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Abstract

Statistical Methods for Multi-modal Neuroimaging Data: Techniques for

the Combined Analysis of Brain Function and Structure

By Wenqiong Xue

Recent innovations in neuroimaging technology have provided opportunities for
researchers to investigate human brain function and structure, improving our un-
derstanding of psychiatric disorders, clinical diagnosis, and neural networks. Brain
imaging data have massive dimensionality and are marked by complex spatial and
temporal correlations, which pose challenges for statistical modeling. Our objective
is to develop novel statistical methods for high-dimensional neuroimaging data to ex-
plore the underlying complex neural processing in the human brain. Specifically, we
propose three new statistical frameworks: (i) to determine the functional coherence
and the associated hierarchical relationships between brain regions using combined
functional and structural data; (ii) to robustly characterize co-activation patterns
and functional networks using a novel meta-analytic approach; and (iii) to predict
the disease status using imaging data from different modalities.

Rapid development in neuroimaging allows researchers to study the connectivity in
the human brain by examining the anatomical circuitry as well as functional relation-
ships between brain regions. We present a unified Bayesian framework for analyzing
functional connectivity utilizing the knowledge of associated structural connections,
which extends an approach by Patel et al. (2006a) that considers only functional
data.We demonstrate the use of our Bayesian model using fMRI and DTI data from
a study of auditory processing.

Meta analysis plays an important role in neuroimaging research. Several ap-
proaches have been developed to determine the consistency in activated brain regions
for imaging studies. We focus on identifying the functional co-activation patterns and
building a non-directed functional network in the human brain. We adopt a penal-
ized likelihood approach to impose sparsity on the covariance matrix for region-level
peak activations, which is used to construct a brain network. We apply our proposed
method to a meta analysis of 162 functional neuroimaging studies on emotions.

Relating disease status to imaging data increases the clinical significance of neu-
roimaging studies. We propose a Bayesian hierarchical model to predict the disease
status using both the functional and structural imaging scans. We consider a two-
level brain parcellation, and take into account the correlations between voxels from
different levels. We conduct both whole-brain and voxel-level prediction, and apply
our model to a study of Parkinson’s disease.
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Chapter 1

Introduction

1.1 Overview

Recent innovations in neuroimaging technology have provided opportunities for re-

searchers to investigate the anatomy as well as the function of the human brain,

thus improving the understanding of brain activities which are related to psychiatric

disorders, neurologic disorders, clinical diagnosis, and neural networks. The devel-

opments in the imaging technology include functional magnetic resonance imaging

(fMRI), Positron Emission Tomograpy (PET), and diffusion tensor imaging (DTI).

fMRI and PET reveal the functional information between brain regions, while DTI

demonstrates the anatomical information. One common property of the brain imag-

ing data is high-dimensionality and complex spatial as well as temporal correlation

structure, which is challenging for statistical modeling. Our main objective is to de-

velop novel statistical method for high-dimensional neuroimaging data to explore the

complex neural processing characteristics.

The dissertation is organized as follows: the remainder of Chapter 1 provides

a brief introduction to the organization of the human brain, a description of the

neuroimaging modality we consider, and the current methods of data preprocessing



2

and statistical analysis, followed by the motivating examples and our proposed re-

search objectives. Chapter 2 presents a Bayesian model for determining functional

connectivity incorporating structural connectivity in the human brain. Chapter 3

describes a penalized multivariate Poisson model to identify the functional network

with application to a meta analysis of emotions. Chapter 4 presents a novel Bayeisian

spatial prediction model using imaging data from different modalities, and Chapter

5 summarizes our work and discusses some possible future work.

1.2 An Introduction to the Human Brain

Thoughts, feelings, perceptions, and acts - from the simplest movements to the most

complex ideas - these are the products of the three-pound organ inside our head.

The functional operating unit of the nervous system is neurons. Each neuron receives

inputs from many other nerve cells, integrates those inputs, and then distributes the

processed information to other neurons. This is the vital job that the brain must

accomplish: the integration and analysis of information.

The dominating parts of the brain are the large cerebral hemispheres, which are

the right and left halves of the forebrain. Within the cerebral hemispheres are the

basal ganglia and the limbic system. The basal ganglia are very important in motor

control, and the limbic system is involved in emotion and learning. Each of the

hemispheres has an outer layer of grey matter, which is dominated by nerve cell

bodies and dendrites, called the cerebral cortex that is supported by an inner layer

of white matter consisting mostly of fiber tracts. In general, the cortex may be

regarded as the seat of complex cognition; damage to the cortex may impair “higher”

functions such as speech, memory, or visual processing. In contrast, “lower” parts

of the brain regulate respiration, heart rate, and other basic functions. The cerebral

convolutions are the result of elaborate folding together of tissue. The resulting
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ridges of tissue are called gyri, and are separated from each other by furrow called

sulci. Such folding enormously increases the cerebral surface area; about two-thirds

of the cerebral surface is hidden in the depths of these folds.

The major sectors of the cerebral hemispheres are the frontal, parietal, temporal,

and occipital lobes. The four lobes of the brain normally collaborate with one an-

other to serve myriad different processes. In a general sense, however, we can identify

categories of processing that are particularly associated with specific lobes. For ex-

ample, the occipital lobes receive and process information from the eyes, giving rise to

many aspects of the sense of vision. Auditory information is directed to the temporal

lobes, and damage there can impair hearing (the temporal lobes are also particularly

associated with the sense of smell, and with aspects of learning and memory).

The two hemispheres and four lobes provide us a general map of human brain;

however, finer cerebral cortex parcellation is desired for in-depth study. One fine cere-

bral cortex parcellation is defined by Brodman areas (48 regions), which is based on

cytoarchitecture, or organization of cells. Another pacellation is Automated Anatom-

ical Labeling (AAL) regions (116 regions), which is constructed through the identi-

fication of major and minor sulci/gyri on a T1 MRI with subsequent labeling based

on anatomical location (Tzourio-Mazayer et al., 2002). It is typically used in func-

tional neuroimaging-based research to obtain neuroanatomical labels for the location

in 3-dimensional space where the measurements of some aspect of brain function are

captured. In other words, it projects the divisions in the brain atlas onto brain-shaped

volumes of functional data.

Due to the three-dimensional structure of the nervous system, two-dimensional

illustrations and diagrams cannot represent it completely. The brain is usually cut

in one of three main planes to obtain a two-dimensional section from this three-

dimensional object as illustrated in Figure 1.1. We call them axial, sagittal, and

coronal view of brain scans.
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Figure 1.1: Axial, sagittal, and coronal view of the human brain.
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When group studies using brain imaging data are performed, the individual brain

images are usually transformed into a common coordinate space to accommodate

the between subject variation of brain size and orientation. The Talariach space

and the Montreal Neurological Institute (MNI) space are the two most widely used

standard spaces in the neuroscience community. The Talariach coordinate system is

based on a stereotaxic atlas of the human brain published by Talairach and Tournoux

(Talairach and Tournoux, 1988). It is related to anatomical landmarks and specifies

locations relative to their distance from the midpoint of a brain structure called

anterior commissure (AC) - a small but easy spot region. Each location is described

by three numbers which describe the distance in millimeters from the AC: x is the

left/right dimension, y is the posterior/anterior dimension, and z is the ventral/dorsal

dimension. In this atlas the axial slices are referred to by their z coordinate, coronal

by their y coordinate, and sagittal by their x coordinate. The atlas is based on

a single brain of a 60-year-old French woman with mental disorder, whose brain is

considerably smaller than the average brain by up to 10 millimeters in each dimension.

The MNI defined a new standard brain by using a large series of MRI scans on normal

controls (Evans et al., 1993). These atlases differ in shape and size, and are available

in neuroimaging processing software.

1.3 Functional Neuroimaging

Functional neuroimaging of the brain improves our understanding of brain networks

by determining brain activity and connectivity at distinct regions of the brain. There

are many types of functional imaging scans, including Positron Emission Tomog-

raphy (PET), functional Magnetic Resonance Imaging (fMRI), electroencephalogra-

phy (EEG) and magnetoencephalography (MEG). PET and fMRI measure localized

changes in cerebral blood flow that accompany neuronal activity with relatively high
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spatial resolution, but with temporal resolution limited by the much slower rate of

brain blood flow and blood oxygenation. In contrast, EEG and MEG map the under-

lying electrical activity of the brain, which allow high temporal resolution of neural

processes, but have poor spatial resolution.

In my dissertation, we focus on developing statistical models for analyzing fMRI

data. In the following sections, we give a brief introduction of this functional neu-

roimaging technique.

1.3.1 Functional Magnetic Resonance Imaging (fMRI)

Due to its low radiation exposure, low invasiveness, and relatively wide availability

compared to PET or other functional neuroimaging techniques, fMRI has become

widely used in the brain imaging studies. Before we discuss the principles of fMRI,

we present how the MRI scans are acquired since fMRI is a type of specialized MRI

scan used to measure the hemodynamic response related to neural activity in the

brain.

MRI is an imaging technique based on the principles of nuclear magnetic resonance

(NMR) to image nuclei of atoms inside the body. It uses magnetism, radio waves,

and a computer to produce images of the body.

