated to generate the reinforcement 

rates for the 1153 schedules in the study. Each schedule in the study was sorted into a group 

based on its unique scheduled reinforcement rate. Each group’s ratio of behaviors was averaged 

for each unique reinforcement rate. The same averaging step was completed on the ratio of 

acquired reinforcers. The logs of the average ratio of behaviors were plotted against the logs of 

the average ratio of acquired reinforcers. Then a linear regression was used to calculate the 

percentage variance accounted for, the sensitivity parameter, a, and the bias parameter, b, for that 

organism. All schedules that lack behavior or acquired reinforcers on at least one side for the 

entire schedule were not included in the fit.  The percentage variance accounted for (PVAF), the 

sensitivity parameter, and the bias parameter were calculated for all 15 organisms. The 

parameters obtained were averaged to get sample means and standard errors. 

Transition-level analysis. The transition between schedules was analyzed to examine 

how the virtual organisms adapt to unsignaled transitions. The virtual organism’s adaptation can 

be visualized by its change in behavior proportion and acquired reinforcer proportion in response 

to a transition. However, in order to analyze the virtual organism’s reaction to the presence of a 

transition, there were various challenges that needed to be addressed. First, in order to make the 

transitions unpredictable, the number of trials within each schedule varied between 50 and 350. 
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This means the number of trials available for analysis in each schedule was not constant. Second, 

the new schedule after the transition could be set to any of the 32 other unique reinforcement 

ratios. This means that to fully adapt to a new reinforcement ratio after a transition, the amount 

of behavior change required may vary in magnitude and direction. In order to examine the virtual 

organism’s general adaptation response to a transition, the magnitude and the direction of 

behavior adaptation needs to be accounted for.  

Fortunately, the magnitude of the behavior change is always relative to the absolute value 

of the difference between the post-transition reinforcement ratio, and the pre-transition 

reinforcement ratio. The direction of adaptation is considered to be positive if the post-transition 

reinforcement ratio is larger than the pre-transition reinforcement ratio and negative if the post-

transition reinforcement ratio is smaller. The magnitude and the direction are most easily 

discussed in relation to one target class using a normalized scale. For the purpose of this analysis, 

reinforcement ratios were transformed into reinforcement proportions. The specifics of the 

transformation will be discussed later. The reinforcement proportions were set towards target 

class one, in order to be comparable to the behavior and acquired reinforcer proportions. A ratio 

which heavily favors target class two, e.g. 1:12, would translate to approximately 0.076, which is 

close to zero. A ratio which heavily favors target class one, e.g. 10:1, would translate into 

approximately 0.909, which is close to 1. Within this framework, behavioral adaptation across a 

transition from a reinforcement ratio of 1:12 to a reinforcement ratio of 10:1 has a large 

adaptation magnitude and a positive direction, as shown in the left panel of Figure 3. On the 

other hand, behavioral adaptation across a transition from schedule ratio of 5.3:1 to a schedule 

ratio of 5:1 would have a small adaptation magnitude and a negative direction as shown in the 

right panel of Figure 3.  
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In summary, the following steps were required to allow meaningful averaging across 

transitions. First, schedules with fewer trials may result in fewer data points than schedules with 

more trials. In order to collect the appropriate number of data points, the variation in the number 

of trials within a schedule needed to be accounted for. Second, reinforcement ratios are not 

comparable to the behavior and acquired reinforcer proportions. The reinforcement ratios needed 

to be transformed into a proportional scale in order to allow a direct comparison. Third, there are 

large and small magnitude differences between reinforcer proportions across a transition. These 

differences in magnitude needed to be normalized in order to make the change across transitions 

comparable during averaging. Finally, the direction of adaptation has two possible orientations, 

positive or negative. The orientation depends on which of the two reinforcer proportions across 

the transition is larger. The two orientations needed to be aligned in order to prevent them from 

canceling each other out during averaging.  

