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Abstract 
 

Analysis of Time to Recurrent Pulmonary Exacerbation: A Review of 
Three Statistical Approaches 

 
By Luyu Zhang 

 
 

Recurrent data are not unheard of in biomedical studies. Individuals can experience 

multiple events of the same type during the study period. Three common statistical methods 

for recurrent outcomes are reviewed in this thesis. These methods are count regression, 

standard Cox proportional hazards (PH) regression, recurrent event survival regression. This 

study examines the mathematical underpinnings of these three methods; the limitations of 

each of the three approaches are also discussed. Two models, Poisson and negative 

binomial, are discussed in count regression. Both of them model the total number of interest 

events over the study period, but the negative binomial is a more flexible model than the 

Poisson model due to an additional parameter. The standard Cox PH model analyzes the 

time to the first event and ignores repeated events. Finally, the proportional intensity model, 

Prentice, Williams, and Peterson (PWP) total time model and PWP gap time model are 

discussed in recurrent event survival regression. They all account for the repeated events, but 

the two PWP models are more robust for analyzing recurrent events. The example study that 

we use in this paper is for testing the effectiveness of high dose vitamin D on preventing 

consecutive re-hospitalizations because of pulmonary exacerbations, which often happen 

repeatedly in adults with cystic fibrosis. Nevertheless, we found, based on results of all 

methods, that the vitamin D treatment does not have significant effects on preventing adults 

with cystic fibrosis from pulmonary exacerbations. 
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Chapter 1 Introduction 
 

Many models and analyses presume that individuals experience only one event, 

which is reasonable if the event is unrepeatable, like death. However, in many biomedical 

and epidemiological studies, an individual can experience repeated events during a given 

period. Some examples of recurrent events are women’s menstrual cycle, sickness leave from 

work, heart attack, stroke, postoperative infection (Cumming, Kelsey, & C.Nevitt, 1990; 

Peduzzi, Henderson, Hartigan, & Lavori, 2002). It is very important to understand that 

whether there is an association between risk factors and recurrent events during the study 

period. (Twisk, Smidt, & de Vente, 2005) have divided statistical techniques for recurrent 

event data into two groups, naïve techniques and longitudinal techniques. Naive techniques 

ignore the existence of recurrent events or the correlation between the recurrent events 

within subjects. Different from naïve techniques, longitudinal techniques are characterized 

by taking into account whole pattern of recurrent events and their correlation within 

subjects. Many papers in the statistical literatures have talked about different methods of 

modeling recurrent events (LIM, 2000; Twisk et al., 2005; Yang et al., 2017). However, there 

are challenges to choose proper methods to address specific research questions. This thesis 

has two aims: (1) to give an overview of common statistical techniques to handle recurrent 

event data and (2) to provide recommendations on how to analyze recurrent event data 

based on specific research questions. 

 Three different statistical approaches and their assumptions and limitations are 

discussed and compared in this thesis. In chapter 2, count regression is discussed, including 

the Poisson regression and the negative binomial regression. Chapter 3 focuses on the Cox 

Proportional Hazards (PH) model, which analyzes time to the first event. In chapter 4, three 



extended Cox approaches for recurrent event survival regression are illustrated. They are the 

Andersen-Gill (AG) model, Prentice, Williams, and Peterson (PWP) total time model, and 

the PWP gap time model. Chapter 5 summarizes the results of three statistical approaches 

using data from a recent Vitamin D study (DISC) for enhancing the immune system among 

patients with cystic fibrosis. The study aimed to investigate the efficacy of high dose vitamin 

D on preventing pulmonary exacerbations in adults with cystic fibrosis (CF). Chapter 6 

provides recommendations in regard to conducting analysis of recurrent event data.  

