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Abstract

Isogenies of Elliptic Curves and Arithmetical Structures on Graphs

By Tomer Reiter

In this thesis, we prove two results that come from studying curves. The first is

a classification result about elliptic curves. Let Q(2∞) be the compositum of all

quadratic extensions of Q. Torsion subgroups of rational elliptic curves base changed

to Q(2∞) were classified by Laska, Lorenz, and Fujita. Recently, Daniels, Lozano-

Robledo, Najman, and Sutherland classified torsion subgroups of rational elliptic

curves base changed to Q(3∞), the compositum of all cubic extensions of Q. We

classify cyclic isogenies of rational elliptic curves base changed to Q(2∞), for all but

finitely many elliptic curves over Q(2∞).

Next we turn to arithmetical structures, which Lorenzini introduced to model

degenerations of curves. Let G be a connected undirected graph on n vertices with

no loops but possibly multiedges. Given an arithmetical structure (r,d) on G, we

describe a construction which associates to it a graph G′ on n − 1 vertices and an

arithmetical structure (r′,d′) onG′. By iterating this construction, we derive an upper

bound for the number of arithmetical structures on G depending only on the number

of vertices and edges of G. In the specific case of complete graphs, possibly with

multiedges, we refine and compare our upper bounds to those arising from counting

unit fraction representations.
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Chapter 1

Introduction

1.1 Background

Arithmetic geometry began by asking the simple question “How do you find the

integer solutions to polynomial equations?” As those with experience in mathematics

will say however, simple does not mean easy. One polynomial equation that has been

studied throughout history, at least as far back as Pythagoras and the Greeks, is

a2 + b2 = c2. We often learn small integral solutions to this equation in school, such

as a = 3, b = 4, c = 5 and a = 5, b = 12, c = 13. One can even parametrize all positive

integral solutions to this equation. To generate all solutions, we pick relatively prime

n,m ≥ 1 and set

a = n2 −m2, b = 2nm, c = n2 +m2.

It is possible to arrive at this parametrization purely algebraically. We will instead

sketch a more insightful argument that generalizes to other conics.

By clearing denominators we see that integer solutions to a2 + b2 = c2 can be

thought of as rational solutions to x2 + y2 = 1. So we consider the latter equation,

which we recognize as the unit circle. We know the point P = (−1, 0) is on the curve

and will use this point to generate all other rational points on the circle. Consider a
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line through P with slope t, y = tx + t. Whenever t is a rational number, the line

will intersect the circle at a point with rational coordinates. Furthermore, the line

through P and any rational point on the circle clearly has rational slope. We can then

write every point on the circle in terms of a single rational parameter t. Rewriting

t = n/m will result in the parametrization above. This is one of the first examples

of a proof in the field of arithmetic geometry. We use the geometric properties of the

circle and projection onto the y-axis to find the arithmetic solutions to the equation.

There is much recent work and still much unknown in this field, capturing the

interest of the entire mathematical community. Fermat’s Last Theorem states that

xn + yn = zn has no non-trivial integral solutions when n > 3. Fermat stated this

around 1637, and famously claimed that he knew a proof that was too large to fit in

the margin. Hundreds of years later, Wiles published a proof of the theorem [Wil95]

using arithmetic geometry techniques and definitions that had since been developed.

Among these definitions was that of elliptic curves, which is now a central object in

arithmetic geometry. In the 1960s, Birch and Swinnerton-Dyer made a conjecture that

the algebraic and analytic rank of an elliptic curve are equal. In 2000, this became one

of the Clay Mathematics Institute’s Millennium Prize Problems and consequently one

of the most well-known open mathematical problems. While all curves are of interest

in arithmetic geometry, since they are so central, we now define elliptic curves.

Definition. Concretely, an elliptic curve over a field K with characteristic not equal

to 2 or 3 are the solutions to the equation

E : y2 = x3 + ax+ b

for some a, b ∈ K, together with a abelian group structure on the solutions. We

denote these points by E(K). To add two points P,Q ∈ E(K), take the line L from

P to Q, take the third point of intersection with E, and reflect it over the x-axis.
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Of course, to be precise we consider the projective version of E with a point at

infinity. This point at infinity is the zero element of the group of points.

To be completely precise, an elliptic curve is a smooth, projective, algebraic curve

of genus one, together with a specified base point.

In addition to having interest within the field of arithmetic geometry, elliptic

curves have found applications in other areas. The most practical of these is in

cryptography. One highly utilized form of encryption is RSA, which uses modular

arithmetic to create public and private keys. The security of RSA comes from the

fact that it is computationally hard to factor large numbers. In particular, it is easy

to generate two large prime numbers and to compute powers of numbers modulo the

product of these primes. If someone could factor this product, they could decrypt any

encoded messages. Elliptic curve cryptography is a similar scheme of encryption, but

uses elliptic curves instead. For elliptic curve cryptography, the security comes from

the fact that given points P and Q on an elliptic curve, with Q an integer multiple

of P , it is computationally challenging to determine the number n so that [n]P = Q.

1.2 Results

Our first result is a classification theorem concerning isogenies of elliptic curves. We

prove the theorem from the perspective of Galois representations of elliptic curves. In

Chapter 2, we discuss some bacgkround including the definition of isogenies and how

the perspective of Galois representations is useful in proving classification theorems

of this type. In Chapter 3, we discuss previous work related to the result and prove

the following theorem.

Theorem 3.1.1. Let E be an elliptic curve over Q without CM, and E ′ be its

base change to Q(2∞). Then for all but finitely many E ′, the set of possible degrees
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of Q(2∞)-rational cyclic isogenies of E ′ is

{n ∈ Z|1 ≤ n ≤ 18, or n = 20, 21, 24, 25, 27, 32, 36, 37}.

Next, we turn our attention to bounding the number of arithmetical structures on

graphs. In Chapter 4, we provide some brief background on graph theory. In Chapter

5, we prove the following theorem.

Theorem 5.1.1. Let G be a connected, undirected graph on n vertices, with no

loops but possible multiedges. Then the following is an upper bound for the number

of arithmetical structures on G.

#A(G) ≤ n!

2
·#E(G)2

n−2−1 ·#E(G)2
n−1· 1.538 log(2)

(n−1) log(2)+log(log(#E(G))) .
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Chapter 2

Background - Isogenies of Elliptic

Curves

In 1977, Mazur [Maz77a] proved that there are precisely 15 possible torsion subgroups

for an elliptic curve over Q. This set off a series of classification theorems for elliptic

curves. We discuss some of these generalizations to this classification in Chapter 3.

One could unify all of these problems through the lens of Galois representations. In

particular, one could ask the following question.

Question 2.0.1 (Mazur’s Program B). Given a “nice” field K/Q, and a subgroup

G ⊆ GL2(Ẑ), classify the elliptic curves E whose Galois representation ρE satisfies

im(ρE) ⊆ G.

Part of answering the question involves defining what a “nice” field is in this

context. In the next two chapters, we will make a case that the field Q(2∞), and

more generally Q(d∞) for all d, should be considered “nice” fields. In this background

chapter we recall definitions and theorems about elliptic curves, their isogenies, and

their Galois representations. We will see how an answer to Mazur’s Program B can

be translated to an answer to many other classification theorems.

Notably, much progress on Question 2.0.1 has been made recently. Specific cases of
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interest have been analyzed, for example by Bilu, Parent, and Robolledo in [BPR13].

The case of 2-adic images was completed by Rouse and Zureick-Brown [RZB15],

and the general `-adic case is in preparation by Rouse, Sutherland, and Zureick-

Brown [RSZB]. In the next chapter, we will show how a partial answer to Question

2.0.1 for K = Q is enough to give a classification result for isogenies of elliptic curves

over Q(2∞).

2.1 Elliptic Curves

In this section, we will recall some of the facts about elliptic curves most relevant

to our discussion. If the reader is comfortable with torsion subgroups, isogenies,

j-invariants, and twists, they are encouraged to proceed to the next section.

We now turn to the foundational structure theorem for elliptic curves over Q. If

this theorem is unfamiliar to the reader, we encourage them to look to [ST15] to learn

about elliptic curves.

Definition. Let K/Q be a field and E an elliptic curve over K. We define E[n] to

be the n-torsion points of E over Q, that is the points of E which have order dividing

n in the group.

Note that since the group law for elliptic curves is defined by birational polyno-

mials, E[n] is isomorphic to (Z/nZ)2.

Theorem 2.1.1 (Mordell’s Theorem). Given an elliptic curve E, the group of rational

points of E over Q is a finitely generated abelian group.

In particular, we can write E(Q) ∼= Zr ⊕ T , where r < ∞ is the rank of the

elliptic curve and T is the torsion subgroup, a finite abelian group. The cornerstone

classification result for elliptic curves concerns this torsion subgroup. We state it

here, and in the next section we will see how this can be interpreted as a consequence

of an answer to Mazur’s Program B.
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Theorem 2.1.2 (Mazur’s Theorem). Let E be an elliptic curve and T its torsion

subgroup over Q. Then T is isomorphic to one of the following groups.

• Z/nZ with 1 ≤ n ≤ 10 or n = 12.

• Z/2Z⊕ Z/2nZ with 1 ≤ n ≤ 4.

Note that so far this discussion has been for elliptic curves over Q. The Mordell-

Weil Theorem [Wei29] generalized Mordell’s Theorem [Mor22] to arbitrary number

fields. This generalization also applies to arbitrary abelian varieties, but this will

be less of a concern for our discussion. Mazur’s Theorem [Maz77a] has also been

generalized for elliptic curves over larger fields, which we will discuss further in the

next chapter. We now discuss various equivalences of elliptic curves.

Definition. Let E be an elliptic curve over Q in Weierstrass form y2 = x3 + ax+ b.

Then the j−invariant is defined by

j(E) = 1728
4a3

4a3 + 27b2
.

One can also define the j-invariants for elliptic curves not in Weierstrass form.

The j-invariant is useful in many ways, but we will primarily be using it due to the

following theorem.

Theorem 2.1.3. Given two elliptic curves defined over Q, there is an isomorphism of

varieties between them defined over Q if and only if their j-invariants are equal. [Sil09]

In light of this, we further look into isomorphic elliptic curves.

Definition. Given elliptic curves E and E ′ over Q, we say E ′ is a twist of E if they

are isomorphic over Q. Let E be in Weierstrass form with equation y2 = x3 + ax+ b.

Then the quadratic twist of E by d is dy2 = x3 + ax + b. We will denote this by

Ed.
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In fact, every twist of an elliptic curve whose j-invariant is not equal to 0 or

1728 is a quadratic twist [Sil09]. The j-invariants corresponding to elliptic curves

with complex multiplication are 0 and 1728, which will not be our primary interest.

Note that over Q(
√
d), there is an isomorphism between E and Ed taking (x, y) to

(x, y/
√
d). Thus, in particular, any isomorphism of non-CM elliptic curves is defined

over the compositum of all of the quadratic extensions of Q. This field is precisely

Q(2∞), and we will return to this fact in the next chapter.

We next turn our attention to isogenies.