In order to examine the virtual organism’s behavioral response to changes in acquired 

reinforcers during a transition, the behavior proportion, 𝐵𝐵1
𝐵𝐵1+𝐵𝐵2

, and the acquired reinforcer 

proportion, 𝑘𝑘1
𝑘𝑘1+𝑘𝑘2

,  for target class one were calculated from the output data. The behavior 

proportion and the acquired reinforcer proportion were calculated over ten trials at a time. Since 

previous research has found that behavior tends to adapt extremely quickly following a transition 

(Davison & Baum, 2000), one ten-trial set prior to the transition was used as a baseline for the 

change following the transition. Behavior proportions and acquired reinforcer proportions were 

then calculated for ten-trial sets up to the 150th trial after the transition. Since not all schedules 

have the same length, data was only used for each schedule up to the end of the schedule 

rounded down to units of ten. For example, if a schedule has 135 trials, then behavior and 

acquired reinforcer proportions were collected up to the 130th trial. Any ten-trial set that did not 
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have any acquired reinforcers for either side was not used for calculation of reinforcer 

proportion. The previous scheduled reinforcement ratio and the current scheduled reinforcement 

ratio were transformed into reinforcement proportions. This allowed a direct comparison 

between the scheduled reinforcement and the behavior and acquired reinforcer proportions. This 

was accomplished by using the following formula, 𝑡𝑡𝑡𝑡1
𝑡𝑡𝑡𝑡1 + 𝑡𝑡𝑡𝑡2

, where tc1 is the value for target class 

one and tc2 is the value for target class two in the reinforcement ratio. For example, in the ratio 

4:1, tc1 equals 4, and tc2 equals 1. The reinforcement proportion is calculated to be 0.8. A value 

closer to 1 symbolizes a ratio favoring the 128-168 target class (target class 1). Transitions that 

had differences of less than 0.0025 between the previous and the current reinforcement 

proportions were discarded, because such small transitions between schedules are likely 

undetectable to the organism and erroneously magnify minor fluctuations. Next, the behavior and 

acquired reinforcer proportions were normalized to the range between the previous scheduled 

reinforcement proportion and the current scheduled reinforcement proportion using the formula, 
𝑋𝑋−𝑅𝑅𝑅𝑅𝑘𝑘𝑅𝑅𝑅𝑅𝑃𝑃𝑟𝑟𝑒𝑒

𝑅𝑅𝑅𝑅𝑘𝑘𝑅𝑅𝑅𝑅𝑃𝑃𝑟𝑟𝑒𝑒−𝑅𝑅𝑅𝑅𝑘𝑘𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
. X is the behavior or acquired reinforcer proportion before normalization, 

RpropPre and RpropPost are the reinforcement proportions before and after the transition 

respectively. This normalization step also corrected the orientation alignment. The resulting 

values for each ten-trial set were averaged across all transitions for one organism. Finally, the 

results for all organisms were additionally averaged together to generate a group level plot.  
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Local-level analysis. The fluctuations of the behavior and acquired reinforcer 

proportions within schedules were examined in order to observe the dynamic response of 

behavior to acquired reinforcement in a within-schedule time scale. There are multiple 

challenges with local-level analysis that require addressing. First, since we are examining local 

level dynamics there is no averaging of data, unlike the previous two levels of analysis. This 

makes the lower quantity of acquired reinforcers a critical issue because any set without any 

acquired reinforcers on either side will lead to a gap in the data. In order to compensate for this, a 

larger number of trials per set were used to generate the proportions of behavior and acquired 

reinforcers. Second, since the data are not averaged, there will be 1153 schedules that potentially 

require individual analysis. In order to characterize the data better, the entire experiment was 

divided into blocks that contain 10 schedules each. Then the tracking of behavior proportion to 

acquired reinforcer proportion was quantified using a Pearson correlation coefficient for each 

block. This allows the identification of the blocks with the best, average, and worst tracking for 

use in analysis. Local-level analysis has an additional use, which is to look at the average 

behavior of multiple organisms at the local level. When the behavior and acquired reinforcer 

proportions from the 15 organisms are averaged, the local level variations cancel out. This 

allowed the examination of the behavior and acquired reinforcer proportion responses to 

schedule changes and transitions. 

