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Abstract
Clonal Amplification of Behavior: A Simple Interpretation of the Effect of Reinforcement 
By Olivia Louise Calvin

The theory of neuronal group selection (Edelman, 1987) is an account of neural development and dynamics that has been used as the theoretical basis for autonomous agents that are capable of an impressively wide range of adaptive behaviors (e.g., Edelman, 2007; Krichmar & Edelman, 2002; 2005; Krichmar, Nitz, Gally, & Edelman, 2005; Krichmar, Seth, Nitz, Fleischer, & Edelman, 2005; Seth & Edelman, 2007). Edelman’s theory draws parallels between natural selection and the adaptive dynamics of neuronal groups in response to environmental consequences. Critics have focused on the theory’s use of clonal amplification as the reproduction method, which they see as insufficiently adaptive (Crick, 1989; Fernando, Karishma, & Syathmary, 2008; Fernando, Goldstein, & Syathmary, 2010; Fernando, Szathmary, & Husbands, 2012). When comparing Edelman’s theory to the evolutionary theory of behavior dynamics (McDowell, 2004), McDowell argued that the theories differ in their reproduction methods and that a simulation that more purely models the clonal amplification dynamic may assess its viability (2010). This dissertation reports the results of the proposed simulations, which indicate that an implementation of the theory of neuronal group selection using clonal amplification can produce patterns of behavior that are quantitatively and qualitatively like humans and animals in operantly reinforcing environments. However, the range of viable parameters is smaller than for the evolutionary theory of behavior dynamics. There are also differences in the patterns of behavior predicted by the two theories that would need to be assessed with human or animal experiments to determine which is the better account.
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[bookmark: _Toc536370657]Chapter 1: General Introduction
We all choose to allocate our time and effort to the things we find important. Our choices are sometimes the result of deep consideration of our life goals, but more often they are of the moment and lacking that deeper insight. The accumulation of these relatively minor choices can have important mental, physiological, and social effects on our wellbeing and that of our society. A natural question arises from this need to understand ourselves and protect ourselves from the consequences of our thoughtless actions, which is how and why we choose our actions?
 	The unique relevance of psychology to understanding our choices was well described by Skinner in Beyond Freedom and Dignity (1971) when he wrote 
“The application of the physical and biological sciences alone will not solve our problems because the solutions lie in another field. Better contraceptives will control population only if people use them. New weapons may offset new defenses and vice versa, but a nuclear holocaust can be prevented only if the conditions under which nations make war can be changed. New methods of agriculture and medicine will not help if they are not practiced, and housing is a matter not only of buildings and cities but of how people live. Overcrowding can be corrected only by inducing people not to crowd, and the environment will continue to deteriorate until polluting practices are abandoned. In short, we need to make vast changes in human behavior, and we cannot make them with the help of nothing more than physics or biology…” (pg.4) “What we need is a technology of behavior.” (pg. 5)
While Skinner mostly emphasized the societal consequences of not understanding human psychology, the consequences of our actions can be just as personally debilitating and devastating.
An approach to investigating why people make the choices that they do is to focus on situations where participants are provided with the opportunity to act. The participant can act in any way that they choose to, but the researcher only rewards certain behaviors. If the groups of behaviors that the researcher decides to reward are mutually exclusive, then this situation provides the crux of choice behavior. For each action the participant suffers an opportunity cost; whatever action a participant engages in, it excludes other – potentially beneficial – actions that they could engage in. By carefully controlling and manipulating this situation, it is possible to deduce what motivates the participant by observing the choices that they make as their situation changes.

[bookmark: _Toc536370658]1.1. The Matching Law
	Surprisingly, if our behavior is somewhat unpredictably rewarded in this free-choice paradigm it is well described by an equation – the matching law. The original version of the matching law states that we allocate our behavior in proportion to the number of reinforcers we receive for doing that action (Herrnstein, 1961). This was later revised by Baum (1974) to account for participant preferences for certain consequences and a tendency for them to engage with the less rewarded side more frequently than Herrnstein’s equation predicted. Baum’s equation – the modern matching law – is expressed as 
[bookmark: Eq1_1],				(1-1)[footnoteRef:1] [1:  For the reader’s benefit, copies of all equations that are frequently discussed are listed on page 94.] 

which states that behavior is allocated as a function of the rewards for those behaviors. In this equation, B is the measured rate of behavior, R is the experimentally-manipulated obtained rate of reinforcement, the subscripts indicate the experimenter-defined groups of behaviors that are measured, and b and a are free parameters. 
The parameter b is interpreted as the participant’s bias towards one reinforcing consequence over the other, and this parameter captures most asymmetric qualities of the experiment that led the participant to prefer one behavior over another (Baum, 1974, 1979; McDowell, 1989; Wearden & Burgess, 1982). For example, a b greater than 1 could indicate a participant’s greater preference for money over candy if those were the respective consequences of B1 and B2. A b greater than 1 could also indicate that the work required to earn the money was less difficult than for the candy. This parameter simply captures individual preference   and cannot indicate the cause for that bias.
The parameter a in Equation 1-1 is sometimes referred to as sensitivity because it indicates how powerfully the rate of behavior is controlled by the rate of reinforcement, and, hence, the participant’s sensitivity to changes in that variable. An exponent of 1 indicates that the ratio of behavior perfectly matched the ratio of reinforcement – excepting bias. In this case, if the participant received twice as many reinforcers for engaging in behavior B1, then they also engaged in behavior B1 twice as frequently. If the exponent is less than 1, which is most often observed, it indicates that there is a tendency for the participant to perform the less frequently reinforced behavior more often than the ratio of reinforcement would suggest. The parameter a averages around 0.8 for many experiments (Baum 1974, 1979; McDowell, 1989, 2013b; Myers & Myers, 1977; Wearden & Burgess, 1982). One interpretation for why the exponent is less than 1, which is sometimes called undermatching, is that participants adaptively engage in exploratory behavior to detect new reward opportunities (McDowell & Caron, 2007; Wearden 1983). Herrnstein’s matching law (1961) is equivalent to the modern matching law (Equation 1-1) when the parameters a and b are both equal to 1.
The original and modern versions of the matching law stated that behavior is a function of the rates of reinforcement for then two choices, but this was later expanded upon. Two important ways that it was extended were to situations where the participant chooses between any number actions (Herrnstein, 1970) and to multiple differences in the consequences of behaviors (Baum, 1974; Baum & Rachlin, 1969; Rachlin, 1971; Tversky, 1969). This dissertation will be simulating the behavior of models in these two situations, and the details of how the modern matching law was extended to these situations will be provided with the relevant experiments.
	
[bookmark: _Toc536370659]1.2. The Evolutionary Theory of Behavior Dynamics (ETBD)
While the matching law accurately describes the long-term behavior of participants in free-choice environments (for review see Davison & McCarthy, 1988; McDowell, 2013a), it does not explain the dynamics of behavior. The evolutionary theory of behavior dynamics (ETBD) is a theory of adaptive behavior that overcomes this limitation of the matching law and should be considered the better understanding of choice behavior due to it explaining a wider range of phenomena than the matching law (Hempel & Oppenheim, 1948; McDowell, 2013b). The ETBD states that the behavior of humans and animals is generated through a dynamic process that is analogous to evolution (Berardi, Carretero-González, Klepeis, Machiani, Jahangiri, Bellettiere, & Hovell, 2018; Kulubekova & McDowell, 2008; 2013; McDowell, 2004; McDowell & Calvin, 2015; McDowell & Caron, 2007; McDowell, Caron, Kulubekova, & Berg, 2008; McDowell & Klapes, 2018; McDowell & Popa, 2010; McDowell, Popa, & Calvin, 2012; Popa & McDowell, 2016). The idea that behavior adapts to environmental contingencies in a way that is analogous to evolution is not novel; many researchers hypothesized this prior to the ETBD’s development (e.g., Campbell, 1960; Catania, 1978, 1987; Donahoe, 1999; Donahoe, Burgos, & Palmer, 1993; Edelman, 1987; Fuster, 1997; Gilbert, 1970, 1972; Glenn & Field, 1994; Glenn & Madden, 1995; Hayek, 1952a, 1952b; Henriques, 2003; Hughes, 2011; Pringle, 1951; Russell, 1962; Skinner, 1974, 1981, 1984; Staddon, 1975; Staddon & Simmelhag, 1971; Thorndike, 1898; Wasserman, 2012; Wasserman & Blumberg, 2010). What is unique about the ETBD is that it is the first testable model[footnoteRef:2] that can be compared to human and animal behavior. To date, the ETBD has successfully demonstrated behavior dynamics that qualitatively and quantitatively match human and animal behavior across a wide range of situations (for review see McDowell, 2013b). There are, however, multiple ways that the theory’s concept could be interpreted and only a few of these have been examined in depth. Some of these interpretations have relevance to theory development and practical applications. [2:  In this dissertation, “theory” strictly refers to an explanation that is built from logic and evidence, and “model” refers to how a theory is translated into a process or algorithm that produces testable hypotheses.] 

Evolution is often strictly thought of as the process by which organisms adapt over time, but evolution can also be viewed more abstractly as the process of selection, variation, and reproduction. This general, three-step process is a simple problem-solving method that can find surprisingly complex solutions to problems. From this perspective, biological evolution is simply an example of how good solutions to problems – fit organisms – are found by repeating the three-step process of selection, variation, and reproduction. This abstraction of evolution as a problem-solving method is the foundation for an entire class of problem-solving methods, which are known as genetic algorithms (Holland, 1975).
Models based on the ETBD are unique subtypes of genetic algorithms, which have been used to explain the dynamics of human and animal behavior. In these models, an organism’s behavior can be conceptualized as an attempt to solve the problem of their environment; behavior, in this sense, is a solution to the current environment’s characteristics. The wide range of behaviors that humans and animals can engage in are represented in the ETBD as a population of potential behaviors. This population of behaviors adapts to the organism’s environment by – to use evolutionary terminology – selecting behaviors that previously resulted in beneficial consequences, making them become more likely via reproduction, and then adding random variation to some of these behaviors. There are many ways that selection, reproduction, and variation can be interpreted in the context of the ETBD, and this dissertation will examine a subgroup of these that have theoretical importance. The specific model dynamic that will be explored is when existing behaviors that resulted in beneficial consequences are directly amplified in frequency in a method analogous to asexual reproduction or cloning. 
	
[bookmark: _Toc536370660]1.3. Theory of Neuronal Group Selection (TNGS)
	Cloning in ETBD models is important to explore because of its use by other researchers (Barerdi et al., 2018) and its relation to the theory of neuronal group selection (TNGS; summarized in McDowell, 2010). In his book Neural Darwinism: The Theory of Neuronal Group Selection (1987), Edelman explained his selectionist theory of brain development and the brain’s continuous adaptation to the environment. This theory has dynamics that are similar to the ETBD’s and it specifies a plausible biological mechanism (McDowell, 2010). Edelman’s wide-ranging theory covers everything from early brain development via synaptogenesis and pruning to synaptic adaptation of neuronal groups. Even greater phenomena like the mind and consciousness are explored by the theory. The synaptic adaptation of neuronal groups as an account of behavior is the element of the TNGS that matches the phenomena that the ETBD covers, and it also has dynamics that are like evolution. Neuronal group adaptation allows organisms to adjust their behavior to their environment. Its dynamics are analogous to evolution in that the neuronal groups’ connectivity adapts to match the organism’s environment; neuronal groups that lead to beneficial behaviors are selectively reinforced and gain more influence over future behavior.
	The viability of the TNGS has been confirmed by it predicting physical characteristics of the nervous system and forming the basis for proof-of-concept artificial intelligences (McDowell, 2010). An example of how the theory predicted future discoveries of neural functioning is how Edelman (1987) deduced the necessity of bidirectional connections between neuronal groups – reentry – despite lacking evidence for it at that time.   This hypothesis was later supported, and in a recent review Edelman and Gally (2013) were able to conclude that there is now some anatomical evidence that there is reentry. The proof-of-concept artificial intelligences that are based on the TNGS have been shown to be capable of numerous complicated tasks that were not strictly built into the intelligence’s capacity. For example, these proof-of-concept intelligences have been implemented as autonomous robots that could remember and find hidden platforms in Morris water mazes and other robots that could search the environment for appetitive blocks while avoiding subtly different aversive blocks. (Edelman, 2007; Krichmar & Edelman, 2002; 2005; Krichmar, Nitz, Gally, & Edelman, 2005; Krichmar, Seth, Nitz, Fleischer, & Edelman, 2005; Seth & Edelman, 2007). It is important to distinguish this type of development from commercial artificial intelligences, which are often atheoretically constructed with layered heuristics and neural networks to produce satisfying answers. Developing machines and simulations from theory that are not designed to specifically perform these tasks but that nevertheless can do so, like TNGS- and ETBD-based models, are more evidentially impressive than atheoretically constructing a machine to perform only a specific task.
[bookmark: _Hlk529720052]	A major contention about the TNGS’s theoretical viability is whether the dynamics it proposes are truly analogous to evolution. Edelman paints clear and pervasive parallels between his model and the evolutionary process (1987), but this has been contested by others (Crick, 1989; Fernando, Karishma, & Syathmary, 2008; Fernando, Goldstein, & Syathmary, 2010; Fernando, Szathmary, & Husbands, 2012). Crick’s response (1989) was particularly critical of the notion that there is a parallel (e.g., “I have not found it possible to make a worthwhile analogy between the theory of natural selection and what happens in the developing brain and indeed Edelman has not presented one”, page 246). Similarly, Fernando and his colleges have been critical of the TNGS but have primarily emphasized the perceived inadequacy of the TNGS’s method of reproduction to adapt to the environment (Fernando, Karishma, & Syathmary, 2008; Fernando, Goldstein, & Syathmary, 2010; Fernando, Szathmary, & Husbands, 2012). Central to these critiques is that the direct amplification in strength of existing neuronal groups following positive outcomes, which is an aspect of the theory, is like an asexual reproduction dynamic because it increases the likelihood of an existing neural pattern of behavior but prevents novel neuronal group connections that could create new behaviors. This is believed to be too simple of a neural dynamic because it cannot account for the complex behaviors that humans learn and engage. Whether the TNGS is inadequate because of this cloning-like dynamic has been contested by Edelman (1992, pp. 94-97), and McDowell suggested that a modified version of the ETBD that quantitatively assessed this dynamic in choice environments would be able to assess the TNGS’s viability (2010).
	
[bookmark: _Toc536370661]1.4. Practical Importance of Adaptive Models of Behavior
	Over the last 40 years, the long-term behavior of organisms when their behaviors are unpredictably reinforced has been found to be well described by equations, such as the matching law and quantitative law of effect (summarized in McDowell, 2013a). These equations are important because they accurately describe how behavior relates to its consequences over a long period of time, which is sometimes referred to as molar behavior. A significant limit to their explanatory utility, however, is that they are incapable of describing the moment-to-moment processes that lead to these outcomes, which is sometimes called molecular behavior, and this limits their predictive utility. The ETBD fills this gap in our understanding by correctly modeling the molecular dynamics of behavior (Kulubekova & McDowell, 2008, 2013), while also explaining how the molar behavior is a direct result of that molecular behavior (McDowell, 2004; McDowell & Caron, 2007; McDowell, Caron, Kulubekova, & Berg, 2008; McDowell & Popa, 2010; McDowell, Popa, & Calvin, 2012).
	By explaining the molecular behavior dynamics, the ETBD should be more applicable to clinical issues due to its greater predictive utility. At the least, the ETBD should be applicable to the same clinical phenomena to which the equations of molar behavior have been applied. The matching law (Equation 1-1) and quantitative law of effect (Herrnstein, 1970; Equation 3-1) have been found to be relevant to aggressive, antisocial, and delinquent behavior (Dishion, Andrews, & Crosby, 1995; McDowell & Caron, 2010a; 2010b; Snyder, Horsch & Childs, 1997; Snyder, Schrepferman, & St. Peter, 1997; Snyder, West, Stockemer, Gibbons, & Amquist-Parks, 1996; Snyder & Patterson, 1995), ADHD (Kollins, Lane, & Shapiro, 1997; Murray & Kollins, 2000; Taylor, Lincoln, & Foster, 2010), bipolar disorder (Szabadi, Bradshaw, & Ruddle, 1981), chronic pain syndrome (Fernandez & McDowell, 1995), developmental disabilities (Oliver, Hall, & Nixon, 1999), and self-injurious behavior (McDowell, 1981, 1982; Symons, Hoch, Dahl, & McComas, 2003). Because the ETBD accounts for the matching law and quantitative law of effect, the ETBD is, thus, also relevant to these issues and could provide greater insight into them. Furthermore, because the ETBD accounts for more phenomena than the matching law and quantitative law of effect, it is likely that it will become relevant to other areas of clinical research.
An example of how learning more about the dynamics of behavior may inform novel clinical approaches to disorders is provided by Popa (2013). They argued that the ETBD may inform the treatment of attention-deficit and hyperactivity disorder by identifying patterns of behavior that could indicate different subtypes of ADHD-like behavior. As an example of equifinality, they found that ADHD-like patterns of behavior could be caused in multiple ways (Popa, 2013). This work suggests that ADHD-like behavior can be caused by either poorly-structured environments or innate characteristics of the individual, and that there are some slight behavioral differences between these two causes. More specifically, environments that reinforce behaviors infrequently, provide reinforcers of poor quality, or permit rapid switching between tasks could lead to the simulated typical individual’s rapidly switching between tasks in a way that could be misinterpreted as ADHD. Alternatively, atypical simulated individuals, who had abnormally large amounts of behavioral variability, had similar patterns of ADHD-like behavior even in typical environments. These different causes of ADHD-like behavior could be classified as different subtypes of ADHD and could be targeted with interventions that are specific to their dynamic causes. For example, stimulants may be more clinically useful for individuals who express more atypical patterns of behavior in typical environments, and interventions that focus on training parents and teachers to restructure a child’s environment may be better for children who express a typical-individual-but-poor-environment pattern of behavior. This research still needs to be evaluated in a clinical sample of individuals with ADHD, but it highlights how the ETBD can inform clinical research. 

[bookmark: _Toc536370662]1.5. Objective of this Dissertation
The objective of this dissertation is to evaluate the quantitative viability of the TNGS’s proposed dynamics. Specifically, the amplification of existing behaviors by replicating them in a manner akin to asexual reproduction (i.e., cloning) was evaluated because it is the most contentious aspect of the TNGS (Crick, 1989; Fernando et al., 2008; 2010; 2012). To evaluate the quantitative viability of this dynamic the TNGS was reinterpreted to more explicitly focus on the proposed evolution-like dynamics rather than constructing a brain-based device, as has been previously done (e.g., Edelman, 2007; Krichmar & Edelman, 2002; 2005; Krichmar, Nitz, Gally, & Edelman, 2005; Krichmar, Seth, Nitz, Fleischer, & Edelman, 2005; Seth & Edelman, 2007). One of the weaknesses of complicated constructions like brain-based devices is that they add numerous parameters that need to be tailored to the application, which can obscure the dynamics.
Two experiments were conducted to assess the TNGS’s quantitative viability. These experiments were chosen based on their importance and previous assessment of the ETBD. The first experiment (Chapter 3) assessed the TNGS’s quantitative viability as an account for human and animal behavior in environments that are unpredictably reinforcing and was a replication of McDowell and Popa (2010). The second experiment (Chapter 4) assessed the TNGS’s quantitative viability as an account for pigeon behavior when reinforcers are delivered unpredictably and of different magnitudes, which was a replication of McDowell et al., 2012). For the TNGS to be considered a viable account of human and animal behavior it must behave like them. The criteria for experiments one and two are based on our best understanding of how humans and animals behave in those situations.

[bookmark: _Toc536370663]Chapter 2: General Methods
	To assess the viability of the TNGS as an account of human and animal behavior it is necessary to translate it into a model. Previous simulation work with the ETBD will serve as the foundation for this approach, because it permits the cloning reproduction dynamic to be brought into sharp focus. Translating the TNGS into a model that is like the ETBD’s requires a thorough understanding of the ETBD and a detailed examination of the TNGS. By thoroughly examining the TNGS, it is possible to identify what dynamics it suggests, and to translate that into a set of possible models that can be evaluated.

[bookmark: _Toc536370664]2.1. ETBD Creatures
It is necessary to build models based on the ETBD to assess the theory and its application. These models will be referred to as ETBD creatures because they are artificial constructs that are based on the theory and that interact with their environments. Within simulations, ETBD creatures fill the same role that human and animal participants do in live experiments and are expected to behave like them. Any contradiction between the ETBD creature behavior and human or animal behavior indicates that the ETBD creature is a poor model. It is necessary to create ETBD creatures and simulate entire sequences of events, because each ETBD creature is a complex system with the outcome at each step in the chain of events being probabilistic rather than purely deterministic. 
The ETBD describes a rather abstract process and avoids discussing the underlying neurological mechanisms of behavior (McDowell, 2010). From an Aristotelian perspective of explaining behavior (Killeen, 2001), the ETBD explains behavior based on its final causes (i.e., the purpose of behavior) rather than its material causes (i.e., neurological mechanisms). The absence of a material explanation is why the ETBD is translated into models that have little similarity to neurology. A benefit of this is that the ETBD creatures are dramatically simpler than equivalent neural models, like TNGS-based models, because they are simply trying to model the dynamics rather than the exact mechanisms.

[bookmark: _Toc536370665]2.1.1. Representation of potential behaviors within the ETBD. Potential behaviors are represented within the algorithm as whole numbers, typically between 0 and 1023, and – simultaneously – the binary representation of those numbers. The whole number representation of a behavior is called its phenotype because it represents how the behavior is expressed in the environment (McDowell, 2003). The binary representation of a potential behavior is referred to as its genotype because it is never observed, but it is what the algorithm’s selection, reproduction, and variation dynamics act upon (McDowell, 2003). This makes the binary representation similar to genes in biological evolution in that they are the primary unit of change but are not directly expressed.
Prior to an experiment, the researcher identifies a group of functionally-equivalent behaviors – the target class. Within ETBD-based simulations, target classes are specified as a range of phenotype values that represent a set of behaviors having the same effect. For example, pressing the ‘A’ key on your keyboard could be an experimenter-defined target class of behaviors, and might be represented in the simulation as the phenotype range of 1 to 10. A participant in a real situation could functionally press the ‘A’ key with their fingers, with a pencil in their hand, or by asking someone else to press it. These behaviors have the same effect – an ‘A’ is typed – and are, thus, functionally equivalent. In the ETBD these behaviors would each have different but similar phenotype values because they have the same effect.
There is a clear relationship between the phenotype and the genotype, which is that the integer value is simply transformed into its binary representation, but there are also some nuances to this relationship. For example, the 10-digit binary – genotype – of the phenotype 127 is 0001111111 and the genotype of 128 is 0010000000. This example highlights an important nuance of the genotype-phenotype relationship; while phenotypes 127 and 128 are adjacent whole numbers, their genotypes are very dissimilar. To transform 0001111111 (phenotype 127) into 0010000000 (phenotype 128) it is necessary to flip the eight bolded bits from 0 to 1 or 1 to 0. The number of bits required to transform one binary number into another is called the Hamming distance between two numbers (Hamming, 1950).
Popa and McDowell (2010) showed that the Hamming distances between potential behaviors is a critical aspect of the ETBD’s functioning. They showed that the Hamming distance functions as a changeover delay, which is an important component of the environment. A changeover delay is typically implemented in experiments with more than one source of reinforcement to reduce switching between the target classes that are reinforced, and thus make them mutually exclusive. After switching from one target class to the other, the changeover delay imposes a waiting period that must elapse before the organism can gain reinforcement. This delay occurs after every switch, which means that if an animal continuously switches from one alternative to another then it would never receive reinforcement. In the absence of a changeover delay, animals frequently switch between the measured response alternatives (Herrnstein, 1961). The changeover delay may seem artificial at first, but it instead improves the experiment’s external validity. For example, the changeover delay has been found to be equivalent to the amount of time or effort that it takes to physically travel between locations where the animal can gain reinforcement (Baum, 1982), which is clearly related to concepts like foraging behavior. Since the Hamming distance between behaviors functions as a changeover delay it partially represents a physical property of the environment.
To summarize, each potential behavior consists of two pieces of information. The phenotype provides information about the function of behavior in an environment, and the genotype provides information about the ease of switching between groups of behaviors that are reinforced. While these are both important, it can be challenging when designing environments for ETBD creatures to interact with. The main difficulty is that, when determining which behaviors to reinforce, the experimenter must consider the time it takes to switch between an alternative – in binary – and how functionally similar behaviors are – as integers. While this is manageable, it is not intuitive.
	The overall process by which the population of potential behaviors adapts to the environment is shown in Figure 2-1. Each cycle of the algorithm – going through steps 1 through 5 – creates a new “generation” of behavior. The first two steps are very simple, but steps 3 through 5 are more complicated. For step 1, one potential behavior is plucked at random from the current generation of one hundred potential behaviors and the ETBD creature engages in that behavior. Step 2 is the ETBD creature receiving environmental feedback on that behavior. This feedback determines whether the algorithm moves to Step 3A – beneficial selection – or 3B – random selection. If the expressed behavior did not result in a beneficial outcome (Step 3B), then all potential behaviors in the population have equal influence on the next generation. If that behavior resulted in a beneficial outcome (Step 3A), then the fitness of all potential behaviors in the population are inferred from how similar they are to the expressed behavior. Those that are more like the expressed behavior have a greater influence on the composition of the next generation via reproduction (Step 4). 

[bookmark: _Toc536370666]2.1.2. Step 3A: Beneficial selection. The implementation of selection in the ETBD is very different from biological evolution. With biological evolution, selection typically occurs at the individual level; every organism in the population interacts with its environment, which determines whether it survives and reproduces. The organisms that survive and reproduce are fitter than those that don’t. Selection within the ETBD does not and cannot work this way. With every generation, only one behavior in the population engages with the environment, and the algorithm therefore needs to extrapolate the likely outcomes of other behaviors based on the consequences of only the behavior it just engaged in.
Algorithmically, the likely outcomes of potential behaviors are extrapolated via continuous probability density functions. This method of selection – continuous selection – is the only method of beneficial selection that has been used in published articles (Kulubekova & McDowell, 2008; McDowell, 2004; McDowell & Caron, 2007; McDowell et al., 2008; McDowell & Popa, 2010; McDowell, Popa, & Calvin, 2012; Popa & McDowell, 2010). The purpose of continuous selection is to select potential behaviors from the population that are like the behavior that immediately preceded a beneficial consequence. There are three variations of the continuous selection method that have been used to select potential behaviors, namely, uniform, linear, and exponential selection. For all three variations, the fitness value of each potential behavior is the phenotypic distance (i.e., absolute difference in its integer representation) from the last rewarded behavior that the ETBD creature engaged in. Behaviors are probabilistically selected from the population of potential behaviors based on the functions shown in Figure 2-2. The shapes of these three probability density functions are different, but they all prefer behaviors that are phenotypically close to the behavior that preceded a beneficial consequence. The exact equations that are used to create these functions are given in McDowell (2004).
The shapes of all three functions are defined by a single parameter, the selection function’s mean. In Figure 2-2, all three functions have the same mean of 40. The mean value of a function indicates its effectiveness at increasing the probability that the target behavior will be engaged in. Continuous selection function means are inversely related to the effectiveness of the reinforcer, with smaller means indicating greater changes in the population. This is analogous to the greater quantity or quality of a reinforcer being a more potent reinforcer, which is its reinforcing magnitude. The inverse of the mean, thus, indicates the reinforcer’s magnitude with smaller selection function means indicating stronger magnitudes and larger function means indicating weaker magnitudes.
	Two important properties of these functions are their upper limits and how behaviors are selected from these functions. The uniform and linear functions both have upper limits along the x-axis, which can be seen in Figure 2-2. Potential behaviors that are more than twice the uniform function’s mean value (e.g., 80 in Figure 2-2) cannot be selected, and potential behaviors that are more than thrice the linear function’s mean value (e.g., 120 in Figure 2-2) cannot be selected. The exponential function does not have an upper limit and can thus select any potential behavior from the population of potential behaviors, although behaviors that are distant from the emitted behavior are rarely selected. The process used to select behaviors using these functions is quite simple. Random fitness values are drawn from the continuous distributions until one is found that corresponds with the fitness of a behavior in the population. The selected behaviors are then used to create the next generation of behaviors via reproduction (Step 4 in Figure 2-1).
While effective under most circumstances, continuous selection functions poorly when reinforcers have a very large magnitude. The tiny mean of the selection function causes the function to be very steep. This is a weakness in that large amounts of computer processing time are wasted because the function oversamples too close to the reinforced behavior. In some circumstances, this can result in hours of processing time being spent trying to find a single behavior in the population. This occurs when there are just a few potential behaviors that are near the reinforced behavior and, thus, are unlikely to be selected by the continuous selection function. Linear and uniform continuous selection methods are particularly sensitive to this problem because of their upper limits. With large magnitudes there is a possibility that there is an absence of two behaviors – a requirement of bitwise recombination (Section 2.1.3) – within the function’s limits, which means that Step 4 in Figure 2-1 cannot occur because there are not enough behaviors that could be selected for reproduction. When this occurs, the experiment is typically restarted, but there are some other potential approaches to this problem. These weaknesses have become increasingly problematic as experimentation has been done with ever more extreme magnitudes.

[bookmark: _Toc536370667]2.1.3. Step 4: Reproduction.	The primary method of reproduction that has been used to date is bitwise recombination. With this method the genotypes of two potential parent behaviors are mixed to create a new child behavior. First, two of the behaviors that were selected in Step 3A or 3B are translated into their genotype formats (Figure 2-3). For each of the new child’s bits, a bit is randomly chosen from either of the parents. In Figure 2-3, the first, fourth, sixth, seventh, and ninth bits of the child behavior were randomly picked from the first parent and the rest came from the second parent. The resulting child behaviors have qualities that are like the parents, but the child behaviors are not identical to them.

[bookmark: _Toc536370668]2.1.4. Step 5: Variation. There are many possible methods of implementing variation within the ETBD, but the most frequently used method is bitflip-by-individual (see McDowell 2004 or McDowell & Caron 2007 for exceptions). With this method there is a probability that each child behavior will have some random variation added to its binary representation, which results in changes to its phenotype. The probability that variation will change a child behavior (i.e., the mutation rate) has been systematically varied in multiple experiments (McDowell, 2004; McDowell & Caron, 2007; McDowell et al., 2008; McDowell & Popa, 2010; McDowell, Popa, & Calvin, 2012). If the behavior is randomly chosen to be mutated, then 1 of its 10 bits is flipped from 0 to 1 or 1 to 0. In Figure 2-4, the eighth bit from the left of the new child behavior was flipped from 1 to 0. This only changed the phenotype of the behavior by 4. If the leftmost bit had been flipped instead, however, then the phenotype would have changed to 870, which is a phenotypic difference of 512. This method adds significant variation to the population of potential behaviors over the course of the experiment.

[bookmark: _Toc536370669]2.2. Translating the TNGS to the ETBD: Three Algorithmic Variations
The TNGS conceptualizes the nervous system as being composed of primary and secondary repertoires of behavior (Edelman, 1987). The TNGS’s primary repertoire specifies the evolutionarily adaptive behavioral capacities that an organism develops during synaptogenesis and pruning. These behavioral capacities are presumed to have evolved over time to be adaptively advantageous and are considered innate elements of the nervous system. Within behavioral analysis, these capacities are like the older concepts of modal action patterns and reflexes, but this theory is a mechanistic explanation for them. The primary repertoire enables behaviors like limb movement, reproductive behavior, and vocalizations, but does not adaptively determine which behaviors the organism will do. This responsibility is instead the secondary repertoire’s, which controls the dynamics of behavior. The secondary repertoire does this by tapping into the behavioral capacities that the primary repertoire provides and then modifying the probabilities of engaging in the behaviors by altering synaptic connections at the neural group level. Neural groups are large clusters of interconnected nerve cells that receive stimuli from other neurons and generate output that is translated into behavior through the primary repertoire.
	Both repertoires translate relatively directly into the ETBD. The ETBD’s range of behavioral phenotypes and the phenotype-genotype relationship of the ETBD’s behaviors are analogous to the primary repertoire in that they establish the ETBD creature’s behavioral capacities and their relationship to the environment. The secondary repertoire directly translates to the ETBD’s population of potential behaviors in that both specify the adaptive probabilities that certain behaviors will be engaged in at different times. The challenging part of this translation is how the TNGS’s dynamics map onto the ETBD’s.
	Secondary repertoire dynamics are, unfortunately, unclearly presented in genetic algorithm terms within Edelman’s writings (Crick, 1989, McDowell, 2010; Edelman, 1987). This lack of evolutionary dynamic clarity has permitted extensive freedom of interpretation of the theory’s dynamics (Carlton & Shane, 2014; Crick, 1989; Fernando, Karishma, & Syathmary, 2008; McDowell, 2010). The selection dynamics are the most straightforward with neuronal groups that fire together becoming bound together when they are predictively useful. The design of the primary repertoire is such that neuronal groups that are proximally located tend to be highly connected and, thus, more likely to fire together (visually represented in Edelman 1987’s Figure 7.5). This conceptually maps well onto the ETBD’s abstraction of the selection function preferring similar phenotypes (Figure 2-2), but it does not suggest any particular selection function form. The reproduction dynamics of the TNGS have been argued to be most like cloning or asexual reproduction (Crick, 1989; Fernando, Karishma, & Syathmary, 2008; Fernando, Goldstein, & Syathmary, 2010; Fernando, Szathmary, & Husbands, 2012; McDowell, 2010). However, different authors have focused on different mechanisms for this type of reproduction. Crick and Edelman both emphasized the adaptive strengthening of neuronal group connections as a form of selectionism (Crick, 1989; Edelman, 1987), whereas Fernando emphasized the direct replication of entire neuronal groups (Fernando, Karishma, & Syathmary, 2008; Fernando, Goldstein, & Syathmary, 2010; Fernando, Szathmary, & Husbands, 2012). Fernando, Szathmary, and Husbands (2012) classified the TNGS as a “parallel search with competition” model, which describes how the neuronal groups compete with one another to control behavior but do not directly inform each other. The lack of information conveyed between neuronal groups means that replication is best described as a direct amplification of the neural patterns that led to the behavior, rather than as the ETBD’s sexual-like reproduction of behaviors, because there is no combining of neuronal groups. The TNGS’s variation dynamic can be found as either imperfect replication of neuronal groups (Fernando, Karishma, & Syathmary, 2008; Fernando, Goldstein, & Syathmary, 2010) or randomness in connection strengthening (Edelman, 1987; Crick, 1989). Edelman modelled this randomness as a Gaussian noise generator that influenced the state of neuronal groups (e.g., Edelman, 1984, pp. 273-274), which in turn modified the degree of connection strengthening and weakening. The Gaussian noise generator is a common element of neural networks and is not unique to the TNGS. Within the ETBD, this dynamic could jointly be considered the randomness of the selection process and the bit-flip-by-individual mutation method. The TNGS does not strongly suggest a genotypic mutation method like bit-flip-by-individual mutation, however. Rather, the organization of the primary repertoire could equally suggest a phenotype-based mutation method, which was explored in early ETBD simulations (McDowell, 2004; McDowell & Caron, 2007).
These similarities suggest three major variations to the ETBD algorithm that are of practical and theoretical interest. The most important task is to evaluate whether reproduction by cloning is a viable alternative to the sexual-like reproduction that has been explored with the ETBD. In addition to this being an important theoretical issue, it is algorithmically simpler than bitwise recombination, and is a more direct interpretation of reinforcement. The second variation is phenotypic variation because the TNGS does not strongly suggest genotypic variation – as the ETBD currently functions. Of secondary interest with this variation is that it would eliminate the genotype-phenotype distinction of how behaviors are represented, which could conceptually streamline the ETBD. The third variation is a modification of continuous selection, which is of practical interest because it does not have the large-magnitude problem that can be problematic with cloning-based ETBD models. In summary, this project seeks to evaluate novel variations of selection, reproduction, and variation that may further the theoretical development of the ETBD and the TNGS.

[bookmark: _Toc536370670]2.2.1. Algorithmic variant of step 4: Cloning reproduction. Cloning, or asexual reproduction, is the simplest method of reproduction and is easier to conceptualize than bitwise recombination. With this method, selected parent behaviors are simply copied to produce new child behaviors for the next generation. Behaviors that were beneficial become more likely to occur in the future, which is, essentially, Thorndike’s law of effect (1898) and the definition of operant reinforcement. If cloning generates behavior like living organisms, then it would suggest that bitwise recombination (Section 2.1.3) is not a required mechanism of the ETBD.

[bookmark: _Toc536370671]2.2.2. Algorithmic variation of step 5: Phenotypic variation. Phenotypic variation adds novel behaviors to the population by acting on the phenotypes of the behaviors, rather than on their genotypes. Besides the relevance to the TNGS, this method – when combined with cloning reproduction – would result in there being no need for the phenotype-genotype distinction of behavioral representation. The algorithm would represent behaviors only as integers rather than the more complex representation of behaviors as simultaneously bit strings and integers. With this method, behaviors with more similar integer values are easier to switch between and have similar effects on the environment.
	Discarding the genotype-phenotype distinction simplifies the design of simulated environments and their interpretation. With our previous research, it has been necessary to define target classes at very specific locations. These locations have been where the two target classes are most different in their binary representations (Popa & McDowell, 2010). For example, the two groups of behaviors that are reinforced have typically been defined as the integer ranges (i.e., phenotype ranges) of 471 to 511 and 512 to 552. While adjacent to each other phenotypically, 511 is maximally different from 512 in their binary representations; 511 is represented as 0111111111 and 512 as 1000000000, which is a Hamming distance of 10. The presence of behaviors that are very genotypically different within a target class also has significant effects on the behavior of ETBD creatures (Popa & McDowell, 2010). Removing the genotype-phenotype distinction makes the environment simpler to define and design because only phenotypes need to be considered.
Phenotypic variation is not a novel implementation of ETBD creatures. Gaussian mutation is a method of phenotypic variation that was used in the earliest research with the ETBD (McDowell, 2004; McDowell & Caron, 2007). With this method, each potential behavior has a probability that it will be changed. If changed, then a number is generated from a Gaussian distribution and added to that behavior’s integer representation (i.e., phenotype). If the behavior mutates outside the permissible range of behaviors, then it is moved to the opposite end of the range. For example, if the range of behavior is from 0 to 1023 (i.e., the range permissible with 10 bits) and a child behavior is mutated outside of this range to 1025 then it would become 2 (1025 – 1023).
In addition to this method, the continuous selection functions have inspired an additional three methods of phenotypic mutation, which are displayed in Figure 2-5. While the following phenotypic mutation methods are based on the same probability density functions used in continuous selection, they have been modified to generate both positive and negative values from a single random number. These functions are:
Uniform:		
Linear:		
Exponential:		
In these equations ΔP is the change in the integer representation of the behavior, µ is the mean of the absolute value of the ΔP function, and r is a random decimal value. Based on these distributions, a ΔP will be randomly drawn that will be added to the current integer representation of the behavior. For the experiments conducted in this dissertation, the absolute means of the uniform, linear, and exponential continuous mutation methods were set to 50, as was the standard deviation of the Gaussian continuous mutation method. The Gaussian standard deviation is twice that of previous research (McDowell, 2004; McDowell & Caron, 2007), and was so chosen on the basis of pilot data to make the mutation rate more like bitflip-by-individual mutation rates (discussed in Section 2.1.4).

[bookmark: _Toc536370672]2.2.3. Algorithmic variant of step 3A: Roulette-continuous selection. Roulette-continuous selection is a new method of selection for the ETBD that has some practical benefits. It is a combination of continuous selection (discussed in Section 2.1.2) and roulette-wheel selection (Goldberg, 1989). In the context of the ETBD, roulette-wheel selection would choose parent behaviors from the population based on their fitness values, with the likelihood that a behavior will be selected being equal to its fitness value divided by the sum of all fitness values within the population of potential behaviors. For example, if a behavior has a fitness value of 15 and the sum of all fitness values in the population is 100 then there is a 15% chance that that behavior will be selected for reproduction. This method of selection can be easily imagined as a roulette wheel with the relative fitness indicating what percentage of the wheel is associated with each behavior of the population. If the wheel were spun it would come to rest on the area of one behavior, with the behaviors that have greater areas being more likely to be randomly chosen.
Like most genetic algorithm methods of selection that were not designed for the ETBD, roulette-wheel selection assumes that all elements of the population have been assigned a fitness value by interacting with the environment. This is not the case with the ETBD, which must instead extrapolate the fitness of behaviors that were not emitted. Because roulette-wheel selection requires that fitter behaviors have higher values, it is necessary to develop a new definition of fitness for this method. It is simplest to incorporate the continuous selection’s method of assigning fitness values into roulette wheel selection, because it creates a property of behaviors that becomes larger as they become more like the reinforced behavior. This requires measuring the area under the curve of the fitness functions (Figure 2-2), which can be calculated by integrating the functions. Rather than defining fitness as the distance from the last emitted behavior, fitness will be more directly defined as the probability that a behavior would be selected for reproduction.
By integrating the functions used to produce the curves used in Figure 2-2, it is possible to calculate the exact probability that a potential behavior would be randomly selected in a single sampling. Without going into their derivation, the definite integrals that need to be calculated for each of the continuous function methods are:


.
In these equations x is the absolute distance of the potential behavior from the emitted behavior and µ is the mean of fitness function. The uniform and linear functions are limited because they do not extend infinitely like the exponential does. The uniform function is limited to twice its mean and the linear to thrice its mean. Any potential emitted behavior that is outside these bounds has zero probability of being selected.
This combination of roulette-wheel and continuous selection can be termed roulette-continuous selection. Figure 2-6 illustrates how this method would be used with a tiny population of three potential behaviors. The phenotypic integer distance of behaviors 1, 2, and 3 from the reinforced behavior are 5, 20, and 30. The probability of selection becomes smaller as we go from potential behaviors 1 to 2 and from 2 to 3 as is indicated by the area under of the curve for each behavior. If the shaded portions are turned into a single wheel, then it would look like the roulette-wheel that is shown in the top right of Figure 2-6. Since the area of behavior 1 is roughly equal to the combined size of behaviors 2 and 3, it takes up half of the wheel’s area. Similarly, behaviors 2 and 3 have progressively smaller areas and take up less of the wheel. We would select a single behavior by spinning this wheel and a pointer would come to rest on one of those 3 behaviors.
	Roulette-continuous selection has advantages over continuous selection. While it is computationally more intensive to calculate the areas under the curve for each behavior than to just measure the difference between behaviors in the population, it does not suffer from the large magnitudes (i.e., small fitness density function means) problem. If there are potential behaviors in the population that are within the limits of the function, then roulette-continuous selection will operate without issue. This is guaranteed with cloning reproduction because the behavior that was emitted and resulted in reinforcement will always be within the function’s range. Another important element of this method is that it maintains the forms of continuous selection, which connects it to previous research. Despite the computational intensity of calculating areas under the curve, roulette-continuous selection is a more efficient algorithm. Drawing random numbers – as continuous selection does – is a computationally more intensive task than calculating the probability of each behavior via integrals. Roulette-continuous selection only requires that one random number be drawn for each behavior rather than the expected average of 10 (the range of phenotypes – 1024 – divided by the population size of 100) for the continuous selection function method. 

[bookmark: _Toc536370673]2.3. Virtual Environments
	The simulated environments that the ETDB creature will be interacting with must be defined prior to experimentation. This is a critical aspect of modelling because it delineates what the researcher believed was relevant to the situation being examined. The inappropriate addition or omission of a critical component to the environment can produce results that have poor external validity because the reality of the situation was not modelled. Critical assumptions about how environments were designed for the experiments of this dissertation will be identified and briefly discussed.
	For both experiments only two target classes are defined. These two target classes established which emitted behaviors were reinforced. All previous studies that have examined ETBD behavior in concurrently reinforcing environments have been conducted with just two target classes (Kulubekova & McDowell, 2013; McDowell et al., 2008; McDowell & Calvin, 2015; McDowell & Klapes, 2018; McDowell & Popa, 2010, 2016; McDowell, Popa, & Calvin, 2012; Popa & McDowell, 2010). A potential limitation to this design’s external validity is that matching law theory (Herrnstein, 1970) assumes that there are other reinforced behaviors that a participant engages in that are not measured by the experimenter, and this assumption also holds for concurrent schedules. While the experiments described in this dissertation followed the typical design for concurrent environments that have been conducted in the past, this design may lack external validity because there is no simulated unscheduled reinforcement which would exist in any experiment or real-world situation. Given the ratio form of Equation 1.0, however, it is assumed that the unmonitored behaviors and unmeasured reinforcers would cancel out and thus not affect the results.
	For the simulations, reinforcers were provided on random-interval (RI) schedules, which are idealized Fleshler and Hoffman (1962) VI schedules (McDowell et al., 2008). On VI schedules, reinforcers become available to the participant after variable periods of time have elapsed since the last reinforcer was collected (Ferster & Skinner, 1957). RI schedules are only different in that new intervals are created as the experiment is conducted, which is a minor distinction, but it does prevent the participant from potentially identifying reinforcement patterns that could exist with poorly preconstructed VI schedules. The random intervals were drawn from an exponential distribution (Fleshler & Hoffman, 1962). Exponential distributions are useful for eliminating the confound of memory, because the probability that a reinforcer will become available does not change as time elapses (Fleshler & Hoffman, 1962; Catania & Reynolds, 1986). For example, if the RI mean is 10 seconds then there is a 50% chance that the reinforcer will become available within the next 10 seconds. If the reinforcer does not, however, become available within that first 10 seconds, then there is still a 50% chance that it will become available within the next 10 seconds, and so on. As long as no reinforcer has become available then the likelihood that it will become available within the next 10 seconds is the same regardless of how much time has elapsed.
	A necessary component of concurrent VIVI schedules for them to produce behavior that follows the matching law is a changeover delay (COD). A COD prevents the participant from immediately receiving a reinforcer when they switch from one target class to the other (Findley, 1958; Herrnstein, 1961; Ferster & Skinner, 1957). Herrnstein (1961) demonstrated that the absence of a COD results in frequent switching between target classes – a changeover – and that the behavior is less well controlled by the environmental contingencies. The concept of CODs has been further explored, and it was found that CODs can be any type of punisher or cost for switching between target classes and are not limited to simply imposing a delay in obtaining reinforcers (summarized by Baum, 1982). These costs encourage participants to remain in one target class rather than switch, which makes their behavior more strongly controlled by the reinforcing contingencies.
	Implementing CODs for ETBD creatures is complicated by the genotype-phenotype distinction. Popa and McDowell (2010) found that the Hamming distance between behaviors was the most analogous characteristic of ETBD simulations to a COD. The Hamming distances between target classes and within target classes controlled what the exponent in Equation 1.0 would be, which is consistent with how CODs work with humans and animals. A rough rule is that the Hamming distance between target classes minus the Hamming distance within the target classes must be greater than 3 for the matching law exponent (Equation 1-1) to be within the range of what is typical of experiments (Popa & McDowell, 2010). The two target classes for ETBD creature experiments in the concurrent RI RI schedule environment are most often located at 471 to 511 and 512 to 552 (Kulubekova & McDowell, 2013; McDowell et al., 2008; McDowell & Calvin, 2015; McDowell & Popa, 2010, 2016; McDowell, Popa, & Calvin, 2012; Popa & McDowell, 2010). This was the location of the target classes for ETBD creatures that used bitflip-by-individual mutation (Section 2.1.4) for Step 5 of the ETBD algorithm (Figure 2-1). With phenotypic mutation (Section 2.2.2), the target classes need to be separated phenotypically, because a short phenotypic distance like 471 to 511 and 512 to 552 will have excessively frequent changeovers. The target classes, thus, needed to be phenotypically separated, and the target classes of 225 to 275 and 725 to 775 were chosen for this reason. The mutation mean of the phenotypic mutation methods was set to 50 on the basis of pilot data and the expected average of 10 mutations in one direction to switch between target classes. This number of mutations is analogous to bitflip-by-individuals average number of bit flips that are needed to go from one target class to another.

[bookmark: _Toc536370674]2.4. Apparatus
I wrote the software that was used to conduct the experiments, which were all conducted on a computer using the Windows 10 operating system. The computer used for experimentation had a dual core 2.3 Ghz processor with 8 GB of RAM. The ETBD and laboratory code were written in VB.Net 2015, which is a common programming language. The timing, emitted behaviors, and reinforcement counts were recorded and stored in standard databases (i.e., XML files and Microsoft Excel). Data were analyzed using standard software (i.e., Microsoft Excel & R).


[bookmark: _Toc536370675]Chapter 3: ETBD and TNGS Behavior on Concurrent RI RI Schedules
For new theories to be considered strong alternatives to existing ones, a new theory either must account for more phenomena or better predict phenomena than existing theories (Hempel & Oppenheim, 1948; Killeen, 2001; Platt, 1964; Popper 1959; Staddon & Bueno, 1991). The ETBD has already demonstrated that it can explain a wider range of phenomena than the matching law (Equation 1-1; for review see McDowell, 2013a), which suggests that it may be a better account of operant behavior. The first steps that were taken to assess the ETBD’s viability as an account of human and animal operant behavior consisted of examining its performance on single RI and concurrent RI RI schedules (McDowell, 2004; McDowell & Caron, 2007; McDowell et al., 2008). Because the TNGS’s sustained operant behavior has not been assessed, those same experiments provide an opportunity to assess its viability as a quantitative account of behavior. The clinical relevance of behavior in those circumstances is another reason why single RI and concurrent RI RI schedules are a good starting point (Section 1.4). Fortunately, a single experimental design can simultaneously assess a model’s explanatory viability for both concurrent RI RI and single RI environments (McDowell & Popa, 2010).

[bookmark: _Toc536370676]3.1. Matching to Rates of Reinforcement on Single Schedules
	Two separate equations that are based on the matching law are used to describe human and animal behavior in concurrent RI RI and single RI environments. Behavior on concurrent RI RI schedules is typically described with the modern matching law (Equation 1-1; Section 1.1) and a derivation of it is fitted to behavior on single RI schedules. The derivation entails theoretical assumptions that make it distinctly different from the matching law because it ascribes more characteristics to the participant and the environment than the matching law. The original derivation was based on the original matching law equation (Herrnstein, 1961), which is like Equation 1-1 but expresses behavior and reinforcement as proportions and omits the a and b parameters. The original matching law equation is
[bookmark: Eq3_1]					(3-1)
where B is the rate of behavior, R is the rate of obtained reinforcement, and the subscripts indicate the target classes. This equation is strictly inferior to the modern matching law (Equation 1-1) as a description of human and animal behavior (for review see McDowell, 2013b). Both Equations 1-1 and 3-1 are limited in that they only apply to the specific circumstance of two target classes. This dramatically limits their external validity because natural environments may reinforce any number of behaviors, not just behaviors that neatly fall into two target classes.
[bookmark: _Hlk534288617]Herrnstein addressed this limitation by making two important assumptions (1970). The first assumption is that humans and animals engage in behaviors at a constant rate, and the second is that the environment reinforces behaviors outside of the target classes at constant rates. By making these assumptions a new equation could be derived that extended the matching law to any number of target classes. This equation is called the quantitative law of effect because it was a quantitative interpretation of Thorndike’s law of effect (1911). The quantitative law of effect is expressed as 
[bookmark: Eq3_2],						(3-2)
where B is the rate of behavior, R is the obtained rate of reinforcement, k is the estimated constant total rate of behavior, re is the estimated rate of unmeasured reinforcement, and i identifies the target class. In theory, k represents the sum of all rates of behavior, ΣBx, and re represents the sum of all rates of reinforcement, ΣRx, minus the rate of reinforcement from the target class, Ri (i.e., re = ΣRx - Ri).
An alternative to the quantitative law of effect that makes the same assumptions but is derived from the modern matching law is 
[bookmark: Eq3_3] 						(3-3)
(Dallery et al., 2005; McDowell, 1986, 2005; Soto et al., 2005). B, R, k, re, and i have the same meanings as in Equation 3-2. The parameters a and b have similar, but not identical, interpretations to Equation 1-1, which is that a is the sensitivity to the rate of reinforcement and bi reflects relative preference for the identified target class over all other measured and unmeasured target classes. When fitted to data, re and b cannot be separately estimated and are, thus, combined into the parameter c (Dallery et al., 2005; McDowell, 2005; 2013b; McDowell & Calvin, 2015). With the substitution of c, Equation 3-3 becomes 
[bookmark: Eq3_4] 	   					(3-4)
In a recent review, Equation 3-4 was found to provide a better description of behavior on single alternative schedules than Equation 3-2 (McDowell, 2013b).
In Equations 3-2, 3-3, and 3-4, the parameters k and re represent information that the researcher can only indirectly and uncertainly assess during an experiment. For example, an important caveat to k representing the sum of all behaviors is that all behaviors are of the same form and effort (Herrnstein, 1970). This requires the interpretation of k in terms of target-class-equivalent behaviors even when the unmeasured behaviors are dramatically different. The estimated values are an amalgam of effort, cost, frequency, and other qualities that are roughly equivalent to the measured behavior. If typing was the target class, then k is measured in typed words per minute despite the forms of the unmeasured behaviors diverging from that (e.g., grading, cooking, or socializing). In this way k is like measuring the worth of everything in a grocery store in terms of apples, so its validity is difficult to assess. Similarly, the parameter re is the sum of reinforcement rates and has the same measurement caveat as k inasmuch as the value is relative to the measured reinforcers. Unsurprisingly given these caveats, researchers have heavily critiqued Equation 3-2 despite its utility (Baum, 1981; 2012; Baum & Davison, 2014; Dallery, McDowell, & Lancaster, 2000; Dallery, McDowell, & Soto, 2004; Dallery, Soto, & McDowell, 2005; Davison, 1993; McDowell, 2005; 2013b; McDowell & Dallery, 1999; McDowell & Calvin, 2015; Pear, 1975).
	The primary criticism of Equation 3-2 is that Herrnstein’s first assumption – that the rate of behavior, k, is constant – is refuted by data. Numerous studies have found that k varies with the size or quality of the reinforcers (Dallery et al., 2000; 2004; 2005; McDowell, 2005; 2013a; McDowell & Dallery, 1999). The impact of a reinforcer on future behavior is often called its magnitude and it can refer to either the quality (e.g., sucrose concentration) or quantity of the reinforcer. Dallery et al. (2004; 2005) and McDowell (2005) found that k estimates of human and rat behavior changed with the reinforcers’ magnitude. McDowell (2013) revised his opinion, however, when he conducted a more powerful reanalysis of McDowell and Dallery (1999). McDowell concluded that their experiment lacked the statistical power to determine whether k varied with reinforcer magnitude. This lingering uncertainty about k’s constancy led to the development of an ETBD simulation which predicted that k varies with the reinforcer’s magnitude (McDowell & Calvin, 2015). This seemed to be confirmed when McDowell et al. (2017) reanalyzed McDowell and Dallery (1999), again, using a new statistical approach and concluded that k did vary. However, the statistical technique they used was novel (McDowell, Calvin, & Klapes, 2016) and overly focused on residuals being homoscedastic. It would be better if a new experiment was conducted that were more clearly identify differences in k values with reinforcer magnitude using traditional statistical approaches.
To assess the viability of the TNGS it is necessary to see what patterns of behavior it predicts and assess whether that pattern is like those produced by humans and animals. The criteria of a successful simulation of human and animal behavior in concurrent RI RI and single RI environments are multifaceted. The first criterion is that the simulation must result in patterns of behavior that are better described by the modern versions of the matching law (Equation 1-1) and quantitative law of effect (3-4) than their original versions (Equations 3-1 and 3-2), which is supported by McDowell’s review (2013b). Secondly, the parameters found with Equations 1-1 and 3-4 must be consistent with those found with humans and animals in single-RI and concurrent-RI RI environments. The average exponent value must be near 0.8 (Baum 1974, 1979; McDowell, 1989, 2013b; Myers & Myers, 1977; Wearden & Burgess, 1982), although a range of 0.7 to 0.9 is permissible inasmuch as the 0.8 criteria is a rough estimate that has not been thoroughly assessed via meta-analysis. Additionally, the bias parameter should reflect differences and similarities in reinforcer magnitudes. If a reinforcer is stronger for one target class than another, then the bias parameter should favor that side. If the reinforcers’ magnitudes are equivalent across target classes, then the bias parameter should favor neither target class (i.e., have a value of 1). Thirdly – but to a lesser extent because it is under examined – the rate of switching between target classes should be greatest when the rate of reinforcement is equivalent for the two target classes and smallest when the rate of reinforcement strongly favors one target class over another (Alsop & Elliffe, 1988; Baum, 1974; Brownstein & Pliskoff, 1968; Herrnstein, 1961). If a simulation meets these criteria, then it would indicate that it is in accordance with animal and human behavior in similar situations.
Another goal of this experiment was to assess whether the TNGS makes the same predictions as the ETBD (McDowell & Calvin, 2015). The purpose of this simulation was to determine which interpretation of the matching law the ETBD predicted. As proposed by McDowell (2013b), matching theory can be separated into four categories based on the form of the equation and assumptions about k. These are the classical response-strength, classical algebraic, modern response-strength, and modern algebraic interpretations. The first classification entails the equation’s form (classical vs. modern) and refers to whether behavior is best described by the classic quantitative law of effect (Equation 3-2) or the modern quantitative law of effect (Equation 3-3). The second classification is whether the parameter k has the same value in all situations or if it can vary across situations. This entails whether the theory that underlies the quantitative law of effect – Herrnstein’s assumptions (1970) – is supported by the data or if the equation should be viewed simply as being an algebraic description. This was assessed in the McDowell and Calvin (2015) simulations by holding the magnitude of reinforcement for one target class constant while varying the magnitude of the other target class. If Herrnstein’s assumptions were correct, then the parameter k should always be the same regardless of the target class’s magnitude. 
 McDowell and Calvin (2015) found that the typically used version of the ETBD predicts that behavior is best described by the modern quantitative law of effect (Equation 3-3), but that Herrnstein’s assumptions were not supported by the data (i.e., the modern algebraic interpretation). The best descriptor of behavior was a version of the modern quantitative law of effect that allowed the k and c parameters to vary across magnitudes. For the new models to make the same predictions, the best descriptors of their behavior should also find that the k parameter values vary with reinforcer magnitude. This is not a strict criterion because it needs to be more strongly verified than in McDowell et al. (2017), but it is important to identify deviations in theory predictions because they can inform the development of critical experiments (Platt, 1964).

[bookmark: _Toc536370677]3.2. Methods
[bookmark: _Toc536370678]3.2.1. Participants. Twelve different simulated creature types were assessed and are listed in Table 3-1. These twelve creature types are various combinations of the selection, reproduction, and variation algorithm methods that were possible implementations of the TNGS and ETBD. For the sake of conciseness, the abbreviated simulated creature names that are listed in the table will be used in the text and figures. In the abbreviated format, the first word is the form of the selection function, the second is the method of reproduction, and the last is the method of variation. This considerably improves readability because describing a creature’s algorithm as “linear-bitwise-bitflip” is much briefer than “continuous-linear selection, bitwise reproduction, and bitflip-by-individual variation” while conveying the same meaning.
The twelve types of simulated creatures can be organized by their relationship to the TNGS and ETBD. The first two simulated creatures that are listed in Table 3-1 under the ETBD-based heading (linear-bitwise-bitflip and exponential-bitwise-bitflip) are comparison models and are replications of the same ETBD algorithms that have been used in previous research. These were included to identify problems with the simulation and differences between the TNGS and – as previously implemented – the ETBD. The two versions of the TNGS that are genotype based (Table 3-1; linear-clone-bitflip and exponential-clone-bitflip) maintain the distinction between the behavioral genotype and phenotype, whereas the remaining eight that are phenotype based only represent behaviors as phenotypes. Please note that, the dissertation proposal only suggested using the exponential selection function but – for reasons that will become apparent in the second experiment – the creature types that used linear selection functions had to be added. This was unanticipated and doubled the size of this experiment. While the linear and exponential replications are presented together, the true order of events was that the simulations with the six creature types that used the exponential selection function were conducted first and then later the simulations with the six creature types that used the linear selection function were conducted.
[bookmark: _Hlk533769704]	The mutation rate for all creature types was systematically manipulated from 5% to 20% in steps of 2.5%. This gave seven rates of mutation, which were 5%, 7.5%, 10%, 12.5%, 15%, 17.5%, and 20%. At each combination of creature type and mutation rate ten creatures were simulated, and each creature worked on 208 concurrent RI RI schedules for 20,500 time steps per schedule. This resulted in 298,480,000 simulated behaviors (7 mutation rates • 10 creatures • 208 schedules • 20,500 time steps) for each creature type, so great confidence can be placed in the observed patterns of behavior being representative of that creature type’s predictions. Since there were twelve different types of simulated creatures, this experiment represents a total of 3,581,760,000 simulated behaviors that were produced by 840 simulated creatures.

