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Abstract

On Algorithmic Hypergraph Regularity

By Annika Poerschke

Thomason and Chung, Graham and Wilson were the first to systematically

study quasi-random graphs and hypergraphs and showed that several prop-

erties of random graphs imply each other in a deterministic sense. In par-

ticular, they showed that ε-regularity from Szemerédi’s regularity lemma is

equivalent to their concepts. Over recent years several hypergraph regularity

lemmas were established.

In this dissertation, we focus on two regularity lemmas for 3-uniform hy-

pergraphs one due to Gowers, and one due to Haxell, Nagle, and Rödl. Their

lemmas are based on different notions of quasirandom hypergraphs and we

show that their concepts are in fact equivalent. Since the regularity lemma

of Haxell, Nagle, and Rödl is algorithmic, we also obtain an algorithmic

version of Gowers’ regularity lemma. Further, we use Gowers’ analytic ap-

proach to the hypergraph regularity lemma to give a more direct proof of

the algorithmic version of his regularity lemma.
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Chapter 1

Introduction

In 1975, Szemerédi proved his well-known Regularity Lemma [34] that is

of fundamental importance in combinatorics and graph theory. His lemma

helped in proving many results especially in extremal graph theory. See

[22] for an excellent survey on the applications of the regularity lemma.

Roughly speaking, the lemma says that we can decompose the vertex set of

any graph into a fixed number of classes such that the graphs induced on

almost every pair of the partition classes behave like random graphs. The

essential concept involved in Szemerédi’s regularity lemma is the notion of

an ε-regular pair. For a graph G = (V,E) (we refer the reader to [10] for

basic graph theory definitions and concepts) with A,B ⊆ V nonempty and

disjoint, we let e(A,B) = |E(A,B)| be the number of edges between A and

B in G. Furthermore, we set d(A,B) = e(A,B)/|A||B| as the density of

the bipartite graph (A ∪ B,E(A,B)). We say the pair (A,B) is ε-regular

if for some positive ε and any A′ ⊆ A, B′ ⊆ B satisfying |A′| ≥ ε|A| and

|B′| ≥ ε|B| we have |d(A′, B′)− d(A,B)| < ε. Now, we are able to state the

regularity lemma.

Theorem 1.1 (Regularity Lemma [34]) For all ε > 0 and t0 ∈ N, there

are two integers T0 = T0(ε, t0) and n0 = n0(ε, t0), such that for every graph

G = (V,E) with |V | = n ≥ n0, V admits a partition into t + 1 classes

V = V0 ∪ V1 ∪ · · · ∪ Vt with t0 ≤ t ≤ T0 satisfying the following:

(i) |V0| ≤ ε|V |,

(ii) |V1| = · · · = |Vt|, and
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(iii) all but at most εt2 of the pairs (Vi, Vj) with 1 ≤ i < j ≤ t are ε-regular.

The original proof of Theorem 1.1 is non-constructive. But in 1994 Alon,

Duke, Lefmann, Rödl, and Yuster [1, 2] were able to give an algorithmic

proof of the regularity lemma which has already been applied to design algo-

rithms for various combinatorial problems. Applications include for instance

approximation algorithms for the max-cut problem [13] and a fast algorithm

for computing the frequency of a subgraph [11]. Many of these problems

have generalizations for hypergraphs. Therefore, the question whether we

can extend the regularity concept to hypergraphs arises naturally.

In the hypergraph case regularity can be measured differently. Various

authors were able to establish several hypergraph regularity lemmas in-

cluding Frankl and Rödl [12], Haxell, Nagle, Rödl, Schacht and Skokan

[17, 24, 30, 31, 32], Gowers [14, 15] and Tao [36]. Applications of these

hypergraph extensions have been considered in [3, 8, 9, 12, 14, 15, 20, 23,

25, 24, 26, 29, 30, 27, 28, 33, 35]. Gowers used the notion of a (functional)

quasirandom hypergraph in his proof of the hypergraph regularity lemma."

In fact, Thomason [37] and Chung, Graham and Wilson [6] were the first to

investigate the properties of so-called quasirandom graphs. In particular, the

latter authors considered several properties of random-like graphs of density

1/2 and showed that they are all equivalent in a deterministic sense.

In this thesis we focus on 3-uniform hypergraphs and in particular, we

consider the hypergraph regularity lemmas of Gowers [14] and Haxell, Rödl,

and Nagle [17]. In fact we show that their regularity concepts are equiva-

lent, i.e. we show that minimality (used by Haxell et al.) and (functional)-

quasirandomness (introduced by Gowers) are equivalent (see Theorem 3.10).

Our proof relies, in both directions, on the so-called hypergraph counting

lemmas (see Theorem 3.11 and Theorem 3.12), which correspond to the reg-
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ularity lemmas of Gowers and Haxell et al. [14, 17]. As a consequence,

we infer an algorithmic version of Gowers’ regularity lemma, using that the

lemma of Haxell et al. is algorithmic. But we also use Gowers’ elegant,

analytic approach to the hypergraph regularity lemma to get a somewhat

more direct proof of the algorithmic version of Gowers’ regularity lemma

for 3-uniform hypergraphs. For that we revisit his original proof that con-

tains probabilistic arguments and provide a derandomized version thereof

(see Theorem 4.1).

Organization of this thesis. In Chapter 2, we consider graphs and recall

the equivalence of Gowers’ (functional) quasirandomness concept for graphs

[14] and ε-regularity [34]. In Chapter 3 we introduce 3-uniform hypergraphs

and discuss the relation of Gowers’ δ-quasirandomness and δ-minimality used

in the paper of Haxell et al. [17] (see Theorem 3.10). In Chapter 4 we provide

a constructive version of Gowers’ quasirandom lemma (see Theorem 4.1).
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Chapter 2

Graphs

2.1 Quasirandomness

2.1.1 Basic Definitions and Concepts

We start this section with a review of various notions of quasirandomness

for graphs, and will point out their relations. Our objects of interest in this

chapter are simple graphs, without loops and multiple edges, and we refer the

reader to [10] for basic graph theoretic definitions and concepts. Thomason

[37] was the first to study quasirandom graphs systematically. This research

was continued by Chung, Graham, and Wilson [6] who investigated several

properties of random-like graphs of density d = 1/2 and proved that they are

all equivalent. For our purpose we will restrict ourselves to bipartite graphs

here.

Definition 2.1 ((K(2)
2,2 , ε)-minimality) Let G be a bipartite graph with

vertex partition V1 ∪ V2 and density d12. G is called ε-quasirandom if its

number of labelled 4-cycles is at most (d4
12 + ε)|V1|2|V2|2.

We call this definition (K(2)
2,2 , ε)-minimality since it is always the case that

for a bipartite graph G, defined as in Definition 2.1, the following holds:

|K(2)
2,2 (G)| ≥ (d4

12 − o(1))|V1|2|V2|2

where o(1) → 0 as min{|V1|, |V2|} → ∞ and K
(2)
2,2 (G) denotes the family of

all 4-cycles in G.

The next concept of quasirandomness was introduced by Gowers in [14].
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Definition 2.2 Let V1 and V2 be sets with |V1| = m1 and |V2| = m2, respec-

tively. A function f : V1 × V2 → [−1, 1] is called γ-quasirandom if∑
v1,v′1∈V1

∑
v2,v′2∈V2

f(v1, v2)f(v′1, v2)f(v1, v
′
2)f(v′1, v

′
2) ≤ γm2

1m
2
2.

The above definition gives rise to the concept of functional quasirandomness

for graphs.

Definition 2.3 ((d12, γ)- Quasirandomness) Let G be a bipartite graph

with vertex partition V1 ∪ V2 where |V1| = m1, |V2| = m2, and density d12.

G is called (d12, γ)-quasirandom if the function g : V1 × V2 → [−1, 1] with

g(v1, v2) = G(v1, v2) − d12 is γ-quasirandom, where G(v1, v2) is the charac-

teristic function on the edges of G, i.e. G(V1, V2) = 1 if {v1, v2} ∈ E(G) and

0 otherwise.

Whenever we talk about quasirandom graphs in the later sections we will

assume that these graphs are actually (d12, γ)-quasirandom and we will omit

the term (d12, γ) for convenience if the underlying parameters are clear from

the context.

2.1.2 Relation of the Concepts

In this section, we recall the equivalence of the two quaisrandom notions

from above. More precisely, we show that (K(2)
2,2 , ε)-minimality (Defini-

tion 2.1) and the (d, γ)-quasirandomness (Definition 2.3) are equivalent (see

Lemma 2.5).For the meaning of ‘equivalence’ here we refer the reader to the

discussion after Lemma 2.4. Before we state the lemma let us refer to a

result by Chung et al. As mentioned before these authors were able to show

that several random-like properties are equivalent. We will state here the

one that is of particular interest for us. Although the authors showed it only

for graphs of density d = 1/2, one can easily generalize it for any arbitrary

but fixed density d. Since we only consider bipartite graphs here the result

is slightly different from that of the above authors, but the same techniques

are applied to prove it.
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Lemma 2.4 Let G be a bipartite graph with vertex partition V1∪V2. Suppose

further that G has density d12. Then the following properties are equivalent:

(1) (K(2)
2,2 , ε)-minimality;

(2) if V ′
1 ⊆ V1 and V ′

2 ⊆ V2 then |e(V ′
1 , V

′
2)− d12|V ′

1 ||V ′
2 || ≤ ε′|V1||V2|.

For fixed density d12 the equivalence here means that for any ε′ > 0 there

exists an ε > 0 such that if (i) holds for ε then (ii) holds for ε′ and vice

versa for every ε > 0 exists ε′ > 0 such that if (2) holds for ε′, then (1) holds

for ε. We refer to (2) as ε′-regularity. Although it is slightly different from

Szemerédi’s definition of an ε-regular pair (see Introduction), i.e. we do not

have the restrictions on the size of the subsets, however one can easily show

that both concepts are equivalent in the sense defined above.

The next lemma states the equivalence of (K(2)
2,2 , ε)-minimality and (d12, γ)-

quasirandomness.

Lemma 2.5 Let G be a bipartite graph with vertex partition V1 ∪ V2 where

|V1| = m1 and |V2| = m2. Suppose further that G has density d12. Then the

following properties are equivalent:

(i) G is (K(2)
2,2 , ε)-minimal;

(ii) G is ε′-regular;

(iii) G is (d12, γ)-quasirandom.

Proof. Properties (i) and (ii) are equivalent due to Lemma 2.4. In order

to prove that (ii) ⇔ (iii) we refer to a result by Gowers. In fact, in [14] he

proved that several properties are equivalent for two sets. Here we will only

state the relevant parts needed to conclude the proof of Lemma 2.5.

Lemma 2.6 Let V1 and V2 be sets where |V1| = m1 and |V2| = m2, and let

g : V1 × V2 → [−1, 1]. Then the following are equivalent:

(a)
∑

v1,v′1∈V1

∑
v2,v′2∈V2

g(v1, v2)g(v′1, v2)g(v1, v
′
2)g(v′1, v

′
2) ≤ γm2

1m
2
2;
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(b) For any pair of sets V ′
1 ⊆ V1 and V ′

2 ⊆ V2 we have the inequality∣∣∣∣∣∣
∑

v′1∈V ′
1

∑
v′2∈V2

g(v′1, v
′
2)

∣∣∣∣∣∣ ≤ ε′m1m2.

Suppose we are given a bipartite graph G with vertex partition V1 ∪ V2,

where |V1| = m1 and |V2| = m2, and suppose that the density of G is d12.

Let further g : V1 × V2 → [−1, 1] with g(v1, v2) = G(v1, v2)− d12. With this

definition of g we also have

e(V ′
1 , V

′
2) =

∑
v′1∈V ′

1

∑
v′2∈V ′

2

G(v′1, v
′
2) =

∑
v′1∈V ′

1

∑
v′2∈V ′

2

g(v′1, v
′
2) + d12|V ′

1 ||V ′
2 |.

Consequently, ∣∣e(V ′
1 , V

′
2)− d12|V ′

1 ||V ′
2 |
∣∣ ≤ ∑

v′1∈V ′
1

∑
v′2∈V ′

2

g(v′1, v
′
2)

≤ ε′m1m2

and, therefore, ε′-regularity is equivalent to property (a) of Lemma 2.6, which

for the choice of g coincides with (d12, γ)-quasirandomness.

2.2 Regularity Lemma

In this section we state an algorithmic version of Gowers’ regularity lemma

for graphs. Due to the equivalence of regularity and quasirandomness stated

in Lemma 2.5 the algorithmic version is a direct consequence of the result of

Alon et al., which establishes an algorithmic version of Szemerédi’s regularity

lemma. Before we state the algorithm let us introduce some notation. For a

given t-partite graph G = (V1, . . . , Vt, E), we denote by G[Vi, Vj ] the induced

bipartite subgraph on Vi and Vj . Let further K[Vi, Vj ] denote the complete

bipartite graph on Vi and Vj . We are now ready to state the algorithmic

regularity lemma for graphs.



8

Algorithm 2.7 (Algorithmic Regularity Lemma for Graphs)

Input:

(i) ε > 0 and integers `0, t0;

(ii) U = U1 ∪ · · · ∪ Ut0 , m = |U1| ≤ · · · ≤ |Ut0 | ≤ m + 1;

(iii) K[Ui, Uj ] = Gij
1 ∪ · · · ∪Gij

`ij
, 1 ≤ i < j ≤ t0, where `ij ≤ `0.

Output:

(1) Constants T0 = T0(ε, `0, t0) and N0 = N0(ε, `0, t0);

(2) refined vertex partition Ui = Ui1 ∪ · · · ∪ Uit, 1 ≤ i ≤ t0 so that if

m > N0, then

(a) for each 1 ≤ i < j ≤ t0 and 1 ≤ i′, j′ ≤ t, ||Uii′ | − |Ujj′ || ≤ 1;

(b) all but ε(t0t)2`0 bipartite subgraphs Gij
a [Uii′ , Ujj′ ], 1 ≤ i < j ≤ t0,

1 ≤ a ≤ `ij, 1 ≤ i′, j′ ≤ t, are ε-quasirandom.

Complexity: O(m2.376).

The running time of this algorithm can be improved to O(m2) as shown in

[19].

2.3 Counting Lemma

In this section we state the graph counting lemma for the special case of

triangles for ε-regularity introduced by Szemerédi. Roughly speaking it says

that a sufficiently ε-regular tripartite graph contains approximately as many

triangles as one would expect in a random graph with the corresponding den-

sity. Gowers formally showed in [14] a graph counting lemma for quasiran-

dom graphs but due to the equivalence of ε-regularity and ε-quasirandomness

discussed earlier we may simply apply the well-known graph counting lemma

for ε-regular graphs although we consider ε-quasirandom graphs.
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Theorem 2.8 (Triangle Counting Lemma) Let η > 0, then there exists

ε > 0 such that if G is a 3-partite graph with vertex 3-partition V1 ∪ V2 ∪ V3

and |V1| = |V2| = |V3| = m where the bipartite graphs Gij = G[Vi, Vj ] are

(dij , ε)-regular 1 ≤ i < j ≤ 3, then:

|K3(G)| = (1± η)d12d23d13m
3,

where K3(G) denotes the set of vertex triplets of G, which span a triangle in

G.
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Chapter 3

Equivalence Relations of

Quasirandomness for 3-uniform

Hypergraphs

3.1 Quasirandomness

3.1.1 Basic Definitions and Concepts

We will start this section with some basic definitions. From now on we

will only consider 3-uniform hypergraphs. Therefore, let us introduce some

notation. We denote by [n] the set {1, . . . , n}. Suppose V is a set, then

[V ]3 denotes all 3-element subsets of V . A 3-uniform hypergraph (also called

3-graph) H is a pair (V,E) where E(H) ⊆ [V ]3. The central objects in

this thesis are tripartite 3-uniform hypergraphs with vertex partition V =

V1 ∪ V2 ∪ V3, |V1| = m1, |V2| = m2, and |V3| = m3. As for graphs we

also want to define quasirandomness for 3-uniform hypergraphs. Similar to

Definition 2.1 where we considered labelled 4-cycles in a graph we define

for tripartite 3-uniform hypergraphs a so-called octahedron O, where V (O)

corresponds to (distinct) vertices v1, v
′
1 ∈ V1, v2, v

′
2 ∈ V2, and v3, v

′
3 ∈ V3

that span an ‘ordered’ copy of K
(3)
2,2,2, i.e., the complete tripartite 3-uniform

hypergraph with vertex classes {v1, v
′
1}, {v2, v

′
2}, and {v3, v

′
3}.

Our main objects of interests are so-called quasirandom 3-uniform hyper-

graphs. You can find many different definitions of quasirandom 3-uniform
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hypergraphs in the literature. Here we will mention three definitions of a

quasirandom 3-uniform hypergraph. These concepts can be viewed as gen-

eralizations of the concepts for graphs discussed in Chapter 2. Moreover, as

in Chapter 2 we will show that these definitions are all equivalent.

Let us start with the most natural definition of an (K(3)
2,2,2, η)-minimal 3-

uniform hypergraph. All definitions we consider here are stated for tripartite

3-uniform hypergraphs. For convenience, let us define the (absolute) density

of a 3-uniform hypergraph. Suppose we are given a 3-uniform hypergraph H
with vertex partition V1 ∪ V2 ∪ V3 and |V1| = m1, |V2| = m2, and |V3| = m3.

Then the (absolute) density of H is defined as d123(H) = |H|/m1m2m3,

where |H| denotes the number of edges in H.

Definition 3.1 ((K(3)
2,2,2, η)-minimality) Let H be a tripartite 3-uniform

hypergraph with vertex partition V1 ∪ V2 ∪ V3, |V1| = m1, |V2| = m2, and

|V3| = m3. Suppose that H has (absolute) density d123(H). Then H is

(K(3)
2,2,2, η)-minimal (η > 0) if it contains at most (d123(H)8 + η)(m1m2m3)2

octahedra.