The entire behavior and acquired reinforcer output data were divided into sets of 20 trials. 

The proportion of behavior and acquired reinforcers were calculated for each set. Any set 

without any acquired reinforcers on one target was excluded from in the analysis. The 

reinforcement ratio for each schedule was transformed into a 0 to 1 scale using the same 

methodology as in the transition analysis. The transformed reinforcement ratio was plotted with 
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the behavior and acquired reinforcer proportions. In order to quantify how well the virtual 

organism’s behavior tracks the acquired reinforcers across the different schedules, the following 

steps were performed. First, the entire experiment was divided into blocks of ten schedules. The 

last three schedules were discarded in order to round the number of schedules to a multiple of 

ten. Next, the Pearson correlation coefficient between the behavior and acquired reinforcer 

proportions were calculated for each block. Only proportions that were fully contained within the 

block were used. Finally, Pearson correlation coefficients were used to compare how well the 

two proportions correlate per block. A histogram was used to display the distribution of the 

correlation coefficients for the virtual organisms and for the monkey. The blocks with the 

highest, average, and lowest correlation coefficients were used as exemplars of the data set. The 

average local level analysis was collected using the following method. The behavior and 

acquired reinforcer proportions sets were averaged with their corresponding sets across all virtual 

organisms, e.g. the first set’s behavior proportion was averaged with all other first set behavior 

proportions, and so on. The averaged data was divided into blocks and the Pearson correlation 

was calculated for each block, following the procedure used in the previous local-level analysis. 

The blocks with the highest, average, and lowest correlation coefficients are used as exemplars 

of the averaged data set. 

III. Results 

 This study aimed to examine the dynamic behavior of the ETBD and how it compares 

with monkey behavior. The results are presented in the following order: (1) the macro-level, (2) 

the transition level, and (3) the local level.  

At the macro-level, data from the virtual organisms animated by the ETBD (n = 15) were 

fit well by the generalized matching law, with a PVAF of 91.3% ± 0.12% (standard error of the 
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mean, SEM, for all of the following as well), a slope (sensitivity parameter) of 0.534 ± 0.003, 

and an intercept (bias parameter) of 1.056 ± 0.006.  A plot of the matching law fit with the R2 

value closest to the group average is shown in Figure 4. This plot is typical for the overall 

sample. This demonstrated that virtual organisms, operating under the unique environments 

implemented here to match Corrado et al.’s (2005) experiment, can produce behavior that 

conforms to power-function matching. The sensitivity parameter from this fit, 0.534, is also 

similar to the one obtained from the generalized matching law fit to the monkey’s data, 0.57. 

On the transition level, virtual organism’s behavior was found to adapt quickly to the new 

schedules and it reached an asymptote within 20 trials, as shown in Figure 5. In Figure 5, the 

behavior proportion (solid line) and the acquired reinforcer proportion (dashed line) are 

normalized to the difference between the pre-transition reinforcement proportion and the post-

transition reinforcement proportion. Proportions are calculated over ten-trial sets. The error bars 

show ±1 SEM for each data point. The pre-transition reinforcement proportion is set at 0% and 

the post-transition reinforcement proportion is set at 100%. The transition is set to be at time = 0. 

The first data point is a baseline calculated from the ten-trial set just prior to the transition. All of 

the transitions within one organism are averaged. 