[bookmark: _Toc536370679]3.2.2. Procedures. This experiment’s procedures generally followed McDowell and Popa (2010) but deviated in some minor respects. All simulated creatures worked on 52 concurrent RI RI schedules (Table 3-2) at four different reinforcer magnitude pairs, which gives a total of 208 schedules of reinforcement. At each reinforcer magnitude pair, the 52 schedules were presented to the simulated creature in a random order. This wide range of concurrent RI RI schedules is necessary for simultaneously fitting the modern quantitative law of effect (Equation 3-4) and modern matching law (Equation 1-1), because the two equations have different fitting requirements. The modern matching law requires a wide range of reinforcement ratios, whereas the modern quantitative law of effect requires a wide range of obtained reinforcement rates.
The 52 schedules of this experiment deviated from McDowell and Popa’s 54 schedules (2010) to better sample the lean range of concurrent RI RI reinforcement rates (i.e., RIs between 20 and 80 time steps). The random-interval means ranged from 2.5 to 80 time steps, which is slightly wider than McDowell and Popa’s 1 to 70 (2010). The range of scheduled RI ratios was slightly more restricted in this experiment with its largest ratio being 1:4, whereas it was 1:5 in McDowell and Popa (2010). The 52 schedules were constructed by creating 4x4 grids of reinforcement ratios at RIs 2.5, 5, 10, and 20 time steps. Each grid was created by multiplying those interval rates by the ratios 1:1, 1:1., 1:2, 1:4, 1., 1, 1.: 1., 1.:2, 1.:4, 2:1, 2: 1., 2:2, 2:4, 4:1, 4:1., 4:2, and 4:4 (visualized in Figure 3-1). This method provides an even sampling of the rate of reinforcement domain, which McDowell and Popa’s (2010) experiment lacked. McDowell and Popa sampled the richest rates of reinforcement (i.e., RIs 1 through 10) with many ratios, whereas they only sampled the lean schedules (i.e., RIs 20 to 80) at a 1:1 ratio.
	At each mutation rate, the simulated creatures were assessed at 4 pairs of reinforcer magnitudes. The reinforcer magnitude pairs were fitness density function mean pairs of 20 & 20, 40 & 40, 60 & 60, and 80 & 80. Recall that fitness density functions means are inversely related to their reinforcing magnitudes; for example, a fitness density function mean of 20 represents a greater reinforcer magnitude than a mean of 80.

[bookmark: _Toc536370680]3.2.3. Analyses.
[bookmark: _Toc536370681][bookmark: _Hlk533770290]3.2.3.1. Data pooling and averaging. Simulated behavior during the first 500 time steps of each schedule was excluded from analyses to assess each simulated creature type’s steady-state behavior rather than behavior during transition. Observed reinforcement and behavior frequencies during the remaining 20,000 time steps were divided by 500 time steps to create rates of reinforcement and behavior. These rates were then averaged across simulated creatures of the same type as a precaution against individual creatures becoming stuck in unrepresentative local minima. In summary, each data point represents 200,000 behaviors from 10 simulated creatures.
 
[bookmark: _Toc536370682]3.2.3.2. Weighted ensemble fitting. To estimate parameter values for the matching law and quantitative law of effect it is necessary to simultaneously fit both equations while using the same parameter values (McDowell, 2005). In total, it was necessary to simultaneously fit three equations: the modern quantitative law of effect to the first target class, the modern quantitative law of effect to the second target class, and the modern matching law to the ratio of the two target classes. The theoretical formulations of the modern matching law (Equation 1-1) and quantitative law of effect (Equation 3-3) are inadequate for fitting data because b cannot be estimated for the quantitative law of effect and re cannot be estimated for the modern matching law. The parameter c from Equation 3-4, captures both elements, however, and thus can be used to create an important equality that bridges the two (McDowell, 2005). The c parameter for each target class represents the extraneous rate of reinforcement to the power of a divided by the bias towards that side. Since c1 represents rea/b1 and c2 represents rea/b2, the ratio of those c estimates represents bias in the modern matching law equation because rea cancels out (i.e., c2/c1 = b).
Based on this, the modern matching law and quantitative law of effect equations were modified to forms that are better suited for data analysis (McDowell, 2005; McDowell & Calvin, 2015; McDowell & Popa, 2010). To highlight the relationship between these equations and their theoretical counterparts they are designated by their base equation with a prime added to it. The modern matching law is typically log transformed to make it a linear equation, which gives
[bookmark: Eq1_1Prime]				(1-1′)
The modern quantitative law of effect must be simultaneously fitted to both target classes by using the equations
[bookmark: Eq3_4aPrime]				(3-4a′)
and
[bookmark: Eq3_4bPrime] 				(3-4b′)
(McDowell, 2005; McDowell & Calvin, 2015; McDowell & Popa, 2010). The parameters in these three equations are the same as those in the modern matching law (Equation 1-1) and quantitative law of effect (Equation 3-4).
	The effect of the free parameters on the shape of Equations 3-4a′ and 3-4b′ are shown in Figure 3-2[footnoteRef:3]. The unbroken black line serves as a reference for the effects of changing k, c, and a. The dashed line shows the effect of reducing k, which is that it lowers the function’s asymptote. The dotted line shows the effect of increasing c, which is that it takes longer to reach the asymptote. It is important to note that c is the rate of reinforcement that predicts a rate of responding that is half of k (Bradshaw, Szabadi, & Bevan, 1976). For example, in Figure 3-2, when the rate of reinforcement is 50 along the dotted line, then the predicted rate of behavior is 250. The dot-dash line shows the effect of undermatching (i.e., a less than 1). The effect of an a value less than one is like increasing c in that reduces the rate of ascent to the asymptote. However, it has less of an effect at low rates of reinforcement and a greater one at high rates of reinforcement. [3:  For the sake of clarity, Figure 3-2 shows the predicted rate of responding for one target class when there is no reinforcement from the other target class, which means that Equations 3-4a′ and 3-4b′ can be simplified to Equation 3-4. The true shape of Equations 3-4a′ and 3-4b′ is three dimensional with the axes being the rate of reinforcement from the 1st target class, the rate of reinforcement from the 2nd target class, and the rate of behavior. The effects of the free parameters that are described by this paragraph are not significantly affected by the rate of reinforcement in the 2nd target class.] 

The simultaneous fitting of Equations 1-1′, 3-4a′, and 3-4b′ complicates the analysis in a way that precludes ordinary least squares (OLS) fitting (McDowell, 2005). OLS is a poor fitting method in this case because it cannot account for B1, B2, and B1/B2 sample variance differences, which can bias fits. The variances of behavior in the target classes strongly differs from the variance of the behavioral ratio by orders of magnitude. Even the sample variances of B1 and B2 may be slightly unequal in spite of the experiment’s symmetrical design.
A solution to this problem is ensemble least-error fitting (McDowell, 2005). This approach is like OLS in that the sum of squares is minimized, but it also takes into account the different sample variances. Ensemble least-error fitting minimizes  

where k is the number of data subsets being fitted, RSS is the residual sum of squares for a data subset, and SS is the total sum of squares for a data subset (McDowell, 2005). The residual sum of squares divided by the total sum of squares is closely related to the percentage of variance accounted for, so it can also be thought of as maximizing the overall percentages of variance accounted for. This approach has been successfully used to analyze quantitative law of effect fits to rat behavior under multiple deprivation conditions (McDowell, 2005; McDowell, Calvin, Hackett, & Klapes, 2017), to analyze the simultaneous fit of the quantitative law of effect to simulated creature behavior on concurrent RI RI schedules (McDowell & Calvin, 2013; McDowell & Calvin, 2015), and to analyze the simultaneous fit of the quantitative law of effect and matching law to simulated creature behavior (McDowell & Popa, 2010).
	A potential problem with ensemble least-error fitting is suggested by McDowell and Popa (2010). They simultaneously fitted Equations 1-1′, 3-4a′ and 3-4b′. Figure 3 of that paper shows differences in the percentages of variance accounted for by the matching law and quantitative law of effect fits, with the quantitative law of effect fits having larger percentages of variance accounted for. This difference may be due to the quantitative law of effect equation implicitly having twice as much weight on the overall percentage of variance accounted for because it constitutes two of the three fitted equations. However, this difference disappears when a larger sampling area of reinforcement rates (i.e., 54 data points rather than 11) is used, which suggests that this would not be a problem for this experiment. 
To prevent any possible impact of the greater implicit weighting towards the quantitative law of effect, a weighting parameter was added to the ensemble least-error fitting method. Attaching a weighting value is a simple way to account for the implicit imbalance of equation forms. With the weighting adjustment, the ensemble least-error fitting takes the form of

in which RSS, SS, and k have the same meaning as ensemble least-error fitting and w represents the weighting for a fit. By weighting the matching law fit twice as much as the two quantitative law of effect fits, it should prevent overfitting to the quantitative law of effect. In this experiment, Equation 1-1′ was weighted at 0.5 and Equations 3-4a′ and 3-4b′ were each weighted at 0.25.

[bookmark: _Toc536370683]3.2.3.3. Analytic approach to ensemble fits.	A nested model analysis approach was taken to determine how the behavior of the simulated creatures could be best described. The nested-models approach is used to refine an equation with many parameters to the lowest justifiable number of parameters (Loehlin, 2004). To do this, the experimenter evaluates various parametric assumptions that simplify the equation and then evaluates whether each of those assumptions can explain the data just as well as the more general account. A simile for this approach is that the equations are like Russian nesting dolls (i.e., Matryoshka dolls) and that the data is like a ball that can fit into some but not all dolls. More specific equations with fewer parameters are like smaller dolls that fit within the largest doll, which represents the most general equation. The analyst’s goal is fit the ball – data – within the smallest doll they can – an equation that describes the data without sacrificing any explanatory power. An equation that describes the data as well as the most general equation is the most parsimonious account.
For this approach, the most general fit serves as a baseline that accounts for the largest percentage of variance but may have the least explanatory utility due to possibly unnecessary parameters. This baseline fit is then compared to simplified versions of that equation that are made by making certain assumptions about the parameters. For example, the classic quantitative law of effect (Equation 3-2) is nested within the modern quantitative law of effect (Equation 3-4), because they produce the same predictions when a equals 1 and there is no bias (c1 = c2). The classic quantitative law of effect is a more restricted version of the modern quantitative law of effect and is, thus, nested within it.
This logic can be applied to compare multiple versions of the quantitative law of effect that make different assumptions about the parameters. To deduce the best version of the quantitative law of effect, eight models that made different assumptions were fitted to simulated creature behavior and then compared (Table 3-2). These different models are roughly ordered by the level of restriction. Model 1 is the least restrictive and Model 8 is the most restrictive because it makes the most assumptions about the parameters. These comparisons models can support one of four major interpretations (McDowell, 2013b), which are the classic algebraic (models 6 and 7 in Table 3-3), classic response strength (model 8), modern algebraic (models 1 through 4), and modern response strength (model 5).
There are many ways to compare models within a nested-models analysis (Loehlin, 2004). To prevent overreliance on any given comparison method, the extra sum of squares difference test (Motulsky & Christopolous, 2004), Akaike Information Criterion (AIC; Akaike, 1974), and Bayes Information Criterion (BIC; Schwarz, 1978) were used. The extra sum of squares difference test was chosen over the frequently used root mean square error of approximation (RMSEA), because the weighted least-error ensemble fitting method is closest to OLS. RMSEA is based on a χ2 difference test and is thus nonparametric. 
The extra sum of squares difference test is a generalization of a typical F-test used in ANOVA (Motulsky & Christopolous, 2004, pg. 142). The F-test is

where SS is the sum of squares, DF is the degrees of freedom, large refers to the more general equation, and small refers to the more specific equation (Motulsky & Christopolous, 2004). This is a null-hypothesis test which has the alternative hypothesis that the more restrictive equation explains less of the variance. If there is a significant difference, then the simpler model does not account for the data as well as the more general model and, thus, should be rejected. A failure to reject suggests that the simpler model is a better description via Occam’s razor. By comparing ever simpler models, the simplest explanation that still describes the data can be found.
	A second and distinct approach to model evaluation from extra-sum-of-squares difference testing is to compare information criteria (Motulsky & Christopolous, 2004). Two commonly used and important information-criteria-based measures are the AIC and BIC. When comparing models, the model with the smallest information criterion is considered the best model among those fitted. The AIC is an estimator of the information provided by a model (Akaike, 1974; Hurvich & Tsai, 1991), and is given by the equation 

where N is the sample size, RSS is the residual sum of squares, and k is the number of parameters (Motulsky & Christopolous, 2004). BIC is similar, but is based on Bayesian prediction (Schwarz, 1978) and is given by the equation

  	These three methods of assessing the fit of the eight models (Table 3-3) were used to determine which quantitative law of effect model best described the simulated creature behavior.

[bookmark: _Toc536370684]3.2.3.4. Changeover profiles.	An under examined aspect of human and animal behavior on concurrent RI RI schedules is how frequently participants switch their behavior between target classes. When a participant switches from one target class to the other it is called a changeover. Changeovers indirectly describe the participant’s sustained persistence at tasks, with fewer changeovers suggesting longer durations of sustained behavior within a target class. A clinically relevant example of a changeover is when a client with attention deficit hyperactivity disorder stops doing their homework to go watch television.
[bookmark: EqQuadCO]On concurrent RI RI schedules, changeovers are most frequently observed when reinforcers are obtained equally from the two target classes, and least frequently when reinforcers are obtained from just one target class (Alsop & Elliffe, 1988; Baum, 1974; Brownstein & Pliskoff, 1968; Herrnstein, 1961). Mathematically, changeovers follow a quadratic pattern (for example see Figure 4 of Alsop & Elliffe, 1988). This quadratic pattern can be described by the equation C = aP2 + bP + c, where C is the number of changeovers, P is the proportion of obtained reinforcers for behavior in the first target class, and a, b, and c are fitted parameters (McDowell et al., 2008). The proportion of reinforcement, P, is defined as R1 / (R1 + R2), and its range of possible values is 0 to 1. Two important elements of this quadratic are the maximum rate of changeovers and the range of changeover rates (McDowell et al., 2008). The quadratic equation’s parameter values can be used to calculate the maximum rate of changeovers, CMax, with the equation c – b2/4a, and the range of changeovers, CΔ, with -b2/4a (McDowell et al., 2008). In previous simulations, this has been an effective method of describing the changeover behavior of linear-bitwise-bitflip creatures (McDowell et al., 2008; 2012).

[bookmark: _Toc536370685]3.3. Results
[bookmark: _Toc536370686]3.3.1. Best quantitative law of effect model. Overall, the twelve ETBD algorithms were best described by the third quantitative law of effect model, which set c1 equal to c2 (i.e., no bias towards either target class) and enforced a constant a across reinforcement magnitudes (Figure 3-3 ). Preference count is simply the number of times (across all 84 creature types and mutation rate combinations) that the criterion measure or difference test determined that model was better than the other models. For the information criterion measures (i.e., AIC and BIC), the preferred models were those with the smallest criterion value at each combination of creature type and mutation rate. For the extra sum of squares difference test measure, the preferred model was the most restricted model that was not significantly different from model 1. All classic quantitative law of effect models (models 6 through 8) were dramatically worse than model 3. The BIC provided the clearest support for model 3, whereas the AIC’s and extra sum of squares tests equally supported models 1 through 3 (Figure 3-3). 
The selection function form affected the fitting measure’s model preferences. The BIC, AIC, and extra sum of squares tests all preferred model 3 when the simulated creatures used an exponential selection function (black bars of Figures 3-3), whereas the results were more mixed when they used a linear selection function (white bars of Figures 3-3). In all cases, the modern algebraic interpretation was supported. 
The AIC and extra sum of squares tests were oversensitive to slight random differences in simulated creature behavior, which is in line with recent simulations that included models that permitted overfitting of the AIC (Huang, 2017; Lin, Huang, & Weng, 2017). This oversensitivity was suggested by how frequently model 1 was preferred over model 2. No asymmetries in reinforcer magnitudes were designed into the simulation, which means that c1 should always equal c2. The failure of the AIC and extra sum of squares difference tests to properly eliminate model 1, which permits c1 to not equal c2, suggests that those comparison methods poorly discriminated between the quantitative law of effect models. This was further supported by the lack of consistency of model preference across mutation rates, which can be observed in Appendices A through L. Given the AIC and extra sum of squares difference test’s poor ability to discriminate between models, the BIC is the best tool for deciding with model is best.  
	Simulated creature behavior was very well described by model 3. Across the twelve types of simulated creatures and their seven mutation rate combinations, the lowest percentage of variance accounted for by the modern quantitative law of effect (Equations 3-4a′ and 3-4b′) was 91% (Table 3 of Appendices A through L). The modern quantitative law of effect’s (Equations 3-4a′ and 3-4b′) median percentage of variance accounted for ranged between 98% and 100% across the twelve types of simulated creatures. Similarly, simulated creature behavior was well described by the modern matching law equation (Equation 1-1′). The median percentage of variance accounted for by the modern matching law equation ranged between 99% and 100% (Table 3 of Appendices A through L).

[bookmark: _Toc536370687]3.3.2. Best fitting model parameters. Since model 3 was the best overall descriptor of simulated creature behavior, the parameter values of its fits were used as the basis of comparison across all simulated creature types. With model 3, the fitted exponent (a) was constant across magnitudes, there was a single c parameter at each magnitude, and the asymptote of the quantitative law of effect, k, could vary across magnitudes. Model 3 does not permit bias towards either target class because c1 equals c2. Model 3 used 9 parameters to fit simulated behavior at each mutation rate.

[bookmark: _Toc536370688]3.3.2.1. Exponent (a) values. The exponent (a) estimates of all twelve simulated creature types were between 0.7 and 0.9 – the range typically observed by humans and animals – across all seven mutation rates (Figure 3-4). The form of the selection function that the simulated creature used affected the exponent; simulated creatures that used an exponential selection function (top panel of Figure 3-4) had exponents that were roughly 0.05 higher than those that used the linear selection function (bottom panel of Figure 3-4). The method of variation also affected exponent values, with the simulated creatures that used bitflip-by-individual variation (squares and circles in Figures 3-4) having greater exponent values than the phenotypic variation methods. 

[bookmark: _Toc536370689]3.3.2.2. Asymptote (k) values. The asymptotes of the modern quantitative law of effect (k) followed interesting patterns across the four magnitude pairs of reinforcement, two methods of selection, and seven mutation rates (Figures 3-5 and 3-6). A unique characteristic of the linear and exponential bitwise-bitflip ETBD creatures was that the k parameter estimates were relatively stable across mutation rates at each reinforcer magnitude pair (squares in Figures 3-5 and 3-6). Reinforcer magnitude did, however, have a large effect on the k parameter estimates; k estimates systematically decreased as the reinforcer became weaker (i.e., as the selection function’s mean increased from 20 to 80). The linear-bitwise-bitflip ETBD creatures showed larger changes in the k parameter estimates than the exponential-bitwise-bitflip ETBD creatures.
The bitwise-bitflip ETBD creatures’ k parameter stability across mutation rates strongly differs from the TNGS-based creature types. The TNGS-based simulated creatures had decreasing k parameter values as the rate of mutation increased. The bitflip-by-individual variation method in conjunction with cloning ameliorated this (circles in Figures 3-5 and 3-6), but strong downward trajectories were still observed with the linear-clone-bitflip creatures at the reinforcer magnitude pairs of 60 & 60 and 80 & 80 (circles in the bottom two panels of Figure 3-6). While all phenotypic variation methods showed substantial decreases in the asymptote (k) as the mutation rate increased, they were also strongly affected by the form of the selection function. The change in k values was similar across the four phenotypic variation methods when combined with the linear selection function (triangles, diamonds, and asterisks in Figure 3-5), but they greatly differed when combined with the exponential selection function (triangles, diamonds, and asterisks in Figure 3-6).

[bookmark: _Toc536370690]3.3.2.3. Rate of the quantitative law of effect’s ascent. The c parameter estimates of the modern quantitative law of effect, which is a measure of its rate of ascent (Section 3.2.3.2; Figure 3-2), showed distinctly different patterns across the bitflip and phenotypic methods of variation (Figures 3-7 and 3-8). The bitwise-bitflip and clone-bitflip simulated creatures’ behavior (squares and circles in Figure 3-7 and 3-8) showed increases in c as the rate of mutation increased regardless of the magnitude of the reinforcer pairs, which indicates a lower rate of ascent as the mutation rate increases. The phenotypic methods of variation (triangles, diamonds, and asterisks in Figures 3-7 and Figures 3-8) only showed this increase at the stronger magnitude pairs (i.e., 20 & 20 and 40 & 40) and were, otherwise, stable or decreasing with the mutation rates. Overall, this suggests that the rate of ascent does not change as the mutation rate increases for the simulated creatures that used phenotypic variation. 
	However, comparisons of c are most meaningful when two equations have the same k parameter value because c’s meaning is dependent upon k (Bradshaw et al., 1976). While the simulated creatures that used phenotypic variation had stable c values as the rate of mutation increased, those creatures also had decreasing k values. This combination of k and c parameter value changes could result in a pattern of behavior that is like an increase in c if a limited range of reinforcement rates is observed (Figure 3-9). Figure 3-9 shows quantitative law of effect fits (Equation 3-4) to the behavior of exponential-bitwise-bitflip and exponential-clone-pheno-Gaussian creatures, which had opposite changes in k and c as the mutation rate increased, at the mutation rates of 10% and 20%. The exponential-bitwise-bitflip creatures had relatively stable k values (417 at 10% and 380 at 20) but increasing c values as the rate of mutation increased (21 at 10% and 38 at 20%), whereas the exponential-clone-pheno-Gaussian creatures had decreasing k values (444 at 10% and 348 at 20%) but stable c values as the rate of mutation increased (19 at 10% and 22 at 20%). Despite these differences, the fits to these creature types’ behavior at 20% mutation are relatively similar within the bounds of the observed rates of obtained reinforcement (the greatest obtained rate of reinforcement was nearly 150 reinforcers per 500 time steps). Thus, examining c and k separately may be misleading. Another approach would be to compare the predicted rates of behavior at a specific rate of reinforcement. Looking at the predicted rate of behavior at a specific rate of reinforcementpermits a direct comparison of the Equation 3-4’s rate of ascent to the asymptote k across the simulated creatures. A rate of reinforcement of 15 reinforcers per 500 time steps was selected, because it was greater than the lowest c values and could highlight differences in the rates of ascent.
	The predicted rate of behavior at 15 reinforcers per 500 time steps showed surprisingly consistent patterns of behavior regardless of the simulated creature type. All simulated creatures showed lower rates of predicted behavior as the mutation rate increased (Figures 3-10 and 3-11), which indicates slower rates of ascent. The clone-bitflip simulated creatures (circles in Figures 3-10 and 3-11) showed the fastest rates of ascent at mutation rates 5% through 12.5% but their behavior tended to fall below clone-pheno-Gaussian at mutation rates 15% through 20% (asterisks in Figures 3-10 and 3-11). The ETBD-based bitwise-bitflip simulated creatures (squares in Figures 3-10 and 3-11) were most affected by the mutation rate; their rate of ascent was the second fastest at mutation rate 5% and the lowest at mutation rate 20%. 

[bookmark: _Toc536370691]3.3.3. Quadratic description of changeover profiles. The initial examination of the simulated creature changeovers quickly revealed that a quadratic (Section 3.2.3.4) was an inadequate descriptor of changeover behavior. As can be seen in Figure 3-12, while the changeovers were roughly quadratic, there was significantly greater variation around the quadratic than previous research with animals (Alsop & Elliffe, 1988; Baum, 1974a; Brownstein & Pliskoff, 1968; Herrnstein, 1961) and the ETBD (McDowell et al., 2008; 2012) suggested. Those experiments consistently showed that there were more changeovers when the obtained rate of reinforcement was equal across the target classes and that – except for Herrnstein (1961) which did not plot changeovers as a function of relative reinforcement – there was a quadratic profile to the changeovers. The quadratic pattern was consistent and showed little variation around the quadratic, unlike Figure 3-12.
The quadratic equation’s poor descriptive utility was highlighted by the relatively small percentages of variance it accounted for. The median percentage of variance accounted for by the exponential-bitwise-bitflip simulated creatures was only 12% (Appendix A.20). The changeovers of all five simulated creatures that had exponential selection functions and reproduced by cloning were also poorly described by the quadratic. The median percentages of variance accounted for were 28% for the exponential-clone-bitflip (Appendix B.20), 4% for the exponential-clone-pheno-uniform (Appendix C.20), 2% for the exponential-clone-pheno-linear (Appendix D.20), 6% for the exponential-clone-pheno-exponential (Appendix E.20), and 2% for the exponential-clone-pheno-Gaussian (Appendix F.20) simulated creature types. The changeover behaviors of the simulated creatures that used linear selection functions were also poorly described by the quadratic (Appendices G-L.20). 

[bookmark: _Toc536370692]3.3.4. Post-hoc analysis of changeover profiles. The observed changeover patterns (as exemplified in Figure 3-12) differed markedly from McDowell et al.’s Figure 2 (2008). McDowell et al.’s Figure 2 showed a good fit of the quadratic with small, homoscedastic residuals. Figure 3-12, in comparison, showed the exact opposite with poor fit and heteroscedastic residuals. While the percentages of variance accounted for by the quadratic equation were not listed in McDowell et al. (2008), the differences between their Figure 2 and this experiment’s Figure 3-12 suggested that that there was a major procedural difference.
	The major procedural difference between this experiment and McDowell et al. (2008) was that McDowell et al. held the total scheduled rate of reinforcement constant while this experiment did not. When plotted as a 3-dimensional figure with the obtained total rate of reinforcement (i.e., R1+R2) added as a new axis (Figure 3-13), it is apparent that the total rate of reinforcement has a systematic effect on the changeover rate. There was an inverse relationship between changeovers and the total rate of obtained reinforcement. Note that the total rate of reinforcement axis in Figure 3-13 was reversed to enhance visual clarity.
	Given the sharp rise in the number of changeovers as the total rate of reinforcement approached zero, I fitted various two-variable exponential functions (i.e., surfaces). An exponential function seemed like a natural choice because it stays relatively flat before rapidly accelerating. The exponential equation that accounted for the largest percentages of variance incorporated McDowell et al.’s (2008) quadratic but multiplied it by an exponential. This equation, a quadratic-exponential, was 
[bookmark: _Hlk536261195][bookmark: EqQuadExpCO] 				(3-5)
where C is the number of changeovers, P is the proportion of obtained rate of reinforcement for the first target class [i.e., R1 / (R1 + R2)], T is the total rate of obtained reinforcers (i.e., R1 + R2), and a, b, c, and d are fitted parameters.
	Figure 3-14 is representative of how well this equation fits the changeover profiles of the simulated creatures. The quadratic-exponential accounted for large percentages of variance; the median percentage of variance accounted for was greater than 96% for all twelve simulated creature types (Appendices A-L.21). While generally a good descriptor, the quadratic-exponential changeover function tends to account for less changeover behavior as the mutation rate increases. Another weakness is that there are trends in the residuals, which suggests that the quadratic-exponential function is an imperfect description of changeover behavior. This trend can be observed in Figure 3-14 by the pattern of white and black dots against the total-rate-of-reinforcement axis. There is a small but systematic range at low rates of reinforcement where the actual values are above the predicted values (black dots), whereas the rest of the actual values (white dots) tend to fall below what is predicted. Overall, this pattern suggests a quadratic trend in the residuals with the quadratic peaking (black dots) at the low rate of reinforcement.
	The quadratic-exponential can explain why McDowell et al. (2008) observed a quadratic despite that equation’s poor fit to changeover behavior in this experiment. As part of this post-hoc analysis, McDowell et al. (2008) was replicated with an exponential-bitwise-bitflip simulated creature at 10% mutation, and its changeover behavior was plotted against the quadratic-exponential function that was fitted to that creature type (Figure 3-15). If changeovers were solely examined as a function of the proportion of reinforcement, then it would look like a quadratic, as McDowell et al. (2008) observed. The quadratic-exponential function suggests a different interpretation, however. The quadratic component of the quadratic-exponential is concave upwards in Figure 3-15 (i.e., the lowest changeover rate was at P = 0.5), which is the opposite direction of the quadratic proposed by McDowell et al. (2008). The slight differences in the total obtained rates of reinforcement are what causes the concave-downwards quadratic pattern (i.e., the highest changeover rate was at P = 0.5). The quadratic-exponential suggests that the simulated creature’s changeover behavior increases because it obtains fewer reinforcers at P = 0.5. The quadratic pattern was observed simply because the data points rest upon the quadratic-exponential’s surface in a way that appears quadratic when changeovers are narrowly viewed as a function of the proportion of reinforcement.
	One of the benefits of McDowell et al.’s quadratic (2008) is its ability to characterize changeover behavior in terms of two useful quantities, namely, the maximum rate of changeovers and the range of changeovers. To maintain these conceptualizations, the equations for the two quantities, CΔ and CMax, (Section 3.2.3.4) had to be reevaluated for the quadratic-exponential because some of the implicit assumptions no longer held. Given the quadratic-exponential’s form, the maximum rate of changeovers is predicted to occur when the total rate of obtained reinforcement is zero. It is important to note, however, that neither the quadratic nor the quadratic-exponential apply when the total rate of reinforcement is zero. This is because P becomes zero divided zero, which is undefined, and thus outside of the function’s domain. Because the predicted rate of changeovers could not be evaluated when the rate of reinforcement is zero, limits were used to find the changeover function’s value as it approached a total reinforcement rate of zero. There are multiple ways that the total rate of obtained reinforcers can approach zero, but the two most important cases to consider are when R1 is 0 and R2 is approaching 0 (case 1) and when R1 equals R2 and both are approaching 0 (case 2). For case 1, CMax can be expressed and solved as


				

For case 2, CMax can be expressed and solved as




Because the quadratic portion of the quadratic-exponential can be concave upwards (when the smallest value is at P = 0.5) or downwards (when the largest value is at P = 0.5), it is necessary to define CMax as the greater of cases 1 and 2. Thus, CMax is the greater of c and (a/4 + b/2 + c). This contrasts with McDowell et al.’s (2008) CMax, which implicitly assumed that the quadratic was always concave downwards.
	McDowell et al.’s CΔ (2008) also had to be reinterpreted for the quadratic-exponential. The first difficulty was that CΔ could be evaluated for both the proportion of obtained reinforcement, P, and total rate of obtained reinforcement, T, axes. The difference in the changeover rate along the obtained total reinforcement axis is trivially equivalent to CMax, because the upper limit (+∞) of the exponential is zero and the lower limit is CMax (Figure 3-16). Thus, it is unnecessary to use as a descriptor since CMax already captures that information. Examining the function on the proportional axis when the total rate of reinforcement is held constant, however, is useful, and is also closest to McDowell et al.’s (2008) CΔ. This leads to the second difficulty, which is that the difference between the minimum and maximum changeover rates changes with the total rate of reinforcement. The multiplication of the exponential and the quadratic results in the difference between the highest and lowest changeover rates exponentially increasing as the obtained reinforcer rate decreases. For example, at the zero limit of Equation 3-5 CΔ would be the difference between the two CMax cases, but CΔ would also approach zero as Equation 3-5 approaches positive infinity. Since the absolute changeover differences on both axes are inadequate descriptors, another measure of curvature was examined.
	An equation that preserves the utility of CΔ while making it have the same value across the entire total-reinforcement axis is CΔ% = [(a + 2b) / 4c] • 100%. This equation is simply the percentage difference between the two CMax cases divided by the parameter c. The value of CΔ% is only indicative of the predicted range of changeovers when none are delivered, so it is best to consider CΔ% as the concavity of the quadratic-exponential (Equation 3-5) along the proportion of reinforcement axis instead. Positive CΔ% values indicate that the function is concave downwards – like a hill – and negative CΔ% values indicate that the function is concave upwards – like a valley. At all total rates of reinforcement CΔ% has the same value, unlike CΔ. CΔ% values close to 0% indicate that the quadratic is flat, a CΔ% value of 100% indicates that the changeover rate at the center of the quadratic is twice that at P of 0 or 1, and a CΔ% value of -100% indicates that the changeover rate at the center of the quadratic is 0. This is an attractive descriptor of changeover behavior on the proportion of reinforcement axis because it describes this behavior regardless of the total rate of reinforcement.
	The new CMax and CΔ% descriptors of changeover behaviors provide insights into the behavior of the simulated creatures. The maximum rate of changeovers predicted for the 4 different magnitude conditions were averaged together, because they are all estimates of changeovers in the absence of reinforcement and thus reinforcer magnitude should have no effect. For all simulated creature types, the maximum rate of changeovers (CMax) increases as the mutation rate increases, but there were large differences in each creature types’ maximum rate of changeovers (Figures 3-17). Cloning-bitflip simulated creatures (circles) produced the highest maximum rates of changeovers, which were roughly twice that of the typically used bitwise-bitflip ETBD creatures (squares) across all mutation rates. The four phenotypic mutation methods (triangles, diamonds, and asterisks) showed dramatically lower maximum changeover rates with their highest rates of changeovers at 20% mutation being relatively close to bitwise-bitflip ETBD creatures’ rate of changeovers at 5% mutation. The selection function method had no effect on maximum changeover rates, which was expected since the selection function form should have no effect in the absence or reinforcement.
The concavity of the simulated creatures’ changeover behaviors (CΔ%) were surprisingly consistent across selection function forms, mutation rates, and reinforcer magnitudes (Figures 3-18 and 3-19). Regardless of the selection function form, the curvatures were similar (compare Figures 3-18 and 3-19), although at the lower mutation rates there were some slight discrepancies. For example, at a 5% mutation rate the changeover profiles of the linear-clone-pheno-Gaussian simulated creatures (bottom panel of 3-19) are more concave upwards (i.e., the lowest changeover rate was at P = 0.5) than the exponential-clone-pheno-Gaussian simulated creatures (bottom panel of 3-18). The magnitude of the reinforcers had inconsistent and seemingly random effects on the concavity. The simulated creatures’ changeover concavities were relatively consistent across the mutation rates except for the clone-bitflip simulated creatures, which showed a linear increase in concavity as the mutation rate increased. The linear increase in concavity of the exponential-clone-bitflip creature represents a qualitative difference in form across the mutation rates. At the lowest mutation rates the quadratic is flat or valley-like and at the highest mutation rates its hill-like; low mutation rates have the greatest rates of changeovers occurring when more reinforcers are obtained from one of the target classes and highest mutation rates have the greatest changeover rates when reinforcers are equally distributed across the two target classes. The concavities of the other creature types were consistently concave upwards (i.e., the lowest changeover rate was at P = 0.5) across mutation rates and reinforcer magnitudes.
 
[bookmark: _Toc536370693]3.4. Discussion
	All twelve simulated creature types met the criteria for a successful simulation of human and animal behavior in concurrent RI RI and single RI environments. This supports the TNGS as an alternative to the ETBD and the matching law. While all creature types were viable, there were unique differences between the TNGS and ETBD simulated creature types. Some of these differences may help identify potential experiments that could elucidate whether the TNGS or ETBD is the better explanation for human and animal behavior.

[bookmark: _Toc536370694]3.4.1. Conformance to the matching law and the quantitative law of effect. The third model of the quantitative law of effect, which assumed a constant a and no bias (c1 = c2), was the best overall descriptor of ETBD and TNGS based simulated creature behavior. This model is best described as an algebraic interpretation of the modern quantitative law of effect and matching law (Equations 3-4 and 1-1, respectively). It is important to note that this model rules out the theoretical justifications for the quantitative law of effect and supports a strictly descriptive interpretation of k and c (McDowell, 2005). For example, k should be interpreted as the maximum rate of behavior within the target class given a reinforcer’s magnitude. In this way, k is more related to the value of a reinforcer than it is an innate characteristic of the participant. Similarly, c is simply how many reinforcers need to be obtained before the predicted rate of behavior is half of k. The meaning of parameters a and b are unchanged with this new interpretation.
  McDowell and Calvin (2015) also found that the algebraic version of the matching law was the best account, which indicates that this is a robust finding. This experiment was unable to assess a different equation that was proposed by McDowell and Calvin (2015), which permitted differences in k for each target class based on the magnitude of the reinforcers. This experiment was incapable of this assessment because no asymmetries in reinforcer magnitudes were scheduled. Figures 3-5 and 3-6, however, suggest that the McDowell and Calvin’s (2015) varying k equation would be a good account since the k estimates change with reinforcer magnitude. This is especially the case with the cloning TNGS models because their k estimates also change with mutation rate. To conclusively assess whether the TNGS makes the same predictions as the ETBD it would be necessary to perform a simulation that created asymmetries of reinforcer magnitude like McDowell and Calvin (2015).

[bookmark: _Toc536370695]3.4.2. Parameter values. The exponent values of all ETBD creatures across the seven mutation rates met the 0.7 to 0.9 criterion, but there were notable differences between the twelve types of simulated creatures (Figure 3-4). The simulated creatures that used exponential selection function forms had exponents that were roughly 0.05 higher than those that used linear selection function forms. The exponent values of the eight simulated creature types that used cloning reproduction and phenotypic variation tended to be below the commonly estimated 0.8 exponent average for humans and animals (Baum 1974, 1979; McDowell, 1989, 2013b; Myers & Myers, 1977; Wearden & Burgess, 1982). This suggests that those creature types are less likely to be truly representative of human and animal behavior than the bitflip-bitwise and cloning-bitwise simulated creature types. Basing this conclusion on the 0.8 criterion is, however, inconclusive; a meta-analysis of human or animal performance on concurrent RI RI schedules should be conducted to determine what a value is representative of human and animal behavior.
	The k parameter estimates showed a qualitative difference between the bitwise-bitflip ETBD creatures and the TNGS-based cloning creatures. The k values of the bitwise-bitflip simulated creatures tend to be similar regardless of the mutation rate, whereas the TNGS-based simulated creatures mostly showed a decrease in k values as the mutation rate increased (Figures 3-5 and 3-6). If high mutation rates are analogous to the cause of ADHD-like behavior, as Popa (2013) suggested, then it may be possible to eliminate either the TNGS or ETBD in a critical experiment by comparing k parameter estimates of individuals with and without ADHD. If the average k value for those with ADHD is lower than for those without, then it would suggest that the TNGS is a better than the ETBD. If there is not a difference between the two groups, then it would suggest that the ETBD is a better account. An important caveat, however, is that reinforcer magnitude must be controlled across the groups because it affects k estimates. This would be a difficult – if not impossible – task because there may be group differences in the perceived reinforcing value of identical reinforcers. It may be possible to control for this by pairing participants diagnosed with ADHD and non-ADHD beforehand based on their relative reinforcer preferences and then comparing the groups with a matched-pairs dependent t-test. This would be suggestive but inconclusive, however, because it is possible that the same relative preferences would fail to properly account for a true difference in perceived value. 
	
[bookmark: _Toc536370696]3.4.3. Changeovers. The post-hoc analysis revealed that McDowell et al.’s quadratic function (2008), despite describing changeovers when the total rate of scheduled reinforcement was constant across reinforcement schedules, is unable to generalize to experiments that vary the total rate of scheduled reinforcement. The changeover behavior of these simulated creatures is better understood by the quadratic-exponential function. That function’s exponential decrease in changeover behavior as the rate of obtained reinforcers increases suggests a different purpose for changeovers than the proportional account. The proportional account suggests that participants more frequently switch between alternatives when the source of the next reinforcer is uncertain, whereas the total reinforcement account argues that participants are simply more likely to switch between target classes in the absence of reinforcement.
	The qualitative differences in creature type changeover rates are helpful to understanding their behavioral dynamics. For instance, the higher maximum number of changeovers (CMax) exhibited by the cloning-bitflip simulated creatures seems contradictory to it also having the highest maximum rate of behavior in the target classes – k (Figures 3-5, 3-6, and 3-17). Higher rates of changeovers typically indicate that behavior is more variable and exploratory, but the higher rates of behavior in the target class contradicts that by suggesting that behavior is more reinforcer directed. The population of potential behaviors does not seem to drift from one target class to the other as it does with bitwise-bitflip creatures. Rather, it is possible that the population of potential behaviors may be distributed across both target classes as two distinct sub populations. This is possible with clonal amplification because, unlike bitwise reproduction, cloning does not mix elements of the population to create new behaviors. To highlight this difference, if there were only two potential behaviors in the population then cloning reproduction could result in a new population of behaviors that is roughly half of the first behavior and half of the second behavior. In the same situation, bitwise reproduction would instead result in a new, variable population that contains all possible genotypic combinations of the two potential behaviors. To assess whether this is occurring, an analysis of the population of potential behaviors would have to be conducted, which would require a new simulation because that data was not recorded in this experiment. By examining the population of potential behaviors from this new simulation, it would be possible to observe how the population’s density within the target classes change in reaction to environmental consequences. Simultaneously high population densities within both target classes would suggest that there are two distinct subpopulations. 
	The lower changeover rates of the phenotypic variation methods (Figures 3-17) indicates that those simulated creatures have prolonged bouts of behavior within the target classes relative to the bitwise-bitflip ETBD creatures. Of the phenotypic variation methods, only phenotypic Gaussian variation has been used in previous research (McDowell, 2004; McDowell & Caron, 2007). In McDowell (2004) and McDowell and Caron (2007), the standard deviation of the Gaussian was set to 25 – only half of this experiment’s phenotypic standard deviation. Since the simulated creatures that used the Gaussian variation method were extremely perseverative in this experiment it suggests that the results of McDowell (2004) and McDowell and Caron (2007) should be viewed with some caution and not overgeneralized. Those experiments should be replicated with the typically used creature type – linear-bitwise-bitflip – to ensure that it also exhibits undermatching on a single alternative. This experiment suggests that this is the case, but there are important procedural differences that could influence results such as the absence of a second target class.
	Another insight from the CMax parameter is that the underlying populations of potential behaviors are not randomly distributed across the entire phenotype range in the absence of reinforcement. This must be the case because CMax increases with the mutation rate and varies by creature type. In a population of potential behaviors that is evenly distributed across the entire phenotype range, which would be the case if the population was truly random, the probability of a behavior in the target class being emitted at each time step would be the size of the target class divided by the size of the phenotype range, which is 3.9% for a 40 phenotype-wide target class. Given that probability, it should be expected that there would be 19.6 behaviors emitted in each target class over the course of 500 time steps simply due to chance. If we also assume that the probability of the next measured behavior being in the other target class is 50% then we can calculate the expected rate of changeovers from a truly random population. This can be calculated by multiplying the probability of a changeover by the number of behaviors emitted within the target classes, which would be 19.6 changeovers per 500 time steps if the target classes are 40 phenotypes wide. Similarly, the simulated creatures that used the 50-phenotype wide target classes (those that used phenotypic variation) have an expected changeover rate of 24.4 per 500 time steps. Since most of the simulated creature types never reach the expected changeover rates, it suggests that the underlying populations of potential behaviors are distributed in many small clumps that drift across the phenotype range. 
The cloning-bitflip simulated creatures are odd in that the CMax estimates exceed the expected rate of changeovers at the higher mutation rates (Figures 3-17). Notably, these are also the only simulated creature types that have positive CΔ% values. Positive CΔ% values indicate that the quadratic-exponential’s greatest changeover rate is when the rate of reinforcement is evenly distributed between the two target classes. It may be that the CMax estimates are only greater than the expected rate, because the quadratic-exponential is inappropriately quadratic when there are no reinforcers. This intuitively seems likely – how could the distribution of reinforcement across the target classes have an effect when there are no reinforcers being delivered? Different versions of the quadratic-exponential that become flatter on the proportion dimension as it approaches zero reinforcers should be explored, and those functions should be assessed against human and animal behavior rather than against a simulation, because there are some implicit assumptions built into the simulation that may not be externally valid.

[bookmark: _Toc536370697]3.4.4. Conclusion. This experiment indicated that TNGS-based simulated creatures are viable models of human and animal behavior. The different behavioral dynamics of the TNGS-based simulated creatures suggest potentially fruitful directions for future research. Given the TNGS viability, it warrants further examination. The next major quantitative assessment of the ETBD was an investigation of whether it could simultaneously match its behavior to the scheduled reinforcer magnitudes and reinforcement rates (McDowell et a., 2012). Experiment 2 replicates McDowell et al. (2012) to assess whether the TNGS-based creatures can do this.


[bookmark: _Toc536370698]Chapter 4: Matching to Rates and Magnitudes of Reinforcement
A conceptual interpretation of the matching law is that humans and animals match their behavior to the value of that behavior’s consequences (Baum, 1974; Baum & Rachlin, 1969; Killeen, 1972; Rachlin, 1971). The consequent’s value can be construed as a combination of its qualities (Baum, 1974; Baum & Rachlin, 1969). The three primary qualities of the consequent that influence its value are the rate of reinforcement, the reinforcer magnitude, and the immediacy of reinforcer delivery. An expression for how these variables may be related I	s
[bookmark: Eq4_1],				(4-1)
where B is the rate of behavior, R is the obtained rate of reinforcement, M is the magnitude of the reinforcer, I is the immediacy of reinforcer delivery, X is any other quality of reinforcement that affects behavior, v is the value of the consequent, and the subscripts indicate the target classes (Rachlin, 1971)[footnoteRef:4]. [4:  This is presented slightly differently from its original version to highlight the equation’s development into the bivariate matching equation (4-2). In the original equation the rate of behavior is expressed as the amount of time spent engaging in target class behavior. Similarly, I substituted the reinforcing magnitude – a combination of quality and quantity – for the quantity of reinforcers.] 

	A commonly investigated combination of those qualities is reinforcer magnitude and rate (Aparicio, Baum, Hughes, & Pitts, 2016; Davison & Hogsden, 1984; Dunn, 1982; Elliffe, Davison, & Landon, 2008; Keller & Gollub, 1977; McLean & Blampied, 2001; Schneider, 1973; Todorov, 1973; Todorov, Hanna, & Bittencourt de Sa, 1984). When Equation 4-1 is simplified to just those qualities and combined with the modern matching law (Equation 1-1), it gives the bivariate matching law (Schneider, 1973; Todorov et al., 1984) which is
[bookmark: Eq4_2].					(4-2)
B, R, M, and the subscripts have the same meanings as in Equation 4-1. The free parameters are b, aR, and aM and have similar meanings as they do in the modern matching law (Equation 1-1). The exponents aR and aM indicate the participant’s sensitivities to the rate of reinforcement and reinforcer magnitudes, respectively. This equation describes animal behavior very well (for review see Cording, McLean, & Grace, 2011), but has not been fitted to human behavior.
Cording, McLean, and Grace (2011) meta-analyzed the available data of pigeon behavior on reinforcement schedules that systematically varied both the rate and magnitude of reinforcement. This meta-analysis allowed them to find estimates of aR and aM that best represented pigeon behavior. This was a particularly valuable meta-analysis because the sample sizes of the six individual studies that comprised it were very small; even when combined the sample of the meta-analysis was only 25 pigeons. Cording et al. (2011) found that the average sensitivity to the rate of reinforcement – aR – was 0.74 across all six studies, but that there were unsurprisingly large differences between the studies. The lowest study’s aR mean value was 0.47 (reanalysis of Keller & Gollub, 1977; N of 3) and the highest was 1.01 (reanalysis of Elliffe et al., 2008; N of 5). The average sensitivity to the magnitude of reinforcement – aM – was 0.60 across the six studies and showed similar amounts of variation. The smallest average aM value was 0.26 (reanalysis of Todorov et al., 1984; N of 2) and the largest was 0.87 (McLean & Blampied, 2001; N of 8). While the parameter estimates of the individual studies are not compelling due to their small sample sizes, the meta-analysis provides a better estimate of what a simulation of behavior should strive to observe. 
The ETBD’s behavior in experiments that simultaneously vary the rate and magnitude of reinforcement has already been assessed (McDowell et al., 2012). The behavior of the linear-bitwise-bitflip ETBD simulated creatures was most like those found in Cording et al.’s (2011) meta-analysis for the mutation rate range of 7.5% through 14%. Within that mutation range, the fits to the simulated behavior lacked residual trends, which Cording et al. (2011) had also found. While less emphasized, the ETBD’s behavior was very well described by Equation 4-2, which accounted for 99% of the variance on average.
The exact criteria for a successful simulation of behavior in this type of experiment were not clearly defined by McDowell et al. (2012). Their analysis emphasized residual trends and bivariate matching law (Equation 4-2) parameter values, but did not delineate a range of viable parameter values a priori. For this experiment, a range of plus or minus 0.1 from the parameter estimates found by Cording et al. (2011) was used as the viability criterion for the simulated creatures. This gives parameter criteria of 0.65 to 0.85 for aR values and 0.5 to 0.7 for aM values, which must be met simultaneously. The plus or minus 0.1 range was chosen because it was consistent with Experiment 1 and because it also considered the uncertainty of the parameter values that were found in Cording et al.’s (2011) meta-analysis. The third criterion of this experiment was that Equation 4-2 accounted for a large percentage of variance, as was found by Cording et al. (2011). No residual trend criterion was used for this simulation, because Cording et al. (2011) only found no residual trend when they removed a study from the meta-analysis – Elliffe et al. (2008) – and because they could only assess for a quadratic trend.

[bookmark: _Toc536370699]4.1. Methods
[bookmark: _Toc536370700][bookmark: _Hlk533770285]4.1.1. Participants. The same twelve creature types that were used in Experiment 1 (Table 3-1) were simulated, but over a wider range of mutation rates. Mutation rates of 0.5%, 1%, 2.5%, 5%,7.5%, 10%, 12.5%, 15%, 17.5%, 20%, 25%, 30%, 35%, 40%, 45%, and 50% were simulated for the TNGS-based creatures. A smaller mutation rate range of 5%, 7.5%, 10%, 12.5%, 15%, 17.5%, 20%, 25%, 30%, 35%, 40%, 45%, and 50% was used for the bitwise-bitflip ETBD creatures because they were unable to complete the simulations at the lower mutation rates of 0.5%, 1%, and 2.5%. At each mutation rate, 10 creatures were simulated, and each simulated creature’s behavior was observed as it engaged with 25 concurrent RI RI schedules for 20,500 time steps. This resulted in 8,200,000 behaviors (16 mutation rates • 10 creatures • 25 conditions • 20,500 generations of behavior) being observed for the simulated creature types that used cloning reproduction, and 6,662,500 behaviors (13 mutation rates • 10 creatures • 25 conditions • 20,500 generations of behavior) for those that used bitwise reproduction. In total, this experiment represents 83,325,000 simulated behaviors and 1,860 simulated creatures

[bookmark: _Toc536370701]4.1.2. Procedures. Concurrent RI RI schedules were simulated that used the same target classes as Experiment 1, but different reinforcement rates and magnitudes. The schedule design was identical to phase 3 of McDowell, Popa, and Calvin (2012). Twenty-five schedules were constructed to systematically sample the reinforcement and reinforcer magnitude dimensions (Table 4-1). These 25 schedules are all possible combinations of five pairs of reinforcer magnitudes – 15 & 90, 34 & 71, 52 & 52, 71 & 34, and 90 & 15 – and five pairs of reinforcement rates – RI 15 RI 180, RI 56 RI 139, RI 98 RI 98, RI 139 RI 56, and RI 180 RI 15. Since the reinforcer magnitudes are in terms of the mean values assigned to the simulated creatures’ selection fitness density function (Section 2.1.2), the values are inversely related to their effects; a small fitness density function mean represents a stronger reinforcer than a large fitness density function mean.
	
[bookmark: _Toc536370702]4.1.3. Analyses
[bookmark: _Toc536370703]4.1.3.1. Data pooling and averaging. Simulated behavior during the first 500 time steps of each schedule were excluded from analyses to assess each simulated creature type’s steady-state behavior rather than behavior during transition. Observed reinforcement and behavior frequencies during the remaining 20,000 time steps were divided by 500 time steps to create rates of reinforcement and behavior. These rates were then averaged across simulated creatures of the same type as a precaution against individual creatures becoming stuck in unrepresentative local minima. In summary, each data point represents 200,000 behaviors from 10 simulated creatures.

[bookmark: _Toc536370704]4.1.3.2. Bivariate matching law equation. The log transformed version of the bivariate matching law was fitted to the 25 averaged data points at each mutation rate. The fitted equation was
[bookmark: Eq4_2Prime]				(4-2′)
In this equation, B is the observed rate of behavior, R is the obtained rate of reinforcement, F is the scheduled fitness density function mean, the numerical subscripts indicate the target class, and aR, aM, and b are free parameters. The fitness density function means were substituted for reinforcer magnitudes because that is the equivalent measure of reinforcer magnitude for this type of algorithm. The fitness density function mean ratio is also inverted – relative to the magnitude expression in Equation 4-2 – because the scheduled fitness density function means are inversely related to reinforcer strength. For example, a fitness density function mean of 15 is stronger than 180. This equation was fitted using OLS.

[bookmark: _Toc536370705]4.2. Results
	The behaviors of the twelve creature types were well described by the bivariate matching law (Equation 4-2′). The median percentages of variance accounted for by the bivariate matching law were above 98% for all creature types (Appendix M). The smallest percentage of variance accounted for was 94%, which was when the equation was fitted to the linear-cloning-pheno-Gaussian creature type’s behavior at the 0.5% mutation rate. Although the behavior of the creature types was well described by the bivariate matching law, the fitted parameter values did not meet the simulation’s criteria for a viable account.
	The simulated creature types that used an exponential selection function generally had sensitivity to magnitude exponent values that were below criteria. Only the exponential-bitwise-bitflip ETBD creatures met the criteria – albeit marginally. In the mutation rate rage of 5% to 12.5%, the sensitivity to rate was at the upper limit of its criterion – 0.85 – while the sensitivity to magnitude was at the lower limit of its criterion – 0.5 (Figure 4-1). All TNGS-based simulated creatures that used exponential selection had sensitivities to magnitude that were below its lower bound criterion of 0.5 (Figures 4-2, 4-3, 4-4, 4-5, and 4-6). The sensitivities to the rate of reinforcement found in this study corroborated those found in Experiment 1. In summary, the only viable simulated creature type that used exponential selection was the exponential-bitwise-bitflip ETBD creature type within the mutation rate range of 5% to 12.5% and it barely met the criteria within that range.
	The simulated creatures that used linear selection functions tended to be more viable. The linear-bitwise-bitflip ETBD creature type’s behavior met viability criteria for the mutation rate range of 5% to 20% (Figure 4-7). The parameter values of its behavior at 15% mutation were almost an exact match to those estimated by Cording et al. (2011). The linear-cloning-bitflip TNGS creature type’s behavior met criteria in the mutation rate range of 2.5% to 15% (Figure 4-8). In some ways the parameter values of these simulated creatures better approximate Cording et al. (2011) than linear-bitwise-bitflip ETBD creatures because the estimated parameter values are closer to those found in the meta-analysis across a wider range of mutation rates. However, the lack of aR and aM variability may be a double-edged sword; if a new meta-analysis found that the aM value should be greater than Cording et al. (2011) suggested then there is very little leeway for it to match that meta-analysis because aM seems to be capped at 0.60 for the linear-cloning-bitflip TNGS creature type. Cloning reproduction with phenotypic variation only produced patterns of behavior that matched Cording et al. (2011) at very specific mutation rates, which suggests that they are unlikely to be viable models of behavior. Linear-cloning-pheno-linear TNGS creatures met criteria at the mutation rates of 1% and 2.5% (Figure 4-10), which is very limited. The flatter phenotypic variation forms – uniform and Gaussian – were even more restrictive and only met criteria at the mutation rate of 2.5% (Figures 4-9 and 4-12). The steepest variation function – exponential – did not meet criteria at any mutation rate (Figure 4-11).

[bookmark: _Toc536370706]4.3. Discussion
	These results indicate that both the ETBD and TNGS are viable accounts for behavior on concurrent schedules when the rate and magnitude of reinforcement are varied, but that the TNGS is more limited. If the viable creature types are listed in order of viability, then the order would be linear-bitwise-bitflip, linear-clone-bitflip, and exponential-bitwise-bitflip. Given the criteria, linear-bitwise-bitflip ETBD creatures and linear-clone-bitflip TNGS creatures seem equally likely to represent human and animal behavior because they meet the criteria for a wide range of mutation rates, but linear-bitwise-bitflip has a slight edge because it can meet a wider range of possible aM values. The exponential-bitwise-bitflip ETBD creature type meets the criteria but is unlikely to represent animal behavior because there is a larger difference between the aR and aM values than Cording et al.’s meta-analysis suggests (2011). A few of the simulated creatures that used linear selection and phenotypic variation had very small regions of viability, but these are so restricted that they are unlikely to be representative of human and animal behavior. Overall, the TNGS is less likely to represent human and animal behavior than the ETBD. Only one of the ten TNGS-based models met the criteria for a successful simulation of behavior, whereas all of the ETBD-based models did. This suggests that the ETBD is a more robust account of behavior than the TNGS
	This simulation identified two major algorithmic requirements for simulated behavior to match human and animal behavior in concurrent RI RI schedules that vary the rate and magnitude of reinforcement. The first of these requirements is that behaviors must be represented as a series of bits and cannot be only represented by phenotypes. This was evidenced by all creature types that used phenotypic variation methods being unable to compellingly simulate pigeon behavior because the aM parameter estimates were too low. This is a robust finding; four different phenotypic variation alternatives were examined and they all had the same flaw. So why is phenotypic variation such a poor account? By combining cloning reproduction and phenotypic variation behaviors are solely expressed as phenotypes. This changes the nature of the process the algorithm uses to find a behavioral solution to the environment in a way that makes it more like a hill-climbing algorithm than a genetic algorithm. Hill-climbing algorithms systematically vary each of the parameters on a single dimension until they find a maximum. Genetic algorithms – like the ETBD – instead vary the parameters multidimensionally. It does this because each bit of the genotype can be thought of as a separate dimension to solving the problem of the environment. This means that the genotype can be thought of as representing the problem space as a hypercube with the number of sides equaling the number of bits (Whitley, 1994). By searching the environmental problem space multidimensionally, the simulated creature types that represent behaviors with genotypes may be far more adaptive than anything that relies on a purely phenotypic approach. 
The second algorithmic requirement is that the form of the selection function be linear. The linear selection function form is preferable to the exponential, because it results in greater sensitivities to magnitude and lower sensitivities to the rate reinforcement (for example compare Figures 4-1 and Figure 4-7). This combination of effects makes the simulated creature’s behavior better approximate pigeon behavior on concurrent RI RI schedules that vary the reinforcer rates and magnitudes. Since there is a difference between exponential and linear selection functions, it may be informative to investigate the performance of the third type of selection function form, which is uniform (Figure 2-2). If the selection function’s slope has a systematic effect, then it may be that a uniform selection function form could raise the sensitivity to magnitude even higher than the linear selection function.
	A major limitation of this experiment is that the basis for the criteria are not as strongly supported as they were for Experiment 1. The criteria of this study may be flawed because they are based solely on pigeon behavior, which is the only animal that Equation 4-2 has been evaluated with. This poses a significant risk to this experiment’s conclusions; if there are species specific differences to magnitude sensitivities or to certain types of reinforcers, then the aM criterion range that was used in this experiment is not warranted. The behavior of a wider range of species on schedules that simultaneously vary rate and magnitude of reinforcement needs to be explored. 

[bookmark: _Toc536370707]4.3.1. Conclusion. This simulation provided limited support for the TNGS as a viable account of behavior in environments in which the rate and magnitude of reinforcement are simultaneously varied. The phenotypic variation versions of the TNGS were all rejected as accounts of behavior, because the estimated sensitivity to magnitude exponents – aM – were too low. ETBD-based simulated creatures were more robustly able to produce patterns of behavior that were like animals in environments in which the rate and magnitude of reinforcement are simultaneously varied. The number of possible algorithms was also significantly reduced by this study because it identified the necessity of the linear selection function form. Given the successes of the linear-cloning-bitflip TNGS simulation, the behavioral dynamics of that model should be further explored. 