 

 

  



Chapter 2 Count Regression 

Poisson Regression 

The Poisson regression model has been widely used for modeling recurrent data in 

survival analysis. One of the examples investigated the number of hospitalizations for 

patients treated with hemodialysis (HD) verses peritoneal dialysis (PD) (Habach, 

Bloembergen, Mauger, & Wolfe, 1995). Poisson regression was used to estimate the rate 

ratio comparing the annual incidence rate of hospitalization between PD and HD. They 

concluded that hospital admission rates were 14% higher for those who treated with PD 

compared with HD patients (95% confidence interval [CI], 1.13 to 1.15).  

In the Poisson regression model, counts of the events are assumed to follow a 

Poisson distribution in a given length of time, where the probability mass function is 

𝑃(𝑌$ = 𝑦$|𝜆) =
𝑒+,𝜆-.
𝑦$!

 

where 𝜆 denotes the average number of events in a given interval and also its variance, 𝑦$ 

can take positive integer values in the interval. The likelihood function for the Poisson 

model is: 

𝐿 𝛽 𝑦 = 𝑃 𝑦$ 𝜆$ =
exp	(−𝜆$)𝜆$

-.

𝑦$!
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Since the events are assumed to be independent, the likelihood function is equal to the 

product of the probability mass functions. 𝜆 is the only parameter in Poisson distribution, 

which is both its mean and variance. In Poisson regression, the logarithm of the expected 

value of 𝑌 for subject 𝑖 is modelled by a linear combination with unknown parameters. 



Poisson regression is thus also called “log-linear model”. When individuals are not followed 

in the same amount of time, an offset variable is needed:  

log 𝐸 𝑌$ = log 𝑡$ +	𝛽A𝑥$					                                             

where 𝛽 denotes a vector of regression coefficients, 𝑥$ denotes a vector of covariates for 

subject 𝑖, log 𝑡$ is an offset variable for subject 𝑖. 

In a few situations, the conditional variance is greater than the conditional mean. This is 

called overdispersion, and overdispersion is a problem when fitting a Poisson model because 

the Poisson distribution assumes that the mean is equal to the variance. In this case, negative 

binomial regression may be used, which allows a dispersion parameter 𝛼 to be incorporated 

in the model. (Rodrıguez, 2013). 

Negative Binomial Regression 

The negative binomial distribution may be used to model count data. Its probability 

mass function is given by 

𝑃 𝑌$ = 𝑦$ 𝜆, 𝛼 =
Γ(𝛼 + 𝑦)
𝑦! Γ(𝛼)

𝛽F𝜇-

(𝜇 + 𝛽)FH-
 

The distribution has two parameters: 𝜆 and 𝛼. 𝜆 is the mean or expected value of 𝑌. 𝛼 is the 

overdispersion parameter. When 𝛼 is equal to 0, the negative binomial distribution reduces 

to the Poisson distribution. The likelihood function for the negative binomial is as follows: 

𝐿 𝛽 𝑦, 𝑋 = 𝑝(
7

$89

𝑦$ 𝑥$ =
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Since the variance of a negative binomial distribution is greater than or equal to the variance 

of a Poisson distribution with the same mean, the negative binomial regression has greater 



flexibility in modeling mean and variance of the outcomes than the highly restricted Poisson 

regression (Pedan). 

  



Chapter 3 Cox Proportional Hazards Regression  
 

The Cox PH model is a popular technique for analyzing survival data to explain the 

effect of explanatory covariates on hazard rate in epidemiological and biomedical studies. 

Using the standard Cox PH model, (Abadi et al., 2014) assessed the impact of different 

treatments for patients with diverse stages of cancer survival time. Here, survival time was 

defined as the time from the diagnosis of the disease to death or the end of follow-up. They 

found that when patients with stage I and II breast cancer, radiotherapy and chemotherapy 

treatments had the highest hazard; when patients with stage III and IV breast cancer, surgery 

treatment had the highest hazard.  