Note that H always contains at least (d123(H)8 − o(1))(m1m2m3)2 many

octahedra (cf. [17]) which motivates the name of this definition.

The next concept is called discrepancy in the literature. Before we state it,

let us introduce another convenient notation. For a given graph G we write

K3(G) for the family of triangles in G:

K3(G) =
{
{v1, v2, v3} ∈

(
V
3

)
: {v1, v2}, {v1, v3}, {v2, v3} ∈ G

}
.

Definition 3.2 (Discrepancy) Let H be a tripartite 3-uniform hypergraph

with vertex partition V1 ∪ V2 ∪ V3, of sizes |V1| = m1, |V2| = m2, and |V3| =
m3. The discrepancy disc(H) of H is defined to be

disc(H) =
1

m1m2m3
max

G⊆[V ]2
||H ∩K3(G)| − d123(H)|K3(G)||

where d123(H) is the (absolute) density of H and the maximum is taken over

all graphs G with vertex set V .
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As in the case of graphs we would like to establish a concept involving func-

tions. Gowers formulated such definitions in [14] . But before we state the

definitions let us introduce a convenient notation. Suppose we are given sets

V1, V2, and V3. If f : V1 × V2 × V3 → R is any function of three variables

v1, v2, v3 then

fv1v′1v2v′2v3v′3
=f(v1, v2, v3)f(v′1, v2, v3)f(v1, v

′
2, v3)f(v1, v2, v

′
3)

f(v′1, v
′
2, v3)f(v1, v

′
2, v

′
3)f(v′1, v2, v

′
3)f(v′1, v

′
2, v

′
3).

We are now ready to define the notion of a quasirandom function.

Definition 3.3 Let V1, V2, and V3 be sets of sizes m1, m2, and m3 and let

f : V1 × V2 × V3 → [−1, 1]. We say f is η-quasirandom if∑
v1,v′1∈V1

∑
v2,v′2∈V2

∑
v3,v′3∈V3

fv1v′1v2v′2v3v′3
≤ η(m1m2m3)2.

The above definition allows to give a definition of a quasirandom hypergraph.

Definition 3.4 (η′′-Functional Quasirandomness) Let H be a tripar-

tite 3-uniform hypergraph with vertex partition V1∪V2∪V3, where |V1| = m1,

|V2| = m2, and |V3| = m3. Suppose H has (absolute) density d123(H) and let

h(v1, v2, v3) = H(v1, v2, v3)− d123(H),

where H(v1, v2, v3) is the characteristic function on the edges of H. We say

that H is η′′-(functionally) quasirandom if h is η′′-quasirandom.

3.1.2 The Equivalence of Several Versions of Quasirandom-
ness for 3-uniform Hypergraphs

As in the graph case we would like to establish a relation among the concepts

we introduced before. In fact, the next lemma establishes the equivalence of

the three concepts of Section 3.1.1.

Lemma 3.5 For a tripartite 3-uniform hypergraph H the following state-

ments are equivalent:
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(i) H is (octahedral, η)-minimal;

(ii) disc(H) ≤ η′;

(iii) H is η′′-(functional) quasirandom.

Proof. The equivalence of (i) and (ii) in Lemma 3.5 was shown by Ko-

hayakawa, Rödl, and Skokan [21], who extended results of Chung and Gra-

ham [4, 5, 7]. The latter authors investigated hypergraphs of density 1/2

and proved some equivalences for that case. Kohayakawa et al. generalized

those results for arbitrary densities. In particular, they considered six differ-

ent properties (including K
(3)
2,2,2-minimality and discrepancy) of random-like

hypergraphs and showed that they are all equivalent. Although they did

not show it explicitly in the case of partite hypergraphs their techniques still

apply. Consequently, it remains to show the equivalence of property (ii) and

(iii). Again, we refer to an already established result. The proof of the

lemma we use can be found in [14]. We only state the relevant parts for our

purpose here.

Lemma 3.6 Let V1, V2, and V3 be sets, where |V1| = m1, |V2| = m2, and

|V3| = m3 and let h : V1 × V2 × V3 → [−1, 1]. Then the following statements

are equivalent.

(a)
∑

v1,v′1,v2,v′2,v3,v′3
hv1v′1v2v′2v3v′3

≤ η′′m2
1m

2
2m

2
3,

(b) For any tripartite graph G with vertex partition V1 ∪ V2 ∪ V3,∑
(v1,v2,v3)∈K3(G)

h(v1, v2, v3) ≤ η′m1m2m3.

For h(v1, v2, v3) = H(v1, v2, v3) − d123(H), where d123(H) is the (absolute)

density of a 3-uniform hypergraph H property (i) corresponds to the concept

of η′′-(functional) quasirandomness whereas property (iii) corresponds to the

η′-discrepancy concept. Hence Lemma 3.5 follows.
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3.2 Relative quasirandomness

3.2.1 Definitions and Concepts

In order to state the basic definition behind the hypergraph regularity lemma,

we will need to extend the concept of quasirandomness and define quasi-

randomness of a hypergraph relative to a graph. In what follows we shall

consider a tripartite 3-uniform hypergraph H ⊆ K3(G), where G is the un-

derlying tripartite graph. In order to define what it means for a hypergraph

H to be quasirandom relative to a graph G, we need to consider the (rela-

tive) density of H w.r.t. G instead of the (absolute) density. More precisely,

if G = G12 ∪G23 ∪G13 is a tripartite graph and H is a tripartite 3-uniform

hypergraph with H ⊆ K3(G), then the relative density of H w.r.t. G is

α = d(H|G) = |H|/|K3(G)|.

We can now define what it means for H to “sit quasirandomly” in G, where

G = G12 ∪G23 ∪G13 consists of three ε-quasirandom bipartite graphs.

Definition 3.7 Let G be a tripartite graph as above with vertex partitions

V1, V2, and V3, where |V1| = m1, |V2| = m2, and |V3| = m3. Furthermore,

let f : V1 × V2 × V3 → [−1, 1] be a function that is supported on K3(G). Let

the densities be d(Gij) = dij, 1 ≤ i < j ≤ 3. Then f is δ-quasirandom w.r.t.

G if ∑
v1,v′1∈V1

∑
v2,v′2∈V2

∑
v3,v′3∈V3

fv1v′1v2v′2v3v′3
< δ(d12d23d13)4(m1m2m3)2.

Finally, we are ready to define what it means for a hypergraph to be qua-

sirandom relative to a graph. As in the graph case we will consider here a

special function f involving the (relative) density of the hypergraph.

Definition 3.8 ((α, δ)-quasirandomness) Let G be defined as in Defini-

tion 3.7 and let H be a tripartite 3-uniform hypergraph with H ⊆ K3(G) and

(relative) density α. Furthermore, let h(v1, v2, v3) = H(v1, v2, v3) − α for
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(v1, v2, v3) ∈ K3(G) and 0 otherwise where H(v1, v2, v3) = 1 if {v1, v2, v3} ∈
H and 0 otherwise. Then H is (α, δ)-quasirandom w.r.t. G if h is δ-

quasirandom w.r.t. G, i.e.∑
v1,v′1∈V1

∑
v2,v′2∈V2

∑
v3,v′3∈V3

hv1v′1v2v′2v3v′3
< δ(d12d23d13)4(m1m2m3)2.

(Here and throughout the thesis, we use the notation
∑

x,x′∈X to denote a

sum of ordered pairs.)

As in the sections before, there is also an equivalent concept, called (α, δ)-

minimality, to Gowers (α, δ)-quasirandomness. Next, we will define the

(α, δ)-minimality concept considered by Haxell, Nagle, and Rödl [17]. To

that end, let G = G12 ∪G23 ∪G13 be a tripartite graph, consisting of three

(dij , ε)-regular (or equivalently ((dij , ε
′)-quasirandom), 1 ≤ i < j ≤ 3, bipar-

tite graphs, and let H ⊆ K3(G) be a tripartite, 3-uniform hypergraph with

(relative) density α. Let K
(3)
2,2,2(H) denote a copy of the complete tripartite,

3-uniform hypergraph with two vertices in each partition class in H.

Now we are ready to define the (α, δ)-minimality concept.

Definition 3.9 ((α, δ)-minimality) Let G and H be defined as above. For

δ > 0, the hypergraph H is (α, δ)-minimal w.r.t. G if

|K(3)
2,2,2(H)| ≤ α8d4

12d
4
23d

4
13

(
m1

2

)(
m2

2

)(
m3

2

)
(1 + δ).

Note that since each Gij is (dij , ε)-regular, 1 ≤ i < j ≤ 3, standard convexity

and double-counting arguments (see Proposition 4.1 (p.1744) of [17]) show

that

|K(3)
2,2,2(H)| ≥ α8d4

12d
4
23d

4
13

(
m1

2

)(
m2

2

)(
m3

2

)
(1− f(ε)), (3.1)

where f(ε) → 0 as ε → 0.
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3.2.2 The Equivalence Statement

In this section we state the relation of the concepts of (α, δ)-quasirandomness

and (α, δ)-minimality that were introduced in the previous section. It is one

of the main results of this thesis.

Theorem 3.10 For all α, δ1 > 0, there exists δ2 > 0 so that for all d0 > 0,

there exist an ε > 0 and an integer m0 such that the following holds:

(i) Let G = G12 ∪ G23 ∪ G13 be a tripartite graph with vertex partition

V (G) = V1 ∪ V2 ∪ V3 with |V1| = |V2| = |V3| = m ≥ m0.

(ii) Let each Gij = G[Vi, Vj ], 1 ≤ i < j ≤ 3 be (dij , ε)-quasirandom for

some dij ≥ d0.

(iii) Let H ⊆ K3(G) be a 3-uniform hypergraph with (relative) density

d(H|G) = α.

Then,

(1) if H is (α, δ2)-quasirandom w.r.t. G, then H is also (α, δ1)-minimal

w.r.t. G;

(2) if H is (α, δ2)-minimal w.r.t. G, then H is also (α, δ1)-quasirandom

w.r.t. G.

Observe that the main difference between Lemma 3.5 and Theorem 3.10 is

that Theorem 3.10 includes the case when the underlying graph G is fairly

sparse, i.e., if dij � δ.

3.2.3 Counting Lemmas and Auxiliary Facts

The proof of Theorem 3.10 relies mainly on Counting Lemmas established

by Gowers (c.f. [14]) and Haxell et al. (c.f. [17]). Both Counting Lemmas

will estimate the number of hypercliques K
(3)
k (k ≥ 3) in an appropriately

quasirandom (respectively minimal) environment.
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We now state Gowers’ Counting Lemma for the concept of

(α, δ)-quasirandom hypergraphs.

Theorem 3.11 (Quasirandom Counting Lemma) For all integers k ≥
3, µ > 0, and α0 > 0, there exists δ > 0 so that for all d0 > 0, there exist

ε > 0 and an integer n0 so that the following holds:

(i) Let P =
⋃

1≤i<j≤k P ij be a k-partite graph with vertex partition V (P ) =

U1 ∪ · · · ∪ Uk with |U1| = · · · = |Uk| = n ≥ n0.

(ii) Let each P ij = P [Ui, Uj ], 1 ≤ i < j ≤ k be (dij , ε)-quasirandom for

some dij ≥ d0.

(iii) Let J =
⋃

1≤h<i<j≤k J hij ⊆ K3(G) be a k-partite 3-uniform hyper-

graph that satisfies for each 1 ≤ h < i < j ≤ k, J hij is (αhij , δ)-

quasirandom w.r.t. P hi ∪ P ij ∪ P hj, where αhij ≥ α0.

Then,

|K(3)
k (J )| = (1± µ)

∏
1≤h<i<j≤k

αhij ×
∏

1≤i<j≤k

dij × nk.

We will now state a generalized version of Haxell’s et al. Counting Lemma

for the concept of (α, δ)-minimality.

Theorem 3.12 (Minimality Counting Lemma) For all integers k ≥ 3,

µ > 0, and α0 > 0, there exists δ > 0 so that for all d0 > 0, there exist ε > 0

and an integer n0 so that the following holds:

(i) Let P =
⋃

1≤i<j≤k P ij be a k-partite graph with vertex partition V (P ) =

U1 ∪ · · · ∪ Uk with |U1| = · · · = |Uk| = n ≥ n0.

(ii) Let each P ij = P [Ui, Uj ], 1 ≤ i < j ≤ k be (dij , ε)-regular for some

dij ≥ d0.

(iii) Let J =
⋃

1≤h<i<j≤k J hij ⊆ K3(G) be a k-partite 3-uniform hyper-

graph that satisfies for each 1 ≤ h < i < j ≤ k, J hij is (αhij , δ)-

minimal w.r.t. P hi ∪ P ij ∪ P hj, where αhij ≥ α0.
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Then,

|K(3)
k (J )| = (1± µ)

∏
1≤h<i<j≤k

αhij ×
∏

1≤i<j≤k

dij × nk.

As mentioned before, this is a generalized version of the counting lemma

found in [17]. There, Haxell, Nagle, and Rödl proved the special case where

each αhij = α = α0 for all 1 ≤ h < i < j ≤ k and each dij = d = 1/`,

for an integer `, for all 1 ≤ i < j ≤ k. The fact that each dij can be

taken as the reciprocal of a common integer ` is a convenience afforded by

the corresponding regularity lemma in [17], as well as the original regularity

lemma of Frankl and Rödl [12]. With only symbolic alterations, the proof

of Haxell, Nagle, and Rödl [17] would establish Theorem 3.12. However, one

can actually deduce Theorem 3.12 from the special case that all αhij = α and

all dij = 1/` (see Theorem 3.13). In this thesis, we will deduce Theorem 3.12

from Theorem 3.13 and refer the reader to [17] for a proof of Theorem 3.13

stated below.

Theorem 3.13 (Minimality Counting Lemma-Special Case) For all

integers k ≥ 3, γ > 0, and α ∈ (0, 1], there exists δ > 0 so that for all

integers l, there exist ε > 0 and an integer n0 so that the following holds:

(i) Let P =
⋃

1≤i<j≤k P ij be a k-partite graph with vertex partition V (P ) =

U1 ∪ · · · ∪ Uk with |U1| = · · · = |Uk| = n ≥ n0.

(ii) Let each P ij = P [Ui, Uj ], 1 ≤ i < j ≤ k be (1/`, ε)-regular.

(iii) Let J =
⋃

1≤h<i<j≤k J hij ⊆ K3(G) be a k-partite 3-uniform hyper-

graph that satisfies for each 1 ≤ h < i < j ≤ k, J hij is (α, δ)-minimal

w.r.t. P hi ∪ P ij ∪ P hj.

Then,

|K(3)
k (J )| = (1± γ)

α(k
3)

`(
k
2)

nk.

The deduction of Theorem 3.12 from Theorem 3.13 consists of two steps:
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S1: We first prove Theorem 3.12 with the (relative) hypergraph densities

αhij , 1 ≤ h < i < j ≤ k, allowed to vary while the graph densities

dij = d = 1/`, 1 ≤ i < j ≤ k, remain constant.

S2: We use S1 to imply Theorem 3.12 then with the graph densities dij ,

1 ≤ i < j ≤ k also allowed to vary.

Note that we chose the order of the above steps arbitrarily. We could have

also performed them in reverse order. The proofs of both steps are very

similar, both implementing standard ‘random slicing’ arguments (Chernoff

and Chebyshev applications) together with subsequent applications of The-

orem 3.13.

Proof of Theorem 3.12 (S1). We work with the following hierarchy of

constants which is consistent with the quantifications of both Theorems 3.12

and 3.13:

min
{

1
k
, µ, α0

}
� γ, α � δ ≥ min {δ, d0 = d = 1/`} � ε � 1

n0
≥ 1

n
> 0,

(3.2)

where γ, α > 0 are auxiliary constants defined in the context. With these

constants, let the 3-uniform hypergraph J and graph P be given as in The-

orem 3.12, where all dij = d = d0 = 1/`, 1 ≤ i < j ≤ k, for a fixed

integer `. Our goal is to find an estimate of |K(3)
k (J )|. To that end, fix

1 ≤ h < i < j ≤ k and let p = phij = α/αhij and s = shij = b1/phijc.
Consider the following random partition

J hij = J hij
0 ∪ J hij

1 ∪ · · · ∪ J hij
s

obtained by independently including each triple (hyperedge) g ∈ J hij in

J hij
a with probability

P(g ∈ J hij
a ) =

p if 1 ≤ a ≤ s,

1− ps if a = 0.
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Next, we will apply Chernoff’s inequality, see for example [18], to show that

P(d(J hij
a |P hi ∪ P ij ∪ P hj) = α± o(1)) = 1− o(1), (3.3)

for every 1 ≤ a ≤ s. In fact, for fixed 1 ≤ a ≤ s let Xa = Xhij
a = |J hij

a |.
Observe that

E(Xa) = p|J hij | = α|K3(P hi ∪ P ij ∪ P hj)|.

Using Chernoff’s inequality and the triangle counting lemma applied to P hi∪
P ij ∪ P hj now proves equation (3.3) for sufficiently large n.

We now use Chebyshev’s inequality, see for example [18], to show that

P(J hij
a is (α± o(1), 2δ)-minimal w.r.t. P hi ∪ P ij ∪ P hj) = 1− o(1), (3.4)

for every 1 ≤ a ≤ s. Therefore, for fixed 1 ≤ a ≤ s it remains to determine

|K(3)
2,2,2(J

hij
a )|. Let Ya = Y hij

a = |K(3)
2,2,2(J

hij
a )|. Then,

E(Ya) = p8|K(3)
2,2,2(J

hij)| (3.1)
= Ω(n6) and

Var(Ya) = (1− p8)p8|K(3)
2,2,2(J

hij)| = O(n9).

By using Chebyshev’s inequality we get that

P(Ya ≥ (1 + δ2)E(Ya)) =
O(n9)
Ω(n12)

= O(n−3).