The lower percentage shift in the proportion of behavior compared to the percentage shift 

in the proportion of acquired reinforcers shows undermatching at this level. Undermatching 

occurs when the ratio of behavior is less than what would be predicted based on the ratio of 

reinforcement by the matching law. On the macro-level, this is represented by having a 

sensitivity parameter less than one. On the transition level, this is represented by the behavior 

proportion being less than the acquired reinforcer proportion. A transition data comparison of 

virtual organisms and the monkey is shown in Figure 6. It shows that the virtual organisms and 
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the monkey adapted quickly to transitions, although the virtual organism adapted at a slightly 

more rapid rate. Individual virtual organism data often looks remarkably similar to the monkey 

data. An example of this can be seen in Figure 6 (bottom). The closest of the 15 virtual 

organisms to the monkey data is plotted with the monkey’s behavior proportion to show the 

degree of overlap. The proportion of acquired reinforcers was also found to reach its asymptote 

more quickly for monkey data than virtual organism data (Figure 7). 

At the local level, the 1153 schedules in the experiment are divided into blocks with 10 

schedules in each block. The Pearson correlation coefficients are calculated for the behavior 

proportion and the acquired reinforcer proportion within each block. The Pearson correlation 

coefficient is used as a marker of how well the behavior proportion and the acquired 

reinforcement proportions track each other. Good tracking of behavior to acquired reinforcers on 

a local level should theoretically lead to a Pearson correlation coefficient closer to one, because 

high levels of acquired reinforcers should also be accompanied by high levels of behavior, and 

vice versa. Poor tracking of behavior to acquired reinforcers should lead a Pearson correlation 

closer to zero.  

A histogram of the Pearson correlation coefficients for virtual organism whose histogram 

is closest to the group average is shown in Figure 8 (left). The correlation for the same analysis is 

completed using monkey data and the histogram is shown in Figure 8 (right). The histograms of 

Pearson correlation coefficients show good tracking of behavior to acquired reinforcers for both 

virtual organisms and for the monkey. They both have a similar histogram form and have a mode 

between 0.8 and 0.9. An example of the blocks with the highest, average, and lowest Pearson 

correlation coefficients for the virtual organism whose histogram is closest to the group average 

is shown in Figure 9. The tracking of behavior to acquired reward is present in all tracking 
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conditions at the local level. It is also worth noting that fluctuations of behavior and acquired 

reinforcer proportions at this level are on a comparable scale to the shifts between scheduled 

reinforcement proportions. Averaged data of 15 virtual organisms is shown in Figure 10. In the 

averaged data, the local level fluctuations are muted and the macro-level phenomenon, 

undermatching, is visible. As seen in the transition data, the virtual organism can quickly adapt 

to new schedule ratios.  

 A comparison of the virtual organism and the monkey at the local level is shown in 

Figure 11. The behavior proportions for both were found to react to the shifts caused by 

reinforcement ratio transitions, and also to the local level fluctuations in acquired reinforcer 

proportions. Both the virtual organism and the monkey exhibited local level undermatching and 

over matching of behavior proportion to acquired reinforcer proportion.  

 

IV. Discussion 

The results of this study suggest that organisms animated by the ETBD demonstrate 

similar dynamic behavioral features to those of rhesus monkeys. These results were observed at 

three different levels of analysis. First, at the macro-level, the organisms were capable of 

generating good fits to the power function matching law. This is similar to previous studies using 

virtual organisms (McDowell et al., 2008). The sensitivity parameter of 0.534 showed more 

undermatching compared to other fits of the matching law using virtual organisms but is more in 

line with sensitivity parameters taken from other studies that have researched dynamic 

phenomena (Baum & Davison, 2014; Davison & Baum, 2000). The virtual organism sensitivity 

parameter is also in line with the sensitivity parameter values taken from the rhesus monkey 
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studied by Corrado et al., 2005, which was 0.57. This result also makes sense intuitively. With 

unsignaled, dynamic environments, undermatching in a practical sense demonstrates a greater 

number of choices to the less rich of the two target classes. This behavior is more adaptive since 

the sooner the organism discovers that the ratios have changed, the more quickly it can adapt its 

behavior to the new environment.  