Definition. Let E1 and E2 be elliptic curves. An isogeny is a morphism of curves

φ : E1 → E2 which satisfies φ(O) = O, where O is the identity element of the group of

points on the corresponding elliptic curve. The degree of φ is its degree as a morphism

of curves.

Remark. Note that isogenies are also group homomorphisms. This is proved directly

in [Sil09]. Furthermore, every morphism of curves is either constant or surjective.

We will only be interested in non-constant isogenies, so all of our isogenies will be

surjective.

2.2 Galois Representations of Elliptic Curves

In this section, we will define a very useful tool for answering the classification ques-

tions discussed to this point, which is Galois representations. We will then shift our

point of view by using these Galois representations and see why an answer to Question

2.0.1 would for example give us a proof of Mazur’s Theorem 2.1.2.

Let K/Q be a field and E an elliptic curve. As mentioned in Section 2.1, E[n] ∼=

(Z/nZ)2 and in particular the n-torsion points are defined by some polynomial equa-

tion. Hence, we get an action of Gal(Q/K) = GK on (Z/nZ)2. Here we can write



9

this as a representation

ρE,n : GK → GL2(Z/nZ).

Definition. The mod n Galois representation associated with E is ρE,n as defined

above. The `-adic Galois representation

ρE,`∞ : GK → GL2(Z`)

is defined by taking the inverse limit of ρE,n with n ranging over powers of `. By

taking the inverse limit instead over all n, we get the Galois representation

ρE : GQ → GL2(Ẑ).

Next, we define some distinguished possibilities for the images of these Galois

representations.

Definition. We define each of the following up to conjugacy. The Borel mod n,

B(n) ⊆ GL2(Z/nZ) is the group of upper triangular matrices. We also define

B1(n) =


1 ∗

0 ∗


 ⊆ GL2(Z/nZ).

We will repeatedly use the fact that an elliptic curve over K has a K-rational

cyclic isogeny of degree n if and only if the image of its Galois representation is

contained in B(n). It is also true that an elliptic curve has a K-rational n-torsion

point if and only if the image of its Galois representation is contained in B1(n). We

will give brief explanations for one direction of these implications. We fix two points
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P and Q which generate E[n] such that given σ ∈ GK and

ρE,n(σ) =

a b

c d

 ,

we have σ(P ) = aP + cQ and σ(P ) = bP + dQ.

Let E be an elliptic curve a K-rational n-torsion point. Then for all σ ∈ GK ,

we have σ(P ) = P , since P ∈ E(K) and in particular GK fixes P. Thus, im(ρE,n) ⊆

B1(n).

Now let E be an elliptic curve with a K-rational cyclic isogeny, that is an isogeny

φ : E → E ′ with kerφ being a cyclic subgroup of E generated by P over Q. Then

σ(P ) ∈ ker(φ) and so is a multiple of P . Hence, im(ρE,n) ⊆ B(n).

These generate some strong reasons why an answer to Question 2.0.1 would be

so significant. A complete answer would also give a full classification of orders of

torsion points of elliptic curves over any fixed field K/Q. In particular, given a field

K, there is an elliptic curve E with a torsion point of order n if and only if there

is an elliptic curve with a Galois representation whose image is contained in B(n)

after reducing modulo n. One can further refine the subgroup B(n) to identify which

torsion subgroups arise. Similarly, a solution to Mazur’s Program B 2.0.1 would

classify the possible degrees of K-rational cyclic isogenies for a fixed K. As we will

see in the next chapter, much progress has been made on Question 2.0.1 over Q. We

will see how even this answer is enough to classify isogenies of elliptic curves over

Q(2∞).

Here we provide some intuition as to why considering classification problems

through the lens of Galois representations is also tractable.

Theorem 2.2.1 (Serre, [Ser72]). Let E be an elliptic curve over a number field K

without complex multiplication.Then the image of its Galois representation in GL2(Ẑ)

is open.
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Note that with the topology of Ẑ, this in particular means that the index of

ρE(GK) in GL2(Ẑ) is finite. Hence, for large primes `, ρE,` is surjective. Now assume

that there was a fixed, relatively small, bound B such that for all ` > B, all elliptic

curves have surjective mod ` Galois representations. Then we could give an answer

to Question 2.0.1 by computing the answer explicitly for possible images mod small

primes and in some cases their powers. This in itself is a challenging problem, and

we will discuss some of the progress on this problem in the next chapter.

In fact, we have the following conjectures.

Conjecture. Let E be an elliptic curve over Q without complex multiplication. Then

for all primes ` > 37, ρE,` is surjective.

In practice, it is enough to consider the primes up to 13, and note some exceptional

cases at ` = 17 and ` = 37. We will see this come up in the next chapter.

This leaves us with the problem of classifying elliptic curves with prescribed mod

` image of Galois. To tackle this problem, we turn to modular curves. We recall the

classical modular curves.

Definition. Let N ≥ 1. Then we define the following congruence subgroups.

Γ0(N) =

γ ∈ SL2(Z) : γ ≡

a b

0 d

 (mod N)



Γ1(N) =

γ ∈ SL2(Z) : γ ≡

1 b

0 1

 (mod N)


Γ(N) =

γ ∈ SL2(Z) : γ ≡

1 0

0 1

 (mod N)


Recall that congruence subgroups have an action on the upper half plane H by lin-

ear fractional transformations. Let Γ be one of the congruence subgroups above. Then
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taking the quotient of this action, H/Γ, forms a modular curve after compactifying.

Taking Γ = Γ0(N),Γ1(N),Γ(N) produces the modular curves X(N), X0(N), X1(N)

respectively. The points of X1(N) are roughly in correspondence with elliptic curves

together with a specified torsion point of order N . The points of X0(N) are roughly

in correspondence with elliptic curves together with a cyclic isogeny corresponding

to a cyclic subgroup of order N . Finally, X(N) classifies elliptic curves together two

torsion points which generate E[N ]. Viewing modular curves in this way, one can

define modular curves algebraically, see for example [DI95].
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Chapter 3

Isogenies of Elliptic Curves over

Q(2∞)

3.1 Introduction

The structure of elliptic curves is one of the most studied aspects of arithmetic geom-

etry. This area of research began with Mordell’s Theorem [Mor22], which states that

the group of rational points on an elliptic curve is a finitely-generated abelian group.

The Mordell-Weil theorem [Wei29] generalizes this to arbitrary abelian varities over

number fields, and in particular to elliptic curves over number fields. One goal that

came about from these results is classifying the possibilities for the torsion structure

of elliptic curves. Over Q, Mazur [Maz77a] proved such a classification over Q, giving

a list of 15 abelian groups which can appear as the torsion group of a rational elliptic

curve.

There has also been progress on these questions over other number fields. Kenku

and Momose [KM88] began classifying torsion structures of elliptic curves over arbi-

trary quadratic number fields, and Kamienny [Kam86] completed the classification.

In fact, there are only a finite number of possibilities of torsion structures over ar-
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bitrary quadratic number fields. There are also results of this type for cubic fields,

see for example Jeon, Kim and Schweizer [JKS04] and Jeon, Kim and Lee [JKL11].

The classification has since been completed by Derickx, Etropolski, Morrow, and

Zureick-Brown [DEMZB20]. Furthermore, one can refine all of these results by in-

stead considering elliptic curves over Q base changed to these number fields, see for

example Chou [Cho19], Lozano-Robledo [LR13] [LR18] and Najman [Naj16].

There has also been progress recently in studying torsion structures of rational

elliptic curves base changed to specific infinite extensions of Q. Namely to the fields

Q(d∞) which are defined as the compositum of all number fields of degree d. The

possible torsion subgroups for rational elliptic curves base changed to Q(2∞) were

classified by Laska and Lorenz [LL85], and Fujita [Fuj04], [Fuj05], of which it turns out

there are only finitely many possibilities. Furthermore a similar classification has been

done for Q(3∞) by Daniels, Lozano-Robledo, Najman and Sutherland [DLRNS18].

The question of classifying isogenies of elliptic curves has also been considered.

Many have contributed to this problem, and Kenku [Ken82] completed the classifi-

cation. We can unify all of these questions about torsion and isogenies through the

lens of Galois representations. For each elliptic curve E, we have an associated Ga-

lois representation ρE : Gal(Q/Q) → GL2(Ẑ). Mazur’s Program B [Maz77b] is an

ongoing attempt to classify elliptic curves over a fixed number field with prescribed

image of its Galois representation. This generalizes classifying torsion structures, as

having an n-torsion point is equivalent to having mod n image of Galois contained in

a certain subgroup of GL2(Z/nZ). From this perspective, a natural next classifica-

tion question is to classify cyclic isogenies of elliptic curves over larger fields, as this

is equivalent to having an image of Galois contained in the Borel modulo the degree

of the isogeny. Over Q there has already been much progress on Mazur’s Program

B, by for example Rouse and Zureick-Brown [RZB15] and Rouse, Sutherland, and

Zureick-Brown [RSZB].
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In this chapter, we use the ideas from Mazur’s Program B to classify cyclic isoge-

nies of rational elliptic curves base changed to Q(2∞). Note that for the fields Q(d∞)

with d > 1, quadratic twists of elliptic curves become isomorphic. In particular, over

these fields any pair of elliptic curves with the same j-invariant with j 6= 0, 1728 are

isomorphic. With this in mind, we can state the following.

Theorem 3.1.1. Let E be an elliptic curve over Q without CM, and E ′ be its base

change to Q(2∞). Then for all but finitely many E ′, the set of possible degrees of

Q(2∞)-rational cyclic isogenies of E ′ is

{n ∈ Z|1 ≤ n ≤ 18, or n = 20, 21, 24, 25, 28, 32, 36, 37}.

Remark. The degrees above which do not already appear as the degree of a cyclic

isogeny of an elliptic curve over Q are 20, 24, 28, 32, 36. [Ken82] For each of the degrees

20, 24, 32, 36, there are infinitely many elliptic curves which have this degree of an

isogeny over Q(2∞). There are only finitely many elliptic curves over Q(2∞) with a

28-isogeny.

In Section 3.2, we discuss the effect on the image of Galois of base changing to

Q(2∞). In Section 3.3, we prove that there cannot be isogenies with degrees equal

to powers of large primes. In Sections 3.4 and 3.5, we examine what happens at

smaller primes. Finally, we consider the remaining degrees in Section 3.6 to conclude

Theorem 3.1.1.

3.2 The Image of Galois After Base Change

We recall the setup for Galois representations of elliptic curves. For E an elliptic

curve, over Q or Q(2∞), as usual we define E[n] = E(Q)[n] ∼= (Z/nZ)2. Then we
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have a Galois representation mod n for E, denoted

ρE,n : Gal(Q/Q)→ Aut(E[n]) ∼= GL2(Z/nZ).

For each prime ` there is a corresponding `-adic Galois representation whose codomain

is GL2(Z`), obtained by taking an inverse limit.

As usual, for any of the above, we define the Borel subgroup to be any subgroup of

GL2(Z/nZ) conjugate to the group of upper triangular matrices, and the split Cartan

to be any subgroup conjugate to the group of diagonal matrices. We will denote the

Borel subgroup by B(n). When n = ` is prime, we also define, up to conjugacy, the

non-split Cartan to be a subgroup of matrices isomorphic to F×`2 , which we denote

Nns(`). We recall the fact that the mod n image of Galois for an elliptic curve E is

contained in B(n) if and only if E has an isogeny of degree n. Here and throughout

this article, by isogeny we mean K-rational cyclic isogeny for the appropriate field K.