Therefore, with probability 1− o(1), every 1 ≤ a ≤ s satisfies

|K(3)
2,2,2(J

hij
a )| ≤ (1 + δ2)p8|K(3)

2,2,2(J
hij)|

≤ (1 + δ + δ2 + δ3)α8d12

(
n

2

)3

≤ (1 + 2δ)(α± o(1))8d12

(
n

2

)3

,

proving (3.4).

Using (3.4) we now find a lower bound on the number of K
(3)
k ’s in J .

Therefore, consider the set ~A =
∏

1≤h<i<j≤k[shij ] and let πhij be the projec-

tion onto the hij-th coordinate. For ~a ∈ ~A, set

J~a =
⋃
{J hij

πhij(~a) : 1 ≤ h < i < j ≤ k}.
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By (3.4) we know, with high probability all J~a, ~a ∈ ~A, satisfy with the graph

P the hypothesis of Theorem 3.13. As such,

|K(3)
k (J )| ≥

∑
~a∈ ~A

|K(3)
k (J~a)|

≥ (1− γ)α(k
3)d(k

2)nk
∏

1≤h<i<j≤k

shij

≥ (1− γ)α(k
3)d(k

2)nk
∏

1≤h<i<j≤k

(αhij

α
− 1
)

≥ (1− γ)d(k
2)nk

∏
1≤h<i<j≤k

αhij ×
∏

1≤h<i<j≤k

(
1− α

αhij

)

≥ d(k
2)nk

∏
1≤h<i<j≤k

αhij ×
(

1− α

α0

)(k
3)

(1− γ)

(3.2)
≥ (1− µ)d(k

2)nk
∏

1≤h<i<j≤k

αhij ,

which proves the lower bound of Theorem 3.12 for (S1).

To give an upper bound on the number of K
(3)
k ’s in J we need to account

for those K
(3)
k ’s that contain a triple g ∈ J hij

0 for some 1 ≤ h < i < j ≤ k.

To that end, for each 1 ≤ h < i < j ≤ k, let [shij ]0 = {0} ∪ [shij ] and let
~A0 =

∏
1≤h<i<j≤k[shij ]0. For ~a ∈ ~A0\ ~A, J~a is defined analogously. Then by

Theorem 3.13 and (3.4),

|K(3)
k (J )| =

∑
~a∈ ~A0

|K(3)
k (J~a)|

=
∑
~a∈ ~A

|K(3)
k (J~a)|+

∑
~a∈ ~A0\ ~A

|K(3)
k (J~a)|

≤ (1 + γ)d(k
2)nk

∏
1≤h<i<j≤k

αhij +
∑

~a∈ ~A0\ ~A

|K(3)
k (J~a)|. (3.5)

It remains to find an upper bound for
∑

~a∈ ~A0\ ~A |K
(3)
k (J~a)|. For that we use

Theorem 2.8. For sufficiently small ε > 0 we know that for fixed 1 ≤ h <
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i < j ≤ k, all but 6εn3 triangles t ∈ K3(P hi ∪ P ij ∪ P hj) belong to at most

2d(k
2)−3nk−3 Kk’s in P (see for example Lemma 15 in [16]). As such,∑

~a∈ ~A0\ ~A

|K(3)
k (J~a)| ≤

(
k

3

)[
max

1≤h<i<j≤k
|J hij

0 | × 2d(k
2)−3nk−3 + 6εn3nk−3

]
.

(3.6)

By the definition of J~a and since 1 − ps ≤ p we have the following upper

bound,

max
1≤h<i<j≤k

|J hij
0 | ≤ max

1≤h<i<j≤k
phij |J hij |

= max
1≤h<i<j≤k

phijαhij |K3(P hi ∪ P ij ∪ P hj)|

≤ 2αd3n3,

where, in the last inequality, we applied Theorem 2.8 for sufficiently small

ε > 0 (satisfied by inequality (3.2)). Combining our last inequality and (3.6)

we get, ∑
~a∈ ~A0\ ~A

|K(3)
k (J~a)| ≤

(
k

3

)(
4αd(k

2)nk + 6εnk
)

≤ 2αk3d(k
2)nk.

We infer from (3.5) that

|K(3)
k (J )| ≤

1 + γ + 2αk3
∏

1≤h<i<j≤k

α−1
hij

 d(k
2)nk

∏
1≤h<i<j≤k

αhij

≤
[
1 + γ + 2αk3α

−(k
3)

0

]
d(k

2)nk
∏

1≤h<i<j≤k

αhij

(3.2)
≤ (1 + µ)d(k

2)nk
∏

1≤h<i<j≤k

αhij ,

which proves the upper bound and therefore concludes the proof of (S1) of

Theorem 3.12.
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Proof of (S2). Since the proof is almost the same (uses the same

techniques) we will only sketch it here. Let the 3-uniform hypergraph J and

graph P be given as in Theorem 3.12 with constants satisfying

min
{

1
k
, µ, α0

}
� γ � δ ≥ min{δ, d0} �

1
l
� ε � 1

n0
≥ 1

n
> 0,

where l is an auxiliary integer. As before, we want to estimate the number

of Kk’s in J . This time, for each 1 ≤ i < j ≤ k, pij = 1/(ldij), and

sij = b1/pijc, we randomly partition the bipartite parts of the graph P as

follows

P ij = P ij
0 ∪ P ij

1 ∪ · · · ∪ P ij
sij

,

where P ij
a is obtained by independently including each edge e ∈ P ij with

probability

P(e ∈ P ij
a ) =

pij if 1 ≤ a ≤ s,

1− pijsij if a = 0.

As before, we use Chernoff’s inequality to show for each P ij
a , 1 ≤ a ≤ sij

that

P(P ij
a is (1/l, 2ε)-regular) = 1− o(1).

Again, as before we apply Chebyshev’s inequality to prove that for each

1 ≤ h < i < j ≤ k, 1 ≤ a ≤ shi, 1 ≤ b ≤ sij , 1 ≤ c ≤ shj , and J hij
abc =

J hij ∩K3(P hi
a ∪ P ij

b ∪ P hj
c )

P
(
J hij

abc is (αhij ± o(1), 2δ)-minimal w.r.t. P hi
a ∪ P ij

b ∪ P hj
c

)
= 1− o(1).

The following expectations and variances are necessary in order to apply

Chebyshev’s inequality and can easily be verified

E(|J hij
abc |) = phipijphj |J hij | = Ω(n3),

Var(|J hij
abc |) = O(n4),

E(|K(3)
2,2,2(J

hij
abc )|) = p4

hip
4
ijp

4
hj |K

(3)
2,2,2(J

hij)| = Ω(n6),

Var(|K(3)
2,2,2(J

hij
abc )|) = O(n10).
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Similar as before, we estimate a lower and upper bound on the number of

Kk’s in J , using Theorem 3.13 (assumptions are satisfied with high proba-

bility as shown above). Since we only give a sketch here we combine both

cases. To that end, let’s define ~A′ =
∏

1≤i<j≤k[sij ] and ~A′
0 =

∏
1≤i<j≤k[sij ]0.

As before, let πij be the projection onto the ij-th coordinate. For ~a ∈ ~A′
0 we

set

P~a =
⋃

1≤i<j≤k

P ij
πij(~a) and J~a = J ∩K3(P~a).

Having defined P~a and J~a for ~a ∈ ~A′ Theorem 3.13 applies with high proba-

bility. As mentioned before, we consider here the lower and upper bound of

the size of K
(3)
k (J ) simultaneously and therefore introduce ‘∼’ to hide errors

from the terms ~a ∈ ~A′
0\ ~A′. Then,

|K(3)
k (J )| =

∑
~a∈ ~A′

0

|K(3)
k (J~a)|

∼
∑
~a∈ ~A′

|K(3)
k (J~a)|

= (1± γ)
∏

1≤h<i<j≤k

αhij ×
1

l(
k
2)
× nk ×

∏
1≤i<j≤k

sij

∼ (1± µ)
∏

1≤h<i<j≤k

αhij ×
∏

1≤h<i<j≤k

dij × nk,

which finishes the proof of Theorem 3.12.

In order to prove Theorem 3.10 we need two more facts, one considering

the (α, δ)-quasirandomness concept and the other one regarding the (α, δ)-

minimality concept. For both facts let G = G12 ∪G23 ∪G13 be a tripartite

graph with three partition V1∪V2∪V3 where each Gij is (dij , ε)-quasirandom

(or (dij , ε)-regular respectively) for 1 ≤ i < j ≤ 3. Suppose furthermore that

H ⊂ K3(G) is a 3-uniform hypergraph. Let us first state the fact regarding

the (α, δ)-quasirandomness concept.
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Fact 3.14 Suppose H is (α, δ)-quasirandom w.r.t. G and assume that m =

|V1| = |V2| = |V3| = 2n is even. Then for all but o(
(
m
n

)3) subpartitions

V1 = V11 ∪ V12, V2 = V21 ∪ V22, and V3 = V31 ∪ V32 with |V11| = · · · =

|V32| = n, we have that H[V1h, V2i, V3j ] is (α± o(1), 64δ)-quasirandom w.r.t.

G[V1h, V2i, V3j ] for all 1 ≤ h, i, j ≤ 2.

We will now state an analogous fact regarding the (α, δ)-minimality concept.

Fact 3.15 Suppose H is (α, δ)-minimal w.r.t. G and assume that m =

|V1| = |V2| = |V3| = 2n is even. Then for all but o(
(
m
n

)3) subpartitions

V1 = V11∪V12, V2 = V21∪V22, and V3 = V31∪V32 with |V11| = · · · = |V32| = n,

we have that H[V1h, V2i, V3j ] is (α± o(1), 2δ)-minimal w.r.t. G[V1h, V2i, V3j ]

for all 1 ≤ h, i, j ≤ 2.

We prove the following statement, which implies both Facts 3.15 and 3.14.

Fact 3.16 Let F be a 3-partite 3-uniform hypergraph with 3-partition W1 ∪
W2 ∪W3, where |Wa| = ma, 1 ≤ a ≤ 3. Suppose F has c1m1m2m3 triples

and c2m
2
1m

2
2m

2
3 unlabelled copies of K

(3)
2,2,2, where c1, c2 > 0. Then all but

o(
(

m1

dm1/2e
)(

m2

dm2/2e
)(

m3

dm3/2e
)
) subpartitions W1 = W11∪W12, W2 = W21∪W22,

W3 = W31 ∪W32, |Wa1| = na1 = dma/2e, 1 ≤ a ≤ 3, satisfy that for each

1 ≤ h, i, j ≤ 2:

1. F [W1h,W2i,W3j ] has (c1 ± o(1))n1hn2in3j triples, and more strongly,

for each w1 ∈ W1 and w2 ∈ W2 for which

degF (w1, w2) =
∑

w3∈W3

F(w1, w2, w3) ≥ m3/ log m3 ,

we have

degF ,j(w1, w2) :=
∑

w3∈W3j

F(w1, w2, w3) =
(

1
2 ± o(1)

)
degF (w1, w2) ,

where F(w1, w2, w3) is the characteristic function of F ;

2. F [W1h,W2i,W3j ] contains (c2 ± o(1))n2
1hn2

2in
2
3j copies of K

(3)
2,2,2,
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where o(1) above tends to 0 as min{m1,m2,m3} → ∞.

Fact 3.15 follows easily from Fact 3.16.

Proof of Fact 3.15. Fix a ‘typical’ subpartition V11, . . . , V32 (typical in

the sense of Fact 3.16). Then, for example with V11 ∪ V21 ∪ V31, we have∣∣H[V11, V21, V31]
∣∣ = (1

8 ± o(1)
)
|H| and similarly∣∣K3(G[V11, V21, V31])

∣∣ = ∣∣K3(G)[V11, V21, V31]
∣∣

=
(

1
8 ± o(1)

)∣∣K3(G)
∣∣ .

Then |H| = α|K3(G)| implies that H[V11, V21, V31] has density α ± o(1)

w.r.t. G[V11, V21, V31], as required. Moreover, by Fact 3.16, part 2,∣∣K(3)
2,2,2(H[V11, V21, V31])

∣∣ = ( 1
64 ± o(1)

)∣∣K(3)
2,2,2(H)

∣∣
≤ (1 + 2δ)α8d4

12d
4
23d

4
13

(
n
2

)3
,

as required.

We now prove that Fact 3.14 follows from Fact 3.16.

Proof of Fact 3.14. We’ve already argued the density assertion, so for

the remainder (the quasirandomness), fix typical subpartition V11, . . . , V32.

In what follows, we shall only consider, w.l.o.g., V11 ∪ V21 ∪ V31, so that

H[V11, V21, V31] has density α′ = α ± o(1) w.r.t. G[V11, V21, V31]. Consider

the function h′ : V11 × V21 × V31 → [−1, 1] given by

h′(v1, v2, v3) =

H(v1, v2, v3)− α′ if {v1, v2, v3} ∈ K3(G[V11, V21, V31]),

0 otherwise

where, again, H(v1, v2, v3) is the characteristic function of the hyperedges

of H. On account that V11, . . . V31 is typical, we then have h′(v1, v2, v3) =

(1 ± o(1))h(v1, v2, v3) for all (v1, v2, v3) ∈ V11 × V21 × V31, where h is the
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function for the original hypergraph H. We write

h′v1v′1v2v′2v3v′3
= h(v1, v2, v3)h(v′1, v2, v3)h(v1, v

′
2, v3)h(v1, v2, v

′
3)

× h(v′1, v
′
2, v3)h(v′1, v2, v

′
3)h(v1, v

′
2, v

′
3)h(v′1, v

′
2, v

′
3) ,

so that, for each v1, v
′
1 ∈ V11, v2, v

′
2 ∈ V21 and v3, v

′
3 ∈ V31, we have that

h′v1v′1v2v′2v3v′3
= (1 ± o(1))hv1v′1v2v′2v3v′3

, or equivalently, hv1v′1v2v′2v3v′3
= (1 ±

o(1))h′v1v′1v2v′2v3v′3
. As such,

(1± o(1))
∑

v1,v′1∈V11

∑
v2,v′2∈V21

∑
v3,v′3∈V31

h′v1v′1v2v′2v3v′3

=
∑

v1,v′1∈V11

∑
v2,v′2∈V21

∑
v3,v′3∈V31

hv1v′1v2v′2v3v′3

=
∑

v1,v′1∈V11

∑
v2,v′2∈V21

∑
v3,v′3∈V31

h(v1, v2, v3)h(v′1, v2, v3)h(v1, v
′
2, v3)h(v′1, v

′
2, v3)

× h(v1, v2, v
′
3)h(v′1, v2, v

′
3)h(v1, v

′
2, v

′
3)h(v′1, v

′
2, v

′
3)

=
∑

v1,v′1∈V11

∑
v2,v′2∈V21

 ∑
v3∈V31

h(v1, v2, v3)h(v′1, v2, v3)h(v1, v
′
2, v3)h(v′1, v

′
2, v3)

2

≤
∑

v1,v′1∈V1

∑
v2,v′2∈V2

 ∑
v3∈V31

h(v1, v2, v3)h(v′1, v2, v3)h(v1, v
′
2, v3)h(v′1, v

′
2, v3)

2

=
∑

v3,v′3∈V31

∑
v1,v′1∈V1

∑
v2,v′2∈V2

h(v1, v2, v3)h(v′1, v2, v3)h(v1, v2, v
′
3)h(v′1, v2, v

′
3)

× h(v1, v
′
2, v3)h(v′1, v

′
2, v3)h(v1, v

′
2, v

′
3)h(v′1, v

′
2, v

′
3)

=
∑

v3,v′3∈V31

∑
v1,v′1∈V1

∑
v2∈V2

h(v1, v2, v3)h(v′1, v2, v3)h(v1, v2, v
′
3)h(v′1, v2, v

′
3)

2

≤
∑

v3,v′3∈V3

∑
v1,v′1∈V1

∑
v2∈V2

h(v1, v2, v3)h(v′1, v2, v3)h(v1, v2, v
′
3)h(v′1, v2, v

′
3)

2

=
∑

v1,v′1∈V1

∑
v2,v′2∈V2

∑
v3,v′3∈V3

hv1v′1v2v′2v3v′3

≤ δd4
12d

4
13d

4
23m

6 = 64δd4
12d

4
13d

4
23(m/2)6 = 64δd4

12d
4
13d

4
23n

6. (3.7)
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This proves Fact 3.14.

We now proceed to prove Fact 3.16.

Proof of Fact 3.16. The proofs of Statements (1) and (2) are stan-

dard applications of the Chernoff inequality. We prove Statement (2) only

(Statement (1) is well-known, and is proved along similar, albeit simpler,

lines).

Let F and W1 ∪W2 ∪W3 be given as in Fact 3.16. We first prove that all

but o(
(

m3

dm3/2e
)
) subpartitions W3 = W31∪W32, |W31| = dm3/2e, satisfy that

for i = 1, 2, ∣∣K(3)
2,2,2(F [W1,W2,W3i])

∣∣ = (c2 ± o(1))m2
1m

2
2m

2
3i . (3.8)

Iterating (3.8) for W1 and W2 renders Fact 3.16.

To set up the proof of ((3.8)), let C4 = C12
4 denote the family of all 4-

cycles {w1, w
′
1, w2, w

′
2} in the complete bipartite graph K[W1,W2]. For a

fixed C4 = {w1, w
′
1, w2, w

′
2} ∈ C4, write

N(C4) =
{
w3 ∈ W3 : {w1, w

′
1, w2, w

′
2, w3} spans 4 triples in F

}
and

deg(C4) = |N(C4)| .

We shall say that C4 is big if deg(C4) ≥ m3/ log m3, and small otherwise.