Second, virtual organisms were found to be capable of rapidly adapting to changes in 

reinforcement ratio during unsignaled transitions. As shown in Figure 5, rapid adaptation to the 

new reinforcement ratios occurred within 10 trials. This aligns with the results from 

investigations of pigeons (Davison & Baum, 2000) that found that preference for a side 

developed quickly within two to eight reinforcers. This finding differs from that of Davison and 

Baum’s due to the continuous nature and the diversity of the schedules present. In Davison and 

Baum’s study, the pigeons were not given any indicators as to which schedules would be present 

after a change, but the lights were turned off between schedules effectively signaling that a 

transition would occur. This was found to have an effect, as the pigeon’s behavior would regress 

towards indifference during the blackout period (Davison & Baum, 2000). In addition, the 

pigeons were exposed to only five different types of reinforcement ratios, while the virtual 

organisms were exposed to 33 unique reinforcement ratios. This study demonstrated that rapid 

acquisition can still occur without a distinct period of indifference. The increase in the number of 

schedules further supports the idea that the rapidity of adaptation is not the result of repeated 

exposures to the same schedules and also provides an incremental step towards more naturalistic 

environment simulations.   

The transition level data additionally show that undermatching continues to be present 

during the transition timescale. However, there are nuances in behavior at this analysis level that 
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are not just accounted for by undermatching. The rhesus monkey data collected by Corrado et al. 

(2005) show rapid acquisition of the new schedule but the response proportion reaches an 

asymptote gradually, within approximately 40 trials. Virtual organisms animated by ETBD also 

show rapid acquisition of the new schedule but their behavior asymptotes quickly, within 20 

trials. While the reason for this difference is uncertain, there are various potential explanations 

for these differences. This may be the result of temporal stimulus control, which may be acting to 

slow monkey behavior. This would not be present in virtual organism behavior since temporal 

stimulus control has not been implemented yet in the theory. Alternatively, this simply could be 

caused by the lack of sample monkeys. Virtual organisms can be generated indefinitely and thus 

better approximate average behavior. The variation in transition shape when switching between 

reward ratios is clearly evident when looking at dynamic pigeon data (Banna & Newland, 2009). 

It is not a stretch to suggest that monkey data may show a similar level of variation.  

Monkey transition data also shows that the acquired reinforcer proportion for the monkey 

reaches its’ asymptote within the first ten trials. This differs from the acquired reinforcer 

proportion of virtual organisms that asymptotes at 20 trials. This difference may be caused by the 

use of different reinforcement set up methods. The Corrado et al. (2005), experimental paradigm 

uses a Poisson process to determine reinforcement setup timings which are different from the 

standard reinforcement methods typically used in continuous-choice experiments. A Poisson 

process gives a constant probability for a reinforcer to be setup on a target. In contrast, the ETBD 

environment uses an exponential distribution to determine the number of trials required before a 

target class is setup. Looking at this problem from another angle, the behavior proportions for 

monkey and virtual organisms show approximately 40% adaptation to the post-transition 

schedule during the first ten-trial set. Given the stochastic nature of reinforcement, it is highly 
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unlikely that similar proportions of behavior would lead to drastically different proportions of 

acquired reinforcement. In summary, this difference between the monkey and the virtual 

organism results is likely an artifact. 

Finally, we found that virtual organism behavior was capable of tracking acquired 

reinforcers at the local level, as shown in Figure 9. Local maxima or minima in acquired 

reinforcer proportions were almost always accompanied by or immediately followed by local 

maxima or minima in behavior proportions. It is also noteworthy that fluctuations in behavior 

and acquired reinforcer proportions within a schedule were on a similar scale as the differences 

between schedules. These findings suggest that, in dynamic and unsignaled conditions, 

adaptation to different schedules does not require any recognition of the transition between 

schedules. Adaptation to acquired reinforcers at the local level is sufficient to generate transition 

level adaptation.  These observations were also present in the monkey output data, as shown in 

Figure 11.  