The standard Cox PH model is a technique for modeling the hazard rate of outcome 

variable, which is the time to the first event. The hazard rate is an immediate risk of failure at 

a given period, and the function which describes how hazard rate changes over time is called 

the hazard function. The survival time of an individual is assumed to follow its hazard 

function, which can be expressed as follows for the 𝑖th individual: 

ℎ$ 𝑡 = ℎ 𝑡, 𝑋$ = ℎL 𝑡 exp 𝑋$A𝛽 = ℎL 𝑡 exp	(𝛽9𝑋$9 + 𝛽M𝑋$M + ⋯+ 𝛽O𝑋$O) 

where ℎL 𝑡  is an arbitrary and unspecified baseline hazard function,  𝑋$ = (𝑋$9, 𝑋$M … , 𝑋$O) 

denotes the vector of explanatory variables for subject	𝑖, and the 𝑋s are time-independent 

predictors, which means the values of these predictors for a given person do not change 

over time. 𝛽 = ( 𝛽9, 𝛽M … , 𝛽O) is the vector of unknown estimators of explanatory variables, 

and this vector is assumed to be the identical for all individuals. Moreover, survival times are 

recorded for individuals who experience an event before the end of follow-up time, and 

those who do not experience the event or drop from the study during follow-up time are 

considered as being censored. Therefore, an individual either experiences the event of 



interest or is censored in the study. The Cox model uses survival time and censorship as a 

two-variable outcome. 

The likelihood function of the Cox model is a partial likelihood function rather than 

a complete likelihood function because only probabilities for individuals who fail are 

considered, ignoring probabilities for individuals who are censored. The partial likelihood is 

as follows: 

𝐿(𝛽) = 𝐿9. 𝐿M …	𝐿R = 𝐿S(𝛽)
T

S89

 

Where 𝐿Sdenotes that given survival up to time 𝑗, the likelihood of falling at this time. A 

subset of individuals who are at risk at the 𝑗th failure time is called risk set, 𝑅(𝑡 W ). The risk 

set will get smaller when the failure time increases.  

 In addition, the Cox PH model requires that the ratio of two hazards remains 

constant over time; that the hazard ratio stays the same over time is called the proportional 

hazards (PH) assumption. For example, if the hazards cross, the PH assumption is violated, 

so a Cox PH model is not appropriate. There are many approaches for assessing the PH 

assumption. A popular approach is to use the Schoenfeld residuals. The main idea behind 

this test is that the Schoenfeld residuals for a particular covariate will not be related with 

survival time when the PH assumption holds for that covariate. 

  



Chapter 4 Recurrent Event Survival Regression 
 

In recurrent events analysis, an individual is at risk for the same event of interest 

throughout the study. Several statistical modeling techniques have been developed for the 

analysis of recurrent time-to-event data. In this thesis, the focus is on three modeling 

techniques including the Andersen-Gill (AG) model, the Prentice, Williams, and Peterson 

(PWP) total time model and the PWP gap time model.  

The Andersen-Gill model 
 

The AG model is a generalized the Cox PH model for analyzing independent 

increment in the number of events based on the theory of counting processes (Andersen & 

Gill, 1982). It also referred to as the proportional intensity model. It is based on the 

assumption that the outcome is the time from randomization (study entry) to the time the 

event occurs at time 𝑡, but whether previous occurred events or not is ignored. Recurrent 

events are assumed to be independent, and time increment between events are uncorrelated 

(Amorim & Cai, 2015; Ozga, Kieser, & Rauch, 2018). All events have a common baseline 

hazard function, and the same parameter is estimated for all predictors. However, if the 

assumption does not hold, robust estimation is widely used for adjusting the correlation 

among outcomes on the same subject. This technique adjusts the estimated variance of 

regression coefficients. Therefore, the robust variance estimator permits hypothesis testing 

(Liang & Zeger, 1986). 