We write C+
4 (C−4 ) for the class of all big (small) C4 ∈ C4. With this notation,

we have

c2m
2
1m

2
2m

2
3 =

∣∣K(3)
2,2,2(F)

∣∣
=
∑

C4∈C4

(
deg(C4)

2

)
=
∑

C4∈C+
4

(
deg(C4)

2

)
+
∑

C4∈C−4

(
deg(C4)

2

)
.



29

In this way, ∑
C4∈C+

4

(
deg(C4)

2

)
≤ c2m

2
1m

2
2m

2
3

≤ m2
1m2

2m2
3

2 log2 m3
+
∑

C4∈C+
4

(
deg(C4)

2

)
.

Now, fix C4 ∈ C+
4 . For a subpartition W3 = W31 ∪ W32, write Ni(C4) =

N(C4) ∩ W3i and degi(C4) = |Ni(C4)|, where i = 1, 2. If W3 = W31 ∪
W32 is a random subpartition with |W31| = d|W3|/2e, then deg1(C4) has

hypergeometric distribution with mean

E[deg1(C4)] = dm3/2e
m3

deg(C4)

=
(

1
2 ± o(1)

)
deg(C4)

≥ 1
3

m3
log m3

.

The Chernoff inequality therefore ensures

P
[
deg1(C4) 6=

(
1± 1

log m3

)
E[deg1(C4)]

]
≤ 2 exp

{
− 1

3 log2 m3
E[deg1(C4)]

}
≤ 2 exp

{
− m3

9 log3 m3

}
.

As such, with high probability, all C4 ∈ C+
4 satisfy

deg1(C4) =
(

1
2 ± o(1)

)
deg(C4)

= deg2(C4).

We now approach the end of the proof. Fix i = 1, 2. For the random

subpartition W3 = W31 ∪W32 above, we have∣∣K(3)
2,2,2(F [W1,W2,W3i])

∣∣ = ∑
C4∈C4

(
degi(C4)

2

)
=
∑

C4∈C+
4

(
degi(C4)

2

)
+
∑

C4∈C−4

(
degi(C4)

2

)
.
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As such, with high probability,∣∣K(3)
2,2,2(F [W1,W2,W3i])

∣∣ ≥ ∑
C4∈C+

4

(
degi(C4)

2

)
≥
∑

C4∈C+
4

((1
2 − o(1)

)
degi(C4)

2

)
=
(

1
4 − o(1)

) ∑
C4∈C+

4

(
deg(C4)

2

)
≥
(

1
4 − o(1)

)
m2

1m
2
2m

2
3

(
c2 − 1

2 log2 m3

)
= (c2 − o(1))m2

1m
2
2m

2
3i ,

which proves the lower bound of (3.8). Similarly, with high probability,∣∣K(3)
2,2,2(F [W1,W2,W3i])

∣∣ ≤ m2
1m2

2m2
3

log2 m3
+
∑

C4∈C+
4

(
degi(C4)

2

)
≤ m2

1m2
2m2

3

2 log2 m3
+
∑

C4∈C+
4

((1
2 + o(1)

)
degi(C4)

2

)
= m2

1m2
2m2

3

2 log2 m3
+
(

1
4 + o(1)

) ∑
C4∈C+

4

(
deg(C4)

2

)
≤ m2

1m2
2m2

3

2 log2 m3
+
(

1
4 + o(1)

)
c2m

2
1m

2
2m

2
3

= (c2 + o(1))m2
1m

2
2m

2
3i ,

which proves the upper bound of (3.8).

3.2.4 Proof of Theorem 3.10

Finally, we established all the necessary tools in order to give a proof of The-

orem 3.10. We will first show assertion (1), i.e. that (α, δ2)-quasirandomness

implies (α, δ1)-minimality.

Proof of Theorem 3.10, Part (1). We will work with the following
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hierarchy of constants:

0 <
1
m
≤ 1

m0
� ε � ε′ � min {δ2, d0} ≤ δ2 � α, δ1

where ε′ > 0 is an auxiliary constant defined in the context.

Now, let the 3-partite graph G and the 3-partite, 3-uniform hypergraph H
be given as in Theorem 3.10. Suppose that H is (α, δ2)-quasirandom w.r.t.

G. For simplicity we may also assume that the vertex partitions Vi, 1 ≤ i ≤ 3

do not only have the same size but also have size m = 2n. Indeed, otherwise

one can delete one vertex from each Vi, 1 ≤ i ≤ 3 to obtain a graph G′ with

corresponding hypergraph H′. Then we know that H′ is (α±o(1), δ2±o(1))-

quasirandom w.r.t. G′ and |K(3)
2,2,2(H)| ≤ |K

′(3)
2,2,2(H′)|+ O(m5).

We now consider the family Π of all subpartitions V1 = V11∪V12, V2 = V21∪
V22, and V3 = V31∪V32, where |V11| . . . |V32| = n. For a fixed element Π ∈ Π,

i.e. Π = (V11, . . . , V32) we know that the graph G[Vai, Vbj ], 1 ≤ a < b ≤ 3 and

1 ≤ i, j ≤ 2 is (dab, ε
′)-quasirandom. Indeed, in Chapter 2 we have shown

that (d, ε)-quasirandomness is essentially equivalent to (d, ε)-regularity and

for the latter it is known that G[Vai, Vbj ], 1 ≤ a < b ≤ 3 and 1 ≤ i, j ≤ 2

is (dab, ε
′)-regular and therefore it is also (dab, ε

′)-quasirandom. Applying

Fact 3.14 to Π we know that all but o(
(
m
n

)3) elements Π ∈ Π satisfy that

H[V1h, V2i, V3j ] is (α±o(1), 64δ2)-quasirandom w.r.t. G[V1h, V2i, V3j ] for each

1 ≤ h, i, j ≤ 2. We call a partition Π ∈ Π ‘good’ if the above property is

satisfied and we denote the set of all good partitions Π ∈ Π by Π+.

For a fixed Π ∈ Π+ we define a 6-partite graph P = PΠ and a 6-partite

hypergraph J = JΠ with vertex partition V11 ∪ · · · ∪ V32. Further we will

show that the assumptions for Theorem 3.11 are satisfied and apply it in

order to estimate the number of K
(3)
2,2,2 in H. First, let us define the graph

P . For 1 ≤ a ≤ b ≤ 3 and 1 ≤ i, j ≤ 2 and Vai 6= Vbj we set

P [Vai, Vbj ] =

G[Vai, Vbj ] if a 6= b

K[Vai, Vbj ] otherwise.
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K[Vai, Vbj ] denotes the complete bipartite graph with vertex bipartition Vai∪
Vbj . As explained above, for a 6= b P [Vai, Vbj ] is (dij , ε

′)-quasirandom and for

a = b it is trivially (1, 0)-quasirandom. Now, let us define the corresponding

hypergraph J . For 1 ≤ a ≤ b ≤ c ≤ 3 and 1 ≤ i, j ≤ 2 and Vah 6= Vbi 6= Vcj

we set

J [Vah, Vbi, Vcj ] =

H[Vah, Vbi, Vcj ] if {a, b, c} = {1, 2, 3},

K3(P [Vah, Vbi, Vcj ]) otherwise.

By the definition of Π+ we know that for {a, b, c} = {1, 2, 3} J [Vah, Vbi, Vcj ]

is (α, 64δ2)-quasirandom and whereas otherwise it is (1, 0)-quasirandom.

Note that by the definition of J every copy of K
(3)
6 in J belongs to a copy

of K
(3)
2,2,2 in H for a fixed Π ∈ Π+. Therefore, we first count the K

(3)
6 in J .

Applying Theorem 3.11 to P and J we get

|K(3)
6 (J )| =

(
1± δ1

2

)
α8d4

12d
4
23d

4
13n

6. (3.9)

We now double-count the number of pairs (J,Π), where J ∈ K
(3)
2,2,2(H), Π ∈

Π+ and Π ‘splits’ J , i.e. if J has vertices {v11, . . . , v32}, then (v11, . . . , v32) ∈
V11 × · · · × V32. Note that we can relabel the vertices, that is vi1 and vi2

could be swapped for 1 ≤ i ≤ 3. Then this number is

|K(3)
2,2,2(H)| × 8×

(
m− 2
n− 1

)3

= |(J,Π)|

=
∑
Π∈Π

|K(3)
6 (JΠ)|

=
∑

Π∈Π+

|K(3)
6 (JΠ)|+

∑
Π∈Π\Π+

|K(3)
6 (JΠ)|.

We now use Theorem 3.11 and Fact 3.14 to find an estimation for
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∑
Π∈Π+ |K(3)

6 (JΠ)|. We get

|K(3)
2,2,2(H)| ≤ 1

8

(
m− 2
n− 1

)−3[ ∑
Π∈Π+

|K(3)
6 (JΠ)|+ n6 × o(

(
m

n

)3

)
]

≤ 1
8

(
m− 2
n− 1

)−3

|Π|
(
1 +

δ1

2

)
α8d4

12d
4
23d

4
13n

6 + o(n6)

≤
(
1 +

δ1

2
+ o(1)

)
α8d4

12d
4
23d

4
13

(
m

2

)3

≤ (1 + δ1)α8d4
12d

4
23d

4
13

(
m

2

)3

.

Therefore we have shown that H is also (α, δ1)-minimal as promised.

We now proceed with the proof of Theorem 3.10 by showing the second

implication. This proof is very similar to the one before although slightly

more complicated. We will need the following proposition which is a corollary

of Theorem 3.12. We defer the proof of Proposition 3.17 to the next section.

Proposition 3.17 For all 0 < α < 1 and ϑ > 0, there exists δ > 0 so that

for all d0 ∈ (0, 1], there exist ε > 0 and integer m0 so that the following

holds. Suppose that graph G and 3-uniform hypergraph H satisfy:

(i) V (G) = V (H) = V = V1∪V2∪V3, where |V1| = |V2| = |V3| = m ≥ m0;

(ii) G = G12∪G23∪G13 is 3-partite with 3-partition above, where for each

1 ≤ i < j ≤ 3, Gij is (dij , ε)-regular, with dij ≥ d0;

(iii) H ⊆ K3(G) is (α, δ)-minimal w.r.t. G;

Then for each suboctahedron O0 ⊆ O,

|Oind
0 (H)| = (1± ϑ)αO0(1− α)8−O0d4

12d
4
23d

4
13m

6.

Note that O denotes the 3-partite 3-uniform octahedron K
(3)
2,2,2 on fixed ver-

tex set {σ11, σ12, σ21, σ22, σ31, σ32} and fixed 3-partition {σ11, σ12}∪ {σ21, σ22}
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∪{σ31, σ32}.
Proof of Theorem 3.10, Part (2). As before let us start with stating

the hierarchy of constants

0 <
1
m
≤ 1

m0
� ε � min {δ2, d0} ≤ δ2 � α, δ1.

Let the 3-partite graph G and the 3-partite 3-uniform hypergraphH be given

as in Theorem 3.10. Suppose that H is (α, δ2)-minimal w.r.t. G. In order

to show that H is also (α, δ1)-quasirandom w.r.t. G we need to show that∑
v11,v12∈V1

∑
v21,v22∈V2

∑
v31,v32∈V3

hv11v12v21v22v31v32 ≤ δ1d
4
12d

4
23d

4
13m

6, (3.10)

where we recall that the function is defined as h : V1 × V2 × V3 → [−1, 1]

with h(v1, v2, v3) = H(v1, v2, v3) − α for {v1, v2, v3} ∈ K3(G) and 0 other-

wise. Note that it suffices to consider only the terms corresponding to distinct

choices of vertices, since the remaining terms contribute only O(m5). More-

over it suffices to regard only the terms v11, . . . , v32 for which {vai, vbj} ∈ Gab

for all 1 ≤ a < b ≤ 3 and 1 ≤ i, j ≤ 2.

Let us introduce some notation. Write

(V )+6 =
{
~v = (v11, v12, v21, v22, v31, v32)

∣∣∣vij ∈ Vi, 1 ≤ i ≤ 3, 1 ≤ j ≤ 2 s.t.

(va1, va2) ∈ V 2
a = Va × Va and va1 6= va2 for each 1 ≤ a ≤ 3;

{vai, vbj} ∈ Gab, for each 1 ≤ a < b ≤ 3 and 1 ≤ i, j ≤ 2
}

.

For ~v ∈ (V )+6 , we shall also write h~v = hv11v12v21v22v31v32 . Using this notation

we then have ∑
v11 6=v12

∑
v21 6=v22

∑
v31 6=v32

hv11v12v21v22v31v32 =
∑

~v∈(V )+6

h~v,

and therefore∑
v11,v12∈V1

∑
v21,v22∈V2

∑
v31,v32∈V3

hv11v12v21v22v31v32 = O(m5) +
∑

~v∈(V )+6

h~v. (3.11)
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We now investigate
∑

~v∈(V )+6
h~v.

Recall that O denotes the 3-partite 3-uniform octahedron K
(3)
2,2,2 on fixed

vertex set {σ11, σ12, σ21, σ22, σ31, σ32} and fixed 3-partition

{σ11, σ12} ∪ {σ21, σ22} ∪ {σ31, σ32}. Note that O has 28 = 256 labelled

and spanning subhypergraphs which we call suboctahedrons. Now, fix a

suboctahedron O0 ⊆ O and also fix a ~v ∈ (V )+6 . Note that

~v = (v11, v12, v21, v22, v31, v32) spans an induced copy O′
0 of O0 in H if for

each 1 ≤ h, i, j ≤ 2, {v1h, v2i, v3j} ∈ H if, and only if {σ1h, σ2i, σ3j} ∈ O0.

Let

Oind
0 =

{
~v ∈ (V )+6

∣∣∣~v spans an induced copy O′
0 of O0 in H

}
.

Therefore, (3.11) becomes∑
~v∈(V )+6

h~v =
∑
O0⊆O

∑
~v∈Oind

0 (H)

h~v

=
∑
O0⊆O

−α8−|O0|(1− α)|O0|
∣∣∣Oind

0 (H)
∣∣∣,

where the last equality is obtained by the definition of the function h. In

order to show (3.10) we need to estimate |Oind
0 (H)| for every fixed O0 ⊆ O.

At this point, we apply Proposition 3.17 to each O0 ⊆ O with ϑ = δ1.∑
~v∈(V )+6

h~v =
∑
O0⊆O

−α8−|O0|(1− α)|O0|
∣∣∣Oind

0 (H)
∣∣∣

≤
∑
O0⊆O

−α8−|O0|(1− α)|O0|(1± δ1)α|O0|(1− α)8−|O0|d4
12d

4
23d

4
13m

6

= (α(1− α))8d4
12d

4
23d

4
13m

6
∑
O0⊆O

(−1)8−|O0|(1± (−1)|O0|δ1)

≤ 28

(
1
4

)8

δ1d
4
12d

4
23d

4
13m

6

= 2−8δ1d
4
12d

4
23d

4
13m

6,
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where the last inequality is obtained by using the fact that α(1− α) ≤ 1/4.

Returning to (3.11), we then have∑
v11,v12∈V1

∑
v21,v22∈V2

∑
v31,v32∈V3

hv11v12v21v22v31v32 = O(m5) + 2−8δ1d
4
12d

4
23d

4
13m

6

≤ δ1d
4
12d

4
23d

4
13m

6.

Therefore, H is also (α, δ1)-quasirandom w.r.t. G.

3.2.4.1 Proof of Proposition 3.17

We finish the proof of Theorem 3.10 by showing that Proposition 3.17 holds.

As mentioned before, we can deduce it from Theorem 3.12. The proof is

very similar to the proof of Theorem 3.10, Part (1).

Proof of Proposition 3.17. As before, we first state the hierarchy of

the constants:

0 <
1
m
≤ 1

m0
� ε � min {δ, d0} ≤ δ � µ � α, ϑ < 1,

where µ is an auxiliary constant defined in the context. Let the 3-partite

graph G and the 3-partite 3-uniform hypergraph H be given as in Proposi-

tion 3.17. We may assume that the number of vertices in each vertex parti-

tion m = 2n. Indeed, if m is odd we delete an arbitrary vertex from each Vi,

1 ≤ i ≤ 3 to obtain a 3-partite graph G′ with corresponding 3-partite hyper-

graphH′. Note that the bipartite graphs of G′ are (dij±o(1), ε±o(1))-regular

and H′ has relative density α±o(1) w.r.t. G′ and |K(3)
2,2,2(H′)| ≤ |K(3)

2,2,2(H)|.
Then, |Oind

0 (H)| − |Oind
0 (H′)| = O(m5).

Fix a suboctahedron O0 ⊆ O. We need to calculate |Oind
0 (H)|. We now

consider the family Π of all subpartitions V1 = V11 ∪ V12, V2 = V21 ∪ V22,

and V3 = V31 ∪ V32, where |V11| . . . |V32| = n. For an arbitrary, fixed element

Π ∈ Π, i.e. Π = (V11, . . . , V32) we know that the graph G[Vai, Vbj ], 1 ≤
a < b ≤ 3 and 1 ≤ i, j ≤ 2 is (dab, 2ε)-regular. Applying Fact 3.14 to Π
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we know that all but o(
(
m
n

)3) elements Π ∈ Π satisfy that H[V1h, V2i, V3j ] is

(α± o(1), 2δ)-minimal w.r.t. G[V1h, V2i, V3j ] for each 1 ≤ h, i, j ≤ 2. We call

a partition Π ∈ Π ‘good’ if the above property is satisfied and we denote the

set of all good partitions Π ∈ Π by Π+.

For a fixed Π ∈ Π+ we define a 6-partite graph P = PΠ and a 6-partite

hypergraph J = JΠ,O0 with vertex partition V11 ∪ · · · ∪V32. Further we will

show that the assumptions for Theorem 3.12 are satisfied (by introducing a

claim) and apply it in order to estimate |Oind
0 (H)|. First, let us define the

graph P . For 1 ≤ a ≤ b ≤ 3 and 1 ≤ i, j ≤ 2 and Vai 6= Vbj we set

P [Vai, Vbj ] =

G[Vai, Vbj ] if a 6= b

K[Vai, Vbj ] otherwise.