Averaging of local level phenomena mutes local level phenomena and reveals macro-

level phenomena, as shown in Figure 10. The averaged acquired reinforcer proportion was found 

to be close to the scheduled reinforcement proportion, as expected. The average behavior 

proportion is almost always closer to an equal proportion, 0.5, between the two sides than the 

acquired reinforcer proportion, showing undermatching. This is in contrast to unaveraged local 

level data because the local level data show some instances of overmatching and perfect 

matching, as well as undermatching. This contrast shows that local level tracking is a distinct 

phenomenon that is not explained by the matching law, although it is predicted by the ETBD.  
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Limitations, Strengths, and Future Directions 

This study has a few limitations worth discussing as well as strengths worth reiterating. 

There is a limited amount of comparison monkey data. As mentioned earlier, the Corrado et al., 

2005 experiment had only two monkeys. Each monkey was additionally given different 

sequences of reinforcement. The small sample size undermines the ability to determine the 

amount of natural variation inherent in rhesus monkey behavior. It may also obscure significant 

trends that might be present if the data could be averaged across multiple monkeys. The 

adaptation of ETBD parameters to accommodate a low COD environment was effective in 

generating the relevant phenomena as well as being aligned with the expected effect of the 

ETBD parameter modifications (McDowell & Popa, 2010). However, these adaptations may 

make it difficult to compare the results of this study with the results from other ETBD 

simulations. Finally, portions of the findings from this study were descriptive or qualitative 

comparisons which do not easily lend to further investigation. However, these descriptive 

phenomena were generated using the ETBD and can be considered emergent properties of the 

theory. In addition, a qualitative description of dynamic phenomena is also typical in the field at 

this level of analysis. For example, Baum described a pattern of fixing on a rich key and 

occasionally visiting the lean key “Fix and sample” (Aparico & Baum, 2006; Baum, 2010), 

likely following the pattern set by “Break and run” (Ferster & Skinner, 1957).  

This study also has numerous strengths. The ETBD is found to replicate monkey dynamic 

behavior on all three levels of analysis, in a new paradigm. The multiple levels of analysis allow 

for comparisons across the different levels that would not be observable if only one level of 

analysis was used. The paradigm in the present study differs from previous ETBD studies in that 

the scheduled reinforcement ratios and the transitions themselves are unsignaled. A large number 
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of unique reinforcement ratios allow for a greater variety of transition types which is a step 

closer towards more naturalistic settings. 

This study lends itself to various potential future directions that may further illuminate 

the dynamics of behavior. The mutation rate, as mentioned earlier, was set at a higher than 

normal value due to the weak COD. This suggests that the mutation rate may not be static, but 

may be an adaptive value that varies according to environmental feedback. In the transition 

between reward ratios, the ETBD responded extremely rapidly to the change. This was found to 

be more rapid than the monkey data, though it showed some similarity to some rat transition data 

(Banna & Newland, 2009). This suggests that there may be a temporal stimulus component that 

may be a differentiating factor that is not yet part of the ETBD. Development of a temporal 

stimulus component may further clarify some of the transitional dynamics that currently 

unexplained. The ETBD was additionally modified to use a trial based system. This has 

interesting implications for future research as much continuous choice research done on live 

subjects is typically done using a trial based system. This modification may allow a more direct 

comparison with different types of behavioral studies.  

 Overall, the predictions of the ETBD aligned well with the behavior of rhesus monkeys 

on all three levels of analysis. It is important to note that none of the analyzed behavior patterns 

(e.g. the sensitivity parameter of the generalized matching law; the rates of transition adaptation; 

the complex overmatching, matching, and undermatching exhibited in local-level analysis) are 

explicitly implemented in the theory. The theory only implements the evolutionary rules of 

emission, selection, reproduction/recombination, and mutation in an iterative cycle on an 

adaptive population of behaviors. All of the behavior patterns examined were emergent 
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properties of the theory. These results provide strong support for the ETBD account of dynamic 

behavior.   
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Figure 1. The Virtual Organism’s Behavioral Repertoire and Target Classes 