This allows us to shift perspectives; instead of classifying elliptic curves with

prescribed isogenies we will classify elliptic curves with prescribed images of Galois.

Since we are considering rational elliptic curves, it suffices to classify the elliptic curves

whose images of Galois corresponding to the curves having an isogeny over Q(2∞).

Then the problem is reduced to finding all points on the corresponding modular curves

XH . Following [RZB15], we define Y (n), X(n) to be the moduli space parametrizing

elliptic curves and its smooth compactification, respectively and we define XH to

be the quotient of X(n) by H. By Lemma 2.1 in [RZB15], an elliptic curve E has

image of Galois contained in a subgroup conjugate to H if and only if there is an ι

such that (E, ι) ∈ XH(Q). In this paper, Rouse and Zureick-Brown give a complete

classification of the possible 2-adic images of Galois over Q, and classify the rational

points on the corresponding curve. Much work has been done to this effect by Bilu,

Parent, Robolledo [BPR13] and Rouse, Sutherland, Zureick-Brown [RSZB] and others
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for all primes up to 13. We will leverage these classifications to study isogenies of

elliptic curves over Q(2∞).

So, we first examine in general how the image of Galois of an elliptic curve E/Q

changes when we base change E to Q(2∞).

Lemma 3.2.1. Let E be an elliptic curve, E ′ its base change to Q(2∞) and let n > 1.

Denote by G the image of ρE,n, and H the image of ρE′,n. Then H is normal in G

and G/H ∼= (Z/2Z)m, where m is maximal among quotients of G of this form.

Proof. First we prove the quotient is of this form. As noted above, we have the dia-

gram:

Q(2∞)(E[n])

Q(2∞) Q(E[n])

Q

(Z/2Z)∞H

(Z/2Z)∞ G

First note that it is clear that H is a normal subgroup of G, this follows from general

Galois theory. Now let L = Q(E[n]) ∩Q(2∞). Then we claim we have the following

diagram:

L(E[n])

L Q(E[n])

Q

H

G

that is, that Gal(L(E[n])/L) ∼= H. In fact, it suffices to show this claim as then we

can use finite Galois theory.
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So, it suffices to show that the Galois group in the bottom right of the diagram:

Q(2∞)(E[n])

Q(2∞) L(E[n])

L

(Z/2Z)∞H

(Z/2Z)∞

is isomorphic toH. Note that Q(2∞)∩L(E[n]) = Q(2∞)∩Q(E[n])∩Q(2∞)(E[n]) = L.

So take σ ∈ Gal(L(E[n])/L). This extends to an element of Gal(Q(2∞)(E[n])/Q(2∞))

as for each α ∈ Q(2∞)(E[n]), we can extend σ to Gal(L(E[n], α)/L(α)) again by using

finite Galois theory.

Now we show that G/H is Z/2Z to the maximal power among quotients of G of

this form. By the above it suffices to consider the following diagram.

L(E[n])

L Q(E[n])

Q

trivialH

G(Z/2Z)m

Assume for sake of contradiction m is not maximal among quotients of G of this

form. Then there is a subgroup H ′ ⊆ H of index 2, with H ′ normal in G and

G/H ′ ∼= (Z/2Z)m+1. So by the fundamental theorem of Galois theory there is an

L′ with L ⊆ L′ ⊆ Q(2∞) such that [L′ : L] = 2. Then Gal(L′/Q) = (Z/2Z)m+1, so

L′ ⊆ Q(2∞), but it this is a contradiction since L = Q(2∞) ∩Q(E[n]).

We will use this lemma to first prove that for all primes ` ≥ 17, there are no degree

` isogenies in our setting, except for four exceptional j-invariants corresponding to

` = 17, 37 for which the corresponding elliptic curves already had degree ` isogenies
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over Q. For primes ` ≤ 13, for each possible image of Galois mod ` or a power of

` over Q, we compute the new image of Galois over Q(2∞). In particular we are

interested in the case where the image of Galois over Q was not contained in a Borel

but over Q(2∞) it is. We make the following definition.

Definition 3.2.2. Let E be an elliptic curve without CM over Q, n a positive integer,

G = ρE,n(GQ). Also let E ′ be the base change of E to Q(2∞), and H = ρE′,n(GQ(2∞)).

If G * B(n) and H ⊆ B(n) then we say that E is superficial and G is peripheral.

So to rephrase the above, we will prove for all ` > 17 there are no peripheral

subgroups of GL2(F`). For primes ` ≤ 13 and all such powers, we classify the pe-

ripheral groups whose corresponding modular curves have a non-CM point, in other

words all groups corresponding to some rational elliptic curve without CM. For a full

classification of isogenies, we would then need to begin by computing all products

of two groups corresponding to powers of distinct primes less than or equal to 13,

where one subgroup is peripheral and the other is either peripheral or contained in a

Borel. We compute the genus of the modular curves corresponding to these curves to

conclude Theorem 3.1.1.

In the remaining sections we will classify the possible prime power degrees of

isogenies for this set of all but finitely many elliptic curves.

3.3 Large Primes

Throughout, let E be an elliptic curve without complex multiplication. For primes

` ≥ 17, except for the four exceptional j-invariants, the `-adic image of Galois of an

elliptic curve is either surjective or contained in the normalizer of a non-split Cartan,

see for example Proposition 1.13 in [Zyw15]. In the latter case, the index of the image

in the normalizer of the non-split Cartan is at most 3. So, it suffices to prove that the

maximal quotient, isomorphic to a power of Z/2, of any such subgroup of GL2(F`) is
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not contained in B(`).

Lemma 3.3.1. Let ` ≥ 17 and assume ρE,`(GQ) = GL2(F`). Let E ′ denote the base

change of E to Q(2∞). Then ρE′,`(GQ(2∞)) * B(`).

Proof. Denote G = ρE,`(GQ) and H = ρE′,`(GQ(2∞)). Then by Lemma 3.2.1 we have

G/H ∼= (Z/2Z)m for some m. We claim that m = 1. The map GL2(F`) � (Z/2Z)m

given by reduction modulo H is a surjection. Since the image is abelian, this map

factors through the abelianization of GL2(F`), which we denote by A. We claim A ∼=

F×` . By Theorem 8.3 in [Lan02], we have that the commutator [SL2(F`), SL2(F`)] =

SL2(F`). Thus, [GL2(F`),GL2(F`)] = SL2(F`) and so A ∼= F×` . So in particular there

is a surjective map F×` � (Z/2Z)m, so m ≤ 1 since F×` is cyclic. Note that we have

the surjections corresponding to the determinant map and the Legendre symbol

GL2(F`) −→ F×` −→ Z/2Z.

By Lemma 3.2.1, m is maximal among quotients of this form, which implies m = 1.

So we have that [GL2(F`) : H] = 2, but

[GL2(F`) : B(`)] =
(`2 − `)(`2 − 1)

`(`− 1)2
= `+ 1 > 2.

Before proving the normalizer of a non-split Cartan case, we first note the structure

of its subgroups.

Lemma 3.3.2. Let ` ≥ 3 be a prime and let H be a subgroup of the normalizer of a

non-split Cartan of GL2(F`). Then H is generated by two elements.

Proof. Let σ, α generate the normalizer of the non-split Cartan that H is contained

in, where the subgroup generated by α is isomorphic to F×`2 . Denote S = H ∩ (σ〈α〉)

and A = H ∩ (〈α〉). Then either |S| = |A| or |S| = 0.
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To see this, let A = {a1, . . . , aj} and S = {s1, . . . , sk}. Then the elements σ−11 σi ∈

A are distinct, so |S| ≤ |A|. If |S| 6= 0, then the elements σ1ai ∈ S are distinct, so

|S| = |A|.

Since A is a subgroup of a cyclic group, it is also cyclic. If |S| = 0, then H

is generated by a generator of A. Otherwise [H : A] = 2, so H is generated by a

generator of A and any element of S.

Lemma 3.3.3. Let ` ≥ 17 and assume ρE,`(GQ) ⊆ Nns(`), where Nns(`) is the

normalizer of a non-split Cartan. Let E ′ denote the base change of E to Q(2∞). Then

ρE′,`(GQ(2∞)) * B(`). In particular, together with Lemma 3.3.1, this implies that any

elliptic curve without complex multiplication over Q, after base change to Q(2∞),

does not have an `-power degree isogeny, except for those with the four exceptional

j-invariants.

Proof. Denote G = ρE,`(GQ) and H = ρE′,`(GQ(2∞)). Then by Lemma 3.2.1 we have

G/H ∼= (Z/2Z)m for some m. We claim that m ≤ 2. Again, reduction modulo H

gives us the surjection G � (Z/2Z)m. Since the image is abelian, this map factors

through the abelianization of G, which we denote by A ∼= G/[G,G]. By Lemma 3.3.2,

G is generated by two elements. Since A is a quotient of G, it is generated by the

image of these elements via the reduction map. Since A � (Z/2Z)m, we have that

m ≤ 2.

Now we consider the orders of the groups involved. We have #B(`) = `(` − 1)2

and #Nns(`) = 2(`−1)(`+1). Since ` > 2, we have that `−1 and `+1 are relatively

prime, and so a necessary condition for H being contained in B(`) is (`+ 1)|[Nns, H].

This is not possible since [Nns : G] ≤ 3 and [G : H] = 1, 2, or 4.

Remark. For CM elliptic curves, this behavior is quite different. For example, note

that the elliptic curve

E : y2 + y = x3 − 57772164980x− 5344733777551611
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which has CM by Q(
√
−163) has mod ` image of Galois over Q equal to the normalizer

of a split Cartan whenever
(−163

`

)
= 1 and equal to the normalizer of the non-split

Cartan otherwise, except at ` = 163. For the former infinite class of primes, the split

Cartan is an index 2 and therefore normal subgroup of the image of Galois. Hence,

over Q(2∞), the image of Galois is a subgroup of the split Cartan which is a subgroup

of the Borel. So CM elliptic curves have isogenies over Q(2∞) of prime degree for

infinitely many primes.

3.4 `-adic Images for ` = 3, 5, 7, 11, 13

For small odd primes, Lemma 3.2.1 will suffice to compute the `-adic images over

Q(2∞). To see this, we recall the definition of the level of an image of Galois.

Definition. Given a subgroup G of GL2(Z`), usually an image of Galois, we define

the level of G to be the smallest integer `k such that

{
M ∈ GL2(Z`k) : M ≡ I (mod `k)

}
⊆ G.

Note that by Serre’s open image theorem [Ser72], if G is an `-adic image of Galois

then G has finite level.

We have that for an elliptic curve E over Q, if H is the `-adic image of Galois

over Q with level `k, the image over Q(2∞) is also of level `k. In particular, we have

the following.

Lemma 3.4.1. Let ` be an odd prime. For an elliptic curve E over Q, if the `-adic

image of Galois over Q has level `k then the `-adic image over Q(2∞) also has level

`k.