K[Vai, Vbj ] denotes the complete bipartite graph with vertex bipartition Vai∪
Vbj . As explained above, for a 6= b the graph P [Vai, Vbj ] is (dij , 2ε)-regular

and for a = b it is trivially (1, 0)-regular. Now, let us define the corresponding

hypergraph J = JΠ,O0 . For 1 ≤ h, i, j ≤ 2 we set

J [V1h, V2i, V3j ] =

H[V1h, V2i, V3j ] if {σ1h, σ2i, σ3j} ∈ O0,

K3(P [V1h, V2i, V3j ])\H[V1h, V2i, V3j ]) otherwise .

For all remaining 1 ≤ a ≤ b ≤ c ≤ 3 and 1 ≤ h, i, j ≤ 2 where Vah, Vbi, Vcj

are distinct, define

J [Vah, Vbi, Vcj ] = K3(P [Vah, Vbi, Vcj ]).

Note that every copy of K
(3)
6 in J corresponds to a copy of O′

0 ∈ Oind
0 (H).

Next, we would like to apply Theorem 3.12 to P and J but the conditions

of this theorem are not quite satisfied. More precisely, if {σ1h, σ2i, σ3j /∈ O0,

we do not know that J [V1h, V2i, V3j ] = K3(P [V1h, V2i, V3j ])\H[V1h, V2i, V3j ] is

((1−(α±1)), f(δ))-minimal w.r.t. P [V1h, V2i, V3j ], for any f(δ) → 0 as δ → 0.

However, Proposition 3.17 will imply that, in general, the complement of an

(α, δ)-minimal hypergraph is ((1 − α), f(δ))-minimal. With the following
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claim we are able to overcome the detail above. (We shall delay the proof of

the claim momentarily in order to finish the proof of the proposition.)

Claim 3.18 With Π ∈ Π+, P and J defined as above,

|K(3)
6 (J )| = (1± ϑ)α|O0|(1− α)8−|O0|d4

12d
4
23d

4
13n

6.

We now double count the number of pairs (O′
0,Π), where O′

0 ∈ Oind
0 (H),

Π ∈ Π and Π splits O′
0, i.e. if O′

0 = (v11, . . . v32) and Π = (V11, . . . , V32),

then O′
0 ∈ V11 × · · · × V32. We get,

|Oind
0 (H)| ×

(
m− 2
n− 1

)3

= |(O′
0,Π)|

=
∑
Π∈Π

|K(3)
6 (JΠ,O0)|

=
∑

Π∈Π+

|K(3)
6 (JΠ,O0)|+

∑
Π∈Π\Π+

|K(3)
6 (JΠ,O0)|.

Applying Fact 3.15 to the latter sum,(
m− 2
n− 1

)−3 ∑
Π∈Π+

|K(3)
6 (JΠ,O0)| ≤ |Oind

0 (H)|

≤
(

m− 2
n− 1

)−3[ ∑
Π∈Π+

|K(3)
6 (JΠ,O0)|+ n6 × o(

(
m

n

)3

)
]
,

consequently,

|Oind
0 (H)| =

(
m− 2
n− 1

)−3 ∑
Π∈Π+

|K(3)
6 (JΠ,O0)| ± o(n6). (3.12)

Using Claim 3.18 to estimate |K(3)
6 (JΠ,O0)| for each Π ∈ Π+ we get,∑

Π∈Π+

|K(3)
6 (JΠ,O0)| ≥ |Π+|α|O0|(1− α)8−|O0|d4

12d
4
23d

4
13n

6(1− ϑ

2
)

∑
Π∈Π+

|K(3)
6 (JΠ,O0)| ≤ |Π|α|O0|(1− α)8−|O0|d4

12d
4
23d

4
13n

6(1 +
ϑ

2
).
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Applying that (1− o(1))|Π| ≤ |Π+| ≤ |Π| we receive∑
Π∈Π+

|K(3)
6 (JΠ,O0)| = |Π|α|O0|(1− α)8−|O0|d4

12d
4
23d

4
13n

6(1± ϑ

2
± o(1))

=
(

m

n

)3

α|O0|(1− α)8−|O0|d4
12d

4
23d

4
13n

6(1± 3ϑ

4
).

Combining the above equality with (3.12), we then conclude

|Oind
0 (H)| = α|O0|(1− α)8−|O0|d4

12d
4
23d

4
13(2n)6(1± 3ϑ

4
± o(1))± o(n6)

= α|O0|(1− α)8−|O0|d4
12d

4
23d

4
13m

6(1± ϑ),

as promised.

We now complete the proof of Proposition 3.17 (and so we also finish the

proof of Theorem 3.10) by showing Claim 3.18.

Proof of Claim 3.18. For every edge Ohij = {σ1h, σ2i, σ3j} ∈ O\O0,

1 ≤ h, i, j ≤ 2, we define the 6-partite 3-uniform hypergraphs

J̃Ohij
= J ∪H[V1h, V2i, V3j ] (= K3(P [V1h, V2i, V3j ]),

J̃ =
⋃

O∈O\O0

J̃O, and

ĴOhij
= J̃ \J [V1h, V2i, V3j ] (= H[V1h, V2i, V3j ]).

Observe that by the inclusion exclusion principle we have

|K(3)
6 (J )| = |K(3)

6 (J̃ )| −
∣∣∣ ⋃

O∈O\O′

K
(3)
6 (ĴO)

∣∣∣
= |K(3)

6 (J̃ )| −
∑

∅6=O′
0⊆O\O0

(−1)|O
′
0|
∣∣∣ ⋂

O∈O′
0

K
(3)
6 (ĴO)

∣∣∣
Note that ⋂

O∈O′
0

K
(3)
6 (ĴO) = K

(3)
6

( ⋂
O∈O′

0

ĴO

)
.
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Letting
⋂

O∈∅ ĴO = J̃ the above equation reduces to

|K(3)
6 (J )| =

∑
O′

0⊆O\O0

(−1)|O
′
0|
∣∣∣K(3)

6

( ⋂
O∈O′

0

ĴO

)∣∣∣. (3.13)

For fixed O′
0 ⊆ O\O0 and fixed 1 ≤ a ≤ b ≤ c ≤ 3 and 1 ≤ h, i, j ≤ 2 it

follows from the definition of Ĵ that

⋂
O∈O′

0

ĴO[Vah, Vbi, Vcj ] =

H[Vah, Vbi, Vcj ] if {σah, σbi, σcj} ∈ O0 ∪ O′
0

K3(P [Vah, Vbi, Vcj ]) otherwise.

Therefore,

⋂
O∈O′

0

ĴO[Vah, Vbi, Vcj ] is

(α± o(1), 2δ)-minimal if {σah, σbi, σcj} ∈ O0 ∪ O′
0

(1, 2δ)-minimal otherwise

w.r.t. P [Vah, Vbi, Vcj ]. Moreover, we also know for 1 ≤ a ≤ b ≤ 3 and

1 ≤ i, j ≤ 2 that

P [Vai, Vbj ] is

(dab, 2ε)- regular if a 6= b,

(1, 2ε)- regular otherwise.

Since all the conditions for Theorem 3.12 are satisfied for each term in (3.13)

we have

|K(3)
6 (J )| =

∑
O′

0⊆O\O0

(−1)|O
′
0|
∣∣∣K(3)

6

( ⋂
O∈O′

0

(ĴO)
)∣∣∣

=
∑

O′
0⊆O\O0

(−1)|O
′
0|
(
(1± µ)(α± o(1))|O0+O′

0|d4
12d

4
23d

4
13n

6
)

= (1± 2µ)α|O0|d4
12d

4
23d

4
13n

6
∑

O′
0⊆O\O0

(−α)|O
′
0|

= (1± 2µ)α|O0|(1− α)|O|−|O0|d4
12d

4
23d

4
13n

6.

With |O| = 8 and 2µ < ϑ/2, the proof of Claim 3.18 is complete.
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Chapter 4

Algorithmic Quasirandom Lemma

4.1 Statement of the Algorithmic Quasirandom

Lemma

In this section we state our second main result the algorithmic quasirandom

lemma for 3-uniform hypergraphs. It is based on Gowers’ Quasirandom

Lemma (see Theorem in [14]). His proof involved probabilistic arguments

which we here derandomize to obtain an ‘efficient’ algorithm.

Theorem 4.1 (Algorithmic Quasirandom Lemma) For all γ, δ > 0

and functions ε : (0, 1] → (0, 1] there exist positive integers P0 and N0 so

that the following holds. For every 3-uniform hypergraph H on vertex set

V = V (H), where |V | = N > N0, one can construct in time O(N6):

(i) a vertex partition V = V1 ∪ · · · ∪ Vt with |V1| ≤ · · · ≤ |Vt| ≤ |V1| + 1,

and

(ii) a pair-partition of
(
V
2

)
given by, for each 1 ≤ i < j ≤ t, K[Vi, Vj ] =

Gij
1 ∪ · · · ∪ Gij

`ij
, with a total number of parts

∑
1≤i<j≤t `ij ≤ P0 and

with the following property:

All but γN3 triples {vi, vj , vk} ∈
(
V
3

)
satisfy that whenever {vi, vj , vk} ∈

K3(G
ij
a ∪ Gjk

b ∪ Gik
c ) = K3(G

ijk
abc), for some 1 ≤ i < j < k ≤ t and

(a, b, c) ∈ [`ij ]× [`jk]× [`ik], then
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(a) Gij
a , Gjk

b , and Gik
c are, respectively, (dija, ε(dija)), (djkb, ε(djkb)),

(dikc, ε(dikc))-quasirandom, with respective densities dija, djkb, and

dikc;

(b) Hijk
abc = H ∩K3(G

ijk
abc) is δ-quasirandom w.r.t. Gijk

abc.

The proof of Theorem 4.1 is based on Algorithm 2.7 and on the upcoming

Algorithm 4.3. The latter algorithm will consider a 3-partite graph G =

GXY ∪ GY Z ∪ GXZ with vertex 3-partition X ∪ Y ∪ Z where all bipartite

graphs are quasirandom and a hypergraph H defined on H ⊆ K3(G) which

is not quasirandom w.r.t. G. In order to introduce Algorithm 4.3 we need

some more definitions. In particular, we need to define the index-function

which plays a pivotal role in the proof of Theorem 4.3. Let us recall that for

a hypergraph H and vertices x, y, and z we let H(x, y, z) be the indication

function for the edges of H, i.e.

H(x, y, z) =

1 if (x, y, z) is an edge in H

0 otherwise.

Also recall that α = d(H|G) = |H|/|K3(G)| denotes the relative density of

H w.r.t. G. Furthermore, consider the partition GXY = GXY
1 ∪ · · · ∪GX,Y

pXY ,

GY Z = GY Z
1 ∪ · · · ∪ GY Z

pY Z
, and GXZ = GXZ

1 ∪ · · · ∪ GXZ
pXZ

of the bipartite

graphs of G. For each triangle with vertices x ∈ X, y ∈ Y and z ∈ Z in

G define its triad to be the triple (i, j, k) such that xy ∈ GXY
i , yz ∈ GY Z

j ,

and xz ∈ GXZ
k . The induced partition of K3(G) is the partition into at

most p = pXZpY ZpXZ cells according to which triad they belong to, i.e.

K3(G) =
⋃p

i=1 ∆i. Note that a typical cell (i.e. one ∆ijk; 1 ≤ i ≤ pXY ,

1 ≤ j ≤ pY Z , 1 ≤ k ≤ pXZ) is of the form ∆ijk = K3(GXY
i ∪GY Z

j ∪GX,Z
k ).

For simplicity of notation we denote the number of triangles in G by T .

Then, we can define the index of the tripartite 3-uniform hypergraph H with

respect to the above partition.
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Definition 4.2 (index of H) Let H and the partition ∆i be as above. Then

the index of H with respect to ∆i is defined to be

ind(H, (∆i)
p
i=1) =

1
T

p∑
i=1

|∆i|

|∆i|−1
∑

(x,y,z)∈∆i

H(x, y, z)

2

.

We are now able to state the main algorithm for the proof of Theorem 4.1.

Algorithm 4.3

Input: 1 > α > 0, d0, δ, ε > 0, graph G, hypergraph H satisfying:

1. G = GXY ∪ GY Z ∪ GXZ has tripartition V (G) = X ∪ Y ∪ Z, m =

|X| ≤ |Y | ≤ |Z| ≤ m + 1;

2. GXY , GY Z , GXZ are ε-quasirandom with respective densities dXY , dY Z ,

dXZ ≥ d0;

3. ε = ε(d0) is sufficiently small,

4. H ⊆ K3(G) where α = d(H|G), but H is not (α, δ)-quasirandom

w.r.t. G.

Output:

GXY = GXY
1 ∪ · · · ∪GXY

pXY
,

GY Z = GY Z
1 ∪ · · · ∪GY Z

pY Z
,

GXZ = GXZ
1 ∪ · · · ∪GXZ

pXZ
,

∆ = (∆i)
p
i=1 so that

I. ind(H,∆) ≥ α2 + δ2/210;

II. p ≤ 271+d−12
0 .

Complexity: O(m5).

We present Agorithm 4.3 in Section 4.3.
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4.2 Proof of Theorem 4.1

In this section we prove the algorithmic quasirandom lemma. The proof

is based on iteratively applying Algorithms 2.7 and 4.3 and is similar to

Szemeredi’s original proof of the regularity lemma. As in Szemeredi’s original

proof the index function plays a pivotal role. Therefore, we will first prove

some properties of this function which we will need later. Let us start with

generalizing the definition of the index-function from (indicator function of)

hypergraphs to arbitrary functions.

Definition 4.4 (index of f) Let U be a set of size T and let f : U →
[−1, 1] be a function. Let further ∆1, . . . ,∆p be a partition of U . Then the

index of f with respect to the partition ∆1, . . . ,∆p is defined to be

ind(f, (∆i)
p
i=1) =

1
T

p∑
i=1

|∆i|

|∆i|−1
∑
x∈∆i

f(x)

2

.

We now state a technical lemma that we will need in the proof of Algo-

rithm 4.1. For simplicity, from now on we denote the 2-norm of a function

f , ||f ||2 by ||f ||.

Lemma 4.5 Let U be a set of size T and let f : U → [−1, 1]. Furtheromore,

let ∆1, . . . ,∆p be a partition of U and let g : U → [−1, 1] be a function that

is constant on each ∆i. Then,

ind(f, (∆i)
p
i=1) ≥

(
〈f, g〉√
T ||g||

)2

.

Proof. Since g is by assumption constant on each set ∆i, let ai be the value

taken by g on ∆i. Then, by the Cauchy-Schwartz Inequality and multiplying
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by
√
|∆i|/

√
|∆i|,

〈f, g〉 =
∑
x∈U

f(x)g(x)

=
p∑

i=1

ai

∑
x∈∆i

f(x)

CS
≤

(
p∑

i=1

|∆i|a2
i

)1/2
 p∑

i=1

|∆i|−1

∑
x∈∆i

f(x)

21/2

= ||g||

 p∑
i=1

|∆i|

|∆i|−1
∑
x∈∆i

f(x)

21/2

= ||g|| (T · ind(f, (∆i)
p
i=1))

1/2
.

Hence, the conclusion of the lemma follows.

For G = GXY ∪ GY Z ∪ GXZ a 3-partite graph with 3-partition V (G) =

X ∪ Y ∪ Z, where m = |X| ≤ |Y | ≤ |Z| ≤ m + 1 and H ⊆ K3(G) we would

like to find a relation between Definition 4.4 and Definition 4.2 where our

function of interest will be:

h(x, y, z) = H(x, y, z)− α

where α = d(H|G) = |H|/K3(G) and H(x, y, z) is the characteristic function

of the hyperedges in H. The underlying partition will be the same as in

Definition 4.2, i.e. let

GXY = GXY
1 ∪ · · · ∪GXY

pXY
,

GY Z = GY Z
1 ∪ · · · ∪GY Z

pY Z

GXZ = GXZ
1 ∪ · · · ∪GXZ

pXZ

be arbitrary partitions into pXY , pY Z and pXZ parts, respectively. These

partitions induce a partition of K3(G) into at most p = pXY pY ZpXZ classes
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defined as follows: for 1 ≤ i ≤ pXY , 1 ≤ j ≤ pY Z and 1 ≤ k ≤ pXZ , let

∆ijk = K3

(
GXY

i ∪GY Z
j ∪GXZ

k

)
.

The definition of the function h allows us now to relate the index of h to the

index of H as follows.

Lemma 4.6 Let the graph G, hypergraph H, the function h, the relative

density α, and the partition ∆i be defined as above. Then the following

holds:

ind(h, (∆i)
p
i=1) = ind(H, (∆i)

p
i=1)− α2.

Proof. Recall that we denote by T the number of triangles in G and p

denotes the number of classes of the partition of K3(G).

ind(h, (∆i)
p
i=1) =

1
T

p∑
i=1

|∆i|

|∆i|−1
∑

(x,y,z)∈∆i

h(x, y, z)

2

=
1
T

p∑
i=1

|∆i|

|∆i|−1
∑

(x,y,z)∈∆i

H(x, y, z)− α

2

=
1
T

p∑
i=1

|∆i|

|∆i|−1
∑

(x,y,z)∈∆i

H(x, y, z)

− α

2

=
1
T

p∑
i=1

|∆i|

|∆i|−1
∑

(x,y,z)∈∆i

H(x, y, z)

2

+
p∑

i=1

|∆i|
T

α2 − 2α
∑

(x,y,z)∈∆i

H(x, y, z)
|∆i|


= ind(H, (∆i)

p
i=1) + α2 − 2α

p∑
i=1

1
T

∑
(xyz)∈∆i

H(x, y, z)

= ind(H, (∆i)
p
i=1)− α2.
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Let us recall the familiar fact that if a partition ∆′ = (∆′
1, . . . ,∆

′
q) of

K3(G) refines ∆ = (∆1, . . . ,∆p), then ind(H,∆′) ≥ ind(H,∆). Indeed, if

∆′ refines ∆, then we may write ∆ = (∆′
ij : 1 ≤ i ≤ p, 1 ≤ j ≤ qi), for

some integers q1, . . . , qp ≥ 1, where for each 1 ≤ i ≤ p, ∆i = ∆′
i1 ∪ · · · ∪∆′

iqi
.