[bookmark: _Toc536370708]Chapter 5: General Discussion
	A version of the TNGS was found to be a viable account for human and animal behavior inasmuch as the simulations were valid. The only version of the TNGS that met criteria in both Experiments 1 and 2 used a linear-clone-bitflip algorithm. The other nine versions of the TNGS failed to meet criteria in Experiment 2. While there is a version of the TNGS that met criteria, the overall failure of the TNGS-based simulated creatures suggests that it is not as robust an explanation as the ETBD. Since a version of the TNGS is viable, however, it suggests that the critiques of its dynamics (Crick, 1989; Fernando, Karishma, & Syathmary, 2008; Fernando, Goldstein, & Syathmary, 2010; Fernando, Szathmary, & Husbands, 2012) may have been premature. 
While Experiments 1 and 2 provided support for the linear-clone-bitflip algorithm, more studies need to be conducted that focus on its behavioral dynamics. Experiments 1 and 2 examined long-term steady state behavior, which is important, but short-term patterns of behavior like response bouts and how behavior changes immediately following reinforcement also need to be investigated. Kulubekova and McDowell (2008; 2013) investigated these dynamics with the ETBD in a pair of studies. They found that the behavior predicted by the ETBD is like humans and animals. It would be informative to replicate these two studies with the TNGS-based linear-cloning-bitflip simulated creature type to determine if it is also a viable account.
A novel finding of Experiment 1 was the quadratic-exponential function that describes changeover behavior. This equation was preferable to McDowell et al.’s proportion of reinforcement equation (2008), because that equation fails to adequately describe changeover behavior when the total rate of reinforcement varies. To the extent that the simulation is externally valid, the exponentially decreasing rate of changeovers as the total rate of reinforcement increases suggests that human and animal changeover behavior could be controlled by the overall reinforcement rate of the environment more than the uncertainty of the next reinforcer.
It seems unlikely, however, that the quadratic-exponential that was found in Experiment 1’s simulation can be generalized to other circumstances, because the experiment’s design lacks external validity. It seems more likely that the quadratic-exponential function is simply an artifact of the simulation’s design rather than a true prediction of the theory. One reason why it seems unlikely is that the expected CMax estimates depend on the size of the target classes, which is an arbitrary element of the simulation. As was discussed in Experiment 1, the expected changeover rates of a truly random population of behaviors are 20 for genotypic mutation methods and 25 for phenotypic mutation methods per 500 time steps. This probability is much higher than what is typically observed with humans or animals in the absence of scheduled reinforcement. Making the simulated target classes smaller relative to the phenotype range could correct for this, but there are other issues that limit the simulation’s external validity.
Experiment 1’s design does not account for unmeasured behaviors being reinforced. By only defining two reinforcing target classes within the simulation, the experimental design implicitly suggests that these are the only reinforcing events during a concurrent RI RI experiment, which is not true of the real world. In the absence of reinforcers provided by the experimenter, humans and animals will seek out other sources of reinforcement. Even in the highly controlled situation of a Skinner box, an animal can sleep, scratch an itch, explore the box, or engage in any other behavior that is intrinsically reinforcing. Appropriately simulating these alternative behaviors and their consequences would reduce the observed maximum changeover rates when the rate of reinforcement is low because the simulated creatures would allocate their behavior towards those alternatives instead. This would improve the simulations’ external validity but would likely invalidate the quadratic-exponential account of changeover behavior.
	A novel approach to assess the TNGS to the ETBD would be to determine parameter values that describe a participant’s behavior and then see if it can predict that same participant’s behavior in the future. Li, Elliffe, and Hautus (2018) recently developed a method for determining parameter values for the ETBD that correspond to a participant’s behavior. If the parameter values that are found from this approach can predict future behavior, then the theories’ predictions could be strongly compared. After finding optimal parameters for both theories, a participant’s behavior could be predicted in a novel environment and then later compared with the participant’s actual behavior when they engage with that environment. The theory that better predicts future behavior would be the stronger theory. 
	The ability to determine parameter values for individuals and predict their future behavior also has numerous potential clinical applications. If future behavior can be predicted from these algorithms, then the effects of behaviorally-focused therapies could be assessed prior to implementing them with a client. After developing a case conceptualization of the problem, the therapist could have the client work on a concurrent schedule that would be used to determine parameter values that describe their behavior. The therapist could then use the ETBD algorithm to predict how that client’s behavior may change in response to treatments. By selecting the simulated therapeutic approach that predicted the desired changes to the client’s behavior it may be possible to tailor the treatment to the patient and, thus, achieve better treatment outcomes.
	Another opportunity for this type of simulation work to be applied to clinical treatment is just-in-time adaptive interventions (Berardi et al., 2018). Just-in-time adaptive interventions are computer programs that are designed to recognize detrimental changes in patient behavior and correct them before they become a larger problem (Nahum-Shani, Hekler, & Spruijt-Metz, 2015; Spruijt-Metz & Nilsen, 2014; Spruijt-Metz et al., 2015). These programs work with computers, laptops, or mobile phones and have the client frequently report on their behavior. A strong emphasis is placed on the dynamics of behavior, which the ETBD is particularly well suited to because – unlike the matching law – it is a dynamic model of behavior. Some preliminary work with the ETBD has already been conducted to see how well it could suit this function (Berardi et al., 2018), but the implementation of the theory in that study was novel. Berardi et al. (2018) implemented the ETBD by using an odd version of cloning reproduction, which makes that simulation more akin to the TNGS. However, they did not directly replicate behaviors as this study did, but rather used a complicated Gaussian-kernelling method to create population distributions that were then used to generate the next generation of potential behaviors. The authors never explained why they decided to implement the ETBD this way and there were numerous other oddities in its design, but this preliminary work suggests that there are potential clinical applications to this type of intervention.
	In summary, limited support was found for the TNGS but it was not as robustly supported as the ETBD. All versions of the TNGS were viable accounts of behavior on concurrent RI RI and single RI schedules, but only one version of the TNGS was a viable account of matching to simultaneously varying rates of reinforcement and reinforcer magnitude. The dynamics of the only viable version of the TNGS need to be further assessed by replicating Kulubekova and McDowell (2008; 2013). Future studies should also emphasize the clinical utility of these simulations. By pursuing these projects, the TNGS may become better supported as an account of human and animal behavior.
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[bookmark: EquationSummary]EQUATION SUMMARY
Matching Law and Theory
Theoretical Equations
Equation 3-1: The classic matching law (pg. 34)				
Equation 1-1: The modern matching law (pg. 2)				
Equation 3-2: The classic quantitative law of effect (pg. 34)			
Equation 3-3: The modern quantitative law of effect (pg. 35)	 	
Equation 3-4: The modern quantitative law of effect w/ c (pg. 35)		
Fitted Equations
Equation 1-1′: Log-transformed modern matching law (pg. 43)

Equation 3-4a′: Modern quantitative law of effect to the first target class (pg. 43)

Equation 3-4b′: Modern quantitative law of effect to the second target class (pg. 43)
8


B = Observed rate of behavior
R = Rate of obtained reinforcement
a = Sensitivity to reinforcement
b = Bias
bi = Bias towards the target class
k = Maximum rate of behavior
re = Extraneous Reinforcement
c = Composite parameter
subscripts = Target class specifiers
Note: Variables identified by uppercase are manipulated or observable, whereas variables identified by lowercase are estimated free parameters.

Concurrent RI RI Changeover Profiles
Unlabeled Equation: Quadratic changeovers	(pg. 49)	

Equation 3-5: Quadratic-exponential changeovers (pg. 57)


P = Proportion of reinforcement [i.e., R1/(R1+R2)]
T = Total rate of reinforcement (i.e., R1+R2)
a, b, c, & d = Free parameters


Bivariate Matching Law
Theoretical Equations
Equation 4-1: Multivariate matching law (pg. 69)		
Equation 4-2: Bivariate matching law (pg. 69)		
Fitted Equation
Equation 4-2′: Log-transformed bivariate matching law (pg. 73)



B = Observed rate of behavior
R = Rate of obtained reinforcement
M = Reinforcer magnitude
I = Immediacy of reinforcement
X = Any other quality of reinforcement
F = Mean of the fitness density function 
v = Value of the reinforcer
aR = Sensitivity to the rate of reinforcement
aM = Sensitivity to the reinforcer magnitude
b = Bias
subscripts = Target class specifiers
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[bookmark: _Toc536363672][bookmark: _Toc536390174][image: ]Figure 2-1. Flowchart of how the ETBD creates new generations of behaviors
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[bookmark: _Toc536363673][bookmark: _Toc536390175]Figure 2-2. Continuous probability density function forms with means of 40
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Note: The bolded 0s and 1s were randomly selected from the two parents to create the new child behavior.
[bookmark: _Toc536390176]Figure 2-3. The bitwise method of reproduction
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[bookmark: _Toc536390177]Figure 2-4. The bitflip-by-individual variation method
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[bookmark: _Toc536390178]Figure 2-5. Plots of the probability density functions of phenotypic variation methods



[bookmark: _Toc536390179][image: ]Figure 2-6. A simplified example of roulette-wheel selection 



[bookmark: _Toc536370387]Table 3-1. 
The Twelve Simulated Creature Types
	
	Algorithm Methods

	Abbreviated Creature Names
	Selection
	Reproduction
	Variation

	ETBD-based
	
	
	

	    Linear-Bitwise-Bitflip
	Continuous Lineara
	Bitwisec
	Bitflip-by-Individuale

	    Exponential-Bitwise-Bitflip
	Continuous Exponentiala
	Bitwisec
	Bitflip-by-Individuale

	
	
	
	

	TNGS-based (Genotypic)
	
	
	

	    Linear-Clone-Bitflip
	Roulette-Continuous Linearb
	Cloningd
	Bitflip-by-Individuale

	    Exponential-Clone-Bitflip
	Roulette-Continuous Exponentialb
	Cloningd
	Bitflip-by-Individuale

	
	
	
	

	TNGS-based (Phenotypic)
	
	
	

	    Linear-Clone-Pheno-Uniform
	Roulette-Continuous Linearb
	Cloningd
	Uniform Continuousf

	    Linear-Clone-Pheno-Linear
	Roulette-Continuous Linearb
	Cloningd
	Linear Continuousf

	    Linear-Clone-Pheno-Exponential
	Roulette-Continuous Linearb
	Cloningd
	Exponential Continuousf

	    Linear-Clone-Pheno-Gaussian
	Roulette-Continuous Linearb
	Cloningd
	Gaussian Continuousf

	    Exponential-Clone-Pheno-Uniform
	Roulette-Continuous Exponentialb
	Cloningd
	Uniform Continuousf

	    Exponential-Clone-Pheno-Linear
	Roulette-Continuous Exponentialb
	Cloningd
	Linear Continuousf

	    Exponential-Clone-Pheno-Exponential
	Roulette-Continuous Exponentialb
	Cloningd
	Exponential Continuousf

	    Exponential-Clone-Pheno-Gaussian
	Roulette-Continuous Exponentialb
	Cloningd
	Gaussian Continuousf


a Section 2.1.2
b Section 2.2.3
c Section 2.1.3
d Section 2.2.1
e Section 2.1.4
f Section 2.2.2

[bookmark: _Toc536370388]Table 3-2. 
Scheduled random-interval means of the two reinforcing target classes

	Schedule Number
	Target Class
	
	Schedule Number
	Target Class

	
	1
	2
	 
	
	1
	2

	1
	2.50
	2.50
	
	27
	13.33
	10.00

	2
	2.50
	3.33
	
	28
	13.33
	13.33

	3
	2.50
	5.00
	
	29
	13.33
	20.00

	4
	2.50
	10.00
	
	30
	13.33
	40.00

	5
	3.33
	2.50
	
	31
	20.00
	5.00

	6
	3.33
	3.33
	
	32
	20.00
	6.67

	7
	3.33
	5.00
	
	33
	20.00
	10.00

	8
	3.33
	10.00
	
	34
	20.00
	13.33

	9
	5.00
	2.50
	
	35
	20.00
	20.00

	10
	5.00
	3.33
	
	36
	20.00
	26.67

	11
	5.00
	5.00
	
	37
	20.00
	40.00

	12
	5.00
	6.67
	
	38
	20.00
	80.00

	13
	5.00
	10.00
	
	39
	26.67
	20.00

	14
	5.00
	20.00
	
	40
	26.67
	26.67

	15
	6.67
	5.00
	
	41
	26.67
	40.00

	16
	6.67
	6.67
	
	42
	26.67
	80.00

	17
	6.67
	10.00
	
	43
	40.00
	10.00

	18
	6.67
	20.00
	
	44
	40.00
	13.33

	19
	10.00
	2.50
	
	45
	40.00
	20.00

	20
	10.00
	3.33
	
	46
	40.00
	26.67

	21
	10.00
	5.00
	
	47
	40.00
	40.00

	22
	10.00
	6.67
	
	48
	40.00
	80.00

	23
	10.00
	10.00
	
	49
	80.00
	20.00

	24
	10.00
	13.33
	
	50
	80.00
	26.67

	25
	10.00
	20.00
	
	51
	80.00
	40.00

	26
	10.00
	40.00
	
	52
	80.00
	80.00
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[bookmark: _Toc536390180]Figure 3-1. Scatterplot of scheduled reinforcement rates
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[bookmark: _Toc536390181]Figure 3-2. Effects of the parameters k, c, and a on the predicted rate of behavior


[bookmark: _Toc536370389]Table 3-2. 
Model parameter restrictions 

	Model
	Description
	Parameters
	a
	k
	c1
	c2

	1
	Modern Algebraic
	16
	*
	*
	*
	*

	2
	Modern Algebraic w/ No Bias
	12
	*
	*
	*
	E

	3
	Modern Algebraic w/ Constant Exponent
	9
	C
	*
	*
	E

	4
	Modern Algebraic w/ Constant k
	6
	C
	C
	*
	E

	5
	Modern Response Strength
	3
	C
	C
	C
	E

	6
	Classic Algebraic
	8
	1
	*
	*
	E

	7
	Classic Algebraic w/ Constant k
	5
	1
	C
	*
	E

	8
	Classic Response Strength
	2
	1
	C
	C
	E


* = Varies with each magnitude pair, C = Constant across magnitude pairs, E = equal to c1 at each magnitude pair, and a specific value means that is what the value is set to across all magnitude pairs
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[bookmark: _Toc536390182]Figure 3-3. Summary of model preferences by the BIC, AIC, and extra sums of squares difference tests
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[bookmark: _Toc536390183]Figure 3-4. Exponent (a) parameter values of model 3 fits to simulated creature behavior
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[bookmark: _Toc536390184][bookmark: _Hlk536364551]Figure 3-5. k parameter values of model 3 fits to the behavior of simulated creatures that used an exponential selection function
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[bookmark: _Toc536390185]Figure 3-6. k parameter values of model 3 fits to the behavior of simulated creatures that used a linear selection function
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[bookmark: _Toc536390186]Figure 3-7. c parameter values of model 3 fits to the behavior of simulated creatures that used an exponential selection function
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[bookmark: _Toc536390187]Figure 3-8. c parameter values of model 3 fits to the behavior of simulated creatures that used a linear selection function


[image: ]
Note: The parameter values of the fits can be found in Appendices A.3 and F.3 at the reinforcer magnitude pair of 40 & 40
[bookmark: _Toc536390188]Figure 3-9. Predicted rates of behavior for exponential-bitwise-bitflip and exponential-clone-pheno-Gaussian creature types at 10% and 20% mutation
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[bookmark: _Toc536390189]Figure 3-10. Predicted rate of behavior at 15 reinforcers per 500 time steps of simulated creatures that used an exponential selection function
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[bookmark: _Toc536390190]Figure 3-11. Predicted rate of behavior at 15 reinforcers per 500 time steps of simulated creatures that used a linear selection function
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[bookmark: _Toc536390191]Figure 3-12. Quadratic fit to changeovers per 500 time steps of exponential-bitwise-bitflip creature type behavior at 10% mutation
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Note: The (R1+R2)-axis is reversed for display purposes.
[bookmark: _Toc536390192]Figure 3-13. Changeovers per 500 time steps (ts) as a function of total and proportional reinforcement of the exponential-bitwise-bitflip creature type at 10% mutation 
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Note: White dots are datapoints that are below the function’s predicted values and black dots are above. The arrows on the axes indicate the direction of increasing value.
[bookmark: _Toc536390193]Figure 3-14. Quadratic-exponential fit to changeovers per 500 time steps (ts) of the exponential-bitwise-bitflip creature type at 10% mutation 


[image: ]
[bookmark: _Toc536362728][bookmark: _Hlk536267091]Note: The arrows on the axes indicate the direction of increasing value.
[bookmark: _Toc536390194]Figure 3-15. Quadratic-exponential fit to changeovers per 500 time steps (ts) of the exponential-bitwise-bitflip creature type at 10% mutation on a typical 11 schedule experiment
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[bookmark: _Toc536390195]Figure 3-16. Exponential fit to changeovers per 500 time steps of the exponential-bitwise-bitflip creature type at 10% mutation
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[bookmark: _Toc536390196]Figure 3-17. Averaged maximum changeovers (CMax) predicted by the quadratic-exponential fits to simulated creature behavior
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[bookmark: _Toc536390197]Figure 3-18. The concavity (CΔ%) of the best fitting quadratic-exponential to the changeover behavior of simulated creatures that used an exponential selection function


[bookmark: _Toc536362732][bookmark: _Hlk536267119][image: ]
[bookmark: _Toc536390198][bookmark: _Hlk536364314]Figure 3-19. The concavity (CΔ%) of the best fitting quadratic-exponential to the changeover behavior of simulated creatures that used a linear selection function



[bookmark: _Toc536370390]Table 4-1. 
Scheduled random-interval rate means and reinforcer magnitudes of the two reinforcing components

	Schedule Number
	Component Rates
	
	Component Magnitudes

	
	1
	2
	 
	1
	2

	1
	15
	180
	
	15
	90

	2
	15
	180
	
	34
	71

	3
	15
	180
	
	52
	52

	4
	15
	180
	
	71
	34

	5
	15
	180
	
	90
	15

	6
	56
	139
	
	15
	90

	7
	56
	139
	
	34
	71

	8
	56
	139
	
	52
	52

	9
	56
	139
	
	71
	34

	10
	56
	139
	
	90
	15

	11
	98
	98
	
	15
	90

	12
	98
	98
	
	34
	71

	13
	98
	98
	
	52
	52

	14
	98
	98
	
	71
	34

	15
	98
	98
	
	90
	15

	16
	139
	56
	
	15
	90

	17
	139
	56
	
	34
	71

	18
	139
	56
	
	52
	52

	19
	139
	56
	
	71
	34

	20
	139
	56
	
	90
	15

	21
	180
	15
	
	15
	90

	22
	180
	15
	
	34
	71

	23
	180
	15
	
	52
	52

	24
	180
	15
	
	71
	34

	25
	180
	15
	 
	90
	15
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Note: Mutation rates of 0.5, 1.0, and 2.5% are omitted because they could not be successfully run.
[bookmark: _Toc536390199]Figure 4-1. Bivariate matching fit exponents of exponential-bitwise-bitflip simulated creature behavior
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[bookmark: _Toc536390200]Figure 4-2. Bivariate matching fit exponents of exponential-clone-bitflip simulated creature behavior 

[bookmark: _Toc536362735][bookmark: _Hlk536267140][image: ]
[bookmark: _Toc536390201]Figure 4-3. Bivariate matching fit exponents of exponential-clone-pheno-uniform simulated creature behavior
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[bookmark: _Toc536390202]Figure 4-4. Bivariate matching fit exponents of exponential-clone-pheno-linear simulated creature behavior



[image: ] 
[bookmark: _Toc536390203]Figure 4-5. Bivariate matching fit exponents of exponential-clone-pheno-exponential simulated creature behavior
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[bookmark: _Toc536390204]Figure 4-6. Bivariate matching fit exponents of exponential-clone-pheno-Gaussian simulated creature behavior
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Note: Mutation rates of 0.5, 1.0, and 2.5% are omitted because they could not be successfully run.
[bookmark: _Toc536390205]Figure 4-7. Bivariate matching fit exponents of linear-bitwise-bitflip simulated creature behavior
[image: ]
[bookmark: _Toc536390206]Figure 4-8. Bivariate matching fit exponents of linear-clone-bitflip simulated creature behavior


[bookmark: _Toc536362741][bookmark: _Hlk536267187][image: ]
[bookmark: _Toc536390207]Figure 4-9. Bivariate matching fit exponents of linear-clone-pheno-uniform simulated creature behavior
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[bookmark: _Toc536390208]Figure 4-10. Bivariate matching fit exponents of linear-clone-pheno-linear simulated creature behavior
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[bookmark: _Toc536390209]Figure 4-11. Bivariate matching fit exponents of linear-clone-pheno-exponential simulated creature behavior
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Running Head: ALGORITHMIC MODIFICATIONS TO THE ETBD	1

[bookmark: _Toc536390210]Figure 4-12. Bivariate matching fit exponents of linear-clone-pheno-Gaussian simulated creature behavior












[bookmark: _Toc536370712]APPENDICES


[bookmark: _Toc536370713]Appendix A: Experiment 1 Fitting Measures of the Exponential-Bitwise-Bitflip Creature Type

Table A.1. Model 1 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	
	%VAF

	
	
	k
	c1
	c2
	a
	QLOE
	ML

	5.0
	20/20
	478
	8.5
	8.7
	0.77
	97
	99

	
	40/40
	400
	8.7
	8.9
	0.77
	99
	99

	
	60/60
	358
	10.0
	9.8
	0.77
	99
	99

	
	80/80
	322
	10.6
	10.8
	0.77
	98
	99

	7.5
	20/20
	494
	14.7
	14.8
	0.81
	99
	99

	
	40/40
	406
	14.1
	13.9
	0.80
	99
	99

	
	60/60
	364
	16.3
	16.2
	0.81
	99
	100

	
	80/80
	326
	16.8
	16.9
	0.81
	99
	100

	10.0
	20/20
	496
	20.0
	19.9
	0.82
	100
	100

	
	40/40
	416
	21.1
	21.3
	0.83
	100
	100

	
	60/60
	368
	22.3
	22.4
	0.83
	100
	100

	
	80/80
	332
	24.1
	24.2
	0.83
	100
	100

	12.5
	20/20
	503
	26.0
	25.8
	0.83
	100
	100

	
	40/40
	423
	27.4
	27.2
	0.84
	100
	100

	
	60/60
	372
	28.9
	29.2
	0.85
	100
	100

	
	80/80
	344
	31.3
	31.4
	0.84
	100
	100

	15.0
	20/20
	510
	30.9
	30.7
	0.83
	100
	100

	
	40/40
	433
	33.3
	33.3
	0.84
	100
	100

	
	60/60
	381
	35.8
	35.6
	0.85
	100
	100

	
	80/80
	350
	37.7
	37.7
	0.84
	100
	100

	17.5
	20/20
	454
	31.3
	31.2
	0.82
	100
	100

	
	40/40
	357
	33.0
	33.0
	0.82
	100
	100

	
	60/60
	285
	30.1
	30.2
	0.80
	100
	100

	
	80/80
	259
	31.0
	30.9
	0.76
	100
	99

	20.0
	20/20
	455
	35.8
	35.7
	0.83
	100
	100

	
	40/40
	360
	37.2
	37.5
	0.82
	100
	100

	
	60/60
	290
	34.1
	34.2
	0.79
	100
	100

	 
	80/80
	253
	32.2
	32.2
	0.75
	99
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law


Table A.2. Model 2 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	478
	8.6
	0.77
	97
	99

	
	40/40
	400
	8.8
	0.77
	99
	99

	
	60/60
	358
	9.9
	0.77
	99
	99

	
	80/80
	322
	10.7
	0.77
	98
	99

	7.5
	20/20
	494
	14.8
	0.81
	99
	99

	
	40/40
	406
	14.0
	0.80
	99
	99

	
	60/60
	364
	16.3
	0.81
	99
	100

	
	80/80
	326
	16.9
	0.81
	99
	100

	10.0
	20/20
	496
	20.0
	0.82
	100
	100

	
	40/40
	416
	21.2
	0.83
	100
	100

	
	60/60
	368
	22.3
	0.83
	100
	100

	
	80/80
	332
	24.2
	0.83
	100
	100

	12.5
	20/20
	503
	25.9
	0.83
	100
	100

	
	40/40
	423
	27.3
	0.84
	100
	100

	
	60/60
	372
	29.1
	0.85
	100
	100

	
	80/80
	344
	31.4
	0.84
	100
	100

	15.0
	20/20
	510
	30.8
	0.83
	100
	100

	
	40/40
	433
	33.3
	0.84
	100
	100

	
	60/60
	381
	35.7
	0.85
	100
	100

	
	80/80
	350
	37.7
	0.84
	100
	100

	17.5
	20/20
	454
	31.2
	0.82
	100
	100

	
	40/40
	357
	33.0
	0.82
	100
	100

	
	60/60
	285
	30.1
	0.80
	100
	100

	
	80/80
	259
	30.9
	0.76
	100
	99

	20.0
	20/20
	455
	35.7
	0.83
	100
	100

	
	40/40
	360
	37.4
	0.82
	100
	100

	
	60/60
	290
	34.2
	0.79
	100
	100

	 
	80/80
	253
	32.2
	0.75
	99
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table A.3. Model 3 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	479
	8.6
	0.77
	97
	99

	
	40/40
	400
	8.9
	
	99
	99

	
	60/60
	358
	9.9
	
	99
	99

	
	80/80
	322
	10.7
	
	98
	99

	7.5
	20/20
	495
	14.7
	0.81
	99
	99

	
	40/40
	403
	14.2
	
	99
	99

	
	60/60
	367
	16.1
	
	99
	100

	
	80/80
	326
	16.8
	
	99
	100

	10.0
	20/20
	492
	20.1
	0.83
	100
	100

	
	40/40
	417
	21.1
	
	100
	100

	
	60/60
	368
	22.3
	
	100
	100

	
	80/80
	334
	24.1
	
	100
	100

	12.5
	20/20
	500
	26.1
	0.84
	100
	100

	
	40/40
	425
	27.3
	
	100
	100

	
	60/60
	376
	29.0
	
	100
	100

	
	80/80
	342
	31.4
	
	100
	100

	15.0
	20/20
	504
	31.0
	0.84
	100
	100

	
	40/40
	434
	33.3
	
	100
	100

	
	60/60
	387
	35.6
	
	100
	100

	
	80/80
	349
	37.7
	
	100
	100

	17.5
	20/20
	475
	31.0
	0.80
	100
	100

	
	40/40
	373
	33.1
	
	100
	100

	
	60/60
	284
	30.1
	
	100
	100

	
	80/80
	238
	30.2
	
	99
	99

	20.0
	20/20
	486
	35.7
	0.79
	100
	100

	
	40/40
	380
	37.8
	
	100
	100

	
	60/60
	287
	34.1
	
	100
	100

	 
	80/80
	228
	31.0
	 
	99
	98


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table A.4. Model 4 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	384
	10.6
	0.77
	74
	99

	
	40/40
	
	9.9
	
	96
	99

	
	60/60
	
	11.0
	
	98
	99

	
	80/80
	
	11.5
	
	85
	98

	7.5
	20/20
	398
	17.5
	0.80
	80
	99

	
	40/40
	
	16.6
	
	96
	99

	
	60/60
	
	18.1
	
	99
	100

	
	80/80
	
	19.5
	
	88
	99

	10.0
	20/20
	413
	25.5
	0.83
	82
	100

	
	40/40
	
	23.7
	
	98
	100

	
	60/60
	
	26.2
	
	99
	100

	
	80/80
	
	28.9
	
	90
	99

	12.5
	20/20
	372
	28.3
	0.85
	79
	100

	
	40/40
	
	27.4
	
	96
	100

	
	60/60
	
	28.5
	
	100
	100

	
	80/80
	
	31.1
	
	93
	99

	15.0
	20/20
	458
	44.2
	0.83
	82
	100

	
	40/40
	
	41.3
	
	98
	100

	
	60/60
	
	45.6
	
	99
	100

	
	80/80
	
	49.3
	
	91
	99

	17.5
	20/20
	474
	64.3
	0.79
	59
	100

	
	40/40
	
	57.4
	
	92
	99

	
	60/60
	
	64.7
	
	98
	100

	
	80/80
	
	71.3
	
	82
	97

	20.0
	20/20
	532
	81.0
	0.79
	58
	100

	
	40/40
	
	72.2
	
	91
	99

	
	60/60
	
	81.2
	
	97
	100

	 
	80/80
	 
	88.9
	 
	81
	96


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table A.5. Model 5 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	378
	10.3
	0.77
	73
	99

	
	40/40
	
	
	
	95
	99

	
	60/60
	
	
	
	98
	99

	
	80/80
	
	
	
	84
	99

	7.5
	20/20
	390
	17.1
	0.81
	79
	99

	
	40/40
	
	
	
	95
	99

	
	60/60
	
	
	
	99
	100

	
	80/80
	
	
	
	87
	100

	10.0
	20/20
	403
	25.0
	0.83
	81
	100

	
	40/40
	
	
	
	97
	100

	
	60/60
	
	
	
	99
	100

	
	80/80
	
	
	
	89
	100

	12.5
	20/20
	421
	33.8
	0.84
	81
	100

	
	40/40
	
	
	
	97
	100

	
	60/60
	
	
	
	99
	100

	
	80/80
	
	
	
	89
	100

	15.0
	20/20
	443
	43.1
	0.84
	81
	100

	
	40/40
	
	
	
	96
	100

	
	60/60
	
	
	
	99
	100

	
	80/80
	
	
	
	89
	100

	17.5
	20/20
	434
	59.6
	0.80
	57
	100

	
	40/40
	
	
	
	88
	100

	
	60/60
	
	
	
	98
	100

	
	80/80
	
	
	
	79
	99

	20.0
	20/20
	481
	74.6
	0.80
	56
	100

	
	40/40
	
	
	
	87
	100

	
	60/60
	
	
	
	98
	100

	 
	80/80
	 
	 
	 
	78
	98


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table A.6. Model 6 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	423
	12.5
	95
	91

	
	40/40
	351
	12.5
	97
	90

	
	60/60
	312
	13.9
	97
	90

	
	80/80
	277
	14.7
	97
	90

	7.5
	20/20
	433
	19.9
	98
	94

	
	40/40
	352
	18.9
	97
	93

	
	60/60
	314
	20.8
	99
	94

	
	80/80
	277
	21.3
	98
	94

	10.0
	20/20
	427
	25.5
	99
	95

	
	40/40
	359
	26.4
	99
	96

	
	60/60
	312
	27.1
	99
	95

	
	80/80
	279
	28.6
	99
	96

	12.5
	20/20
	428
	32.1
	99
	96

	
	40/40
	357
	32.7
	99
	96

	
	60/60
	312
	34.0
	99
	96

	
	80/80
	278
	35.5
	99
	96

	15.0
	20/20
	418
	37.0
	99
	96

	
	40/40
	353
	38.6
	99
	96

	
	60/60
	309
	40.2
	99
	96

	
	80/80
	272
	40.9
	99
	96

	17.5
	20/20
	365
	36.8
	99
	95

	
	40/40
	275
	36.4
	99
	95

	
	60/60
	210
	32.2
	98
	93

	
	80/80
	174
	31.3
	96
	89

	20.0
	20/20
	358
	40.7
	99
	95

	
	40/40
	268
	39.8
	99
	95

	
	60/60
	203
	34.9
	98
	92

	 
	80/80
	164
	31.6
	96
	88


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table A.7. Model 7 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	347
	5.2
	91
	91

	
	40/40
	
	12.0
	97
	90

	
	60/60
	
	19.8
	96
	90

	
	80/80
	
	29.1
	93
	90

	7.5
	20/20
	352
	9.8
	95
	94

	
	40/40
	
	18.9
	97
	93

	
	60/60
	
	28.9
	98
	94

	
	80/80
	
	40.2
	96
	94

	10.0
	20/20
	355
	14.6
	97
	95

	
	40/40
	
	25.6
	99
	96

	
	60/60
	
	37.6
	98
	95

	
	80/80
	
	50.4
	97
	96

	12.5
	20/20
	356
	19.5
	98
	96

	
	40/40
	
	32.4
	99
	96

	
	60/60
	
	46.2
	99
	96

	
	80/80
	
	60.5
	97
	96

	15.0
	20/20
	351
	23.8
	98
	96

	
	40/40
	
	38.2
	99
	96

	
	60/60
	
	53.1
	99
	96

	
	80/80
	
	68.4
	97
	96

	17.5
	20/20
	273
	17.3
	95
	95

	
	40/40
	
	35.8
	99
	95

	
	60/60
	
	55.4
	96
	93

	
	80/80
	
	73.3
	91
	89

	20.0
	20/20
	264
	19.3
	95
	95

	
	40/40
	
	38.8
	99
	95

	
	60/60
	
	58.7
	96
	92

	 
	80/80
	 
	76.2
	90
	88


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law. The ML fit for this model is identical to Model 6.



Table A.8. Model 8 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	327
	14
	71
	91

	
	40/40
	
	
	93
	90

	
	60/60
	
	
	96
	90

	
	80/80
	
	
	82
	90

	7.5
	20/20
	332
	22
	78
	94

	
	40/40
	
	
	94
	93

	
	60/60
	
	
	98
	94

	
	80/80
	
	
	86
	94

	10.0
	20/20
	336
	30
	80
	95

	
	40/40
	
	
	96
	96

	
	60/60
	
	
	99
	95

	
	80/80
	
	
	88
	96

	12.5
	20/20
	340
	39
	81
	96

	
	40/40
	
	
	96
	96

	
	60/60
	
	
	99
	96

	
	80/80
	
	
	88
	96

	15.0
	20/20
	341
	47
	80
	96

	
	40/40
	
	
	96
	96

	
	60/60
	
	
	99
	96

	
	80/80
	
	
	88
	96

	17.5
	20/20
	267
	54
	56
	95

	
	40/40
	
	
	87
	95

	
	60/60
	
	
	96
	93

	
	80/80
	
	
	76
	89

	20.0
	20/20
	266
	60
	55
	95

	
	40/40
	
	
	86
	95

	
	60/60
	
	
	96
	92

	 
	80/80
	 
	 
	74
	88


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law. The ML fit for this model is identical to Model 6.





Table A.9. Extra Sum of Squares Difference Tests at Mutation Rate 5.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	214
	114
	4
	403
	2

	3
	  Constant a, c1 = c2
	9
	116
	113
	7
	406
	1

	4
	  Constant a & c
	6
	29940
	842
	10
	409
	36*

	5
	  Constant a, c & k
	3
	24275
	875
	13
	412
	28*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	6875
	246
	8
	407
	28*

	7
	 Constant k, a = 1, c1 = c2
	5
	10199
	384
	11
	410
	27*

	8
	 Constant k & c, a = 1, 
	2
	26297
	1001
	14
	413
	26*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table A.10. Extra Sum of Squares Difference Tests at Mutation Rate 7.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	16
	50
	4
	403
	0

	3
	  Constant a, c1 = c2
	9
	25
	50
	7
	406
	1

	4
	  Constant a & c
	6
	25397
	670
	10
	409
	38*

	5
	  Constant a, c & k
	3
	20945
	709
	13
	412
	30*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2904
	106
	8
	407
	27*

	7
	 Constant k, a = 1, c1 = c2
	5
	6212
	215
	11
	410
	29*

	8
	 Constant k & c, a = 1, 
	2
	21335
	772
	14
	413
	28*


Note. N = 416; * p < 0.05 that model 1 is different from this model 

Table A.11. Extra Sum of Squares Difference Tests at Mutation Rate 10.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	4
	19
	4
	403
	0

	3
	  Constant a, c1 = c2
	9
	-2
	19
	7
	406
	<0

	4
	  Constant a & c
	6
	20765
	527
	10
	409
	39*

	5
	  Constant a, c & k
	3
	17556
	573
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	1886
	56
	8
	407
	33*

	7
	 Constant k, a = 1, c1 = c2
	5
	3921
	124
	11
	410
	32*

	8
	 Constant k & c, a = 1, 
	2
	17475
	611
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model. Model 3 had a lower residual sum of squares than Model 1, which made the test invalid because the F-value was less than 0.

Table A.12. Extra Sum of Squares Difference Tests at Mutation Rate 12.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	21
	9
	4
	403
	2

	3
	  Constant a, c1 = c2
	9
	13
	9
	7
	406
	1

	4
	  Constant a & c
	6
	21031
	523
	10
	409
	40*

	5
	  Constant a, c & k
	3
	15207
	489
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	1434
	37
	8
	407
	39*

	7
	 Constant k, a = 1, c1 = c2
	5
	2899
	87
	11
	410
	33*

	8
	 Constant k & c, a = 1, 
	2
	15106
	521
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table A.13. Extra Sum of Squares Difference Tests at Mutation Rate 15.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	5
	5
	4
	403
	1

	3
	  Constant a, c1 = c2
	9
	2
	5
	7
	406
	0

	4
	  Constant a & c
	6
	14751
	366
	10
	409
	40*

	5
	  Constant a, c & k
	3
	12649
	404
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	1310
	31
	8
	407
	42*

	7
	 Constant k, a = 1, c1 = c2
	5
	2160
	63
	11
	410
	34*

	8
	 Constant k & c, a = 1, 
	2
	12609
	433
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table A.14. Extra Sum of Squares Difference Tests at Mutation Rate 17.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	0
	3
	4
	403
	0

	3
	  Constant a, c1 = c2
	9
	46
	4
	7
	406
	12*

	4
	  Constant a & c
	6
	21184
	521
	10
	409
	41*

	5
	  Constant a, c & k
	3
	17888
	568
	13
	412
	32*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	1110
	25
	8
	407
	44*

	7
	 Constant k, a = 1, c1 = c2
	5
	2856
	80
	11
	410
	36*

	8
	 Constant k & c, a = 1, 
	2
	17397
	593
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model 

Table A.15. Extra Sum of Squares Difference Tests at Mutation Rate 20.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	2
	3
	4
	403
	1

	3
	  Constant a, c1 = c2
	9
	54
	3
	7
	406
	16*

	4
	  Constant a & c
	6
	18030
	443
	10
	409
	41*

	5
	  Constant a, c & k
	3
	15181
	481
	13
	412
	32*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	987
	22
	8
	407
	45*

	7
	 Constant k, a = 1, c1 = c2
	5
	2404
	67
	11
	410
	36*

	8
	 Constant k & c, a = 1, 
	2
	14785
	504
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model 


Table A.16. Akaike Information Criteria (AIC) for Quantitative Law of Effect Fits
	
	
	
	Mutation Rate

	Model
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	16
	1981
	1643
	1253
	934
	708
	497
	398

	2
	  c1 = c2
	12
	1981
	1636
	1246
	935
	704
	490
	393

	3
	  Constant a, c1 = c2
	9
	1974
	1633
	1238
	929
	696
	577
	517

	4
	  Constant a & c
	6
	2807
	2712
	2612
	2609
	2460
	2607
	2540

	5
	  Constant a, c & k
	3
	2820
	2733
	2644
	2578
	2499
	2640
	2572

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2297
	1948
	1684
	1510
	1435
	1345
	1290

	7
	 Constant k, a = 1, c1 = c2
	5
	2479
	2239
	2010
	1860
	1728
	1825
	1753

	8
	 Constant k & c, a = 1
	2
	2875
	2767
	2670
	2603
	2526
	2657
	2589



Table A.17. Akaike Information Criteria (AIC) for Matching Law Fits
	
	
	
	Mutation Rate

	Model(s)
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	12
	-1083
	-1218
	-1323
	-1469
	-1530
	-1512
	-1517

	2
	  c1 = c2
	8
	-1089
	-1225
	-1330
	-1476
	-1537
	-1520
	-1523

	3, 4, 5
	  Constant a & c1 = c2
	2
	-1101
	-1236
	-1340
	-1486
	-1542
	-1485
	-1478

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	

	6, 7, 8
	  a = 1, c1 = c2
	0
	-659
	-730
	-789
	-839
	-882
	-902
	-931





Table A.18. Bayes Information Criteria (BIC) for Quantitative Law of Effect Fits
	
	
	
	Mutation Rate

	Model
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	16
	2045
	1708
	1317
	998
	772
	562
	463

	2
	  c1 = c2
	12
	2029
	1685
	1294
	983
	752
	538
	442

	3
	  Constant a, c1 = c2
	9
	2011
	1669
	1274
	966
	732
	614
	553

	4
	  Constant a & c
	6
	2831
	2736
	2636
	2633
	2484
	2632
	2564

	5
	  Constant a, c & k
	3
	2832
	2745
	2656
	2590
	2511
	2652
	2584

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2329
	1980
	1716
	1543
	1467
	1377
	1322

	7
	 Constant k, a = 1, c1 = c2
	5
	2499
	2259
	2030
	1880
	1748
	1846
	1773

	8
	 Constant k & c, a = 1
	2
	2883
	2775
	2678
	2611
	2534
	2665
	2597



Table A.19. Bayes Information Criteria (BIC) for Matching Law Fits
	
	
	
	Mutation Rate

	Model(s)
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	12
	-1043
	-1178
	-1283
	-1429
	-1490
	-1472
	-1477

	2
	  c1 = c2
	8
	-1063
	-1199
	-1304
	-1450
	-1510
	-1494
	-1496

	3, 4, 5
	  Constant a & c1 = c2
	2
	-1095
	-1230
	-1333
	-1479
	-1535
	-1478
	-1471

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	
	

	6, 7, 8
	  a = 1, c1 = c2
	0
	-659
	-730
	-789
	-839
	-882
	-902
	-931






Table A.20. Quadratic Fit to Changeover Behaviors

	Mutation Rate
	Reinforcer Magnitude
	a
	b
	c
	CMax
	CΔ
	%VAF

	5.0
	20/20
	-0.4
	0.3
	0.3
	0.3
	0.1
	1

	
	40/40
	-1.1
	1.1
	0.3
	0.5
	0.3
	3

	
	60/60
	-1.4
	1.4
	0.3
	0.7
	0.4
	3

	
	80/80
	-1.6
	1.5
	0.5
	0.9
	0.4
	2

	7.5
	20/20
	-2.4
	2.4
	0.3
	0.9
	0.6
	6

	
	40/40
	-2.6
	2.6
	0.5
	1.2
	0.7
	4

	
	60/60
	-5.6
	5.6
	0.4
	1.8
	1.4
	11

	
	80/80
	-5.5
	5.5
	0.6
	2.0
	1.4
	7

	10.0
	20/20
	-5.2
	5.2
	0.3
	1.6
	1.3
	11

	
	40/40
	-7.0
	7.1
	0.4
	2.2
	1.8
	12

	
	60/60
	-8.9
	8.9
	0.6
	2.8
	2.2
	13

	
	80/80
	-10.0
	9.9
	0.9
	3.3
	2.4
	13

	12.5
	20/20
	-7.8
	8.0
	0.3
	2.4
	2.0
	14

	
	40/40
	-10.6
	10.7
	0.5
	3.3
	2.7
	16

	
	60/60
	-12.3
	12.0
	0.9
	3.9
	2.9
	15

	
	80/80
	-14.5
	14.1
	1.1
	4.5
	3.5
	16

	15.0
	20/20
	-10.6
	10.7
	0.5
	3.1
	2.7
	16

	
	40/40
	-13.7
	13.7
	0.7
	4.2
	3.4
	16

	
	60/60
	-15.6
	15.9
	0.9
	5.0
	4.1
	15

	
	80/80
	-17.7
	17.5
	1.3
	5.7
	4.4
	15

	17.5
	20/20
	-13.4
	13.5
	0.7
	4.1
	3.4
	16

	
	40/40
	-18.6
	18.6
	1.1
	5.8
	4.7
	16

	
	60/60
	-19.3
	19.5
	1.9
	6.8
	4.9
	12

	
	80/80
	-20.2
	20.1
	2.8
	7.8
	5.0
	9

	20.0
	20/20
	-15.6
	15.7
	0.9
	4.9
	3.9
	17

	
	40/40
	-21.9
	21.8
	1.3
	6.8
	5.4
	16

	
	60/60
	-22.4
	22.4
	2.3
	7.9
	5.6
	12

	 
	80/80
	-18.7
	18.8
	4.2
	8.9
	4.7
	6


Note. %VAF = Percentage of Variance Accounted For.


Table A.21. Quadratic-exponential Fit to Changeover Behaviors

	Mutation Rate
	Reinforcer Magnitude
	a
	b
	c
	d
	CMax
	CΔ%
	%VAF

	5.0
	20/20
	5.1
	-4.8
	4.3
	0.043
	4.3
	-26%
	99

	
	40/40
	2.8
	-2.8
	5.3
	0.041
	5.3
	-13%
	99

	
	60/60
	1.4
	-1.2
	5.2
	0.035
	5.2
	-5%
	99

	
	80/80
	2.3
	-2.5
	6.1
	0.032
	6.1
	-11%
	99

	7.5
	20/20
	4.0
	-3.3
	6.2
	0.034
	6.2
	-10%
	99

	
	40/40
	3.6
	-3.4
	7.5
	0.030
	7.5
	-11%
	99

	
	60/60
	1.1
	-0.8
	8.4
	0.029
	8.4
	-2%
	99

	
	80/80
	4.1
	-3.6
	9.3
	0.026
	9.3
	-8%
	99

	10.0
	20/20
	5.2
	-4.9
	9.2
	0.030
	9.2
	-13%
	99

	
	40/40
	3.2
	-3.1
	10.7
	0.028
	10.7
	-7%
	99

	
	60/60
	4.2
	-4.4
	11.3
	0.024
	11.3
	-10%
	99

	
	80/80
	2.9
	-3.3
	11.9
	0.021
	11.9
	-8%
	99

	12.5
	20/20
	2.8
	-3.0
	10.1
	0.025
	10.1
	-8%
	99

	
	40/40
	7.1
	-6.8
	12.4
	0.022
	12.4
	-13%
	99

	
	60/60
	3.6
	-3.8
	12.9
	0.020
	12.9
	-8%
	99

	
	80/80
	4.1
	-4.1
	13.6
	0.018
	13.6
	-8%
	99

	15.0
	20/20
	5.8
	-5.9
	11.7
	0.021
	11.7
	-13%
	99

	
	40/40
	4.0
	-4.8
	13.9
	0.019
	13.9
	-10%
	99

	
	60/60
	6.2
	-5.9
	15.1
	0.017
	15.1
	-9%
	99

	
	80/80
	5.2
	-4.6
	15.0
	0.015
	15.0
	-7%
	99

	17.5
	20/20
	4.2
	-4.1
	12.7
	0.018
	12.7
	-8%
	99

	
	40/40
	3.8
	-3.2
	14.7
	0.015
	14.7
	-5%
	99

	
	60/60
	4.3
	-4.0
	16.1
	0.013
	16.1
	-6%
	99

	
	80/80
	3.7
	-3.6
	16.3
	0.011
	16.3
	-5%
	99

	20.0
	20/20
	5.5
	-5.4
	14.0
	0.016
	14.0
	-10%
	99

	
	40/40
	3.2
	-3.5
	16.2
	0.013
	16.2
	-6%
	99

	
	60/60
	2.0
	-1.7
	16.3
	0.011
	16.3
	-2%
	99

	 
	80/80
	3.0
	-3.0
	17.1
	0.010
	17.1
	-4%
	99


Note. %VAF = Percentage of Variance Accounted For.
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Table B.1. Model 1 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	
	%VAF

	
	
	k
	c1
	c2
	a
	QLOE
	ML

	5.0
	20/20
	534
	9.7
	9.4
	0.77
	99
	99

	
	40/40
	549
	13.0
	13.1
	0.79
	99
	99

	
	60/60
	545
	15.1
	15.3
	0.80
	99
	99

	
	80/80
	550
	19.3
	19.2
	0.83
	100
	100

	7.5
	20/20
	543
	15.4
	15.9
	0.82
	100
	100

	
	40/40
	544
	19.5
	19.4
	0.83
	99
	100

	
	60/60
	554
	24.5
	24.9
	0.84
	100
	100

	
	80/80
	553
	28.3
	28.4
	0.84
	100
	100

	10.0
	20/20
	550
	20.8
	20.9
	0.82
	100
	100

	
	40/40
	549
	26.7
	26.9
	0.85
	100
	100

	
	60/60
	553
	33.0
	32.9
	0.86
	100
	100

	
	80/80
	544
	36.7
	36.8
	0.86
	100
	100

	12.5
	20/20
	548
	26.4
	26.5
	0.84
	100
	100

	
	40/40
	549
	32.8
	32.6
	0.85
	100
	100

	
	60/60
	542
	38.6
	38.5
	0.86
	100
	100

	
	80/80
	547
	44.4
	44.6
	0.86
	100
	100

	15.0
	20/20
	553
	30.9
	30.9
	0.83
	100
	100

	
	40/40
	543
	38.0
	38.1
	0.85
	100
	100

	
	60/60
	538
	44.8
	44.6
	0.86
	100
	100

	
	80/80
	539
	49.4
	49.8
	0.85
	100
	100

	17.5
	20/20
	543
	34.4
	34.1
	0.83
	100
	100

	
	40/40
	530
	42.1
	42.5
	0.86
	100
	100

	
	60/60
	525
	49.9
	49.9
	0.86
	100
	100

	
	80/80
	526
	52.8
	52.7
	0.84
	100
	99

	20.0
	20/20
	535
	38.0
	38.0
	0.84
	100
	100

	
	40/40
	520
	45.0
	45.3
	0.85
	100
	100

	
	60/60
	518
	50.7
	50.8
	0.84
	100
	100

	 
	80/80
	517
	56.7
	56.6
	0.83
	100
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law

Table B.2. Model 2 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	534
	9.6
	0.77
	98
	99

	
	40/40
	549
	13.0
	0.79
	99
	99

	
	60/60
	544
	15.2
	0.80
	99
	99

	
	80/80
	550
	19.3
	0.83
	100
	100

	7.5
	20/20
	543
	15.7
	0.82
	100
	100

	
	40/40
	544
	19.4
	0.83
	99
	100

	
	60/60
	555
	24.8
	0.84
	100
	100

	
	80/80
	553
	28.4
	0.84
	100
	100

	10.0
	20/20
	550
	20.9
	0.82
	100
	100

	
	40/40
	549
	26.8
	0.85
	100
	100

	
	60/60
	553
	33.0
	0.86
	100
	100

	
	80/80
	544
	36.7
	0.86
	100
	100

	12.5
	20/20
	548
	26.5
	0.84
	100
	100

	
	40/40
	549
	32.7
	0.85
	100
	100

	
	60/60
	542
	38.6
	0.86
	100
	100

	
	80/80
	547
	44.5
	0.86
	100
	100

	15.0
	20/20
	553
	30.9
	0.83
	100
	100

	
	40/40
	543
	38.0
	0.85
	100
	100

	
	60/60
	538
	44.7
	0.86
	100
	100

	
	80/80
	539
	49.6
	0.85
	100
	100

	17.5
	20/20
	543
	34.3
	0.83
	100
	100

	
	40/40
	530
	42.3
	0.86
	100
	100

	
	60/60
	525
	49.9
	0.86
	100
	100

	
	80/80
	526
	52.7
	0.84
	100
	99

	20.0
	20/20
	535
	38.0
	0.84
	100
	100

	
	40/40
	520
	45.2
	0.85
	100
	100

	
	60/60
	518
	50.8
	0.84
	100
	100

	 
	80/80
	517
	56.6
	0.83
	100
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table B.3. Model 3 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	524
	9.9
	0.80
	98
	99

	
	40/40
	548
	13.1
	
	99
	99

	
	60/60
	546
	15.2
	
	99
	99

	
	80/80
	567
	18.6
	
	100
	99

	7.5
	20/20
	536
	16.0
	0.83
	100
	100

	
	40/40
	542
	19.5
	
	99
	100

	
	60/60
	562
	24.5
	
	100
	100

	
	80/80
	561
	28.1
	
	100
	100

	10.0
	20/20
	536
	21.5
	0.85
	100
	100

	
	40/40
	551
	26.7
	
	100
	100

	
	60/60
	562
	32.6
	
	100
	100

	
	80/80
	554
	36.4
	
	100
	100

	12.5
	20/20
	540
	26.8
	0.85
	100
	100

	
	40/40
	549
	32.7
	
	100
	100

	
	60/60
	549
	38.4
	
	100
	100

	
	80/80
	551
	44.4
	
	100
	100

	15.0
	20/20
	541
	31.2
	0.85
	100
	100

	
	40/40
	548
	37.9
	
	100
	100

	
	60/60
	550
	44.6
	
	100
	100

	
	80/80
	538
	49.6
	
	100
	100

	17.5
	20/20
	531
	34.5
	0.85
	100
	100

	
	40/40
	540
	42.2
	
	100
	100

	
	60/60
	544
	49.9
	
	100
	100

	
	80/80
	514
	52.5
	
	100
	99

	20.0
	20/20
	532
	38.0
	0.84
	100
	100

	
	40/40
	532
	45.2
	
	100
	100

	
	60/60
	518
	50.8
	
	100
	100

	 
	80/80
	506
	56.3
	 
	100
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table B.4. Model 4 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	543
	13.7
	0.80
	97
	99

	
	40/40
	
	13.4
	
	99
	99

	
	60/60
	
	13.8
	
	99
	99

	
	80/80
	
	14.6
	
	98
	99

	7.5
	20/20
	546
	21.4
	0.83
	97
	100

	
	40/40
	
	21.0
	
	99
	100

	
	60/60
	
	21.6
	
	100
	100

	
	80/80
	
	22.8
	
	98
	100

	10.0
	20/20
	550
	29.1
	0.85
	97
	100

	
	40/40
	
	28.0
	
	100
	100

	
	60/60
	
	29.9
	
	100
	100

	
	80/80
	
	31.4
	
	98
	100

	12.5
	20/20
	550
	36.0
	0.85
	97
	100

	
	40/40
	
	35.0
	
	100
	100

	
	60/60
	
	37.0
	
	100
	100

	
	80/80
	
	38.8
	
	97
	100

	15.0
	20/20
	553
	42.4
	0.85
	96
	100

	
	40/40
	
	40.8
	
	99
	100

	
	60/60
	
	43.5
	
	100
	100

	
	80/80
	
	45.4
	
	97
	99

	17.5
	20/20
	543
	46.9
	0.85
	95
	100

	
	40/40
	
	44.9
	
	99
	100

	
	60/60
	
	48.0
	
	100
	100

	
	80/80
	
	50.7
	
	96
	99

	20.0
	20/20
	539
	51.3
	0.84
	94
	100

	
	40/40
	
	49.0
	
	99
	100

	
	60/60
	
	52.2
	
	99
	100

	 
	80/80
	 
	55.0
	 
	96
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table B.5. Model 5 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	542
	13.7
	0.80
	97
	99

	
	40/40
	
	
	
	98
	99

	
	60/60
	
	
	
	99
	99

	
	80/80
	
	
	
	98
	99

	7.5
	20/20
	544
	21.3
	0.83
	97
	100

	
	40/40
	
	
	
	99
	100

	
	60/60
	
	
	
	100
	100

	
	80/80
	
	
	
	98
	100

	10.0
	20/20
	548
	29.1
	0.85
	97
	100

	
	40/40
	
	
	
	99
	100

	
	60/60
	
	
	
	100
	100

	
	80/80
	
	
	
	97
	100

	12.5
	20/20
	547
	36.0
	0.85
	96
	100

	
	40/40
	
	
	
	99
	100

	
	60/60
	
	
	
	100
	100

	
	80/80
	
	
	
	97
	100

	15.0
	20/20
	547
	42.2
	0.85
	96
	100

	
	40/40
	
	
	
	99
	100

	
	60/60
	
	
	
	100
	100

	
	80/80
	
	
	
	96
	100

	17.5
	20/20
	537
	46.7
	0.85
	95
	100

	
	40/40
	
	
	
	99
	100

	
	60/60
	
	
	
	100
	100

	
	80/80
	
	
	
	96
	99

	20.0
	20/20
	531
	50.9
	0.84
	94
	100

	
	40/40
	
	
	
	99
	100

	
	60/60
	
	
	
	100
	100

	 
	80/80
	 
	 
	 
	95
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table B.6. Model 6 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	470
	13.9
	97
	91

	
	40/40
	482
	18.2
	98
	92

	
	60/60
	473
	20.9
	98
	93

	
	80/80
	479
	25.1
	99
	95

	7.5
	20/20
	476
	20.8
	99
	94

	
	40/40
	477
	25.3
	98
	95

	
	60/60
	481
	30.9
	99
	96

	
	80/80
	472
	34.8
	99
	96

	10.0
	20/20
	474
	27.1
	99
	95

	
	40/40
	475
	32.9
	99
	97

	
	60/60
	475
	39.5
	99
	97

	
	80/80
	461
	43.4
	99
	97

	12.5
	20/20
	467
	32.4
	99
	96

	
	40/40
	464
	39.1
	99
	97

	
	60/60
	455
	44.9
	99
	97

	
	80/80
	444
	50.3
	99
	97

	15.0
	20/20
	457
	37.2
	99
	96

	
	40/40
	452
	44.3
	99
	97

	
	60/60
	440
	50.3
	99
	97

	
	80/80
	421
	54.6
	99
	96

	17.5
	20/20
	441
	40.5
	99
	96

	
	40/40
	434
	47.8
	99
	97

	
	60/60
	422
	54.4
	99
	97

	
	80/80
	391
	55.6
	99
	96

	20.0
	20/20
	427
	43.5
	99
	96

	
	40/40
	412
	49.8
	99
	97

	
	60/60
	390
	54.1
	99
	96

	 
	80/80
	368
	57.4
	99
	95


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table B.7. Model 7 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	475
	14.5
	97
	91

	
	40/40
	
	17.4
	98
	92

	
	60/60
	
	21.3
	98
	93

	
	80/80
	
	24.5
	99
	95

	7.5
	20/20
	476
	20.8
	99
	94

	
	40/40
	
	25.3
	98
	95

	
	60/60
	
	30.2
	99
	96

	
	80/80
	
	35.8
	99
	96

	10.0
	20/20
	472
	26.7
	99
	95

	
	40/40
	
	32.4
	99
	97

	
	60/60
	
	38.9
	99
	97

	
	80/80
	
	45.9
	99
	97

	12.5
	20/20
	459
	31.0
	99
	96

	
	40/40
	
	38.0
	99
	97

	
	60/60
	
	45.9
	99
	97

	
	80/80
	
	54.2
	99
	97

	15.0
	20/20
	445
	34.8
	99
	96

	
	40/40
	
	42.7
	99
	97

	
	60/60
	
	51.6
	99
	97

	
	80/80
	
	61.2
	99
	96

	17.5
	20/20
	425
	37.1
	99
	96

	
	40/40
	
	45.8
	99
	97

	
	60/60
	
	55.3
	99
	97

	
	80/80
	
	65.8
	99
	96

	20.0
	20/20
	403
	38.1
	99
	96

	
	40/40
	
	47.5
	99
	97

	
	60/60
	
	58.1
	99
	96

	 
	80/80
	 
	68.6
	98
	95


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law. The ML fit for this model is identical to Model 6.



Table B.8. Model 8 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	474
	19
	95
	91

	
	40/40
	
	
	98
	92

	
	60/60
	
	
	98
	93

	
	80/80
	
	
	97
	95

	7.5
	20/20
	473
	27
	97
	94

	
	40/40
	
	
	98
	95

	
	60/60
	
	
	99
	96

	
	80/80
	
	
	97
	96

	10.0
	20/20
	469
	36
	96
	95

	
	40/40
	
	
	99
	97

	
	60/60
	
	
	99
	97

	
	80/80
	
	
	97
	97

	12.5
	20/20
	457
	42
	96
	96

	
	40/40
	
	
	99
	97

	
	60/60
	
	
	99
	97

	
	80/80
	
	
	97
	97

	15.0
	20/20
	443
	48
	95
	96

	
	40/40
	
	
	99
	97

	
	60/60
	
	
	99
	97

	
	80/80
	
	
	96
	96

	17.5
	20/20
	423
	52
	94
	96

	
	40/40
	
	
	98
	97

	
	60/60
	
	
	99
	97

	
	80/80
	
	
	95
	96

	20.0
	20/20
	401
	54
	93
	96

	
	40/40
	
	
	98
	97

	
	60/60
	
	
	99
	96

	 
	80/80
	 
	 
	94
	95


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law. The ML fit for this model is identical to Model 6.