The Prentice, Williams, and Peterson total time model 

The PWP total time is a stratified Cox based approach based on the each sequential 

event during the follow-up time (Prentice, Williams, & Peterson, 1981). Similar to the AG 



model, the time scale is the time from study entry, but the PWP total time uses the actual 

times of the two events. Therefore, the baseline hazard function changes in the subsequent 

events. This model evaluates the effect of a covariate for a specific event since the study 

entry. The hazard function for PWP total time model is as follows:   

ℎ$S 𝑡 = ℎLS 𝑡 exp 𝑋$SA 𝛽S  

This equation describes the hazard for an individual 𝑖, 𝑖 = 1,… , 𝑛, and for their 𝑗th 

recurrent event 𝑗 = 1,… , 𝑘9, 𝑘9 ≤ 𝑘. 𝑘 is number of distinct observed event times. All 

individuals are at risk for the first stratum, but only those who had an event in the previous 

stratum are at risk for the next one. Therefore, the stratum has fewer events than its 

previous stratum, and the late few strata may contain very small number of events. In this 

situation, if their baseline hazards are very similar, some events can be combined to the same 

strata (Yang et al., 2017).  

The PWP gap time model 
 

The PWP gap time model is similar to the PWP total time model, but the time of 

PWP gap time model is reset to zero after each event has occurred (Prentice et al., 1981). 

The time starts from the previous event (or study entry for the first stratum) instead of study 

entry until the next event. The hazard function for PWP gap time model is as follows: 

ℎ$S 𝑡 = ℎLS 𝑡 − 𝑡S+9 exp 𝑋$SA 𝛽S  

where the hazard for individual 𝑖 𝑖 = 1,… , 𝑛, and for the 𝑗th event 𝑗 = 1,… , 𝑘9, 𝑘9 < 𝑘. . 𝑘 

is number of distinct observed event times. Similar to the PWP total time, it can be seen that 

each event has a separate hazard function with its own baseline hazard and regression 

parameter. Only individuals who had the previous event will be at risk for the next event 

(Ozga et al., 2018).  



 

All of these three recurrent survival models are commonly used in recurrent event 

survival analysis. Yang et al. (2017) applied all three models for recurrent event analysis in a 

cohort study of Chronic Kidney Disease (CKD). This study was interested in 

hospitalizations due to a cardiovascular event, which occurred repeatedly in patients with 

CKD. They concluded that recurrent event analyses provided more flexibility and insight, 

compared to the standard Cox PH model. 

 

  



Chapter 5 The DISC Study 

Overview of Study Design 

Vitamin D deficiency is a common problem among patients with CF. Since current 

studies show that there is an association between vitamin D status and risk of 

pulmonary exacerbations, the purpose of the DISC study was to determine whether 

high dose vitamin D would improve the time to the next pulmonary exacerbation 

requiring re-hospitalization. This study was a double-blind, randomized, multicenter 

clinical trial of adults with CF. This study was conducted at five United State Cystic 

Fibrosis Foundation Care Centers including Emory University Hospital, Atlanta, GA, 

The University of Alabama Hospital at Birmingham, Birmingham, AL, Case Western 

Reserve University and Rainbow Babies and Children's Hospital, Cleveland, OH, 

University of Iowa and University of Iowa Hospitals and Clinic, Iowa City, IA, and the 

University of Cincinnati, Cincinnati, OH. 91 Adults with CF at these centers were 

randomized to either treatment and placebo group. The treatment group was given 

250,000 IU vitamin D within 72 h of admission and re-dosed 50,000 IU of vitamin 

every other week from 3 months after randomization. Subjects were followed for one 

year. The clinical outcome was retrieved from the electronic medical record including 

outpatient and re-hospitalization because of pulmonary exacerbation and adverse events 

(Tangpricha et al., 2017). 

Data Description of the DISC Study  
 

91 adults with CF were randomized to treatment and placebo groups. 46 subjects 

were assigned to vitamin D treatment group, and 34 (74.0%) of them had the event of 

interest during the follow-up period. 45 subjects were assigned to the placebo group, and 39 



(86.7%) of them experienced the event of interest during the follow-up period. Subjects were 

followed for 365 days, and the median follow up time was 122 days. Subjects who were lost 

to follow up were assigned the last day of interview as their event time, and those who did 

not have the event of interest at the end of the study were assigned 365 days as their event 

time. 20 out of 91 subjects (22.0%) never had the event of interest; 26 of the subjects 

(28.5%) had only one event of interest; 45 of the subjects (49.5%) had more than one event 

over the study period. 