To obtain an MR image, a subject is first placed in a field of a large electromagnet

from 1.5 to 4.0 Tesla. One Tesla is equal to 10,000 Gause; while the magnetic field

of the earth is approximately 0.5 Gause. Therefore, 1 Tesla means that the magnetic

field is 20,000 times as strong as that of earth. When the hydrogen proton in the

human brain is placed in a large external magnetic field (B0), it will align in either

a parallel or anti-parallel with the direction of the magnetic field due to its spin

characteristics. A low-energy state refers to the state that the protons are in the

parallel orientation, while a high-energy state refers to the state that the protons

align in the anti-parallel orientation. The strength of B0 is positively related to the
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number of spins align in the low-energy state. If the number of spins in the low-energy

state exceeds the number of spins in the high-energy state, a net magnetization is

formed and the tissue placed in the magnetic field becomes magnetized. When a

pulse of radio frequency (RF) energy, which is oriented perpendicular to the main

field, is injected from the scanner, some of the spins are raised out from their lower

energy state to higher energy state due to the absorption of the energy from the

RF. The angle that produced by RF rotation from the net magnetization toward the

transverse plane is called flip angle (FA). If the RF excitation is discontinued, some

of the protons that have been moved from the low-energy state to the high-energy

state release their energy and fall back to the low-energy state, and hence producing

MR signal. We are interested in three types of relaxation time which characterize

the rates to distinguish among distinct tissue types. T1 relaxation time defines the

rate at which longitudinal magnetization reappears. At the same time, T2 and T2*

relaxation times measure the rate of decay of the transverse magnetization vector.

The T1 relaxation time is the time for the magnetization to return to 63% of its

original strength. Two T1 times gives 86%, and three T1 times recovers 95% of the

magnetization. Complete relaxation is happened after 3-5 T1 times. The length of

T1 times is associated with the strength of the main magnetic field. T2 relaxation

refers to the state that the spins in the high and low energy state exchange energy

but do not loose energy, which results in the loss of the transverse magnetization.

After one T2 period, 63% of the strength of the transverse magnetization decays.

T2* dephasing, which is the loss of the signal due to one or more localizable sources,

occurs at a faster rate than T2. The reason is that T2* relaxation is caused by

magnetic field inhomogeneity that occurs in all magnets. The values of the different

types of relaxation times construct scans called T1-weighted, T2-weighted and T2*-

weighted images. fMRI is a T2* image.

Each of the 3D MRI scan is composed of 2D images. During the process of data
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acquisition, the raw MR signals are stored in a temporary image space, called k-space.

At the end of the scan, two successive one-dimensional Fourier transformations are

applied to the rows and the columns of each 2D scans stored in the k-space to produce

an MR image. Our analysis is performed on the transformed data. Each transformed

image contains complex values, which stands for an amplitude and phase. In the

fMRI analysis, the amplitude component of the complex number is considered. fMRI

measures the neural activity of the brain by the changes in the blood flow. An in-

crease in the blood flow is detected when the neuronal activity increases. At the

same time, the demand for oxygen, which is carried by the hemoglobin in red blood

cells, rises up in the regions of neural activity. Therefore, the human body will pro-

vide more hemoglobin than consumed energy to the active brain area, thus increasing

the concentration of hemoglobin and decreasing the concentration of deoxygenated

hemoglobin (dHb). Physiologically, the neurons require more glucose, which is the

primary source of energy, and more oxygen to bring them back to their normal state

when they are active. Different brain regions usually differ in the cerebral blood

flow (CBF) relative to the consumed glucose in response to neural activity. Due to

the paramagnetic properties of dHb, it has the effect of distorting the surrounding

magnetic field. As a consequence, the nuclei around lose magnetization at a faster

relaxation time T2*. Therefore, T2* signal is stronger in the area that the concen-

tration of oxygen is high, and weaker in the area that the concentration of oxygen

is low. fMRI uses the blood oxygen level dependent (BOLD) contrast as described

to show the differences of blood oxygenation at different levels of neural activity. To

characterize the time lag between the stimuli and the change of a BOLD signal, a

hemodynamic response function (HRF) is applied.

When designing an fMRI study, there are a few imaging parameters that need to

be considered for temporal and spatial resolution. Spatial resolution in fMRI scan is

determined by the size of voxels. A voxel is a three-dimensional cuboid, whose size
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ranges from 4 mm, 2 mm to 1 mm. The larger the size of the voxels is, the fewer

the number of voxels that an fMRI scan contains, and the less time it takes to scan,

thus increasing the temporal resolution. Repetition time (TR), the time between

successive excitation pluses, determines the temporal resolution. TR is typically

measured in seconds. Since successive excitations often do not have enough time for

a full recovery, it is important to know TR to insight the possible influence it may

have on the next excitation. Echo time (TE) is the time between excitation and the

application of RF pluses. This time interval is usually measured in milliseconds. Echo

time is determined by the T2* values for gray matter in the human brain.

1.3.2 Preprocessing

Preprocessing is required for fMRI for correcting non-task related variability in ex-

perimental data. The following steps are involved in the preprocessing: slice timing

correction, which corrects for differences in acquisition time within a TR due to

the fact that the 2D images that compose one 3D image are acquired at different

time points, it is better to be performed before motion correction if the scans are

acquired interleavely, and after motion correction if the scans are acquired sequen-

tially; motion correction, which removes the effects of head move during the fMRI

experiment and realigns all 3D scans to a common reference for each subject, usually

the first or second scan of all the 3D images, by rigid body transformation with six

degrees of freedom and minimization of some cost functions; spatial smoothing by

convolving the functional scans with Gaussian kernel, which increases signal to noise

ratio (SNR) with same shape/size as signal, reduces the number of comparisons, and

improves comparison across subjects, however, spatial smoothing may reduce spatial

resolution; temporal smoothing which filters low frequency and high frequency noises;

registration which registers each individual’s brain to a standard template brain us-

ing linear transformation with twelve degrees of freedom or nonlinear transformation,
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it allows generalization of results to large population and improves comparison with

other studies, however, it reduces spatial resolution; intensity normalization which

scales each subject’s 4D dataset by a single value to get the overall 4D mean to

be the same for all subjects. Preprocessing steps and the order in which they are

performed are important since they affect both the spatial and temporal correlation

structure of the data.

Commonly used preprocessing tools for functional brain images include Statisti-

cal Parametric Mapping (SPM), FMRIB Software Library (FSL), and Analysis of

Functional NeuroImages (AFNI).

1.3.3 Analysis of Functional Connectivity

1.3.3.1 Definition

Functional connectivity is defined as temporal correlation between spatially distinct

regions of the human brain. It allows us to characterize the neural processing of the

human brain during motor, behavioral, and cognitive tasks, or simply from sponta-

neous brain activities during resting-state. Functional neuroimaging data are used to

measure the functional properties of the brain. In my research, we use the time series

of BOLD signal for the analysis of functional connectivity.

1.3.3.2 Existing Approaches

Seed Voxel Approach

A region of interest (ROI) is preselected based on functional or anatomical knowledge

from previous studies or selected using an independent data set approach (Hampson et

al., 2002). A seed voxel approach is a method to evaluate the functional connectivity

between an ROI and other brain regions.

Calculating the temporal correlation between the seed ROI and the remaining

brain voxels is a traditional measure of functional connectivity used in the seed voxel
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approach. However, the correlations that we observe may arise from neurophysiologic

influences or non-neurophysiologic sources, such as those induced by the scanner and

from image preprocessing. Some nonparametric wavelet-based methods for evaluating

functional connectivity are proposed to account for the background spatial correlation

inherent in imaging data. Wavelet-based nonparametric techniques (Breakspear et

al., 2004; Patel et al., 2006a) are developed to determine whether the functional

connectivity observed is significantly greater than the background correlation through

spatiotemporal resampling of the data in the wavelet domain.

Clustering

Clustering analysis is a data-driven approach which uses the measures of distance

to determine dissimilarity between voxels (clusters). Typically, people choose to use

two easily computed and interpreted measures, Euclidean or Mahalonobis distances

to quantify the dissimilarities. The primary objective of neuroimaging clustering is

to identify collections of voxels (clusters) that exhibit similar brain activity patterns

and reveal distinct neural response patterns between clusters.

Currently, several clustering algorithms are used in the neuroimaging studies,

which generally fall into two categories: partitioning algorithm and hierarchical clus-

tering algorithm. Partitioning algorithm, such as K-means approach (Balslev et al.,

2002), fuzzy clustering (Baumgartner et al., 2000), are widely used in neuroimaging

studies, partly due to the computational efficiency; however, K-means approach re-

quires prior specification of the number of clusters and often no scientific basis exists

for setting it in applications. Hierarchical clustering methods (Bowman et al., 2004;

Filzmoser et al., 1999) begin with each voxel representing a separate cluster and pro-

ceeds with successive merges until all clusters unite. Specific hierarchical clustering

algorithms use different functions to measure the distances between clusters.

Independent Component Analysis (ICA)

Independent component analysis identifies statistically independent spatial compo-
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nents that are associated with time courses and hence offers a useful exploratory

technique to investigate functional connectivity. There are two major types of ICA

models: classic ICA model and probabilistic ICA model. The classic ICA procedure

decomposes the observed time series into a product of two matrices, one representing

the unknown realizations of spatial components, and the other containing the associ-

ated time courses. Probabilistic ICA (PICA) (Beckmann and Smith, 2004) includes

an additional term, a Gaussian noise term in the classic ICA decomposition, which

is a major distinction between probabilistic and classical ICA.

Making group level inferences from subject level analysis are often of interest in

the neuroimaging studies. Several methods have been proposed for performing ICA

on multisubject functional neuroimaging data. Beckman and Smith (2005) extend

their single-session PICA to a higher dimension by adding an additional subject di-

mension, called tensor PICA. This approach decomposes observed time series from

multiple subjects into a sum of products of spatial signals, and subject-specific com-

ponents associated with each spatiotemporal process. A second group level ICA

approach involves a temporal concatenation on each subject (Calhoun et al., 2001).