Running Head: ALGORITHMIC MODIFICATIONS TO THE ETBD	1


Table B.9. Extra Sum of Squares Difference Tests at Mutation Rate 5.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	151
	131
	4
	403
	1

	3
	  Constant a, c1 = c2
	9
	245
	133
	7
	406
	2

	4
	  Constant a & c
	6
	4674
	242
	10
	409
	19*

	5
	  Constant a, c & k
	3
	4016
	254
	13
	412
	16*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	7327
	273
	8
	407
	27*

	7
	 Constant k, a = 1, c1 = c2
	5
	5363
	271
	11
	410
	20*

	8
	 Constant k & c, a = 1, 
	2
	7808
	391
	14
	413
	20*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table B.10. Extra Sum of Squares Difference Tests at Mutation Rate 7.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	177
	50
	4
	403
	4*

	3
	  Constant a, c1 = c2
	9
	134
	51
	7
	406
	3*

	4
	  Constant a & c
	6
	5474
	182
	10
	409
	30*

	5
	  Constant a, c & k
	3
	4651
	194
	13
	412
	24*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	3666
	120
	8
	407
	31*

	7
	 Constant k, a = 1, c1 = c2
	5
	2674
	119
	11
	410
	22*

	8
	 Constant k & c, a = 1, 
	2
	6267
	260
	14
	413
	24*


Note. N = 416; * p < 0.05 that model 1 is different from this model 

Table B.11. Extra Sum of Squares Difference Tests at Mutation Rate 10.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	9
	23
	4
	403
	0

	3
	  Constant a, c1 = c2
	9
	15
	23
	7
	406
	1

	4
	  Constant a & c
	6
	5375
	154
	10
	409
	35*

	5
	  Constant a, c & k
	3
	4811
	174
	13
	412
	28*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2839
	78
	8
	407
	36*

	7
	 Constant k, a = 1, c1 = c2
	5
	2083
	78
	11
	410
	27*

	8
	 Constant k & c, a = 1, 
	2
	5978
	225
	14
	413
	27*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table B.12. Extra Sum of Squares Difference Tests at Mutation Rate 12.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	11
	10
	4
	403
	1

	3
	  Constant a, c1 = c2
	9
	5
	10
	7
	406
	1

	4
	  Constant a & c
	6
	5679
	149
	10
	409
	38*

	5
	  Constant a, c & k
	3
	4996
	167
	13
	412
	30*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2318
	56
	8
	407
	42*

	7
	 Constant k, a = 1, c1 = c2
	5
	1723
	56
	11
	410
	31*

	8
	 Constant k & c, a = 1, 
	2
	5881
	209
	14
	413
	28*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table B.13. Extra Sum of Squares Difference Tests at Mutation Rate 15.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	5
	10
	4
	403
	0

	3
	  Constant a, c1 = c2
	9
	6
	10
	7
	406
	1

	4
	  Constant a & c
	6
	5444
	143
	10
	409
	38*

	5
	  Constant a, c & k
	3
	4789
	161
	13
	412
	30*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2164
	53
	8
	407
	41*

	7
	 Constant k, a = 1, c1 = c2
	5
	1636
	54
	11
	410
	30*

	8
	 Constant k & c, a = 1, 
	2
	5616
	200
	14
	413
	28*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table B.14. Extra Sum of Squares Difference Tests at Mutation Rate 17.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	13
	9
	4
	403
	1

	3
	  Constant a, c1 = c2
	9
	13
	9
	7
	406
	1

	4
	  Constant a & c
	6
	5025
	132
	10
	409
	38*

	5
	  Constant a, c & k
	3
	4495
	151
	13
	412
	30*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	1967
	47
	8
	407
	41*

	7
	 Constant k, a = 1, c1 = c2
	5
	1522
	50
	11
	410
	31*

	8
	 Constant k & c, a = 1, 
	2
	5249
	187
	14
	413
	28*


Note. N = 416; * p < 0.05 that model 1 is different from this model 

Table B.15. Extra Sum of Squares Difference Tests at Mutation Rate 20.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	2
	9
	4
	403
	0

	3
	  Constant a, c1 = c2
	9
	4
	9
	7
	406
	0

	4
	  Constant a & c
	6
	4927
	130
	10
	409
	38*

	5
	  Constant a, c & k
	3
	4344
	146
	13
	412
	30*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	1782
	44
	8
	407
	40*

	7
	 Constant k, a = 1, c1 = c2
	5
	1418
	47
	11
	410
	30*

	8
	 Constant k & c, a = 1, 
	2
	4996
	178
	14
	413
	28*


Note. N = 416; * p < 0.05 that model 1 is different from this model 


Table B.16. Akaike Information Criteria (AIC) for Quantitative Law of Effect Fits
	
	
	
	Mutation Rate

	Model
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	16
	2043
	1634
	1318
	979
	982
	929
	943

	2
	  c1 = c2
	12
	2040
	1641
	1312
	976
	976
	927
	936

	3
	  Constant a, c1 = c2
	9
	2043
	1640
	1309
	969
	972
	925
	932

	4
	  Constant a & c
	6
	2289
	2169
	2100
	2086
	2070
	2035
	2028

	5
	  Constant a, c & k
	3
	2305
	2194
	2148
	2132
	2116
	2088
	2075

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2340
	1999
	1821
	1678
	1655
	1613
	1582

	7
	 Constant k, a = 1, c1 = c2
	5
	2335
	1994
	1818
	1679
	1662
	1628
	1606

	8
	 Constant k & c, a = 1
	2
	2484
	2314
	2254
	2224
	2206
	2176
	2157



Table B.17. Akaike Information Criteria (AIC) for Matching Law Fits
	
	
	
	Mutation Rate

	Model(s)
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	12
	-1125
	-1305
	-1378
	-1437
	-1427
	-1396
	-1379

	2
	  c1 = c2
	8
	-1130
	-1307
	-1385
	-1445
	-1435
	-1402
	-1387

	3, 4, 5
	  Constant a & c1 = c2
	2
	-1124
	-1305
	-1358
	-1443
	-1429
	-1394
	-1394

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	

	6, 7, 8
	  a = 1, c1 = c2
	0
	-661
	-741
	-780
	-825
	-863
	-895
	-915





Table B.18. Bayes Information Criteria (BIC) for Quantitative Law of Effect Fits
	
	
	
	Mutation Rate

	Model
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	16
	2108
	1699
	1383
	1044
	1046
	993
	1007

	2
	  c1 = c2
	12
	2088
	1689
	1360
	1024
	1024
	975
	984

	3
	  Constant a, c1 = c2
	9
	2079
	1676
	1345
	1005
	1008
	961
	968

	4
	  Constant a & c
	6
	2313
	2193
	2124
	2110
	2094
	2059
	2053

	5
	  Constant a, c & k
	3
	2317
	2206
	2160
	2144
	2128
	2100
	2087

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2372
	2031
	1853
	1710
	1687
	1645
	1615

	7
	 Constant k, a = 1, c1 = c2
	5
	2355
	2014
	1838
	1700
	1682
	1648
	1627

	8
	 Constant k & c, a = 1
	2
	2492
	2322
	2262
	2232
	2214
	2184
	2165



Table B.19. Bayes Information Criteria (BIC) for Matching Law Fits
	
	
	
	Mutation Rate

	Model(s)
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	12
	-1085
	-1265
	-1338
	-1397
	-1387
	-1356
	-1339

	2
	  c1 = c2
	8
	-1103
	-1281
	-1358
	-1418
	-1408
	-1376
	-1360

	3, 4, 5
	  Constant a & c1 = c2
	2
	-1118
	-1298
	-1351
	-1437
	-1422
	-1388
	-1388

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	
	

	6, 7, 8
	  a = 1, c1 = c2
	0
	-661
	-741
	-780
	-825
	-863
	-895
	-915






Table B.20. Quadratic Fit to Changeover Behaviors

	Mutation Rate
	Reinforcer Magnitude
	a
	b
	c
	CMax
	CΔ
	%VAF

	5.0
	20/20
	-2.0
	2.0
	0.5
	1.0
	0.5
	2

	
	40/40
	-4.3
	4.4
	0.8
	1.9
	1.1
	4

	
	60/60
	-6.5
	6.4
	1.1
	2.7
	1.6
	5

	
	80/80
	-10.8
	10.9
	0.7
	3.5
	2.7
	13

	7.5
	20/20
	-8.8
	8.7
	0.8
	3.0
	2.1
	10

	
	40/40
	-10.8
	10.2
	2.0
	4.4
	2.4
	8

	
	60/60
	-22.4
	21.9
	1.1
	6.5
	5.4
	22

	
	80/80
	-23.2
	23.0
	1.3
	7.0
	5.7
	21

	10.0
	20/20
	-15.9
	15.8
	0.9
	4.9
	3.9
	16

	
	40/40
	-29.3
	29.0
	1.2
	8.3
	7.2
	26

	
	60/60
	-32.5
	32.2
	1.7
	9.7
	8.0
	27

	
	80/80
	-31.3
	31.1
	2.3
	10.0
	7.7
	23

	12.5
	20/20
	-27.0
	26.7
	0.7
	7.3
	6.6
	30

	
	40/40
	-40.8
	41.2
	0.7
	11.1
	10.4
	32

	
	60/60
	-43.2
	42.8
	2.1
	12.7
	10.6
	31

	
	80/80
	-47.8
	48.1
	1.8
	13.8
	12.1
	36

	15.0
	20/20
	-31.6
	31.2
	1.2
	8.9
	7.7
	27

	
	40/40
	-45.0
	45.2
	1.7
	13.1
	11.3
	30

	
	60/60
	-52.9
	53.6
	1.7
	15.3
	13.6
	37

	
	80/80
	-49.3
	48.8
	3.5
	15.6
	12.1
	31

	17.5
	20/20
	-35.4
	35.4
	1.3
	10.1
	8.9
	27

	
	40/40
	-52.7
	52.2
	2.3
	15.2
	13.0
	34

	
	60/60
	-56.8
	57.2
	2.7
	17.1
	14.4
	39

	
	80/80
	-54.7
	54.1
	4.5
	17.9
	13.4
	35

	20.0
	20/20
	-39.9
	39.8
	1.7
	11.6
	9.9
	29

	
	40/40
	-57.3
	57.8
	2.4
	17.0
	14.6
	36

	
	60/60
	-56.1
	56.1
	4.4
	18.4
	14.0
	32

	 
	80/80
	-56.2
	56.4
	5.3
	19.4
	14.1
	35


Note. %VAF = Percentage of Variance Accounted For.


Table B.21. Quadratic-exponential Fit to Changeover Behaviors

	Mutation Rate
	Reinforcer Magnitude
	a
	b
	c
	d
	CMax
	CΔ%
	%VAF

	5.0
	20/20
	7.0
	-6.4
	9.4
	0.038
	9.4
	-16%
	98

	
	40/40
	1.1
	-2.6
	11.5
	0.028
	11.5
	-9%
	99

	
	60/60
	-2.3
	2.5
	12.0
	0.025
	12.7
	6%
	98

	
	80/80
	-2.8
	2.7
	12.0
	0.023
	12.6
	5%
	98

	7.5
	20/20
	2.8
	-2.1
	12.5
	0.025
	12.5
	-3%
	99

	
	40/40
	-1.5
	0.1
	16.9
	0.021
	16.9
	-2%
	99

	
	60/60
	-4.7
	4.4
	16.5
	0.018
	17.6
	6%
	98

	
	80/80
	-2.8
	3.1
	16.7
	0.016
	17.6
	5%
	99

	10.0
	20/20
	-8.1
	6.4
	15.2
	0.020
	16.4
	8%
	99

	
	40/40
	-6.8
	5.0
	20.2
	0.016
	21.0
	4%
	99

	
	60/60
	-9.8
	9.8
	19.1
	0.013
	21.5
	13%
	98

	
	80/80
	1.6
	-2.3
	21.4
	0.011
	21.4
	-3%
	97

	12.5
	20/20
	-9.0
	8.7
	16.0
	0.016
	18.1
	13%
	99

	
	40/40
	-16.9
	17.0
	19.5
	0.013
	23.8
	22%
	98

	
	60/60
	-17.6
	16.1
	20.6
	0.010
	24.3
	18%
	96

	
	80/80
	-12.1
	11.2
	21.1
	0.009
	23.7
	12%
	96

	15.0
	20/20
	0.4
	-0.7
	20.5
	0.014
	20.5
	-1%
	99

	
	40/40
	-5.4
	4.9
	24.4
	0.011
	25.5
	5%
	97

	
	60/60
	-19.8
	19.8
	21.3
	0.008
	26.2
	23%
	96

	
	80/80
	-10.6
	10.3
	22.9
	0.007
	25.4
	11%
	95

	17.5
	20/20
	-9.8
	9.9
	18.6
	0.012
	21.1
	13%
	98

	
	40/40
	-14.7
	14.2
	23.5
	0.009
	26.9
	14%
	96

	
	60/60
	-19.9
	20.7
	21.6
	0.007
	27.0
	25%
	94

	
	80/80
	-16.8
	16.0
	22.4
	0.006
	26.2
	17%
	92

	20.0
	20/20
	-7.3
	6.7
	20.9
	0.010
	22.5
	7%
	98

	
	40/40
	-19.0
	19.5
	22.3
	0.007
	27.3
	22%
	95

	
	60/60
	-17.5
	18.4
	22.8
	0.006
	27.6
	21%
	91

	 
	80/80
	-21.0
	21.3
	21.3
	0.005
	26.7
	25%
	87


Note. %VAF = Percentage of Variance Accounted For.
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Table C.1. Model 1 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	
	%VAF

	
	
	k
	c1
	c2
	a
	QLOE
	ML

	5.0
	20/20
	524
	11.3
	12.3
	0.73
	94
	96

	
	40/40
	541
	17.3
	18.0
	0.74
	94
	96

	
	60/60
	529
	21.6
	22.8
	0.76
	97
	98

	
	80/80
	491
	21.6
	23.2
	0.75
	98
	98

	7.5
	20/20
	514
	17.1
	17.7
	0.76
	96
	98

	
	40/40
	499
	22.3
	22.3
	0.77
	98
	99

	
	60/60
	475
	26.9
	27.2
	0.79
	99
	99

	
	80/80
	423
	25.4
	25.7
	0.78
	98
	99

	10.0
	20/20
	496
	21.2
	21.0
	0.77
	98
	99

	
	40/40
	469
	25.4
	26.2
	0.78
	98
	99

	
	60/60
	408
	25.0
	26.3
	0.79
	99
	99

	
	80/80
	346
	22.3
	22.1
	0.78
	98
	99

	12.5
	20/20
	480
	25.1
	25.3
	0.79
	100
	100

	
	40/40
	423
	26.7
	27.0
	0.79
	99
	100

	
	60/60
	363
	25.3
	25.4
	0.79
	99
	100

	
	80/80
	306
	21.4
	21.9
	0.79
	99
	100

	15.0
	20/20
	458
	27.1
	27.6
	0.79
	99
	100

	
	40/40
	377
	24.8
	25.2
	0.79
	99
	100

	
	60/60
	320
	22.7
	23.5
	0.79
	99
	99

	
	80/80
	271
	20.1
	19.9
	0.78
	99
	99

	17.5
	20/20
	430
	27.4
	27.6
	0.79
	100
	100

	
	40/40
	346
	24.4
	24.7
	0.79
	99
	100

	
	60/60
	289
	20.9
	21.0
	0.77
	99
	99

	
	80/80
	247
	18.7
	18.8
	0.78
	99
	100

	20.0
	20/20
	402
	28.0
	27.9
	0.79
	99
	100

	
	40/40
	320
	23.3
	23.0
	0.78
	99
	100

	
	60/60
	262
	19.2
	19.4
	0.77
	99
	100

	 
	80/80
	228
	17.0
	17.1
	0.76
	99
	100


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law

Table C.2. Model 2 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	520
	12.1
	0.74
	93
	96

	
	40/40
	539
	17.8
	0.74
	94
	96

	
	60/60
	527
	22.5
	0.76
	96
	98

	
	80/80
	488
	23.0
	0.76
	97
	98

	7.5
	20/20
	513
	17.6
	0.77
	96
	97

	
	40/40
	499
	22.3
	0.77
	98
	99

	
	60/60
	475
	27.1
	0.79
	99
	99

	
	80/80
	423
	25.6
	0.78
	98
	99

	10.0
	20/20
	496
	21.1
	0.77
	98
	99

	
	40/40
	468
	25.9
	0.78
	98
	99

	
	60/60
	409
	26.2
	0.79
	99
	99

	
	80/80
	346
	22.2
	0.78
	98
	99

	12.5
	20/20
	480
	25.2
	0.79
	99
	100

	
	40/40
	423
	26.8
	0.79
	99
	100

	
	60/60
	363
	25.3
	0.79
	99
	100

	
	80/80
	306
	21.7
	0.79
	99
	100

	15.0
	20/20
	458
	27.4
	0.79
	99
	100

	
	40/40
	377
	25.0
	0.79
	99
	100

	
	60/60
	321
	23.4
	0.79
	99
	99

	
	80/80
	271
	20.0
	0.78
	99
	99

	17.5
	20/20
	430
	27.5
	0.79
	100
	100

	
	40/40
	346
	24.6
	0.79
	99
	100

	
	60/60
	289
	21.0
	0.77
	99
	99

	
	80/80
	247
	18.8
	0.78
	99
	100

	20.0
	20/20
	402
	27.9
	0.79
	99
	100

	
	40/40
	320
	23.1
	0.78
	99
	100

	
	60/60
	262
	19.3
	0.77
	99
	100

	 
	80/80
	228
	17.1
	0.76
	99
	100


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table C.3. Model 3 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	515
	12.3
	0.75
	93
	96

	
	40/40
	535
	17.9
	
	94
	96

	
	60/60
	536
	22.3
	
	96
	98

	
	80/80
	493
	22.9
	
	97
	98

	7.5
	20/20
	508
	17.8
	0.78
	96
	97

	
	40/40
	494
	22.4
	
	98
	99

	
	60/60
	486
	26.8
	
	99
	99

	
	80/80
	426
	25.5
	
	98
	99

	10.0
	20/20
	491
	21.3
	0.78
	98
	99

	
	40/40
	467
	25.9
	
	98
	99

	
	60/60
	416
	26.0
	
	99
	99

	
	80/80
	345
	22.3
	
	98
	99

	12.5
	20/20
	481
	25.2
	0.79
	99
	100

	
	40/40
	425
	26.8
	
	99
	100

	
	60/60
	364
	25.3
	
	99
	100

	
	80/80
	304
	21.7
	
	99
	100

	15.0
	20/20
	462
	27.3
	0.79
	99
	100

	
	40/40
	376
	25.1
	
	99
	100

	
	60/60
	321
	23.3
	
	99
	99

	
	80/80
	269
	20.1
	
	99
	99

	17.5
	20/20
	435
	27.4
	0.78
	100
	100

	
	40/40
	350
	24.5
	
	99
	99

	
	60/60
	285
	21.0
	
	99
	99

	
	80/80
	246
	18.8
	
	99
	100

	20.0
	20/20
	416
	27.8
	0.77
	99
	100

	
	40/40
	321
	23.1
	
	99
	100

	
	60/60
	260
	19.3
	
	99
	100

	 
	80/80
	223
	17.1
	 
	99
	100


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table C.4. Model 4 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	523
	19.4
	0.75
	80
	96

	
	40/40
	
	18.2
	
	93
	96

	
	60/60
	
	19.1
	
	96
	98

	
	80/80
	
	19.4
	
	90
	98

	7.5
	20/20
	487
	24.2
	0.77
	84
	97

	
	40/40
	
	23.3
	
	97
	99

	
	60/60
	
	24.8
	
	98
	99

	
	80/80
	
	26.5
	
	91
	99

	10.0
	20/20
	448
	26.7
	0.77
	84
	99

	
	40/40
	
	24.8
	
	97
	99

	
	60/60
	
	26.7
	
	98
	99

	
	80/80
	
	30.0
	
	91
	98

	12.5
	20/20
	410
	28.7
	0.79
	86
	100

	
	40/40
	
	27.0
	
	98
	99

	
	60/60
	
	29.6
	
	98
	99

	
	80/80
	
	31.5
	
	92
	99

	15.0
	20/20
	372
	27.8
	0.78
	85
	100

	
	40/40
	
	26.2
	
	98
	99

	
	60/60
	
	28.1
	
	98
	99

	
	80/80
	
	31.1
	
	92
	99

	17.5
	20/20
	340
	26.7
	0.78
	85
	100

	
	40/40
	
	25.0
	
	98
	99

	
	60/60
	
	27.4
	
	98
	99

	
	80/80
	
	29.2
	
	92
	99

	20.0
	20/20
	311
	25.1
	0.77
	84
	100

	
	40/40
	
	24.1
	
	98
	99

	
	60/60
	
	25.6
	
	98
	100

	 
	80/80
	 
	27.2
	 
	92
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table C.5. Model 5 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	518
	18.9
	0.75
	80
	96

	
	40/40
	
	
	
	92
	96

	
	60/60
	
	
	
	96
	98

	
	80/80
	
	
	
	90
	98

	7.5
	20/20
	479
	23.8
	0.77
	83
	97

	
	40/40
	
	
	
	97
	99

	
	60/60
	
	
	
	98
	99

	
	80/80
	
	
	
	90
	99

	10.0
	20/20
	438
	26.2
	0.78
	83
	99

	
	40/40
	
	
	
	96
	99

	
	60/60
	
	
	
	98
	99

	
	80/80
	
	
	
	89
	99

	12.5
	20/20
	401
	28.1
	0.79
	85
	100

	
	40/40
	
	
	
	97
	100

	
	60/60
	
	
	
	98
	100

	
	80/80
	
	
	
	91
	100

	15.0
	20/20
	365
	27.5
	0.79
	84
	100

	
	40/40
	
	
	
	97
	100

	
	60/60
	
	
	
	98
	99

	
	80/80
	
	
	
	90
	99

	17.5
	20/20
	332
	26.1
	0.78
	84
	100

	
	40/40
	
	
	
	97
	99

	
	60/60
	
	
	
	98
	99

	
	80/80
	
	
	
	91
	100

	20.0
	20/20
	304
	24.6
	0.77
	83
	100

	
	40/40
	
	
	
	97
	100

	
	60/60
	
	
	
	99
	100

	 
	80/80
	 
	 
	 
	91
	100


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table C.6. Model 6 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	439
	18.5
	88
	86

	
	40/40
	434
	25.5
	90
	85

	
	60/60
	412
	29.7
	93
	89

	
	80/80
	381
	31.2
	94
	89

	7.5
	20/20
	421
	24.3
	93
	89

	
	40/40
	392
	29.3
	95
	91

	
	60/60
	373
	34.2
	97
	92

	
	80/80
	327
	32.1
	96
	92

	10.0
	20/20
	400
	28.6
	95
	91

	
	40/40
	362
	32.5
	96
	91

	
	60/60
	320
	32.3
	97
	92

	
	80/80
	271
	27.9
	96
	91

	12.5
	20/20
	382
	32.2
	98
	93

	
	40/40
	336
	34.1
	97
	93

	
	60/60
	285
	31.2
	98
	93

	
	80/80
	241
	26.5
	98
	92

	15.0
	20/20
	360
	34.0
	98
	93

	
	40/40
	298
	31.7
	97
	92

	
	60/60
	251
	28.3
	97
	92

	
	80/80
	213
	24.1
	97
	92

	17.5
	20/20
	333
	33.8
	98
	93

	
	40/40
	269
	29.7
	98
	92

	
	60/60
	223
	25.4
	97
	91

	
	80/80
	194
	22.6
	97
	92

	20.0
	20/20
	310
	33.5
	98
	93

	
	40/40
	244
	27.8
	97
	91

	
	60/60
	201
	23.0
	97
	91

	 
	80/80
	175
	20.2
	97
	90


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table C.7. Model 7 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	421
	16.4
	88
	86

	
	40/40
	
	23.7
	90
	85

	
	60/60
	
	31.4
	93
	89

	
	80/80
	
	39.5
	93
	89

	7.5
	20/20
	387
	19.1
	93
	89

	
	40/40
	
	28.4
	95
	91

	
	60/60
	
	37.2
	97
	92

	
	80/80
	
	47.1
	95
	92

	10.0
	20/20
	349
	19.9
	94
	91

	
	40/40
	
	29.8
	96
	91

	
	60/60
	
	39.8
	97
	92

	
	80/80
	
	50.0
	94
	91

	12.5
	20/20
	320
	20.1
	96
	93

	
	40/40
	
	30.4
	97
	93

	
	60/60
	
	41.1
	97
	93

	
	80/80
	
	51.1
	95
	92

	15.0
	20/20
	289
	19.1
	96
	93

	
	40/40
	
	29.4
	97
	92

	
	60/60
	
	39.5
	97
	92

	
	80/80
	
	48.7
	94
	92

	17.5
	20/20
	260
	17.8
	95
	93

	
	40/40
	
	27.3
	98
	92

	
	60/60
	
	36.7
	96
	91

	
	80/80
	
	44.9
	94
	92

	20.0
	20/20
	235
	16.2
	95
	93

	
	40/40
	
	25.3
	97
	91

	
	60/60
	
	33.8
	96
	91

	 
	80/80
	 
	41.1
	94
	90


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law. The ML fit for this model is identical to Model 6.



Table C.8. Model 8 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	413
	26
	76
	86

	
	40/40
	
	
	88
	85

	
	60/60
	
	
	93
	89

	
	80/80
	
	
	86
	89

	7.5
	20/20
	374
	31
	80
	89

	
	40/40
	
	
	94
	91

	
	60/60
	
	
	97
	92

	
	80/80
	
	
	87
	92

	10.0
	20/20
	335
	33
	80
	91

	
	40/40
	
	
	94
	91

	
	60/60
	
	
	97
	92

	
	80/80
	
	
	86
	91

	12.5
	20/20
	307
	34
	84
	93

	
	40/40
	
	
	95
	93

	
	60/60
	
	
	97
	93

	
	80/80
	
	
	88
	92

	15.0
	20/20
	276
	33
	82
	93

	
	40/40
	
	
	95
	92

	
	60/60
	
	
	97
	92

	
	80/80
	
	
	88
	92

	17.5
	20/20
	249
	30
	82
	93

	
	40/40
	
	
	95
	92

	
	60/60
	
	
	96
	91

	
	80/80
	
	
	88
	92

	20.0
	20/20
	225
	28
	81
	93

	
	40/40
	
	
	95
	91

	
	60/60
	
	
	96
	91

	 
	80/80
	 
	 
	88
	90


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law. The ML fit for this model is identical to Model 6.
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Table C.9. Extra Sum of Squares Difference Tests at Mutation Rate 5.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	2435
	267
	4
	403
	9*

	3
	  Constant a, c1 = c2
	9
	1475
	267
	7
	406
	6*

	4
	  Constant a & c
	6
	13499
	569
	10
	409
	24*

	5
	  Constant a, c & k
	3
	10606
	572
	13
	412
	19*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	11553
	468
	8
	407
	25*

	7
	 Constant k, a = 1, c1 = c2
	5
	8662
	471
	11
	410
	18*

	8
	 Constant k & c, a = 1, 
	2
	15635
	767
	14
	413
	20*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table C.10. Extra Sum of Squares Difference Tests at Mutation Rate 7.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	233
	119
	4
	403
	2

	3
	  Constant a, c1 = c2
	9
	181
	119
	7
	406
	2

	4
	  Constant a & c
	6
	10896
	382
	10
	409
	29*

	5
	  Constant a, c & k
	3
	9193
	405
	13
	412
	23*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	5711
	228
	8
	407
	25*

	7
	 Constant k, a = 1, c1 = c2
	5
	4753
	243
	11
	410
	20*

	8
	 Constant k & c, a = 1, 
	2
	11911
	518
	14
	413
	23*


Note. N = 416; * p < 0.05 that model 1 is different from this model 

Table C.11. Extra Sum of Squares Difference Tests at Mutation Rate 10.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	187
	75
	4
	403
	3*

	3
	  Constant a, c1 = c2
	9
	129
	74
	7
	406
	2

	4
	  Constant a & c
	6
	9930
	314
	10
	409
	32*

	5
	  Constant a, c & k
	3
	8547
	341
	13
	412
	25*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	3916
	149
	8
	407
	26*

	7
	 Constant k, a = 1, c1 = c2
	5
	3878
	176
	11
	410
	22*

	8
	 Constant k & c, a = 1, 
	2
	10509
	427
	14
	413
	25*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table C.12. Extra Sum of Squares Difference Tests at Mutation Rate 12.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	26
	26
	4
	403
	1

	3
	  Constant a, c1 = c2
	9
	13
	26
	7
	406
	0

	4
	  Constant a & c
	6
	9900
	267
	10
	409
	37*

	5
	  Constant a, c & k
	3
	8379
	290
	13
	412
	29*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2891
	82
	8
	407
	35*

	7
	 Constant k, a = 1, c1 = c2
	5
	3477
	119
	11
	410
	29*

	8
	 Constant k & c, a = 1, 
	2
	9619
	351
	14
	413
	27*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table C.13. Extra Sum of Squares Difference Tests at Mutation Rate 15.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	89
	26
	4
	403
	3*

	3
	  Constant a, c1 = c2
	9
	51
	26
	7
	406
	2

	4
	  Constant a & c
	6
	8317
	228
	10
	409
	36*

	5
	  Constant a, c & k
	3
	7086
	248
	13
	412
	29*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2237
	69
	8
	407
	33*

	7
	 Constant k, a = 1, c1 = c2
	5
	3115
	108
	11
	410
	29*

	8
	 Constant k & c, a = 1, 
	2
	8186
	302
	14
	413
	27*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table C.14. Extra Sum of Squares Difference Tests at Mutation Rate 17.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	11
	15
	4
	403
	1

	3
	  Constant a, c1 = c2
	9
	7
	14
	7
	406
	0

	4
	  Constant a & c
	6
	7054
	187
	10
	409
	38*

	5
	  Constant a, c & k
	3
	5960
	202
	13
	412
	29*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	1999
	54
	8
	407
	37*

	7
	 Constant k, a = 1, c1 = c2
	5
	2866
	91
	11
	410
	31*

	8
	 Constant k & c, a = 1, 
	2
	6859
	247
	14
	413
	28*


Note. N = 416; * p < 0.05 that model 1 is different from this model 

Table C.15. Extra Sum of Squares Difference Tests at Mutation Rate 20.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	10
	12
	4
	403
	1

	3
	  Constant a, c1 = c2
	9
	16
	12
	7
	406
	1

	4
	  Constant a & c
	6
	6332
	167
	10
	409
	38*

	5
	  Constant a, c & k
	3
	5248
	178
	13
	412
	30*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	1784
	47
	8
	407
	38*

	7
	 Constant k, a = 1, c1 = c2
	5
	2731
	85
	11
	410
	32*

	8
	 Constant k & c, a = 1, 
	2
	6055
	217
	14
	413
	28*


Note. N = 416; * p < 0.05 that model 1 is different from this model 


Table C.16. Akaike Information Criteria (AIC) for Quantitative Law of Effect Fits
	
	
	
	Mutation Rate

	Model
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	16
	2304
	2000
	1802
	1370
	1359
	1130
	1063

	2
	  c1 = c2
	12
	2335
	2000
	1805
	1366
	1365
	1125
	1058

	3
	  Constant a, c1 = c2
	9
	2331
	1997
	1801
	1360
	1359
	1119
	1058

	4
	  Constant a & c
	6
	2644
	2478
	2397
	2330
	2264
	2180
	2134

	5
	  Constant a, c & k
	3
	2643
	2499
	2428
	2360
	2296
	2211
	2157

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2564
	2266
	2089
	1842
	1767
	1663
	1611

	7
	 Constant k, a = 1, c1 = c2
	5
	2565
	2288
	2154
	1991
	1952
	1881
	1854

	8
	 Constant k & c, a = 1
	2
	2764
	2601
	2521
	2439
	2376
	2292
	2239



Table C.17. Akaike Information Criteria (AIC) for Matching Law Fits
	
	
	
	Mutation Rate

	Model(s)
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	12
	-966
	-1084
	-1131
	-1292
	-1278
	-1342
	-1384

	2
	  c1 = c2
	8
	-966
	-1091
	-1132
	-1298
	-1280
	-1348
	-1390

	3, 4, 5
	  Constant a & c
	2
	-977
	-1101
	-1144
	-1308
	-1290
	-1355
	-1387

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	

	6, 7, 8
	  a = 1, c1 = c2
	0
	-679
	-701
	-713
	-724
	-738
	-746
	-756





Table C.18. Bayes Information Criteria (BIC) for Quantitative Law of Effect Fits
	
	
	
	Mutation Rate

	Model
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	16
	2368
	2065
	1867
	1435
	1423
	1194
	1127

	2
	  c1 = c2
	12
	2384
	2049
	1853
	1415
	1414
	1173
	1107

	3
	  Constant a, c1 = c2
	9
	2368
	2034
	1837
	1396
	1396
	1156
	1095

	4
	  Constant a & c
	6
	2668
	2502
	2421
	2354
	2288
	2205
	2158

	5
	  Constant a, c & k
	3
	2656
	2511
	2440
	2372
	2308
	2223
	2169

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2597
	2298
	2121
	1874
	1799
	1695
	1643

	7
	 Constant k, a = 1, c1 = c2
	5
	2585
	2309
	2174
	2011
	1973
	1901
	1874

	8
	 Constant k & c, a = 1
	2
	2772
	2609
	2529
	2447
	2385
	2300
	2248



Table C.19. Bayes Information Criteria (BIC) for Matching Law Fits
	
	
	
	Mutation Rate

	Model(s)
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	12
	-925
	-1044
	-1091
	-1252
	-1238
	-1302
	-1344

	2
	  c1 = c2
	8
	-939
	-1064
	-1106
	-1271
	-1254
	-1322
	-1364

	3, 4, 5
	  Constant a & c
	2
	-971
	-1094
	-1137
	-1301
	-1284
	-1348
	-1380

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	
	

	6, 7, 8
	  a = 1, c1 = c2
	0
	-679
	-701
	-713
	-724
	-738
	-746
	-756






Table C.20. Quadratic Fit to Changeover Behaviors

	Mutation Rate
	Reinforcer Magnitude
	a
	b
	c
	CMax
	CΔ
	%VAF

	5.0
	20/20
	0.1
	-0.1
	0.0
	0.0
	0.0
	3

	
	40/40
	0.1
	-0.1
	0.1
	0.0
	0.0
	2

	
	60/60
	0.0
	-0.1
	0.0
	0.0
	0.0
	1

	
	80/80
	0.0
	0.0
	0.1
	0.0
	0.0
	0

	7.5
	20/20
	0.0
	0.0
	0.1
	0.1
	0.0
	0

	
	40/40
	-0.1
	0.1
	0.1
	0.1
	0.0
	0

	
	60/60
	-0.2
	0.2
	0.1
	0.1
	0.0
	1

	
	80/80
	-0.2
	0.2
	0.1
	0.1
	0.0
	1

	10.0
	20/20
	-0.1
	0.1
	0.1
	0.1
	0.0
	0

	
	40/40
	-0.2
	0.2
	0.1
	0.2
	0.0
	1

	
	60/60
	-0.6
	0.5
	0.1
	0.2
	0.1
	5

	
	80/80
	-0.6
	0.6
	0.1
	0.3
	0.2
	2

	12.5
	20/20
	-0.8
	0.8
	0.1
	0.3
	0.2
	5

	
	40/40
	-0.6
	0.6
	0.1
	0.3
	0.2
	3

	
	60/60
	-0.9
	0.9
	0.1
	0.4
	0.2
	4

	
	80/80
	-1.2
	1.2
	0.2
	0.5
	0.3
	4

	15.0
	20/20
	-0.9
	0.9
	0.2
	0.4
	0.2
	4

	
	40/40
	-0.7
	0.7
	0.2
	0.4
	0.2
	2

	
	60/60
	-1.4
	1.3
	0.2
	0.5
	0.3
	6

	
	80/80
	-1.9
	1.9
	0.2
	0.7
	0.5
	5

	17.5
	20/20
	-1.5
	1.4
	0.2
	0.6
	0.4
	5

	
	40/40
	-1.5
	1.5
	0.2
	0.6
	0.4
	5

	
	60/60
	-1.9
	1.8
	0.3
	0.7
	0.4
	5

	
	80/80
	-2.3
	2.2
	0.3
	0.9
	0.5
	5

	20.0
	20/20
	-2.3
	2.3
	0.2
	0.8
	0.6
	7

	
	40/40
	-2.1
	2.1
	0.3
	0.8
	0.5
	5

	
	60/60
	-2.7
	2.6
	0.3
	0.9
	0.6
	6

	 
	80/80
	-3.0
	3.0
	0.4
	1.1
	0.7
	5


Note. %VAF = Percentage of Variance Accounted For.


Table C.21. Quadratic-exponential Fit to Changeover Behaviors

	Mutation Rate
	Reinforcer Magnitude
	a
	b
	c
	d
	CMax
	CΔ%
	%VAF

	5.0
	20/20
	-0.2
	0.2
	0.4
	0.052
	0.4
	13%
	93

	
	40/40
	0.6
	-0.5
	0.7
	0.060
	0.7
	-17%
	96

	
	60/60
	0.4
	-0.5
	0.7
	0.055
	0.7
	-24%
	95

	
	80/80
	-0.4
	0.4
	0.5
	0.050
	0.6
	20%
	94

	7.5
	20/20
	1.1
	-1.2
	1.4
	0.058
	1.4
	-23%
	97

	
	40/40
	1.7
	-1.8
	1.6
	0.059
	1.6
	-29%
	98

	
	60/60
	1.9
	-1.8
	1.7
	0.056
	1.7
	-24%
	98

	
	80/80
	0.6
	-0.8
	1.7
	0.051
	1.7
	-13%
	98

	10.0
	20/20
	0.4
	-0.3
	1.7
	0.048
	1.7
	-3%
	98

	
	40/40
	2.1
	-1.8
	2.1
	0.051
	2.1
	-17%
	98

	
	60/60
	2.7
	-2.6
	2.5
	0.047
	2.5
	-24%
	98

	
	80/80
	1.3
	-1.5
	3.1
	0.051
	3.1
	-14%
	98

	12.5
	20/20
	1.1
	-1.1
	2.5
	0.043
	2.5
	-11%
	99

	
	40/40
	0.3
	-0.2
	2.7
	0.047
	2.7
	0%
	98

	
	60/60
	1.4
	-1.6
	3.7
	0.050
	3.7
	-12%
	97

	
	80/80
	1.7
	-1.9
	4.4
	0.048
	4.4
	-11%
	97

	15.0
	20/20
	2.3
	-2.1
	3.6
	0.042
	3.6
	-14%
	98

	
	40/40
	2.8
	-2.7
	3.7
	0.042
	3.7
	-17%
	99

	
	60/60
	2.7
	-2.7
	4.5
	0.044
	4.5
	-15%
	98

	
	80/80
	2.4
	-2.2
	5.4
	0.044
	5.4
	-9%
	98

	17.5
	20/20
	4.1
	-4.1
	4.9
	0.041
	4.9
	-21%
	98

	
	40/40
	4.3
	-4.1
	4.9
	0.039
	4.9
	-20%
	99

	
	60/60
	0.6
	-0.5
	4.9
	0.040
	4.9
	-2%
	98

	
	80/80
	4.4
	-4.3
	6.7
	0.041
	6.7
	-16%
	98

	20.0
	20/20
	2.4
	-2.7
	5.7
	0.039
	5.7
	-13%
	98

	
	40/40
	3.8
	-4.0
	6.1
	0.038
	6.1
	-17%
	98

	
	60/60
	2.5
	-2.9
	6.3
	0.037
	6.3
	-13%
	97

	 
	80/80
	3.3
	-3.5
	7.8
	0.038
	7.8
	-12%
	98


Note. %VAF = Percentage of Variance Accounted For.
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Table D.1. Model 1 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	
	%VAF

	
	
	k
	c1
	c2
	a
	QLOE
	ML

	5.0
	20/20
	535
	11.9
	12.4
	0.73
	94
	97

	
	40/40
	541
	17.5
	18.4
	0.76
	95
	97

	
	60/60
	404
	18.5
	19.6
	0.73
	98
	99

	
	80/80
	347
	19.4
	19.9
	0.74
	98
	99

	7.5
	20/20
	519
	16.8
	17.0
	0.76
	98
	98

	
	40/40
	507
	22.1
	22.6
	0.77
	98
	99

	
	60/60
	326
	17.7
	18.5
	0.75
	99
	99

	
	80/80
	275
	16.4
	17.0
	0.74
	99
	99

	10.0
	20/20
	514
	22.2
	22.7
	0.78
	99
	100

	
	40/40
	489
	27.0
	26.8
	0.78
	99
	100

	
	60/60
	281
	17.0
	17.0
	0.76
	99
	99

	
	80/80
	231
	14.1
	14.3
	0.73
	99
	99

	12.5
	20/20
	500
	25.6
	26.0
	0.78
	99
	99

	
	40/40
	446
	28.2
	29.1
	0.80
	99
	99

	
	60/60
	246
	14.9
	15.3
	0.75
	99
	99

	
	80/80
	200
	12.2
	12.4
	0.73
	99
	99

	15.0
	20/20
	475
	27.7
	28.2
	0.79
	100
	100

	
	40/40
	411
	28.7
	28.6
	0.79
	99
	100

	
	60/60
	221
	13.6
	13.6
	0.74
	99
	99

	
	80/80
	182
	11.1
	11.1
	0.71
	99
	99

	17.5
	20/20
	447
	28.1
	27.6
	0.78
	100
	100

	
	40/40
	371
	26.5
	26.3
	0.78
	99
	100

	
	60/60
	203
	12.7
	12.6
	0.73
	99
	99

	
	80/80
	166
	10.2
	10.2
	0.72
	99
	99

	20.0
	20/20
	420
	28.6
	28.7
	0.79
	100
	100

	
	40/40
	340
	25.2
	25.4
	0.78
	99
	100

	
	60/60
	188
	11.3
	11.4
	0.72
	99
	100

	 
	80/80
	155
	9.2
	9.1
	0.70
	99
	100


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law

Table D.2. Model 2 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	534
	12.3
	0.74
	94
	97

	
	40/40
	540
	18.2
	0.76
	95
	97

	
	60/60
	402
	19.3
	0.73
	97
	98

	
	80/80
	346
	19.6
	0.74
	98
	99

	7.5
	20/20
	519
	16.9
	0.76
	98
	98

	
	40/40
	507
	22.4
	0.77
	98
	99

	
	60/60
	325
	18.3
	0.75
	99
	99

	
	80/80
	275
	16.8
	0.74
	99
	99

	10.0
	20/20
	514
	22.5
	0.78
	99
	99

	
	40/40
	489
	26.9
	0.78
	99
	100

	
	60/60
	281
	17.0
	0.76
	99
	99

	
	80/80
	231
	14.2
	0.73
	99
	99

	12.5
	20/20
	500
	25.9
	0.79
	99
	99

	
	40/40
	446
	28.9
	0.80
	99
	99

	
	60/60
	246
	15.2
	0.75
	99
	99

	
	80/80
	200
	12.3
	0.73
	99
	99

	15.0
	20/20
	475
	28.0
	0.79
	100
	100

	
	40/40
	411
	28.6
	0.79
	99
	100

	
	60/60
	221
	13.6
	0.74
	99
	99

	
	80/80
	182
	11.1
	0.72
	99
	99

	17.5
	20/20
	447
	27.9
	0.78
	100
	100

	
	40/40
	371
	26.4
	0.78
	99
	100

	
	60/60
	203
	12.6
	0.73
	99
	99

	
	80/80
	166
	10.2
	0.72
	99
	99

	20.0
	20/20
	420
	28.7
	0.79
	100
	100

	
	40/40
	340
	25.3
	0.78
	99
	100

	
	60/60
	188
	11.4
	0.72
	99
	100

	 
	80/80
	155
	9.2
	0.70
	99
	100


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table D.3. Model 3 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	531
	12.4
	0.74
	94
	97

	
	40/40
	551
	17.8
	
	95
	97

	
	60/60
	397
	19.5
	
	97
	98

	
	80/80
	347
	19.6
	
	98
	99

	7.5
	20/20
	521
	16.8
	0.76
	98
	98

	
	40/40
	517
	22.1
	
	98
	99

	
	60/60
	324
	18.3
	
	99
	99

	
	80/80
	270
	17.0
	
	99
	99

	10.0
	20/20
	528
	22.0
	0.76
	99
	99

	
	40/40
	503
	26.6
	
	99
	100

	
	60/60
	279
	17.1
	
	99
	99

	
	80/80
	223
	14.4
	
	99
	99

	12.5
	20/20
	516
	25.5
	0.76
	99
	99

	
	40/40
	473
	28.6
	
	99
	99

	
	60/60
	242
	15.3
	
	99
	99

	
	80/80
	193
	12.5
	
	99
	99

	15.0
	20/20
	505
	27.6
	0.76
	99
	100

	
	40/40
	439
	28.5
	
	99
	99

	
	60/60
	217
	13.7
	
	99
	99

	
	80/80
	174
	11.3
	
	99
	99

	17.5
	20/20
	472
	27.7
	0.75
	100
	100

	
	40/40
	391
	26.3
	
	99
	99

	
	60/60
	199
	12.7
	
	99
	99

	
	80/80
	160
	10.4
	
	99
	99

	20.0
	20/20
	460
	28.6
	0.74
	99
	99

	
	40/40
	365
	25.4
	
	99
	99

	
	60/60
	183
	11.5
	
	99
	100

	 
	80/80
	148
	9.3
	 
	99
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table D.4. Model 4 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	505
	24.4
	0.73
	48
	97

	
	40/40
	
	20.0
	
	79
	95

	
	60/60
	
	25.1
	
	93
	98

	
	80/80
	
	28.0
	
	76
	97

	7.5
	20/20
	466
	30.1
	0.75
	54
	98

	
	40/40
	
	24.8
	
	82
	97

	
	60/60
	
	31.2
	
	95
	99

	
	80/80
	
	34.2
	
	78
	97

	10.0
	20/20
	460
	36.7
	0.75
	58
	99

	
	40/40
	
	30.5
	
	83
	98

	
	60/60
	
	38.3
	
	95
	99

	
	80/80
	
	41.7
	
	77
	98

	12.5
	20/20
	398
	33.8
	0.75
	58
	99

	
	40/40
	
	27.3
	
	86
	98

	
	60/60
	
	34.7
	
	95
	99

	
	80/80
	
	38.1
	
	78
	98

	15.0
	20/20
	367
	32.9
	0.74
	60
	99

	
	40/40
	
	27.7
	
	84
	98

	
	60/60
	
	33.9
	
	95
	99

	
	80/80
	
	37.0
	
	77
	98

	17.5
	20/20
	325
	29.1
	0.74
	60
	99

	
	40/40
	
	24.9
	
	85
	98

	
	60/60
	
	30.0
	
	95
	99

	
	80/80
	
	32.6
	
	78
	98

	20.0
	20/20
	285
	25.3
	0.73
	60
	99

	
	40/40
	
	21.9
	
	84
	98

	
	60/60
	
	25.7
	
	95
	100

	 
	80/80
	 
	28.0
	 
	78
	98


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table D.5. Model 5 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	464
	21.8
	0.74
	47
	97

	
	40/40
	
	
	
	70
	97

	
	60/60
	
	
	
	94
	98

	
	80/80
	
	
	
	71
	99

	7.5
	20/20
	421
	26.3
	0.75
	52
	98

	
	40/40
	
	
	
	74
	99

	
	60/60
	
	
	
	96
	99

	
	80/80
	
	
	
	74
	99

	10.0
	20/20
	397
	30.4
	0.76
	55
	99

	
	40/40
	
	
	
	75
	99

	
	60/60
	
	
	
	96
	99

	
	80/80
	
	
	
	75
	99

	12.5
	20/20
	353
	29.3
	0.76
	55
	99

	
	40/40
	
	
	
	77
	99

	
	60/60
	
	
	
	96
	99

	
	80/80
	
	
	
	77
	99

	15.0
	20/20
	323
	28.2
	0.75
	56
	100

	
	40/40
	
	
	
	77
	99

	
	60/60
	
	
	
	96
	99

	
	80/80
	
	
	
	77
	99

	17.5
	20/20
	291
	25.5
	0.75
	57
	100

	
	40/40
	
	
	
	78
	99

	
	60/60
	
	
	
	96
	99

	
	80/80
	
	
	
	77
	99

	20.0
	20/20
	260
	22.6
	0.74
	57
	99

	
	40/40
	
	
	
	78
	99

	
	60/60
	
	
	
	97
	100

	 
	80/80
	 
	 
	 
	77
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table D.6. Model 6 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	450
	18.7
	89
	86

	
	40/40
	444
	25.7
	92
	88

	
	60/60
	305
	25.8
	93
	86

	
	80/80
	265
	25.5
	95
	87

	7.5
	20/20
	423
	23.5
	95
	90

	
	40/40
	403
	29.9
	95
	91

	
	60/60
	253
	23.3
	96
	89

	
	80/80
	212
	21.4
	96
	87

	10.0
	20/20
	418
	30.2
	97
	92

	
	40/40
	380
	34.5
	97
	92

	
	60/60
	219
	21.2
	97
	89

	
	80/80
	179
	18.0
	95
	86

	12.5
	20/20
	394
	33.1
	98
	92

	
	40/40
	346
	34.9
	98
	93

	
	60/60
	193
	19.0
	96
	88

	
	80/80
	157
	15.3
	96
	86

	15.0
	20/20
	370
	34.9
	98
	93

	
	40/40
	314
	34.2
	98
	93

	
	60/60
	172
	16.8
	96
	87

	
	80/80
	142
	13.9
	94
	83

	17.5
	20/20
	338
	33.9
	98
	92

	
	40/40
	281
	31.8
	98
	92

	
	60/60
	159
	15.6
	96
	86

	
	80/80
	131
	12.8
	94
	84

	20.0
	20/20
	318
	34.2
	98
	92

	
	40/40
	255
	29.8
	97
	91

	
	60/60
	146
	14.2
	95
	84

	 
	80/80
	122
	11.6
	93
	81


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table D.7. Model 7 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	396
	12.4
	88
	86

	
	40/40
	
	18.8
	91
	88

	
	60/60
	
	47.4
	91
	86

	
	80/80
	
	62.3
	89
	87

	7.5
	20/20
	351
	13.4
	92
	90

	
	40/40
	
	20.7
	94
	91

	
	60/60
	
	50.9
	92
	89

	
	80/80
	
	66.7
	88
	87

	10.0
	20/20
	321
	14.5
	93
	92

	
	40/40
	
	22.5
	96
	92

	
	60/60
	
	53.1
	91
	89

	
	80/80
	
	67.7
	84
	86

	12.5
	20/20
	287
	13.9
	92
	92

	
	40/40
	
	21.8
	97
	93

	
	60/60
	
	49.9
	91
	88

	
	80/80
	
	63.4
	83
	86

	15.0
	20/20
	256
	12.7
	91
	93

	
	40/40
	
	20.4
	96
	93

	
	60/60
	
	45.1
	90
	87

	
	80/80
	
	57.2
	80
	83

	17.5
	20/20
	230
	11.7
	90
	92

	
	40/40
	
	19.1
	96
	92

	
	60/60
	
	40.3
	89
	86

	
	80/80
	
	50.9
	81
	84

	20.0
	20/20
	206
	10.1
	89
	92

	
	40/40
	
	16.9
	95
	91

	
	60/60
	
	34.9
	89
	84

	 
	80/80
	 
	44.1
	79
	81


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law. The ML fit for this model is identical to Model 6.



Table D.8. Model 8 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	348
	29
	42
	86

	
	40/40
	
	
	67
	88

	
	60/60
	
	
	90
	86

	
	80/80
	
	
	67
	87

	7.5
	20/20
	303
	31
	49
	90

	
	40/40
	
	
	70
	91

	
	60/60
	
	
	93
	89

	
	80/80
	
	
	70
	87

	10.0
	20/20
	275
	34
	52
	92

	
	40/40
	
	
	72
	92

	
	60/60
	
	
	94
	89

	
	80/80
	
	
	71
	86

	12.5
	20/20
	244
	32
	52
	92

	
	40/40
	
	
	75
	93

	
	60/60
	
	
	94
	88

	
	80/80
	
	
	73
	86

	15.0
	20/20
	220
	31
	53
	93

	
	40/40
	
	
	75
	93

	
	60/60
	
	
	93
	87

	
	80/80
	
	
	72
	83

	17.5
	20/20
	200
	28
	54
	92

	
	40/40
	
	
	76
	92

	
	60/60
	
	
	93
	86

	
	80/80
	
	
	72
	84

	20.0
	20/20
	181
	25
	54
	92

	
	40/40
	
	
	76
	91

	
	60/60
	
	
	92
	84

	 
	80/80
	 
	 
	71
	81


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law. The ML fit for this model is identical to Model 6.




Running Head: ALGORITHMIC MODIFICATIONS TO THE ETBD	1


Table D.9. Extra Sum of Squares Difference Tests at Mutation Rate 5.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	976
	222
	4
	403
	4*

	3
	  Constant a, c1 = c2
	9
	578
	221
	7
	406
	3*

	4
	  Constant a & c
	6
	47626
	1374
	10
	409
	35*

	5
	  Constant a, c & k
	3
	42383
	1545
	13
	412
	27*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	8906
	385
	8
	407
	23*

	7
	 Constant k, a = 1, c1 = c2
	5
	9711
	469
	11
	410
	21*

	8
	 Constant k & c, a = 1, 
	2
	44836
	1727
	14
	413
	26*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table D.10. Extra Sum of Squares Difference Tests at Mutation Rate 7.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	222
	74
	4
	403
	3*

	3
	  Constant a, c1 = c2
	9
	86
	73
	7
	406
	1

	4
	  Constant a & c
	6
	42728
	1116
	10
	409
	38*

	5
	  Constant a, c & k
	3
	37688
	1260
	13
	412
	30*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	6056
	190
	8
	407
	32*

	7
	 Constant k, a = 1, c1 = c2
	5
	8360
	295
	11
	410
	28*

	8
	 Constant k & c, a = 1, 
	2
	38851
	1387
	14
	413
	28*


Note. N = 416; * p < 0.05 that model 1 is different from this model 

Table D.11. Extra Sum of Squares Difference Tests at Mutation Rate 10.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	39
	32
	4
	403
	1

	3
	  Constant a, c1 = c2
	9
	33
	31
	7
	406
	1

	4
	  Constant a & c
	6
	38221
	965
	10
	409
	40*

	5
	  Constant a, c & k
	3
	33861
	1099
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	3528
	100
	8
	407
	35*

	7
	 Constant k, a = 1, c1 = c2
	5
	7424
	230
	11
	410
	32*

	8
	 Constant k & c, a = 1, 
	2
	34389
	1196
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table D.12. Extra Sum of Squares Difference Tests at Mutation Rate 12.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	97
	24
	4
	403
	4*

	3
	  Constant a, c1 = c2
	9
	127
	25
	7
	406
	5*

	4
	  Constant a & c
	6
	31083
	783
	10
	409
	40*

	5
	  Constant a, c & k
	3
	28126
	910
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2538
	73
	8
	407
	35*

	7
	 Constant k, a = 1, c1 = c2
	5
	6741
	204
	11
	410
	33*

	8
	 Constant k & c, a = 1, 
	2
	28413
	986
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table D.13. Extra Sum of Squares Difference Tests at Mutation Rate 15.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	25
	14
	4
	403
	2

	3
	  Constant a, c1 = c2
	9
	96
	15
	7
	406
	6*

	4
	  Constant a & c
	6
	26421
	659
	10
	409
	40*

	5
	  Constant a, c & k
	3
	23339
	750
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2320
	59
	8
	407
	39*

	7
	 Constant k, a = 1, c1 = c2
	5
	6557
	189
	11
	410
	35*

	8
	 Constant k & c, a = 1, 
	2
	23670
	816
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table D.14. Extra Sum of Squares Difference Tests at Mutation Rate 17.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	28
	10
	4
	403
	3*

	3
	  Constant a, c1 = c2
	9
	68
	11
	7
	406
	6*

	4
	  Constant a & c
	6
	20185
	503
	10
	409
	40*

	5
	  Constant a, c & k
	3
	17652
	567
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2104
	51
	8
	407
	41*

	7
	 Constant k, a = 1, c1 = c2
	5
	5606
	160
	11
	410
	35*

	8
	 Constant k & c, a = 1, 
	2
	18045
	621
	14
	413
	29*



Note. N = 416; * p < 0.05 that model 1 is different from this model 

Table D.15. Extra Sum of Squares Difference Tests at Mutation Rate 20.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	8
	9
	4
	403
	1

	3
	  Constant a, c1 = c2
	9
	94
	11
	7
	406
	9*

	4
	  Constant a & c
	6
	17253
	431
	10
	409
	40*

	5
	  Constant a, c & k
	3
	14936
	480
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	1870
	46
	8
	407
	41*

	7
	 Constant k, a = 1, c1 = c2
	5
	5377
	153
	11
	410
	35*

	8
	 Constant k & c, a = 1, 
	2
	15199
	524
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model 


Table D.16. Akaike Information Criteria (AIC) for Quantitative Law of Effect Fits
	
	
	
	Mutation Rate

	Model
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	16
	2248
	1798
	1449
	1328
	1103
	974
	936

	2
	  c1 = c2
	12
	2258
	1802
	1446
	1337
	1102
	978
	932

	3
	  Constant a, c1 = c2
	9
	2253
	1792
	1443
	1352
	1137
	1007
	991

	4
	  Constant a & c
	6
	3011
	2924
	2864
	2777
	2705
	2593
	2528

	5
	  Constant a, c & k
	3
	3057
	2972
	2915
	2836
	2756
	2639
	2570

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2484
	2190
	1923
	1791
	1703
	1644
	1597

	7
	 Constant k, a = 1, c1 = c2
	5
	2563
	2370
	2266
	2216
	2185
	2116
	2097

	8
	 Constant k & c, a = 1
	2
	3102
	3011
	2949
	2869
	2790
	2677
	2606



Table D.17. Akaike Information Criteria (AIC) for Matching Law Fits
	
	
	
	Mutation Rate

	Model(s)
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	12
	-1002
	-1150
	-1275
	-1298
	-1372
	-1390
	-1434

	2
	  c1 = c2
	8
	-1003
	-1154
	-1280
	-1299
	-1379
	-1396
	-1441

	3, 4, 5
	  Constant a & c1 = c2
	2
	-1011
	-1157
	-1262
	-1270
	-1308
	-1351
	-1343

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	

	6, 7, 8
	  a = 1, c1 = c2
	0
	-670
	-693
	-707
	-721
	-735
	-745
	-755





Table D.18. Bayes Information Criteria (BIC) for Quantitative Law of Effect Fits
	
	
	
	Mutation Rate

	Model
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	16
	2312
	1862
	1514
	1393
	1167
	1039
	1001

	2
	  c1 = c2
	12
	2307
	1851
	1495
	1385
	1151
	1026
	980

	3
	  Constant a, c1 = c2
	9
	2289
	1828
	1479
	1388
	1173
	1043
	1028

	4
	  Constant a & c
	6
	3035
	2948
	2888
	2801
	2729
	2617
	2552

	5
	  Constant a, c & k
	3
	3069
	2984
	2927
	2849
	2768
	2651
	2583

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2516
	2223
	1956
	1824
	1735
	1676
	1629

	7
	 Constant k, a = 1, c1 = c2
	5
	2583
	2390
	2286
	2236
	2205
	2136
	2117

	8
	 Constant k & c, a = 1
	2
	3110
	3019
	2957
	2877
	2798
	2685
	2614



Table D.19. Bayes Information Criteria (BIC) for Matching Law Fits
	
	
	
	Mutation Rate

	Model(s)
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	12
	-962
	-1110
	-1235
	-1258
	-1332
	-1350
	-1394

	2
	  c1 = c2
	8
	-976
	-1127
	-1253
	-1272
	-1352
	-1369
	-1415

	3, 4, 5
	  Constant a & c1 = c2
	2
	-1005
	-1150
	-1255
	-1264
	-1302
	-1344
	-1336

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	
	

	6, 7, 8
	  a = 1, c1 = c2
	0
	-670
	-693
	-707
	-721
	-735
	-745
	-755






Table D.20. Quadratic Fit to Changeover Behaviors

	Mutation Rate
	Reinforcer Magnitude
	a
	b
	c
	CMax
	CΔ
	%VAF

	5.0
	20/20
	0.1
	-0.1
	0.1
	0.0
	0.0
	1

	
	40/40
	0.0
	0.0
	0.1
	0.0
	0.0
	0

	
	60/60
	0.0
	0.0
	0.1
	0.0
	0.0
	1

	
	80/80
	0.0
	0.0
	0.1
	0.0
	-0.1
	0

	7.5
	20/20
	-0.1
	0.1
	0.1
	0.1
	0.0
	0

	
	40/40
	-0.2
	0.1
	0.1
	0.1
	0.0
	1

	
	60/60
	-0.2
	0.2
	0.1
	0.2
	0.0
	1

	
	80/80
	-0.3
	0.3
	0.1
	0.2
	0.1
	1

	10.0
	20/20
	-0.3
	0.2
	0.1
	0.2
	0.1
	1

	
	40/40
	-0.4
	0.5
	0.1
	0.2
	0.1
	2

	
	60/60
	-0.5
	0.5
	0.1
	0.3
	0.1
	2

	
	80/80
	-0.4
	0.4
	0.2
	0.3
	0.1
	1

	12.5
	20/20
	-0.7
	0.7
	0.2
	0.3
	0.2
	3

	
	40/40
	-1.2
	1.1
	0.2
	0.4
	0.2
	7

	
	60/60
	-0.7
	0.7
	0.3
	0.4
	0.2
	2

	
	80/80
	-0.9
	0.9
	0.3
	0.5
	0.2
	2

	15.0
	20/20
	-1.5
	1.5
	0.2
	0.6
	0.4
	6

	
	40/40
	-1.6
	1.6
	0.2
	0.6
	0.4
	6

	
	60/60
	-1.5
	1.5
	0.3
	0.6
	0.4
	4

	
	80/80
	-1.3
	1.3
	0.4
	0.7
	0.3
	2

	17.5
	20/20
	-2.0
	2.0
	0.2
	0.7
	0.5
	6

	
	40/40
	-2.0
	2.0
	0.3
	0.8
	0.5
	6

	
	60/60
	-2.0
	2.0
	0.3
	0.8
	0.5
	4

	
	80/80
	-1.8
	1.8
	0.5
	1.0
	0.4
	2

	20.0
	20/20
	-2.9
	2.9
	0.2
	1.0
	0.7
	8

	
	40/40
	-3.1
	3.0
	0.3
	1.0
	0.7
	8

	
	60/60
	-2.3
	2.2
	0.5
	1.0
	0.5
	3

	 
	80/80
	-1.6
	1.6
	0.7
	1.2
	0.4
	1


Note. %VAF = Percentage of Variance Accounted For.