Moreover, 25 percentile of survival time is 77 days; 50 percentile of survival time is 

127 days; 75 percentile of survival time is 275 days. In figure 1, there is no visible difference 

in the Kaplan Meier (KM) curves between the vitamin D group and the placebo group. As 

time passed, the two curves declined and both stayed together, suggesting that no beneficial 

effect of vitamin D over the placebo group. 

All tests of hypotheses are two-sided and use a 0.05 level of significance. SAS® 

software 9.4 (SAS Institute Inc., Cary, NC) is used in the data analyses. 



 
 

Figure 1: Kaplan Meier curves for Vitamin D (in red) and placebo (in blue) groups 

Count regression analysis 
 

A Poisson regression model was built to assess the vitamin D effect on recurrent 

pulmonary exacerbation hospitalizations. Since this was a multisite study, the interaction 

between treatment and site needed to be checked. None of the interaction termsturned out 

to be statistically significant. Therefore, the interaction terms were dropped, leaving only 

treatment in the model. From “Analysis of Parameter Estimates” table (figure 2), treatment 

was not statistically significant (p=0.95), which indicated that for the incidence rate of 

pulmonary exacerbation of CF was similar for both vitamin D and placebo groups. But 

because value/DF is higher than 1, there may be overdispersion in the data  



 

Figure 2. Output from Poisson regression 

 Next, the negative binomial distribution was considered. As mentioned above, the 

negative binomial may provide a better fit to overdispersion data, as it allows an extra 

dispersion parameter. From “Analysis of Parameter Estimates” table (figure 3), treatment 

was not statistically significant (p=0.97). Because the 95% confidence interval for the 

dispersion parameter does not contain 0, the negative binomial distribution may be a better 

fit to the data than the Poisson distribution. 



 

Figure 3. Output of Negative Binomial Regression 

Cox Proportional Hazards regression analysis 
 

Results of the analysis of the Cox PH model are shown in figure 4. Based on the last 

table “Analysis of Maximum Likelihood Estimates,” the hazard ratio between vitamin D 

group and placebo group is 0.87 (95% CI: 0.55-1.37), suggests no difference in the hazard 

rate between the two groups. It thus appears that there is no beneficial effect of giving high 

dose vitamin D for reducing the hazard of pulmonary exacerbation of CF. The proportional 

hazards (PH) assumption was also checked; the Schoenfeld residuals do not appear to be 

related to survival time (p-value=0.58), indicating no major violation of the PH assumption. 

 



 

Figure 4. Output from the Cox PH model 
 

The PWP total time analysis 
 

The PWP total time model is chosen for analyzing recurrent events based on some 

criteria. First of all, the AG model may not be useful when the baseline risk changes from 

event to event. For example, people with CF who had the first pulmonary exacerbation may 

be more likely to have the second, the third or the fourth pulmonary exacerbations, so the 

assumption of independent events may not be satisfied. Second, if researchers are interested 

in study the time to rehospitalizations since study entry between vitamin D group and 

placebo group for the adult with CF, it is more meaningful to use the PWP total time model 

by comparing the time from study entry to events rather than interval time between events.  

Results of the analysis of the PWP total time model are shown in figure 5. Results 

obtained from the PWP total time model and the standard Cox PH model for the time to 



the first event are similar. The treatment coefficient is not significantly different from 0, 

which indicates a treatment difference in survival time.  The hazard ratio is 0.99 (95% 

CI: ???). The conclusion is that there is no beneficial effect of high dose vitamin D on the 

total time in any of the pulmonary exacerbations and re-hospitalization.  