Proof. As usual, let G be the `-adic image of Galois over Q and H the image over

Q(2∞). Let k′ ≥ k. By 3.2.1, we have that G(`k
′
)/H(`k

′
) ∼= (Z/2Z)m for some m.
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Now define

N : = {M ∈ GL2(Z/`k
′Z)|M ≡ I (mod `k)}.

By the definition of level, N ⊆ G(`k
′
). Furthermore, N is a normal subgroup of G(`k

′
)

which can be checked using the definition of N . So NH(`k
′
) is a subgroup of G(`k

′
),

and so we have NH(`k
′
)/H(`k

′
) ∼= (Z/2Z)m

′
, for some m′ ≤ m. Now by the second

isomorphism theorem, we have

N

N ∩H(`k′)
∼= (Z/2Z)m

′

Since #N = `4(k
′−k), this implies m′ = 0, so N ∩H(`k

′
) = N , so N ⊆ H(`k

′
). Hence,

H has level `k.

Remark. For the four exceptional j-invariants in [Zyw15], these elliptic curves all

have `-adic image of Galois with level equal to 17 or 37, so by 3.4.1 the level over

Q(2∞) is also 17 or 37 respectively. Over Q these elliptic curves are already contained

in the Borel, so these cannot be peripheral groups.

With this in mind we classify elliptic curves with `-power isogenies. To do so,

we consider each possible image of Galois whose corresponding modular curve has a

rational non-cuspidal non-CM point, compute the image of Galois over Q(2∞) and

record whether it is peripheral. Then for each of these subgroups (the images over Q),

we need to compute all of the rational points on the corresponding modular curve.

This work has a long history, and recently Rouse, Sutherland, and Zureick-Brown

completed it [RSZB].

For the first part, we enumerate all such images of Galois whose modular curves

have a non-cuspidal, non-CM point as in [RZB15]. Then, for each such image G we

execute the following procedure in Magma.

1. Let `k be the level of G. Enumerate all normal subgroups of G(`k). Magma is
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efficient at generating these.

2. For each normal subgroup N of G(`k), test whether G(`k)/N is congruent to a

power of Z/2Z. This is computationally quite slow, and having Magma check

this directly was not producing results quickly enough. Instead this can be

checked by taking every generator of G, checking if it squares to an element

of H, and then checking if commutators of pairs of generators of G(`k) are

elements of H.

3. For each such normal subgroup N , check whether it is contained in B(`k). To

do this, it suffices to check whether there is a point in P1
Z/`kZ fixed by N . For a

discussion of this, see [Etr15]. Here we are interpreting P1
Z/`kZ as lines through

the origin in A2
Z/`kZ, on which N naturally acts. We check instead whether there

is a line fixed by each element in a generating set for N .

4. If at least one such normal subgroup ofG(`k) has been found, record the minimal

subgroup among the list of all of them and the current value of k. If not, reduce

modulo `k−1.

5. Replace k with k − 1. Repeat steps (1) − (5) until either an isogeny has been

found or k = 1 has been checked, in which case record that there is no isogeny.

6. Compare the highest degree of an `-power isogeny of G with the highest degree

isogeny obtained from steps (1)− (6).

Following this procedure, we find a total of 11 possible images of Galois which are

peripheral. We summarize the data below.
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Level of G Iso. deg. / Q Iso. deg. / Q(2∞) Genus Description
3 1 3 0 XG

∼= P1

9 1 9 1 Elliptic curve of rank 0
5 1 5 0 XG

∼= P1

5 1 5 0 XG
∼= P1

25 1 25 22 Genus 22 curve
7 1 7 0 XG

∼= P1

7 1 7 1 Elliptic curve of rank 0
7 1 7 1 Elliptic curve of rank 0
49 1 49 94 Genus 94 curve
11 1 11 2 Genus 2 curve
13 1 13 3 Genus 3 curve

Table 3.4.1: Peripheral mod `-power subgroups for 3 ≤ ` ≤ 13

There are two entries in this table of particular interest. The first is that with level

49 and isogeny degree over Q(2∞) equal to 49. If there were non-CM non-cuspidal

points on this curve this would correspond to a degree of an isogeny that does not

appear over Q. This turns out not to be the case. The curve XG is isomorphic to

X+
0 (74), which has no points as proved by Bilu, Parent, and Robolledo [BPR13]. On

the other hand, over Y0(25)(Q) has genus 0 [Ken82], so the corresponding entry does

not indicate a new possibility for an isogeny degree over Q(2∞). However, this entry

corresponds to a modular curve isomorphic to X+
0 (54), which also has no points and

is also covered in [BPR13].

3.5 2-adic Images

For ` = 2 and 2 power isogenies, more computation needs to be done. Lemma 3.4.1

is not in true general. In fact, we have the following.

Example 3.5.1. Let E be an elliptic curve over Q whose 2-adic image of Galois has

level 2, and mod 2 image equal to B(2). Then after base change to Q(2∞), using
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Lemma 3.2.1, the image of Galois modulo 4 is generated by:

1 2

0 1

 ,

3 2

0 3

 .

In particular, this new image is contained in B(4). So E ′, the base change of E to

Q(2∞) has a degree 4 isogeny, while E does not.

On the other hand, this is the worst that can happen.

Lemma 3.5.2. For an elliptic curve E over Q, if the 2-adic image of Galois over

Q has level 2k, then E ′, the base change to Q(2∞), does not have any 2-power degree

isogenies of degree 2k+2 or greater.

Proof. As usual, let G be the `-adic image of Galois over Q and H the image over

Q(2∞). Let Nk : = {M ∈ GL(Z/2Z)k+2|M ≡ I (mod 2k)}. Then by the second

isomorphism theorem, we have H(2k+2)∩N is a normal subgroup of N . Furthermore,

Nk

H(2k+2) ∩Nk

∼=
NkH(2k+2)

H(2k+2)

The right hand side is naturally a subset of G(2k+2)/H(2k+2) which is congruent to a

power of Z/2Z. So, it suffices to show that the minimal normal subgroup of Nk with

quotient a power of Z/2Z is not contained in the Borel. To see this, we first note that

all of the Nk are isomorphic via

1 + a2k b2k

c2k 1 + d2k

 7→
1 + a2k

′
b2k

′

c2k
′

1 + d2k
′


so it suffices to compute the specific case k = 1. We get that the minimal such

subgroup of Nk is

N ′k : = {M ∈ GL(Z/2Z)k+2|M ≡ I (mod 2k+1)}.
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Note that N ′k is invariant under conjugation, so it suffices to check whether it is

contained in any Borel, and it is clearly not contained in the subgroup of upper

triangular matrices.

Example 3.5.3. To extend on Example 3.5.1, let E be an elliptic curve with 2-adic

image of Galois of level 2k and image equal to B(2k), with k ≥ 1. Then E ′, the

base change to Q(2∞), has image of Galois contained in B(2k+1). In particular, this

implies that if there is an elliptic curve over Q with an isogeny of degree 2d for some

d, then over Q(2∞) this elliptic curve has an isogeny of degree 4d. This accounts for

every new entry in the list in Theorem 3.1.1, although it does not account for all the

elliptic curves with the corresponding degrees of isogenies.

Now to compute all 2-power isogenies, we can simply follow the algorithm de-

scribed in Section 3.4, with one step added beforehand. Let G be a potential 2-adic

image of Galois over Q, with level 2k. Then first we compute G(2k+1) which is the

inverse image of G(2k) by the reduction modulo 2k map. We compute H(2k+1) as

described in Section 3.4, and if this is contained in B(2k+1) then G is peripheral. Oth-

erwise, we follow the algorithm as usual. Magma code implementing these algorithms

can be found at this webpage.

Of the 202 images of Galois with level a power of 2 which have a rational non-

cuspidal, non-CM point, 119 of these are peripheral. The following table summarizes

the findings.

https://www.dropbox.com/s/keqmt0rvqx2olpt/isogenies.m?dl=0
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Level of G Iso. degree / Q Iso. degree / Q(2∞) Number of images
2 2 4 2
4 2 4 3
4 2 8 4
4 4 8 5
8 2 8 31
8 2 16 2
8 4 8 23
8 8 16 18
16 2 16 5
16 8 16 17
16 8 32 2
16 16 32 5
32 16 32 2

Table 3.5.1: Peripheral mod 2k subgroups

There are several peripheral subgroups whose modular curves are isomorphic to

P1, hence there are infinitely many elliptic curves over Q(2∞) with a degree 32 isogeny.

3.6 Isogenies of Composite Degrees

In practice, when considering the `-adic images of Galois representations, we record

for each possible image over Q the maximal degree of an isogeny with degree a power

of `. With this in mind, we turn to our goal of detecting whether there are isogenies of

degree `k11 `
k2
2 for `1 6= `2 with `1, `2 ≤ 13 over Q(2∞). To do this, we consider groups

G which are formed by taking products of groups G1, G2 where the elliptic curves

parameterized by XGi
has an isogeny of degree `kii over Q(2∞). This is sufficient since

G ⊆ B(`k11 `
k2
2 ) if and only if G1 ⊆ B(`k11 ) and G2 ⊆ B(`k22 ).

To conclude Theorem 3.1.1, it suffices then to compute the genera of modular

curves XG for groups G as above with `k11 `
k2
2 corresponding to an isogeny of degree

that does not already appear for elliptic curves over Q. If the genus of such an XG
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is greater than 1, then by Falting’s theorem there are only finitely many rational

points on XG. This implies that there are only finitely many C-isomorphism classes

of elliptic curves on XG, but as discussed earlier for j 6= 0, 1728, this is the same

as Q(2∞)-isomorphism classes. We will also need to consider the case of composite

numbers with 3 or more distinct small prime factors, but first we describe the results

of the computation for 2 distinct prime factors.

Magma has the built in capability to form product groups, and to compute the

genera of the corresponding modular curves, we use the function written by Suther-

land and Zywina [SZ17]. We can also begin by filtering on pairs of subgroups G1, G2

where both XG1 , XG2 have infinitely many points, as otherwise XG only has finitely

many points. This leaves a relatively short list of product groups with corresponding

modular curve having genus 0 or 1. Among this list, the associated degrees of Q(2∞)

isogenies are 20, 24, 36 with modular curves of genus 0, and 28, 40, 48, 72 with modular

curves of genus 1.

Next, we create models for these corresponding product groups. Let G = G1×G2

be a subgroup of interest. Sutherland and Zywina [SZ17] have computed explicit

formulas computed for the maps from XGi
to the j-line, we denote these by f1, f2.

We warn the reader that in this chapter, Galois representations mod n act on a basis

for E[n] via left actions, whereas those in [RZB15] act on the right, so to compare

groups one must first take transpositions. Since G = G1 × G2, we have that XG is

the fiber product of XG1 and XG2 over X(0).

In all cases we consider, the genus of XGi
= 0, so a model for the affine part of XG

is f(x) = g(y). This model will most likely be highly singular, so more work needs

to be done to get a simplified model. In the case of the genus 0 curves for isogeny

degrees 20, 24, 36, the models have small enough degree, that the built in magma

function Conic is able to desingularize the model. Magma can then check explicitly

that there is a point on these genus 0 curves, and hence these modular curves XG are
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isomorphic to P1. In particular, there are infinitely many elliptic curves with each of

these degrees of isogenies after base changing to Q(2∞). Below are the generators of

groups G = G1 × G2 witnessing the corresponding isogeny degree for each of these

cases.