Table D.21. Quadratic-exponential Fit to Changeover Behaviors

	Mutation Rate
	Reinforcer Magnitude
	a
	b
	c
	d
	CMax
	CΔ%
	%VAF

	5.0
	20/20
	1.2
	-1.2
	1.0
	0.062
	1.0
	-32%
	97

	
	40/40
	0.8
	-0.6
	0.7
	0.054
	0.7
	-11%
	98

	
	60/60
	0.6
	-0.7
	0.9
	0.051
	0.9
	-24%
	95

	
	80/80
	0.5
	-0.6
	0.9
	0.043
	0.9
	-20%
	97

	7.5
	20/20
	0.7
	-1.0
	1.5
	0.049
	1.5
	-21%
	97

	
	40/40
	0.9
	-0.9
	1.5
	0.049
	1.5
	-15%
	98

	
	60/60
	0.3
	-0.3
	1.4
	0.045
	1.4
	-7%
	97

	
	80/80
	1.2
	-1.2
	1.7
	0.043
	1.7
	-16%
	98

	10.0
	20/20
	2.6
	-2.9
	2.8
	0.047
	2.8
	-29%
	98

	
	40/40
	1.0
	-0.7
	2.1
	0.044
	2.1
	-4%
	98

	
	60/60
	2.7
	-2.7
	2.9
	0.046
	2.9
	-23%
	98

	
	80/80
	1.0
	-1.1
	2.5
	0.039
	2.5
	-11%
	97

	12.5
	20/20
	3.0
	-3.0
	3.8
	0.046
	3.8
	-19%
	98

	
	40/40
	2.0
	-2.2
	3.6
	0.043
	3.6
	-16%
	98

	
	60/60
	2.9
	-2.9
	3.7
	0.040
	3.7
	-19%
	98

	
	80/80
	2.4
	-2.6
	3.9
	0.038
	3.9
	-17%
	97

	15.0
	20/20
	4.2
	-4.1
	4.7
	0.041
	4.7
	-21%
	98

	
	40/40
	2.8
	-3.3
	4.6
	0.038
	4.6
	-21%
	98

	
	60/60
	2.1
	-2.2
	4.4
	0.037
	4.4
	-14%
	97

	
	80/80
	2.3
	-2.3
	4.7
	0.035
	4.7
	-13%
	97

	17.5
	20/20
	3.1
	-3.1
	5.1
	0.036
	5.1
	-16%
	98

	
	40/40
	3.0
	-3.2
	5.4
	0.036
	5.4
	-16%
	98

	
	60/60
	2.3
	-2.5
	5.6
	0.036
	5.6
	-12%
	97

	
	80/80
	2.1
	-2.2
	6.3
	0.036
	6.3
	-9%
	96

	20.0
	20/20
	3.9
	-4.2
	6.4
	0.035
	6.4
	-17%
	97

	
	40/40
	2.6
	-2.8
	6.4
	0.035
	6.4
	-12%
	98

	
	60/60
	1.4
	-1.4
	6.0
	0.033
	6.0
	-6%
	98

	 
	80/80
	3.2
	-3.1
	6.9
	0.032
	6.9
	-11%
	96


Note. %VAF = Percentage of Variance Accounted For.
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Table E.1. Model 1 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	
	%VAF

	
	
	k
	c1
	c2
	a
	QLOE
	ML

	5.0
	20/20
	560
	11.9
	12.1
	0.71
	97
	98

	
	40/40
	567
	16.8
	17.3
	0.74
	98
	99

	
	60/60
	551
	20.6
	21.4
	0.76
	98
	98

	
	80/80
	535
	23.8
	24.7
	0.77
	99
	99

	7.5
	20/20
	557
	17.5
	17.3
	0.74
	99
	99

	
	40/40
	559
	24.0
	23.9
	0.76
	99
	99

	
	60/60
	543
	28.2
	28.3
	0.76
	99
	100

	
	80/80
	500
	30.6
	30.8
	0.78
	100
	100

	10.0
	20/20
	551
	21.9
	22.1
	0.75
	100
	100

	
	40/40
	535
	29.1
	29.0
	0.78
	100
	100

	
	60/60
	501
	31.0
	31.2
	0.77
	99
	100

	
	80/80
	452
	31.4
	31.4
	0.78
	99
	100

	12.5
	20/20
	535
	26.0
	26.4
	0.77
	100
	100

	
	40/40
	498
	29.3
	29.2
	0.76
	100
	100

	
	60/60
	451
	31.0
	31.1
	0.77
	99
	100

	
	80/80
	405
	30.8
	30.3
	0.77
	99
	100

	15.0
	20/20
	522
	28.3
	28.6
	0.77
	100
	100

	
	40/40
	471
	31.6
	31.5
	0.77
	99
	100

	
	60/60
	402
	29.5
	29.6
	0.77
	99
	100

	
	80/80
	357
	27.5
	27.6
	0.75
	99
	100

	17.5
	20/20
	504
	30.5
	30.7
	0.76
	99
	100

	
	40/40
	436
	30.1
	30.1
	0.75
	99
	100

	
	60/60
	373
	27.9
	28.0
	0.75
	99
	100

	
	80/80
	321
	25.6
	25.8
	0.75
	99
	100

	20.0
	20/20
	480
	30.7
	30.6
	0.75
	99
	100

	
	40/40
	405
	28.4
	28.6
	0.74
	99
	100

	
	60/60
	336
	25.5
	25.5
	0.74
	99
	100

	 
	80/80
	287
	23.1
	22.9
	0.74
	99
	100


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law

Table E.2. Model 2 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	560
	12.0
	0.71
	97
	98

	
	40/40
	567
	17.1
	0.74
	98
	99

	
	60/60
	550
	21.1
	0.76
	98
	98

	
	80/80
	535
	24.4
	0.77
	99
	99

	7.5
	20/20
	557
	17.4
	0.74
	99
	99

	
	40/40
	559
	24.0
	0.76
	99
	99

	
	60/60
	543
	28.3
	0.76
	99
	100

	
	80/80
	500
	30.8
	0.78
	100
	100

	10.0
	20/20
	551
	22.0
	0.76
	100
	100

	
	40/40
	535
	29.0
	0.78
	100
	100

	
	60/60
	501
	31.2
	0.77
	99
	100

	
	80/80
	452
	31.4
	0.78
	99
	100

	12.5
	20/20
	535
	26.2
	0.77
	100
	100

	
	40/40
	498
	29.3
	0.76
	100
	100

	
	60/60
	451
	31.1
	0.77
	99
	100

	
	80/80
	404
	30.6
	0.77
	99
	100

	15.0
	20/20
	521
	28.5
	0.77
	100
	100

	
	40/40
	471
	31.6
	0.77
	99
	100

	
	60/60
	402
	29.5
	0.77
	99
	100

	
	80/80
	357
	27.5
	0.75
	99
	100

	17.5
	20/20
	504
	30.6
	0.76
	99
	100

	
	40/40
	436
	30.1
	0.75
	99
	100

	
	60/60
	373
	28.0
	0.75
	99
	100

	
	80/80
	321
	25.7
	0.75
	99
	100

	20.0
	20/20
	480
	30.6
	0.75
	99
	100

	
	40/40
	405
	28.5
	0.74
	99
	100

	
	60/60
	336
	25.5
	0.74
	99
	100

	 
	80/80
	287
	23.0
	0.74
	99
	100


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table E.3. Model 3 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	544
	12.4
	0.74
	97
	98

	
	40/40
	564
	17.2
	
	98
	99

	
	60/60
	560
	20.9
	
	98
	98

	
	80/80
	555
	24.0
	
	99
	99

	7.5
	20/20
	543
	17.7
	0.76
	99
	99

	
	40/40
	558
	24.0
	
	99
	99

	
	60/60
	545
	28.2
	
	99
	100

	
	80/80
	521
	30.6
	
	100
	100

	10.0
	20/20
	540
	22.2
	0.77
	100
	100

	
	40/40
	544
	28.9
	
	100
	100

	
	60/60
	501
	31.2
	
	99
	100

	
	80/80
	456
	31.3
	
	99
	99

	12.5
	20/20
	538
	26.2
	0.77
	100
	100

	
	40/40
	494
	29.3
	
	100
	100

	
	60/60
	452
	31.1
	
	99
	100

	
	80/80
	405
	30.6
	
	99
	100

	15.0
	20/20
	523
	28.5
	0.76
	100
	100

	
	40/40
	478
	31.6
	
	99
	100

	
	60/60
	404
	29.5
	
	99
	100

	
	80/80
	349
	27.5
	
	99
	100

	17.5
	20/20
	516
	30.7
	0.75
	99
	100

	
	40/40
	437
	30.1
	
	99
	100

	
	60/60
	368
	27.9
	
	99
	100

	
	80/80
	317
	25.6
	
	99
	100

	20.0
	20/20
	494
	30.8
	0.74
	99
	100

	
	40/40
	403
	28.5
	
	99
	100

	
	60/60
	334
	25.5
	
	99
	100

	 
	80/80
	284
	22.9
	 
	99
	100


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table E.4. Model 4 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	559
	18.8
	0.74
	89
	98

	
	40/40
	
	17.8
	
	98
	99

	
	60/60
	
	18.7
	
	97
	98

	
	80/80
	
	19.5
	
	94
	99

	7.5
	20/20
	551
	26.0
	0.76
	90
	99

	
	40/40
	
	25.3
	
	98
	99

	
	60/60
	
	26.7
	
	99
	100

	
	80/80
	
	28.3
	
	94
	99

	10.0
	20/20
	532
	31.3
	0.77
	89
	100

	
	40/40
	
	30.0
	
	98
	99

	
	60/60
	
	32.2
	
	99
	99

	
	80/80
	
	34.6
	
	93
	99

	12.5
	20/20
	501
	33.6
	0.76
	88
	100

	
	40/40
	
	32.2
	
	98
	100

	
	60/60
	
	34.5
	
	99
	99

	
	80/80
	
	37.6
	
	93
	99

	15.0
	20/20
	469
	35.2
	0.76
	86
	100

	
	40/40
	
	33.6
	
	98
	99

	
	60/60
	
	36.1
	
	99
	100

	
	80/80
	
	38.4
	
	91
	99

	17.5
	20/20
	439
	34.6
	0.75
	84
	100

	
	40/40
	
	33.1
	
	98
	99

	
	60/60
	
	35.4
	
	98
	100

	
	80/80
	
	37.6
	
	91
	99

	20.0
	20/20
	407
	32.9
	0.74
	83
	100

	
	40/40
	
	31.3
	
	98
	99

	
	60/60
	
	33.7
	
	98
	100

	 
	80/80
	 
	35.9
	 
	90
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table E.5. Model 5 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	554
	18.4
	0.74
	89
	98

	
	40/40
	
	
	
	97
	99

	
	60/60
	
	
	
	97
	98

	
	80/80
	
	
	
	94
	99

	7.5
	20/20
	544
	25.7
	0.76
	90
	99

	
	40/40
	
	
	
	98
	99

	
	60/60
	
	
	
	99
	100

	
	80/80
	
	
	
	93
	100

	10.0
	20/20
	521
	30.8
	0.77
	88
	100

	
	40/40
	
	
	
	98
	100

	
	60/60
	
	
	
	99
	100

	
	80/80
	
	
	
	92
	99

	12.5
	20/20
	490
	33.2
	0.77
	87
	100

	
	40/40
	
	
	
	98
	100

	
	60/60
	
	
	
	99
	100

	
	80/80
	
	
	
	91
	100

	15.0
	20/20
	458
	34.5
	0.76
	85
	100

	
	40/40
	
	
	
	97
	100

	
	60/60
	
	
	
	99
	100

	
	80/80
	
	
	
	90
	100

	17.5
	20/20
	427
	33.9
	0.75
	83
	100

	
	40/40
	
	
	
	97
	100

	
	60/60
	
	
	
	99
	100

	
	80/80
	
	
	
	90
	100

	20.0
	20/20
	394
	32.0
	0.74
	82
	100

	
	40/40
	
	
	
	96
	100

	
	60/60
	
	
	
	99
	100

	 
	80/80
	 
	 
	 
	89
	100


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table E.6. Model 6 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	452
	17.7
	92
	83

	
	40/40
	449
	24.0
	96
	86

	
	60/60
	430
	28.3
	96
	88

	
	80/80
	415
	31.8
	97
	90

	7.5
	20/20
	438
	23.7
	96
	87

	
	40/40
	425
	30.5
	97
	89

	
	60/60
	405
	35.5
	97
	90

	
	80/80
	378
	37.6
	98
	92

	10.0
	20/20
	426
	29.1
	97
	89

	
	40/40
	406
	36.1
	98
	91

	
	60/60
	367
	37.7
	97
	91

	
	80/80
	331
	37.5
	98
	91

	12.5
	20/20
	409
	33.0
	98
	91

	
	40/40
	366
	35.9
	97
	90

	
	60/60
	325
	36.4
	97
	91

	
	80/80
	289
	35.2
	97
	90

	15.0
	20/20
	383
	34.5
	98
	90

	
	40/40
	339
	36.9
	97
	91

	
	60/60
	291
	34.8
	97
	90

	
	80/80
	251
	31.5
	97
	89

	17.5
	20/20
	361
	35.8
	97
	90

	
	40/40
	304
	34.5
	97
	89

	
	60/60
	259
	31.8
	96
	88

	
	80/80
	225
	29.1
	96
	88

	20.0
	20/20
	334
	35.0
	97
	89

	
	40/40
	276
	32.3
	96
	87

	
	60/60
	231
	28.6
	96
	87

	 
	80/80
	201
	25.8
	95
	87


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table E.7. Model 7 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	440
	16.3
	92
	83

	
	40/40
	
	22.7
	96
	86

	
	60/60
	
	30.0
	96
	88

	
	80/80
	
	36.9
	97
	90

	7.5
	20/20
	418
	20.6
	96
	87

	
	40/40
	
	29.1
	97
	89

	
	60/60
	
	38.2
	97
	90

	
	80/80
	
	47.2
	98
	92

	10.0
	20/20
	391
	23.1
	97
	89

	
	40/40
	
	32.9
	98
	91

	
	60/60
	
	43.7
	97
	91

	
	80/80
	
	54.1
	97
	91

	12.5
	20/20
	357
	23.1
	97
	91

	
	40/40
	
	33.8
	97
	90

	
	60/60
	
	45.0
	97
	91

	
	80/80
	
	55.7
	96
	90

	15.0
	20/20
	324
	22.5
	96
	90

	
	40/40
	
	33.2
	97
	91

	
	60/60
	
	44.3
	96
	90

	
	80/80
	
	55.0
	94
	89

	17.5
	20/20
	294
	21.2
	95
	90

	
	40/40
	
	31.8
	97
	89

	
	60/60
	
	42.5
	96
	88

	
	80/80
	
	52.2
	94
	88

	20.0
	20/20
	265
	19.5
	94
	89

	
	40/40
	
	29.5
	96
	87

	
	60/60
	
	39.2
	95
	87

	 
	80/80
	 
	48.1
	92
	87


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law. The ML fit for this model is identical to Model 6.



Table E.8. Model 8 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	434
	25
	84
	83

	
	40/40
	
	
	95
	86

	
	60/60
	
	
	95
	88

	
	80/80
	
	
	91
	90

	7.5
	20/20
	410
	32
	87
	87

	
	40/40
	
	
	96
	89

	
	60/60
	
	
	97
	90

	
	80/80
	
	
	92
	92

	10.0
	20/20
	381
	37
	86
	89

	
	40/40
	
	
	97
	91

	
	60/60
	
	
	97
	91

	
	80/80
	
	
	90
	91

	12.5
	20/20
	346
	39
	85
	91

	
	40/40
	
	
	95
	90

	
	60/60
	
	
	97
	91

	
	80/80
	
	
	89
	90

	15.0
	20/20
	315
	39
	83
	90

	
	40/40
	
	
	95
	91

	
	60/60
	
	
	96
	90

	
	80/80
	
	
	87
	89

	17.5
	20/20
	285
	37
	81
	90

	
	40/40
	
	
	94
	89

	
	60/60
	
	
	96
	88

	
	80/80
	
	
	86
	88

	20.0
	20/20
	256
	34
	79
	89

	
	40/40
	
	
	93
	87

	
	60/60
	
	
	95
	87

	 
	80/80
	 
	 
	85
	87


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law. The ML fit for this model is identical to Model 6.
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Table E.9. Extra Sum of Squares Difference Tests at Mutation Rate 5.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	455
	141
	4
	403
	3*

	3
	  Constant a, c1 = c2
	9
	433
	143
	7
	406
	3*

	4
	  Constant a & c
	6
	10581
	393
	10
	409
	27*

	5
	  Constant a, c & k
	3
	8635
	406
	13
	412
	21*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	10767
	347
	8
	407
	31*

	7
	 Constant k, a = 1, c1 = c2
	5
	7992
	348
	11
	410
	23*

	8
	 Constant k & c, a = 1, 
	2
	14086
	610
	14
	413
	23*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table E.10. Extra Sum of Squares Difference Tests at Mutation Rate 7.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	15
	53
	4
	403
	0

	3
	  Constant a, c1 = c2
	9
	66
	54
	7
	406
	1

	4
	  Constant a & c
	6
	10060
	298
	10
	409
	34*

	5
	  Constant a, c & k
	3
	8628
	324
	13
	412
	27*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	6301
	176
	8
	407
	36*

	7
	 Constant k, a = 1, c1 = c2
	5
	4878
	183
	11
	410
	27*

	8
	 Constant k & c, a = 1, 
	2
	11613
	445
	14
	413
	26*


Note. N = 416; * p < 0.05 that model 1 is different from this model 


Table E.11. Extra Sum of Squares Difference Tests at Mutation Rate 10.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	10
	24
	4
	403
	0

	3
	  Constant a, c1 = c2
	9
	27
	24
	7
	406
	1

	4
	  Constant a & c
	6
	9978
	268
	10
	409
	37*

	5
	  Constant a, c & k
	3
	8711
	298
	13
	412
	29*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	4740
	117
	8
	407
	41*

	7
	 Constant k, a = 1, c1 = c2
	5
	4049
	132
	11
	410
	31*

	8
	 Constant k & c, a = 1, 
	2
	10839
	391
	14
	413
	28*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table E.12. Extra Sum of Squares Difference Tests at Mutation Rate 12.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	32
	17
	4
	403
	2

	3
	  Constant a, c1 = c2
	9
	19
	17
	7
	406
	1

	4
	  Constant a & c
	6
	9312
	244
	10
	409
	38*

	5
	  Constant a, c & k
	3
	8166
	274
	13
	412
	30*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	4015
	95
	8
	407
	42*

	7
	 Constant k, a = 1, c1 = c2
	5
	3825
	119
	11
	410
	32*

	8
	 Constant k & c, a = 1, 
	2
	10081
	358
	14
	413
	28*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table E.13. Extra Sum of Squares Difference Tests at Mutation Rate 15.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	10
	15
	4
	403
	1

	3
	  Constant a, c1 = c2
	9
	10
	15
	7
	406
	1

	4
	  Constant a & c
	6
	8852
	231
	10
	409
	38*

	5
	  Constant a, c & k
	3
	7594
	254
	13
	412
	30*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	3381
	81
	8
	407
	42*

	7
	 Constant k, a = 1, c1 = c2
	5
	3484
	108
	11
	410
	32*

	8
	 Constant k & c, a = 1, 
	2
	9072
	322
	14
	413
	28*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table E.14. Extra Sum of Squares Difference Tests at Mutation Rate 17.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	3
	14
	4
	403
	0

	3
	  Constant a, c1 = c2
	9
	10
	14
	7
	406
	1

	4
	  Constant a & c
	6
	7713
	202
	10
	409
	38*

	5
	  Constant a, c & k
	3
	6552
	220
	13
	412
	30*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	3012
	73
	8
	407
	41*

	7
	 Constant k, a = 1, c1 = c2
	5
	3299
	102
	11
	410
	32*

	8
	 Constant k & c, a = 1, 
	2
	7940
	282
	14
	413
	28*


Note. N = 416; * p < 0.05 that model 1 is different from this model 

Table E.15. Extra Sum of Squares Difference Tests at Mutation Rate 20.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	3
	11
	4
	403
	0

	3
	  Constant a, c1 = c2
	9
	10
	11
	7
	406
	1

	4
	  Constant a & c
	6
	6443
	168
	10
	409
	38*

	5
	  Constant a, c & k
	3
	5515
	184
	13
	412
	30*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2744
	64
	8
	407
	43*

	7
	 Constant k, a = 1, c1 = c2
	5
	3080
	93
	11
	410
	33*

	8
	 Constant k & c, a = 1, 
	2
	6800
	241
	14
	413
	28*


Note. N = 416; * p < 0.05 that model 1 is different from this model 


Table E.16. Akaike Information Criteria (AIC) for Quantitative Law of Effect Fits
	
	
	
	Mutation Rate

	Model
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	16
	2063
	1671
	1341
	1186
	1141
	1104
	1001

	2
	  c1 = c2
	12
	2069
	1664
	1335
	1186
	1136
	1097
	994

	3
	  Constant a, c1 = c2
	9
	2072
	1666
	1335
	1180
	1132
	1095
	993

	4
	  Constant a & c
	6
	2490
	2375
	2330
	2292
	2269
	2213
	2136

	5
	  Constant a, c & k
	3
	2500
	2407
	2372
	2337
	2306
	2246
	2172

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2440
	2159
	1988
	1903
	1836
	1790
	1740

	7
	 Constant k, a = 1, c1 = c2
	5
	2439
	2171
	2036
	1992
	1952
	1927
	1890

	8
	 Constant k & c, a = 1
	2
	2669
	2538
	2484
	2447
	2403
	2349
	2282



Table E.17. Akaike Information Criteria (AIC) for Matching Law Fits
	
	
	
	Mutation Rate

	Model(s)
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	12
	-1100
	-1271
	-1351
	-1398
	-1428
	-1453
	-1504

	2
	  c1 = c2
	8
	-1103
	-1278
	-1358
	-1401
	-1435
	-1460
	-1511

	3, 4, 5
	  Constant a & c1 = c2
	2
	-1106
	-1279
	-1364
	-1412
	-1443
	-1467
	-1518

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	

	6, 7, 8
	  a = 1, c1 = c2
	0
	-671
	-705
	-725
	-748
	-762
	-777
	-788





Table E.18. Bayes Information Criteria (BIC) for Quantitative Law of Effect Fits
	
	
	
	Mutation Rate

	Model
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	16
	2128
	1735
	1406
	1251
	1205
	1169
	1065

	2
	  c1 = c2
	12
	2117
	1712
	1383
	1234
	1184
	1146
	1042

	3
	  Constant a, c1 = c2
	9
	2108
	1702
	1372
	1217
	1168
	1132
	1030

	4
	  Constant a & c
	6
	2514
	2399
	2354
	2316
	2293
	2237
	2161

	5
	  Constant a, c & k
	3
	2512
	2419
	2385
	2349
	2318
	2258
	2184

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2472
	2191
	2020
	1935
	1868
	1822
	1772

	7
	 Constant k, a = 1, c1 = c2
	5
	2459
	2191
	2056
	2012
	1972
	1948
	1910

	8
	 Constant k & c, a = 1
	2
	2677
	2546
	2492
	2455
	2411
	2357
	2290



Table E.19. Bayes Information Criteria (BIC) for Matching Law Fits
	
	
	
	Mutation Rate

	Model(s)
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	12
	-1060
	-1230
	-1311
	-1358
	-1388
	-1413
	-1464

	2
	  c1 = c2
	8
	-1077
	-1251
	-1331
	-1374
	-1408
	-1433
	-1484

	3, 4, 5
	  Constant a & c1 = c2
	2
	-1099
	-1272
	-1357
	-1406
	-1436
	-1460
	-1511

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	
	

	6, 7, 8
	  a = 1, c1 = c2
	0
	-671
	-705
	-725
	-748
	-762
	-777
	-788






Table E.20. Quadratic Fit to Changeover Behaviors

	Mutation Rate
	Reinforcer Magnitude
	a
	b
	c
	CMax
	CΔ
	%VAF

	5.0
	20/20
	0.0
	0.0
	0.1
	0.1
	0.0
	0

	
	40/40
	-0.1
	0.1
	0.1
	0.1
	0.0
	0

	
	60/60
	-0.2
	0.2
	0.1
	0.2
	0.0
	1

	
	80/80
	-0.4
	0.3
	0.1
	0.2
	0.1
	2

	7.5
	20/20
	-0.6
	0.6
	0.1
	0.3
	0.2
	2

	
	40/40
	-0.7
	0.7
	0.1
	0.3
	0.2
	3

	
	60/60
	-0.7
	0.6
	0.2
	0.4
	0.1
	3

	
	80/80
	-1.2
	1.2
	0.2
	0.5
	0.3
	5

	10.0
	20/20
	-1.2
	1.2
	0.2
	0.5
	0.3
	4

	
	40/40
	-1.7
	1.6
	0.2
	0.6
	0.4
	7

	
	60/60
	-1.5
	1.5
	0.3
	0.6
	0.4
	5

	
	80/80
	-1.7
	1.7
	0.4
	0.8
	0.4
	5

	12.5
	20/20
	-2.1
	2.1
	0.2
	0.8
	0.5
	7

	
	40/40
	-2.0
	2.0
	0.3
	0.8
	0.5
	5

	
	60/60
	-2.5
	2.6
	0.3
	0.9
	0.7
	6

	
	80/80
	-3.2
	3.3
	0.3
	1.1
	0.8
	7

	15.0
	20/20
	-3.2
	3.2
	0.3
	1.1
	0.8
	8

	
	40/40
	-3.5
	3.6
	0.3
	1.2
	0.9
	9

	
	60/60
	-3.1
	3.1
	0.5
	1.2
	0.8
	6

	
	80/80
	-4.0
	4.0
	0.5
	1.5
	1.0
	6

	17.5
	20/20
	-4.1
	4.0
	0.4
	1.4
	1.0
	9

	
	40/40
	-4.0
	3.9
	0.5
	1.4
	1.0
	7

	
	60/60
	-4.2
	4.2
	0.6
	1.6
	1.0
	6

	
	80/80
	-4.4
	4.4
	0.7
	1.8
	1.1
	5

	20.0
	20/20
	-5.3
	5.4
	0.4
	1.7
	1.4
	9

	
	40/40
	-4.7
	4.7
	0.6
	1.8
	1.2
	6

	
	60/60
	-5.2
	5.2
	0.6
	1.9
	1.3
	6

	 
	80/80
	-5.7
	5.8
	0.8
	2.3
	1.5
	5


Note. %VAF = Percentage of Variance Accounted For.


Table E.21. Quadratic-exponential Fit to Changeover Behaviors

	Mutation Rate
	Reinforcer Magnitude
	a
	b
	c
	d
	CMax
	CΔ%
	%VAF

	5.0
	20/20
	1.1
	-1.1
	1.2
	0.037
	1.2
	-22%
	95

	
	40/40
	0.1
	-0.1
	1.0
	0.036
	1.0
	-1%
	95

	
	60/60
	0.4
	-0.3
	1.0
	0.033
	1.0
	-3%
	98

	
	80/80
	0.0
	-0.2
	1.4
	0.035
	1.4
	-6%
	97

	7.5
	20/20
	1.3
	-1.3
	2.0
	0.032
	2.0
	-15%
	97

	
	40/40
	0.8
	-0.8
	1.9
	0.031
	1.9
	-11%
	97

	
	60/60
	1.4
	-1.5
	2.4
	0.032
	2.4
	-17%
	96

	
	80/80
	2.4
	-2.1
	2.9
	0.033
	2.9
	-15%
	97

	10.0
	20/20
	0.6
	-0.7
	2.9
	0.030
	2.9
	-7%
	96

	
	40/40
	1.5
	-1.6
	3.3
	0.032
	3.3
	-13%
	96

	
	60/60
	1.0
	-1.0
	3.2
	0.029
	3.2
	-7%
	97

	
	80/80
	2.1
	-2.4
	4.2
	0.029
	4.2
	-17%
	97

	12.5
	20/20
	2.0
	-1.8
	4.0
	0.028
	4.0
	-11%
	97

	
	40/40
	1.5
	-1.5
	4.1
	0.028
	4.1
	-9%
	97

	
	60/60
	3.5
	-3.2
	4.8
	0.029
	4.8
	-15%
	97

	
	80/80
	3.6
	-3.4
	5.7
	0.029
	5.7
	-14%
	97

	15.0
	20/20
	2.5
	-2.4
	5.3
	0.028
	5.3
	-11%
	96

	
	40/40
	3.1
	-3.0
	5.3
	0.026
	5.3
	-14%
	97

	
	60/60
	0.7
	-0.9
	5.4
	0.026
	5.4
	-5%
	97

	
	80/80
	0.6
	-0.6
	6.2
	0.026
	6.2
	-2%
	96

	17.5
	20/20
	3.4
	-3.3
	6.1
	0.025
	6.1
	-13%
	96

	
	40/40
	2.2
	-2.1
	6.2
	0.025
	6.2
	-9%
	96

	
	60/60
	4.1
	-4.3
	7.2
	0.025
	7.2
	-16%
	96

	
	80/80
	5.9
	-6.4
	8.5
	0.024
	8.5
	-20%
	96

	20.0
	20/20
	2.8
	-2.8
	7.3
	0.025
	7.3
	-9%
	96

	
	40/40
	1.7
	-1.6
	7.1
	0.024
	7.1
	-5%
	95

	
	60/60
	4.0
	-3.9
	8.2
	0.024
	8.2
	-12%
	95

	 
	80/80
	3.7
	-3.6
	9.2
	0.024
	9.2
	-9%
	96


Note. %VAF = Percentage of Variance Accounted For.

[bookmark: _Toc536370718]
Appendix F: Experiment 1 Fitting Measures of the Exponential-Clone-Pheno-Gaussian Creature Type

Table F.1. Model 1 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	
	%VAF

	
	
	k
	c1
	c2
	a
	QLOE
	ML

	5.0
	20/20
	533
	10.2
	10.8
	0.71
	92
	94

	
	40/40
	529
	13.9
	14.6
	0.73
	93
	95

	
	60/60
	523
	17.5
	18.0
	0.73
	96
	97

	
	80/80
	483
	17.9
	18.9
	0.74
	95
	97

	7.5
	20/20
	502
	13.4
	14.6
	0.76
	95
	97

	
	40/40
	491
	18.2
	19.1
	0.77
	96
	97

	
	60/60
	446
	18.2
	19.4
	0.76
	97
	98

	
	80/80
	434
	21.3
	21.1
	0.76
	98
	99

	10.0
	20/20
	476
	15.8
	16.6
	0.77
	96
	98

	
	40/40
	442
	19.4
	19.5
	0.78
	98
	99

	
	60/60
	416
	21.3
	21.9
	0.78
	98
	99

	
	80/80
	372
	20.8
	21.1
	0.78
	98
	99

	12.5
	20/20
	471
	19.6
	20.3
	0.78
	98
	99

	
	40/40
	413
	20.6
	21.7
	0.79
	98
	99

	
	60/60
	378
	21.9
	22.1
	0.78
	98
	99

	
	80/80
	338
	20.3
	20.8
	0.78
	99
	99

	15.0
	20/20
	442
	20.4
	21.2
	0.79
	99
	99

	
	40/40
	404
	22.9
	23.8
	0.79
	99
	99

	
	60/60
	339
	20.3
	21.0
	0.78
	99
	99

	
	80/80
	304
	19.4
	19.8
	0.78
	99
	99

	17.5
	20/20
	429
	22.4
	22.4
	0.79
	99
	99

	
	40/40
	370
	21.7
	22.8
	0.79
	99
	99

	
	60/60
	322
	21.6
	21.9
	0.79
	99
	100

	
	80/80
	288
	19.3
	19.3
	0.77
	99
	100

	20.0
	20/20
	417
	23.9
	23.7
	0.79
	100
	100

	
	40/40
	346
	21.5
	22.0
	0.78
	99
	99

	
	60/60
	300
	21.1
	20.8
	0.79
	99
	100

	 
	80/80
	271
	18.7
	18.8
	0.76
	99
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law

Table F.2. Model 2 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	531
	10.7
	0.72
	91
	94

	
	40/40
	526
	14.4
	0.73
	92
	95

	
	60/60
	522
	17.8
	0.74
	96
	97

	
	80/80
	480
	18.6
	0.75
	95
	97

	7.5
	20/20
	499
	14.4
	0.77
	95
	97

	
	40/40
	489
	18.9
	0.77
	96
	97

	
	60/60
	444
	19.1
	0.77
	97
	98

	
	80/80
	434
	21.2
	0.76
	98
	99

	10.0
	20/20
	475
	16.4
	0.77
	96
	98

	
	40/40
	442
	19.4
	0.78
	98
	99

	
	60/60
	415
	21.6
	0.78
	98
	99

	
	80/80
	373
	20.9
	0.78
	98
	99

	12.5
	20/20
	471
	20.1
	0.78
	98
	99

	
	40/40
	412
	21.5
	0.79
	98
	99

	
	60/60
	378
	22.0
	0.78
	98
	99

	
	80/80
	337
	20.6
	0.78
	99
	99

	15.0
	20/20
	442
	21.0
	0.79
	99
	99

	
	40/40
	404
	23.6
	0.79
	99
	99

	
	60/60
	338
	20.8
	0.79
	99
	99

	
	80/80
	304
	19.6
	0.78
	99
	99

	17.5
	20/20
	429
	22.4
	0.79
	99
	99

	
	40/40
	370
	22.7
	0.79
	99
	99

	
	60/60
	322
	21.8
	0.79
	99
	100

	
	80/80
	288
	19.3
	0.77
	99
	100

	20.0
	20/20
	417
	23.8
	0.79
	100
	100

	
	40/40
	346
	21.9
	0.78
	99
	99

	
	60/60
	300
	21.0
	0.79
	99
	100

	 
	80/80
	271
	18.8
	0.76
	99
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table F.3. Model 3 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	526
	10.9
	0.73
	91
	94

	
	40/40
	525
	14.4
	
	92
	95

	
	60/60
	524
	17.8
	
	96
	97

	
	80/80
	487
	18.4
	
	95
	97

	7.5
	20/20
	500
	14.4
	0.76
	95
	97

	
	40/40
	492
	18.7
	
	96
	97

	
	60/60
	444
	19.1
	
	97
	98

	
	80/80
	429
	21.3
	
	98
	99

	10.0
	20/20
	472
	16.5
	0.78
	95
	98

	
	40/40
	444
	19.4
	
	98
	99

	
	60/60
	416
	21.6
	
	98
	99

	
	80/80
	373
	20.9
	
	98
	99

	12.5
	20/20
	470
	20.1
	0.79
	98
	99

	
	40/40
	417
	21.3
	
	98
	99

	
	60/60
	378
	22.0
	
	98
	99

	
	80/80
	334
	20.7
	
	99
	99

	15.0
	20/20
	444
	20.9
	0.79
	99
	99

	
	40/40
	407
	23.5
	
	99
	99

	
	60/60
	338
	20.8
	
	99
	99

	
	80/80
	301
	19.7
	
	99
	99

	17.5
	20/20
	431
	22.4
	0.78
	99
	99

	
	40/40
	373
	22.6
	
	99
	99

	
	60/60
	326
	21.7
	
	99
	100

	
	80/80
	281
	19.5
	
	99
	100

	20.0
	20/20
	423
	23.7
	0.78
	100
	100

	
	40/40
	348
	21.8
	
	99
	99

	
	60/60
	305
	20.9
	
	99
	100

	 
	80/80
	263
	18.9
	 
	99
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table F.4. Model 4 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	518
	15.9
	0.73
	79
	94

	
	40/40
	
	14.7
	
	92
	95

	
	60/60
	
	15.9
	
	96
	97

	
	80/80
	
	16.1
	
	88
	96

	7.5
	20/20
	471
	19.0
	0.76
	82
	97

	
	40/40
	
	17.6
	
	95
	97

	
	60/60
	
	18.7
	
	96
	98

	
	80/80
	
	20.9
	
	92
	98

	10.0
	20/20
	431
	20.7
	0.77
	83
	98

	
	40/40
	
	19.8
	
	97
	99

	
	60/60
	
	21.0
	
	97
	99

	
	80/80
	
	22.5
	
	90
	98

	12.5
	20/20
	405
	23.0
	0.78
	85
	99

	
	40/40
	
	21.1
	
	97
	99

	
	60/60
	
	23.6
	
	98
	99

	
	80/80
	
	24.7
	
	92
	99

	15.0
	20/20
	378
	23.7
	0.78
	85
	99

	
	40/40
	
	21.7
	
	98
	99

	
	60/60
	
	23.8
	
	98
	99

	
	80/80
	
	25.5
	
	92
	99

	17.5
	20/20
	360
	24.1
	0.78
	86
	99

	
	40/40
	
	22.0
	
	98
	99

	
	60/60
	
	24.5
	
	99
	99

	
	80/80
	
	26.4
	
	92
	99

	20.0
	20/20
	344
	24.3
	0.78
	87
	100

	
	40/40
	
	22.7
	
	98
	99

	
	60/60
	
	25.1
	
	99
	100

	 
	80/80
	 
	26.2
	 
	92
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table F.5. Model 5 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	514
	15.6
	0.73
	80
	94

	
	40/40
	
	
	
	91
	95

	
	60/60
	
	
	
	96
	97

	
	80/80
	
	
	
	87
	97

	7.5
	20/20
	464
	18.7
	0.76
	82
	97

	
	40/40
	
	
	
	95
	97

	
	60/60
	
	
	
	96
	98

	
	80/80
	
	
	
	91
	99

	10.0
	20/20
	425
	20.5
	0.78
	82
	98

	
	40/40
	
	
	
	97
	99

	
	60/60
	
	
	
	97
	99

	
	80/80
	
	
	
	90
	99

	12.5
	20/20
	399
	22.6
	0.79
	85
	99

	
	40/40
	
	
	
	96
	99

	
	60/60
	
	
	
	98
	99

	
	80/80
	
	
	
	91
	99

	15.0
	20/20
	373
	23.3
	0.79
	85
	99

	
	40/40
	
	
	
	97
	99

	
	60/60
	
	
	
	98
	99

	
	80/80
	
	
	
	91
	99

	17.5
	20/20
	353
	23.7
	0.78
	86
	99

	
	40/40
	
	
	
	97
	99

	
	60/60
	
	
	
	99
	100

	
	80/80
	
	
	
	91
	100

	20.0
	20/20
	336
	23.8
	0.78
	86
	100

	
	40/40
	
	
	
	97
	99

	
	60/60
	
	
	
	99
	100

	 
	80/80
	 
	 
	 
	91
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table F.6. Model 6 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	442
	16.1
	86
	81

	
	40/40
	429
	21.4
	87
	83

	
	60/60
	405
	24.4
	92
	85

	
	80/80
	382
	26.3
	91
	87

	7.5
	20/20
	422
	20.6
	92
	89

	
	40/40
	404
	26.3
	93
	89

	
	60/60
	363
	26.9
	94
	90

	
	80/80
	336
	27.9
	95
	89

	10.0
	20/20
	399
	23.3
	92
	91

	
	40/40
	359
	25.6
	96
	92

	
	60/60
	330
	27.9
	96
	91

	
	80/80
	298
	27.3
	96
	91

	12.5
	20/20
	383
	26.3
	96
	91

	
	40/40
	336
	27.5
	96
	92

	
	60/60
	301
	27.8
	97
	91

	
	80/80
	268
	26.3
	97
	92

	15.0
	20/20
	360
	27.1
	97
	92

	
	40/40
	321
	29.5
	98
	92

	
	60/60
	272
	26.4
	97
	92

	
	80/80
	242
	24.6
	97
	91

	17.5
	20/20
	342
	28.4
	97
	92

	
	40/40
	295
	28.4
	98
	92

	
	60/60
	260
	27.3
	97
	93

	
	80/80
	224
	24.2
	97
	91

	20.0
	20/20
	329
	29.8
	98
	92

	
	40/40
	273
	27.2
	97
	92

	
	60/60
	238
	25.6
	98
	92

	 
	80/80
	207
	22.8
	97
	89


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table F.7. Model 7 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	419
	13.5
	86
	81

	
	40/40
	
	20.0
	87
	83

	
	60/60
	
	26.7
	92
	85

	
	80/80
	
	33.0
	90
	87

	7.5
	20/20
	388
	15.9
	91
	89

	
	40/40
	
	23.6
	93
	89

	
	60/60
	
	31.8
	94
	90

	
	80/80
	
	39.5
	94
	89

	10.0
	20/20
	353
	16.4
	91
	91

	
	40/40
	
	24.6
	96
	92

	
	60/60
	
	33.1
	96
	91

	
	80/80
	
	40.7
	95
	91

	12.5
	20/20
	328
	17.1
	95
	91

	
	40/40
	
	25.9
	96
	92

	
	60/60
	
	34.5
	97
	91

	
	80/80
	
	42.8
	95
	92

	15.0
	20/20
	305
	17.2
	96
	92

	
	40/40
	
	25.9
	98
	92

	
	60/60
	
	35.1
	96
	92

	
	80/80
	
	43.1
	95
	91

	17.5
	20/20
	286
	17.3
	96
	92

	
	40/40
	
	26.1
	98
	92

	
	60/60
	
	34.4
	97
	93

	
	80/80
	
	43.0
	95
	91

	20.0
	20/20
	267
	16.7
	96
	92

	
	40/40
	
	25.6
	97
	92

	
	60/60
	
	33.9
	97
	92

	 
	80/80
	 
	41.7
	94
	89


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law. The ML fit for this model is identical to Model 6.


Table F.8. Model 8 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	412
	22
	75
	81

	
	40/40
	
	
	86
	83

	
	60/60
	
	
	91
	85

	
	80/80
	
	
	83
	87

	7.5
	20/20
	376
	26
	79
	89

	
	40/40
	
	
	92
	89

	
	60/60
	
	
	93
	90

	
	80/80
	
	
	87
	89

	10.0
	20/20
	342
	27
	78
	91

	
	40/40
	
	
	95
	92

	
	60/60
	
	
	95
	91

	
	80/80
	
	
	87
	91

	12.5
	20/20
	317
	29
	83
	91

	
	40/40
	
	
	94
	92

	
	60/60
	
	
	96
	91

	
	80/80
	
	
	89
	92

	15.0
	20/20
	294
	29
	83
	92

	
	40/40
	
	
	96
	92

	
	60/60
	
	
	96
	92

	
	80/80
	
	
	89
	91

	17.5
	20/20
	275
	29
	84
	92

	
	40/40
	
	
	96
	92

	
	60/60
	
	
	97
	93

	
	80/80
	
	
	89
	91

	20.0
	20/20
	257
	29
	84
	92

	
	40/40
	
	
	95
	92

	
	60/60
	
	
	97
	92

	 
	80/80
	 
	 
	89
	89


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law. The ML fit for this model is identical to Model 6.



Running Head: ALGORITHMIC MODIFICATIONS TO THE ETBD	1


Table F.9. Extra Sum of Squares Difference Tests at Mutation Rate 5.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	1688
	365
	4
	403
	5*

	3
	  Constant a, c1 = c2
	9
	978
	362
	7
	406
	3*

	4
	  Constant a & c
	6
	12604
	651
	10
	409
	19*

	5
	  Constant a, c & k
	3
	10122
	660
	13
	412
	15*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	13600
	612
	8
	407
	22*

	7
	 Constant k, a = 1, c1 = c2
	5
	10369
	620
	11
	410
	17*

	8
	 Constant k & c, a = 1, 
	2
	16658
	904
	14
	413
	18*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table F.10. Extra Sum of Squares Difference Tests at Mutation Rate 7.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	1454
	180
	4
	403
	8*

	3
	  Constant a, c1 = c2
	9
	825
	178
	7
	406
	5*

	4
	  Constant a & c
	6
	11958
	455
	10
	409
	26*

	5
	  Constant a, c & k
	3
	10028
	478
	13
	412
	21*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	8022
	321
	8
	407
	25*

	7
	 Constant k, a = 1, c1 = c2
	5
	6625
	340
	11
	410
	19*

	8
	 Constant k & c, a = 1, 
	2
	13621
	623
	14
	413
	22*


Note. N = 416; * p < 0.05 that model 1 is different from this model 


Table F.11. Extra Sum of Squares Difference Tests at Mutation Rate 10.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	347
	115
	4
	403
	3*

	3
	  Constant a, c1 = c2
	9
	218
	115
	7
	406
	2

	4
	  Constant a & c
	6
	9997
	354
	10
	409
	28*

	5
	  Constant a, c & k
	3
	8371
	373
	13
	412
	22*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	5766
	224
	8
	407
	26*

	7
	 Constant k, a = 1, c1 = c2
	5
	5056
	245
	11
	410
	21*

	8
	 Constant k & c, a = 1, 
	2
	11039
	483
	14
	413
	23*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table F.12. Extra Sum of Squares Difference Tests at Mutation Rate 12.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	373
	71
	4
	403
	5*

	3
	  Constant a, c1 = c2
	9
	213
	70
	7
	406
	3*

	4
	  Constant a & c
	6
	9995
	310
	10
	409
	32*

	5
	  Constant a, c & k
	3
	8469
	333
	13
	412
	25*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	3694
	139
	8
	407
	27*

	7
	 Constant k, a = 1, c1 = c2
	5
	3895
	170
	11
	410
	23*

	8
	 Constant k & c, a = 1, 
	2
	9829
	399
	14
	413
	25*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table F.13. Extra Sum of Squares Difference Tests at Mutation Rate 15.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	302
	39
	4
	403
	8*

	3
	  Constant a, c1 = c2
	9
	175
	39
	7
	406
	4*

	4
	  Constant a & c
	6
	9092
	258
	10
	409
	35*

	5
	  Constant a, c & k
	3
	7637
	277
	13
	412
	28*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	3034
	96
	8
	407
	32*

	7
	 Constant k, a = 1, c1 = c2
	5
	3468
	129
	11
	410
	27*

	8
	 Constant k & c, a = 1, 
	2
	8788
	333
	14
	413
	26*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table F.14. Extra Sum of Squares Difference Tests at Mutation Rate 17.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	141
	27
	4
	403
	5*

	3
	  Constant a, c1 = c2
	9
	86
	27
	7
	406
	3*

	4
	  Constant a & c
	6
	7600
	211
	10
	409
	36*

	5
	  Constant a, c & k
	3
	6548
	231
	13
	412
	28*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2576
	76
	8
	407
	34*

	7
	 Constant k, a = 1, c1 = c2
	5
	2991
	105
	11
	410
	28*

	8
	 Constant k & c, a = 1, 
	2
	7454
	277
	14
	413
	27*


Note. N = 416; * p < 0.05 that model 1 is different from this model 

Table F.15. Extra Sum of Squares Difference Tests at Mutation Rate 20.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	56
	17
	4
	403
	3*

	3
	  Constant a, c1 = c2
	9
	39
	17
	7
	406
	2*

	4
	  Constant a & c
	6
	6924
	186
	10
	409
	37*

	5
	  Constant a, c & k
	3
	5871
	202
	13
	412
	29*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2230
	61
	8
	407
	37*

	7
	 Constant k, a = 1, c1 = c2
	5
	2889
	94
	11
	410
	31*

	8
	 Constant k & c, a = 1, 
	2
	6838
	248
	14
	413
	28*


Note. N = 416; * p < 0.05 that model 1 is different from this model 


Table F.16. Akaike Information Criteria (AIC) for Quantitative Law of Effect Fits
	
	
	
	Mutation Rate

	Model
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	16
	2453
	2144
	1980
	1768
	1514
	1362
	1195

	2
	  c1 = c2
	12
	2465
	2171
	1985
	1782
	1539
	1377
	1201

	3
	  Constant a, c1 = c2
	9
	2459
	2164
	1980
	1776
	1533
	1372
	1198

	4
	  Constant a & c
	6
	2700
	2551
	2447
	2392
	2315
	2231
	2179

	5
	  Constant a, c & k
	3
	2703
	2569
	2466
	2418
	2341
	2267
	2210

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2676
	2408
	2258
	2059
	1904
	1807
	1714

	7
	 Constant k, a = 1, c1 = c2
	5
	2679
	2429
	2293
	2141
	2025
	1940
	1895

	8
	 Constant k & c, a = 1
	2
	2833
	2678
	2572
	2492
	2418
	2341
	2295



Table F.17. Akaike Information Criteria (AIC) for Matching Law Fits
	
	
	
	Mutation Rate

	Model(s)
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	12
	-909
	-991
	-1056
	-1111
	-1192
	-1266
	-1329

	2
	  c1 = c2
	8
	-911
	-987
	-1060
	-1114
	-1192
	-1264
	-1335

	3, 4, 5
	  Constant a & c
	2
	-922
	-998
	-1072
	-1125
	-1203
	-1270
	-1336

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	

	6, 7, 8
	  a = 1, c1 = c2
	0
	-651
	-679
	-695
	-701
	-710
	-718
	-729





Table F.18. Bayes Information Criteria (BIC) for Quantitative Law of Effect Fits
	
	
	
	Mutation Rate

	Model
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	16
	2518
	2208
	2045
	1832
	1578
	1427
	1260

	2
	  c1 = c2
	12
	2513
	2219
	2033
	1830
	1587
	1425
	1249

	3
	  Constant a, c1 = c2
	9
	2495
	2201
	2017
	1812
	1570
	1409
	1234

	4
	  Constant a & c
	6
	2724
	2575
	2471
	2416
	2339
	2255
	2203

	5
	  Constant a, c & k
	3
	2715
	2581
	2478
	2430
	2353
	2279
	2222

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2708
	2441
	2290
	2092
	1936
	1839
	1746

	7
	 Constant k, a = 1, c1 = c2
	5
	2699
	2449
	2313
	2161
	2045
	1960
	1915

	8
	 Constant k & c, a = 1
	2
	2841
	2686
	2580
	2500
	2426
	2349
	2303



Table F.19. Bayes Information Criteria (BIC) for Matching Law Fits
	
	
	
	Mutation Rate

	Model(s)
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	12
	-868
	-951
	-1016
	-1070
	-1152
	-1226
	-1289

	2
	  c1 = c2
	8
	-884
	-960
	-1033
	-1088
	-1165
	-1238
	-1308

	3, 4, 5
	  Constant a & c
	2
	-915
	-991
	-1065
	-1118
	-1196
	-1264
	-1329

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	
	

	6, 7, 8
	  a = 1, c1 = c2
	0
	-651
	-679
	-695
	-701
	-710
	-718
	-729






Table F.20. Quadratic Fit to Changeover Behaviors

	Mutation Rate
	Reinforcer Magnitude
	a
	b
	c
	CMax
	CΔ
	%VAF

	5.0
	20/20
	0.1
	-0.1
	0.0
	0.0
	0.0
	2

	
	40/40
	0.1
	-0.1
	0.0
	0.0
	0.0
	4

	
	60/60
	0.0
	0.0
	0.0
	0.0
	0.0
	0

	
	80/80
	0.0
	0.0
	0.0
	0.0
	0.0
	1

	7.5
	20/20
	0.0
	-0.1
	0.1
	0.0
	0.0
	1

	
	40/40
	0.1
	-0.1
	0.1
	0.0
	0.0
	3

	
	60/60
	0.1
	-0.1
	0.1
	0.0
	0.0
	1

	
	80/80
	-0.1
	0.1
	0.0
	0.1
	0.0
	0

	10.0
	20/20
	0.0
	0.0
	0.1
	0.1
	0.0
	1

	
	40/40
	-0.1
	0.1
	0.1
	0.1
	0.0
	1

	
	60/60
	0.0
	0.0
	0.1
	0.1
	0.0
	0

	
	80/80
	-0.1
	0.1
	0.1
	0.1
	0.0
	0

	12.5
	20/20
	-0.2
	0.2
	0.1
	0.1
	0.0
	2

	
	40/40
	-0.3
	0.3
	0.1
	0.2
	0.1
	3

	
	60/60
	-0.3
	0.3
	0.1
	0.2
	0.1
	2

	
	80/80
	-0.3
	0.3
	0.1
	0.2
	0.1
	1

	15.0
	20/20
	-0.4
	0.4
	0.1
	0.2
	0.1
	3

	
	40/40
	-0.5
	0.5
	0.1
	0.2
	0.1
	4

	
	60/60
	-0.5
	0.4
	0.2
	0.3
	0.1
	2

	
	80/80
	-0.6
	0.6
	0.2
	0.3
	0.2
	2

	17.5
	20/20
	-0.8
	0.8
	0.1
	0.3
	0.2
	4

	
	40/40
	-0.8
	0.7
	0.2
	0.3
	0.2
	4

	
	60/60
	-0.7
	0.7
	0.2
	0.4
	0.1
	3

	
	80/80
	-0.9
	0.9
	0.2
	0.5
	0.2
	2

	20.0
	20/20
	-1.1
	1.1
	0.1
	0.4
	0.3
	5

	
	40/40
	-1.2
	1.0
	0.2
	0.4
	0.2
	5

	
	60/60
	-1.6
	1.6
	0.1
	0.5
	0.4
	6

	 
	80/80
	-1.5
	1.5
	0.2
	0.6
	0.4
	4


Note. %VAF = Percentage of Variance Accounted For.


Table F.21. Quadratic-exponential Fit to Changeover Behaviors

	Mutation Rate
	Reinforcer Magnitude
	a
	b
	c
	d
	CMax
	CΔ%
	%VAF

	5.0
	20/20
	0.6
	-0.7
	0.5
	0.069
	0.5
	-37%
	93

	
	40/40
	0.2
	-0.2
	0.3
	0.056
	0.3
	-8%
	95

	
	60/60
	0.6
	-0.4
	0.4
	0.057
	0.4
	-19%
	97

	
	80/80
	0.5
	-0.6
	0.6
	0.061
	0.6
	-24%
	96

	7.5
	20/20
	1.1
	-1.2
	0.9
	0.060
	0.9
	-34%
	97

	
	40/40
	0.5
	-0.7
	0.8
	0.054
	0.8
	-25%
	97

	
	60/60
	0.8
	-0.8
	0.8
	0.051
	0.8
	-26%
	96

	
	80/80
	-0.5
	0.5
	0.8
	0.052
	0.9
	19%
	96

	10.0
	20/20
	1.0
	-1.1
	1.5
	0.060
	1.5
	-22%
	98

	
	40/40
	0.8
	-0.8
	1.3
	0.055
	1.3
	-16%
	96

	
	60/60
	1.2
	-1.3
	1.3
	0.046
	1.3
	-25%
	97

	
	80/80
	2.2
	-2.3
	2.2
	0.057
	2.2
	-27%
	97

	12.5
	20/20
	0.7
	-0.9
	1.7
	0.050
	1.7
	-17%
	98

	
	40/40
	0.5
	-0.7
	1.9
	0.053
	1.9
	-11%
	98

	
	60/60
	1.6
	-2.2
	2.6
	0.053
	2.6
	-26%
	99

	
	80/80
	1.8
	-1.9
	2.7
	0.050
	2.7
	-18%
	98

	15.0
	20/20
	2.2
	-2.0
	2.7
	0.053
	2.7
	-16%
	98

	
	40/40
	2.8
	-2.8
	2.7
	0.048
	2.7
	-26%
	98

	
	60/60
	2.1
	-2.1
	3.1
	0.049
	3.1
	-18%
	98

	
	80/80
	1.6
	-1.3
	2.9
	0.044
	2.9
	-10%
	99

	17.5
	20/20
	1.6
	-1.7
	2.9
	0.045
	2.9
	-15%
	98

	
	40/40
	1.9
	-1.7
	3.2
	0.046
	3.2
	-12%
	98

	
	60/60
	2.4
	-2.7
	3.8
	0.046
	3.8
	-20%
	98

	
	80/80
	3.6
	-3.2
	4.3
	0.044
	4.3
	-16%
	98

	20.0
	20/20
	1.9
	-2.2
	3.7
	0.043
	3.7
	-16%
	98

	
	40/40
	1.4
	-1.9
	4.1
	0.044
	4.1
	-15%
	98

	
	60/60
	0.8
	-0.7
	4.0
	0.042
	4.0
	-4%
	98

	 
	80/80
	2.6
	-2.3
	4.7
	0.041
	4.7
	-10%
	98


Note. %VAF = Percentage of Variance Accounted For.