When the interest is in finding a common spatial pattern; however, the assumption

of consistency of the associated temporal response across subjects is violated, this

would be appropriate approach.

Bayesian Hierarchical Modeling

Patel et al. (2006) propose a model-based analyses to quantify functional connectiv-

ity via a Bayesian hierarchical model. For each fMRI scan, the model defines joint

activation between pairs of voxels based on the classification of activation or inac-

tivation. The total number of times across all the subjects and all the scans that

two voxels show elevated activities is defined as Z1, while Z4 is the number of times

that neither voxels are active. Z2 and Z3 quantify the number of times that one

voxel is active, and the other is not. A Bayesian model is formulated, in which they
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assume that Z1, · · · , Z4 follows a multinomial distribution with parameter θ1, · · · , θ4.

By imposing a prior distribution on θ1, · · · , θ4, a posterior distribution conditional on

the data can be derived. They also develop a measure of functional connectivity to

describe to what degree two voxels are connected to each other. This measurement

is based on the relative difference between the marginal probability of one voxel is

active and the probability this voxel is active conditional on elevated activity of the

other voxel. Given two voxels are functionally connected, a hierarchical relationship,

called ascendancy, which compares the marginal activation probabilities of two voxels

is developed. The first topic in my dissertation is an extension of this model.

1.3.3.3 Meta Analysis of Functional Neuroimaging

Recently, there has been a rapid increase in the functional neuroimaging studies using

fMRI and PET. Due to the relatively high false positive rates in imaging studies com-

pared to other studies that caused by small sample size or lack of multiple comparison

correction, it is important to evaluate the consistency of the findings from different

studies. Therefore, meta analysis of functional neuroimaging studies, which identify

the task-related functionally activated or connected brain regions, has become of great

interest.

Based on the reported locations of statistically significant regions of activation,

called foci, i.e., coordinates in a template space, a number of coordinate based meta

analysis methods have been proposed. Two commonly used meta analysis methods

that investigate consistent activation across studies are activation likelihood estimate

(ALE) (Turkeltaub et al., 2002) and Kernal density analysis (KDA) (Wager et al.,

2003). Both of these two methods create a statistical map based on the activation

areas of each study. They analyze the distributions of the number of peaks in an

area using kernel-based methods. KDA smoothes the distribution with a spherical

indicator kernel, while ALE uses a Gaussian kernel function.
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Functional networks can be used to describe the functional connectivity maps of

distinct spatial distribution of temporally correlated brain regions during tasks or

resting states. Kober et al. (2008) use multivariate analyses to identify functional

groups, in which consistent patterns of co-activation studies across studies are inves-

tigated. This approach applies a multilevel KDA (Wager et al., 2007) to the reported

peak activations and forms a hierarchical clustering according to their patterns of

co-activations. A structure learning of Bayesian network approach is proposed by

Neumann et al. (2010) to investigate the functional connections between brain re-

gions given the co-activation patterns across studies. Instead of functional or effec-

tive connectivity, probabilistic dependencies between brain regions are presented. In

addition, a directionality of multivariate relations between functional brain regions is

established.

1.4 Structural Neuroimaging

Structural neuroimaging studies describe the anatomy as well as the anatomical link-

ages between brain regions. The diffusion MRI technique allows for encoding the

diffusion effects of molecular, mainly water, which can reflect the structures of the

brain tissues in vivo. Diffusion tensor imaging (DTI) is widely used in the neuroimag-

ing studies to reveal the anatomical connections in white matters.

1.4.1 Diffusion Tensor Imaging (DTI)

Diffusion tensor imaging (DTI) is another MRI technique. It measures the restricted

diffusion of water in tissue to produce neural tracts between brain regions. The

characteristics of each voxel in DTI are described by the diffusion tensor matrix, which

estimates the diffusivity in six noncollinear directions. Therefore, the tensor matrix is

a 3×3 symmetric matrix with six degrees of freedom. We use the eigenvectors and the
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corresponding eigenvalues (λ1, λ2, λ3) of the tensor matrix to describe the diffusivity

and anisotropy of each voxel. Some commonly used method to summarize diffusivity

includes axial diffusivity (λ1), radial diffusivity ((λ2 + λ3)/2), trace (λ1 + λ2 + λ3),

and mean diffusivity ((λ1 + λ2 + λ3)/3). The anisotropy describes the relative degree

to which the three tensor eigenvalues differ from one another in a voxel. The most

commonly used measurement, fractional anisotropy (FA), is the square root of the

sum of squares of the diffusivity differences, divided by the sum of squares of the

diffusivities. The effect of diffusion on the MRI signal is characterized by the echo

attenuation, which is a function of the tensor matrix and the “b matrix”, whose

elements describe the gradient pulses, including timing, amplitude, shape, used in

the MRI sequence.

1.4.2 Preprocessing

Similar to fMRI data, preprocessing is also required for DTI data before performing

any statistical analyses. Here are the steps that are involved in the preprocessing:

eddy current correction, which corrects for distortions in diffusion MR images that

are generated by different gradient directions; motion correction, which removes the

effects of head move and realigns all 3D scans to a common reference for each subject,

usually the first or second scan of all the 3D images, by rigid body transformation

with six degrees of freedom and minimization of some cost functions. We implement

these preprocessing steps by FSL.

1.4.3 Analysis of Structural Connectivity

Diffusion tensor tractograhpy (DTT) is used to reconstruct the white matter bun-

dles between voxel pairs, thus describing the structural connections between them by

demonstrating the neural tracts. There are two commonly used tracking algorithms:

derterministic tractography and probabilistic tractography. Compared to determin-
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istic tractography, probabilistic tractography is more computationally expensive, but

it provides the probability that how probable two voxels are connected to each other.

In our research, we adopt the probabilistic Bayesian DT-based tracking developed

by Behrens et al. (2007). This algorithm estimates the probabilistic distribution of

the orientation for each voxel by Markov Chain Monte Carlo sampling through a

Bayesian framework, which determines the direction that each sample goes from a

seed voxel based on certain criterion. The probability that two voxels are connected

is calculated from the number of times that a streamline goes from a voxel to/through

the other by the number of samples generated.

1.5 Prediction

Functional and structural neuroimaging play important roles in understanding the

neurological basis for major psychiatric disorders or mental illness such as schizophre-

nia, depression, Alzheimer’s diseases, and Parkinson’s disease (PD). Several methods

have been proposed to make the prediction of follow-up imaging scans based on the

baseline scans (Guo et al., 2008; Derado et al., 2012). However, the classification or

prediction of the disease status based on the imaging data has not been fully inves-

tigated. Though the diagnostic criterion may have been established for the above

diseases, a prediction model can help to reveal the underlying neural basis of the

diseases, thus informing the development of future treatments.

To predict the follow-up brain activity based on the baseline functional neuroimag-

ing data, Guo et al. (2008) propose a Bayesian hierarchical model for functional

magnetic resonance imaging (fMRI) and positron emission tomography (PET) data.

Bowman et al. (2008) develop a model which considers inter-regional and intraregional

correlations for analyzing functional neuroimaging data. Derado et al. (2012) extends

the model by introducing both spatial correlations between voxels and temporal cor-
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relations between baseline and follow-up functional imaging scans. For structural

data, Stonnington et al. (2010) propose a relevance vector regression (RVR) model

to predict the clinical scores using MRI T1 scans.

The most commonly used approaches to predict a single outcome from high-

dimensional data are LASSO (Tibshirant, 1996) and elastic-net (Zou and Hastie,

2005), which perform regularization and variable selection for regression models. Sup-

port vector machine (SVM) classify the data by constructing an optimal separating

hyperplane in a high dimensional space in which the data are mapped to (Vapnik,

1995). As an alternative to SVM for prediction of high-dimensional data, Gaussian

process (GP) find the posterior function distribution which is closest to the train-

ing data based on Bayesian theory (Marquand et al., 2010). Ham and Kwak (2012)

propose a boosted-principal component analysis (PCA) algorithm for binary classifi-

cation problems, which combines the procedure of feature selection and classification.

However, these methods do not consider the existence of the spatial correlations in

imaging scans, and build the statistical model directly for the prediction purpose

rather than start from the imaging data.

1.6 Motivating Examples

1.6.1 An fMRI Study on Auditory Spatial-Cueing Task

We consider data from an fMRI study of 32 right-handed adults (15 males, 17 females)

who were scanned while performing an auditory spatial-cueing task. The auditory

stimuli consist of a series of paired tone pips. In each trial, the first auditory tone

(2,000 Hz) may occur in either the left or the right ear and serves as a spatial cue,

and the second tone (1,000 Hz) is a target tone and may also occur in either ear.

Valid trials are those in which both the cue and the target tones sound in the same

ear; otherwise, we call them invalid trials. The chance of either happening is 50%.
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Targets are equally likely to sound in the right or the left ear, and the order of trials

is randomized. A key-press device is positioned under the subject’s right hand to

record responses. Subjects are instructed to make a key press with their right middle

finger for targets arising in the right ear and right index finger for targets arising

in the left ear. There are a total of 84 valid and 84 invalid trials presented across

three imaging runs. Prior to the start of the experiment, subjects are informed that

the cues did not contain any useful information to predict the location of the target.

Subjects fixate on a white visual cross on a black background during the entire session.

Several objectives of the auditory spatial-cueing task have been addressed previously

by Mayer et al. (2009). Our objective here is to identify the functionally connected

brain regions associated with the neural processing stemming from an auditory task

(both spatially valid and invalid), which also involves motor and visual functions.

Note that our analysis assesses the combined contributions of valid and invalid trials

and makes no attempt to dissociate the effects of spatial priming.