 

Fig 1. The 100 behaviors that constitute a virtual organism’s behavioral repertoire have 

phenotypes between 0 and 1023, inclusively. The ranges 128-168 and 896-936 show the 

behaviors that fall into the two target classes used in this study. Each phenotype has a 

corresponding 10-bit genotype. The Hamming distance is the number of bits that must be flipped 

to covert one genotype into the other genotype linked to it. 
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Figure 2. Evolutionary Theory of Behavioral Dynamics - Flowchart 

 

Fig 2. The flowchart demonstrates one iteration of the ETBD.  
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Figure 3 Transition Analysis Schematic 

 

Fig 3. Transition analysis schematic. The schematic contains two example transitions to show the 

differences in magnitude and direction. The leftmost horizontal line, labeled Pre, represents the 

pre-transition reinforcement proportion and the rightmost horizontal line, labeled Post, represents 

the post-transition reinforcement proportion. The reinforcement proportions are based on how 

much they favor target class one. A reinforcement proportion that heavily favors target class one, 

e.g. 10:1, would have a transformed value close to one. The transition on the left shows a 

reinforcement proportion close to target two transitioning to a reinforcement proportion which is 

close to target one. The arrow, a, shows that this transition has a large magnitude and a positive 

direction within this framework. The transition on the right shows a transition between two 

reinforcement proportions that has a small magnitude difference and a negative direction, as 

shown by arrow b.  
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Figure 4. Macro Level – Power Function Matching Law Fit 

 

Fig 4. Power function matching law plot of the virtual organism with the closest R2 value to the 

group average. Each data point represents the relationship between the log of the behavior ratio 

and the log of the acquired reinforcer ratio averaged across all schedules with the same 

scheduled reinforcement ratio. The solid line is a linear regression on the data set. The error bars 

show ±1 standard error. The values in the text box show the variance accounted for by the fit, R2, 

the slope, a, and the intercept, b, for the fit of Equation 1.  
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Figure 5. Transition Level – Virtual Organism Average and Individual Plots 

 

 

Fig 5. The averaged transition data of all 15 virtual organisms is shown at the top. The transition 

data for a typical single virtual organism is shown at the bottom. The behavior proportion (solid 

line) and the acquired reinforcer proportion (dashed line) are normalized to the difference 

between the pre-transition reinforcement proportion and the post-transition reinforcement 

proportion. The error bars show ±1 standard error for each data point. The pre-transition 



43 
 

  

reinforcement proportion is set at 0% and the post-transition reinforcement proportion is set at 

100%. Proportions are calculated over ten-trial sets. The transition is set to be at time = 0. The 

first data point is a baseline calculated from the ten-trial set just prior to the transition. All of the 

transitions within one organism are averaged.  
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Figure 6 Transition Level – Virtual Organism and Monkey Behavior Comparisons 

 

 

Fig 6. The averaged behavior proportion data for all 15 virtual organisms is compared with the 

monkey data at the top. The transition data of the virtual organism that is most similar in 

behavior proportion to the monkey is shown at the bottom. The behavior proportion generated by 

virtual organisms (solid line) and the monkey behavior proportion (circle) are normalized to the 

difference between the pre-transition reinforcement proportion and the post-transition 
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reinforcement proportion. The error bars show ±1 standard error for each data point. The pre-

transition reinforcement proportion is set at 0% and the post-transition reinforcement proportion 

is set at 100%. Proportions are calculated over ten-trial sets. The transition is set to be at time = 

0. The first data point is a baseline calculated from the ten-trial set just prior to the transition. All 

of the transitions within one organism are averaged.  
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Figure 7. Transition Level – Average Virtual Organism and Monkey Comparison 

Virtual Organism 

 

Monkey 

 

Fig 7. The average transition data of all 15 virtual organisms (top) and transition data for the 

monkey (bottom) are shown here. The behavior proportion (solid line) and the acquired 

reinforcer proportion (dashed line) are normalized to the difference between the pre-transition 
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reinforcement proportion and the post-transition reinforcement proportion. The pre-transition 

reinforcement proportion is set at 0% and the post-transition reinforcement proportion is set at 