[bookmark: _Toc536370719]Appendix G: Experiment 1 Fitting Measures of the Linear-Bitwise-Bitflip Creature Type

Table G.1. Model 1 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	
	%VAF

	
	
	k
	c1
	c2
	a
	QLOE
	ML

	5.0
	20/20
	422
	7.5
	7.4
	0.76
	98
	99

	
	40/40
	329
	8.1
	8.3
	0.77
	99
	99

	
	60/60
	248
	6.8
	6.7
	0.74
	99
	99

	
	80/80
	212
	7.1
	7.1
	0.73
	98
	98

	7.5
	20/20
	431
	12.4
	12.1
	0.80
	99
	99

	
	40/40
	335
	13.1
	13.0
	0.80
	99
	100

	
	60/60
	254
	11.1
	11.2
	0.78
	99
	99

	
	80/80
	222
	11.8
	11.8
	0.76
	99
	99

	10.0
	20/20
	440
	17.8
	17.8
	0.82
	100
	100

	
	40/40
	341
	17.9
	17.9
	0.81
	100
	100

	
	60/60
	264
	15.9
	16.0
	0.79
	100
	99

	
	80/80
	235
	16.7
	16.7
	0.76
	99
	100

	12.5
	20/20
	448
	22.1
	22.2
	0.82
	100
	100

	
	40/40
	349
	23.0
	22.9
	0.81
	100
	100

	
	60/60
	271
	20.5
	20.3
	0.79
	100
	100

	
	80/80
	245
	22.3
	22.5
	0.78
	100
	100

	15.0
	20/20
	454
	27.5
	27.3
	0.83
	100
	100

	
	40/40
	355
	28.4
	28.4
	0.82
	100
	100

	
	60/60
	275
	25.3
	25.4
	0.80
	100
	100

	
	80/80
	244
	26.3
	26.2
	0.78
	100
	100

	17.5
	20/20
	454
	31.7
	31.6
	0.83
	100
	100

	
	40/40
	357
	32.7
	32.5
	0.82
	100
	100

	
	60/60
	282
	29.7
	29.8
	0.80
	100
	100

	
	80/80
	250
	30.5
	30.6
	0.78
	100
	99

	20.0
	20/20
	462
	36.1
	36.2
	0.82
	100
	100

	
	40/40
	359
	37.3
	37.5
	0.82
	100
	100

	
	60/60
	291
	33.9
	34.0
	0.79
	100
	99

	 
	80/80
	260
	33.5
	33.7
	0.75
	99
	98


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law


Table G.2. Model 2 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	422
	7.5
	0.76
	98
	99

	
	40/40
	329
	8.2
	0.77
	98
	99

	
	60/60
	248
	6.8
	0.74
	99
	99

	
	80/80
	212
	7.1
	0.73
	98
	98

	7.5
	20/20
	431
	12.3
	0.80
	99
	99

	
	40/40
	335
	13.0
	0.80
	99
	100

	
	60/60
	254
	11.2
	0.78
	99
	99

	
	80/80
	222
	11.8
	0.76
	99
	99

	10.0
	20/20
	440
	17.8
	0.82
	100
	100

	
	40/40
	341
	17.9
	0.81
	100
	100

	
	60/60
	264
	15.9
	0.79
	100
	99

	
	80/80
	235
	16.7
	0.76
	99
	100

	12.5
	20/20
	448
	22.2
	0.82
	100
	100

	
	40/40
	349
	23.0
	0.81
	100
	100

	
	60/60
	271
	20.4
	0.79
	100
	100

	
	80/80
	245
	22.4
	0.78
	100
	100

	15.0
	20/20
	455
	27.4
	0.83
	100
	100

	
	40/40
	355
	28.4
	0.82
	100
	100

	
	60/60
	275
	25.3
	0.80
	100
	100

	
	80/80
	244
	26.2
	0.78
	100
	100

	17.5
	20/20
	454
	31.7
	0.83
	100
	100

	
	40/40
	357
	32.6
	0.82
	100
	100

	
	60/60
	282
	29.7
	0.80
	100
	100

	
	80/80
	250
	30.6
	0.78
	100
	99

	20.0
	20/20
	462
	36.1
	0.82
	100
	100

	
	40/40
	359
	37.4
	0.82
	100
	100

	
	60/60
	291
	33.9
	0.79
	100
	99

	 
	80/80
	260
	33.6
	0.75
	99
	98


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table G.3. Model 3 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	426
	7.3
	0.75
	98
	98

	
	40/40
	333
	8.0
	
	98
	99

	
	60/60
	246
	6.8
	
	99
	99

	
	80/80
	209
	7.2
	
	98
	98

	7.5
	20/20
	436
	12.1
	0.78
	99
	99

	
	40/40
	339
	12.8
	
	99
	100

	
	60/60
	253
	11.2
	
	99
	99

	
	80/80
	217
	12.0
	
	99
	99

	10.0
	20/20
	454
	17.3
	0.79
	100
	100

	
	40/40
	347
	17.7
	
	100
	100

	
	60/60
	263
	16.0
	
	100
	99

	
	80/80
	225
	16.8
	
	99
	99

	12.5
	20/20
	460
	21.8
	0.80
	100
	100

	
	40/40
	355
	22.8
	
	100
	100

	
	60/60
	269
	20.5
	
	100
	100

	
	80/80
	235
	22.4
	
	100
	99

	15.0
	20/20
	468
	27.1
	0.81
	100
	100

	
	40/40
	362
	28.3
	
	100
	100

	
	60/60
	274
	25.3
	
	100
	100

	
	80/80
	233
	26.1
	
	100
	99

	17.5
	20/20
	474
	31.4
	0.80
	100
	100

	
	40/40
	366
	32.6
	
	100
	100

	
	60/60
	279
	29.7
	
	100
	100

	
	80/80
	236
	30.1
	
	100
	99

	20.0
	20/20
	490
	36.2
	0.79
	100
	100

	
	40/40
	382
	37.8
	
	100
	100

	
	60/60
	287
	33.8
	
	100
	99

	 
	80/80
	234
	32.2
	 
	99
	98


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table G.4. Model 4 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	291
	10.2
	0.74
	38
	98

	
	40/40
	
	8.9
	
	86
	98

	
	60/60
	
	10.5
	
	97
	99

	
	80/80
	
	11.5
	
	72
	97

	7.5
	20/20
	310
	17.2
	0.78
	50
	99

	
	40/40
	
	15.2
	
	88
	99

	
	60/60
	
	17.3
	
	98
	99

	
	80/80
	
	19.2
	
	78
	98

	10.0
	20/20
	340
	26.3
	0.79
	57
	100

	
	40/40
	
	23.0
	
	90
	99

	
	60/60
	
	26.4
	
	98
	99

	
	80/80
	
	29.2
	
	81
	98

	12.5
	20/20
	373
	36.3
	0.79
	58
	100

	
	40/40
	
	32.2
	
	91
	99

	
	60/60
	
	36.9
	
	98
	100

	
	80/80
	
	40.3
	
	82
	98

	15.0
	20/20
	413
	48.6
	0.80
	61
	100

	
	40/40
	
	43.1
	
	92
	99

	
	60/60
	
	49.0
	
	98
	100

	
	80/80
	
	54.2
	
	83
	98

	17.5
	20/20
	457
	61.9
	0.80
	60
	100

	
	40/40
	
	55.6
	
	92
	99

	
	60/60
	
	62.5
	
	98
	100

	
	80/80
	
	68.4
	
	82
	97

	20.0
	20/20
	539
	81.9
	0.79
	59
	100

	
	40/40
	
	73.0
	
	91
	99

	
	60/60
	
	82.2
	
	97
	99

	 
	80/80
	 
	89.5
	 
	82
	96


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table G.5. Model 5 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	278
	9.4
	0.75
	37
	99

	
	40/40
	
	
	
	82
	99

	
	60/60
	
	
	
	98
	99

	
	80/80
	
	
	
	71
	98

	7.5
	20/20
	296
	16.0
	0.78
	48
	99

	
	40/40
	
	
	
	85
	100

	
	60/60
	
	
	
	98
	99

	
	80/80
	
	
	
	76
	99

	10.0
	20/20
	322
	24.5
	0.79
	55
	100

	
	40/40
	
	
	
	87
	100

	
	60/60
	
	
	
	99
	99

	
	80/80
	
	
	
	79
	99

	12.5
	20/20
	348
	33.6
	0.80
	56
	100

	
	40/40
	
	
	
	88
	100

	
	60/60
	
	
	
	98
	100

	
	80/80
	
	
	
	80
	99

	15.0
	20/20
	383
	45.3
	0.81
	59
	100

	
	40/40
	
	
	
	88
	100

	
	60/60
	
	
	
	98
	100

	
	80/80
	
	
	
	80
	99

	17.5
	20/20
	421
	57.7
	0.80
	58
	100

	
	40/40
	
	
	
	88
	100

	
	60/60
	
	
	
	98
	100

	
	80/80
	
	
	
	80
	99

	20.0
	20/20
	487
	75.0
	0.79
	57
	100

	
	40/40
	
	
	
	87
	100

	
	60/60
	
	
	
	98
	99

	 
	80/80
	 
	 
	 
	78
	98


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table G.6. Model 6 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	375
	10.9
	95
	90

	
	40/40
	287
	11.4
	96
	90

	
	60/60
	214
	9.5
	96
	86

	
	80/80
	180
	9.6
	94
	85

	7.5
	20/20
	378
	16.6
	98
	93

	
	40/40
	293
	17.7
	98
	93

	
	60/60
	217
	14.5
	98
	92

	
	80/80
	182
	14.8
	96
	89

	10.0
	20/20
	381
	22.7
	99
	95

	
	40/40
	287
	22.3
	99
	94

	
	60/60
	216
	19.3
	98
	92

	
	80/80
	183
	19.8
	97
	89

	12.5
	20/20
	376
	27.5
	99
	95

	
	40/40
	284
	27.4
	99
	94

	
	60/60
	216
	24.2
	98
	93

	
	80/80
	184
	25.0
	97
	91

	15.0
	20/20
	374
	32.9
	99
	95

	
	40/40
	283
	33.0
	99
	95

	
	60/60
	214
	28.4
	98
	94

	
	80/80
	179
	28.0
	97
	92

	17.5
	20/20
	367
	37.1
	99
	95

	
	40/40
	274
	36.1
	99
	95

	
	60/60
	209
	31.9
	98
	93

	
	80/80
	174
	31.2
	97
	91

	20.0
	20/20
	358
	40.9
	99
	95

	
	40/40
	268
	40.0
	99
	95

	
	60/60
	203
	34.8
	97
	92

	 
	80/80
	165
	32.2
	96
	87


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table G.7. Model 7 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	271
	1.4
	83
	90

	
	40/40
	
	9.0
	96
	90

	
	60/60
	
	21.4
	91
	86

	
	80/80
	
	33.6
	81
	85

	7.5
	20/20
	277
	4.7
	90
	93

	
	40/40
	
	14.8
	98
	93

	
	60/60
	
	29.6
	94
	92

	
	80/80
	
	44.2
	87
	89

	10.0
	20/20
	277
	7.7
	92
	95

	
	40/40
	
	20.3
	99
	94

	
	60/60
	
	37.0
	95
	92

	
	80/80
	
	52.5
	89
	89

	12.5
	20/20
	279
	11.2
	94
	95

	
	40/40
	
	26.2
	99
	94

	
	60/60
	
	44.1
	95
	93

	
	80/80
	
	60.9
	92
	91

	15.0
	20/20
	279
	14.6
	95
	95

	
	40/40
	
	31.8
	99
	95

	
	60/60
	
	50.8
	96
	94

	
	80/80
	
	68.5
	92
	92

	17.5
	20/20
	273
	17.3
	95
	95

	
	40/40
	
	35.9
	99
	95

	
	60/60
	
	55.6
	96
	93

	
	80/80
	
	73.3
	92
	91

	20.0
	20/20
	265
	19.5
	95
	95

	
	40/40
	
	38.9
	99
	95

	
	60/60
	
	58.6
	96
	92

	 
	80/80
	 
	76.6
	91
	87


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law. The ML fit for this model is identical to Model 6.



Table G.8. Model 8 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	235
	13
	34
	90

	
	40/40
	
	
	80
	90

	
	60/60
	
	
	95
	86

	
	80/80
	
	
	67
	85

	7.5
	20/20
	243
	20
	47
	93

	
	40/40
	
	
	83
	93

	
	60/60
	
	
	97
	92

	
	80/80
	
	
	73
	89

	10.0
	20/20
	249
	28
	54
	95

	
	40/40
	
	
	85
	94

	
	60/60
	
	
	97
	92

	
	80/80
	
	
	76
	89

	12.5
	20/20
	256
	36
	55
	95

	
	40/40
	
	
	87
	94

	
	60/60
	
	
	97
	93

	
	80/80
	
	
	77
	91

	15.0
	20/20
	263
	45
	58
	95

	
	40/40
	
	
	87
	95

	
	60/60
	
	
	97
	94

	
	80/80
	
	
	77
	92

	17.5
	20/20
	265
	53
	57
	95

	
	40/40
	
	
	87
	95

	
	60/60
	
	
	96
	93

	
	80/80
	
	
	77
	91

	20.0
	20/20
	266
	60
	55
	95

	
	40/40
	
	
	86
	95

	
	60/60
	
	
	95
	92

	 
	80/80
	 
	 
	74
	87


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law. The ML fit for this model is identical to Model 6.




Running Head: ALGORITHMIC MODIFICATIONS TO THE ETBD	1


Table G.9. Extra Sum of Squares Difference Tests at Mutation Rate 5.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	78
	74
	4
	403
	1

	3
	  Constant a, c1 = c2
	9
	31
	73
	7
	406
	0

	4
	  Constant a & c
	6
	55051
	1418
	10
	409
	39*

	5
	  Constant a, c & k
	3
	44824
	1486
	13
	412
	30*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	4834
	167
	8
	407
	29*

	7
	 Constant k, a = 1, c1 = c2
	5
	14530
	462
	11
	410
	31*

	8
	 Constant k & c, a = 1, 
	2
	44561
	1582
	14
	413
	28*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table G.10. Extra Sum of Squares Difference Tests at Mutation Rate 7.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	61
	35
	4
	403
	2

	3
	  Constant a, c1 = c2
	9
	70
	35
	7
	406
	2

	4
	  Constant a & c
	6
	46276
	1165
	10
	409
	40*

	5
	  Constant a, c & k
	3
	37528
	1217
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2432
	81
	8
	407
	30*

	7
	 Constant k, a = 1, c1 = c2
	5
	9431
	286
	11
	410
	33*

	8
	 Constant k & c, a = 1, 
	2
	36485
	1270
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model 

Table G.11. Extra Sum of Squares Difference Tests at Mutation Rate 10.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	1
	12
	4
	403
	0

	3
	  Constant a, c1 = c2
	9
	63
	13
	7
	406
	5*

	4
	  Constant a & c
	6
	39306
	973
	10
	409
	40*

	5
	  Constant a, c & k
	3
	32330
	1032
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	1877
	49
	8
	407
	38*

	7
	 Constant k, a = 1, c1 = c2
	5
	7355
	209
	11
	410
	35*

	8
	 Constant k & c, a = 1, 
	2
	31442
	1078
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table G.12. Extra Sum of Squares Difference Tests at Mutation Rate 12.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	6
	7
	4
	403
	1

	3
	  Constant a, c1 = c2
	9
	49
	7
	7
	406
	7*

	4
	  Constant a & c
	6
	31279
	771
	10
	409
	41*

	5
	  Constant a, c & k
	3
	25998
	827
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	1490
	36
	8
	407
	42*

	7
	 Constant k, a = 1, c1 = c2
	5
	4988
	140
	11
	410
	36*

	8
	 Constant k & c, a = 1, 
	2
	25082
	857
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table G.13. Extra Sum of Squares Difference Tests at Mutation Rate 15.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	3
	4
	4
	403
	1

	3
	  Constant a, c1 = c2
	9
	36
	5
	7
	406
	7*

	4
	  Constant a & c
	6
	25633
	631
	10
	409
	41*

	5
	  Constant a, c & k
	3
	21473
	682
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	1196
	28
	8
	407
	43*

	7
	 Constant k, a = 1, c1 = c2
	5
	3733
	105
	11
	410
	36*

	8
	 Constant k & c, a = 1, 
	2
	20891
	713
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table G.14. Extra Sum of Squares Difference Tests at Mutation Rate 17.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	4
	3
	4
	403
	1

	3
	  Constant a, c1 = c2
	9
	38
	4
	7
	406
	10*

	4
	  Constant a & c
	6
	21186
	521
	10
	409
	41*

	5
	  Constant a, c & k
	3
	17759
	564
	13
	412
	32*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	1077
	24
	8
	407
	44*

	7
	 Constant k, a = 1, c1 = c2
	5
	2896
	81
	11
	410
	36*

	8
	 Constant k & c, a = 1, 
	2
	17294
	589
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model 

Table G.15. Extra Sum of Squares Difference Tests at Mutation Rate 20.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	1
	3
	4
	403
	0

	3
	  Constant a, c1 = c2
	9
	50
	3
	7
	406
	14*

	4
	  Constant a & c
	6
	17737
	436
	10
	409
	41*

	5
	  Constant a, c & k
	3
	14894
	473
	13
	412
	32*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	1018
	23
	8
	407
	45*

	7
	 Constant k, a = 1, c1 = c2
	5
	2382
	66
	11
	410
	36*

	8
	 Constant k & c, a = 1, 
	2
	14545
	496
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model 


Table G.16. Akaike Information Criteria (AIC) for Quantitative Law of Effect Fits
	
	
	
	Mutation Rate

	Model
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	16
	1804
	1485
	1058
	799
	640
	513
	418

	2
	  c1 = c2
	12
	1800
	1484
	1050
	795
	634
	510
	412

	3
	  Constant a, c1 = c2
	9
	1793
	1486
	1080
	836
	680
	576
	523

	4
	  Constant a & c
	6
	3024
	2942
	2867
	2770
	2687
	2608
	2533

	5
	  Constant a, c & k
	3
	3040
	2957
	2889
	2796
	2716
	2637
	2564

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2137
	1837
	1625
	1495
	1392
	1336
	1304

	7
	 Constant k, a = 1, c1 = c2
	5
	2556
	2357
	2227
	2060
	1938
	1832
	1750

	8
	 Constant k & c, a = 1
	2
	3065
	2974
	2906
	2810
	2734
	2655
	2583



Table G.17. Akaike Information Criteria (AIC) for Matching Law Fits
	
	
	
	Mutation Rate

	Model(s)
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	12
	-1105
	-1246
	-1366
	-1471
	-1545
	-1531
	-1487

	2
	  c1 = c2
	8
	-1113
	-1252
	-1374
	-1478
	-1552
	-1538
	-1494

	3, 4, 5
	  Constant a & c
	2
	-1116
	-1254
	-1344
	-1466
	-1534
	-1516
	-1459

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	

	6, 7, 8
	  a = 1, c1 = c2
	0
	-667
	-734
	-784
	-830
	-873
	-907
	-929





Table G.18. Bayes Information Criteria (BIC) for Quantitative Law of Effect Fits
	
	
	
	Mutation Rate

	Model
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	16
	1868
	1549
	1122
	863
	705
	578
	483

	2
	  c1 = c2
	12
	1849
	1533
	1098
	843
	683
	558
	460

	3
	  Constant a, c1 = c2
	9
	1829
	1522
	1116
	872
	716
	612
	559

	4
	  Constant a & c
	6
	3048
	2966
	2891
	2795
	2711
	2632
	2558

	5
	  Constant a, c & k
	3
	3052
	2970
	2901
	2809
	2728
	2649
	2576

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2169
	1869
	1658
	1527
	1424
	1368
	1336

	7
	 Constant k, a = 1, c1 = c2
	5
	2576
	2378
	2247
	2081
	1958
	1852
	1770

	8
	 Constant k & c, a = 1
	2
	3073
	2982
	2914
	2818
	2742
	2663
	2591



Table G.19. Bayes Information Criteria (BIC) for Matching Law Fits
	
	
	
	Mutation Rate

	Model(s)
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	12
	-1065
	-1206
	-1326
	-1430
	-1505
	-1491
	-1447

	2
	  c1 = c2
	8
	-1086
	-1225
	-1347
	-1451
	-1526
	-1512
	-1467

	3, 4, 5
	  Constant a & c
	2
	-1109
	-1247
	-1338
	-1459
	-1527
	-1509
	-1452

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	
	

	6, 7, 8
	  a = 1, c1 = c2
	0
	-667
	-734
	-784
	-830
	-873
	-907
	-929






Table G.20. Quadratic Fit to Changeover Behaviors

	Mutation Rate
	Reinforcer Magnitude
	a
	b
	c
	CMax
	CΔ
	%VAF

	5.0
	20/20
	-0.5
	0.5
	0.2
	0.4
	0.1
	1

	
	40/40
	-1.3
	1.2
	0.4
	0.6
	0.3
	2

	
	60/60
	-1.3
	1.3
	0.6
	0.9
	0.4
	1

	
	80/80
	-1.6
	1.7
	0.8
	1.3
	0.5
	1

	7.5
	20/20
	-2.5
	2.5
	0.3
	0.9
	0.6
	6

	
	40/40
	-2.5
	2.7
	0.6
	1.4
	0.7
	3

	
	60/60
	-4.4
	4.3
	0.9
	2.0
	1.1
	5

	
	80/80
	-5.6
	5.5
	1.2
	2.6
	1.4
	5

	10.0
	20/20
	-6.1
	6.0
	0.4
	1.8
	1.5
	14

	
	40/40
	-8.1
	8.1
	0.5
	2.6
	2.1
	12

	
	60/60
	-10.6
	10.4
	0.8
	3.3
	2.6
	12

	
	80/80
	-10.5
	10.3
	1.5
	4.0
	2.5
	7

	12.5
	20/20
	-8.4
	8.3
	0.5
	2.6
	2.1
	15

	
	40/40
	-12.5
	12.7
	0.5
	3.7
	3.2
	15

	
	60/60
	-10.6
	10.7
	1.5
	4.2
	2.7
	8

	
	80/80
	-13.7
	13.5
	2.0
	5.3
	3.3
	9

	15.0
	20/20
	-11.7
	11.9
	0.3
	3.4
	3.1
	18

	
	40/40
	-14.3
	14.0
	1.2
	4.6
	3.4
	14

	
	60/60
	-16.2
	16.2
	1.6
	5.6
	4.1
	12

	
	80/80
	-17.7
	17.8
	2.2
	6.7
	4.4
	10

	17.5
	20/20
	-13.9
	14.1
	0.5
	4.1
	3.6
	17

	
	40/40
	-17.8
	17.8
	1.3
	5.7
	4.4
	15

	
	60/60
	-19.2
	19.3
	1.9
	6.8
	4.8
	12

	
	80/80
	-19.4
	19.4
	3.0
	7.9
	4.9
	10

	20.0
	20/20
	-15.6
	15.8
	0.9
	4.8
	4.0
	16

	
	40/40
	-20.9
	20.6
	1.6
	6.7
	5.1
	15

	
	60/60
	-21.5
	21.6
	2.4
	7.8
	5.4
	11

	 
	80/80
	-22.3
	22.2
	3.5
	9.1
	5.5
	9


Note. %VAF = Percentage of Variance Accounted For.


Table G.21. Quadratic-exponential Fit to Changeover Behaviors

	Mutation Rate
	Reinforcer Magnitude
	a
	b
	c
	d
	CMax
	CΔ%
	%VAF

	5.0
	20/20
	1.0
	-1.2
	4.3
	0.045
	4.3
	-8%
	98

	
	40/40
	0.9
	-0.8
	4.5
	0.034
	4.5
	-4%
	99

	
	60/60
	2.8
	-2.7
	5.3
	0.028
	5.3
	-12%
	98

	
	80/80
	1.7
	-1.5
	5.4
	0.023
	5.4
	-6%
	97

	7.5
	20/20
	3.6
	-3.6
	6.5
	0.033
	6.5
	-14%
	99

	
	40/40
	4.1
	-4.3
	8.3
	0.029
	8.3
	-13%
	99

	
	60/60
	2.5
	-2.4
	8.9
	0.025
	8.9
	-7%
	98

	
	80/80
	1.2
	-1.2
	8.7
	0.020
	8.7
	-4%
	98

	10.0
	20/20
	1.5
	-1.4
	8.4
	0.028
	8.4
	-4%
	99

	
	40/40
	3.7
	-3.5
	10.8
	0.024
	10.8
	-8%
	99

	
	60/60
	0.9
	-1.1
	11.0
	0.021
	11.0
	-3%
	99

	
	80/80
	3.9
	-3.8
	11.9
	0.017
	11.9
	-8%
	99

	12.5
	20/20
	2.8
	-2.9
	10.0
	0.023
	10.0
	-7%
	99

	
	40/40
	4.0
	-3.3
	12.2
	0.020
	12.2
	-5%
	99

	
	60/60
	2.7
	-2.5
	12.5
	0.017
	12.5
	-4%
	99

	
	80/80
	2.6
	-2.8
	13.6
	0.014
	13.6
	-6%
	99

	15.0
	20/20
	3.6
	-3.7
	11.7
	0.021
	11.7
	-8%
	99

	
	40/40
	4.1
	-4.1
	14.2
	0.017
	14.2
	-7%
	99

	
	60/60
	2.3
	-2.6
	14.2
	0.014
	14.2
	-5%
	99

	
	80/80
	4.4
	-4.3
	15.5
	0.013
	15.5
	-7%
	99

	17.5
	20/20
	3.6
	-3.5
	12.7
	0.018
	12.7
	-7%
	99

	
	40/40
	3.4
	-3.0
	14.7
	0.015
	14.7
	-5%
	99

	
	60/60
	2.3
	-2.2
	15.4
	0.013
	15.4
	-3%
	99

	
	80/80
	2.7
	-2.7
	16.0
	0.011
	16.0
	-4%
	99

	20.0
	20/20
	7.7
	-7.8
	14.2
	0.016
	14.2
	-14%
	99

	
	40/40
	2.6
	-2.6
	15.9
	0.013
	15.9
	-4%
	99

	
	60/60
	5.4
	-5.6
	17.4
	0.012
	17.4
	-8%
	99

	 
	80/80
	6.0
	-5.7
	18.0
	0.010
	18.0
	-8%
	100


Note. %VAF = Percentage of Variance Accounted For.
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Table H.1. Model 1 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	
	%VAF

	
	
	k
	c1
	c2
	a
	QLOE
	ML

	5.0
	20/20
	531
	10.5
	10.6
	0.78
	99
	99

	
	40/40
	531
	14.2
	14.9
	0.77
	99
	99

	
	60/60
	529
	21.0
	20.6
	0.80
	99
	100

	
	80/80
	527
	25.3
	25.2
	0.79
	99
	100

	7.5
	20/20
	540
	16.4
	16.2
	0.81
	99
	100

	
	40/40
	534
	23.5
	23.5
	0.82
	100
	100

	
	60/60
	519
	28.6
	28.1
	0.81
	100
	100

	
	80/80
	499
	32.1
	31.7
	0.80
	100
	100

	10.0
	20/20
	538
	22.0
	21.9
	0.83
	100
	100

	
	40/40
	513
	28.9
	29.2
	0.84
	100
	100

	
	60/60
	490
	33.5
	33.3
	0.83
	100
	100

	
	80/80
	486
	37.2
	37.5
	0.80
	100
	99

	12.5
	20/20
	544
	27.1
	26.7
	0.83
	100
	100

	
	40/40
	504
	33.4
	33.5
	0.84
	100
	100

	
	60/60
	476
	36.9
	37.0
	0.82
	100
	99

	
	80/80
	451
	39.4
	39.7
	0.80
	100
	99

	15.0
	20/20
	532
	31.0
	31.4
	0.84
	100
	100

	
	40/40
	491
	36.6
	36.5
	0.83
	100
	100

	
	60/60
	463
	39.6
	39.8
	0.81
	100
	99

	
	80/80
	439
	39.8
	39.8
	0.77
	99
	99

	17.5
	20/20
	534
	34.7
	34.8
	0.83
	100
	100

	
	40/40
	478
	39.0
	38.8
	0.83
	100
	99

	
	60/60
	448
	41.1
	40.9
	0.79
	99
	99

	
	80/80
	430
	41.0
	41.0
	0.75
	99
	98

	20.0
	20/20
	521
	37.3
	37.3
	0.83
	100
	100

	
	40/40
	466
	39.5
	39.7
	0.81
	100
	99

	
	60/60
	428
	40.3
	40.1
	0.77
	99
	98

	 
	80/80
	427
	41.3
	41.0
	0.72
	99
	97


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law

Table H.2. Model 2 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	530
	10.5
	0.78
	99
	99

	
	40/40
	530
	14.7
	0.77
	99
	99

	
	60/60
	528
	20.8
	0.80
	99
	100

	
	80/80
	527
	25.2
	0.79
	99
	100

	7.5
	20/20
	540
	16.3
	0.81
	99
	100

	
	40/40
	534
	23.5
	0.82
	100
	100

	
	60/60
	519
	28.4
	0.81
	100
	100

	
	80/80
	499
	31.9
	0.80
	100
	100

	10.0
	20/20
	538
	22.0
	0.83
	100
	100

	
	40/40
	513
	29.0
	0.84
	100
	100

	
	60/60
	490
	33.4
	0.83
	100
	100

	
	80/80
	486
	37.4
	0.80
	100
	99

	12.5
	20/20
	544
	26.9
	0.83
	100
	100

	
	40/40
	504
	33.4
	0.84
	100
	100

	
	60/60
	476
	36.9
	0.82
	100
	99

	
	80/80
	451
	39.5
	0.80
	100
	99

	15.0
	20/20
	532
	31.2
	0.84
	100
	100

	
	40/40
	491
	36.5
	0.83
	100
	100

	
	60/60
	463
	39.7
	0.81
	100
	99

	
	80/80
	439
	39.8
	0.77
	99
	99

	17.5
	20/20
	534
	34.8
	0.83
	100
	100

	
	40/40
	478
	38.9
	0.83
	100
	99

	
	60/60
	448
	41.0
	0.79
	99
	99

	
	80/80
	430
	41.0
	0.75
	99
	98

	20.0
	20/20
	521
	37.3
	0.83
	100
	100

	
	40/40
	466
	39.6
	0.81
	100
	99

	
	60/60
	428
	40.2
	0.77
	99
	98

	 
	80/80
	427
	41.1
	0.72
	99
	97


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table H.3. Model 3 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	528
	10.6
	0.78
	99
	99

	
	40/40
	522
	14.9
	
	99
	99

	
	60/60
	537
	20.5
	
	99
	99

	
	80/80
	534
	25.1
	
	99
	100

	7.5
	20/20
	539
	16.4
	0.81
	99
	100

	
	40/40
	541
	23.3
	
	100
	100

	
	60/60
	520
	28.4
	
	100
	100

	
	80/80
	492
	32.0
	
	100
	100

	10.0
	20/20
	542
	21.8
	0.82
	100
	100

	
	40/40
	526
	28.6
	
	100
	100

	
	60/60
	493
	33.4
	
	100
	100

	
	80/80
	461
	37.3
	
	100
	99

	12.5
	20/20
	551
	26.7
	0.82
	100
	100

	
	40/40
	519
	33.1
	
	100
	100

	
	60/60
	472
	37.0
	
	100
	99

	
	80/80
	431
	39.2
	
	100
	99

	15.0
	20/20
	557
	30.6
	0.81
	100
	100

	
	40/40
	514
	36.4
	
	100
	100

	
	60/60
	461
	39.7
	
	100
	99

	
	80/80
	397
	38.7
	
	99
	98

	17.5
	20/20
	569
	34.5
	0.80
	100
	100

	
	40/40
	509
	39.0
	
	100
	99

	
	60/60
	445
	40.9
	
	99
	99

	
	80/80
	377
	39.1
	
	99
	97

	20.0
	20/20
	580
	37.5
	0.78
	100
	99

	
	40/40
	502
	40.2
	
	100
	99

	
	60/60
	425
	40.1
	
	99
	98

	 
	80/80
	359
	38.1
	 
	99
	96


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table H.4. Model 4 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	531
	17.5
	0.78
	89
	99

	
	40/40
	
	16.3
	
	99
	99

	
	60/60
	
	18.5
	
	99
	99

	
	80/80
	
	19.4
	
	93
	99

	7.5
	20/20
	534
	26.9
	0.81
	88
	100

	
	40/40
	
	25.3
	
	98
	100

	
	60/60
	
	28.2
	
	99
	100

	
	80/80
	
	30.3
	
	93
	99

	10.0
	20/20
	525
	34.9
	0.82
	86
	100

	
	40/40
	
	32.0
	
	98
	100

	
	60/60
	
	36.0
	
	99
	100

	
	80/80
	
	38.4
	
	92
	99

	12.5
	20/20
	525
	41.5
	0.82
	84
	100

	
	40/40
	
	38.1
	
	98
	99

	
	60/60
	
	42.5
	
	99
	99

	
	80/80
	
	45.5
	
	91
	98

	15.0
	20/20
	530
	47.8
	0.81
	82
	100

	
	40/40
	
	43.9
	
	97
	99

	
	60/60
	
	48.4
	
	99
	99

	
	80/80
	
	52.3
	
	90
	97

	17.5
	20/20
	536
	53.4
	0.80
	79
	100

	
	40/40
	
	49.2
	
	96
	99

	
	60/60
	
	54.3
	
	99
	99

	
	80/80
	
	57.8
	
	88
	96

	20.0
	20/20
	537
	56.2
	0.78
	77
	99

	
	40/40
	
	51.4
	
	95
	99

	
	60/60
	
	56.9
	
	99
	98

	 
	80/80
	 
	60.8
	 
	87
	95


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table H.5. Model 5 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	524
	17.5
	0.79
	89
	99

	
	40/40
	
	
	
	98
	99

	
	60/60
	
	
	
	99
	99

	
	80/80
	
	
	
	92
	100

	7.5
	20/20
	523
	26.7
	0.82
	87
	100

	
	40/40
	
	
	
	97
	100

	
	60/60
	
	
	
	99
	100

	
	80/80
	
	
	
	92
	100

	10.0
	20/20
	513
	34.1
	0.83
	86
	100

	
	40/40
	
	
	
	97
	100

	
	60/60
	
	
	
	99
	100

	
	80/80
	
	
	
	91
	99

	12.5
	20/20
	509
	40.4
	0.82
	84
	100

	
	40/40
	
	
	
	96
	100

	
	60/60
	
	
	
	99
	99

	
	80/80
	
	
	
	90
	99

	15.0
	20/20
	510
	46.4
	0.81
	81
	100

	
	40/40
	
	
	
	95
	100

	
	60/60
	
	
	
	99
	99

	
	80/80
	
	
	
	88
	98

	17.5
	20/20
	510
	51.0
	0.80
	78
	100

	
	40/40
	
	
	
	94
	99

	
	60/60
	
	
	
	99
	99

	
	80/80
	
	
	
	86
	97

	20.0
	20/20
	505
	53.2
	0.78
	75
	100

	
	40/40
	
	
	
	92
	99

	
	60/60
	
	
	
	99
	98

	 
	80/80
	 
	 
	 
	85
	96


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table H.6. Model 6 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	465
	14.9
	97
	92

	
	40/40
	443
	20.2
	97
	90

	
	60/60
	440
	27.4
	98
	93

	
	80/80
	420
	31.7
	98
	93

	7.5
	20/20
	468
	21.6
	98
	94

	
	40/40
	454
	30.0
	99
	95

	
	60/60
	420
	34.9
	99
	94

	
	80/80
	388
	38.1
	98
	94

	10.0
	20/20
	467
	28.2
	99
	96

	
	40/40
	435
	35.3
	99
	96

	
	60/60
	393
	39.1
	99
	95

	
	80/80
	357
	41.8
	98
	93

	12.5
	20/20
	458
	33.5
	99
	96

	
	40/40
	415
	39.5
	99
	96

	
	60/60
	365
	42.1
	98
	95

	
	80/80
	324
	42.4
	98
	93

	15.0
	20/20
	444
	37.5
	99
	96

	
	40/40
	392
	42.1
	99
	96

	
	60/60
	340
	43.4
	98
	93

	
	80/80
	290
	40.9
	97
	89

	17.5
	20/20
	428
	40.6
	99
	96

	
	40/40
	369
	43.6
	99
	95

	
	60/60
	313
	43.0
	98
	92

	
	80/80
	266
	40.6
	96
	86

	20.0
	20/20
	409
	42.6
	99
	96

	
	40/40
	343
	43.2
	98
	94

	
	60/60
	286
	41.5
	97
	90

	 
	80/80
	243
	39.0
	95
	81


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table H.7. Model 7 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	446
	12.9
	96
	92

	
	40/40
	
	20.6
	97
	90

	
	60/60
	
	28.5
	98
	93

	
	80/80
	
	36.8
	98
	93

	7.5
	20/20
	440
	17.8
	98
	94

	
	40/40
	
	27.5
	99
	95

	
	60/60
	
	39.2
	99
	94

	
	80/80
	
	50.7
	98
	94

	10.0
	20/20
	423
	21.2
	99
	96

	
	40/40
	
	32.9
	99
	96

	
	60/60
	
	46.5
	99
	95

	
	80/80
	
	60.4
	97
	93

	12.5
	20/20
	401
	23.5
	98
	96

	
	40/40
	
	36.5
	99
	96

	
	60/60
	
	51.9
	98
	95

	
	80/80
	
	66.6
	97
	93

	15.0
	20/20
	377
	24.5
	98
	96

	
	40/40
	
	38.3
	99
	96

	
	60/60
	
	54.4
	98
	93

	
	80/80
	
	69.9
	95
	89

	17.5
	20/20
	353
	25.0
	97
	96

	
	40/40
	
	39.3
	98
	95

	
	60/60
	
	55.6
	97
	92

	
	80/80
	
	71.5
	94
	86

	20.0
	20/20
	327
	24.4
	97
	96

	
	40/40
	
	38.8
	98
	94

	
	60/60
	
	54.9
	97
	90

	 
	80/80
	 
	70.1
	92
	81


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law. The ML fit for this model is identical to Model 6.



Table H.8. Model 8 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	438
	23
	87
	92

	
	40/40
	
	
	95
	90

	
	60/60
	
	
	98
	93

	
	80/80
	
	
	91
	93

	7.5
	20/20
	429
	33
	87
	94

	
	40/40
	
	
	97
	95

	
	60/60
	
	
	98
	94

	
	80/80
	
	
	91
	94

	10.0
	20/20
	410
	40
	85
	96

	
	40/40
	
	
	96
	96

	
	60/60
	
	
	99
	95

	
	80/80
	
	
	89
	93

	12.5
	20/20
	389
	45
	83
	96

	
	40/40
	
	
	96
	96

	
	60/60
	
	
	98
	95

	
	80/80
	
	
	88
	93

	15.0
	20/20
	367
	50
	80
	96

	
	40/40
	
	
	94
	96

	
	60/60
	
	
	98
	93

	
	80/80
	
	
	86
	89

	17.5
	20/20
	344
	52
	78
	96

	
	40/40
	
	
	93
	95

	
	60/60
	
	
	97
	92

	
	80/80
	
	
	84
	86

	20.0
	20/20
	319
	52
	75
	96

	
	40/40
	
	
	91
	94

	
	60/60
	
	
	97
	90

	 
	80/80
	 
	 
	81
	81


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law. The ML fit for this model is identical to Model 6.




Running Head: ALGORITHMIC MODIFICATIONS TO THE ETBD	1


Table H.9. Extra Sum of Squares Difference Tests at Mutation Rate 5.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	426
	92
	4
	403
	5*

	3
	  Constant a, c1 = c2
	9
	351
	94
	7
	406
	4*

	4
	  Constant a & c
	6
	16797
	498
	10
	409
	34*

	5
	  Constant a, c & k
	3
	14582
	546
	13
	412
	27*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	8319
	251
	8
	407
	33*

	7
	 Constant k, a = 1, c1 = c2
	5
	6323
	256
	11
	410
	25*

	8
	 Constant k & c, a = 1, 
	2
	17835
	691
	14
	413
	26*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table H.10. Extra Sum of Squares Difference Tests at Mutation Rate 7.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	43
	41
	4
	403
	1

	3
	  Constant a, c1 = c2
	9
	24
	41
	7
	406
	1

	4
	  Constant a & c
	6
	19300
	512
	10
	409
	38*

	5
	  Constant a, c & k
	3
	16874
	572
	13
	412
	29*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	4043
	120
	8
	407
	34*

	7
	 Constant k, a = 1, c1 = c2
	5
	3560
	136
	11
	410
	26*

	8
	 Constant k & c, a = 1, 
	2
	17688
	639
	14
	413
	28*


Note. N = 416; * p < 0.05 that model 1 is different from this model 

Table H.11. Extra Sum of Squares Difference Tests at Mutation Rate 10.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	18
	20
	4
	403
	1

	3
	  Constant a, c1 = c2
	9
	14
	20
	7
	406
	1

	4
	  Constant a & c
	6
	19765
	502
	10
	409
	39*

	5
	  Constant a, c & k
	3
	16902
	552
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2985
	78
	8
	407
	38*

	7
	 Constant k, a = 1, c1 = c2
	5
	3113
	103
	11
	410
	30*

	8
	 Constant k & c, a = 1, 
	2
	17349
	607
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table H.12. Extra Sum of Squares Difference Tests at Mutation Rate 12.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	20
	15
	4
	403
	1

	3
	  Constant a, c1 = c2
	9
	22
	15
	7
	406
	1

	4
	  Constant a & c
	6
	18780
	474
	10
	409
	40*

	5
	  Constant a, c & k
	3
	15974
	519
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2582
	66
	8
	407
	39*

	7
	 Constant k, a = 1, c1 = c2
	5
	3000
	95
	11
	410
	32*

	8
	 Constant k & c, a = 1, 
	2
	16250
	565
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table H.13. Extra Sum of Squares Difference Tests at Mutation Rate 15.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	9
	12
	4
	403
	1

	3
	  Constant a, c1 = c2
	9
	21
	12
	7
	406
	2

	4
	  Constant a & c
	6
	17772
	446
	10
	409
	40*

	5
	  Constant a, c & k
	3
	15171
	490
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2405
	59
	8
	407
	41*

	7
	 Constant k, a = 1, c1 = c2
	5
	3011
	92
	11
	410
	33*

	8
	 Constant k & c, a = 1, 
	2
	15392
	533
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table H.14. Extra Sum of Squares Difference Tests at Mutation Rate 17.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	1
	11
	4
	403
	0

	3
	  Constant a, c1 = c2
	9
	57
	12
	7
	406
	5*

	4
	  Constant a & c
	6
	16712
	419
	10
	409
	40*

	5
	  Constant a, c & k
	3
	14102
	456
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2157
	53
	8
	407
	40*

	7
	 Constant k, a = 1, c1 = c2
	5
	2859
	88
	11
	410
	33*

	8
	 Constant k & c, a = 1, 
	2
	14099
	489
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model 

Table H.15. Extra Sum of Squares Difference Tests at Mutation Rate 20.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	4
	10
	4
	403
	0

	3
	  Constant a, c1 = c2
	9
	107
	12
	7
	406
	9*

	4
	  Constant a & c
	6
	14944
	375
	10
	409
	40*

	5
	  Constant a, c & k
	3
	12699
	410
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2026
	50
	8
	407
	41*

	7
	 Constant k, a = 1, c1 = c2
	5
	2777
	84
	11
	410
	33*

	8
	 Constant k & c, a = 1, 
	2
	12623
	438
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model 


Table H.16. Akaike Information Criteria (AIC) for Quantitative Law of Effect Fits
	
	
	
	Mutation Rate

	Model
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	16
	1882
	1561
	1253
	1143
	1036
	1016
	976

	2
	  c1 = c2
	12
	1894
	1557
	1249
	1141
	1031
	1009
	969

	3
	  Constant a, c1 = c2
	9
	1896
	1551
	1244
	1140
	1035
	1038
	1033

	4
	  Constant a & c
	6
	2588
	2600
	2592
	2568
	2543
	2517
	2471

	5
	  Constant a, c & k
	3
	2624
	2643
	2629
	2602
	2579
	2549
	2505

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2305
	1998
	1819
	1747
	1701
	1661
	1632

	7
	 Constant k, a = 1, c1 = c2
	5
	2311
	2046
	1930
	1899
	1886
	1864
	1849

	8
	 Constant k & c, a = 1
	2
	2721
	2689
	2667
	2637
	2613
	2577
	2531



Table H.17. Akaike Information Criteria (AIC) for Matching Law Fits
	
	
	
	Mutation Rate

	Model(s)
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	12
	-1158
	-1279
	-1333
	-1326
	-1320
	-1310
	-1304

	2
	  c1 = c2
	8
	-1158
	-1285
	-1340
	-1334
	-1326
	-1318
	-1311

	3, 4, 5
	  Constant a & c
	2
	-1168
	-1291
	-1328
	-1330
	-1293
	-1286
	-1267

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	

	6, 7, 8
	  a = 1, c1 = c2
	0
	-678
	-735
	-789
	-824
	-851
	-867
	-879





Table H.18. Bayes Information Criteria (BIC) for Quantitative Law of Effect Fits
	
	
	
	Mutation Rate

	Model
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	16
	1947
	1625
	1318
	1208
	1101
	1081
	1040

	2
	  c1 = c2
	12
	1942
	1606
	1297
	1189
	1080
	1057
	1018

	3
	  Constant a, c1 = c2
	9
	1932
	1587
	1281
	1176
	1071
	1074
	1069

	4
	  Constant a & c
	6
	2612
	2624
	2616
	2592
	2567
	2541
	2495

	5
	  Constant a, c & k
	3
	2636
	2656
	2641
	2615
	2591
	2561
	2517

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2337
	2030
	1851
	1779
	1733
	1693
	1664

	7
	 Constant k, a = 1, c1 = c2
	5
	2331
	2066
	1951
	1919
	1906
	1884
	1869

	8
	 Constant k & c, a = 1
	2
	2729
	2697
	2675
	2645
	2621
	2585
	2539



Table H.19. Bayes Information Criteria (BIC) for Matching Law Fits
	
	
	
	Mutation Rate

	Model(s)
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	12
	-1118
	-1239
	-1293
	-1286
	-1280
	-1270
	-1264

	2
	  c1 = c2
	8
	-1132
	-1258
	-1313
	-1307
	-1299
	-1291
	-1284

	3, 4, 5
	  Constant a & c
	2
	-1161
	-1285
	-1321
	-1323
	-1286
	-1279
	-1261

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	
	

	6, 7, 8
	  a = 1, c1 = c2
	0
	-678
	-735
	-789
	-824
	-851
	-867
	-879






Table H.20. Quadratic Fit to Changeover Behaviors

	Mutation Rate
	Reinforcer Magnitude
	a
	b
	c
	CMax
	CΔ
	%VAF

	5.0
	20/20
	-2.5
	2.5
	0.7
	1.4
	0.6
	2

	
	40/40
	-6.2
	6.0
	1.3
	2.7
	1.4
	5

	
	60/60
	-8.8
	8.9
	1.2
	3.4
	2.2
	8

	
	80/80
	-10.2
	10.3
	1.4
	4.0
	2.6
	11

	7.5
	20/20
	-11.3
	11.3
	0.9
	3.8
	2.8
	12

	
	40/40
	-18.5
	18.1
	1.9
	6.3
	4.4
	14

	
	60/60
	-23.3
	23.2
	1.8
	7.5
	5.8
	19

	
	80/80
	-22.5
	22.9
	2.1
	7.9
	5.8
	20

	10.0
	20/20
	-17.9
	18.1
	1.4
	6.0
	4.6
	16

	
	40/40
	-32.3
	32.2
	2.1
	10.2
	8.0
	23

	
	60/60
	-37.5
	37.8
	2.1
	11.6
	9.5
	28

	
	80/80
	-34.0
	33.6
	3.5
	11.8
	8.3
	26

	12.5
	20/20
	-28.0
	29.1
	1.1
	8.6
	7.6
	22

	
	40/40
	-42.3
	42.5
	2.7
	13.4
	10.7
	27

	
	60/60
	-39.8
	39.6
	4.2
	14.0
	9.8
	23

	
	80/80
	-41.4
	41.3
	4.6
	14.9
	10.3
	29

	15.0
	20/20
	-35.7
	35.8
	1.9
	10.8
	9.0
	27

	
	40/40
	-49.9
	50.2
	3.2
	15.8
	12.6
	30

	
	60/60
	-47.9
	47.5
	5.0
	16.8
	11.8
	27

	
	80/80
	-40.2
	40.3
	6.8
	16.9
	10.1
	25

	17.5
	20/20
	-43.0
	43.9
	1.5
	12.7
	11.2
	30

	
	40/40
	-55.1
	56.1
	4.0
	18.3
	14.3
	30

	
	60/60
	-49.2
	49.1
	6.6
	18.8
	12.2
	29

	
	80/80
	-42.2
	42.3
	8.4
	19.0
	10.6
	26

	20.0
	20/20
	-45.9
	46.1
	2.5
	14.1
	11.6
	29

	
	40/40
	-56.1
	56.3
	5.8
	19.9
	14.1
	29

	
	60/60
	-48.0
	48.3
	8.3
	20.5
	12.2
	26

	 
	80/80
	-33.1
	32.8
	12.2
	20.4
	8.1
	18


Note. %VAF = Percentage of Variance Accounted For.


Table H.21. Quadratic-exponential Fit to Changeover Behaviors

	Mutation Rate
	Reinforcer Magnitude
	a
	b
	c
	d
	CMax
	CΔ%
	%VAF

	5.0
	20/20
	-0.1
	-0.4
	8.5
	0.030
	8.5
	-3%
	97

	
	40/40
	6.6
	-4.6
	11.9
	0.024
	11.9
	-6%
	98

	
	60/60
	-1.9
	1.5
	10.5
	0.018
	10.8
	2%
	98

	
	80/80
	-3.3
	2.8
	9.2
	0.014
	9.8
	6%
	97

	7.5
	20/20
	-2.9
	2.0
	13.1
	0.021
	13.4
	2%
	99

	
	40/40
	-0.4
	0.8
	17.5
	0.017
	17.8
	2%
	98

	
	60/60
	2.0
	-2.0
	17.1
	0.013
	17.1
	-3%
	98

	
	80/80
	-10.0
	10.7
	12.3
	0.010
	15.2
	23%
	97

	10.0
	20/20
	3.1
	-1.4
	17.4
	0.018
	17.4
	0%
	99

	
	40/40
	-10.3
	10.2
	20.1
	0.012
	22.6
	13%
	98

	
	60/60
	-2.6
	1.8
	20.6
	0.010
	20.9
	1%
	97

	
	80/80
	-9.3
	9.4
	16.6
	0.007
	18.9
	14%
	96

	12.5
	20/20
	-4.4
	4.8
	19.4
	0.014
	20.7
	7%
	99

	
	40/40
	-4.9
	4.4
	23.9
	0.009
	24.9
	4%
	96

	
	60/60
	-7.0
	7.0
	21.7
	0.007
	23.4
	8%
	95

	
	80/80
	-7.6
	7.7
	19.6
	0.006
	21.6
	10%
	92

	15.0
	20/20
	-14.5
	15.8
	18.0
	0.011
	22.3
	24%
	98

	
	40/40
	-12.4
	13.2
	23.1
	0.008
	26.6
	15%
	94

	
	60/60
	-11.3
	11.1
	22.6
	0.006
	25.3
	12%
	92

	
	80/80
	-12.7
	12.4
	19.7
	0.004
	22.7
	15%
	87

	17.5
	20/20
	-7.6
	8.3
	21.0
	0.009
	23.3
	11%
	98

	
	40/40
	-21.6
	22.6
	22.8
	0.006
	28.8
	26%
	93

	
	60/60
	-17.0
	17.5
	21.5
	0.004
	25.9
	21%
	87

	
	80/80
	-18.4
	18.5
	19.1
	0.003
	23.7
	24%
	79

	20.0
	20/20
	-4.6
	5.4
	23.1
	0.008
	24.6
	7%
	97

	
	40/40
	-17.9
	17.7
	24.4
	0.005
	28.8
	18%
	91

	
	60/60
	-18.8
	19.0
	21.9
	0.004
	26.7
	22%
	83

	 
	80/80
	-14.2
	13.5
	20.6
	0.002
	23.9
	16%
	65


Note. %VAF = Percentage of Variance Accounted For.


[bookmark: _Toc536370721]Appendix I: Experiment 1 Fitting Measures of the Linear-Clone-Pheno-Uniform Creature Type

Table I.1. Model 1 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	
	%VAF

	
	
	k
	c1
	c2
	a
	QLOE
	ML

	5.0
	20/20
	519
	13.1
	13.8
	0.74
	92
	96

	
	40/40
	460
	17.6
	17.6
	0.73
	96
	98

	
	60/60
	369
	16.1
	17.4
	0.73
	96
	98

	
	80/80
	319
	16.6
	17.9
	0.74
	97
	98

	7.5
	20/20
	488
	16.7
	17.6
	0.76
	97
	98

	
	40/40
	381
	16.5
	16.9
	0.73
	98
	99

	
	60/60
	293
	14.4
	15.5
	0.75
	98
	99

	
	80/80
	243
	13.0
	13.6
	0.75
	98
	99

	10.0
	20/20
	481
	22.2
	22.5
	0.78
	99
	99

	
	40/40
	338
	17.2
	17.2
	0.75
	98
	99

	
	60/60
	257
	14.8
	15.1
	0.77
	99
	99

	
	80/80
	216
	12.4
	12.8
	0.74
	99
	99

	12.5
	20/20
	436
	22.7
	22.9
	0.79
	99
	99

	
	40/40
	298
	16.8
	16.9
	0.77
	99
	99

	
	60/60
	228
	13.4
	13.4
	0.76
	99
	99

	
	80/80
	193
	11.5
	11.5
	0.73
	99
	99

	15.0
	20/20
	402
	22.5
	22.2
	0.78
	99
	99

	
	40/40
	274
	15.7
	16.0
	0.76
	99
	100

	
	60/60
	206
	12.3
	12.1
	0.75
	99
	99

	
	80/80
	175
	10.2
	10.3
	0.72
	99
	99

	17.5
	20/20
	379
	22.9
	23.3
	0.78
	99
	100

	
	40/40
	254
	16.1
	16.0
	0.77
	99
	99

	
	60/60
	192
	11.3
	11.4
	0.74
	99
	99

	
	80/80
	164
	9.5
	9.6
	0.71
	99
	99

	20.0
	20/20
	356
	22.9
	23.7
	0.78
	99
	100

	
	40/40
	236
	14.3
	14.5
	0.74
	99
	99

	
	60/60
	179
	10.3
	10.2
	0.72
	99
	99

	 
	80/80
	154
	9.0
	9.1
	0.71
	99
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law

Table I.2. Model 2 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	518
	13.6
	0.74
	92
	96

	
	40/40
	460
	17.6
	0.73
	96
	98

	
	60/60
	366
	17.2
	0.74
	96
	97

	
	80/80
	317
	17.6
	0.75
	97
	98

	7.5
	20/20
	485
	17.1
	0.76
	96
	98

	
	40/40
	382
	16.9
	0.73
	98
	99

	
	60/60
	293
	15.4
	0.76
	98
	98

	
	80/80
	242
	13.4
	0.75
	98
	99

	10.0
	20/20
	481
	22.4
	0.78
	99
	99

	
	40/40
	338
	17.2
	0.75
	98
	99

	
	60/60
	257
	15.0
	0.77
	99
	99

	
	80/80
	215
	12.7
	0.74
	99
	99

	12.5
	20/20
	436
	22.8
	0.79
	99
	99

	
	40/40
	298
	16.8
	0.77
	99
	99

	
	60/60
	228
	13.4
	0.76
	99
	99

	
	80/80
	193
	11.5
	0.73
	99
	99

	15.0
	20/20
	402
	22.3
	0.78
	99
	99

	
	40/40
	274
	15.9
	0.76
	99
	100

	
	60/60
	206
	12.2
	0.76
	99
	99

	
	80/80
	175
	10.2
	0.72
	99
	99

	17.5
	20/20
	379
	23.2
	0.78
	99
	100

	
	40/40
	254
	16.0
	0.77
	99
	99

	
	60/60
	192
	11.4
	0.74
	99
	99

	
	80/80
	163
	9.5
	0.71
	99
	99

	20.0
	20/20
	356
	23.5
	0.79
	99
	100

	
	40/40
	236
	14.4
	0.74
	99
	99

	
	60/60
	179
	10.3
	0.72
	99
	99

	 
	80/80
	154
	9.1
	0.71
	99
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table I.3. Model 3 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	518
	13.6
	0.74
	92
	96

	
	40/40
	453
	17.8
	
	96
	98

	
	60/60
	366
	17.2
	
	96
	97

	
	80/80
	322
	17.5
	
	97
	98

	7.5
	20/20
	491
	16.9
	0.75
	97
	98

	
	40/40
	375
	17.1
	
	98
	99

	
	60/60
	295
	15.3
	
	98
	98

	
	80/80
	242
	13.4
	
	98
	99

	10.0
	20/20
	496
	22.1
	0.76
	99
	99

	
	40/40
	334
	17.4
	
	98
	99

	
	60/60
	260
	14.8
	
	99
	99

	
	80/80
	212
	12.8
	
	99
	99

	12.5
	20/20
	453
	22.3
	0.76
	99
	99

	
	40/40
	301
	16.8
	
	99
	99

	
	60/60
	228
	13.4
	
	99
	99

	
	80/80
	187
	11.7
	
	99
	99

	15.0
	20/20
	418
	21.9
	0.75
	99
	99

	
	40/40
	275
	15.8
	
	99
	100

	
	60/60
	207
	12.2
	
	99
	99

	
	80/80
	170
	10.4
	
	99
	99

	17.5
	20/20
	400
	22.8
	0.75
	99
	99

	
	40/40
	262
	15.9
	
	99
	99

	
	60/60
	190
	11.4
	
	99
	99

	
	80/80
	157
	9.7
	
	99
	99

	20.0
	20/20
	385
	23.1
	0.74
	99
	99

	
	40/40
	239
	14.4
	
	99
	99

	
	60/60
	176
	10.4
	
	99
	99

	 
	80/80
	150
	9.2
	 
	99
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table I.4. Model 4 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	430
	20.7
	0.74
	45
	95

	
	40/40
	
	19.1
	
	91
	98

	
	60/60
	
	20.4
	
	94
	98

	
	80/80
	
	21.8
	
	81
	97

	7.5
	20/20
	362
	20.7
	0.74
	50
	98

	
	40/40
	
	18.7
	
	93
	98

	
	60/60
	
	20.3
	
	96
	99

	
	80/80
	
	22.6
	
	81
	98

	10.0
	20/20
	334
	22.6
	0.75
	60
	99

	
	40/40
	
	20.8
	
	93
	99

	
	60/60
	
	22.9
	
	97
	99

	
	80/80
	
	24.8
	
	83
	98

	12.5
	20/20
	293
	20.9
	0.75
	60
	99

	
	40/40
	
	19.0
	
	94
	99

	
	60/60
	
	21.4
	
	97
	99

	
	80/80
	
	23.1
	
	83
	98

	15.0
	20/20
	268
	19.5
	0.75
	61
	99

	
	40/40
	
	17.8
	
	95
	99

	
	60/60
	
	20.2
	
	98
	99

	
	80/80
	
	21.4
	
	82
	98

	17.5
	20/20
	244
	18.5
	0.75
	62
	99

	
	40/40
	
	16.9
	
	94
	99

	
	60/60
	
	18.7
	
	98
	99

	
	80/80
	
	20.0
	
	83
	98

	20.0
	20/20
	228
	17.0
	0.73
	64
	99

	
	40/40
	
	15.6
	
	94
	99

	
	60/60
	
	17.4
	
	97
	99

	 
	80/80
	 
	18.4
	 
	84
	98


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table I.5. Model 5 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	423
	20.0
	0.74
	46
	95

	
	40/40
	
	
	
	90
	98

	
	60/60
	
	
	
	94
	97

	
	80/80
	
	
	
	78
	98

	7.5
	20/20
	352
	19.7
	0.75
	50
	98

	
	40/40
	
	
	
	91
	99

	
	60/60
	
	
	
	96
	98

	
	80/80
	
	
	
	77
	99

	10.0
	20/20
	320
	21.2
	0.76
	59
	99

	
	40/40
	
	
	
	91
	99

	
	60/60
	
	
	
	97
	99

	
	80/80
	
	
	
	81
	99

	12.5
	20/20
	281
	19.6
	0.76
	59
	99

	
	40/40
	
	
	
	92
	99

	
	60/60
	
	
	
	98
	99

	
	80/80
	
	
	
	81
	99

	15.0
	20/20
	255
	18.2
	0.75
	59
	99

	
	40/40
	
	
	
	92
	100

	
	60/60
	
	
	
	98
	99

	
	80/80
	
	
	
	81
	99

	17.5
	20/20
	235
	17.5
	0.75
	61
	99

	
	40/40
	
	
	
	92
	99

	
	60/60
	
	
	
	98
	99

	
	80/80
	
	
	
	82
	99

	20.0
	20/20
	219
	16.0
	0.74
	62
	99

	
	40/40
	
	
	
	92
	99

	
	60/60
	
	
	
	98
	99

	 
	80/80
	 
	 
	 
	83
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table I.6. Model 6 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	435
	20.7
	87
	86

	
	40/40
	361
	25.3
	92
	86

	
	60/60
	291
	24.0
	92
	86

	
	80/80
	248
	22.6
	94
	87

	7.5
	20/20
	400
	24.4
	93
	89

	
	40/40
	299
	23.4
	93
	87

	
	60/60
	235
	20.1
	95
	88

	
	80/80
	196
	17.9
	95
	88

	10.0
	20/20
	382
	28.7
	97
	91

	
	40/40
	267
	23.3
	95
	88

	
	60/60
	211
	19.8
	96
	91

	
	80/80
	172
	16.2
	96
	87

	12.5
	20/20
	351
	29.4
	97
	92

	
	40/40
	238
	21.6
	96
	90

	
	60/60
	185
	17.2
	96
	89

	
	80/80
	153
	14.5
	95
	86

	15.0
	20/20
	317
	28.3
	97
	92

	
	40/40
	216
	20.3
	97
	89

	
	60/60
	168
	15.6
	97
	89

	
	80/80
	139
	13.1
	95
	84

	17.5
	20/20
	297
	28.6
	98
	92

	
	40/40
	202
	19.7
	97
	91

	
	60/60
	155
	14.6
	96
	88

	
	80/80
	129
	12.1
	94
	83

	20.0
	20/20
	279
	28.8
	98
	92

	
	40/40
	184
	17.8
	96
	87

	
	60/60
	143
	13.1
	95
	85

	 
	80/80
	122
	11.4
	94
	82


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table I.7. Model 7 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	355
	11.0
	83
	86

	
	40/40
	
	24.2
	92
	86

	
	60/60
	
	38.7
	90
	86

	
	80/80
	
	52.1
	90
	87

	7.5
	20/20
	299
	10.1
	87
	89

	
	40/40
	
	23.5
	93
	87

	
	60/60
	
	37.1
	92
	88

	
	80/80
	
	49.2
	88
	88

	10.0
	20/20
	268
	10.1
	89
	91

	
	40/40
	
	23.4
	95
	88

	
	60/60
	
	36.6
	94
	91

	
	80/80
	
	48.7
	89
	87

	12.5
	20/20
	238
	9.2
	89
	92

	
	40/40
	
	21.4
	96
	90

	
	60/60
	
	33.3
	94
	89

	
	80/80
	
	44.1
	87
	86

	15.0
	20/20
	213
	8.4
	88
	92

	
	40/40
	
	19.4
	97
	89

	
	60/60
	
	29.8
	94
	89

	
	80/80
	
	39.4
	86
	84

	17.5
	20/20
	195
	8.0
	88
	92

	
	40/40
	
	17.6
	97
	91

	
	60/60
	
	27.4
	93
	88

	
	80/80
	
	36.0
	85
	83

	20.0
	20/20
	178
	7.2
	86
	92

	
	40/40
	
	16.1
	96
	87

	
	60/60
	
	24.6
	92
	85

	 
	80/80
	 
	32.1
	86
	82


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law. The ML fit for this model is identical to Model 6.