1.6.2 A Meta Analysis of Emotions

We consider findings from 162 functional neuroimaging studies, including 57 positron

emission tomography (PET) and 105 functional magnetic resonance imaging (fMRI)

studies. Collectively, these studies yield 439 contrasts (e.g., happy vs. neutral) as in

Kober et al. (2008). These studies are published in English from 1990 to 2005. We

consider seven different emotions: sadness, happiness, anger, fear, disgust, surprise,

and affective. These studies all meet the following criteria: (1) All the subjects

included in the studies are healthy; (2) All the studies measure regional cerebral

blood flow (PET) or blood oxygenation (fMRI) across the entire brain instead of

regions of interest; (3) The activation coordinates are determined using the image

subtraction methodology; (4) Standard Talairach or Montreal Neurological Institute

(MNI) coordinates are provided to ensure the results are spatially normalized to
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standard coordinate systems, thus allowing for comparison of findings across different

studies. For our analysis, all data were converted into MNI space. For each study,

the activation locations for these contrasts are included when they meet the criteria

of significance defined each individual study. A total of 2478 activated coordinates

are reported for 439 contrasts.

1.6.3 Parkinson’s Disease Data

A total of 20 subjects, 11 of which are diagnosed as PD patients, and the rest are

healthy controls, are included in the study. The average age is 66 (± 11) years old,

and 12 of them are males. Resting-state fMRI scans, T1-weighted MRI scans, and

diffusion tensor imaging (DTI) scans are obtained.

We extract voxel-level information from these three types of imaging scans, in-

cluding fractional amplitude of low-frequency fluctuation (fALFF) from resting-state

fMRI scans, voxel base morphometry (VBM) from T1-weighted MRI scans, and frac-

tional anisotropy (FA) from DTI scans. fALFF reflects the amplitude of spontaneous

signal fluctuations of each brain region. VBM measures the localized intensity value

for each voxel after spatially normalizing all the images to a standard space, and

extracting white or grey matter from the normalized images (Ashburner and Friston,

1999). FA has a single value for each voxel which measures the difference in directions

along different axes of the random motion of water molecules in the brain.

The imaging preprocessing are performed by statistical parametric mapping (SPM)

(Wellcome Department of Cognivite Neurology, http://www.fil.ion.ucl.ac.uk/spm)

and FMRIB (Functional Magnetic Resonance Imaging of the Brain) Software Library

(FSL) (Smith et al. 2004).
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1.7 Proposed Research

1.7.1 Modeling Functional Connectivity with Incorporation

of Structural Connectivity

Recent innovations in neuroimaging technology have provided opportunities for re-

searchers to investigate connectivity in the human brain by examining the anatomical

circuitry as well as functional relationships between brain regions. Existing statistical

approaches for connectivity generally examine resting-state or task-related functional

connectivity (FC) between brain regions or separately examine structural linkages.

We present a unified Bayesian framework for analyzing FC utilizing the knowledge of

associated structural connections, which extends an approach by Patel et al. (2006a)

that considers only functional data. Our FC measure rests upon assessments of func-

tional coherence between regional brain activity identified from functional magnetic

resonance imaging (fMRI) data. Our structural connectivity (SC) information is

drawn from diffusion tensor imaging (DTI) data, which is used to quantify proba-

bilities of SC between brain regions. We formulate a prior distribution for FC that

depends upon the probability of SC between brain regions, with this dependence

adhering to structure-function links revealed by our fMRI and DTI data. We fur-

ther characterize the functional hierarchy of functionally connected brain regions by

defining an ascendancy measure that compares the marginal probabilities of elevated

activity between regions. Posterior estimation is performed using Markov Chain

Monte Carlo (MCMC) techniques. We demonstrate the use of our Bayesian model

using fMRI and DTI data from a study of auditory processing. We further illus-

trate the advantages of our method by comparisons to methods that only incorporate

functional information.
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1.7.2 A Graphical Model for Count Data: A Meta Analysis

of Functional Co-activation Patterns in Imaging Stud-

ies

Meta analysis plays an important role in neuroimaging research. Several approaches

have been developed to determine the consistency in activated brain regions for a

particular type of task, cognition, emotion or social process. Here, we focus on iden-

tifying the functional co-activation patterns and building a non-directed functional

network in the human brain. We adopt a penalized likelihood approach to impose

sparsity on the covariance matrix for region-level peak activations based on an ex-

tended multivariate Poisson model. The sparse covariance matrix is in turn used to

construct a brain network. We obtain the penalized maximum likelihood estimates

via the expectation-maximization (EM) algorithm and optimize an associated tuning

parameter by maximizing the predictive log-likelihood. We conduct permutation tests

on the brain co-activation pattern network. The proposed approach achieves small

bias and coverage rate that is close to 95% in terms of estimation. We also discuss

the choice of the penalty term and its impact on identifying the network from simu-

lation studies. We apply our proposed method to a meta analysis of 162 functional

neuroimaging studies on emotions. Our model identifies a functional network that

consists of regions from the basal ganglia, limbic system, and other emotion related

brain regions.

1.7.3 A Bayesian Spatial Model to Predict Disease Status

Using Imaging Data from Different Modalities

Relating disease status to imaging data increases the clinical significance of neu-

roimaging studies. We propose a Bayesian hierarchical model to predict the disease

status using both the functional and structural imaging scans. Our approach mod-
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els the imaging data and performs prediction using posterior predictive probabilities.

We consider a two-level brain parcellation, and take into account the correlations

between voxels from different levels. The posterior estimations are performed by

Markov Chain Monte Carlo (MCMC) via Gibbs sampling. We evaluate our method

by examining the prediction accuracy rates based on leave-one-out cross validation

and reduce the computational time by importance sampling strategy. We conduct

both whole-brain and voxel-level prediction, and identify the brain regions that are

highly associated with the disease status based on the voxel-level prediction results.

We apply our model to a study of Parkinson’s disease, and the whole-brain prediction

indicates 100% accuracy rate.
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Chapter 2

Modeling Functional Connectivity

in the Human Brain with

Incorporation of Structural

Connectivity

2.1 Introduction

Applications of functional and structural neuroimaging have provided novel insights

into brain connectivity. Friston et al. (1993) define functional connectivity (FC)

as the “temporal correlations between spatially remote neurophysiological events”,

which establishes an important goal of many neuroimaging statistical analyses. This

non-directional association may pertain to resting-state brain activity or to neural ac-

tivity stemming from cognitive, emotional, visual, and behavioral tasks. By contrast,

structural connectivity (SC) refers to the underlying white-matter structural links

between different brain regions. By enabling the transmission of electrical signals

that pass along axons (Hendelman, 2000), SC provides a mechanism for functional
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relationships in neural activity. Yet, FC and SC properties typically are evaluated

separately.

The most common approach to determine FC is based on Pearson (or partial) cor-

relation between the temporal activity profiles from pairs of spatially distinct brain

regions (Hampson et al., 2002; Marrelec et al., 2006). Related approaches use differ-

ent measures of association, e.g. mutual information (Cover and Thomas, 1991), or

consider transformations of the time series data, e.g. to examine associations in the

frequency domain (Fiecas et al., 2010) or in the wavelet domain (Patel et al., 2006).

Patel et al. (2006a) develop a Bayesian model that assesses the functional connectivity

based on the relative probabilities of elevated activity. In addition, partitioning algo-

rithms establish networks on the basis of distinct patterns of neural activities, with

each defined network containing brain regions exhibiting similar neural processing

traits. Independent component analysis (ICA) is a very popular partitioning method

(Calhoun et al., 2001; Guo and Pagnoni, 2008), and cluster analysis is another com-

monly used approach (Bowman et al., 2004).

There are alternative methods for determining connectivity from functional neu-

roimaging data such as structural equation modeling (SEM) (McIntosh and Gonzalaz-

Lima, 1994) and dynamic causal modeling (DCM) (Friston et al., 2003). However,

these methods seek a stronger relationship between brain regions than we consider,

specifically attempting to determine the influence of one brain region on another, also

known as effective connectivity. Quantifying these stronger directional associations

typically requires the advanced specification of a few potential networks to be hy-

pothesized and compared, and they are not able to search across the full range of

possible network topologies.

SC refers to the presence of white-matter fiber tracts (bundles of axons) directly

connecting different brain regions. Diffusion tensor imaging (DTI) is a magnetic

resonance imaging (MRI) technique for describing the orientation of axonal fiber
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bundles based on the diffusivity of water molecules, since water will tend to diffuse

more rapidly in the direction aligned with the white-matter fibers and more slowly

as it moves perpendicular to this structure. Thus, DTI images contain information

about white-matter structure that is important for fiber tracking (Kollias, 2009).

Probabilistic diffusion tensor tractography (DTT) is a technique that uses DTI data

to empirically reconstruct fiber tracts by quantifying the likelihood of white-matter

SC (Behrens et al., 2007).

A notable limitation of the aforementioned procedures for determining FC is that

they do not consider any information about the associated SC. There have been a few

recent attempts to examine both FC and SC. These studies generally either examine

the correspondence between SC and localized (voxel-level) analysis of functional MRI

(fMRI) data or assess SC and FC sequentially and use SC to guide region selection

for FC evaluation (or vice versa) (Rykhlevskaia et al., 2008). From such analyses,

Morgan et al. (2009) suggest that FC is supported by SC along the language path-

ways. Also, Greicius et al. (2009) and van den Heuval et al. (2009) indicate that

resting-state FC reflects SC to a large degree. Bowman et al. (2012) present a novel

framework that simultaneously considers fMRI and DTI data to determine functional

networks. However, their approach is descriptive and does not directly permit statis-

tical inferences. As the association between brain structure and function is revealed,

an important next step is to develop unified, model-based statistical frameworks that

incorporate both sources of information simultaneously, and permit direct statistical

inferences.