 

 

Figure 5. Output from the PWP total time model 

 

 

 

  



Chapter 6 Discussion and Conclusion 
 

Three statistical approaches that are often used in recurrent data analysis are 

reviewed in this thesis. They are count regression, the standard Cox PH models and 

stratified Cox models. Depends on the type of data and interesting research questions, a 

proper test is selected for analysis. The Poisson regression and the negative binomial 

regression are fully parametric models, and the total number of count of events is assumed 

to follow either the Poisson distribution or negative binomial distribution. The Poisson 

regression assumes that conditional mean and conditional variance are identical, which can 

lead to the problem of overdispersion. In this case, negative binomial regression is 

recommended, as it introduces an additional parameter allowing overdispersion. 

The standard Cox PH model is semiparametric, which has an unspecified baseline 

hazard function. It is used to examine the association between exposure and the time to the 

first event. This thesis also discusses three different stratified Cox PH models, which are 

usually related to the event mechanism. The AG model is rarely used in practice because it 

hardly assumes that the baseline risk stays constant as a result of previous events. The PWP 

total time and gap time models are more robust for recurrent events. They consider the 

event sequence in the analysis. The difference between the two PWP models is that the PWP 

total time model considers the time from study entry, but the PWP gap time model resets 

time to zero after each occurred event, so the time starts from the previous event the next 

event. 

 When applied to the DISC study, all of the statistical procedures discussed in this 

thesis suggest that the treatment variable does not have an impact on reducing the risk 

occurrence of pulmonary exacerbation. 
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Appendix  
libname x 'H:\Thesis'; 
 
* Read in the data; 
PROC IMPORT OUT= WORK.DISC  
            DATAFILE= "H:\Thesis\DISC_data_all.xlsx"  
            DBMS=EXCEL REPLACE; 
     RANGE="DISC_data_all$";  
     GETNAMES=YES; 
     MIXED=NO; 
     SCANTEXT=YES; 
     USEDATE=YES; 
     SCANTIME=YES; 
RUN; 
 
*cleaning data; 
 
*data_all; 
data x.data_all ; 
 set work.disc; 
 
 if EventDate > 365 and EventType = 'LTFU' then do 
  EventDate = 365; 
 end; 
 if EventDate > 365 and EventType ne 'LTFU' then delete; 
  
 *if EventType = "Death" then delete; 
 
 if Group="A" then treatment="Vitamin D"; 
 else treatment="Placebo"; 
  
 keep ID site EventDate EventType Observed treatment; 
 run; 
 
*check that everything loaded correctly; 
proc contents data=x.data_all; 
run; 
proc print data=x.data_all; 
run; 
proc freq data=x.data_all; 
table treatment ; 
run; 
  
proc sort data=x.data_all; 
 by ID; 
 run; 
 
*first_event; 
data x.firstevent; 
set x.data_all; 
by ID; 
if first.id; 
proc print;run; 
 



******************* 
Data description 
*******************; 
proc freq data=x.firstevent; 
table Observed * treatment/ missing NOPERCENT  NOROW  NOCOL ; 
run; 
 
proc freq data=x.DISC_poisson; 
table number_event * treatment/ missing NOPERCENT  NOROW  NOCOL ; 
run; 
 
*mean follow-up time; 
proc means data=x.firstevent median; 
var EventDate; 
run; 
 
*median survival time; 
 ods graphics on; 
proc lifetest data=x.firstevent plots=(survival(atrisk)); 
      time EventDate*Observed(0); 
      *strata Treatment; 
   run; 
   ods graphics off;  
 
*******************  
Possion regression 
*******************; 
 
*count number of events; 
data x.DISC_poisson; 
 set x.data_all; 
 by ID; 
 if first.ID then number_event= -1; 
 number_event + 1; 
 if last.ID then do; 
 log_EventDate= log (EventDate); 
  output; 
  end; 
 proc print; run; 
 
proc sort data=x.DISC_poisson; 
 by treatment; 
run; 
 
proc freq data=x.DISC_poisson; 
 by treatment; 
 tables number_event; 
run; 
 