Degree Level of G Generators of G

20 10

(
1 5
0 1

)
,

(
9 6
4 9

)
,

(
5 6
4 5

)
,

(
5 4
4 9

)
,

(
3 0
0 3

)
24 12

(
7 0
0 1

)
,

(
5 0
0 1

)
,

(
5 0
0 5

)
,

(
11 0
0 11

)
,

(
1 1
0 1

)
,

(
7 6
0 7

)
36 18

(
1 1
0 1

)
,

(
11 0
0 1

)
,

(
13 12
0 7

)
,

(
17 0
0 17

)
,

(
13 6
0 1

)
Table 3.6.1: Generators of groups G with XG

∼= P1

Note that the entries for degree 24 and 36 here are precisely the Borel groups

modulo 12 and 18 respectively.

The genus 1 modular curves with isogeny degrees 28, 40, 48 and 72 also have models

with degrees low enough that the built in magma function EllipticCurve can find a

model for the elliptic curve. To do so, we must supply the function with a point on the

curve. Doing a brute force search for coordinates with numerators and denominators

less than or equal to 10 suffices here. In all cases, the rank of the corresponding

elliptic curve is 0, so there are at most finitely many examples of elliptic curves with

image of Galois equal to the group G. Since there were already degree 14 isogenies

over Q, Example 3.5.3 implies 28-isogenies do arise in the Q(2∞) setting. For each of

the remaining degrees 40, 48 and 72, we can use magma to compute the number of

points on the desingularized model we obtain for XG. Since we start with a singular

model, it is possible there are fewer non-singular points on XG than on this elliptic

curve. At the same time, we can compute the number of rational cusps on each of

the curves XG using Sutherland and Zywina’s code [SZ17], this is done using group
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theory. On all of these curves, the number of rational cusps is equal to the number of

points on the elliptic curve obtained from the model for XG, hence there are no non-

cuspidal points on XG. In particular, there are no elliptic curves with these specific

images of Galois G. This does not entirely eliminate the possibility of these degrees

of isogenies appearing for elliptic curves base changed to Q(2∞).

To conclude Theorem 3.1.1, we need to consider isogeny degrees with 3 or more

distinct prime factors. We can check using the same computational strategy that

there are no images of Galois corresponding to these degrees that have genus 0 or 1,

and this is sufficient to complete the proof.

This analysis leaves a finite number of elliptic curves left that have the potential

of having a degree of an isogeny over Q(2∞) equal to an integer not appearing in the

set in Theorem 3.1.1. Furthermore, we have an enumerable list of images of Galois

that we can try to analyze. If we could find all points on all of their modular curves,

this would produce a complete classification of Q(2∞)-isogenies. Considering all of

these images of Galois individually would be a monumental task, as there are many

of them and the genus of the modular curve can be quite high, even exceeding 1000.

Instead, we outline an approach that is more tenable.

• First, consider images of Galois at composite levels corresponding to the product

of two `-adic images of Galois. Say the factor groups are G1, G2 and the isogeny

degrees are `k11 , `
k2
2 .

• If `k11 `
k2
2 is on the list in Theorem 3.1.1, then we can ignore this product entirely.

Even if it is not on the list, at least one of the two factor groups must be

peripheral otherwise this would have already been the degree of an isogeny over

Q. This can be done as a first step computationally.

• If XG1 or XG2 has only finitely many points, say XG1 does, we can enumerate

elliptic curves corresponding to those points and then compute the image of
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Galois for this curves mod `k22 . Often k2 will be 1, and we can employ the

method used by Sutherland [Sut16].

• Among the remaining groups G, sort these by the isogeny degree and begin

working through in ascending order of this degree.

• Within a specific isogeny degree, we can focus in even further. In particular, if

we have two pairs G = G1 ×G2 and G′ = G′1 ×G′2 with G′i ⊆ Gi, then we first

examine XG. If there are no non-cuspidal non-CM points on XG, then there

are also none on X ′G.

• If there are no isogenies of degree `k11 `
k2
2 , we do not need to check isogenies of

degree `
k′1
1 `

k′2
2 for pairs k′i ≥ ki.

• Finally, a similar strategy can be followed for isogenies with degree having 3 or

more distinct prime factors.

Even following this approach, the models of curves XG can have very large degree

and very large genus. For example, the process above produces a group G where a

non-cuspidal non-CM point on XG would correspond to a 35-isogeny, and the genus

of XG is 27. To analyze this list of curves, many approaches of analyzing modular

curves will need to be employed, including strategies for reducing the model of XG.

For small genus curves, one could analyze this model directly. At this time, we have

checked and not found any non-cuspidal non-CM points on any of the modular curves

produced by this methodology up to genus 3. For the larger genus curves other tactics

will need to be employed, like finding a map to a smaller genus curve, or using some

of the information of the maps to the factor modular curves. In short, even using this

strategy there is still considerable difficulty to completing the classification.
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Chapter 4

Background - Arithmetical

Structures on Graphs

In 1989, Lorenzini [Lor89] introduced the notion of arithmetical structures, which are

graphs with some extra arithmetical data, to study degenerations of curves. There

is significant interest in these arithmetical structures, and in some cases it is useful

to enumerate or bound the number of distinct arithmetical structures that may arise

when studying a set of curves. In his paper, Lorenzini proves that there are only

finitely many arithmetial structures associated to a given graph. While this lemma

was important for his discussion, the proof was not constructive. Since then, there

has been interest in producing counts and bounds for the number of arithmetical

structures on specific types of graphs. In the next chapter, we will prove a general

upper bound based only on the number of edges and vertices of the graph. Since our

approach does not use any arithmetic geometry of curves, we will define some of the

important notions from graph theory.
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4.1 Some Types of Graphs

Definition. A graph is a pair G = (V,E) of sets where E is made up of 2-element

sets of elements of V . We call V the vertex set of G and we will assume that V has

finite order throughout. We call E the edge set of G.

Much of the time, one is interested in studying simple graphs, where each edge

consists of two distinct vertices. An edge of the form {v, v} is called a loop, and we

will not be interested in graphs with loops. On the other hand, we will be interested

in multigraphs.

Definition. A multigraph is identical to a graph except that E is a multiset. In

particular, for two vertices v, w ∈ V , there may be multiple edges {v, w} ∈ E.

We will use graph to mean graph or multigraph. In order to obtain our result, it

is vital to consider multigraphs.

Definition. A graph G is connected if there is a path along the edges between any

pair of distinct vertices. In particular, given vertices v 6= w, either there is an edge

between v and w or there is a sequence vi, 1 ≤ i ≤ k for some k, and there is an edge

between v and v1, between vi and vi+1 for i < k, and between vk and w.

Definition. For a graph or multigraph G, we define the degree of a vertex to be the

number of edges incident to it. So d(v) = |{e ∈ E : v ∈ E}|.

Next, we define several special types of graphs.

Definition. A complete graph on n vertices, denoted Kn, is a graph with E =

{{v, w} : v, w ∈ V, v 6= w}. In the next chapter, we will also discuss a multigraph

generalization of this.

A path on n vertices is denoted Pn. We can write V = {vi : 1 ≤ i ≤ n} for some

ordering with E = {{vi, vi+1} : 1 ≤ i ≤ n− 1}.
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A cycle on n vertices a path with an edge added between the endpoints of the

path.

A star is a graph where there is a central vertex that has an edge to each of the

other vertices, and there are no other edges.

v1 v2 v3 v4

Figure 4.1.1: The graph P4

v1 v2

v3

v4v5

v6

Figure 4.1.2: A cycle on 6 vertices

v1

v2 v3

v4v5

Figure 4.1.3: A star with 5 vertices

In addition to these graphs, there are some more cases that have been studied in

the context of bounding the number of arithmetical structures. These include a path
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with a doubled edge and bidents. These graphs will not be central to our discussion,

so we will not define them here.
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Chapter 5

Bounding the Number of

Arithmetical Structures on Graphs

5.1 Introduction

Let G be a connected undirected graph with n vertices labeled v1, . . . , vn, containing

no loops but possibly multiedges. Throughout this chapter, we use E(G) to refer to

the edge set of G, we use δij to denote the number of edges between vi and vj, and

we use deg v for the degree of the vertex v. An arithmetical structure on G is a pair

(r,d) ∈ Nn × Nn, such that gcd(r) = gcd(r1, ..., rn) = 1, satisfying the system

r1d1 = r2δ12+ · · ·+ rnδ1n

r2d2 = r1δ21+ · · ·+ rnδ2n (5.1.1)

...

rndn = r1δn1+ · · ·+ rn−1δn(n−1).
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Equivalently, an arithmetical structure is the data of r,d ∈ Nn satisfying the matrix

equation 

−d1 δ12 · · · δ1n

δ21 −d2 · · · δ2n
...

...
. . .

...

δn1 δn2 · · · −dn





r1

r2
...

rn


=



0

0

...

0


. (5.1.2)

Note that specifying r such that ri |
∑

j 6=i rjδij is sufficient to recover d. Thus we

may simply refer to r as an arithmetical structure on G. We use A(G) to denote the

set of arithmetical structures on a graph G.

We remark that we could extend this definition of an arithmetical structure to a

graph with loops. We simply amend (5.1.1) by requiring

ridi =
n∑
j=1

rjδij

for all i. However, by absorbing δii into di for each i, it can be seen that r defines

an arithmetical structure on G0, where G0 is the graph obtained by removing all

loops from G. Thus A(G) is in one-to-one correspondence with A(G0), and for the

remainder of this chapter we will assume G contains no loops.

While combinatorial in nature, arithmetical structures are related to the study of

special fibers of relative proper minimal models of curves. They were introduced by

Lorenzini, who proved that A(G) is finite [Lor89]. Aside from certain special cases,

little is known beyond finiteness about #A(G). Braun et. al. [BCC+18] succeeded in

enumerating the number of arithmetical structures when G is a path or a cycle, where

they found connections to the Catalan numbers and certain binomial coefficients.

Archer et. al [ABDL+20] considered bidents — paths with two prongs at one end

— and gave bounds again in terms of the Catalan numbers. Glass and Wagner

[GW19] studied arithmetical structures on paths with a doubled edge, and formulated
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a conjecture for how #A(G) grows in this case, depending on the path length and

the location of the doubled edge.

In this chapter, we introduce a construction in Section 5.2 to reduce an arith-

metical structure on a graph G with n vertices into an arithmetical structure on an

associated graph G′ with n− 1 vertices. Our primary application of this construction

is to derive an explicit general upper bound for the number of arithmetical structures

on a graph G, depending only on the number of vertices and edges.

Theorem 5.1.1. Let G be a connected, undirected graph on n vertices, with no loops

but possible multiedges. Then the following is an upper bound for the number of

arithmetical structures on G.

#A(G) ≤ n!