We present a novel multimodal approach to assess FC, which incorporates SC as

supplementary information. We extend the previously developed model by Patel et al.

(2006a) that determines FC by examining the concurrence of elevated activity in pairs

of brain locations. Our Bayesian model utilizes DTT information as a supplement

to fMRI to make inferences regarding task-related functional coherence and may
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be applied as a seed-based approach at the voxel level or to evaluate FC globally

between all pairs of defined regions of interest. We determine the hierarchy among

functionally connected pairs of brain regions based on the associated probabilities of

elevated activity for each node. We perform estimation using Markov Chain Monte

Carlo (MCMC) techniques. We apply our method to an auditory spatial-cueing task

data set and conduct simulation studies to evaluate the performance of our approach.

2.2 Data

2.2.1 Experimental Data

We consider data from an fMRI study of 32 right-handed adults (15 males, 17 females)

who were scanned while performing an auditory spatial-cueing task. The auditory

stimuli consist of a series of paired tone pips. In each trial, the first auditory tone

(2,000 Hz) may occur in either the left or the right ear and serves as a spatial cue,

and the second tone (1,000 Hz) is a target tone and may also occur in either ear.

Valid trials are those in which both the cue and the target tones sound in the same

ear; otherwise, we call them invalid trials. The chance of either happening is 50%.

Targets are equally likely to sound in the right or the left ear, and the order of trials

is randomized. A key-press device is positioned under the subject’s right hand to

record responses. Subjects are instructed to make a key press with their right middle

finger for targets arising in the right ear and right index finger for targets arising

in the left ear. There are a total of 84 valid and 84 invalid trials presented across

three imaging runs. Prior to the start of the experiment, subjects are informed that

the cues did not contain any useful information to predict the location of the target.

Subjects fixate on a white visual cross on a black background during the entire session.

Several objectives of the auditory spatial-cueing task have been addressed previously

by Mayer et al. (2009). Our objective here is to identify the functionally connected
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brain regions associated with the neural processing stemming from an auditory task

(both spatially valid and invalid), which also involves motor and visual functions.

Note that our analysis assesses the combined contributions of valid and invalid trials

and makes no attempt to dissociate the effects of spatial priming.

2.2.2 Image Acquisition and Data Preprocessing

A total of T ∗ = 483 fMRI scans were collected for each of the N = 32 subjects,

161 for each of three runs. Two DTI scans were acquired for each subject. We

performed several standard preprocessing steps to the functional images using FM-

RIB (Functional Magnetic Resonance Imaging of the Brain) Software Library (FSL)

(Smith et al., 2004). Specifically, we performed slice timing corrections that align all

of the slices from a single 3D image to the same point in time. We performed mo-

tion correction. Also, we applied spatial normalization, which realigns images to the

standard Montreal Neurological Institute (MNI) space to enable group-level analyses.

Pre-whitening was conducted to remove the temporal correlations between scans from

the same subject by iteratively estimating the autocorrelation matrix of the residuals

to achieve independence through the whole time series (Woolrich et al., 2001).

2.2.3 Determining Regional Activity

We consider region-to-region connectivity, rather than voxel-to-voxel. We begin with

90 brain regions defined by the automated anatomic labeling (AAL) system (Tzourio-

Mazoyer et al., 2002) excluding the cerebellum. Each region that we consider contains

more than 200 voxels. The neural activity throughout each AAL region is typically not

uniform. Therefore, we summarize neural activity profiles across defined subregions,

rather than across the entire AAL region. The subregion centers are selected as

the voxel within each AAL region that is most involved with the auditory task,

determined on the basis of a standardized statistic (mean/standard deviation), and
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a small sphere containing the roughly 150 closest voxels is grown around each of the

selected voxels. The subregion size of 150 voxels corresponds roughly to a sphere with

a 6mm radius surrounding the most active voxel, although we do not strictly require

a spherical shape, e.g., to address boundary constraints. To obtain a single fMRI

temporal profile representing each subregion for each subject, we perform a singular

value decomposition (SVD) in the time domain to a T ∗ × 150 matrix. We extract

the first right singular vector, yielding a single temporal profile reflecting the most

dominant temporal trend in that subregion. Since singular vectors are unique up to

multiplication by a unit phase factor, we compare the singular vector to the subregion

mean signal to ensure that the selected signal represents the region correctly, and we

apply a sign change to our extracted signal, if necessary.

2.2.4 Determining Structural Connectivity

We employ the widely used approach of Behrens et al. (2007), implemented in FSL,

to perform probabilistic DTT. We define subregions within the AAL system for DTT,

which are centered in white matter proximal to the fMRI-based subregions. Prob-

abilistic tractography successively initiates streams, which are intended to follow or

trace the paths of white matter tracts in the brain. The probabilistic tractography

implemented in FSL creates a distribution of possible fiber tract pathways, weighted

by their likelihood, and according to stopping rules for the streams. A given number of

streams (3000 in our analysis) are sent from the seed voxel, and each stream chooses a

path based on the principle diffusion direction of the underlying white matter at each

voxel and ceases according to a stopping rule. The probabilistic DTT for each pair of

regions initially yields voxel-level counts (out of 3000 trials) indicating the likelihood

of a fiber tract extending from the voxel in the seed region to (or through) the target

region. We use the 90th percentile of the voxel-level counts connecting voxels in the

seed region to voxels in the target region to reflect the strongest anatomical connectiv-
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Figure 2.1: Histogram of functional joint activation counts at a lower and higher
level of structural voxel-level counts for two subjects. Note that the functional joint
activation values tend to be larger between region pairs exhibiting high SC relative
to low SC.

ity between pairs of regions. The voxel-level counts connecting two regions are usually

asymmetric; yet for our purpose, we regard FC as a symmetric measure. Therefore,

we impose symmetry of SC between two regions by calculating the maximum of the

two directional counts for each region pair. To reduce the noise, we analyze both

DTI scans and average the resulting SC counts. We adjust the SC counts by the cor-

responding geometric distances between region centers by fitting a log-linear model

on voxel-level SC counts adjusted for the geometric distance between region centers.

The adjusted counts are easily converted into probabilities when dividing them by

the adjusted number of streams.

2.3 Methods

We introduce a statistic κ to capture the functional coherence between region pairs

and an associated ascendancy measure τ to quantify the hierarchy of identified co-

herent regions. A preliminary look at our data reveals that higher levels of SC counts
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tend to have associated larger values of functional coherence (see Figure 2.1). Specif-

ically, we examine the distribution of functional coherence at lower and higher levels

of voxel-level SC for each subject across 4005 region pairs based on 90 brain regions.

Figure 2.1 illustrates the results for selected subjects, but the results across all the

subjects reveal similar patterns. Therefore, we build our Bayesian model based on

the observation that increased SC is generally associated with higher functional co-

herence. SC is a static property, whereas FC is a transient characteristic that may

vary with the performance of different tasks. Therefore, we do not make the link

too strong in our model since high SC may exist without corresponding elevated FC

during the auditory task.

2.3.1 Joint Activation and Structural Connectivity

Define Agnt = I (Rgnt > c× σgn), where Rgnt = Ygnt − µ̂gn is the mean-adjusted level

of neural activity for region g, subject n, and scan t; c is a constant; and σ2
gn is

the variance of Ygnt, with n = 1, · · · , N and t = 1, · · · , T ∗. Thus, Agnt serves as

an indicator of elevated regional brain activity at time t. We choose c = 0.01 when

analyzing the auditory spatial-cueing task.

The joint activation between two regions a and b for subject n can be expressed

as:

Z∗1 =
T ∗∑
t=1

I(Aant = 1, Abnt = 1)

Z∗2 =
T ∗∑
t=1

I(Aant = 1, Abnt = 0)

Z∗3 =
T ∗∑
t=1

I(Aant = 0, Abnt = 1)

Z∗4 =
T ∗∑
t=1

I(Aant = 0, Abnt = 0).

(2.1)
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Z∗1n is interpreted as the number of times that both regions a and b experience an

elevated fMRI signal for subject n. The subscripts for subjects are then dropped to

simply the notations. We assume Z∗ = (Z∗1 , · · · , Z∗4)′ follows a multinomial distribu-

tion with parameters T ∗ and θ = (θ1, · · · , θ4)′, where

θ1 = P (Aant = 1, Abnt = 1)

θ2 = P (Aant = 1, Abnt = 0)

θ3 = P (Aant = 0, Abnt = 1)

θ4 = P (Aant = 0, Abnt = 0)

(2.2)

To facilitate interpretations across different analyses, we standardize Z∗i (i =

1, · · · , 4) by scaling it with a specified number of scans. We set the scaling unit

to T = 100 for our data, so our standardized measure, Zi, is the average number of

times that a and b are coherent per one hundred scans. Z also follows a multinomial

distribution with parameters T and θ.

For the anatomical data, we denote the DTT counts between regions a and b for

subject n by S∗ (omitting the subscripts for simplicity). Let M∗ be the number of

trials for probabilistic DTT fiber tracking from the voxels in the seed region. We

assume that S∗ follows a binomial distribution with parameters M∗ and π, where π is

the probability of SC between regions a and b for any subject. Using similar scaling

applied to Z∗i , we generate scaled counts S, which follow a binomial distribution with

parameters M and π, where here we choose M = 1000.