Then for a fixed 1 ≤ i ≤ p, the Cauchy-Schwarz inequality gives

qi∑
j=1

|H ∩∆′
ij |2

|∆′
ij |

=
qi∑

j=1

|∆′
ij |
( |H ∩∆′

ij |
|∆′

ij |

)2

≥

(∑qi
j=1 |∆′

ij | ×
|H∩∆′

ij |
|∆′

ij |

)2

∑qi
j=1 |∆′

ij |

=
|H ∩∆i|
|∆i|

.

Therefore, we get

ind(H,∆′) =
1
T

p∑
i=1

qi∑
j=1

|H ∩∆′
ij |2

|∆′
ij |

≥ 1
T

p∑
i=1

|H ∩∆i|2

|∆i|

= ind(H,∆).

We collected all tools in order to prove Theorem 4.1.

Proof of Theorem 4.1. Let the constants γ, δ > 0 be given as well as

the function ε : (0, 1] → (0, 1]. We may assume w.l.o.g. that ε(x) ≤ x

and ε(x) is small enough to enable an application of Algorithm 4.3 with

d0 = x. We shall not explicitly define the constant P0 = P0(γ, δ, ε), but

we will describe it within the proof. Also, we shall choose the constant

N0 = N0(γ, δ, ε, P0) sufficiently large whenever needed. Furthermore, let H
be a 3-uniform hypergraph on the vertex set V = V (H) of size |V | = N > N0.

We now describe how to construct in O(N6) time our desired partition Π of

V and
(
V
2

)
. We will show it by induction over the number of iterations.
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4.2.1 Iteration I:

We will start by constructing a partition Π(1). Therefore, we set t1 = d2/γe
and let

V (H) = U1 ∪ · · · ∪ Ut1 , |U1| ≤ · · · ≤ |Ut1 | ≤ |U1|+ 1,

be an arbitrary vertex partition. Furthermore, we set l1 = 1 and let the

complete bipartite graphs Kij = K[Ui, Uj ], 1 ≤ i < j ≤ t1, be their own

pair-partition. Now, we define Π to be the above described family of parti-

tions constructible in linear time. We have to check that Π(1) satisfies the

conclusion of Theorem 4.1. Note that all but

t1

(
dN/t1e

2

)
N =

N3

2t1
+ O(N2)

≤ γ

4
N3 + O(N2)

≤ γ

2
N3

triples {x, y, z} ∈
(
V
3

)
cross the vertex partition U1 ∪ · · · ∪ Ut1 . Therefore,

for some 1 ≤ i < j < k ≤ t1 the triple {x, y, z} ∈ K3(Kijk) where Kijk =

Kij ∪ Kjk ∪ Kik is a triad of Π(1). Observe that for every triad Kijk, by

construction each constituent bipartite graph Kij , Kjk, and Kik is (1, 0)-

quasirandom. It remains to check if Hijk = H ∩∆(Kijk) is δ-quasirandom

w.r.t. Kijk. Therefore, we count the number of (crossing) triples {x, y, z} ∈(
V
3

)
belonging to triads Kijk for which Hijk is not δ-quasirandom, i.e. for

which∑
ui,u′i∈Ui

∑
uj ,u′j∈Uj

∑
uk,u′k∈Uk

hui,u′i,uj ,u′j ,uk,u′k
≥ δ(dijdjkdik)4|Ui|2|Uj |2|Uk|2,

with densities dij = djk = dik = 1. This can be done in O(N6). We

denote the ‘bad’ triads Kijk, i.e., those which are not δ-quasirandom, by the

indexing set Ibad ⊆
(
[t1]
3

)
, and compute, in time O(N3) the sum∑

{i,j,k}∈Ibad
|K3(Kijk)|. If this sum is less than (γ/2)N3, we are done, and
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Π = Π(1) is the partition we seek. Otherwise,∑
{i,j,k}∈Ibad

|K3(Kijk)| ≥ γ

2
N3 ⇒ |Ibad| ≥

γ

4
t31. (4.1)

In this case we refine Π(1) to construct a new partition Π(2).

We begin by establishing some formal considerations. For 1 ≤ i < j < k ≤
t1, write ∆ijk as the trivial partition of K3(Kijk) given by the single class

K3(Kijk). Then by the definition of the index (see Definition 4.2), we have

ind(Hijk,∆ijk) = α2
ijk, where αijk = d(Hijk|Kijk).

Now, we define the index of Π(1).

ind(H,Π(1)) = t−3
1

∑
1≤i<j<k≤t1

ind(Hijk,∆ijk)

= t−3
1

∑
1≤i<j<k≤t1

α2
ijk

Our goal is to construct a partition Π(2) for which ind(H,Π(2)) (defined

later) is non-trivially larger than ind(H,Π(1)). First, we will apply Algo-

rithm 4.3 for which we now prepare.

For fixed {i, j, k} ∈ Ibad we know that αijk = d(Hijk|Kijk) 6= 0, 1, since

otherwiseHijk would be quasirandom w.r.t. Kijk. By construction, we know

that each of the Kij , Kjk, and Kik are (1, 0)-quasirandom, so in particular,

they are also (1, ε1)-quasirandom, where ε1 = ε(1). Since all the conditions

for an application of Algorithm 4.3 are met for Hijk and Kijk we construct

the following partitions in O(N5)

Kij = Gij
1 ∪ · · · ∪Gij

pij
,

Kij = Gjk
1 ∪ · · · ∪Gij

pjk
,

Kij = Gik
1 ∪ · · · ∪Gij

pik
;

for some integers pij , pjk, and pik. By the conclusion of Algorithm 4.3 we

also know that the resulting partition ∆′
ijk which consists of 27

1+ 1

d−12
0 =
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272 = 729 classes of the form ∆ijk
abc = K3(G

ij
a ∪ Gjk

b ∪ Gik
c ), for (a, b, c) ∈

[pij ]× [pjk]× [pik], satisfies

ind(Hijk,∆′
ijk) ≥ α2

ijk +
δ2

210
.

For {i, j, k} /∈ Ibad, we let

Gij
1 = Kij

Gjk
1 = Kjk

Gik
1 = Kik

∆′
ijk = ∆ijk.

Since in any case ∆′
ijk refines ∆ijk we conclude

ind(Hijk,∆′
ijk) ≥

α2
ijk + δ2

210 if {i, j, k} ∈ Ibad,

α2
ijk else.

We now further refine the partitions above to get a common refinement. Let

Kijk1 , . . . ,Kijkr , {i, j} ∩ {k1, . . . , kr} 6= ∅, be the bad triads which include

Kij as a bipartite subgraph. Let

Kij
1 = Gij

11 ∪ · · · ∪Gij
pij11

, . . . ,

Kij
r = Gij

1r ∪ · · · ∪Gij
pijrr

be the partitions constructed by Algorithm 4.3. Now, construct in O(N2)

the unique minimal partition of Kij

Kij = G̃ij
1 ∪ · · · ∪ G̃ij

qij
, qij ≤ 2t1272

;

i.e.

for all e1, e2 ∈ Kij , e1 ∼ e2 ⇔e1 and e2 lie in the same partition

class of Kij
s for all 1 ≤ s ≤ r.
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Similarly, we also construct

Kjk = G̃jk
1 ∪ · · · ∪ G̃jk

qjk
, qjk ≤ 2t1272

Kij = G̃ik
1 ∪ · · · ∪ G̃ik

qik
, qik ≤ 2t1272

.

Let ∆̃ijk be the resulting partition of ∆(Kijk) whose classes are of the form

∆̃ijk
abc = ∆(G̃ij

a ∪ G̃jk
b ∪ G̃ik

c ), (a, b, c) ∈ [qij ]× [qjk]× [qik].

Then ∆̃ijk refines the partition ∆′
ijk, and therefore

ind(Hijk, ∆̃ijk) ≥ ind(Hijk,∆′
ijk)

≥

α2
ijk + δ2

210 if {i, j, k} ∈ Ibad

α2
ijk otherwise.

We continue refining the above partitions by applying Algorithm 2.7 since

none of the bipartite graphs G̃ij
a , 1 ≤ i < j ≤ t1, 1 ≤ a ≤ qij , are guaranteed

to be η-quasirandom for some η ∈ (0, 1). We apply Algorithm 2.7 with

the following constants t0 = t1 and l0 = 2t1272 and set ε2 = ε(γ/(10l0)).

Then Algorithm 2.7 constructs in time O(N2.376) vertex partitions Ui =

Ui1 ∪ · · · ∪ Uit, 1 ≤ i ≤ t1; where 1 ≤ t ≤ T0 = T0(t0, l0, ε2). We also know

that all but ε2(t1t)2l0 of the bipartite graphs Ĝij
a (i′, j′) = G̃ij

a [Uii′ , Ujj′ ] are

ε2-quasirandom, 1 ≤ i < j ≤ t1, 1 ≤ a ≤ qij , 1 ≤ i′, j′ ≤ t. Then for a fixed

1 ≤ i < j < k ≤ t1, this provides a refinement ∆̂ijk of ∆̃ijk whose classes are

of the form

∆̂ijk
abc(i

′, j′, k′) = K3(Ĝij
a (i′, j′) ∪ Ĝjk

b (j′, k′) ∪ Ĝik
c (i′, k′))

= K3(Ĝ
ijk
abc(i

′, j′, k′));

1 ≤ i′, j′, k′ ≤ t, 1 ≤ a ≤ qij , 1 ≤ b ≤ qjk, and 1 ≤ c ≤ qik, and therefore

ind(Hijk, ∆̂ijk) ≥ ind(Hijk, ∆̃ijk)

≥

α2
ijk + δ2

210 if {i, j, k} ∈ Ibad

α2
ijk otherwise.

(4.2)
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We are now ready to define Π(2). For simplicity we first re-index the vertex

sets Uii′ , 1 ≤ i ≤ t1, 1 ≤ i′ ≤ t, to U
(2)
i , 1 ≤ i ≤ t2 = t1t. Correspondingly,

re-index the bipartite graphs Ĝij
a (i′, j′), 1 ≤ i < j ≤ t1, 1 ≤ i′, j′ ≤ t, 1 ≤

a ≤ qij ≤ l2 = l0 = 2t1272 , to Gij
a where now 1 ≤ i < j ≤ t2 and 1 ≤ a ≤ qij

(there is no ambiguity in the parameter qij). Using the terminology after

re-indexing we have that all but ε2t
2
2l2 of the bipartite graphs Gij

a of Π(2)

are ε2-quasirandom and the triads are of the form Gijk
abc = Gij

a ∪ Gjk
b ∪ Gik

c ,

1 ≤ i < j < k ≤ t2, (a, b, c) ∈ [qij ] × [qjk] × [qik]. These triads provide

triangle partitions ∆(2)
ijk, 1 ≤ i < j < k ≤ t2, whose classes are of the form

∆ijk
abc = K3(G

ijk
abc)

(a, b, c) ∈ [qij ]× [qjk]× [qik]. By the definition of the index of Π(2) is

ind(H,Π(2)) = t−3
2

∑
1≤i<j<k≤t2

ind(Hijk,∆(2)
ijk).

It remains to show that we non-trivially increased the index of Π(2) compared

to the index of Π(1), i.e., we will show that

ind(H,Π(2)) ≥ ind(H,Π(1)) +
γδ2

213
.

Applying the definition of the index and the notation prior to re-indexing,

ind(H,Π(2)) may be expressed as

ind(H,Π(2)) = t−3
2

∑
1≤i<j<k≤t2

ind(Hijk,∆(2)
ijk)

= (t1t)−3
∑
i,j,k

∑
i′,j′,k′

|K3(K
ijk
i′j′k′)|

−1

×
∑
a,b,c

|H ∩∆ijk
abc(i

′, j′, k′)|2|∆ijk
abc(i

′, j′, k′)|−1;

where 1 ≤ i < j < k ≤ t1, 1 ≤ i′, j′, k′ ≤ t, (a, b, c) ∈ [qij ]× [qjk]× [qik], and

where

Kijk
i′j′k′ = Kijk[Uii′ , Ujj′ , Ukk′ ]

= Kij [Uii′ , Ujj′ ] ∪Kjk[Ujj′ , Ukk′ ] ∪Kik[Uii′ , Ukk′ ].
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Using that t3|K3(K
ijk
i′j′k′)| = (1 ± o(1))|K3(Kijk)|, where o(1) → 0 as N →

∞. Note that if the Uii’s all have the same size we get t3|K3(K
ijk
i′j′k′)| =

|K3(Kijk)|. Again, by the definition of the index we get

ind(H,Π(2)) = (t1t)−3
∑
i,j,k

∑
i′,j′,k′

|K3(K
ijk
i′j′k′)|

−1

×
∑
a,b,c

|H ∩∆ijk
abc(i

′, j′, k′)|2|∆ijk
abc(i

′, j′, k′)|−1

≥ (1− o(1))t−3
1

∑
i,j,k

|K3(Kijk)|−1

×
∑

i′,j′,k′

∑
a,b,c

|H ∩∆ijk
abc(i

′, j′, k′)|2|∆ijk
abc(i

′, j′, k′)|−1

≥ (1− o(1))t−3
1

∑
1≤i<j<k≤t1

ind(Hijk, ∆̂ijk)

= (1− o(1))t−3
1

×
( ∑
{i,j,k}∈Ibad

ind(Hijk, ∆̂ijk) +
∑

{i,j,k}/∈Ibad

ind(Hijk, ∆̂ijk)
)

(4.2)
≥ (1− o(1))t−3

1

( ∑
{i,j,k}∈Ibad

(α2
ijk +

δ2

210
) +

∑
{i,j,k}/∈Ibad

α2
ijk

)
(4.1)
≥ (1− o(1))

(γδ2

212
+ t−3

1

∑
1≤i<j<k≤t1

α2
ijk

)
= (1− o(1))

(γδ2

212
+ ind(H,Π(1))

)
≥ γδ2

213
+ ind(H,Π(1)),

as promised.

4.2.2 Iteration s:

Essentially, this proof is identical to Iteration I. We will again apply Algo-

rithms 4.3 and 2.7 to further refine the current partition and non-trivially

increase the index function. We will limit this proof to an outline.

Let s ≥ 2 be an integer, and assume we have constructed, in time O(N6),
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the successively refining partitions Π(1), . . . ,Π(s), where Π(s) consists of

(i) a vertex partition

V (H) = U
(s)
1 ∪ · · · ∪ U

(s)
ts , with |U (s)

1 | ≤ · · · ≤ |U (s)
ts | ≤ |U (s)

1 |+ 1,

where ts is independent of N , and

(ii) a pair partition given by, for each 1 ≤ i < j ≤ ts,

Kij(s) = K[U (s)
i , U

(s)
j ] = Gij

1 (s) ∪ · · · ∪Gij

`
(s)
ij

(s),

where `
(s)
ij ≤ `s for some integer `s independent of N ,

and assume Π(s) satisfies the following properties:

(i) all but εst
2
s`s bipartite graphs Gij

a (s), 1 ≤ i < j ≤ ts, 1 ≤ a ≤ `
(s)
ij ,

are εs-quasirandom, where εs = ε(γ/(10`s)),

(ii)

ind(H,Π(s)) ≥ ind(H,Π(s−1)) + γδ2/213

where for 1 ≤ i < j < k ≤ ts and (a, b, c) ∈ [`(s)
ij ]× [`(s)

jk ]× [`(s)
ik ]

(a)

ind(H,Π(s)) = t−3
s

∑
1≤i<j<k≤ts

ind(Hijk(s),∆(s)
ijk);

(b)

Hijk(s) = H ∩K3(Kijk(s))

= H ∩K3(Kij(s) ∪Kjk(s) ∪Kik(s)),

(c) ∆(s)
ijk is the partition of K3(Kijk(s)) whose classes are given by

∆ijk
abc(s) = K3(G

ijk
abc(s)) = K3(Gij

a (s) ∪Gjk
b (s) ∪Gik

c (s)).
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In what follows, s is assumed to be fixed, and so for simplicity, we shall abbre-

viate the symbols U
(s)
i , Kij(s), Gij

a (s), l
(s)
ij , Hijk(s), Kijk(s) and Gijk

abc(s) to

Ui, Kij , Gij
a , lij , Hijk, Kijk and Gijk

abc, respectively. (But the other references

to s will stay.)