2
·#E(G)2

n−2−1 ·#E(G)2
n−1· 1.538 log(2)

(n−1) log(2)+log(log(#E(G))) .

Section 5.3 is devoted to the proof of Theorem 5.1.1.

Our construction generalizes the smoothing process used in [BCC+18], [ABDL+20],

and [GW19]. In certain special cases, it is the inverse of Lorenzini’s blowup construc-

tion [Lor89, 1.8], and extends observations made by Corrales and Valencia about the

arithmetical structures on the clique-star transform of a graph [CV18].

In Section 5.4, we discuss the special case of graphs with n vertices and m edges

between each pair of vertices, which we denote by mKn. We first give a refinement of

Theorem 5.1.1 before making connections between their arithmetical structures and

Egyptian fractions. An Egyptian fraction describes an integer fraction a/m as the

sum of unit fractions,

1

x1
+ · · ·+ 1

xn
=

a

m
. (5.1.3)

These representations have been studied from many angles over the years — for a

brief survey see the introduction of [Ble72]. There also remain many open problems

about Egyptian fractions, including the Erdös–Straus Conjecture, which concerns the
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existence of a representation for all m in the case where a = 4 and n = 3 in (5.1.3).

See [Guy04] for more open problems related to Egyptian fractions.

We are interested in Egyptian fractions with a = 1,

1

x1
+ · · ·+ 1

xn
=

1

m
, (5.1.4)

In Theorem 5.4.2 we describe a one-to-one correspondence between integer solutions

to (5.1.4) and A(mKn). This connection in the case of Kn was also noted in [HL20], in

which the integers that can appear as the largest r-value for an arithmetical structure

on Kn were partially classified. We may then use the known results about Egyptian

fraction representations to give an asymptotic upper bound for #A(mKn) which

improves on Theorem 5.1.1.

5.2 A Recursive Construction

We now describe a construction which associates to an arithmetical structure (r,d)

on G an arithmetical structure (r′,d′) on an associated graph G′ possessing n − 1

vertices. The process of obtaining G′ is described precisely below in Construction

5.2.1.

Construction 5.2.1. Let G be a connected undirected graph with n vertices, with vi

and δij having their usual meanings. For any choice of vertex vi and positive ingeter s,

we define a graph G(vi, s) as follows: G(vi, s) has n−1 vertices, obtained by removing

the i-th vertex from G, so

V (G(vi, s)) = V (G)− { vi } .
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The edges of G(vi, s) are given by

δ′jk = δijδik + sδjk,

where δ′jk denotes the number of edges between distinct vertices vj and vk in G(vi, s).

Remark. Alternatively, we could envision G(vi, s) as the union of s(G− vi) with the

graph obtained by performing a star-clique type operation around vi, in which vi is

removed from its star and δijδik edges are added between each pair of distinct vertices

vj and vk. This description makes more apparent that when s = 1 and the star of

vi is simple (i.e. δij = 1 for all vj adjacent to vi), Construction 5.2.1 is inverse to

the clique-star transform described in [CV18, §5]. More precisely, using the notation

of [CV18, §5], suppose G is a graph containing a clique C and G̃ = cs(G,C) is its

clique star transform with new vertex v. Then our construction applied to v with

s = 1 recovers the original graph, i.e. G̃(v, 1) = G.

We illustrate Construction 5.2.1 with an example.

Example. Consider the graph G shown below in Figure 5.2.1.

Figure 5.2.1: G with vertices labeled.

v3

v2

v4

v1v5

v6

v7

Using Construction 5.2.1 with i = 1 and s = 2, we obtain G′ = G(v1, 2). This is

shown step-by-step in Figure 5.2.2. In step (i) we highlight v1 and its incident edges

in red to be removed. Step (ii) shows the graph 2(G− v1) and finally step (iii) shows

in blue the additional δ1jδ1k edges added for each pair of remaining vertices.
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Figure 5.2.2: Obtaining G′ = G(v1, 2) from Construction 5.2.1.

(i) (ii) (iii)

Let r = (2, 1, 1, 2, 1, 1, 1), which gives an arithmetical structure on G with d =

(2, 5, 3, 2, 4, 2, 2). We have s = d1 = 2, and one may check that r′ = (1, 1, 2, 1, 1, 1)

gives an arithmetical structure on G′ = G(v1, 2). This turns out to be an example

of a more general phenomenon — for any arithmetical structure r on G, take r′ =

(r1, . . . , r̂i, . . . , rn), where r̂i denotes removal of the i-th entry from the tuple. Then for

the graph G(vi, di), we find r′ satisfies the requirements of (5.1.1) for some appropriate

d′. Hence, it is an arithmetical structure after possible scaling. Lemma 5.2.2 verifies

this observation in general.

Lemma 5.2.2. Fix an arithmetical structure (r,d) on G and a vertex vi of G, and

let G′ = G(vi, di) as given by Construction 5.2.1. Set g = gcd(r1, . . . , r̂i, . . . , rn) and

r′ = (r1/g, . . . , r̂i/g, . . . , rn/g). Then r′ is an arithmetical structure on G′.

Proof. It suffices to consider the case i = 1, as we can always renumber the vertices

of G so that v1 is removed. By (5.1.1), we have the system

r2d2 =
r2δ12 + · · ·+ rnδ1n

d1
δ21 + · · ·+ rnδ2n

... (5.2.1)

rndn =
r2δ12 + · · ·+ rnδ1n

d1
δn1 + · · ·+ rn−1δn(n−1).
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So for 2 ≤ i ≤ n we have:

ri(d1di − δ21i) = δ1i(r2δ12 + · · ·+ rnδ1n) + d1
∑

2≤j≤n,i6=j

rjδij

=
∑

2≤j≤n,i 6=j

rj(δi1δ1j + d1δij). (5.2.2)

Notice that Construction 5.2.1 gives δ′ij = δi1δ1j + d1δij, so we have

ri(d1di − δ21i) =
∑

2≤j≤n,i6=j

rjδ
′
ij

for all 2 ≤ i ≤ n, which is precisely (5.1.1) on the new graph G′. If g > 1 then we need

to divide each ri by g to obtain another arithmetical structure, which corresponds to

scaling (5.2.2) by 1/g. Let (r′2, r
′
3, . . . , r

′
n), (d′2, d

′
3, . . . , d

′
n) denote the new arithmetical

structure on G′. Then explicitly, r′i = ri/g and d′i = d1di−δ21i. Since the r′i are positive

integers, the new numbers of edges between pairs of vertices are non-negative, and

G′ is clearly connected, we have that d′i are also positive integers. Thus (r′,d′) is an

arithmetical structure on G′.

Remark. If (r,d) is an arithmetical structure on G, d1 = 1, and G′ = G(v1, 1),

then G with its arithmetical structure (r,d) is the blow up [Lor89, 1.8] of G′ with its

arithmetical structure (r′,d′). In this case, one translates between our construction

and Lorenzini’s by taking M = D′ − A′, where D′ = diag(d′), A′ is the adjacency

matrix of G′, and qT = (δ12, . . . , δ1n). Then Mq = D−A is the matrix corresponding

to the original arithmetical structure on G. As a consequence, we observe that when

d1 = 1, the critical groups of the arithmetical structures r on G and r′ on G′ are

isomorphic. It may be interesting to study the relationships between the critical

groups (r,d) on G and (r′,d′) on G(vi, di) more generally.

In this chapter, when we have a fixed arithmetical structure (r,d) onG we will only

be interested in the case where s = di coming from Lemma 5.2.2, and as mentioned
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in the proof we can always renumber the vertices of G such that i = 1. Hence, for

the remainder of this chapter we simply take G′ = G(v1, d1) when it will not create

confusion. We will occasionally make use of the more general construction, as it is

needed for the proof of Theorem 5.1.1.

Example (Paths). Let Pn denote the path with n vertices, i.e. δij = 1 if j = i±1 and

δij = 0 otherwise. Arithmetical structures on paths have been studied extensively,

and it has been shown that #A(Pn) = Cn−1 = 1
n

(
2n−2
n−1

)
, where Cn−1 denotes the

(n− 1)-th Catalan number [BCC+18, Theorem 3].

If n ≥ 3, we may apply Construction 5.2.1 at vertex i with 1 < i < n and find

Pn(vi, 1) = Pn−1. To see this, we check that for j < k, as long as (j, k) 6= (i−1, i+1),

we have δ′jk = δjk, since one of δij or δik is 0. Then we have

δ′(i−1)(i+1) = δ(i−1)iδi(i+1) + 1 · δ(i−1)(i+1) = 1.

In particular, given an arithmetical structure (r,d) on Pn with di = 1 for some

1 < i < n, we obtain an arithmetical structure r′ = (r1, . . . , r̂i, . . . , rn) on Pn−1

(r1 = rn = 1 so we have automatically have g = 1). This is precisely the smoothing

process of [BCC+18, Proposition 5], so one may view Construction 5.2.1 and Lemma

5.2.2 as a more general version of the smoothing of a path.

We conclude this section with another illustrative example which we will study in

greater depth in Section 5.4.

Example (complete (multi)graphs). Let Kn denote the complete graph on n vertices.

We will use mKn to denote the complete graph Kn but instead with m edges between

each two vertices. The regular nature of this graph allows for a concise description of

the graph mKn(v1, s) obtained from Construction 5.2.1 on mKn.

After removing the vertex v1 and all incident edges, we are left with n−1 vertices.

The value of δ′ij is given by δ′ij = δ1iδ1j + sδij = m2 + sm. Thus, mKn(v1, s) =
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(m2 + sm)Kn−1.

We illustrate this below with the arithmetical structure r = (6, 3, 2, 1) on K4,

which gets reduced to the arithmetical structure r′ = (3, 2, 1) on K4(v1, 1) = 2K3,

which is further reduced to r′′ = (2, 1) on 2K3(v2, 2) = 8K2.

Figure 5.2.3: Applying Construction 5.2.1 twice to K4. Vertices are labeled with their
(ri, di) values.

(3, 3)

(1, 11) (2, 5)

(6, 1)

(3, 2)

(1, 10) (2, 4) (1, 16) (2, 4)

5.3 Upper Bounds on #A(G)

In this section, we leverage Construction 5.2.1 inductively to derive an upper bound

for the number of arithmetical structures on an arbitrary graph. To state our main

result, recall the divisor function, which counts the number of positive divisors of an

integer n, denoted here by σ0(n). This theorem is a strengthening of Theorem 5.1.1,

so we will prove this instead.

Theorem 5.3.1. Let G be a connected, undirected graph on n vertices, with no loops

but possible multiedges. Suppose f is any monotonically increasing function such that

σ0(m) ≤ f(m) for all positive integers m. Then

#A(G) ≤ n!

2
#E(G)2

n−2−1 · f
(

#E(G)2
n−1
)
. (5.3.1)

We will now justify that Theorem 5.1.1 follows from Theorem 5.3.1. In [Nic88],

an explicit upper bound for the divisor function is given to be

σ0(m) ≤ m
1.538 log(2)
log(log(m)) .
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Note that the right hand side is monotonically increasing in m. Taking f(m) =

m
1.538 log(2)
log(log(m)) produces the upper bound for #A(G) given by Theorem 5.1.1 in the intro-

duction, so it follows directly from Theorem 5.3.1.