2.3.2 Functional Coherence and Ascendancy

We extend the agreement measure of Patel et al. (2006a), which is based on Cohen’s

Kappa (Cohen, 1960), to describe functional coherence between pairs of brain regions.
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Table 2.1: Joint activation probabilities for regions a and b.

Region a
Active Inactive

Region b Active θ1 θ3 θ1 + θ3
Inactive θ2 θ4 θ2 + θ4

θ1 + θ2 θ3 + θ4 1

Figure 2.2: Functional ascendancy relationship of four regions a, b, c, and d at different
time points. Shading for a given region indicates elevated activity. Region a is
functionally connected with regions b, c and d. Also, region a is ascendant to regions
c and d.

Considering Table 2.1, our functional coherence measure κ is defined as:

κ =


θ1+θ4−E

1−E if θ1θ4 > θ2θ3

0 otherwise,
(2.3)

where E = (θ1 + θ2)(θ1 + θ3) + (θ3 + θ4)(θ2 + θ4). The numerator of κ measures

the difference between the probability of coherence and the expected probability of

coherence under independence. We restrict our attention to nonnegative values of κ,

so our measure of agreement ranges from 0 to 1. κ equals 1 when the probability

of joint activation and deactivation θ1 and θ4 sums to 1, and hence θ2 and θ3 are 0,

which indicates complete coherence. If there is no agreement between regions a and

b, κ = 0.

Given that a and b are functionally connected, i.e. κ exceeds a specified threshold

(say eκ) with high probability, we define a measure of ascendancy to determine the
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hierarchical relationship between the regions. Our ascendancy measure, τab, is based

on the ratio of P (Aa = 1)/(1−P (Aa = 1)) and P (Ab = 1)/(1−P (Ab = 1)) and takes

the following form:

τab =
θ1 + θ2
θ3 + θ4

/
θ1 + θ3
θ2 + θ4

. (2.4)

τab ranges from 0 to∞ and is interpreted as the odds of region a being active relative

to the odds of region b being active. Figure 2.2 presents a hierarchical relationship

among four regions. We use shading to denote a region exhibiting elevated activity.

If two regions a and b become active together and inactive together, we consider them

as functionally connected; however, an ascendancy relationship does not necessarily

exist between them. Given that region a and region b are functionally connected, we

say that a is ascendant to b whenever the marginal odds of activation of a are larger

than that of b. As shown in Figure 2.2, while regions a, b, c, and d are functionally

connected, regions c and d exhibit elevated activity for a subset of the stimuli for

which a exhibits elevated activity, suggesting that a is ascendant to c and d. Given

κ > eκ, τab > 1 indicates that a is ascendant to b, while τab < 1 indicates that b is

ascendant to a.

2.3.3 Bayesian Model

For any pair of regions a and b, the likelihood function for our data takes the form:

p(Z, S|θ, π) ∝
4∏
i=1

θ

N∑
n=1

Zin

i π

N∑
n=1

Sn
(1− π)

N×M−
N∑
n=1

Sn
. (2.5)

Following the approach by Patel et al. (2006a), we assume that each repeated measure

on the same region pair is independent across subjects. We also assume that each

repeated measure on the same region pair is independent over time since we have per-

formed pre-whitening in the pre-processing step to remove the temporal correlations

between scans from the same subject. In addition, given both probability measure-
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ments θ and π, S is independent of Z because we build structure-function dependence

in the distribution of [θ|π]. This is a conditional independence assumption between

S and Z, but marginally our model still captures the dependence between S and Z

through the corresponding parameters θ and π.

Using a Bayesian formulation, we express our prior belief about structural con-

nection probabilities π by defining a beta prior which takes the form:

p(π) ∝ πα0−1(1− π)β0−1. (2.6)

We specify a flat prior for our DTT data by setting α0 = β0 = 1 for each region

pair, suggesting no available prior information regarding the SC of any region pair.

In our simulation studies, we evaluate the performance of our method under different

combinations of the hyperparameters α0 and β0.

The prior for θ is taken to follow a Dirichlet distribution with parameters

(α(π) + α1, α2, α3, α4)
′, where α(π) is a function of π and reflects the assumed rela-

tionship between FC and SC. Specifically, we assume that

p(θ|π) ∝ Γ(α(π) + α1 + α2 + α3 + α4)

Γ(α(π) + α1)
θ
α(π)+α1−1
1 θα2−1

2 θα3−1
3 θα4−1

4 . (2.7)

We set α1 = 5, α2 = α3 = α4 = 10, and α(π) = 1
/(

9
ln(10)

− 1
)
×10π−1

/(
9

ln(10)
− 1
)

,

so the average value of α(π) on π ∈ [0, 1] is 10. In this case, θ2, . . . , θ4 have

the same expected values and moderate variances. Our prior is based on the ob-

servation that weak SC corresponds to relatively few joint functional activations,

and extremely strong SC is assumed to yield an expected value of θ1 to be around

0.5, which is approximately the highest maximum likelihood estimate of θ1. When

α(π) is an increasing function, the expected value of θ1, which takes the form of

(α(π) + α1)/(α(π) + α1 + α2 + α3 + α4) is also an increasing function with respect

to π; thus, matching our observation from the data. Later, we present results from a
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sensitivity analysis of our choice of α(π), which shows that our results do not change

much with respect to different functions of α(π).

2.3.4 Posterior Sampling

We regard the model parameters corresponding to different region pairs as indepen-

dent, so for each region pair, we express the posterior distribution as:

p(θ, π|Z, S) ∝ Γ(α(π) + α1 + α2 + α3 + α4)

Γ(α(π) + α1)
(2.8)

π

N∑
n=1

Sn+α0−1
(1− π)

N×M−
N∑
n=1

Sn+β0−1
θ
α(π)
1

4∏
i=1

θ

N∑
n=1

Zin+αi−1

i .

The full conditional posterior distributions take the form:

p(π|θ,Z, S) ∝ Γ(α(π) + α1 + α2 + α3 + α4)

Γ(α(π) + α1)
π

N∑
n=1

Sn+α0−1
(1− π)

N×M−
N∑
n=1

Sn+β0−1
θ
α(π)
1

(2.9)

and

p(θ|π,Z, S) ∼ Dirichlet(
N∑
n=1

Z1n +α(π) +α1,
N∑
n=1

Z2n +α2,
N∑
n=1

Z3n +α3,
N∑
n=1

Z4n +α4).

(2.10)

Estimation of κ and τ are based on the posterior distribution, p(θ|Z, S), as we

are able to estimate p(κ|Z, S) and p(τ |Z, S) by sampling p(θ, π|Z, S). We set effect

sizes for κ, denoted eκ, and τ , denoted eτ , in our analysis. These are used to compute

exceedance probabilities P (κ > eκ | Z, S) and P (τ > eτ | Z, S) from our modeling

framework. For κ, we choose eκ = 0.3, which reflects fair to moderate agreement

(Landis and Koch, 1977) and is above the 95th percentile across all region pairs.

Since the range of τ is extremely narrow, we explore the ascendancy relationship

when τ is above 75th percentile across all region pairs. We conduct inference on κ

and τ by estimating P (κ > eκ | Z, S) > pκ and P (τ > eτ | Z, S) > pτ , respectively.
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We set pκ as 0.95, which is also above 95th percentile among P (κ > eκ | Z, S), and

we choose pτ as 0.5, which is above 80th percentile of P (τ > eτ | Z, S). The choices of

effect sizes and probability thresholds are made to reflect characteristics of functional

coherence and ascendancy, rather than on the basis of statistical properties. For

example, eκ may be set to 0.3 as in our case to reflect moderate coherence or to

a higher value, e.g., above 0.6 to reflect substantial agreement. For the probability

thresholds, we suggest selections between the 80th percentile and 95th percentile.

Ideally, these thresholds should be determined before performing the data analysis.

However, due to the complexity and variability of neuroimaging data, the user has

the flexibility to investigate connections between regions at different levels of these

thresholds.

As revealed by the conditional posterior distribution of θ, our prior belief has an

impact on the posterior through α(π), but does not drive the direction of results.

As the SC π becomes stronger, the expected value of θ1 increases, and the expected

values of θ2, · · · , θ4 decrease accordingly, but at a slower rate.

We estimate our Bayesian hierarchical model using MCMC methods, implemented

via the Gibbs sampler with an embedded Metropolis step. The parameter θ is up-

dated from a Dirichlet distribution with π specified from the previous step. The

parameter π is updated by π∗, which is sampled from a Normal jumping distribution

Jt(π
∗|πt−1) = N(π∗|πt−1, τ 2) at time t, with probability min(r, 1), where r is the ratio

of the conditional densities from time t−1 to the conditional densities of the proposed

value with respect to θ,

r =
p(π∗|θ, Z, S)

p(πt−1|θ, Z, S)
. (2.11)

The variance τ 2 in the Normal jumping distribution is adjusted based on the data,

which ensures the acceptance ratio close to 25% to achieve the optimal efficiency of

Metropolis algorithm (Gelman et al., 1995).
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2.4 Results

2.4.1 Auditory Data Results

We apply our Bayesian model to the auditory processing fMRI data to determine

functionally connected regions and also to examine the corresponding ascendancy

relationship to illustrate the neural integration underlying auditory and related pro-

cessing. We find strongly connected regions within the auditory cortex with associated

hierarchical relationships between these functionally connected pairs of regions. For

example, Heschl’s gyrus (both left and right) is ascendant to the left superior tem-

poral gyrus, and the right pole of the superior temporal gyrus is ascendant to both

the middle temporal gyrus (both left and right) and the right pole of the middle tem-

poral gyrus, with P (κ > 0.3 | Z, S) > 0.95 and P (τ > eτ | Z, S) > 0.5 in each case

(Figure 2.3). We also detect high posterior probabilities of functional coherence and

ascendancy between regions within the primary auditory cortex and auditory-speech

encoding regions. Specifically, we find that Heschl’s gyrus (both left and right) is

functionally connected and ascendant to the left Rolandic operculum, which may re-

flect the use by many people of language encoding areas during auditory processing

involving perception of the spatial location of a tone. The design of the spatial-cueing

auditory experiment calls for subjects to momentarily remember the location of the

target tone before they press the button. Many people make use of visualization to

aid the memory process, especially spatial memory, which may in turn activate the

visual cortex (Ungerleider, 1995). Our findings support this relationship by revealing

strong FC between the memory related regions and the visual cortex, especially the

visual-spatial system. For example, the right lingual gyrus is ascendant bilaterally to

the posterior cingulate gyrus, right hippocampus, and right parahippocampal gyrus.