Table I.8. Model 8 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	322
	26
	41
	86

	
	40/40
	
	
	85
	86

	
	60/60
	
	
	90
	86

	
	80/80
	
	
	74
	87

	7.5
	20/20
	268
	25
	46
	89

	
	40/40
	
	
	86
	87

	
	60/60
	
	
	93
	88

	
	80/80
	
	
	74
	88

	10.0
	20/20
	241
	26
	56
	91

	
	40/40
	
	
	88
	88

	
	60/60
	
	
	95
	91

	
	80/80
	
	
	77
	87

	12.5
	20/20
	212
	24
	56
	92

	
	40/40
	
	
	89
	90

	
	60/60
	
	
	95
	89

	
	80/80
	
	
	77
	86

	15.0
	20/20
	193
	22
	57
	92

	
	40/40
	
	
	90
	89

	
	60/60
	
	
	95
	89

	
	80/80
	
	
	77
	84

	17.5
	20/20
	178
	21
	58
	92

	
	40/40
	
	
	90
	91

	
	60/60
	
	
	95
	88

	
	80/80
	
	
	77
	83

	20.0
	20/20
	164
	19
	59
	92

	
	40/40
	
	
	89
	87

	
	60/60
	
	
	93
	85

	 
	80/80
	 
	 
	77
	82


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law. The ML fit for this model is identical to Model 6.




Running Head: ALGORITHMIC MODIFICATIONS TO THE ETBD	1


Table I.9. Extra Sum of Squares Difference Tests at Mutation Rate 5.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	1111
	193
	4
	403
	6*

	3
	  Constant a, c1 = c2
	9
	671
	192
	7
	406
	3*

	4
	  Constant a & c
	6
	33529
	999
	10
	409
	34*

	5
	  Constant a, c & k
	3
	26147
	1003
	13
	412
	26*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	8136
	340
	8
	407
	24*

	7
	 Constant k, a = 1, c1 = c2
	5
	8956
	419
	11
	410
	21*

	8
	 Constant k & c, a = 1, 
	2
	28955
	1159
	14
	413
	25*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table I.10. Extra Sum of Squares Difference Tests at Mutation Rate 7.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	622
	80
	4
	403
	8*

	3
	  Constant a, c1 = c2
	9
	362
	79
	7
	406
	5*

	4
	  Constant a & c
	6
	28369
	766
	10
	409
	37*

	5
	  Constant a, c & k
	3
	22678
	787
	13
	412
	29*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	5217
	175
	8
	407
	30*

	7
	 Constant k, a = 1, c1 = c2
	5
	8034
	288
	11
	410
	28*

	8
	 Constant k & c, a = 1, 
	2
	24172
	891
	14
	413
	27*


Note. N = 416; * p < 0.05 that model 1 is different from this model 

Table I.11. Extra Sum of Squares Difference Tests at Mutation Rate 10.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	62
	40
	4
	403
	2

	3
	  Constant a, c1 = c2
	9
	45
	39
	7
	406
	1

	4
	  Constant a & c
	6
	24932
	648
	10
	409
	38*

	5
	  Constant a, c & k
	3
	20244
	677
	13
	412
	30*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	3165
	101
	8
	407
	31*

	7
	 Constant k, a = 1, c1 = c2
	5
	7256
	233
	11
	410
	31*

	8
	 Constant k & c, a = 1, 
	2
	20965
	749
	14
	413
	28*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table I.12. Extra Sum of Squares Difference Tests at Mutation Rate 12.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	7
	28
	4
	403
	0

	3
	  Constant a, c1 = c2
	9
	26
	28
	7
	406
	1

	4
	  Constant a & c
	6
	19877
	513
	10
	409
	39*

	5
	  Constant a, c & k
	3
	16318
	542
	13
	412
	30*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2237
	71
	8
	407
	31*

	7
	 Constant k, a = 1, c1 = c2
	5
	6021
	189
	11
	410
	32*

	8
	 Constant k & c, a = 1, 
	2
	16782
	596
	14
	413
	28*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table I.13. Extra Sum of Squares Difference Tests at Mutation Rate 15.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	49
	14
	4
	403
	3*

	3
	  Constant a, c1 = c2
	9
	40
	14
	7
	406
	3*

	4
	  Constant a & c
	6
	15449
	391
	10
	409
	39*

	5
	  Constant a, c & k
	3
	12761
	416
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2136
	56
	8
	407
	38*

	7
	 Constant k, a = 1, c1 = c2
	5
	5263
	155
	11
	410
	34*

	8
	 Constant k & c, a = 1, 
	2
	13278
	464
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table I.14. Extra Sum of Squares Difference Tests at Mutation Rate 17.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	22
	10
	4
	403
	2

	3
	  Constant a, c1 = c2
	9
	51
	10
	7
	406
	5*

	4
	  Constant a & c
	6
	13367
	336
	10
	409
	40*

	5
	  Constant a, c & k
	3
	10922
	354
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	1772
	44
	8
	407
	40*

	7
	 Constant k, a = 1, c1 = c2
	5
	4726
	136
	11
	410
	35*

	8
	 Constant k & c, a = 1, 
	2
	11272
	391
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model 

Table I.15. Extra Sum of Squares Difference Tests at Mutation Rate 20.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	63
	9
	4
	403
	7*

	3
	  Constant a, c1 = c2
	9
	81
	10
	7
	406
	8*

	4
	  Constant a & c
	6
	10883
	275
	10
	409
	40*

	5
	  Constant a, c & k
	3
	8903
	289
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	1704
	42
	8
	407
	41*

	7
	 Constant k, a = 1, c1 = c2
	5
	4479
	129
	11
	410
	35*

	8
	 Constant k & c, a = 1, 
	2
	9402
	327
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model 


Table I.16. Akaike Information Criteria (AIC) for Quantitative Law of Effect Fits
	
	
	
	Mutation Rate

	Model
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	16
	2184
	1806
	1542
	1402
	1110
	957
	914

	2
	  c1 = c2
	12
	2201
	1832
	1541
	1395
	1116
	959
	935

	3
	  Constant a, c1 = c2
	9
	2196
	1826
	1537
	1395
	1116
	980
	963

	4
	  Constant a & c
	6
	2878
	2768
	2698
	2601
	2488
	2425
	2341

	5
	  Constant a, c & k
	3
	2877
	2776
	2713
	2621
	2511
	2444
	2360

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2432
	2156
	1926
	1783
	1679
	1584
	1562

	7
	 Constant k, a = 1, c1 = c2
	5
	2516
	2359
	2272
	2184
	2101
	2048
	2024

	8
	 Constant k & c, a = 1
	2
	2936
	2827
	2754
	2659
	2555
	2484
	2410



Table I.17. Akaike Information Criteria (AIC) for Matching Law Fits
	
	
	
	Mutation Rate

	Model(s)
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	12
	-989
	-1099
	-1192
	-1213
	-1299
	-1334
	-1380

	2
	  c1 = c2
	8
	-985
	-1092
	-1197
	-1221
	-1304
	-1340
	-1379

	3, 4, 5
	  Constant a & c
	2
	-996
	-1101
	-1195
	-1215
	-1289
	-1306
	-1324

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	

	6, 7, 8
	  a = 1, c1 = c2
	0
	-668
	-686
	-694
	-709
	-715
	-729
	-737





Table I.18. Bayes Information Criteria (BIC) for Quantitative Law of Effect Fits
	
	
	
	Mutation Rate

	Model
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	16
	2249
	1871
	1607
	1467
	1174
	1022
	978

	2
	  c1 = c2
	12
	2249
	1880
	1589
	1444
	1165
	1007
	984

	3
	  Constant a, c1 = c2
	9
	2232
	1863
	1573
	1431
	1153
	1016
	999

	4
	  Constant a & c
	6
	2902
	2792
	2722
	2625
	2512
	2449
	2365

	5
	  Constant a, c & k
	3
	2889
	2788
	2725
	2633
	2523
	2456
	2372

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2464
	2188
	1958
	1815
	1711
	1616
	1594

	7
	 Constant k, a = 1, c1 = c2
	5
	2536
	2379
	2292
	2204
	2122
	2068
	2045

	8
	 Constant k & c, a = 1
	2
	2944
	2835
	2762
	2667
	2563
	2492
	2418



Table I.19. Bayes Information Criteria (BIC) for Matching Law Fits
	
	
	
	Mutation Rate

	Model(s)
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	12
	-949
	-1059
	-1152
	-1173
	-1259
	-1294
	-1340

	2
	  c1 = c2
	8
	-958
	-1065
	-1170
	-1194
	-1278
	-1313
	-1352

	3, 4, 5
	  Constant a & c
	2
	-990
	-1095
	-1188
	-1208
	-1283
	-1299
	-1317

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	
	

	6, 7, 8
	  a = 1, c1 = c2
	0
	-668
	-686
	-694
	-709
	-715
	-729
	-737






Table I.20. Quadratic Fit to Changeover Behaviors

	Mutation Rate
	Reinforcer Magnitude
	a
	b
	c
	CMax
	CΔ
	%VAF

	5.0
	20/20
	0.1
	-0.1
	0.0
	0.0
	0.0
	1

	
	40/40
	0.0
	0.0
	0.0
	0.0
	0.0
	0

	
	60/60
	0.0
	-0.1
	0.1
	0.0
	0.0
	1

	
	80/80
	0.0
	0.0
	0.1
	0.1
	0.0
	1

	7.5
	20/20
	0.0
	-0.1
	0.1
	0.1
	0.0
	1

	
	40/40
	0.1
	-0.1
	0.1
	0.1
	0.0
	0

	
	60/60
	0.0
	0.0
	0.1
	0.1
	0.0
	1

	
	80/80
	0.0
	0.0
	0.1
	0.2
	0.0
	1

	10.0
	20/20
	-0.3
	0.3
	0.1
	0.2
	0.1
	2

	
	40/40
	-0.1
	0.1
	0.1
	0.2
	0.0
	0

	
	60/60
	-0.3
	0.3
	0.1
	0.2
	0.1
	1

	
	80/80
	-0.3
	0.3
	0.2
	0.3
	0.1
	1

	12.5
	20/20
	-0.6
	0.5
	0.1
	0.3
	0.1
	3

	
	40/40
	-0.5
	0.4
	0.2
	0.3
	0.1
	2

	
	60/60
	-0.7
	0.6
	0.2
	0.3
	0.2
	2

	
	80/80
	-0.8
	0.8
	0.2
	0.4
	0.2
	2

	15.0
	20/20
	-0.9
	0.9
	0.2
	0.4
	0.2
	4

	
	40/40
	-1.0
	1.0
	0.2
	0.4
	0.2
	3

	
	60/60
	-1.0
	1.0
	0.2
	0.5
	0.3
	3

	
	80/80
	-0.7
	0.6
	0.4
	0.5
	0.1
	1

	17.5
	20/20
	-1.5
	1.4
	0.2
	0.6
	0.3
	5

	
	40/40
	-1.8
	1.8
	0.2
	0.6
	0.5
	6

	
	60/60
	-1.2
	1.1
	0.4
	0.6
	0.3
	2

	
	80/80
	-1.2
	1.2
	0.4
	0.7
	0.3
	1

	20.0
	20/20
	-1.8
	1.7
	0.3
	0.7
	0.4
	5

	
	40/40
	-2.2
	2.1
	0.3
	0.8
	0.5
	5

	
	60/60
	-1.6
	1.6
	0.4
	0.8
	0.4
	2

	 
	80/80
	-1.7
	1.6
	0.6
	1.0
	0.4
	2


Note. %VAF = Percentage of Variance Accounted For.


Table I.21. Quadratic-exponential Fit to Changeover Behaviors

	Mutation Rate
	Reinforcer Magnitude
	a
	b
	c
	d
	CMax
	CΔ%
	%VAF

	5.0
	20/20
	-0.6
	0.5
	0.6
	0.067
	0.7
	21%
	93

	
	40/40
	-0.1
	0.0
	0.7
	0.063
	0.7
	0%
	97

	
	60/60
	0.3
	-0.3
	0.6
	0.053
	0.6
	-13%
	95

	
	80/80
	0.2
	-0.1
	0.6
	0.047
	0.6
	-2%
	96

	7.5
	20/20
	0.7
	-0.8
	1.4
	0.057
	1.4
	-17%
	98

	
	40/40
	1.0
	-1.2
	1.5
	0.056
	1.5
	-22%
	96

	
	60/60
	1.3
	-1.5
	1.5
	0.051
	1.5
	-26%
	98

	
	80/80
	0.8
	-1.0
	1.5
	0.045
	1.5
	-20%
	98

	10.0
	20/20
	1.4
	-1.5
	2.2
	0.054
	2.2
	-19%
	98

	
	40/40
	1.8
	-1.7
	2.2
	0.051
	2.2
	-18%
	98

	
	60/60
	2.1
	-2.1
	2.4
	0.050
	2.4
	-23%
	98

	
	80/80
	1.5
	-1.7
	2.4
	0.044
	2.4
	-19%
	97

	12.5
	20/20
	0.2
	-0.3
	2.6
	0.048
	2.6
	-4%
	98

	
	40/40
	3.1
	-3.5
	3.6
	0.049
	3.6
	-27%
	97

	
	60/60
	1.8
	-1.8
	3.3
	0.046
	3.3
	-14%
	98

	
	80/80
	0.8
	-0.7
	3.0
	0.040
	3.0
	-5%
	97

	15.0
	20/20
	1.3
	-1.3
	3.6
	0.044
	3.6
	-9%
	98

	
	40/40
	3.0
	-3.1
	4.0
	0.043
	4.0
	-20%
	99

	
	60/60
	0.7
	-0.7
	3.5
	0.040
	3.5
	-4%
	97

	
	80/80
	2.5
	-2.7
	4.0
	0.036
	4.0
	-18%
	98

	17.5
	20/20
	1.9
	-1.9
	4.3
	0.039
	4.3
	-11%
	98

	
	40/40
	2.9
	-2.9
	4.8
	0.040
	4.8
	-15%
	99

	
	60/60
	3.9
	-4.4
	5.6
	0.040
	5.6
	-22%
	98

	
	80/80
	4.6
	-4.7
	5.8
	0.038
	5.8
	-20%
	97

	20.0
	20/20
	2.6
	-3.0
	5.3
	0.038
	5.3
	-16%
	98

	
	40/40
	2.4
	-2.4
	6.0
	0.040
	6.0
	-10%
	97

	
	60/60
	1.9
	-1.9
	5.8
	0.037
	5.8
	-9%
	98

	 
	80/80
	5.5
	-5.3
	6.8
	0.036
	6.8
	-19%
	97


Note. %VAF = Percentage of Variance Accounted For.



[bookmark: _Toc536370722]Appendix J: Experiment 1 Fitting Measures of the Linear-Clone-Pheno-Linear Creature Type

Table J.1. Model 1 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	
	%VAF

	
	
	k
	c1
	c2
	a
	QLOE
	ML

	5.0
	20/20
	522
	13.0
	13.5
	0.74
	96
	97

	
	40/40
	458
	17.4
	18.7
	0.76
	97
	98

	
	60/60
	394
	18.5
	19.0
	0.74
	97
	98

	
	80/80
	357
	19.1
	19.7
	0.72
	98
	99

	7.5
	20/20
	498
	17.6
	18.0
	0.77
	97
	98

	
	40/40
	420
	20.8
	21.6
	0.77
	98
	99

	
	60/60
	318
	17.6
	17.7
	0.76
	99
	99

	
	80/80
	263
	15.9
	15.9
	0.76
	99
	99

	10.0
	20/20
	475
	21.3
	21.1
	0.78
	99
	99

	
	40/40
	363
	20.6
	21.3
	0.78
	99
	99

	
	60/60
	279
	16.7
	16.7
	0.76
	99
	99

	
	80/80
	225
	13.5
	13.8
	0.74
	99
	99

	12.5
	20/20
	461
	24.7
	25.3
	0.80
	99
	100

	
	40/40
	329
	20.3
	20.9
	0.78
	99
	99

	
	60/60
	249
	16.0
	16.0
	0.76
	99
	99

	
	80/80
	201
	12.4
	12.5
	0.73
	99
	99

	15.0
	20/20
	432
	25.4
	25.8
	0.79
	99
	100

	
	40/40
	293
	18.2
	18.4
	0.77
	99
	100

	
	60/60
	221
	14.5
	14.6
	0.77
	99
	99

	
	80/80
	182
	11.3
	11.2
	0.72
	99
	100

	17.5
	20/20
	408
	26.4
	26.9
	0.79
	99
	100

	
	40/40
	269
	17.4
	17.1
	0.76
	99
	100

	
	60/60
	204
	12.8
	12.9
	0.74
	99
	99

	
	80/80
	165
	9.8
	9.8
	0.71
	99
	100

	20.0
	20/20
	383
	25.5
	25.8
	0.78
	100
	100

	
	40/40
	251
	16.4
	16.5
	0.75
	99
	100

	
	60/60
	187
	11.1
	11.2
	0.72
	99
	100

	 
	80/80
	154
	9.1
	9.1
	0.70
	99
	100


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law

Table J.2. Model 2 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	521
	13.2
	0.74
	96
	97

	
	40/40
	455
	18.6
	0.77
	96
	98

	
	60/60
	394
	18.8
	0.74
	97
	98

	
	80/80
	356
	19.5
	0.72
	98
	99

	7.5
	20/20
	497
	17.9
	0.77
	97
	98

	
	40/40
	419
	21.4
	0.77
	98
	99

	
	60/60
	318
	17.6
	0.76
	99
	99

	
	80/80
	263
	15.9
	0.76
	99
	99

	10.0
	20/20
	475
	21.2
	0.78
	99
	99

	
	40/40
	363
	21.1
	0.78
	99
	99

	
	60/60
	279
	16.7
	0.76
	99
	99

	
	80/80
	225
	13.8
	0.74
	99
	99

	12.5
	20/20
	461
	25.1
	0.80
	99
	100

	
	40/40
	329
	20.7
	0.78
	99
	99

	
	60/60
	249
	16.0
	0.76
	99
	99

	
	80/80
	201
	12.4
	0.73
	99
	99

	15.0
	20/20
	432
	25.6
	0.79
	99
	100

	
	40/40
	293
	18.3
	0.77
	99
	100

	
	60/60
	221
	14.6
	0.77
	99
	99

	
	80/80
	182
	11.2
	0.72
	99
	100

	17.5
	20/20
	408
	26.7
	0.79
	99
	100

	
	40/40
	269
	17.3
	0.76
	99
	100

	
	60/60
	204
	12.8
	0.74
	99
	99

	
	80/80
	165
	9.8
	0.71
	99
	100

	20.0
	20/20
	353
	21.7
	0.78
	99
	100

	
	40/40
	249
	16.2
	0.75
	99
	100

	
	60/60
	185
	11.0
	0.72
	99
	100

	 
	80/80
	149
	8.2
	0.70
	99
	100


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table J.3. Model 3 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	520
	13.2
	0.74
	96
	97

	
	40/40
	468
	18.0
	
	96
	98

	
	60/60
	392
	18.8
	
	97
	98

	
	80/80
	346
	19.7
	
	98
	99

	7.5
	20/20
	501
	17.7
	0.76
	97
	98

	
	40/40
	422
	21.3
	
	98
	99

	
	60/60
	316
	17.7
	
	99
	99

	
	80/80
	261
	16.0
	
	99
	99

	10.0
	20/20
	485
	20.8
	0.76
	99
	99

	
	40/40
	373
	20.8
	
	99
	99

	
	60/60
	276
	16.8
	
	99
	99

	
	80/80
	219
	13.9
	
	99
	99

	12.5
	20/20
	484
	24.6
	0.77
	99
	99

	
	40/40
	337
	20.5
	
	99
	99

	
	60/60
	247
	16.0
	
	99
	99

	
	80/80
	193
	12.7
	
	99
	99

	15.0
	20/20
	454
	25.2
	0.76
	99
	99

	
	40/40
	296
	18.2
	
	99
	100

	
	60/60
	223
	14.5
	
	99
	99

	
	80/80
	174
	11.4
	
	99
	99

	17.5
	20/20
	445
	26.4
	0.75
	99
	99

	
	40/40
	275
	17.2
	
	99
	99

	
	60/60
	202
	12.9
	
	99
	99

	
	80/80
	159
	10.0
	
	99
	99

	20.0
	20/20
	419
	25.6
	0.73
	99
	99

	
	40/40
	258
	16.4
	
	99
	100

	
	60/60
	183
	11.2
	
	99
	100

	 
	80/80
	149
	9.2
	 
	99
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table J.4. Model 4 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	453
	22.6
	0.74
	55
	97

	
	40/40
	
	19.3
	
	92
	97

	
	60/60
	
	22.8
	
	96
	98

	
	80/80
	
	24.4
	
	82
	98

	7.5
	20/20
	402
	24.6
	0.75
	57
	98

	
	40/40
	
	21.8
	
	95
	99

	
	60/60
	
	25.5
	
	97
	99

	
	80/80
	
	28.1
	
	82
	98

	10.0
	20/20
	348
	24.8
	0.76
	62
	99

	
	40/40
	
	21.9
	
	93
	99

	
	60/60
	
	25.3
	
	98
	99

	
	80/80
	
	27.3
	
	83
	98

	12.5
	20/20
	328
	25.9
	0.76
	62
	99

	
	40/40
	
	22.8
	
	95
	99

	
	60/60
	
	26.4
	
	98
	99

	
	80/80
	
	28.7
	
	83
	98

	15.0
	20/20
	292
	23.3
	0.75
	62
	99

	
	40/40
	
	21.1
	
	94
	99

	
	60/60
	
	23.6
	
	98
	99

	
	80/80
	
	26.1
	
	82
	98

	17.5
	20/20
	262
	21.0
	0.74
	62
	99

	
	40/40
	
	19.5
	
	93
	99

	
	60/60
	
	21.2
	
	98
	99

	
	80/80
	
	22.9
	
	82
	98

	20.0
	20/20
	240
	18.9
	0.73
	61
	99

	
	40/40
	
	17.2
	
	93
	99

	
	60/60
	
	18.9
	
	98
	100

	 
	80/80
	 
	20.5
	 
	83
	98


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table J.5. Model 5 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	434
	21.3
	0.75
	55
	97

	
	40/40
	
	
	
	88
	98

	
	60/60
	
	
	
	96
	98

	
	80/80
	
	
	
	79
	99

	7.5
	20/20
	380
	23.2
	0.76
	55
	98

	
	40/40
	
	
	
	91
	99

	
	60/60
	
	
	
	97
	99

	
	80/80
	
	
	
	79
	99

	10.0
	20/20
	329
	23.0
	0.76
	60
	99

	
	40/40
	
	
	
	90
	99

	
	60/60
	
	
	
	98
	99

	
	80/80
	
	
	
	81
	99

	12.5
	20/20
	310
	24.2
	0.76
	60
	99

	
	40/40
	
	
	
	91
	99

	
	60/60
	
	
	
	98
	99

	
	80/80
	
	
	
	81
	99

	15.0
	20/20
	276
	21.9
	0.76
	60
	99

	
	40/40
	
	
	
	92
	100

	
	60/60
	
	
	
	98
	99

	
	80/80
	
	
	
	81
	99

	17.5
	20/20
	250
	19.8
	0.75
	60
	99

	
	40/40
	
	
	
	91
	99

	
	60/60
	
	
	
	98
	99

	
	80/80
	
	
	
	81
	99

	20.0
	20/20
	230
	17.8
	0.73
	59
	99

	
	40/40
	
	
	
	91
	100

	
	60/60
	
	
	
	98
	100

	 
	80/80
	 
	 
	 
	81
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table J.6. Model 6 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	425
	18.8
	92
	87

	
	40/40
	371
	25.8
	93
	89

	
	60/60
	303
	25.4
	93
	87

	
	80/80
	262
	25.0
	94
	84

	7.5
	20/20
	414
	25.3
	94
	91

	
	40/40
	329
	27.8
	97
	90

	
	60/60
	252
	23.2
	96
	90

	
	80/80
	209
	20.5
	96
	89

	10.0
	20/20
	383
	27.9
	97
	92

	
	40/40
	289
	26.6
	97
	91

	
	60/60
	219
	21.3
	97
	89

	
	80/80
	176
	17.3
	95
	87

	12.5
	20/20
	370
	31.9
	98
	93

	
	40/40
	262
	26.1
	97
	92

	
	60/60
	196
	19.8
	97
	89

	
	80/80
	157
	15.7
	95
	86

	15.0
	20/20
	341
	32.0
	98
	93

	
	40/40
	228
	22.4
	97
	90

	
	60/60
	177
	18.1
	97
	90

	
	80/80
	142
	14.1
	95
	85

	17.5
	20/20
	318
	32.3
	98
	93

	
	40/40
	210
	21.4
	97
	90

	
	60/60
	159
	15.8
	96
	87

	
	80/80
	130
	12.3
	94
	82

	20.0
	20/20
	291
	30.8
	98
	92

	
	40/40
	193
	19.8
	97
	88

	
	60/60
	146
	14.0
	94
	84

	 
	80/80
	121
	11.3
	93
	81


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table J.7. Model 7 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	358
	10.6
	89
	87

	
	40/40
	
	23.4
	93
	89

	
	60/60
	
	37.9
	91
	87

	
	80/80
	
	51.1
	90
	84

	7.5
	20/20
	321
	11.9
	90
	91

	
	40/40
	
	26.2
	97
	90

	
	60/60
	
	41.8
	93
	90

	
	80/80
	
	55.6
	90
	89

	10.0
	20/20
	276
	10.5
	91
	92

	
	40/40
	
	23.4
	97
	91

	
	60/60
	
	37.9
	94
	89

	
	80/80
	
	50.5
	88
	87

	12.5
	20/20
	254
	10.7
	91
	93

	
	40/40
	
	23.9
	97
	92

	
	60/60
	
	38.0
	94
	89

	
	80/80
	
	50.0
	87
	86

	15.0
	20/20
	225
	9.5
	89
	93

	
	40/40
	
	21.5
	97
	90

	
	60/60
	
	33.4
	94
	90

	
	80/80
	
	44.0
	86
	85

	17.5
	20/20
	201
	8.3
	87
	93

	
	40/40
	
	18.8
	97
	90

	
	60/60
	
	29.4
	93
	87

	
	80/80
	
	38.5
	84
	82

	20.0
	20/20
	183
	7.5
	86
	92

	
	40/40
	
	16.9
	96
	88

	
	60/60
	
	26.2
	91
	84

	 
	80/80
	 
	34.4
	83
	81


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law. The ML fit for this model is identical to Model 6.



Table J.8. Model 8 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	330
	28
	52
	87

	
	40/40
	
	
	86
	89

	
	60/60
	
	
	91
	87

	
	80/80
	
	
	75
	84

	7.5
	20/20
	287
	29
	51
	91

	
	40/40
	
	
	90
	90

	
	60/60
	
	
	94
	90

	
	80/80
	
	
	77
	89

	10.0
	20/20
	246
	28
	58
	92

	
	40/40
	
	
	88
	91

	
	60/60
	
	
	96
	89

	
	80/80
	
	
	77
	87

	12.5
	20/20
	228
	28
	58
	93

	
	40/40
	
	
	89
	92

	
	60/60
	
	
	96
	89

	
	80/80
	
	
	77
	86

	15.0
	20/20
	203
	25
	57
	93

	
	40/40
	
	
	90
	90

	
	60/60
	
	
	96
	90

	
	80/80
	
	
	77
	85

	17.5
	20/20
	183
	23
	58
	93

	
	40/40
	
	
	88
	90

	
	60/60
	
	
	95
	87

	
	80/80
	
	
	75
	82

	20.0
	20/20
	167
	21
	57
	92

	
	40/40
	
	
	88
	88

	
	60/60
	
	
	93
	84

	 
	80/80
	 
	 
	75
	81


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law. The ML fit for this model is identical to Model 6.




Running Head: ALGORITHMIC MODIFICATIONS TO THE ETBD	1


Table J.9. Extra Sum of Squares Difference Tests at Mutation Rate 5.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	763
	143
	4
	403
	5*

	3
	  Constant a, c1 = c2
	9
	457
	142
	7
	406
	3*

	4
	  Constant a & c
	6
	35023
	990
	10
	409
	35*

	5
	  Constant a, c & k
	3
	29025
	1048
	13
	412
	28*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	8602
	303
	8
	407
	28*

	7
	 Constant k, a = 1, c1 = c2
	5
	8912
	372
	11
	410
	24*

	8
	 Constant k & c, a = 1, 
	2
	30767
	1175
	14
	413
	26*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table J.10. Extra Sum of Squares Difference Tests at Mutation Rate 7.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	190
	73
	4
	403
	3*

	3
	  Constant a, c1 = c2
	9
	98
	72
	7
	406
	1

	4
	  Constant a & c
	6
	28657
	771
	10
	409
	37*

	5
	  Constant a, c & k
	3
	24412
	840
	13
	412
	29*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	4362
	156
	8
	407
	28*

	7
	 Constant k, a = 1, c1 = c2
	5
	6961
	257
	11
	410
	27*

	8
	 Constant k & c, a = 1, 
	2
	25681
	940
	14
	413
	27*


Note. N = 416; * p < 0.05 that model 1 is different from this model 

Table J.11. Extra Sum of Squares Difference Tests at Mutation Rate 10.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	79
	36
	4
	403
	2

	3
	  Constant a, c1 = c2
	9
	53
	36
	7
	406
	1

	4
	  Constant a & c
	6
	25700
	663
	10
	409
	39*

	5
	  Constant a, c & k
	3
	21348
	708
	13
	412
	30*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2985
	94
	8
	407
	32*

	7
	 Constant k, a = 1, c1 = c2
	5
	6424
	207
	11
	410
	31*

	8
	 Constant k & c, a = 1, 
	2
	21744
	772
	14
	413
	28*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table J.12. Extra Sum of Squares Difference Tests at Mutation Rate 12.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	104
	19
	4
	403
	5*

	3
	  Constant a, c1 = c2
	9
	94
	20
	7
	406
	5*

	4
	  Constant a & c
	6
	23118
	583
	10
	409
	40*

	5
	  Constant a, c & k
	3
	19252
	625
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2324
	64
	8
	407
	36*

	7
	 Constant k, a = 1, c1 = c2
	5
	6456
	191
	11
	410
	34*

	8
	 Constant k & c, a = 1, 
	2
	19590
	682
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table J.13. Extra Sum of Squares Difference Tests at Mutation Rate 15.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	20
	13
	4
	403
	2

	3
	  Constant a, c1 = c2
	9
	39
	13
	7
	406
	3*

	4
	  Constant a & c
	6
	18065
	454
	10
	409
	40*

	5
	  Constant a, c & k
	3
	15068
	488
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2033
	52
	8
	407
	39*

	7
	 Constant k, a = 1, c1 = c2
	5
	5821
	169
	11
	410
	35*

	8
	 Constant k & c, a = 1, 
	2
	15492
	537
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table J.14. Extra Sum of Squares Difference Tests at Mutation Rate 17.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	37
	11
	4
	403
	4*

	3
	  Constant a, c1 = c2
	9
	87
	12
	7
	406
	8*

	4
	  Constant a & c
	6
	15837
	397
	10
	409
	40*

	5
	  Constant a, c & k
	3
	12923
	418
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	1817
	46
	8
	407
	40*

	7
	 Constant k, a = 1, c1 = c2
	5
	5623
	161
	11
	410
	35*

	8
	 Constant k & c, a = 1, 
	2
	13254
	459
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model 

Table J.15. Extra Sum of Squares Difference Tests at Mutation Rate 20.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	108
	8
	4
	403
	13*

	3
	  Constant a, c1 = c2
	9
	73
	8
	7
	406
	9*

	4
	  Constant a & c
	6
	12510
	313
	10
	409
	40*

	5
	  Constant a, c & k
	3
	10208
	329
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	1738
	41
	8
	407
	42*

	7
	 Constant k, a = 1, c1 = c2
	5
	4826
	136
	11
	410
	35*

	8
	 Constant k & c, a = 1, 
	2
	10587
	366
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model 


Table J.16. Akaike Information Criteria (AIC) for Quantitative Law of Effect Fits
	
	
	
	Mutation Rate

	Model
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	16
	2061
	1793
	1501
	1231
	1074
	985
	832

	2
	  c1 = c2
	12
	2075
	1795
	1502
	1245
	1073
	991
	882

	3
	  Constant a, c1 = c2
	9
	2070
	1788
	1498
	1252
	1082
	1028
	886

	4
	  Constant a & c
	6
	2874
	2770
	2708
	2654
	2550
	2495
	2395

	5
	  Constant a, c & k
	3
	2895
	2803
	2732
	2680
	2577
	2512
	2413

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2384
	2108
	1895
	1736
	1654
	1598
	1553

	7
	 Constant k, a = 1, c1 = c2
	5
	2466
	2312
	2222
	2190
	2137
	2118
	2049

	8
	 Constant k & c, a = 1
	2
	2942
	2849
	2767
	2715
	2616
	2551
	2456



Table J.17. Akaike Information Criteria (AIC) for Matching Law Fits
	
	
	
	Mutation Rate

	Model(s)
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	12
	-1026
	-1138
	-1207
	-1261
	-1335
	-1380
	-1470

	2
	  c1 = c2
	8
	-1025
	-1142
	-1213
	-1268
	-1340
	-1385
	-1474

	3, 4, 5
	  Constant a & c
	2
	-1034
	-1151
	-1211
	-1245
	-1309
	-1321
	-1397

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	

	6, 7, 8
	  a = 1, c1 = c2
	0
	-672
	-691
	-705
	-711
	-727
	-737
	-750





Table J.18. Bayes Information Criteria (BIC) for Quantitative Law of Effect Fits
	
	
	
	Mutation Rate

	Model
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	16
	2125
	1857
	1566
	1295
	1139
	1049
	896

	2
	  c1 = c2
	12
	2124
	1844
	1551
	1294
	1121
	1040
	931

	3
	  Constant a, c1 = c2
	9
	2107
	1825
	1534
	1288
	1118
	1065
	922

	4
	  Constant a & c
	6
	2898
	2794
	2732
	2679
	2574
	2519
	2419

	5
	  Constant a, c & k
	3
	2907
	2815
	2744
	2693
	2589
	2525
	2425

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2416
	2140
	1927
	1769
	1687
	1630
	1585

	7
	 Constant k, a = 1, c1 = c2
	5
	2487
	2332
	2243
	2210
	2157
	2138
	2069

	8
	 Constant k & c, a = 1
	2
	2950
	2857
	2775
	2723
	2624
	2559
	2464



Table J.19. Bayes Information Criteria (BIC) for Matching Law Fits
	
	
	
	Mutation Rate

	Model(s)
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	12
	-986
	-1097
	-1167
	-1221
	-1295
	-1340
	-1430

	2
	  c1 = c2
	8
	-998
	-1116
	-1187
	-1242
	-1313
	-1358
	-1448

	3, 4, 5
	  Constant a & c
	2
	-1027
	-1145
	-1204
	-1238
	-1302
	-1315
	-1390

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	
	

	6, 7, 8
	  a = 1, c1 = c2
	0
	-672
	-691
	-705
	-711
	-727
	-737
	-750






Table J.20. Quadratic Fit to Changeover Behaviors

	Mutation Rate
	Reinforcer Magnitude
	a
	b
	c
	CMax
	CΔ
	%VAF

	5.0
	20/20
	-0.1
	0.1
	0.0
	0.0
	0.0
	1

	
	40/40
	0.0
	0.0
	0.1
	0.1
	0.0
	1

	
	60/60
	0.0
	0.0
	0.1
	0.1
	0.0
	0

	
	80/80
	0.0
	0.0
	0.1
	0.1
	0.0
	0

	7.5
	20/20
	-0.1
	0.1
	0.1
	0.1
	0.0
	0

	
	40/40
	-0.2
	0.1
	0.1
	0.1
	0.0
	2

	
	60/60
	-0.2
	0.2
	0.1
	0.1
	0.0
	1

	
	80/80
	-0.2
	0.2
	0.1
	0.2
	0.1
	1

	10.0
	20/20
	-0.4
	0.4
	0.1
	0.2
	0.1
	2

	
	40/40
	-0.4
	0.4
	0.1
	0.2
	0.1
	2

	
	60/60
	-0.5
	0.5
	0.2
	0.3
	0.1
	2

	
	80/80
	-0.4
	0.3
	0.2
	0.3
	0.1
	1

	12.5
	20/20
	-1.0
	0.9
	0.2
	0.4
	0.2
	5

	
	40/40
	-0.9
	0.8
	0.2
	0.4
	0.2
	4

	
	60/60
	-1.0
	1.0
	0.2
	0.4
	0.3
	4

	
	80/80
	-0.8
	0.8
	0.3
	0.5
	0.2
	2

	15.0
	20/20
	-1.3
	1.3
	0.2
	0.5
	0.3
	5

	
	40/40
	-1.8
	1.7
	0.2
	0.6
	0.4
	6

	
	60/60
	-1.5
	1.5
	0.3
	0.6
	0.4
	4

	
	80/80
	-1.2
	1.3
	0.4
	0.7
	0.3
	2

	17.5
	20/20
	-2.4
	2.3
	0.2
	0.8
	0.6
	9

	
	40/40
	-1.9
	2.0
	0.3
	0.8
	0.5
	5

	
	60/60
	-1.9
	2.0
	0.3
	0.8
	0.5
	4

	
	80/80
	-1.3
	1.3
	0.6
	0.9
	0.3
	1

	20.0
	20/20
	-2.8
	2.8
	0.3
	1.0
	0.7
	7

	
	40/40
	-2.7
	2.6
	0.4
	1.0
	0.6
	6

	
	60/60
	-1.9
	1.8
	0.6
	1.0
	0.4
	2

	 
	80/80
	-2.0
	1.9
	0.7
	1.2
	0.5
	2


Note. %VAF = Percentage of Variance Accounted For.


Table J.21. Quadratic-exponential Fit to Changeover Behaviors

	Mutation Rate
	Reinforcer Magnitude
	a
	b
	c
	d
	CMax
	CΔ%
	%VAF

	5.0
	20/20
	-0.1
	0.0
	0.6
	0.052
	0.6
	-6%
	98

	
	40/40
	0.6
	-0.5
	0.8
	0.055
	0.8
	-14%
	97

	
	60/60
	0.5
	-0.4
	0.7
	0.050
	0.7
	-11%
	96

	
	80/80
	1.2
	-1.2
	1.0
	0.045
	1.0
	-29%
	97

	7.5
	20/20
	-0.6
	0.5
	1.2
	0.049
	1.3
	8%
	98

	
	40/40
	1.1
	-1.2
	1.6
	0.049
	1.6
	-22%
	98

	
	60/60
	-0.1
	0.0
	1.3
	0.043
	1.3
	-1%
	97

	
	80/80
	1.5
	-1.4
	1.9
	0.047
	1.9
	-16%
	97

	10.0
	20/20
	1.3
	-1.2
	2.1
	0.043
	2.1
	-14%
	98

	
	40/40
	1.2
	-1.1
	2.2
	0.044
	2.2
	-12%
	98

	
	60/60
	1.9
	-1.8
	2.6
	0.045
	2.6
	-16%
	97

	
	80/80
	1.6
	-1.4
	2.5
	0.039
	2.5
	-13%
	97

	12.5
	20/20
	2.5
	-2.4
	3.4
	0.043
	3.4
	-17%
	98

	
	40/40
	2.1
	-2.0
	3.3
	0.042
	3.3
	-14%
	98

	
	60/60
	2.2
	-2.1
	3.3
	0.039
	3.3
	-14%
	98

	
	80/80
	2.0
	-1.8
	3.5
	0.037
	3.5
	-11%
	97

	15.0
	20/20
	3.5
	-3.5
	4.4
	0.039
	4.4
	-20%
	99

	
	40/40
	3.3
	-3.7
	4.9
	0.040
	4.9
	-21%
	98

	
	60/60
	2.5
	-2.6
	4.6
	0.038
	4.6
	-15%
	98

	
	80/80
	2.7
	-2.7
	5.1
	0.038
	5.1
	-13%
	96

	17.5
	20/20
	2.9
	-2.5
	5.1
	0.038
	5.1
	-11%
	98

	
	40/40
	2.5
	-2.9
	5.4
	0.036
	5.4
	-16%
	97

	
	60/60
	3.1
	-2.9
	5.3
	0.035
	5.3
	-13%
	98

	
	80/80
	2.8
	-2.6
	5.4
	0.032
	5.4
	-12%
	97

	20.0
	20/20
	2.7
	-2.5
	6.1
	0.036
	6.1
	-9%
	97

	
	40/40
	3.0
	-2.9
	6.3
	0.035
	6.3
	-12%
	97

	
	60/60
	3.8
	-3.8
	6.5
	0.033
	6.5
	-15%
	98

	 
	80/80
	3.1
	-3.2
	7.1
	0.032
	7.1
	-12%
	96


Note. %VAF = Percentage of Variance Accounted For.


[bookmark: _Toc536370723]Appendix K: Experiment 1 Fitting Measures of the Linear-Clone-Pheno-Exponential Creature Type

Table K.1. Model 1 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	
	%VAF

	
	
	k
	c1
	c2
	a
	QLOE
	ML

	5.0
	20/20
	544
	13.3
	13.7
	0.74
	99
	99

	
	40/40
	510
	18.8
	19.5
	0.74
	99
	99

	
	60/60
	461
	21.4
	22.1
	0.72
	99
	99

	
	80/80
	419
	23.2
	23.6
	0.72
	99
	99

	7.5
	20/20
	538
	18.0
	18.4
	0.75
	100
	100

	
	40/40
	459
	21.5
	21.9
	0.75
	99
	99

	
	60/60
	394
	22.5
	22.3
	0.73
	99
	99

	
	80/80
	324
	19.0
	19.1
	0.71
	99
	99

	10.0
	20/20
	521
	22.2
	22.4
	0.76
	99
	100

	
	40/40
	427
	23.4
	23.5
	0.74
	99
	99

	
	60/60
	331
	19.7
	19.5
	0.73
	99
	99

	
	80/80
	273
	16.8
	16.7
	0.70
	99
	99

	12.5
	20/20
	509
	24.8
	24.9
	0.76
	100
	100

	
	40/40
	378
	21.9
	22.0
	0.74
	99
	100

	
	60/60
	291
	18.6
	18.5
	0.73
	99
	99

	
	80/80
	233
	14.3
	14.4
	0.70
	99
	99

	15.0
	20/20
	477
	26.4
	26.4
	0.77
	100
	100

	
	40/40
	343
	20.7
	20.7
	0.73
	99
	100

	
	60/60
	260
	16.0
	15.9
	0.70
	99
	99

	
	80/80
	209
	12.9
	12.9
	0.68
	99
	99

	17.5
	20/20
	459
	26.8
	26.8
	0.75
	100
	100

	
	40/40
	319
	20.2
	20.2
	0.72
	99
	99

	
	60/60
	236
	14.7
	14.6
	0.70
	99
	99

	
	80/80
	190
	11.6
	11.6
	0.67
	99
	100

	20.0
	20/20
	434
	27.0
	26.9
	0.75
	100
	100

	
	40/40
	290
	18.4
	18.3
	0.72
	99
	100

	
	60/60
	219
	13.5
	13.5
	0.68
	99
	99

	 
	80/80
	174
	10.4
	10.4
	0.66
	99
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law

Table K.2. Model 2 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	544
	13.5
	0.74
	99
	99

	
	40/40
	509
	19.3
	0.74
	99
	99

	
	60/60
	460
	21.8
	0.73
	99
	99

	
	80/80
	418
	23.4
	0.72
	99
	99

	7.5
	20/20
	538
	18.2
	0.75
	100
	100

	
	40/40
	459
	21.7
	0.75
	99
	99

	
	60/60
	394
	22.4
	0.73
	99
	99

	
	80/80
	324
	19.1
	0.71
	99
	99

	10.0
	20/20
	522
	22.3
	0.76
	99
	100

	
	40/40
	427
	23.5
	0.74
	99
	99

	
	60/60
	331
	19.7
	0.73
	99
	99

	
	80/80
	273
	16.7
	0.70
	99
	99

	12.5
	20/20
	509
	24.8
	0.76
	100
	100

	
	40/40
	378
	21.9
	0.74
	99
	100

	
	60/60
	291
	18.5
	0.73
	99
	99

	
	80/80
	233
	14.3
	0.70
	99
	99

	15.0
	20/20
	477
	26.4
	0.77
	100
	100

	
	40/40
	343
	20.7
	0.73
	99
	100

	
	60/60
	260
	15.9
	0.70
	99
	99

	
	80/80
	209
	12.9
	0.68
	99
	99

	17.5
	20/20
	459
	26.8
	0.75
	100
	100

	
	40/40
	319
	20.2
	0.72
	99
	99

	
	60/60
	236
	14.7
	0.70
	99
	99

	
	80/80
	190
	11.6
	0.67
	99
	100

	20.0
	20/20
	434
	27.0
	0.75
	100
	100

	
	40/40
	290
	18.4
	0.72
	99
	100

	
	60/60
	219
	13.5
	0.68
	99
	99

	 
	80/80
	174
	10.4
	0.66
	99
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table K.3. Model 3 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	549
	13.4
	0.73
	99
	99

	
	40/40
	514
	19.2
	
	98
	99

	
	60/60
	457
	21.8
	
	99
	99

	
	80/80
	411
	23.4
	
	99
	99

	7.5
	20/20
	549
	18.0
	0.73
	100
	100

	
	40/40
	469
	21.6
	
	99
	99

	
	60/60
	393
	22.4
	
	99
	99

	
	80/80
	311
	19.1
	
	99
	99

	10.0
	20/20
	548
	21.9
	0.73
	99
	99

	
	40/40
	437
	23.4
	
	99
	99

	
	60/60
	328
	19.7
	
	99
	99

	
	80/80
	260
	16.7
	
	99
	99

	12.5
	20/20
	534
	24.7
	0.73
	100
	100

	
	40/40
	386
	21.9
	
	99
	100

	
	60/60
	292
	18.5
	
	99
	99

	
	80/80
	221
	14.4
	
	99
	99

	15.0
	20/20
	524
	26.3
	0.72
	100
	99

	
	40/40
	352
	20.7
	
	99
	100

	
	60/60
	254
	15.9
	
	99
	99

	
	80/80
	199
	12.9
	
	99
	99

	17.5
	20/20
	503
	27.0
	0.71
	99
	99

	
	40/40
	330
	20.3
	
	99
	99

	
	60/60
	232
	14.6
	
	99
	99

	
	80/80
	180
	11.6
	
	99
	99

	20.0
	20/20
	486
	27.5
	0.70
	99
	99

	
	40/40
	300
	18.4
	
	99
	100

	
	60/60
	214
	13.5
	
	99
	99

	 
	80/80
	166
	10.4
	 
	99
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table K.4. Model 4 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	515
	24.6
	0.73
	68
	99

	
	40/40
	
	22.2
	
	95
	99

	
	60/60
	
	24.9
	
	98
	99

	
	80/80
	
	27.2
	
	85
	98

	7.5
	20/20
	477
	29.1
	0.73
	64
	100

	
	40/40
	
	26.2
	
	94
	99

	
	60/60
	
	30.0
	
	98
	99

	
	80/80
	
	32.6
	
	82
	98

	10.0
	20/20
	437
	30.3
	0.73
	61
	99

	
	40/40
	
	27.5
	
	94
	99

	
	60/60
	
	31.2
	
	98
	99

	
	80/80
	
	34.0
	
	81
	98

	12.5
	20/20
	396
	30.1
	0.72
	59
	100

	
	40/40
	
	27.3
	
	93
	99

	
	60/60
	
	30.7
	
	98
	99

	
	80/80
	
	33.1
	
	80
	98

	15.0
	20/20
	351
	27.2
	0.71
	57
	99

	
	40/40
	
	24.8
	
	92
	99

	
	60/60
	
	27.7
	
	97
	99

	
	80/80
	
	29.9
	
	79
	98

	17.5
	20/20
	323
	25.5
	0.70
	55
	99

	
	40/40
	
	23.5
	
	91
	99

	
	60/60
	
	25.8
	
	97
	99

	
	80/80
	
	27.9
	
	79
	98

	20.0
	20/20
	291
	23.1
	0.69
	52
	99

	
	40/40
	
	21.3
	
	90
	99

	
	60/60
	
	23.2
	
	97
	99

	 
	80/80
	 
	24.9
	 
	78
	98


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table K.5. Model 5 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	496
	23.5
	0.73
	67
	99

	
	40/40
	
	
	
	93
	99

	
	60/60
	
	
	
	98
	99

	
	80/80
	
	
	
	82
	99

	7.5
	20/20
	449
	27.3
	0.74
	62
	100

	
	40/40
	
	
	
	91
	99

	
	60/60
	
	
	
	98
	99

	
	80/80
	
	
	
	80
	99

	10.0
	20/20
	407
	28.2
	0.73
	58
	99

	
	40/40
	
	
	
	90
	99

	
	60/60
	
	
	
	98
	99

	
	80/80
	
	
	
	79
	99

	12.5
	20/20
	369
	27.8
	0.73
	57
	100

	
	40/40
	
	
	
	90
	100

	
	60/60
	
	
	
	98
	99

	
	80/80
	
	
	
	78
	99

	15.0
	20/20
	327
	25.0
	0.72
	55
	99

	
	40/40
	
	
	
	88
	100

	
	60/60
	
	
	
	98
	99

	
	80/80
	
	
	
	78
	99

	17.5
	20/20
	301
	23.5
	0.71
	52
	99

	
	40/40
	
	
	
	88
	99

	
	60/60
	
	
	
	98
	99

	
	80/80
	
	
	
	77
	99

	20.0
	20/20
	274
	21.4
	0.70
	50
	99

	
	40/40
	
	
	
	87
	100

	
	60/60
	
	
	
	98
	99

	 
	80/80
	 
	 
	 
	76
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table K.6. Model 6 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	443
	19.2
	96
	87

	
	40/40
	389
	26.0
	95
	86

	
	60/60
	335
	28.2
	96
	85

	
	80/80
	289
	28.2
	96
	83

	7.5
	20/20
	424
	24.9
	97
	88

	
	40/40
	345
	27.9
	97
	88

	
	60/60
	284
	27.7
	96
	86

	
	80/80
	229
	23.4
	94
	83

	10.0
	20/20
	407
	29.3
	97
	90

	
	40/40
	313
	29.3
	97
	88

	
	60/60
	241
	24.5
	95
	85

	
	80/80
	194
	20.4
	94
	81

	12.5
	20/20
	379
	31.2
	97
	89

	
	40/40
	277
	27.0
	96
	87

	
	60/60
	212
	22.2
	95
	85

	
	80/80
	168
	17.4
	93
	80

	15.0
	20/20
	357
	32.7
	97
	90

	
	40/40
	247
	25.0
	96
	86

	
	60/60
	186
	19.2
	94
	81

	
	80/80
	151
	15.6
	92
	77

	17.5
	20/20
	331
	32.5
	97
	89

	
	40/40
	228
	24.0
	95
	85

	
	60/60
	169
	17.5
	93
	80

	
	80/80
	138
	14.2
	90
	75

	20.0
	20/20
	307
	31.7
	97
	88

	
	40/40
	207
	22.0
	95
	84

	
	60/60
	156
	16.2
	92
	77

	 
	80/80
	127
	12.8
	88
	72


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table K.7. Model 7 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	381
	11.6
	94
	87

	
	40/40
	
	24.5
	95
	86

	
	60/60
	
	38.7
	95
	85

	
	80/80
	
	53.1
	93
	83

	7.5
	20/20
	337
	12.3
	93
	88

	
	40/40
	
	26.1
	97
	88

	
	60/60
	
	41.7
	94
	86

	
	80/80
	
	56.5
	89
	83

	10.0
	20/20
	300
	12.0
	92
	90

	
	40/40
	
	26.2
	96
	88

	
	60/60
	
	41.6
	93
	85

	
	80/80
	
	55.6
	86
	81

	12.5
	20/20
	267
	11.3
	90
	89

	
	40/40
	
	24.5
	96
	87

	
	60/60
	
	39.1
	93
	85

	
	80/80
	
	51.9
	83
	80

	15.0
	20/20
	236
	9.8
	87
	90

	
	40/40
	
	21.9
	96
	86

	
	60/60
	
	34.8
	91
	81

	
	80/80
	
	46.1
	81
	77

	17.5
	20/20
	214
	9.1
	85
	89

	
	40/40
	
	20.3
	95
	85

	
	60/60
	
	32.0
	90
	80

	
	80/80
	
	42.0
	79
	75

	20.0
	20/20
	193
	8.1
	83
	88

	
	40/40
	
	18.2
	94
	84

	
	60/60
	
	28.7
	89
	77

	 
	80/80
	 
	37.5
	76
	72


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law. The ML fit for this model is identical to Model 6.



Table K.8. Model 8 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	356
	30
	64
	87

	
	40/40
	
	
	90
	86

	
	60/60
	
	
	95
	85

	
	80/80
	
	
	79
	83

	7.5
	20/20
	311
	33
	60
	88

	
	40/40
	
	
	89
	88

	
	60/60
	
	
	95
	86

	
	80/80
	
	
	75
	83

	10.0
	20/20
	274
	32
	56
	90

	
	40/40
	
	
	88
	88

	
	60/60
	
	
	95
	85

	
	80/80
	
	
	74
	81

	12.5
	20/20
	243
	30
	54
	89

	
	40/40
	
	
	86
	87

	
	60/60
	
	
	95
	85

	
	80/80
	
	
	72
	80

	15.0
	20/20
	214
	27
	52
	90

	
	40/40
	
	
	85
	86

	
	60/60
	
	
	93
	81

	
	80/80
	
	
	70
	77

	17.5
	20/20
	195
	25
	49
	89

	
	40/40
	
	
	84
	85

	
	60/60
	
	
	92
	80

	
	80/80
	
	
	68
	75

	20.0
	20/20
	178
	23
	46
	88

	
	40/40
	
	
	82
	84

	
	60/60
	
	
	90
	77

	 
	80/80
	 
	 
	65
	72


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law. The ML fit for this model is identical to Model 6.