The proof of Theorem 5.3.1 proceeds by induction on the number of vertices of G.

We take care of the base case, when n = 2, in Lemma 5.3.2. This is where the divisor

function is introduced. We then prove an independent result in Theorem 5.3.3, which

provides an upper bound for the ri-values depending only on n and #E(G). Next

we prove Theorem 5.3.1 using Lemma 5.3.2 and some of the ideas from the proof of

Theorem 5.3.3. We conclude this section by comparing our result to the known values

of #A(G) when G = Pn+1 is a path.

Lemma 5.3.2. Let G be a graph with two vertices, v1 and v2. If (r1, r2) is an

arithmetical structure on G then r1, r2 | #E(G) and so r1, r2 ≤ #E(G). The total

number of arithmetical structures on G is precisely σ0(#E(G)2).

Proof. The divisibility statement follows from the fact that r1 | #E(G)r2 and gcd(r1, r2) =

1. For the second part, we provide a bijection between the set of arithmetical struc-

tures on G and divisors of #E(G)2, defined by sending

(r1, r2) 7→
#E(G)

r1
r2

This is clearly well-defined. If (r1, r2) and (r′1, r
′
2) get mapped to the same integer

then r′1r2 = r1r
′
2 and since gcd(r1, r2) = gcd(r′1, r

′
2) = 1 we get r1 | r′1 and r′1 | r1.

Thus r1 = r′1 and r2 = r′2, so this map is injective.

To demonstrate surjectivity, let #E(G) = pα1
1 · · · p

αk
k , and let pβ11 · · · p

βk
k be a factor

of #E(G)2. Then for each i, if βi ≤ αi, we add a factor of pαi−βi
i to r1, and otherwise

we add a factor of pβi−αi

i to r2. This will result in the power of pi in the image of

(r1, r2) being βi, and hence the (r1, r2) obtained by this procedure has image equal

to pβ11 · · · p
βk
k .
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Remark. We consider order to matter when enumerating A(G). For example, if G

is the graph with two vertices and three edges (G = 3K2 in the notation of Example

5.2), we count the arithmetical structures r = (1, 3) and r = (3, 1) separately. In this

case, #A(G) = σ0(3
2) = 3.

With Construction 5.2.1 and Lemma 5.3.2 we can now give an upper bound for

the largest possible r1 value on a given graph G, which depends only on the number

of vertices and edges. We will then prove Theorem 5.3.1.

Theorem 5.3.3. Let r be an arithmetical structure on a graph G with n vertices.

Reorder the vertices so that r1 ≥ r2 . . . ≥ rn. Then

r1 ≤
1

(n− 1)!
·#E(G)3·2

n−2−2

Proof. The case n = 2 reduces to r1 ≤ #E(G), which follows from Lemma 5.3.2, so

we assume the statement is true for all graphs with n− 1 vertices. Let G be a graph

with n vertices and take (r1, r2, . . . , rn) to be an arithmetical structure on G.

By (5.1.1), we have

r1d1 = r2δ12 + · · ·+ rnδ1n

and so

r1 ≤

(
n∑
i=2

δ1i

)
r2 = deg(v1)r2.

Since (r2/g, . . . , rn/g) is an arithmetical structure on G(v1, d1), where g and G′ are

as in Lemma 5.2.2, we in turn have the inequality

r1 ≤ deg(v1) ·
(

max
(r′,d′)∈A(G)

(
max

r′′∈A(G(v1,d′1))
r′′2

))
·
(

max
r′∈A(G)

gcd(r′)

)
.

Here the nested maximum is over all possible arithmetical structures

(r′1, r
′
2, . . . , r

′
n, d

′
1, d
′
2, . . . , d

′
n) ∈ A(G), and over all possible arithmetical structure



48

(r′′2 , r
′′
3 , . . . , r

′′
n) ∈ A(G(v1, d

′
1)). The second maximum is over all arithmetical struc-

tures r′ ∈ A(G).

Since g | r2, . . . , rn and gcd(r1, r2, . . . , rn) = 1, we have gcd(r1, g) = 1. Then by

(5.1.1), we have for all i > 1,

ridi =
∑
j 6=i

rjδij, and so

r1δ1i = ridi −
∑

j>1,j 6=i

rjδij. (5.3.2)

Since gcd(g, r1) = 1, and g divides the right hand side of Equation 5.3.2, we have

g | δ1i, so g ≤ δ1i. Summing over all i 6= 1, we get

(n− 1)g ≤
n∑
i=2

δin = d(v1) ≤ #E(G),

so g ≤ #E(G)/(n − 1). Here we trivially bound deg(v1) ≤ #E(G), and in general

we can’t do any better, since all edges in the graph could be incident to v1.

By the inductive hypothesis we now have

r1 ≤
#E(G)2

n− 1
·
(

max
(r′,d′)∈A(G)

(
max

r′′∈A(G(v1,d′1))
r′′2

))
(5.3.3)

≤ #E(G)2

(n− 1)!

(
max

(r′,d′)∈A(G)
#E(G(v1, d

′
1))

)3·2n−2−2

(5.3.4)

We will give an upper bound for this maximum. Using Construction 5.2.1, we

have

#E(G(v1, d
′
1)) ≤ d′1e6=1 +

(
deg(v1)

2

)
where e6=1 is the number of edges on G not incident to v1. The binomial coefficient

arises from the final step of the construction for G(v1, d
′
1), where at worst every pair

of edges adjacent to v1 will add a new edge in G(v1, d
′
1). Now, we have again by
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(5.1.1)

r′1d
′
1 = r′2δ12 + ...+ r′nδ1n ≤ deg(v1)r

′
2

and so d′1 ≤ deg(v1). Therefore we have

#E(G(v1, d
′
1)) ≤ deg(v1)(#E(G)− deg(v1)) +

(
deg(v1)

2

)

which is a quadratic function in deg(v1), which has a maximum of (2#E(G)+1)2/8 ≤

#E(G)2, so

#E(G(v1, d
′
1)) ≤ #E(G)2. So 5.3.3 becomes

r1 ≤
#E(G)2

n− 1

1

(n− 2)!
·#E(G)3·2

n−1−4 =
1

(n− 1)!
#E(G)3·2

n−1−2.

Proof of Theorem 5.3.1. We proceed by induction on n, the number of vertices. In

the base case of n = 2, the inequality (5.3.1) is implied by Lemma 5.3.2. For the

inductive step we assume that (5.3.1) is true for all graphs with n− 1 vertices. First,

note that by (5.1.1), for any arithmetical structure on G with r1 ≥ r2 ≥ · · · ≥ rn, we

have

d1 =
r2
r1
δ12 +

r3
r1
δ13 + · · ·+ rn

r1
δ1n ≤ δ12 + δ13 + · · ·+ δ1n ≤ #E(G). (5.3.5)

In general, if i is an index where ri ≥ rj for all j 6= i, then the above argument

also shows di ≤ #E(G). Next we make the following observation. Fix a vertex vi

and also fix a prescribed value for di for an arithmetical structure. Once we have

fixed these values, the graph G′ referenced in Construction 5.2.1 is fixed. We claim

there is at most one arithmetical structure on G which satisfies these criteria which

reduced to any given arithmetical structure on G′. To see this, let (r1, r2, . . . , rn)
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and (r′1, r
′
2, . . . , r

′
n) be two arithmetical structures satisfying these criteria. Assume

that (r1/g, r2/g, . . . , rn/g) = (r′1/g
′, r′2/g

′, . . . , r′n/g
′), where g and g′ are the gcd of

r1, r2, . . . , rn and r′1, r
′
2, . . . , r

′
n, and ri and r′i have now been removed. So, we have

diri = g
∑
j 6=i

rj
g

dir
′
i = g′

∑
j 6=i

rj
g′

and hence we have rig
′ = r′ig. By definition, gcd(g, ri) = 1, so ri | r′i and r′i | ri, and

g = g′. So the two arithmetical structures on G are equal.

This claim lets us bound the number of arithmetical structures on G as follows.

For each vertex vi, we count the number of arithmetical structures (r1, r2, . . . , rn)

where the maximum of the values of r is ri. By (5.3.5) we have di ≤ #E(G), so we

get

#A(G) ≤
n∑
i=1

#E(G)∑
di=1

#A(G(v1, di)).

By the same argument as in the proof of Theorem 5.3.3, the number of edges in G′di

is bounded by #E(G)2. So by induction, we have

#A(G) ≤
n∑
i=1

#E(G)∑
di=1

(n− 1)!

2
#E(G)2

n−2−2f
(

#E(G)2
n−1
)

=
n!

2
#E(G)2

n−2−1f
(

#E(G)2
n−1
)
,

completing the proof.

Remark. If more is known about the structure of the graph G then a much more

accurate bound for #A(G) may be possible. As an extreme case, consider the path

G = Pn+1 (see Example 5.2), where we have the exact count in terms of a Cata-
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lan number, #A(Pn+1) = Cn [BCC+18, Theorem 3]. This grows asymptotically as

4n/(n3/2
√
π). On the other hand, the bound of Theorem 5.1.1 with n+1 vertices and

#E(G) = n includes doubly exponential terms roughly of the form n2n , massively

outpacing the Catalan numbers. Such a disparity in this case is not so surprising,

given that a path has the minimal number of edges for a connected graph on n vertices

and that in our result we assume nothing about G beyond the number of vertices and

edges. Furthermore, in the bound in our result, the number of vertices is the variable

that has the much bigger impact on the growth.

We will further discuss this disparity between Theorem 5.1.1 and the true value

of #A(G) in Section 5.4 in the case where G = mKn (see Remark 5.4.1).

5.4 Arithmetical Structures on mKn

5.4.1 Specializing to G = mKn

Consider the special case of G = mKn, as in Example 5.2. Recall that mKn is the

graph on n vertices with δij = m for all i 6= j. Let Adec(mKn) denote the subset of

arithmetical structures r ∈ A(mKn) such that ri ≥ ri+1 for 1 ≤ i < n. Using the

same proof strategy as that of Theorem 5.3.1, we can exploit the regularity of mKn

to give a refinement.

Corollary 5.4.1. Let mKn and Adec(mKn) be as defined above. Then #Adec(mKn)

is bounded above by

(n− 1)!

2

(
n−4∏
k=0

(n− k)2
n−3−k−1

)(
m2n−2−1

)(
f

(
m2n−1

n∏
k=3

k2
k−2

)
+ 1

)
, (5.4.1)

where f is any monotonically increasing function that is an upper bound for σ0. In

particular, we may again take f(x) = x
1.538 log(2)
log(log(x)) as above.

Proof. The proof follows that of Theorem 5.3.1, proceeding by induction on n. The
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base case of n = 2 is again a consequence of Lemma 5.3.2, since #Adec(mK2) =

#A(mK2)+1
2

. Assume (5.4.1) holds for mKn−1. The key improvement to the argument

in the proof of Theorem 5.3.1 is that we can refine (5.3.5) since δ1i = m for all

2 ≤ i ≤ n:

d1 = m

(
r2
r1

+ · · ·+ rn
r1

)
≤ (n− 1)m.