Our results also reflect the neural processing related to button presses in response to

the target cue, revealing strong functional coherence between the right pallidum and
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left thalamus as well as between the right thalamus and the right posterior cingulate

gyrus, all of which are included in motor and sensory systems. In addition, high prob-

abilities of functional coherence are detected within the visual cortex, e.g. between

left and right lingual gyrus, left and right middle occipital region, and also right

lingual and right precuneus gyrus, which identify associations in neural processing

regions when the subjects perform visual fixation.

We also detect relatively strong SC underlying the identified functional networks.

The estimated probabilities of SC for each of the functionally connected region pairs

above exceeds the 93rd percentile of SC for all 4005 brain region pairs, with most

of them having SC probabilities greater than 0.5. Compared to a naive estimator

that quantifies the proportion of simultaneously active or inactive states among all

scans and across all subjects, weak SC in our model tends to reduce the functional

coherence, while strong SC is more likely accompanied by a stronger functional re-

lationship, though the difference is relatively small. Although little evidence of SC

reduces the chances of having associated FC in our model, it does not preclude detec-

tion of FC. Similarly, strong SC does not necessarily imply that two regions exhibit

functionally connectivity.

For comparison, we apply the approach of Patel et al. (2006a) to fMRI data from

the auditory spatial cueing task. The Patel method is not able to capture the ascen-

dancy relationship between left superior temporal gyrus and left Heschl’s gyrus, which

is an important region pair within the auditory cortex. Another major difference is

that more region pairs within the visual cortex are detected by the original approach.

Although visualization is an essential component of the experimental design, we do

not expect to see the high degree of connectivity within the visual cortex because the

task only involves fixation on a cross hair, with more engaging auditory processing.

This leads us to conjecture that - without structural information, more false positives

are generated while the major findings may go undetected.
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Figure 2.3: Ascendancy maps with P (κ > 0.30) > 0.95 and P (τ > eτ ) > 0.50from
three different views. Arrow from region a to b means that region a is ascendant to
b. Auditory cortex, visual cortex, memory systems and sensory systems are included
in the maps.
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2.4.2 Simulation Results

We conduct two simulation studies, one to compare our method with the approach

of Patel et al. (2006a) and the second to compare our approach to a traditional

correlation-based analysis. In addition, we conduct a sensitivity analysis to evaluate

the impact of various choices of the function α(π), which links FC and SC, on the

performance of our approach.

We first discuss simulation results from the comparison our combined fMRI and

DTI approach (labeled as the FC with SC method) with the approach by Patel et

al. (2006a) utilizing fMRI data only (labeled as the FC only method). We generate

data Z and S from our model with different settings of hyperparameters α0 and β0

in the prior distribution of π. We evaluate the methods by comparing the bias of the

corresponding posterior means of θ, κ and τ . For each simulation setting, 10 π’s are

generated, and 10 θ’s are simulated for each π, 100 data sets are generated from each

set of θ’s. Therefore, a total of 10,000 data sets are simulated to compute the mean

biases. The results indicate that our method performs better in all settings with

smaller bias. Table 2.2 shows that the mean bias of θi’s from our method is smaller

than that from the FC only method in every case, which indicates that incorporating

structural information improves the estimation of FC. Since our definitions of κ and

τ are both functions of θi’s, it follows that our model also outperforms the FC only

method for estimating these measures as defined in (2.3) and (2.4). Alternatively,

we compare estimation performance of κ and τ from the FC only method based on

the original definitions from Patel et al. (2006a) with estimation of our extended

definitions of κ and τ under our FC with SC approach. We contrast how these two

methods address functional coherence/association and ascendancy. The standard

deviation of the bias also yields similar conclusions favoring our combined FC with

SC approach over the FC only method (see Table 2.3). We examine the performance

of our method using samples sizes of 15, 30 and 100 subjects. Although the difference



41

Table 2.2: Comparison of mean of bias between two Bayesian methods. The table
reveals the improvements of FC with SC from FC only in terms of the mean of bias.

FC with SC(×10−3) FC only(×10−3)
α0 β0 E(π) θ1 θ2 θ3 θ4 κ τ θ1 θ2 θ3 θ4 κ τ

N=30
1 100 0.01 4.925 6.550 6.394 6.391 2.185 30.759 4.963 6.587 6.432 6.416 233.875 116.591
2 18 0.1 5.127 6.361 6.282 6.469 2.791 29.577 5.173 6.427 6.307 6.508 188.989 117.824
2 5 0.3 5.979 6.292 6.206 6.211 5.702 29.458 6.017 6.330 6.247 6.247 116.983 127.239
2 2 0.5 6.271 6.044 6.045 5.952 7.556 30.224 6.321 6.106 6.077 5.998 112.727 119.231
5 2 0.7 7.007 5.777 5.653 5.692 12.085 29.761 7.078 5.829 5.711 5.756 57.719 123.946
18 2 0.9 7.150 5.387 5.330 5.390 13.531 28.887 7.242 5.434 5.376 5.442 80.766 139.150

N=100
1 100 0.01 2.704 3.536 3.597 3.534 1.120 17.098 2.710 3.541 3.597 3.545 232.029 115.003
2 18 0.1 2.996 3.483 3.481 3.532 2.103 16.705 3.006 3.492 3.485 3.538 181.038 114.898
2 5 0.3 3.139 3.435 3.377 3.380 2.717 16.048 3.150 3.446 3.389 3.385 153.390 126.220
2 2 0.5 3.540 3.362 3.266 3.315 4.950 16.250 3.541 3.362 3.273 3.327 93.892 127.077
5 2 0.7 3.748 3.172 3.122 3.066 6.080 15.228 3.761 3.177 3.131 3.077 78.071 161.000
18 2 0.9 3.939 2.938 3.024 2.920 7.495 16.320 3.959 2.949 3.037 2.931 84.696 144.013

N=15
1 100 0.01 6.882 8.906 9.006 9.078 2.874 44.578 6.951 9.011 9.154 9.183 221.313 106.883
2 18 0.1 7.39 9.073 8.851 8.822 4.442 42.553 7.461 9.162 8.993 8.914 204.43 122.885
2 5 0.3 8.565 8.861 8.544 8.58 8.545 41.804 8.667 9.038 8.636 8.689 120.509 126.061
2 2 0.5 9.239 8.333 8.484 8.499 13.308 41.421 9.297 8.44 8.63 8.644 71.363 128.054
5 2 0.7 9.798 8.146 8.086 8.196 16.415 40.797 9.862 8.301 8.174 8.316 59.667 136.606
18 2 0.9 10.056 7.379 7.52 7.313 19.624 41.791 10.233 7.503 7.68 7.457 88.121 136.543

Table 2.3: Comparison of mean of bias between two Bayesian methods. The table
reveals the improvements of FC with SC from FC only in terms of the standard
deviation of bias.

FC with SC(×10−3) FC only(×10−3)
α0 β0 E(π) θ1 θ2 θ3 θ4 κ τ θ1 θ2 θ3 θ4 κ τ

N=30
1 100 0.01 3.817 4.930 4.889 4.906 6.049 25.263 3.857 4.950 4.911 4.944 191.969 64.374
2 18 0.1 4.022 4.817 4.806 4.961 7.070 24.206 4.066 4.851 4.827 4.994 160.240 62.968
2 5 0.3 4.581 4.730 4.767 4.772 9.269 24.365 4.600 4.757 4.806 4.783 131.978 69.942
2 2 0.5 4.806 4.602 4.620 4.636 10.160 24.665 4.858 4.655 4.647 4.669 113.153 76.524
5 2 0.7 5.277 4.381 4.375 4.411 10.745 23.596 5.340 4.417 4.412 4.438 45.638 80.886
18 2 0.9 5.411 4.133 4.060 4.183 10.798 22.775 5.481 4.171 4.105 4.213 48.692 88.015

N=100
1 100 0.01 2.148 2.726 2.753 2.680 3.299 14.407 2.156 2.734 2.758 2.688 183.179 64.847
2 18 0.1 2.315 2.683 2.637 2.691 4.586 13.796 2.318 2.687 2.640 2.694 157.503 67.204
2 5 0.3 2.428 2.628 2.631 2.589 4.949 13.279 2.436 2.632 2.636 2.596 129.687 69.334
2 2 0.5 2.729 2.560 2.500 2.570 5.964 13.173 2.738 2.564 2.502 2.583 109.046 76.622
5 2 0.7 2.817 2.440 2.430 2.354 5.991 12.225 2.821 2.442 2.433 2.359 64.481 79.986
18 2 0.9 2.992 2.274 2.337 2.248 6.085 13.011 3.001 2.282 2.347 2.257 48.929 87.404

N=15
1 100 0.01 5.457 6.792 6.827 6.954 8.146 36.287 5.536 6.890 6.952 7.011 170.042 65.855
2 18 0.1 5.783 6.945 6.757 6.852 10.037 34.913 5.854 6.976 6.869 6.936 166.338 70.194
2 5 0.3 6.576 6.733 6.537 6.431 13.389 33.654 6.610 6.824 6.633 6.502 122.500 70.714
2 2 0.5 7.072 6.271 6.575 6.482 14.457 33.382 7.131 6.385 6.704 6.594 78.412 75.823
5 2 0.7 7.339 6.267 6.200 6.253 15.060 32.658 7.407 6.354 6.268 6.393 44.905 78.162
18 2 0.9 7.649 5.681 5.792 5.631 15.049 32.852 7.762 5.807 5.886 5.728 51.656 90.954

in bias between the two approaches is relatively small, our FC with SC approach

outperforms the FC only approach in every case that we consider.