100%. Proportions are calculated over ten-trial sets. The transition is set to be at time = 0. The 

first data point is a baseline calculated from the ten-trial set just prior to the transition. All of the 

transitions within one organism are averaged. The error bars show ±1 standard error for each 

data point.   
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Figure 8. Local Level - Histograms of Block Correlation VO and Monkey Comparison 

Virtual Organism Monkey 

  

Fig 8. Histogram of Pearson Correlation Coefficients for ten-schedule blocks. The entire 

sequence of dynamic schedules was broken into ten-schedule blocks. The Pearson’s correlation 

between the behavior proportion and the acquired reinforcer proportion was calculated for each 

block in both the virtual organism data (left) and the monkey data (right) for the same sequence 

of schedules. The virtual organism shown here has the closest histogram to the group average. 
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Figure 9. Local Level – Virtual Organism Individual Plots 

 

 

 

Fig 9. The blocks with the highest correlation (top), the average correlation (middle), and the 

lowest correlation (bottom) for a typical organism are shown here. Local level changes in 

reinforcer proportion (dashed line) and behavior proportion (solid line) are shown in the figure. 

The y-axis shows the proportion of behavior or acquired reinforcers on target class 1. The 

proportions are calculated over twenty-trial sets. The segmented horizontal line represents the 
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scheduled reinforcement proportions. Scheduled reinforcement proportions that favor target class 

1 are near one on the y-axis. Scheduled reinforcement proportions that favor target class 2 are 

near zero on the y-axis. The correlation for each block is calculated between the behavior 

proportion and the acquired reinforcer proportion.  
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Figure 10. Local Level – Virtual Organism Averaged Plots 

 

 

 

Fig 10. Local level changes are averaged over 15 virtual organisms. The blocks with the highest 

correlation (top), the average correlation (middle), and the lowest correlation (bottom) are shown 

here. The acquired reinforcer proportion (dashed line) and behavior proportion (solid line) are 

shown in the figure. The y-axis shows the proportion of behavior or acquired reinforcers on 

target class 1. The proportions are calculated over twenty-trial sets. The segmented horizontal 
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line represents the scheduled reinforcement proportion. Scheduled reinforcement proportions that 

favor target class 1 are near one on the y-axis. Scheduled reinforcement proportions that favor 

target class 2 are near zero on the y-axis. The correlation for each block is calculated between the 

behavior proportion and the acquired reinforcer proportion.  
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Figure 11. Local Level – Virtual Organism and Monkey Comparison 

 

Virtual Organism 

 

Monkey 

 

Fig 11. Blocks with an average Pearson correlation for a typical virtual organism (top) and for 

the monkey (bottom) are shown here. The acquired reinforcer proportion (dashed line) and 

behavior proportion (solid line) are shown in the figure. The y-axis shows the proportion of 

behavior or acquired reinforcers on target class 1. The proportions are calculated over twenty-
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trial sets. The segmented horizontal line represents the reinforcement proportion. Reinforcement 

proportions that favor target class 1 are near one on the y-axis. Reinforcement proportions which 

favor target class 2 are near zero on the y-axis. The correlation for each block is calculated 

between the behavior proportion and the acquired reinforcer proportion.   
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Table 1: Table of schedule ratios used in the study 

1:13.333 14.666:1 

1:12.133 13.333:1 

1:12.09 12:1 

1:12 11:1 

1:11 10:1 

1:10 9:1 

1:9 8.0769:1 

1:8 8.0597:1 

1:6.02 8:1 

1:6 6:1 

1:5 5.3:1 

1:4 5:1 

1:3.0189 4:1 

1:3.0108 3:1 

1:3 2:1 

1:2.666 1:1 

1:2  

Table 1. Schedule ratios between the two target classes. 
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