As in the first iteration, we first check whether Π(s) already satisfies the

conclusion of Theorem 4.1. By assumption we know, that all but (γ/4)N3

crossing triples {x, y, z, } ∈
(
V
3

)
belong to triads Gijk

abc, 1 ≤ i < j < k ≤ ts,

(a, b, c) ∈ [`(s)
ij ]× [`(s)

jk ]× [`(s)
ik ], for which the constituent bipartite graphs Gij

a ,

Gjk
b , and Gik

c are εs-quasirandom with respective densities dija, djkb, and

dikc > ds = γ/(10`s). Indeed, the ‘bad’ crossing triples contribute at most

(εs + ds)t2s`sdN/tse2N ≤ γ

5
t2sdN/tse2N

<
γ

4
N3,

where we used that ε(γ/(10`s)) ≤ γ/(10`s). We now determine in time

O(N6) if the ‘good’ crossing triples, meaning triples belonging to triads for

which the underlying bipartite graphs are εs-quasirandom and of density

greater than γ/(10ls), also belong to triads Gijk
abc for which Hijk

abc = H ∩
K3(G

ijk
abc) is δ-quasirandom w.r.t. Gijk

abc. To that end, let Ibad = I
(s)
bad ⊆

(
[ts]
3

)
×

[`s]3 be the indexing set for those triads Gijk
abc of Π(s) for which Gij

a , Gjk
b Gik

c are

εs-quasirandom with respective densities dija, djkb, dikc > ds, but for which

Hijk
abc is not δ-quasirandom w.r.t. Gijk

abc. We then compute in time O(N3) the

sum
∑

Ibad
|K3(G

ijk
abc)|. If this sum is less than (γ/4)N3, we are done, and

Π = Π(s) is the partition we seek. Otherwise,∑
({i,j,k},a,b,c)∈Ibad

∣∣K3(G
ijk
abc)
∣∣ ≥ γ

4
N3

in which case we refine the partition Π(s) (in O(N5)) to receive a partition

Π(s+1) that has a non-trivially larger index than that of Π(s).
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Indeed, fix ({i, j, k}, a, b, c) ∈ Ibad. Apply Algorithm 4.3 to Hijk
abc and Gijk

abc

to construct partitions

Gij
a = Gij

a1 ∪ · · · ∪Gij
apija

,

Gjk
b = Gjk

b1 ∪ · · · ∪Gjk
bpjkb

,

Gik
c = Gik

c1 ∪ · · · ∪Gik
cpikc

,

so that the resulting partition ∆ijk
abc of K3(G

ijk
abc) with classes of the form

K3

(
Gijk

abc(a
′, b′, c′)

)
= K3

(
Gij

aa′ ∪Gjk
bb′ ∪Gik

cc′
)
,

(a′, b′, c′) ∈ [pija]× [pjkb]× [pikc] satisfies the following properties:

I.

ind(Hijk
abc,∆

ijk
abc) ≥ (αijk

abc)
2 + δ2/210, where αijk

abc = d(Hijk
abc|G

ijk
abc);

II.

pijapjkbpikc ≤ 271+d−12
s .

As in the first iteration we further refine the partitions above to obtain, for

each 1 ≤ i < j ≤ ts and 1 ≤ a ≤ `s, a common refinement

Gij
a = G̃ij

a1 ∪ · · · ∪ G̃ij
aqija

, qija ≤ 2ts`2s271+d−12
s = Qs.

These common refinements then yield partitions ∆ijk
abc of K3(G

ijk
abc), 1 ≤ i <

j < k ≤ ts, (a, b, c) ∈ [`ij ]× [`jk]× [`ik], whose classes are of the form

∆̃ijk
abc(a

′, b′, c′) = K3

(
G̃ijk

abc(a
′, b′, c′)

)
= K3

(
G̃ij

aa′ ∪ G̃jk
bb′ ∪ G̃ik

cc′
)
,

where (a′, b′, c′) ∈ [qija]× [qjkb]× [qikc]. We continue refining the above par-

titions by applying Algorithm 2.7 to Gij
aa′ 1 ≤ i < j ≤ ts, a ∈ [`ij ], a′ ∈ [qija]

since none of the bipartite graphs are guaranteed to be sufficiently quasi-

random. We set t0 = ts, `0 = `sQs and εs+1 = ε(γ/(10`0)). Algorithm 2.7
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constructs, with the above choice of our constants, in O(N2.376) vertex parti-

tions Ui = Ui1∪ · · ·∪Uit, 1 ≤ i ≤ ts, where 1 ≤ t ≤ T0 = T0(t0, `0, εs+1). We

also know by the output of Algorithm 2.7 that all but εs+1(tst)2`0 bipartite

graphs Ĝij
aa′(i

′, j′) = G̃ij
aa′ [Uii′ , Ujj′ ], 1 ≤ i < j ≤ ts, a ∈ [lij ], a′ ∈ [qija],

1 ≤ i′, j′ ≤ t, are εs+1-quasirandom. Then for fixed 1 ≤ i < j < k ≤ ts,

(a, b, c) ∈ [`ij ] × [`jk] × [`ik], the application of Algorithm 2.7 provides a

refinement ∆̂
ijk
abc of ∆̃

ijk
abc whose classes are of the form

∆̂ijk
abc(a

′, b′, c′, i′, j′, k′) = K3

(
Ĝijk

abc(a
′, b′, c′, i′, j′, k′)

)
= K3

(
Ĝij

aa′(i
′, j′) ∪ Ĝjk

bb′(j
′, k′) ∪ Ĝik

cc′(i
′, k′)

)
(a′, b′, c′) ∈ [qija] × [qjkb] × [qikc], 1 ≤ i′, j′, k′ ≤ t. Then, for each 1 ≤ i <

j < k ≤ ts, (a, b, c) ∈ [`ij ]× [`jk]× [`ik] and the fact that the index function

is nondecreasing w.r.t. refinements we get

ind(Hijk
abc, ∆̂

ijk
abc) ≥ ind(Hijk

abc, ∆̃
ijk
abc)

≥ ind(Hijk
abc,∆

ijk
abc)

≥

(αijk
abc)

2 + δ2

210 if ({i, j, k}, a, b, c) ∈ Ibad,

(αijk
abc)

2 otherwise.

We are now ready to define the partition Π(s+1). For simplicity, we first re-

index the vertex sets Uii′ , 1 ≤ i ≤ ts, 1 ≤ i′ ≤ t, to U
(s+1)
i , 1 ≤ i ≤ ts+1 = tst.

Correspondingly, re-index the bipartite graphs Ĝij
aa′(i

′, j′), 1 ≤ i < j ≤ ts,

a ∈ [`ij ], a′ ∈ [qija], 1 ≤ i′, j′ ≤ t, to Gij
a , 1 ≤ i < j ≤ ts+1, 1 ≤ a ≤ `ij ≤

`s+1 = `0 = `sQs. Using the terminology after re-indexing we know that all

but εs+1t
2
s+1`s+1 bipartite graphs Gij

a , 1 ≤ i < j ≤ ts+1, 1 ≤ a ≤ `ij , are

εs+1-quasirandom. As a consequence of re-indexing, Π(s+1) admits triangle

partitions ∆(s+1)
ijk , 1 ≤ i < j < k ≤ ts+1, whose classes are of the form

∆ijk
abc = K3(Gij

a ∪Gjk
b ∪Gik

c )

(a, b, c) ∈ [`ij ]× [`jk]× [`ik]. The index of Π(s+1) is

ind(H,Π(s+1)) = t−3
s+1

∑
1≤i<j<k≤ts+1

ind(Hijk,∆(s+1)
ijk ).
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It remains to show that

ind(H,Π(s+1)) ≥ ind(H,Π(s)) + γδ2/213.

Applying the definition of the index and the notation prior to re-indexing

ind(H,Π(s+1)) may be expressed as

ind(H,Π(s+1)) = (tst)−3
∑
i,j,k

∑
i′,j′,k′

∣∣K3

(
Kijk

i′j′k′
)∣∣−1

×
∑
abc

∑
a′b′c′

∣∣H ∩ ∆̂ijk
abc(a

′, b′, c′, i′, j′, k′)
∣∣2∣∣∆̂ijk

abc(a
′, b′, c′, i′, j′, k′)

∣∣−1 ,

where the sums run over 1 ≤ i < j < k ≤ ts, 1 ≤ i′, j′, k′ ≤ t, (a, b, c) ∈
[`ij ]×[`jk]×[`ik], (a′, b′, c′) ∈ [qija]×[qjkb]×[qikc], and where Kijk

i′j′k′ is defined

analogously as in the first iteration. Using the fact that t3|K3(K
ijk
i′j′k′)| =

(1± o(1))|K3(Kijk)|, where o(1) → 0 as N →∞, we conclude that

ind(H,Π(s+1)) ≥ (1− o(1))t−3
s

∑
i,j,k

∑
a,b,c

∣∣K3

(
Kijk

)∣∣−1

×
∑
a′b′c′

∑
i′,j′,k′

∣∣H ∩ ∆̂ijk
abc(a

′, b′, c′, i′, j, k′)
∣∣2∣∣∆̂ijk

abc(a
′, b′, c′, i′, j′, k′)

∣∣−1 .

For each 1 ≤ i < j < k ≤ ts and (a, b, c) ∈ [`ij ] × [`jk] × [`ik] and again by

the definition of the index we know that

∣∣K3

(
Gijk

abc

)∣∣× ind(Hijk
abc, ∆̂

ijk
abc) =

∑
a′b′c′

∑
i′,j′,k′

∣∣H ∩ ∆̂ijk
abc(a

′, b′, c′, i′, j, k′)
∣∣2∣∣∆̂ijk

abc(a
′, b′, c′, i′, j′, k′)

∣∣−1
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and so

ind(H,Π(s+1))

≥ (1− o(1))t−3
s

∑
i,j,k

∑
a,b,c

∣∣K3

(
Kijk

)∣∣−1∣∣K3

(
Gijk

abc

)∣∣× ind(Hijk
abc, ∆̂

ijk
abc)

= (1− o(1))t−3
s

[ ∑
({i,j,k},a,b,c)∈Ibad

∣∣K3

(
Kijk

)∣∣−1∣∣K3

(
Gijk

abc

)∣∣
× ind(Hijk

abc, ∆̂
ijk
abc)

+
∑

({i,j,k},a,b,c) 6∈Ibad

∣∣K3

(
Kijk

)∣∣−1∣∣K3

(
Gijk

abc

)∣∣× ind(Hijk
abc, ∆̂

ijk
abc)
]

≥ (1− o(1))t−3
s

×
[ ∑

({i,j,k},a,b,c)∈Ibad

∣∣K3

(
Kijk

)∣∣−1∣∣K3

(
Gijk

abc

)∣∣((αijk
abc)

2 +
δ2

210

)
+

∑
({i,j,k},a,b,c) 6∈Ibad

∣∣K3

(
Kijk

)∣∣−1∣∣K3

(
Gijk

abc

)∣∣(αijk
abc)

2
]

= (1− o(1))t−3
s

[ δ2

210

∑
({i,j,k},a,b,c)∈Ibad

∣∣K3

(
Kijk

)∣∣−1∣∣K3

(
Gijk

abc

)∣∣
+
∑
i,j,k

∣∣K3

(
Kijk

)∣∣−1
∑
a,b,c

(αijk
abc)

2
∣∣K3

(
Gijk

abc

)∣∣].
Now, for each 1 ≤ i < j < k ≤ ts, we know

|K3(Kijk)|−1
∑
a,b,c

(αijk
abc)

2|K3(G
ijk
abc)| = ind(Hijk,∆(s)

ijk)

and subsequently

t−3
s

∑
i,j,k

ind(Hijk,∆(s)
ijk) = ind(H,Π(s)).

Note that each |K3(Kijk)|, 1 ≤ i < j < k ≤ ts, satisfies |K3(Kijk)| =

(1− o(1))(N/ts)3, where o(1) → 0 as N →∞. We therefore infer

ind(H,Π(s+1)) ≥ (1− o(1))
[γδ2

212
+ ind(H,Π(s))

]
≥ ind(H,Π(s)) +

γδ2

213
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as promised and this concludes Iteration s.

We now finish the proof of Theorem 4.3. Knowing that the index function

is bounded by 1 and that for s ≥ 1 we have

ind(H,Π(s)) + γδ2/213 ≤ ind(H,Π(s+1)) ≤ 1,

we can at most perform 213/(γδ2) iterations before we arrive at a partition Π

satisfying the conclusion of Theorem 4.3. Observe that Π can be constructed

in time O(N6).

Finally, it is clear that P0, the number of parts of Π, is independent of

N . Indeed, suppose the procedure above terminates in Π = Π(s+1) so that

P0 ≤ t2s+1`s+1. The preceding partition Π(s) had only t2s`s parts, where ts

and `s are constant in N . Recall `s+1 = `sQs, where

Qs = 2ts`2s271+d−12
s

, ds =
γ

10`s
.

Hence `s+1 = `sQs is independent of N . Recall ts+1 = tst, where t ≤
T0(ts, `s+1, εs+1), εs+1 = ε(γ/10`s+1), is a constant. Hence, ts+1 is indepen-

dent of N .

4.3 Proof of Algorithm 4.3

Here, we prove the correctness of Algorithm 4.3. We basically follow Gowers

[14] ideas but derandomize his probabilistic arguments. The proof of Algo-

rithm 4.3 consists of two algorithm which will be proven later. We just state

them at the appropriate point.

Proof of Algorithm 4.3. Let G be a graph with vertex classes X, Y

an Z and let the densities of the bipartite graphs be dXY , dY Z , and dXZ .
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Further, let H be a 3-partite, 3-uniform hypergraph with H ⊆ K3(G). Since

H is not δ-quasirandom relative to G we know by Definition 3.8∑
xx′yy′zz′

hxx′yy′zz′ ≥ δ(dXY dY ZdXZ)4(m3)2. (4.3)

For all triples (x, y, z) ∈ ∆(G) let us define the function

Hxyz : X × Y × Z → [−1, 1] by

Hxyz(x′, y′, z′) = hxx′yy′zz′/h(x′, y′, z′)

= h(x, y, z)h(x′, y, z)h(x, y′, z)h(x, y, z′)h(x′, y′, z)h(x, y′, z′)h(x′, y, z′).

Additionally, let

H : X × Y × Z → R be given by

H(x′, y′, z′) =
∑

(x,y,z)

Hxyz(x′, y′, z′).

We then have that

〈h, H〉 =
∑

(x′,y′,z′)

h(x′, y′, z′)H(x′, y′, z′)

=
∑

(x′,y′,z′)

∑
(x,y,z)

h(x′, y′, z′)Hxyz(x′, y′, z′)

=
∑

xx′yy′zz′

hxx′yy′zz′

≥ δ(dXY dY ZdXZ)4m6 (4.4)

where the last inequality is obtained by applying (4.3). Since for fixed

(x, y, z) ∈ K3(G) we have Hxyz(x′, y′, z′) ∈ [−1, 1] we can rewrite

Hxyz(x′, y′, z′) as follows

Hxyz(x′, y′, z′) = uxyz(x′, y′)vxyz(y′, z′)wxyz(x′, z′) where

uxyz(x′, y′) = h(x′, y′, z)h(x′, y, z)h(x, y′, z)h(x, y, z) ∈ [−1, 1]

vxyz(y′, z′) = h(x, y′, z′)h(x, y, z′) ∈ [−1, 1]

wxyz(x′, z′) = h(x′, y, z′) ∈ [−1, 1]. (4.5)
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Following Gowers [14], the first main step in the proof of Algorithm 4.3 will

be to replace the [−1, 1]-valued functions Hxyz = uxyzvxyzwxyz, (x, y, z) ∈
K3(G), by {−1, 0, 1}-valued functions Ĥxyz = ûxyz v̂xyzŵxyz, (x, y, z) ∈ K3(G).

We do that constructively in the algorithm below.

Algorithm 4.7

Input: (x, y, z) ∈ K3(G) and [−1, 1] valued functions uxyz(x′, y′), vxyz(y′, z′),

wxyz(x′, z′), (x, y, z) ∈ K3(G), as above.

Output: {−1, 0, 1}-valued functions ûxyz(x′, y′), v̂xyz(y′, z′), ŵxyz(x′, z′),

such that

Ĥxyz = ûxyz v̂xyzŵxyz and Ĥ =
∑

x,y,z∈K3(G)

Ĥxyz satisfy

I. 〈h, Ĥ〉 ≥ 〈h, H〉;

II. ||Ĥ||2 = 〈Ĥ, Ĥ〉 ≤ 16(dXY dY ZdXZ)4|K3(G)|3.

Complexity: O(m5).

We describe Algorithm 4.7 in Section 4.3.1. Next we want to make a small

selection of r functions R0 = {Ĥα1 , . . . , Ĥαr} from {Ĥxyz| (x, y, z) ∈ K3(G)}
that still preserves the good properties of Ĥ. Before we explain how to

choose them explicitly let us follow Gowers’ proof of Lemma 8.4 [see page

176, in [14]]. In particular, set

d = dXY dY ZdXZ and r = dd−4e

and for R ∈
(
K3(G)

r

)
, define

ĤR =
∑

(x,y,z)∈R

Ĥxyz.

We now want to seek a set R0 ∈
(
K3(G)

r

)
for which the following holds:

256rd2〈h, ĤR0〉 − δ||ĤR0 ||2 ≥ 64r2δd4|K3(G)|. (4.6)
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In fact, for Rrand ∈
(
K3(G)

r

)
uniformly chosen at random, we have:

E(〈h, ĤRrand
〉) =

r

|K3(G)|
〈h, Ĥ〉 and

E(||ĤRrand
||) =

r2

|K3(G)|2
||Ĥ||2.

Using Property I of Algorithm 4.7 and inequality (4.4) we get

E(〈h, ĤRrand
〉) =

r

|K3(G)|
〈h, Ĥ〉

≥ r

|K3(G)|
〈h, H〉

≥ 1
|K3(G)|

rδd4m6

≥ 1
2
rδd3m3

≥ 1
3
rδd2|K3(G)|,

where the two last inequalities are obtained by applying Theorem 2.8, i.e. by

using |K3(G)| ≤ (1.5)dm3. Property II of Algorithm 4.7 then ensures that

E(||ĤRrand
||) = (1± o(1))

r2

|K3(G)|2
||Ĥ||2

≤ (16 + o(1))r2d4|K3(G)|

≤ 17r2d4|K3(G)|.

Therefore, we summarize that

256rd2E(〈h, ĤRrand
〉)− δE(||ĤRrand

||2) ≥ 68r2δd4|K3(G)|

≥ 64r2δd4|K3(G)|. (4.7)

We therefore have proven the existence of the set R0. Observe that the set

R0 can certainly be determined in time
(|K3(G)|

r

)
by regarding all possible

choices. We will derandomize Gowers’ probabilistic techniques so that we

are able to find these r functions more efficiently, i.e. in O(m3) time. Let us

formulate this in the next algorithm.
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Algorithm 4.8

Input: Ĥxyz, (x, y, z) ∈ K3(G), as above.