Running Head: ALGORITHMIC MODIFICATIONS TO THE ETBD	1


Table K.9. Extra Sum of Squares Difference Tests at Mutation Rate 5.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	348
	55
	4
	403
	6*

	3
	  Constant a, c1 = c2
	9
	185
	54
	7
	406
	3*

	4
	  Constant a & c
	6
	33979
	881
	10
	409
	39*

	5
	  Constant a, c & k
	3
	28183
	939
	13
	412
	30*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	8353
	215
	8
	407
	39*

	7
	 Constant k, a = 1, c1 = c2
	5
	8601
	281
	11
	410
	31*

	8
	 Constant k & c, a = 1, 
	2
	30722
	1091
	14
	413
	28*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table K.10. Extra Sum of Squares Difference Tests at Mutation Rate 7.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	108
	23
	4
	403
	5*

	3
	  Constant a, c1 = c2
	9
	98
	23
	7
	406
	4*

	4
	  Constant a & c
	6
	31729
	797
	10
	409
	40*

	5
	  Constant a, c & k
	3
	26846
	868
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	5560
	131
	8
	407
	42*

	7
	 Constant k, a = 1, c1 = c2
	5
	7725
	229
	11
	410
	34*

	8
	 Constant k & c, a = 1, 
	2
	28025
	971
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model 

Table K.11. Extra Sum of Squares Difference Tests at Mutation Rate 10.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	31
	21
	4
	403
	1

	3
	  Constant a, c1 = c2
	9
	89
	22
	7
	406
	4*

	4
	  Constant a & c
	6
	27769
	699
	10
	409
	40*

	5
	  Constant a, c & k
	3
	23552
	763
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	4109
	101
	8
	407
	41*

	7
	 Constant k, a = 1, c1 = c2
	5
	7353
	218
	11
	410
	34*

	8
	 Constant k & c, a = 1, 
	2
	24495
	850
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table K.12. Extra Sum of Squares Difference Tests at Mutation Rate 12.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	6
	14
	4
	403
	0

	3
	  Constant a, c1 = c2
	9
	55
	14
	7
	406
	4*

	4
	  Constant a & c
	6
	23211
	581
	10
	409
	40*

	5
	  Constant a, c & k
	3
	19387
	625
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	3472
	82
	8
	407
	43*

	7
	 Constant k, a = 1, c1 = c2
	5
	6819
	196
	11
	410
	35*

	8
	 Constant k & c, a = 1, 
	2
	20366
	704
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table K.13. Extra Sum of Squares Difference Tests at Mutation Rate 15.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	3
	10
	4
	403
	0

	3
	  Constant a, c1 = c2
	9
	95
	11
	7
	406
	8*

	4
	  Constant a & c
	6
	20197
	503
	10
	409
	40*

	5
	  Constant a, c & k
	3
	16877
	542
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	3042
	69
	8
	407
	44*

	7
	 Constant k, a = 1, c1 = c2
	5
	6763
	191
	11
	410
	35*

	8
	 Constant k & c, a = 1, 
	2
	17679
	609
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table K.14. Extra Sum of Squares Difference Tests at Mutation Rate 17.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	1
	8
	4
	403
	0

	3
	  Constant a, c1 = c2
	9
	75
	9
	7
	406
	8*

	4
	  Constant a & c
	6
	16330
	407
	10
	409
	40*

	5
	  Constant a, c & k
	3
	13561
	436
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2717
	61
	8
	407
	44*

	7
	 Constant k, a = 1, c1 = c2
	5
	5919
	166
	11
	410
	36*

	8
	 Constant k & c, a = 1, 
	2
	14400
	496
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model 

Table K.15. Extra Sum of Squares Difference Tests at Mutation Rate 20.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	2
	7
	4
	403
	0

	3
	  Constant a, c1 = c2
	9
	88
	8
	7
	406
	10*

	4
	  Constant a & c
	6
	13854
	346
	10
	409
	40*

	5
	  Constant a, c & k
	3
	11340
	365
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2448
	55
	8
	407
	44*

	7
	 Constant k, a = 1, c1 = c2
	5
	5355
	151
	11
	410
	36*

	8
	 Constant k & c, a = 1, 
	2
	12074
	416
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model 


Table K.16. Akaike Information Criteria (AIC) for Quantitative Law of Effect Fits
	
	
	
	Mutation Rate

	Model
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	16
	1657
	1301
	1277
	1100
	964
	873
	828

	2
	  c1 = c2
	12
	1676
	1313
	1275
	1094
	958
	865
	821

	3
	  Constant a, c1 = c2
	9
	1668
	1319
	1294
	1115
	1016
	923
	896

	4
	  Constant a & c
	6
	2826
	2784
	2730
	2653
	2593
	2505
	2437

	5
	  Constant a, c & k
	3
	2850
	2817
	2763
	2680
	2621
	2530
	2456

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2241
	2035
	1927
	1838
	1771
	1718
	1674

	7
	 Constant k, a = 1, c1 = c2
	5
	2350
	2264
	2243
	2200
	2189
	2132
	2090

	8
	 Constant k & c, a = 1
	2
	2911
	2863
	2807
	2728
	2668
	2583
	2510



Table K.17. Akaike Information Criteria (AIC) for Matching Law Fits
	
	
	
	Mutation Rate

	Model(s)
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	12
	-1216
	-1334
	-1341
	-1400
	-1458
	-1490
	-1524

	2
	  c1 = c2
	8
	-1216
	-1336
	-1349
	-1407
	-1466
	-1498
	-1532

	3, 4, 5
	  Constant a & c
	2
	-1223
	-1333
	-1326
	-1385
	-1385
	-1430
	-1447

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	

	6, 7, 8
	  a = 1, c1 = c2
	0
	-670
	-693
	-710
	-726
	-740
	-752
	-765





Table K.18. Bayes Information Criteria (BIC) for Quantitative Law of Effect Fits
	
	
	
	Mutation Rate

	Model
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	16
	1721
	1366
	1342
	1165
	1029
	938
	893

	2
	  c1 = c2
	12
	1724
	1362
	1324
	1143
	1006
	914
	870

	3
	  Constant a, c1 = c2
	9
	1704
	1355
	1330
	1151
	1052
	959
	933

	4
	  Constant a & c
	6
	2850
	2809
	2754
	2677
	2617
	2529
	2461

	5
	  Constant a, c & k
	3
	2862
	2829
	2775
	2692
	2633
	2542
	2468

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2273
	2067
	1960
	1870
	1803
	1750
	1707

	7
	 Constant k, a = 1, c1 = c2
	5
	2370
	2284
	2263
	2220
	2209
	2152
	2110

	8
	 Constant k & c, a = 1
	2
	2919
	2871
	2815
	2736
	2676
	2591
	2518



Table K.19. Bayes Information Criteria (BIC) for Matching Law Fits
	
	
	
	Mutation Rate

	Model(s)
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	12
	-1176
	-1294
	-1301
	-1360
	-1418
	-1450
	-1484

	2
	  c1 = c2
	8
	-1189
	-1309
	-1322
	-1380
	-1439
	-1471
	-1505

	3, 4, 5
	  Constant a & c
	2
	-1217
	-1327
	-1319
	-1378
	-1378
	-1423
	-1440

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	
	

	6, 7, 8
	  a = 1, c1 = c2
	0
	-670
	-693
	-710
	-726
	-740
	-752
	-765






Table K.20. Quadratic Fit to Changeover Behaviors

	Mutation Rate
	Reinforcer Magnitude
	a
	b
	c
	CMax
	CΔ
	%VAF

	5.0
	20/20
	-0.2
	0.2
	0.1
	0.1
	0.1
	2

	
	40/40
	-0.1
	0.1
	0.1
	0.1
	0.0
	1

	
	60/60
	-0.3
	0.3
	0.1
	0.2
	0.1
	1

	
	80/80
	-0.5
	0.4
	0.1
	0.2
	0.1
	3

	7.5
	20/20
	-0.7
	0.7
	0.1
	0.3
	0.2
	3

	
	40/40
	-0.8
	0.8
	0.1
	0.3
	0.2
	4

	
	60/60
	-0.6
	0.6
	0.2
	0.4
	0.2
	2

	
	80/80
	-0.6
	0.6
	0.3
	0.4
	0.1
	1

	10.0
	20/20
	-1.3
	1.3
	0.2
	0.5
	0.3
	5

	
	40/40
	-1.2
	1.2
	0.3
	0.5
	0.3
	4

	
	60/60
	-1.1
	1.2
	0.3
	0.6
	0.3
	3

	
	80/80
	-1.0
	1.1
	0.4
	0.7
	0.3
	2

	12.5
	20/20
	-1.8
	1.8
	0.3
	0.8
	0.4
	5

	
	40/40
	-1.8
	1.8
	0.3
	0.8
	0.4
	4

	
	60/60
	-2.2
	2.3
	0.3
	0.9
	0.6
	5

	
	80/80
	-1.5
	1.5
	0.6
	1.0
	0.4
	2

	15.0
	20/20
	-3.0
	3.0
	0.3
	1.1
	0.7
	8

	
	40/40
	-2.8
	2.8
	0.4
	1.1
	0.7
	5

	
	60/60
	-2.4
	2.5
	0.6
	1.2
	0.6
	3

	
	80/80
	-2.1
	2.1
	0.8
	1.3
	0.5
	2

	17.5
	20/20
	-3.7
	3.7
	0.4
	1.4
	0.9
	7

	
	40/40
	-3.2
	3.3
	0.5
	1.4
	0.9
	5

	
	60/60
	-3.6
	3.6
	0.6
	1.5
	0.9
	4

	
	80/80
	-2.1
	2.2
	1.1
	1.6
	0.6
	1

	20.0
	20/20
	-4.3
	4.3
	0.6
	1.7
	1.1
	6

	
	40/40
	-3.5
	3.6
	0.8
	1.7
	0.9
	3

	
	60/60
	-3.6
	3.6
	0.9
	1.8
	0.9
	3

	 
	80/80
	-2.1
	1.9
	1.5
	2.0
	0.4
	1


Note. %VAF = Percentage of Variance Accounted For.


Table K.21. Quadratic-exponential Fit to Changeover Behaviors

	Mutation Rate
	Reinforcer Magnitude
	a
	b
	c
	d
	CMax
	CΔ%
	%VAF

	5.0
	20/20
	0.5
	-0.6
	1.2
	0.039
	1.2
	-14%
	95

	
	40/40
	0.7
	-0.7
	1.0
	0.032
	1.0
	-18%
	96

	
	60/60
	1.0
	-0.9
	1.2
	0.035
	1.2
	-18%
	96

	
	80/80
	0.5
	-0.5
	1.3
	0.033
	1.3
	-11%
	94

	7.5
	20/20
	0.6
	-0.6
	1.8
	0.031
	1.8
	-9%
	97

	
	40/40
	0.8
	-0.9
	1.9
	0.032
	1.9
	-13%
	97

	
	60/60
	0.5
	-0.5
	1.8
	0.028
	1.8
	-8%
	97

	
	80/80
	0.5
	-0.5
	2.0
	0.027
	2.0
	-6%
	96

	10.0
	20/20
	0.6
	-0.7
	3.0
	0.032
	3.0
	-6%
	97

	
	40/40
	1.2
	-1.0
	2.6
	0.028
	2.6
	-7%
	96

	
	60/60
	0.9
	-0.6
	2.8
	0.028
	2.8
	-4%
	97

	
	80/80
	0.5
	-0.6
	3.0
	0.026
	3.0
	-5%
	96

	12.5
	20/20
	3.0
	-2.8
	4.2
	0.029
	4.2
	-16%
	96

	
	40/40
	2.7
	-2.4
	4.1
	0.029
	4.1
	-13%
	96

	
	60/60
	1.5
	-1.3
	4.0
	0.027
	4.0
	-7%
	96

	
	80/80
	2.3
	-2.3
	4.5
	0.025
	4.5
	-13%
	95

	15.0
	20/20
	2.1
	-2.0
	4.9
	0.026
	4.9
	-10%
	97

	
	40/40
	1.1
	-1.0
	5.0
	0.027
	5.0
	-4%
	96

	
	60/60
	1.6
	-1.8
	5.3
	0.026
	5.3
	-9%
	95

	
	80/80
	1.5
	-1.3
	5.2
	0.024
	5.2
	-5%
	95

	17.5
	20/20
	1.1
	-1.1
	5.8
	0.025
	5.8
	-4%
	96

	
	40/40
	3.5
	-3.3
	6.1
	0.024
	6.1
	-12%
	96

	
	60/60
	2.4
	-2.4
	6.4
	0.025
	6.4
	-9%
	96

	
	80/80
	1.9
	-1.8
	6.5
	0.023
	6.5
	-6%
	95

	20.0
	20/20
	3.5
	-3.7
	7.6
	0.026
	7.6
	-13%
	95

	
	40/40
	3.4
	-3.3
	7.3
	0.024
	7.3
	-11%
	96

	
	60/60
	1.6
	-1.3
	7.1
	0.024
	7.1
	-4%
	95

	 
	80/80
	3.6
	-3.7
	7.8
	0.022
	7.8
	-12%
	95


Note. %VAF = Percentage of Variance Accounted For.



[bookmark: _Toc536370724]Appendix L: Experiment 1 Fitting Measures of the Linear-Clone-Pheno-Gaussian Creature Type

Table L.1. Model 1 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	
	%VAF

	
	
	k
	c1
	c2
	a
	QLOE
	ML

	5.0
	20/20
	504
	10.0
	11.0
	0.72
	93
	95

	
	40/40
	497
	15.3
	16.6
	0.68
	94
	95

	
	60/60
	410
	16.0
	17.5
	0.71
	96
	97

	
	80/80
	360
	17.3
	17.9
	0.73
	96
	97

	7.5
	20/20
	486
	13.9
	14.3
	0.74
	96
	97

	
	40/40
	394
	14.3
	14.9
	0.72
	94
	97

	
	60/60
	332
	15.0
	15.6
	0.73
	97
	98

	
	80/80
	281
	15.0
	15.1
	0.75
	98
	99

	10.0
	20/20
	458
	15.2
	15.8
	0.74
	96
	98

	
	40/40
	349
	15.2
	15.9
	0.76
	97
	98

	
	60/60
	278
	13.9
	14.5
	0.76
	98
	99

	
	80/80
	244
	13.1
	13.4
	0.74
	98
	99

	12.5
	20/20
	426
	16.8
	17.6
	0.77
	97
	98

	
	40/40
	321
	14.9
	15.5
	0.76
	99
	99

	
	60/60
	261
	14.4
	14.7
	0.76
	98
	99

	
	80/80
	223
	12.8
	12.8
	0.74
	99
	99

	15.0
	20/20
	411
	18.5
	18.6
	0.77
	99
	99

	
	40/40
	296
	15.4
	15.9
	0.78
	99
	99

	
	60/60
	237
	12.9
	13.1
	0.75
	99
	99

	
	80/80
	201
	11.3
	11.4
	0.73
	99
	99

	17.5
	20/20
	397
	19.6
	20.6
	0.78
	99
	100

	
	40/40
	278
	15.0
	15.3
	0.77
	99
	99

	
	60/60
	221
	12.4
	12.5
	0.75
	99
	99

	
	80/80
	189
	11.2
	11.3
	0.74
	99
	99

	20.0
	20/20
	384
	21.2
	21.6
	0.78
	99
	100

	
	40/40
	263
	14.8
	15.0
	0.77
	99
	99

	
	60/60
	208
	12.5
	12.6
	0.76
	99
	99

	 
	80/80
	174
	10.5
	10.6
	0.75
	99
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law

Table L.2. Model 2 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	500
	10.9
	0.73
	92
	95

	
	40/40
	489
	16.2
	0.70
	94
	94

	
	60/60
	404
	17.1
	0.72
	95
	97

	
	80/80
	359
	17.7
	0.73
	96
	97

	7.5
	20/20
	486
	14.2
	0.75
	96
	97

	
	40/40
	393
	14.6
	0.72
	94
	97

	
	60/60
	331
	15.4
	0.73
	97
	98

	
	80/80
	281
	15.1
	0.75
	98
	99

	10.0
	20/20
	456
	15.6
	0.75
	96
	97

	
	40/40
	348
	15.6
	0.76
	97
	98

	
	60/60
	278
	14.4
	0.77
	98
	99

	
	80/80
	244
	13.3
	0.74
	98
	99

	12.5
	20/20
	425
	17.4
	0.77
	97
	98

	
	40/40
	320
	15.3
	0.76
	99
	99

	
	60/60
	261
	14.6
	0.76
	98
	99

	
	80/80
	223
	12.8
	0.74
	99
	99

	15.0
	20/20
	411
	18.5
	0.77
	99
	99

	
	40/40
	296
	15.7
	0.78
	99
	99

	
	60/60
	237
	13.0
	0.75
	99
	99

	
	80/80
	201
	11.3
	0.73
	99
	99

	17.5
	20/20
	396
	20.3
	0.78
	99
	99

	
	40/40
	278
	15.1
	0.77
	99
	99

	
	60/60
	221
	12.4
	0.75
	99
	99

	
	80/80
	189
	11.2
	0.74
	99
	99

	20.0
	20/20
	384
	21.4
	0.78
	99
	100

	
	40/40
	263
	14.9
	0.77
	99
	99

	
	60/60
	208
	12.6
	0.76
	99
	99

	 
	80/80
	174
	10.6
	0.75
	99
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table L.3. Model 3 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	504
	10.7
	0.72
	92
	95

	
	40/40
	474
	16.4
	
	94
	94

	
	60/60
	406
	17.0
	
	95
	97

	
	80/80
	365
	17.6
	
	96
	97

	7.5
	20/20
	490
	14.1
	0.74
	96
	97

	
	40/40
	387
	14.9
	
	94
	97

	
	60/60
	330
	15.5
	
	97
	98

	
	80/80
	285
	14.9
	
	98
	99

	10.0
	20/20
	453
	15.7
	0.75
	96
	97

	
	40/40
	351
	15.5
	
	97
	98

	
	60/60
	283
	14.2
	
	98
	99

	
	80/80
	241
	13.4
	
	98
	99

	12.5
	20/20
	432
	17.1
	0.76
	97
	98

	
	40/40
	320
	15.3
	
	99
	99

	
	60/60
	263
	14.5
	
	98
	99

	
	80/80
	218
	13.0
	
	99
	99

	15.0
	20/20
	419
	18.3
	0.75
	99
	99

	
	40/40
	304
	15.4
	
	99
	99

	
	60/60
	235
	13.0
	
	99
	99

	
	80/80
	195
	11.5
	
	99
	99

	17.5
	20/20
	409
	20.0
	0.76
	99
	99

	
	40/40
	281
	15.0
	
	99
	99

	
	60/60
	219
	12.5
	
	99
	99

	
	80/80
	185
	11.3
	
	99
	99

	20.0
	20/20
	395
	21.2
	0.76
	99
	100

	
	40/40
	264
	14.9
	
	99
	99

	
	60/60
	208
	12.6
	
	99
	99

	 
	80/80
	171
	10.7
	 
	99
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table L.4. Model 4 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	457
	18.2
	0.71
	48
	95

	
	40/40
	
	16.1
	
	92
	95

	
	60/60
	
	17.8
	
	93
	97

	
	80/80
	
	19.8
	
	81
	96

	7.5
	20/20
	383
	18.1
	0.73
	59
	97

	
	40/40
	
	16.3
	
	90
	97

	
	60/60
	
	18.3
	
	95
	98

	
	80/80
	
	20.4
	
	83
	97

	10.0
	20/20
	342
	18.7
	0.75
	55
	97

	
	40/40
	
	16.6
	
	94
	98

	
	60/60
	
	18.9
	
	96
	98

	
	80/80
	
	20.8
	
	82
	98

	12.5
	20/20
	316
	18.8
	0.75
	59
	98

	
	40/40
	
	16.9
	
	96
	99

	
	60/60
	
	19.2
	
	97
	99

	
	80/80
	
	21.3
	
	82
	98

	15.0
	20/20
	290
	18.6
	0.75
	60
	99

	
	40/40
	
	16.7
	
	94
	99

	
	60/60
	
	18.8
	
	97
	99

	
	80/80
	
	20.6
	
	83
	98

	17.5
	20/20
	275
	18.6
	0.75
	64
	99

	
	40/40
	
	16.9
	
	95
	99

	
	60/60
	
	19.0
	
	98
	99

	
	80/80
	
	20.5
	
	84
	98

	20.0
	20/20
	260
	18.9
	0.76
	69
	100

	
	40/40
	
	17.4
	
	95
	99

	
	60/60
	
	19.2
	
	98
	99

	 
	80/80
	 
	20.8
	 
	85
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table L.5. Model 5 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	
	%VAF

	
	
	k
	c
	a
	QLOE
	ML

	5.0
	20/20
	443
	17.4
	0.72
	49
	95

	
	40/40
	
	
	
	88
	94

	
	60/60
	
	
	
	93
	97

	
	80/80
	
	
	
	77
	97

	7.5
	20/20
	370
	17.2
	0.73
	58
	97

	
	40/40
	
	
	
	88
	97

	
	60/60
	
	
	
	95
	98

	
	80/80
	
	
	
	80
	99

	10.0
	20/20
	330
	17.7
	0.75
	54
	97

	
	40/40
	
	
	
	91
	98

	
	60/60
	
	
	
	96
	99

	
	80/80
	
	
	
	79
	99

	12.5
	20/20
	303
	17.8
	0.76
	57
	98

	
	40/40
	
	
	
	93
	99

	
	60/60
	
	
	
	97
	99

	
	80/80
	
	
	
	80
	99

	15.0
	20/20
	279
	17.7
	0.75
	59
	99

	
	40/40
	
	
	
	92
	99

	
	60/60
	
	
	
	98
	99

	
	80/80
	
	
	
	81
	99

	17.5
	20/20
	264
	17.7
	0.76
	63
	99

	
	40/40
	
	
	
	93
	99

	
	60/60
	
	
	
	98
	99

	
	80/80
	
	
	
	83
	99

	20.0
	20/20
	250
	17.8
	0.76
	67
	100

	
	40/40
	
	
	
	93
	99

	
	60/60
	
	
	
	98
	99

	 
	80/80
	 
	 
	 
	84
	99


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table L.6. Model 6 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	425
	16.9
	87
	84

	
	40/40
	365
	22.4
	87
	76

	
	60/60
	306
	22.5
	90
	82

	
	80/80
	273
	23.2
	93
	83

	7.5
	20/20
	400
	20.5
	93
	87

	
	40/40
	316
	21.8
	88
	85

	
	60/60
	260
	20.8
	93
	85

	
	80/80
	225
	20.1
	95
	88

	10.0
	20/20
	368
	21.8
	92
	87

	
	40/40
	284
	21.1
	94
	89

	
	60/60
	228
	18.8
	95
	90

	
	80/80
	194
	17.4
	95
	87

	12.5
	20/20
	353
	24.1
	94
	91

	
	40/40
	259
	20.5
	96
	89

	
	60/60
	211
	18.7
	96
	89

	
	80/80
	178
	16.7
	96
	87

	15.0
	20/20
	335
	25.2
	96
	91

	
	40/40
	244
	20.6
	97
	91

	
	60/60
	192
	17.3
	96
	88

	
	80/80
	160
	14.8
	95
	86

	17.5
	20/20
	319
	26.3
	97
	91

	
	40/40
	224
	19.4
	97
	90

	
	60/60
	178
	16.0
	96
	88

	
	80/80
	151
	14.2
	96
	86

	20.0
	20/20
	304
	27.1
	98
	92

	
	40/40
	212
	19.1
	97
	90

	
	60/60
	171
	16.1
	97
	90

	 
	80/80
	143
	13.6
	96
	88


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law



Table L.7. Model 7 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	359
	9.4
	83
	84

	
	40/40
	
	21.3
	87
	76

	
	60/60
	
	33.9
	89
	82

	
	80/80
	
	44.5
	89
	83

	7.5
	20/20
	313
	9.2
	88
	87

	
	40/40
	
	21.2
	88
	85

	
	60/60
	
	33.6
	91
	85

	
	80/80
	
	44.7
	90
	88

	10.0
	20/20
	283
	9.4
	86
	87

	
	40/40
	
	21.0
	94
	89

	
	60/60
	
	33.2
	93
	90

	
	80/80
	
	44.5
	89
	87

	12.5
	20/20
	260
	9.3
	88
	91

	
	40/40
	
	20.8
	96
	89

	
	60/60
	
	32.5
	94
	89

	
	80/80
	
	43.5
	89
	87

	15.0
	20/20
	240
	9.0
	89
	91

	
	40/40
	
	19.6
	97
	91

	
	60/60
	
	31.1
	93
	88

	
	80/80
	
	41.4
	87
	86

	17.5
	20/20
	223
	8.7
	89
	91

	
	40/40
	
	18.9
	97
	90

	
	60/60
	
	29.5
	94
	88

	
	80/80
	
	39.0
	89
	86

	20.0
	20/20
	210
	8.6
	90
	92

	
	40/40
	
	18.5
	97
	90

	
	60/60
	
	28.4
	95
	90

	 
	80/80
	 
	37.3
	90
	88


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law. The ML fit for this model is identical to Model 6.


Table L.8. Model 8 Fit Parameter Values and Percentages of Variance Accounted For
	Mutation Rate
	Reinforcer Magnitude
	
	
	%VAF

	
	
	k
	c
	QLOE
	ML

	5.0
	20/20
	332
	23
	44
	84

	
	40/40
	
	
	82
	76

	
	60/60
	
	
	88
	82

	
	80/80
	
	
	73
	83

	7.5
	20/20
	285
	23
	55
	87

	
	40/40
	
	
	82
	85

	
	60/60
	
	
	91
	85

	
	80/80
	
	
	77
	88

	10.0
	20/20
	256
	23
	49
	87

	
	40/40
	
	
	88
	89

	
	60/60
	
	
	94
	90

	
	80/80
	
	
	75
	87

	12.5
	20/20
	235
	22
	54
	91

	
	40/40
	
	
	90
	89

	
	60/60
	
	
	95
	89

	
	80/80
	
	
	77
	87

	15.0
	20/20
	217
	22
	56
	91

	
	40/40
	
	
	90
	91

	
	60/60
	
	
	95
	88

	
	80/80
	
	
	77
	86

	17.5
	20/20
	202
	21
	60
	91

	
	40/40
	
	
	91
	90

	
	60/60
	
	
	95
	88

	
	80/80
	
	
	79
	86

	20.0
	20/20
	194
	22
	65
	92

	
	40/40
	
	
	91
	90

	
	60/60
	
	
	96
	90

	 
	80/80
	 
	 
	81
	88


Note. %VAF = Percentage of Variance Accounted For, QLOE = Quantitative Law of Effect, and ML = Matching Law. The ML fit for this model is identical to Model 6.



Running Head: ALGORITHMIC MODIFICATIONS TO THE ETBD	1


Table L.9. Extra Sum of Squares Difference Tests at Mutation Rate 5.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	2786
	230
	4
	403
	12*

	3
	  Constant a, c1 = c2
	9
	1587
	228
	7
	406
	7*

	4
	  Constant a & c
	6
	31412
	967
	10
	409
	32*

	5
	  Constant a, c & k
	3
	25459
	1001
	13
	412
	25*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	10728
	411
	8
	407
	26*

	7
	 Constant k, a = 1, c1 = c2
	5
	10557
	482
	11
	410
	22*

	8
	 Constant k & c, a = 1, 
	2
	29078
	1183
	14
	413
	25*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table L.10. Extra Sum of Squares Difference Tests at Mutation Rate 7.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	326
	126
	4
	403
	3*

	3
	  Constant a, c1 = c2
	9
	214
	125
	7
	406
	2

	4
	  Constant a & c
	6
	26393
	766
	10
	409
	34*

	5
	  Constant a, c & k
	3
	21523
	799
	13
	412
	27*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	6453
	248
	8
	407
	26*

	7
	 Constant k, a = 1, c1 = c2
	5
	8266
	342
	11
	410
	24*

	8
	 Constant k & c, a = 1, 
	2
	23699
	923
	14
	413
	26*


Note. N = 416; * p < 0.05 that model 1 is different from this model 


Table L.11. Extra Sum of Squares Difference Tests at Mutation Rate 10.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	390
	84
	4
	403
	5*

	3
	  Constant a, c1 = c2
	9
	239
	84
	7
	406
	3*

	4
	  Constant a & c
	6
	22236
	623
	10
	409
	36*

	5
	  Constant a, c & k
	3
	18200
	653
	13
	412
	28*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	4781
	173
	8
	407
	28*

	7
	 Constant k, a = 1, c1 = c2
	5
	6854
	263
	11
	410
	26*

	8
	 Constant k & c, a = 1, 
	2
	19715
	747
	14
	413
	26*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table L.12. Extra Sum of Squares Difference Tests at Mutation Rate 12.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	296
	57
	4
	403
	5*

	3
	  Constant a, c1 = c2
	9
	155
	56
	7
	406
	3*

	4
	  Constant a & c
	6
	19446
	529
	10
	409
	37*

	5
	  Constant a, c & k
	3
	16227
	565
	13
	412
	29*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	3292
	118
	8
	407
	28*

	7
	 Constant k, a = 1, c1 = c2
	5
	5934
	212
	11
	410
	28*

	8
	 Constant k & c, a = 1, 
	2
	17205
	636
	14
	413
	27*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table L.13. Extra Sum of Squares Difference Tests at Mutation Rate 15.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	36
	27
	4
	403
	1

	3
	  Constant a, c1 = c2
	9
	27
	27
	7
	406
	1

	4
	  Constant a & c
	6
	17794
	462
	10
	409
	39*

	5
	  Constant a, c & k
	3
	14715
	491
	13
	412
	30*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2671
	79
	8
	407
	34*

	7
	 Constant k, a = 1, c1 = c2
	5
	5439
	172
	11
	410
	32*

	8
	 Constant k & c, a = 1, 
	2
	15329
	546
	14
	413
	28*


Note. N = 416; * p < 0.05 that model 1 is different from this model

Table L.14. Extra Sum of Squares Difference Tests at Mutation Rate 17.5%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	186
	19
	4
	403
	10*

	3
	  Constant a, c1 = c2
	9
	123
	19
	7
	406
	6*

	4
	  Constant a & c
	6
	15564
	397
	10
	409
	39*

	5
	  Constant a, c & k
	3
	12838
	422
	13
	412
	30*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2217
	61
	8
	407
	37*

	7
	 Constant k, a = 1, c1 = c2
	5
	5250
	158
	11
	410
	33*

	8
	 Constant k & c, a = 1, 
	2
	13425
	472
	14
	413
	28*


Note. N = 416; * p < 0.05 that model 1 is different from this model 

Table L.15. Extra Sum of Squares Difference Tests at Mutation Rate 20.0%
	Comparison Model
	
	
	
	
	df
	

	
	Assumptions
	Parameters
	Num
	Den
	Num
	Den
	F

	Modern Quantitative Law of Effect
	
	
	
	
	
	

	2
	  c1 = c2
	12
	38
	13
	4
	403
	3*

	3
	  Constant a, c1 = c2
	9
	35
	13
	7
	406
	3*

	4
	  Constant a & c
	6
	13793
	349
	10
	409
	39*

	5
	  Constant a, c & k
	3
	11316
	369
	13
	412
	31*

	Classic Quantitative Law of Effect
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	1883
	49
	8
	407
	38*

	7
	 Constant k, a = 1, c1 = c2
	5
	4709
	138
	11
	410
	34*

	8
	 Constant k & c, a = 1, 
	2
	11603
	405
	14
	413
	29*


Note. N = 416; * p < 0.05 that model 1 is different from this model 


Table L.16. Akaike Information Criteria (AIC) for Quantitative Law of Effect Fits
	
	
	
	Mutation Rate

	Model
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	16
	2227
	2018
	1843
	1678
	1390
	1203
	1060

	2
	  c1 = c2
	12
	2272
	2021
	1855
	1692
	1387
	1237
	1065

	3
	  Constant a, c1 = c2
	9
	2266
	2017
	1850
	1684
	1383
	1237
	1066

	4
	  Constant a & c
	6
	2865
	2768
	2682
	2613
	2557
	2495
	2441

	5
	  Constant a, c & k
	3
	2876
	2782
	2698
	2638
	2579
	2517
	2461

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2510
	2300
	2152
	1992
	1826
	1714
	1627

	7
	 Constant k, a = 1, c1 = c2
	5
	2574
	2431
	2322
	2233
	2146
	2109
	2055

	8
	 Constant k & c, a = 1
	2
	2944
	2841
	2753
	2686
	2623
	2562
	2499



Table L.17. Akaike Information Criteria (AIC) for Matching Law Fits
	
	
	
	Mutation Rate

	Model(s)
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	12
	-954
	-1014
	-1050
	-1135
	-1228
	-1296
	-1297

	2
	  c1 = c2
	8
	-943
	-1019
	-1053
	-1139
	-1232
	-1291
	-1302

	3, 4, 5
	  Constant a & c
	2
	-952
	-1029
	-1061
	-1143
	-1225
	-1284
	-1306

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	

	6, 7, 8
	  a = 1, c1 = c2
	0
	-653
	-670
	-678
	-689
	-699
	-705
	-713





Table L.18. Bayes Information Criteria (BIC) for Quantitative Law of Effect Fits
	
	
	
	Mutation Rate

	Model
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	16
	2291
	2083
	1908
	1743
	1454
	1267
	1124

	2
	  c1 = c2
	12
	2321
	2070
	1903
	1741
	1435
	1286
	1113

	3
	  Constant a, c1 = c2
	9
	2302
	2053
	1886
	1721
	1419
	1273
	1103

	4
	  Constant a & c
	6
	2889
	2792
	2706
	2638
	2581
	2519
	2465

	5
	  Constant a, c & k
	3
	2888
	2794
	2710
	2650
	2592
	2529
	2473

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	
	

	6
	  a = 1, c1 = c2
	8
	2543
	2333
	2184
	2024
	1858
	1747
	1659

	7
	 Constant k, a = 1, c1 = c2
	5
	2594
	2451
	2342
	2253
	2167
	2130
	2075

	8
	 Constant k & c, a = 1
	2
	2952
	2849
	2761
	2694
	2631
	2570
	2507



Table L.19. Bayes Information Criteria (BIC) for Matching Law Fits
	
	
	
	Mutation Rate

	Model(s)
	Assumptions
	Parameters
	5.0
	7.5
	10.0
	12.5
	15.0
	17.5
	20.0

	Modern Quantitative Law of Effect
	
	
	
	
	
	
	

	1
	  None
	12
	-914
	-974
	-1010
	-1095
	-1188
	-1256
	-1256

	2
	  c1 = c2
	8
	-917
	-992
	-1026
	-1113
	-1205
	-1264
	-1276

	3, 4, 5
	  Constant a & c
	2
	-946
	-1022
	-1054
	-1137
	-1218
	-1278
	-1299

	Classic Quantitative Law of Effect
	
	
	
	
	
	
	
	

	6, 7, 8
	  a = 1, c1 = c2
	0
	-653
	-670
	-678
	-689
	-699
	-705
	-713






Table L.20. Quadratic Fit to Changeover Behaviors

	Mutation Rate
	Reinforcer Magnitude
	a
	b
	c
	CMax
	CΔ
	%VAF

	5.0
	20/20
	0.0
	0.0
	0.0
	0.0
	0.0
	4

	
	40/40
	0.0
	-0.1
	0.0
	0.0
	0.0
	2

	
	60/60
	0.1
	-0.1
	0.0
	0.0
	0.0
	2

	
	80/80
	0.0
	0.0
	0.0
	0.1
	0.0
	0

	7.5
	20/20
	0.0
	0.0
	0.0
	0.0
	0.0
	1

	
	40/40
	0.1
	-0.1
	0.1
	0.0
	0.0
	2

	
	60/60
	0.0
	-0.1
	0.1
	0.0
	0.0
	1

	
	80/80
	-0.1
	0.1
	0.1
	0.1
	0.0
	0

	10.0
	20/20
	0.1
	-0.1
	0.1
	0.1
	0.0
	1

	
	40/40
	0.0
	0.0
	0.1
	0.1
	0.0
	1

	
	60/60
	-0.2
	0.1
	0.1
	0.1
	0.0
	2

	
	80/80
	-0.1
	0.1
	0.1
	0.1
	0.0
	0

	12.5
	20/20
	-0.1
	0.1
	0.1
	0.1
	0.0
	1

	
	40/40
	-0.2
	0.2
	0.1
	0.1
	0.0
	1

	
	60/60
	-0.3
	0.3
	0.1
	0.2
	0.1
	1

	
	80/80
	-0.2
	0.2
	0.2
	0.2
	0.0
	1

	15.0
	20/20
	-0.2
	0.2
	0.1
	0.2
	0.1
	1

	
	40/40
	-0.4
	0.3
	0.1
	0.2
	0.1
	2

	
	60/60
	-0.3
	0.3
	0.2
	0.2
	0.1
	1

	
	80/80
	-0.3
	0.3
	0.2
	0.3
	0.1
	1

	17.5
	20/20
	-0.4
	0.3
	0.2
	0.3
	0.1
	2

	
	40/40
	-0.7
	0.6
	0.2
	0.3
	0.1
	3

	
	60/60
	-0.7
	0.6
	0.2
	0.3
	0.1
	3

	
	80/80
	-0.7
	0.7
	0.2
	0.4
	0.2
	2

	20.0
	20/20
	-1.3
	1.3
	0.1
	0.4
	0.3
	7

	
	40/40
	-1.0
	1.0
	0.2
	0.4
	0.2
	3

	
	60/60
	-1.0
	1.0
	0.2
	0.5
	0.2
	3

	 
	80/80
	-0.9
	0.8
	0.4
	0.5
	0.2
	2


Note. %VAF = Percentage of Variance Accounted For.


Table L.21. Quadratic-Exponential Fit to Changeover Behaviors

	Mutation Rate
	Reinforcer Magnitude
	a
	b
	c
	d
	CMax
	CΔ%
	%VAF

	5.0
	20/20
	1.2
	-1.4
	0.8
	0.072
	0.8
	-55%
	94

	
	40/40
	0.6
	-0.6
	0.4
	0.052
	0.4
	-42%
	96

	
	60/60
	0.5
	-0.6
	0.5
	0.056
	0.5
	-34%
	96

	
	80/80
	0.4
	-0.5
	0.5
	0.047
	0.5
	-30%
	96

	7.5
	20/20
	-0.2
	0.1
	0.6
	0.054
	0.6
	0%
	96

	
	40/40
	0.3
	-0.3
	0.7
	0.055
	0.7
	-12%
	96

	
	60/60
	0.6
	-0.7
	0.9
	0.052
	0.9
	-22%
	98

	
	80/80
	0.0
	0.0
	0.8
	0.048
	0.8
	-4%
	96

	10.0
	20/20
	0.5
	-0.5
	0.9
	0.049
	0.9
	-12%
	97

	
	40/40
	0.6
	-0.7
	1.1
	0.049
	1.1
	-18%
	98

	
	60/60
	0.6
	-0.6
	1.2
	0.049
	1.2
	-10%
	98

	
	80/80
	0.5
	-0.4
	1.4
	0.048
	1.4
	-5%
	97

	12.5
	20/20
	2.0
	-1.7
	2.1
	0.058
	2.1
	-17%
	98

	
	40/40
	1.6
	-1.8
	2.2
	0.054
	2.2
	-23%
	98

	
	60/60
	0.9
	-0.8
	2.0
	0.050
	2.0
	-8%
	97

	
	80/80
	1.6
	-1.7
	2.4
	0.047
	2.4
	-19%
	97

	15.0
	20/20
	0.7
	-0.9
	2.2
	0.047
	2.2
	-12%
	98

	
	40/40
	2.1
	-2.2
	2.5
	0.047
	2.5
	-22%
	98

	
	60/60
	1.7
	-1.6
	2.6
	0.046
	2.6
	-14%
	98

	
	80/80
	1.3
	-1.5
	2.6
	0.040
	2.6
	-17%
	97

	17.5
	20/20
	1.8
	-2.3
	3.2
	0.046
	3.2
	-21%
	98

	
	40/40
	2.7
	-3.0
	3.5
	0.046
	3.5
	-23%
	99

	
	60/60
	1.3
	-1.6
	3.0
	0.042
	3.0
	-15%
	98

	
	80/80
	2.1
	-1.9
	3.2
	0.039
	3.2
	-12%
	98

	20.0
	20/20
	1.3
	-1.4
	3.4
	0.042
	3.4
	-12%
	98

	
	40/40
	1.9
	-1.8
	3.5
	0.042
	3.5
	-12%
	99

	
	60/60
	2.2
	-2.5
	4.2
	0.042
	4.2
	-17%
	98

	 
	80/80
	1.4
	-1.5
	3.7
	0.037
	3.7
	-10%
	98


Note. %VAF = Percentage of Variance Accounted For.


[bookmark: _Toc536370725]Appendix M: Experiment 2 Bivariate Matching Fitting Measures

Table M.1. Bivariate Matching Fits to the Behavior of the Exponential-Bitwise-Bitflip Creature Type

	Mutation Rate
	ar
	am
	b
	%VAF

	0.5
	
	
	
	

	1.0
	
	
	
	

	2.5
	
	
	
	

	5.0
	0.84
	0.55
	1.01
	100

	7.5
	0.87
	0.55
	1.01
	100

	10.0
	0.87
	0.53
	0.99
	100

	12.5
	0.85
	0.52
	1.00
	100

	15.0
	0.82
	0.49
	0.99
	100

	17.5
	0.78
	0.47
	0.99
	100

	20.0
	0.74
	0.45
	1.01
	99

	25.0
	0.65
	0.40
	1.00
	99

	30.0
	0.57
	0.37
	1.00
	99

	35.0
	0.51
	0.34
	1.00
	98

	40.0
	0.46
	0.31
	1.00
	98

	45.0
	0.40
	0.29
	1.00
	97

	50.0
	0.36
	0.27
	1.00
	97



Note. %VAF = Percentage of Variance Accounted For. 0.5, 1.0, and 2.5% mutation rates were unable to be run using this algorithm.

Table M.2. Bivariate Matching Fits to the Behavior of the Exponential-Clone-Bitflip Creature Type

	Mutation Rate
	ar
	am
	b
	%VAF

	0.5
	0.57
	0.31
	0.95
	97

	1.0
	0.67
	0.27
	0.98
	100

	2.5
	0.76
	0.35
	0.98
	100

	5.0
	0.80
	0.39
	1.00
	100

	7.5
	0.80
	0.43
	0.99
	100

	10.0
	0.79
	0.44
	0.98
	100

	12.5
	0.75
	0.44
	1.01
	100

	15.0
	0.72
	0.43
	1.00
	100

	17.5
	0.69
	0.41
	1.00
	99

	20.0
	0.65
	0.40
	1.00
	99

	25.0
	0.57
	0.37
	1.00
	99

	30.0
	0.51
	0.34
	1.00
	99

	35.0
	0.45
	0.31
	1.01
	98

	40.0
	0.41
	0.29
	1.00
	98

	45.0
	0.37
	0.26
	1.01
	98

	50.0
	0.34
	0.25
	1.00
	98



Note. %VAF = Percentage of Variance Accounted For. 

Table M.3. Bivariate Matching Fits to the Behavior of the Exponential-Clone-Pheno-Uniform Creature Type

	Mutation Rate
	ar
	am
	b
	%VAF

	0.5
	0.54
	0.36
	0.96
	96

	1.0
	0.64
	0.42
	0.97
	99

	2.5
	0.71
	0.33
	1.00
	100

	5.0
	0.77
	0.35
	0.96
	99

	7.5
	0.75
	0.30
	1.00
	100

	10.0
	0.73
	0.28
	1.01
	100

	12.5
	0.73
	0.29
	1.00
	100

	15.0
	0.71
	0.27
	1.00
	100

	17.5
	0.70
	0.26
	0.99
	100

	20.0
	0.69
	0.25
	1.00
	100

	25.0
	0.68
	0.24
	1.00
	100

	30.0
	0.67
	0.21
	1.00
	100

	35.0
	0.66
	0.19
	1.00
	100

	40.0
	0.65
	0.18
	1.00
	100

	45.0
	0.63
	0.17
	0.99
	100

	50.0
	0.61
	0.16
	1.00
	100


Note. %VAF = Percentage of Variance Accounted For. 

Table M.4. Bivariate Matching Fits to the Behavior of the Exponential-Clone-Pheno-Linear Creature Type

	Mutation Rate
	ar
	am
	b
	%VAF

	0.5
	0.55
	0.39
	1.06
	98

	1.0
	0.61
	0.41
	1.06
	99

	2.5
	0.72
	0.31
	1.00
	100

	5.0
	0.75
	0.32
	1.03
	100

	7.5
	0.74
	0.30
	1.02
	100

	10.0
	0.73
	0.29
	1.00
	100

	12.5
	0.71
	0.27
	0.99
	100

	15.0
	0.70
	0.28
	1.00
	100

	17.5
	0.70
	0.27
	1.00
	100

	20.0
	0.68
	0.25
	1.01
	100

	25.0
	0.67
	0.23
	1.00
	100

	30.0
	0.66
	0.21
	1.01
	100

	35.0
	0.65
	0.20
	1.00
	100

	40.0
	0.63
	0.18
	1.00
	100

	45.0
	0.62
	0.17
	1.00
	100

	50.0
	0.60
	0.16
	1.00
	100



Note. %VAF = Percentage of Variance Accounted For.


Table M.5. Bivariate Matching Fits to the Behavior of the Exponential-Clone-Pheno-Exponential Creature Type

	Mutation Rate
	ar
	am
	b
	%VAF

	0.5
	0.56
	0.29
	0.98
	97

	1.0
	0.63
	0.34
	1.03
	99

	2.5
	0.71
	0.33
	1.00
	100

	5.0
	0.71
	0.30
	1.01
	100

	7.5
	0.70
	0.31
	1.00
	100

	10.0
	0.69
	0.31
	1.01
	100

	12.5
	0.69
	0.29
	1.00
	100

	15.0
	0.68
	0.28
	1.00
	100

	17.5
	0.67
	0.26
	1.01
	100

	20.0
	0.68
	0.26
	1.00
	100

	25.0
	0.66
	0.23
	1.00
	100

	30.0
	0.64
	0.21
	1.00
	100

	35.0
	0.62
	0.20
	1.00
	100

	40.0
	0.61
	0.19
	1.00
	100

	45.0
	0.58
	0.17
	1.00
	100

	50.0
	0.57
	0.16
	1.00
	100


Note. %VAF = Percentage of Variance Accounted For. 

Table M.6. Bivariate Matching Fits to the Behavior of the Exponential-Clone-Pheno-Gaussian Creature Type

	Mutation Rate
	ar
	am
	b
	%VAF

	0.5
	0.51
	0.41
	1.04
	94

	1.0
	0.60
	0.38
	1.14
	97

	2.5
	0.68
	0.32
	1.00
	99

	5.0
	0.74
	0.29
	0.95
	100

	7.5
	0.74
	0.32
	0.98
	100

	10.0
	0.73
	0.30
	0.99
	100

	12.5
	0.73
	0.31
	1.00
	100

	15.0
	0.72
	0.26
	1.00
	100

	17.5
	0.71
	0.28
	1.01
	100

	20.0
	0.71
	0.28
	1.01
	100

	25.0
	0.70
	0.24
	1.00
	100

	30.0
	0.68
	0.23
	1.01
	100

	35.0
	0.67
	0.22
	1.00
	100

	40.0
	0.67
	0.20
	1.00
	100

	45.0
	0.66
	0.20
	1.00
	100

	50.0
	0.65
	0.19
	1.00
	100



Note. %VAF = Percentage of Variance Accounted For.


Table M.7. Bivariate Matching Fits to the Behavior of the Linear-Bitwise-Bitflip Creature Type

	Mutation Rate
	ar
	am
	b
	%VAF

	0.5
	
	
	
	

	1.0
	
	
	
	

	2.5
	
	
	
	

	5.0
	0.81
	0.69
	1.01
	100

	7.5
	0.83
	0.68
	1.01
	100

	10.0
	0.81
	0.62
	1.01
	100

	12.5
	0.79
	0.59
	1.01
	100

	15.0
	0.75
	0.58
	0.98
	99

	17.5
	0.72
	0.54
	0.99
	99

	20.0
	0.67
	0.52
	1.01
	99

	25.0
	0.58
	0.47
	1.00
	98

	30.0
	0.50
	0.42
	1.00
	97

	35.0
	0.44
	0.37
	1.00
	97

	40.0
	0.38
	0.34
	1.00
	97

	45.0
	0.34
	0.31
	1.00
	97

	50.0
	0.30
	0.28
	1.00
	96



Note. %VAF = Percentage of Variance Accounted For. 0.5, 1.0, and 2.5% mutation rates were unable to be run using this algorithm.

Table M.8. Bivariate Matching Fits to the Behavior of the Linear-Clone-Bitflip Creature Type

	Mutation Rate
	ar
	am
	b
	%VAF

	0.5
	0.59
	0.41
	0.95
	99

	1.0
	0.65
	0.46
	0.96
	100

	2.5
	0.75
	0.57
	1.00
	99

	5.0
	0.73
	0.53
	0.99
	100

	7.5
	0.74
	0.56
	0.99
	99

	10.0
	0.72
	0.55
	1.00
	99

	12.5
	0.67
	0.52
	1.00
	100

	15.0
	0.63
	0.50
	1.01
	99

	17.5
	0.60
	0.48
	1.00
	99

	20.0
	0.55
	0.46
	1.00
	98

	25.0
	0.48
	0.41
	1.00
	98

	30.0
	0.42
	0.37
	1.00
	98

	35.0
	0.37
	0.34
	1.00
	97

	40.0
	0.33
	0.31
	1.00
	97

	45.0
	0.29
	0.28
	1.00
	96

	50.0
	0.26
	0.26
	1.00
	96



Note. %VAF = Percentage of Variance Accounted For. 


Table M.9. Bivariate Matching Fits to the Behavior of the Linear-Clone-Pheno-Uniform Creature Type

	Mutation Rate
	ar
	am
	b
	%VAF

	0.5
	0.59
	0.58
	1.09
	96

	1.0
	0.64
	0.61
	0.99
	99

	2.5
	0.68
	0.52
	1.00
	99

	5.0
	0.70
	0.41
	1.03
	100

	7.5
	0.69
	0.37
	0.97
	100

	10.0
	0.70
	0.34
	0.99
	100

	12.5
	0.68
	0.32
	1.00
	100

	15.0
	0.67
	0.30
	1.00
	100

	17.5
	0.66
	0.28
	1.00
	100

	20.0
	0.67
	0.27
	0.98
	100

	25.0
	0.65
	0.25
	1.01
	100

	30.0
	0.64
	0.22
	0.99
	100

	35.0
	0.63
	0.21
	1.00
	100

	40.0
	0.62
	0.18
	1.00
	100

	45.0
	0.61
	0.17
	1.01
	100

	50.0
	0.59
	0.16
	0.99
	100


Note. %VAF = Percentage of Variance Accounted For. 

Table M.10. Bivariate Matching Fits to the Behavior of the Linear-Clone-Pheno-Linear Creature Type

	Mutation Rate
	ar
	am
	b
	%VAF

	0.5
	0.53
	0.72
	1.06
	99

	1.0
	0.65
	0.66
	1.07
	98

	2.5
	0.70
	0.51
	1.00
	100

	5.0
	0.70
	0.41
	1.02
	100

	7.5
	0.70
	0.38
	1.01
	100

	10.0
	0.68
	0.35
	0.99
	100

	12.5
	0.68
	0.33
	1.00
	100

	15.0
	0.67
	0.30
	0.99
	100

	17.5
	0.67
	0.29
	1.01
	100

	20.0
	0.66
	0.27
	1.00
	100

	25.0
	0.65
	0.25
	1.00
	100

	30.0
	0.64
	0.23
	1.00
	100

	35.0
	0.63
	0.21
	1.00
	100

	40.0
	0.62
	0.19
	1.00
	100

	45.0
	0.60
	0.18
	1.00
	100

	50.0
	0.58
	0.16
	1.00
	100



Note. %VAF = Percentage of Variance Accounted For.


Table M.11. Bivariate Matching Fits to the Behavior of the Linear-Clone-Pheno-Exponential Creature Type

	Mutation Rate
	ar
	am
	b
	%VAF

	0.5
	0.55
	0.57
	1.04
	98

	1.0
	0.64
	0.51
	1.04
	99

	2.5
	0.65
	0.48
	1.00
	100

	5.0
	0.66
	0.41
	1.00
	100

	7.5
	0.65
	0.39
	1.00
	100

	10.0
	0.64
	0.35
	0.99
	100

	12.5
	0.64
	0.33
	1.01
	100

	15.0
	0.64
	0.31
	1.00
	100

	17.5
	0.64
	0.29
	1.00
	100

	20.0
	0.64
	0.27
	1.00
	100

	25.0
	0.63
	0.25
	1.00
	100

	30.0
	0.62
	0.22
	1.01
	100

	35.0
	0.60
	0.21
	1.00
	100

	40.0
	0.59
	0.19
	1.00
	100

	45.0
	0.57
	0.18
	1.00
	100

	50.0
	0.54
	0.16
	1.00
	100


Note. %VAF = Percentage of Variance Accounted For. 

Table M.12. Bivariate Matching Fits to the Behavior of the Linear-Clone-Pheno-Gaussian Creature Type

	Mutation Rate
	ar
	am
	b
	%VAF

	0.5
	0.57
	0.83
	0.99
	94

	1.0
	0.55
	0.60
	1.07
	97

	2.5
	0.65
	0.57
	1.00
	99

	5.0
	0.69
	0.44
	1.02
	100

	7.5
	0.71
	0.42
	1.02
	100

	10.0
	0.72
	0.38
	1.04
	99

	12.5
	0.70
	0.35
	1.01
	100

	15.0
	0.68
	0.34
	1.01
	100

	17.5
	0.68
	0.31
	0.98
	100

	20.0
	0.68
	0.31
	0.99
	100

	25.0
	0.67
	0.27
	1.00
	100

	30.0
	0.65
	0.25
	1.01
	100

	35.0
	0.65
	0.24
	1.00
	100

	40.0
	0.64
	0.22
	1.00
	100

	45.0
	0.64
	0.21
	1.00
	100

	50.0
	0.63
	0.19
	1.01
	100



Note. %VAF = Percentage of Variance Accounted For
image1.png
Initial Population
1. Emit Behavior
2. Env. Feedback

Beneficial? NO

3A. Beneficial Selection 3B. Random Selection

Ll 4. Reproduction [«

l

5. Variation

Repeat 100x

Subsequent Population




image2.png
Selection Probability

0.03

0.025

—— Uniform

- - - Linear

<<<<<<<<< Exponential

0.01

0.005

120 140 160
Distance from the Last Behavior




image3.png
Genotype Phenotype

Parent 1 (001 [1]0]0]0[1]1]1]

Parent 2 nnmmnmnnm

Child mnmﬂﬂﬂﬂﬂﬂﬂ




image4.png
Phenotype Genotype

3i8 0[1]of1]1]of0]1]1]0]

d
354 0{1{0[1[1]{0[0[0[1]0




image5.png
Mutation Probability

1.0%

0.8%

0.6%

0.4%

0.2%

Uniform

weeees Linear
= == Exponential

= « Gaussian

-50 0 50
Change in Phenotype (AP)




image6.png
©
o
=

o
o
@

0.02

Probability

0.01

3

10

20 30 40
Integer Distance

50

60





image7.png
804 o o [ ] [
.
N70_
[~
360-
e
E 50
S
@« 404 oo o o ° °
N -~
2 20
= . .
o A
320— YY) °
=] o0 o .
ﬁ 10 wssoe ; °
N
T T T T T T T T T T T T T T T T T
0 10 20 30 40 50 60 70 80

Target Class 1 Scheduled Rate





image8.png
Predicted Rate of Behavior

500 ]
450
400
350 ]
300 ]
250
200 ]
150 ]
100 ]

50 7

— k=500,c=10,a=1.0
--- k=250,c=10,a=1.0
------ k=500,c=50,a=1.0
---- k=500,c=10,a=0.8

100 200 300 400
Rate of Reinforcement

500




image9.png
Preference Count

10 20 30 400 10 20 30 40

10 20 30 40 0

0

BIC

_Dﬂ

AIC

ok

B Exponential
O Linear

Extra Sums of Squares

1 2 3 4 5 6 7 8

Modern Classic

Quantitative Law of Effect Models





image10.png
Exponential Selection

o--"9~o--06__

-

Exponent Value

] —8— Bitwise BitFlip

0,70+ -©- C(Clone BitFlip
707, 1 1 1 1 1 1 [--A- Clone Pheno-Uniform
-<>- Clone Pheno-Linear
0.90 : :
Linear Selection —7 Clone Pheno-Exponential

i -%- Clone Pheno-Gaussian

0.854

5.0 7.5 1(;.0 12|.5 15|.0 17.5 26.0
Mutation Rate (%)




image11.png
Value of Parameter &k

Magnitude 20/20

Magnitude 40/40

200 —8— Bitwise Bitlj‘lip
-©- Clone BitFlip
1507 --&- Clone Pheno-Uniform
1004 --<0- Clone Pheno-Linear
50 —7 Clone Pheno-Exponential
3 -%- Clone Pheno-Gaussian
600 Magnitude 60/60 Magnitude 80/80
550—§—~—<$:"o“~-e——-e-——e\ SR
] ~ i -
5001 70A TRy © Al SRS

T
5.0 7.5 100 125 150 175

T T
20.05.0

T
7.5 10.0 125 150 17.5 200

Mutation Rate (%)




image12.png
Value of Parameter &k

600
5504
500
4501
4004
350+
3004
2504
2004
1504
1004

504

Magnitude 20/20

-

Magnitude 40/40

o---9©

—8— Bitwise BitFlip

-©- Clone BitFlip

--A- Clone Pheno-Uniform
-<©O— Clone Pheno-Linear

—7 Clone Pheno-Exponential
-¥- Clone Pheno-Gaussian

600
5504
500
4501
400
350
300
250
2004
1504
1004

501

Magnitude 80/80

5.0

75

10.0

12.5

15.0

T T T T
17.5 20.05.0 TS 10.0 12,5 150 17.5 20.0
Mutation Rate (%)




image13.png
Value of Parameter ¢

607 Magnitude 20/20 Magnitude 40/40

—8— Bitwise BitFlip

50 |-e- Clone BitFlip

--A- Clone Pheno-Uniform
-©0— Clone Pheno-Linear
—7 Clone Pheno-Exponential _-0
Clone Pheno-Gaussian

401

304

20

607 Magnitude 60/60

50 _o--70

50 75 100 125 150 175 20050 75 100 125 150 175 200
Mutation Rate (%)





image14.png
Value of Parameter ¢

607 Magnitude 20/20 Magnitude 40/40

—&— Bitwise BitFlip
509|-e~- Clone BitFlip

--&- Clone Pheno-Uniform
-O— Clone Pheno-Linear
—7 Clone Pheno-Exponential
Clone Pheno-Gaussian

40

304

TP

20

504

50 75 100 125 150 175 20050 75 100 125 150 175 200
Mutation Rate (%)




image15.png
Predicted Rate of Behavior

300

250 1

200 1

150 1

100 1

N
S

S

— Bitwise Bitflip - 10%
— — - C(Clone Pheno-Gaussian - 10%
----- Bitwise Bitflip -20%

-=-= Clone Pheno-Gaussian - 20%

25 50 75 100 125
Rate of Reinforcement

150




image16.png
2504

2004

1504

1004

wn
T

(=
1

Bitwise BitFlip

Clone BitFlip

Clone Pheno-Uniform
Clone Pheno-Linear
Clone Pheno-Exponential
Clone Pheno-Gaussian

Magnitude 40/40

N
wn
T

200+

B' at 15 Reinforcers per 500 Time Steps

_.
=
T

501

15013

Magnitude 60/60

Magnitude 80/80

5.0

75 10,0 125 150

17I.5 20|.05f0 7!5 10.0 125 15.0

Mutation Rate (%)

175




image17.png
B' at 15 Reinforcers per 500 Time Steps

) Magnitude 20/20

2004

1504

1004

—8— Bitwise BitFlip
-©- C(lone BitFlip
--&- Clone Pheno-Uniform

Magnitude 40/40

ol --<0-  Clone Pheno-Linear
—# Clone Pheno-Exponential
-%-_Clone Pheno-Gaussian
0_ 1 1 1 1 1 L 1 1 1 1 1 1 1 1
250 . .
Magnitude 60/60 Magnitude 80/80
2004

0_

50 75 100 125 150 175 20050 75

100 125 150 175 20.0

Mutation Rate (%)




image18.png
[=}
< P
S °,®
I L4 ’ L
- /
Z o 4 ‘s "
~ | =
.TA L] \\ Py =]
o> ~
X o ° ‘ [ ] -~
S © ° °
= / -~
) h =
° I d
[ ] | Y-
[ ] 'Y ° [ ] Py R
! ° <N
Y \ .
\ o® | O~
LJ \ —
\ |
d o &~
. L
Y ) [ =)
[ ) \ °
N L
°
AN
LI Y- )
(e}
o~ o wy <t on o — (e}

sdayg awir ], oS 19d s13A033uey))




image19.png
o— ¢ g
bl o
. —
& [ 4 ®
‘|I
%’ 3
o e°
=
—%—o+— o o 132
o +
P —
-
o T
LA )
=4
(o]
S
(=}

765432100

$3 00S J19d s19A093uey)




image20.png




image21.png




image22.png
\.‘\'.‘\Q

-

o~ o vy <t o (o] — (=]

sdayg awr ], 0S 19d sa19A093uey))

120 140

100

40 60 80
R, +R,

20




image23.png
Maximum Changeovers

3t Exponential Selection

_--0
25 e

30+ Linear Selection

_o---9

254 -

Bitwise BitFlip

Clone BitFlip

Clone Pheno-Uniform
Clone Pheno-Linear
Clone Pheno-Exponential
Clone Pheno-Gaussian

ke

50 75 100 125 150 175 200
Mutation Rate (%)





image24.png
Concavity (Cpy)

60
40

Exponential Bitwise Bitflip

5.0 75 10.0 12.5 15.0
Mutation Rate (%)

20.0

Reinforcer
Magnitudes
—&— 20/20
-o-  40/40
A 60/60
-—<>-- 80/80





image25.png
Concavity (Cpay)

Linear Bitwise Bitflip

Reinforcer
Magnitudes
—— 2020
-o-  40/40
- 60/60
-<>-- 80/80

5.0 7.5 10.0 12.5 15.0 17.5 20.0
Mutation Rate (%)




image26.jpeg
—8— Rate
-©- Magnitude

l:’ 0.8 1
=
> 06-
~N—
= o
£ 04
e ] C-o._
] °mo-o
= 0.24
0'0- T T T T T T T T T T
10 20 30 40 50

Mutation Rate (%)





image27.jpeg
—8— Rate
-©- Magnitude

E 0.8 1
= J
> 06-
~N—
= 4
£ 041
e -0
g‘ i e_-O"(-)——o
= 0.21
0'0- T T T T T T T T T
10 20 30 40 50

Mutation Rate (%)





image28.jpeg
Exponent Value

—&— Rate
-©- Magnitude

el

S

Q
eﬁeeﬁe_o\e
i

0 10 2I0 3l0 40 50
Mutation Rate (%)





image29.jpeg
Exponent Value

—8— Rate
-©- Magnitude

Jr———

&
[CR WY 006 g

‘G—e__e__o__e__o

0 10 2I0 3l0 40 50
Mutation Rate (%)





image30.jpeg
—&— Rate
-©- Magnitude

E 0.8 1
= _
> 06-
~N—
= m
%}
S 041
g 8&6956“990\ _
K 0.2 ©-0--6-9 _¢
0.0
0 10 20 30 40 50

Mutation Rate (%)





image31.png
Exponent Value

—8— Rate
-©- Magnitude

W

(&QOQ‘OQ&GG\

C-0-6-9-6-9

0 10 2I0 3l0 40 50
Mutation Rate (%)





image32.jpeg
Exponent Value

—&— Rate
-©- Magnitude

10 2I0 3l0 40 50
Mutation Rate (%)





image33.jpeg
Exponent Value

—8— Rate
0.8- -©- Magnitude

0 10 2I0 3l0 40 50
Mutation Rate (%)





image34.jpeg
Exponent Value

—8— Rate

-©- Magnitude

§ et eeea .

(O]

\

B

®0vgq.

el S

‘O’—e—_o

0

10

2I0 3l0 40
Mutation Rate (%)

50





image35.jpeg
Exponent Value

—8— Rate
-©- Magnitude

%EE’EE‘EE'BB—E—E{,_E\E\E
b

Be

Oa

ee‘O——e_

‘G-—O__G__O__o

20

3l0 40 50

Mutation Rate (%)





image36.jpeg
Exponent Value

—&— Rate
-©- Magnitude

gﬁmﬂ\a‘e\ﬂ\ﬂ

O
o
‘Qee_o_—e
“0C--06-

G-0--¢

0 10 2I0 3l0 40 50
Mutation Rate (%)





image37.jpeg
Exponent Value

—8— Rate
-©- Magnitude

(SRS
eho"e‘-o-—e_

o)

2I0 3l0 40
Mutation Rate (%)

50