After removing v1, the same argument as in the proof of Theorem 5.3.1 gives

#Adec(mKn) ≤
(n−1)m∑
d1=1

#Adec

(
(m2 + d1m)Kn−1

)
.

Since the upper bound in (5.4.1) is monotonic in m for fixed n, we can safely bound

#Adec(mKn) above by (n − 1)m times the upper bound for #Adec ((nm2)Kn−1) as

follows:

#Adec(mKn) ≤ (n− 1)m · (n− 2)!

2

(
n−5∏
k=0

(n− 1− k)2
n−4−k−1

)
· · ·

· · ·
(

(nm2)2
n−3−1

)(
f

(
(nm2)2

n−2
n−1∏
k=3

k2
k−2

)
+ 1

)

=
(n− 1)!

2

(
n−4∏
k=1

(n− k)2
n−3−k−1

)(
n2n−3−1

)
· · ·

· · ·
(
m1+2(2n−3−1)

)(
f

(
m2(2n−2)n2n−2

n−1∏
k=3

k2
k−2

)
+ 1

)

=
(n− 1)!

2

(
n−4∏
k=0

(n− k)2
n−3−k−1

)(
m2n−2−1

)(
f

(
m2n−1

n∏
k=3

k2
k−2

)
+ 1

)
By induction this bound holds for all n ≥ 2 and m ≥ 1.

Remark. For any fixed n, Corollary 5.4.1 improves on Theorem 5.1.1 by a factor of a

constant depending on n, since #E(mKn) = m
(
n
2

)
. This is a substantial improvement

if we hold m fixed and n is allowed to vary. Asymptotically however, this bound can be
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improved upon (see Corollary 5.4.3) using results on Egyptian fractions of Browning–

Elsholtz [BE11] and Elsholtz–Planitzer [EP20], which we discuss in Subsection 5.4.2.

To see how the bound of Corollary 5.4.1 compares to reality, we can use Con-

struction 5.2.1 to enumerate all the arithmetical structures on mKn for several small

values of m and n. This also serves as a proof of concept for how one might use

the construction to produce an algorithm to generate all arithmetical structures on a

given graph more generally.

Let (r1, r2, r3) be a candidate for an arithmetical structure on mK3, and assume

that r1 ≥ r2 ≥ r3. Then by Lemma 5.2.2 and Lemma 5.3.2, a necessary condition to be

an arithmetical structure is that r2, r3 | (m2 + d1m). Assuming this, we fix an integer

d1, which by (5.3.5) is no more than 2m. Next, we can check all possible pairs of r2

and r3 satisfying the divisibility above, and verify whether the corresponding r1 =

m · (r2 + r3)/d1 forms an arithmetical structure (r1, r2, r3). The following conditions

are necessary and sufficient for this to occur.

1. r1 ≥ r2 which is equivalent to (r2 + r3) ·m/d1 ≥ r2, or mr3 ≥ (d1 −m)r2.

2. Since r1 ∈ Z, d1 | m(r2 + r3).

3. By construction, d1 ∈ Z, but we also need that d2, d3 ∈ Z. This is the same as

r2 | mr3 +m · m
d1

(r2 + r3).

The same is true with the roles of r2 and r3 reversed.

4. gcd(r1, r2, r3) = 1. If gcd(r2, r3) = 1 this is automatically satisfied.

Using Lemma 5.3.2, we can enumerate all the arithmetical structures on (m2 +

d1m)K2 for d1 = 1, 2, . . . , 2m and use conditions (1) — (4) above to determine which

lift to arithmetical structures on mK3. We have written code in Magma that imple-
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ments this algorithm to enumerate Adec(mKn), which can be found at this webpage.

For n > 3, some extra steps need to be performed.

We can translate the conditions above for general n to recursively compute arith-

metical structures on mKn. Since (r2, r3, . . . , rn) may have a common factor, we need

to include an extra step in the algorithm. We recursively compute all possible arith-

metical structures on (m2 + d1m)Kn−1 for each d1. However, we allow this function

to return values of (r2, r3, . . . , rn) with a common factor, but would otherwise be

an arithmetical structure. We use this to generate a list of (r1, r2, . . . , rn) satisfying

conditions 1 through 3 above, and then at the end we check which of these satisfy

condition 4.

Table 5.4.1 compares #Adec(mKn), enumerated by the methods described above,

and the upper bound given by the floor of the right hand side of (5.4.1) for sev-

eral small values of n and m. The comparison shows that the bound of Corollary

5.4.1 leaves much room for potential improvement, with its growth quickly outpacing

the true value. The listed values were able to be computed reasonably quickly, but

generating the full set of arithmetical structures on mKn becomes computationally

challenging even for small m values when n > 3.

https://www.dropbox.com/s/zpratrd5mpiiu3v/arithmeticalStructures.m?dl=0
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n m #Adec(mKn) Right hand side of (5.4.1)
3 1 3 20
3 2 10 56
3 3 21 127
3 4 28 229
3 5 36 362
3 6 57 526
3 7 42 720
3 8 70 946
3 9 79 1201
3 10 96 1487
3 100 1106 142796
3 101 164 145584
4 1 14 688
4 2 108 23028
4 3 339 173664
4 4 694 717812
4 5 1104 2141953
4 6 1816 5209709
4 7 2021 11012969
4 8 3363 21019441
4 9 4053 37117341
4 10 5370 61657730
5 1 147 8567815

Table 5.4.1: A comparison of the value #Adec(mKn) with the bound given in Corol-
lary 5.4.1.

Remark (Growth of #Adec(mKn)). This example will help illustrate why there is so

much room for improvement. Given m1, n, and an arithmetical structure on m1Kn,

Construction 5.2.1 gives us a way to produce an associated arithmetical structure

on m2Kn−1, where m2 = m2
1 + s1m1 for the appropriate value of s1. Iterating this

procedure, we can get an arithmetical structure on miKn−i+1, where mi = m2
i−1 +

si−1mi−1 for 2 ≤ i ≤ n−1. For each such i, we therefore have that mi ≥ m2
i−1 +mi−1.

Using this inequality for each i, the result of this process is an arithmetical structure

on mn−1K2 with mn−1 ≥ fn−2(m1) = O(m2n−2

1 ), where f(m) = m2+m. Furthermore,
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this is only for a given arithmetical structure. If we are interested in generating a

list of all arithmetical structures on m1Kn, there are many choices for the value

of s1 at each step. If every arithmetical structure on each of these mn−1K2 came

from an arithmetical structure on m1Kn following this iterative procedure, then the

comparison in Table 5.4.1 would be significantly closer. This is clearly not the case,

and one challenge in improving the bounds given in Theorem 5.1.1 and Corollary

5.4.1 is that it is difficult to say which of which of these arithmetical structure on the

base graphs such as mn−1K2 “lift” to arithmetical structures on the original graph,

such as m1Kn.

5.4.2 Connections to Egyptian fractions

The study of Egyptian fractions focuses on integer solutions to (5.1.4), for any given

positive integers m and n. Such solutions are in one-to-one correspondence with arith-

metical structures on the graph mKn. This allows us to use the theory of Egyptian

fractions to study arithmetical structures on mKn. While this correspondence is well

known in the m = 1 case, we have not encountered this in the literature for general

m, so we provide an elementary proof.

Theorem 5.4.2. The set A(mKn) is in one to one correspondence with solutions

(x1, ..., xn) to (5.1.4). Explicitly, the arithmetical structure (r,d) ∈ A(mKn) corre-

sponds to the solution (d1 +m, . . . , dn +m) to (5.1.4).

Proof. Let (r,d) be an arithmetical structure on mKn and recognize that

n∑
i=1

ri
m
∑n

j=1 rj
=

1

m
.

Using the system (5.1.1) we may write

ri
m
∑n

j=1 rj
=

ri
mri + diri

=
1

m+ di
.
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Thus we have
n∑
i=1

1

m+ di
=

1

m
,

so by taking xi = m+ di we have a solution to (5.1.4).

We now show that given a solution x to (5.1.4), we can find an arithmetical

structure for which xi = m + di. Setting di = xi −m in the system (5.1.1), we need

the null space of 

m− x1 m · · · m

m m− x2 · · · m

...
...

. . .
...

m m · · · m− xn


(5.4.2)

to have dimension exactly one. Subtracting the first row from all other rows, and

scaling row i by 1/xi for i ≥ 2, we have that this matrix is row equivalent to



m− x1 m m · · · m

−x1/x2 1 0 · · · 0

−x1/x3 0 1 · · · 0

...
...

...
. . .

...

−x1/xn 0 0 · · · 1


After subtracting the first row by multiples of m of the other rows, all entries are zero

except the top left, which becomes

m− x1 +
mx1
x2

+ · · ·+ mx1
xn

.

Multiplying this expression by x2 · · · xn gives m(x1 · · ·xn−1+· · ·+x2 · · ·xn)−x1 · · ·xn,
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which is 0 by (5.1.4). Hence the matrix is reduced to



0 0 0 · · · 0

−x1/x2 1 0 · · · 0

−x1/x3 0 1 · · · 0

...
...

...
. . .

...

−x1/xn 0 0 · · · 1


,

which clearly has rank n− 1 and null space with dimension 1. An integral generator

of the null space is

q = (x2 · · ·xn, x1x3 · · ·xn, . . . , x1 · · ·xn−1)T .

We construct an arithmetical structure by taking r = q/ gcd(q) and setting di =

xi−m. These two processes, going from arithmetical structure on mKn to a solution

x to (5.1.4), are clearly inverse to one another.

With Theorem 5.4.2, we can use known results bounding the number of Egyptian

fraction representations for a given fraction to give a bound for #Adec(mKn) and

compare this to that of Corollary 5.4.1. Modifying slightly the notation of [BE11],

we define

fn(a,m) = #

{
(x1, . . . , xn) ∈ Nn : x1 ≤ · · · ≤ xn and

a

m
=

1

x1
+ · · ·+ 1

xn

}
(5.4.3)

to count the number of Egyptian fraction representations of a/m by n terms. Observe

that an arithmetical structure (r,d) on mKn satisfies r1 ≥ · · · ≥ rn if and only if

d1 ≤ · · · ≤ dn, so by the correspondence in the proof of Theorem 5.4.2, we have

fn(1,m) = #Adec(mKn).
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The best known asymptotic bounds for fn(1,m) are given by Elsholtz–Planitzer

[EP20, Theorems 1.1, 1.4], improving on Browning–Elsholtz [BE11, Theorems 2, 3],

giving us the following corollary.

Corollary 5.4.3. Let n ≥ 3, m ≥ 1, and fix ε > 0. Then we have

#Adec(mK3)�ε m
3
5
+ε,

#Adec(mK4)�ε m
28
17

+ε, and

#Adec(mK3)�ε (nm)ε
(
n4/3m2

) 28
17

2n−5

when n ≥ 5.

Note that while this is an asymptotic improvement over Corollary 5.4.1, it does

not give explicit constants. We also note that the exponential shape of the bounds

in Corollaries 5.4.1 and 5.4.3 are somewhat similar. This may suggest that it would

take a significant advance to close the large gap between the actual values and known

bounds, as seen in Table 5.4.1.
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