Output: R0 ∈
(
K3(G)

r

)
for which 256rd2〈h, ĤR0〉−δ||ĤR0 ||2 ≥ 64r2δd4|K3(G)|.

Complexity: O(m3).

Again, we defer the proof of Algorithm 4.8 to Section 4.3.2 in favor of finish-

ing the proof of Algorithm 4.3. Since δ||ĤR0 ||2 ≥ 0 and 64δd4r2|K3(G)| ≥ 0

the inequality in Algorithm 4.8 implies that

〈h, ĤR0〉 ≥
1
4
δd2r|K3(G)| and (4.8)

256d2r〈h, ĤR0〉δ−1 ≥ ||ĤR0 ||2 (4.9)

respectively. Therefore, ĤR0 also satisfies

〈h, ĤR0〉2

||ĤR0 ||2
≥ 〈h, ĤR0〉

256d2rδ−1
(by (4.9))

≥ δd2r|K3(G)|
210d2rδ−1

(by (4.8))

=
δ2|K3(G)|

210
. (4.10)

To end the proof we want to apply Lemma 4.5. In order to apply this

lemma we first need to specify ULemma 4.5, fLemma 4.5, and gLemma 4.5. Let

ULemma 4.5 = K3(G) and fLemma 4.5 = h. Partition the bipartite graphs

GXY , GY Z , and GXZ into at most 3r subgraphs GXY
i , GY Z

j , and GXZ
k such

that û, v̂, and ŵ are constant on each GXY
i , GY Z

j , and GXZ
k respectively.

Let us define the ∆Lemma 4.5
i . For every (x, y, z) ∈ K3(G) define its triad

to be the triple (i, j, k) such that xy ∈ GXY
i , yz ∈ GY Z

j , and xz ∈ GXZ
k .

Partition K3(G) into triples according to their triads. Observe that the

function Ĥ is constant on each partition class. This partition consists of

at most pXY pY ZpXZ ≤ 33r = 27r cells ∆i, where the choice of r implies

that r ≤ 1 + d−12
0 , for d0 ≤ min{dXY , dY Z , dXZ}. Each cell is of the form
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K3(GXY
i ∪GY Z

j ∪GXZ
k ) and

ĤR0(x
′, y′, z′) =

∑
(x,y,z)∈R0

Ĥxyz(x′, y′, z′)

=
∑

(x,y,z)∈R0

ûxyz(x′, y′)v̂xyz(y′, z′)ŵxyz(x′, z′)

is constant on each class of ∆. By the conclusion of Lemma 4.5 we know that

ind(f, (∆i)3
3r

i=1) ≥ (〈h, ĤR0〉/
√
|K3(G)|||ĤR0 ||)2. Applying inequality (4.10)

we get that ind(f, (∆i)3
3r

i=1) ≥ 2−10δ2 which implies by Lemma 4.6 that

ind(H, (∆i)3
3r

i=1) ≥ α2 + 2−10δ2.

4.3.1 Proof of Algorithm 4.7

Again, the proof of Algorithm 4.7 was already established by Gowers. Below

we derandomize his argument and describe a deterministic algorithm.

Proof of Algorithm 4.7. We first define the promised functions ûxyz, v̂xyz,

ŵxyz, (x, y, z) ∈ K3(G), and then prove that the functions fulfill the desired

properties. For what follows, fix (x, y, z) ∈ ∆(G). By the definition of uxyz,

vxyz, and wxyz we have

〈h, H〉 =
∑

(xx′yy′zz′)

h(x′, y′, z′)uxyz(x′, y′)vxyz(y′, z′)wxyz(x′, z′)

=
∑

(xx′yy′z)

uxyz(x′, y′)
∑
z′

h(x′, y′, z′)vxyz(y′, z′)wxyz(x′, z′). (4.11)

For a fixed (x, x′, y, y′, z) consider the term

uxyz(x′, y′)
∑
z′

h(x′, y′, z′)vxyz(y′, z′)wxyz(x′, z′)
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and define ûxyz : X × Y → {−1, 0, 1} as follows

ûxyz(x′, y′) =



1 if
∑

z′ h(x′, y′, z′)vxyz(y′, z′)wxyz(x′, z′) ≥ 0 and

uxyz(x′, y′) 6= 0

0 if uxyz(x′, y′) = 0

−1 if
∑

z′ h(x′, y′, z′)vxyz(y′, z′)wxyz(x′, z′) < 0 and

uxyz(x′, y′) 6= 0.

Obviously, by the definition of ûxyz(x′, y′) we have

ûxyz(x′, y′)
∑
z′

h(x′, y′, z′)vxyz(y′, z′)wxyz(x′, z′)

≥ uxyz(x′, y′)
∑
z′

h(x′, y′, z′)vxyz(y′, z′)wxyz(x′, z′). (4.12)

Observe that ûxyz(x′, y′) does not depend on the values of ux1y1z1(x
′
1, y

′
1)

for (x, y, z, x′, y′) 6= (x1, y1, z1, x
′
1, y

′
1). This allows to successively repeat

the above procedure for all five tuples (x, y, z, x′, y′) replacing uxyz(x′, y′)

by a corresponding ûxyz(x′, y′) so that (4.12) holds. After this process is

completed the functions uxyz(x′, y′) : X × Y → [−1, 1] are replaced by

ûxyz(x′, y′) : X × Y → {−1, 0, 1} for all xyz ∈ K3(G). Also having re-

placed uxyz by ûxyz in the definition of Hxyz(x′, y′, z′) (of (4.5)) for each

xyz ∈ K3(G) we obtain Hnew
xyz (x′, y′, z′) which in view of (4.11) and (4.12)

satisfies

〈h, Hnew〉 ≥ 〈h, H〉.

Next, we repeat the process over all five tuples (x, y, z, y′, z′) with initial

values of the functions û, v, and w replacing v attaining values in [−1, 1]

by v̂ with values in {−1, 0, 1}. Finally, starting with the functions û, v̂,

and w we repeat the process now over all five tuples (x, y, z, x′, z′) to obtain

û, v̂, and ŵ. Setting Ĥxyz(x′, y′, z′) = ûxyz(x′, y′)v̂xyz(y′, z′)ŵxyz(x′, z′) we

observe that 〈h, Ĥ〉 ≥ 〈h, H〉 holds (part(i) of Claim 1).
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On the other hand, by the definition of ûxyz(x′, y′), v̂xyz(y′, z′), and

ŵxyz(x′, z′) we know that

Ĥxyz(x′, y′, z′) = ûxyz(x′, y′)v̂xyz(y′, z′)ŵxyz(x′, z′)

is only nonzero if (x, x′, y, y′, z, z′) are vertices of an octahedron in the graph

G. Let Gxx′yy′zz′ = 1 if (x, x′, y, y′, z, z′) are the vertices of an octahedron in

G and 0 otherwise. Then we are able to find an upper bound on ||Ĥ||2.

||Ĥ||2 =
∑

(x′,y′,z′)

 ∑
(x,y,z)

Ĥxyz(x′, y′, z′)

2

≤
∑

(x′,y′,z′)

 ∑
(x,y,z)

Gxx′yy′zz′

2

=
∑

(x′,y′,z′)

∑
(x1y1z1x2y2z2)

Gx1x′y1y′z1z′Gx2x′y2y′z2z′

But the last sum just counts the number of copies of a certain graph G(9, 21)

with 9 vertices and 21 edges in G (see picture below).

ZY

Z_2

Z_1X_1

X_2 Y_2

X’ Z’

Y_1

Y’

X

Figure 4.1: Graph G(9,21)
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Since all conditions for the application of the graph counting lemma are

satisfied, we know that we can find at most

[
(dXY dY ZdXZ)7 + 221ε1/4

]
m9

(221ε1/4≤d7)

≤ (2d7)m9

copies of G(9, 21) in G. Combining the two inequalities above and the fact

that dm3/2 ≤ |K3(G)| ≤ 2dm3 we get that

||Ĥ||2 ≤ 2d7(m3)3 ≤ 2d48|K3(G)|3 = 16d4|K3(G)|3

which implies Property II of Algorithm 4.7.

4.3.2 Proof of Algorithm 4.8

In this section we show the correctness of Algorithm 4.8 completing the proof

of Algorithm 4.3.

Proof of Algorithm 4.8. For simplicity, we shall write T = |K3(G)|
for the number of triangles in G> Recall that we want to choose an r-tuple

R0 ∈
(
K3(G)

r

)
= [T ]r (r = dd−4e) such that

256rd2〈h, ĤR0〉 − δ||ĤR0 ||2 ≥ 64r2δd4T.

We shall choose the elements of R0 one-by-one. Suppose that all the T

functions Ĥxyz are labelled Ĥ1, Ĥ2, . . . , ĤT . The only terms that are effected

by a random choice in inequality 4.6 are 〈h, ĤR〉 and ||ĤRrand
||2. We therefore

introduce functions µk and σk that can be related to E(〈h, ĤRrand
〉) and

E(||ĤRrand
||2) respectively. Let

µ0 = E(〈h, ĤRrand
〉) =

1(
T
r

) ∑
R∈[T ]r

〈h,
∑
i∈R

Ĥi〉 =
r

T

T∑
i=1

〈h, Ĥi〉.
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Now, for all 1 ≤ k ≤ T we define

µk = 〈h, Ĥk〉+
r − 1
T − 1

T∑
i=1
i6=k

〈h, Ĥi〉.

Additionally, we know that

T∑
k=1

µk =
T∑

k=1

〈h, Ĥk〉+
r − 1
T − 1

(T − 1)
T∑

i=1

〈h, Ĥi〉

= r

T∑
i=1

〈h, Ĥi〉 = Tµ0. (4.13)

Next we introduce an expression corresponding to E(||ĤRrand
||2).

σ0 = E(||ĤRrand
||2) =

1(
T
r

) ∑
R∈[T ]r

〈
∑
i∈R

Ĥi,
∑
i∈R

Ĥi〉

=
r

T

T∑
i=1

||Ĥi||2 +
r(r − 1)
T (T − 1)

∑
i6=j

〈Ĥi, Ĥj〉.

For all 1 ≤ k ≤ T let

σk = ||Ĥk||2 + 2〈Ĥk,
r − 1
T − 1

∑
i6=k

Ĥi〉+
r − 1
T − 1

∑
i6=k

||Ĥi||2

+
(r − 1)(r − 2)
(T − 1)(T − 2)

∑
i6=j

i,j 6=k

〈Ĥi, Ĥj〉.
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As before, we determine
T∑

k=1

σk =
T∑

k=1

||Ĥk||2 + 2
T∑

k=1

〈Ĥk,
r − 1
T − 1

∑
i6=k

Ĥi〉+
r − 1
T − 1

(T − 1)
T∑

i=1

||Ĥi||2

+
(r − 1)(r − 2)
(T − 1)(T − 2)

(T − 2)
∑
i6=j

〈Ĥi, Ĥj〉

= r
T∑

i=1

||Ĥi||2 + 2
r − 1
T − 1

∑
k 6=i

〈Ĥk, Ĥi〉+
(r − 1)(r − 2)

T − 1

∑
i6=j

〈Ĥi, Ĥj〉

= r

T∑
i=1

||Ĥi||2 +
r(r − 1)
T − 1

∑
i6=j

〈Ĥi, Ĥj〉

= Tσ0. (4.14)

Using the conclusions of (4.13) and (4.14) we have

E(256d2r〈h, ĤRrand
〉 − δ||ĤRrand

||2) = 256d2rµ0 − δσ0

= 256d2r
1
T

T∑
k=1

µk − δ
1
T

T∑
k=1

σk. (4.15)

This implies by (4.7) and (4.15) that there must exist an α1 ∈ [T ] such that

256d2rµα1 − δσα1 ≥ 64δd4r2T.

After this step we already decided on one element of R0. Note that the first

element can be found in time O(|T |) = O(m3). We will now describe how

to choose the remaining ones by using an inductive argument. Assume that

we already chose the s − 1 functions Eα1 , . . . , Eαs−1 in time O(m3). For

simplicity we suppose that α1 = 1, . . . , αs−1 = s− 1. Furthermore from now

on, let W = [T ]− [s− 1] = {s, . . . , T}. Then we are able to define

µ[s−1] = 〈h,
∑

i∈[s−1]

Ĥi〉+
1(

T−s+1
r−s+1

) ∑
R∈[W ]r−s+1

〈h,
∑
i∈R

Ĥi〉

σ[s−1] = ||
∑

i∈[s−1]

Ĥi||2 + 2〈
∑

i∈[s−1]

Ĥi,
1(

T−s+1
r−s+1

) ∑
R∈[W ]r−s+1

∑
i∈R

Ĥi〉

+
1(

T−s+1
r−s+1

) ∑
R∈[W ]r−s+1

〈
∑
i∈R

Ĥi,
∑
i∈R

Ĥi〉.
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Simple calculations yield

µ[s−1] = 〈h,
∑

i∈[s−1]

Ĥi〉+
r − s + 1
T − s + 1

∑
i∈W

〈h, Ĥi〉

σ[s−1] = ||
∑

i∈[s−1]

Ĥi||2 + 2〈
∑

i∈[s−1]

Ĥi,
r − s + 1
T − s + 1

∑
i∈W

Ĥi〉

+
r − s + 1
T − s + 1

∑
i∈W

||Ĥi||2 +
(r − s + 1)(r − s)
(T − s + 1)(T − s)

∑
i,j∈W
i6=j

〈Ĥi, Ĥj〉.

Furthermore, we assume that the s− 1 chosen functions satisfy

256d2rµ[s−1] − δσ[s−1] ≥ 256d2rµ[s−2] − δσ[s−2] ≥ · · · ≥ 64δd4r2T. (4.16)

Observe that for t = 2 inequality (4.16) results in 256d2µ1−δσ1 ≥ 256d2rµ0−
δσ0 which we just proved. We will know explain how to choose the

s-th (2 < s ≤ r) function and prove that for s ≤ αs ≤ T

256d2rµ[s−1]∪{αs} − δσ[s−1]∪{αs} ≥ 256d2rµ[s−1] − δσ[s−1]

is satisfied. For s ≤ k ≤ T we set

µ[s−1]∪{k} = 〈h, Ĥk +
∑

i∈[s−1]

Ĥi〉+
r − s

T − s

∑
i∈W
i6=k

〈h, Ĥi〉 and

σ[s−1]∪{k} =
∑

i∈[s−1]

||Ĥi||2 + ||Ĥk||2 + 2〈Ĥk +
∑

i∈[s−1]

Ĥi,
r − s

T − s

∑
j∈W
j 6=k

Ĥj〉

+ 2〈
∑

i∈[s−1]

Ĥi, Ĥk〉+ 2
∑

i,j∈[s−1]
i<j

〈Ĥi, Ĥj〉+
r − s

T − s

∑
i∈W
i6=k

||Ĥi||2

+
(r − s)(r − s− 1)
(T − s)(T − s− 1)

∑
i,j∈W
i,j 6=k

〈Ĥi, Ĥj〉.
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Observe that∑
k∈W

µ[s−1]∪{k} = (T − s + 1)〈h,
∑

i∈[s−1]

Ĥi〉+
∑
k∈W

〈h, Ĥk〉

+
r − s

T − s
(T − s)

∑
i∈W

〈h, Ĥi〉

= (T − s + 1)〈h,
∑

i∈[s−1]

Ĥi〉+ (r − s + 1)
∑
i∈W

〈h, Ĥi〉

= (T − s + 1)µ[s−1]. (4.17)

A similar equality holds for σ[s−1]∪{k}. Indeed,∑
k∈W

σ[s−1]∪{k} = (T − s + 1)
∑

i∈[s−1]

||Ĥi||2 +
∑
k∈W

||Ĥk||2

+ 2
r − s

T − s
(T − s)〈

∑
i∈[s−1]

Ĥi,
∑
j∈W

Ĥj〉

+ 2
r − s

T − s

∑
k,j∈W
k 6=j

〈Ĥk, Ĥj〉+ 2〈
∑

i∈[s−1]

Ĥi,
∑
k∈W

Ĥk〉

+ 2(T − s + 1)
∑

i,j∈[s−1]
i<j

〈Ĥi, Ĥj〉

+
r − s

T − s
(T − s)

∑
i∈W

||Ĥi||2

+
(r − s)(r − s− 1)
(T − s)(T − s− 1)

(T − s− 1)
∑

i,j∈W
i6=j

〈Ĥi, Ĥj〉

= (T − s + 1)
∑

i∈[s−1]

||Ĥi||2 + (r − s + 1)
∑
i∈W

||Ĥi||2

+ 2(r − s + 1)〈
∑

i∈[s−1]

Ĥi,
∑
j∈W

Ĥj〉

+ 2(T − s + 1)
∑

i,j∈[s−1]
i<j

〈Ĥi, Ĥj〉
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+
(r − s + 1)(r − s)

T − s

∑
i,j∈W
i6=j

〈Ĥi, Ĥj〉

= (T − s + 1)σI . (4.18)

Combining the results of the above equalities (4.17) and (4.18) we get

256d2r
1

T − s + 1

∑
k∈W

µ[s−1]∪{k} − δ
1

T − s + 1

∑
k∈W

σ[s−1]∪{k}

= 256d2rµ[s−1] − δσ[s−1]

(4.16)
≥ 64δd4r2T.

Therefore, there must exist αs ∈ {s, . . . , T} such that

256d2rµ[s−1]∪{αs} − δσ[s−1]∪{αs} ≥ 64δd4r2T.

After r-steps we end up with ĤR0 , the sum of the previous r chosen functions

Ĥα1 , . . . , Ĥαr . Furthermore, we know that ĤRrand
satisfies the inequality in

Algorithm 4.8.
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