/*check interaction; 
 
proc genmod data=x.DISC_poisson; 
 class treatment(ref='Placebo') site / param=ref; 
 model number_event = treatment | site / offset= log_EventDate  
           dist= 
poisson 
                                link= log dscale; 



 run;*/ 
 
*remove site and interaction terms; 
proc genmod data=x.DISC_poisson; 
 class treatment(ref='Placebo') / param=ref; 
 model number_event = treatment / dist= poisson 
          link= log dscale 
          offset= 
log_EventDate; 
 run; 
 
data pvalue; 
df = 89; chisq = 175.6497; pvalue = 1 - probchi(chisq, 
df); run; 
proc print noobs; run; 
 
*****************************  
Negative Binomial regression 
*****************************; 
 
/*proc genmod data=x.DISC_poisson; 
 class treatment(ref='Placebo') site / param=ref; 
 model number_event = treatment | site / offset= log_EventDate  
         dist= nb 
                                link= log dscale; 
 run;*/ 
 
*nb regression, treatment only; 
proc genmod data=x.DISC_poisson; 
 class treatment(ref='Placebo') / param=ref; 
 model number_event = treatment / offset= log_EventDate  
         dist= nb 
                                link= log dscale; 
 run; 
 
data pvalue; 
df = 89; chisq = 127.1475; pvalue = 1 - probchi(chisq, 
df); run; 
proc print noobs; run; 
 
*check zero-inflated; 
ods graphics  / width=4in height=3in border=off; 
proc sgplot data = x.DISC_poisson; 
  histogram number_event /binwidth=1; 
run; 
ods graphics off; 
 
******************* 
   Cox PH Model 
*******************; 
*Check interaction term treatment*site; 
proc lifetest data= x.firstevent method=km 
         plots=survival 
(strata=overlay); 
 time EventDate*observed(0); 
 strata treatment; 
 run; 



 
 
proc lifetest data= x.firstevent method=km 
         plots=survival 
(strata=overlay); 
 time EventDate*observed(0); 
 strata site; 
 run; 
 
*model 1 contains only treatment; 
proc phreg data=x.firstevent; 
 class treatment(ref='Placebo'); 
 model EventDate*observed(0)=treatment / rl; 
run; 
 
*model 2 contains treatment, site and interaction term; 
proc phreg data=x.firstevent; 
 class treatment(ref='Placebo')site; 
 model EventDate*observed(0)=treatment | site/ rl; 
  
run; 
 
 
****Assessing the PH assumption; 
*run model and output Schoenfeld residuals; 
proc phreg data=x.firstevent; 
 class treatment(ref='Placebo'); 
 model EventDate*observed(0)=treatment ; 
 output out=results RESSCH=rtreatment; 
 run; 
proc print data=results; 
 run; 
data events;  
 set results;  
 if observed=1;  
 run; 
 
*create rank variable; 
proc rank data=events out=ranked 
ties=mean; var EventDate; 
ranks timerank; run; 
proc print data=ranked; run; 
 
*correlate rank variable and Schoenfeld residuals; 
proc corr data=ranked nosimple; var rtreatment; 
with timerank; 
run; 
  
******************* 
  Recurrent Events 
*******************; 
proc sort data=x.data_all; 
 by ID eventdate; 
 run; 
 
data DISC2(drop = SITE EventType); 
retain id interval Observed start stop tr; 



rename EventDate=stop; 
set x.data_all; 
by id eventdate; 
start=lag(eventdate); 
if first.id then start=0; 
if first.id then interval=1; 
else interval+1; 
if treatment = "Vitamin D" then tr=1; 
else tr=0; 
run; 
 
proc print data = DISC2; run; 
 
proc phreg data=DISC2 covs(aggregate); 
model (start,stop)*observed(0) = tr / rl; 
strata interval;  
id id; 
run; 
 