Our second simulation study compares our method to a traditional correlation

analysis. We use the same simulated θ from the previous simulation study to generate

the neural activity profiles Yant and Ybnt, for regions a and b, respectively, from a

bivariate normal distribution with variances σ2
a and σ2

b and correlation ρ. Thus, the

mean adjusted level of neural activity profiles Rant and Rbnt also follow a bivariate
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Figure 2.4: Relationship between κ and ρ. A positive linear relationship is detected
for three cases with different sample sizes.

normal distribution. We derive the expectation of Zi’s as follows:

E(Z1) = P (Z1 = 1) = P (Rant > ca, Rbnt > cb) = θ1

E(Z2) = P (Z2 = 1) = P (Rant > ca, Rbnt < cb) = θ2

E(Z3) = P (Z3 = 1) = P (Rant < ca, Rbnt > cb) = θ3

E(Z4) = P (Z4 = 1) = P (Rant < ca, Rbnt < cb) = θ4.

(2.12)

We solve for ca and cb using the marginal probabilities of Rant and Rbnt, which are

functions of θ, and we subsequently solve for ρ using any of the above equations. We

estimate the Pearson correlation coefficient ρ from our simulated data and compare it

to the functional coherence κ. We expect to see substantial correspondence between

these two measures since they both capture the functional associations between two

regions.

We generate results for all combinations of hyperparameters specified in the first

simulation study and again consider sample sizes of 15, 30 and 100. The accuracy

of the estimation is not heavily influenced by the variance of the bivariate normal

distribution; therefore, we present results when σ2
a = σ2

b = 0.2, which corresponds to

estimates from our experimental data. We find a positive linear relationship between κ

and ρ (Figure 2.4), while larger sample size yields smaller variability in the estimates.
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Table 2.4: The bias of θ from estimations of different functions of α(π). Note that
not much difference is detected across different functions with the same structural
connectivity. The bias is calculated from the sum of the bias in all θi’s. Here,

f(a) = 10× (a+ 1)× πa, g(a) = 10
/(

a−1
ln(a)
− 1
)
× aπ − 10

/(
a−1
ln(a)
− 1
)

Generate Data from g(10) Generate Data from g(0.01)

π g(10) f(1.5) f(0.5) g(0.01) π g(10) f(1.5) f(0.5) g(0.01)

0.2045 0.0024 0.0026 0.0047 0.0051 0.0325 0.0018 0.0017 0.0023 0.0021

0.4626 0.0034 0.0035 0.004 0.0042 0.164 0.0035 0.0034 0.0026 0.0027

0.6894 0.0041 0.0038 0.0043 0.0043 0.4724 0.0038 0.0037 0.0035 0.0034

0.8987 0.0066 0.0073 0.0086 0.0090 0.7031 0.0059 0.0058 0.0061 0.0059

Finally, we examine the impact of α(π) on the estimation of θ. As the data

suggests, the functional coherence tends to increase as the SC increases. Therefore,

we use four different increasing functions for the parameter α(π) as a parameter

of the prior distribution of θ, based on power functions and exponential functions.

Figure 2.5 shows the functions that we consider in the posterior simulations. As each

function has the same integration over the interval [0,1], the expected values of all the

θ1’s simulated from each function are the same. We choose specific forms of functions

f and g to satisfy the above criterion. We consider both convex functions, i.e., g (10)

and f (1.5), and concave functions, i.e., f (0.5) and g (0.01). Table 2.4 summarizes the

biases of θ estimated using different functions, where the true values are generated

from the two most extreme cases g (10) and g (0.01). Here, the bias is calculated from

the sum of the biases in all θi’s. We also vary the probability of SC, π, from weak

to strong in the simulation study. The results indicate that the biases of θ across

all tested functions are comparable. Thus, we conclude that our method is not very

sensitive to the choice of α(π), among those considered.

2.5 Discussion

We build a unified Bayesian framework that provides a novel approach to combine

functional and structural brain imaging for an integrated assessment of FC. Joint
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Figure 2.5: Functions that are used in the sensitivity analysis of α(π). All of them
are increasing functions with respect to π and have the same area under curve.

analysis of both imaging modalities is an important tool to gain a better understand-

ing of sensory and cognitive functions in the human brain as well as pathophysiology

associated with psychiatric or neurologic disorders. Different from other methods

that examine both FC and SC in a descriptive way, our method incorporates SC in-

formation into the model and allows for making statistical inferences. Our Bayesian

model utilizes SC information to estimate the functional coherence between pairs of

regions, yet our model does not allow the structural information to unduly drive the

functional results. Our method is a purely data-driven, hypothesis-unconstrained ap-

proach, which can efficiently search across all pairs of defined brain regions of interest.

We develop two measures, κ and τ , to capture the functional coherence and degree of

ascendancy, between the brain regions. κ is based on the probability of joint activa-

tion and deactivation, while τ assesses the ascendancy between functionally connected

regions, enabling us to construct a directed brain network.

Our method permits analyses examining all 4005 possible brain region pairs, be-
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tween 90 AAL regions, to construct FC networks. We conduct a whole-brain analysis

rather than requiring a pre-defined network or regions of interest. We use one tem-

poral neural activity profile for each AAL region. Unlike other methods that average

data across an entire region, our method is based on subregions centered on the

most active voxel, yielding neural activity profiles that are representative of the brain

activity within the small spherical subregions. Alternatively, we may allow multiple

subregions from each AAL region, which would provide more complete coverage in our

whole-brain analyses. It takes several hours to complete the computations required

to implement of our method for 90 regions. We anticipate that it will readily extend

to accommodate more regions, e.g. from permitting multiple subregions. However, as

the number of subregions increases toward the number of voxels, computations would

become more challenging, given the massive number of subregion pairs.

Our model assumes that the functional connection between one region pair is inde-

pendent of the connections between other region pairs. This is a common assumption

in imaging studies. Although there maybe departures from this assumption reflected

in the data, it is difficult to model these potential correlations between pairs of region

pairs since the specific nature of the dependence structure is unclear and because

computation may become prohibitive as it would require estimation of approximately

R4/8 correlations, which grows quickly as the number of regions R increases.

We dichotomize the time series data to define functional joint activations, from

which we evaluate the functional connectivity using our proposed κ metric that differs

from the traditional correlation approach. There is no scale for the fMRI signal in

the human brain that lends itself to natural interpretations of the level of neural

activity. We attempt to define high and low neural activity from the fMRI signal

based on a selected threshold. A possible extension to our current method is to use

finer categories such as ordinal or even continuous measures to define joint functional

activations.
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In the context of dichotomizing the data, our modeling framework depends on c

to declare elevated and inactive states of neural activity. Drastic changes to c will

have a direct impact on the data that are produced and input to our model, e.g., by

setting c sufficiently high (or low), all the regions will become inactive (or active).

We choose an arbitrary value of c when determining the indicator of elevated brain

activity for regional fMRI profiles. We use a small value of c (c = 0.01) because the

indicator is based on the mean adjusted level of brain activity, and we would like

to capture as much information as possible; therefore, we set a low threshold. As a

result, about 45% of the time points are determined as active states. We conduct

sensitivity analysis of choice of c, and find that when c fluctuates within a small range,

i.e. for c up to 0.1, the major findings in our data application do not change.

We propose a functional coherence measurement that builds on Cohen’s κ-statistic,

which evaluates the levels of agreement adjusted for chance. Here, the chance agree-

ment is defined as (θ1+θ2)(θ1+θ3)+(θ3+θ4)(θ2+θ4). In addition to Cohen’s κ, we may

consider other agreement measures, e.g., Scott’s π-statistic (Scott, 1955), in which the

chance agreement is obtained by [((θ1 + θ2) + (θ1 + θ3))/2]2+[((θ3 + θ4) + (θ2 + θ4))/2]2;

Fleiss’ κ-statistic (Fleiss, 1971), which is a generalization of Scott’s π; and other al-

ternative chance-corrected statistics (Gwet, 2002). The major difference among these

statistics is the way they calculate the chance agreement. Some researchers (Gwet,

2002) argue that the conditions that Cohen’s κ requires, e.g., the chance-agreement

probability is less than 0.5, are not always met in practice. In our case, however,

the sum of the marginal probabilities P (Aa = 1) + P (Ab = 1) is close to 1, which

ensures that the chance-agreement probability does not exceed 0.5. In addition, other

statisticians (Strijbos et al., 2006) believe that when fewer categories are included,

Cohen’s κ is a more conservative measurement of agreement. Therefore, we use this

more strict measurement in our case.

The study of functional connections in the human brain is important to understand
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basic cognition, mental and neurological disorders, and response to treatments for

these disorders. Moreover, the structural circuitry underlying functional connections

may offer additional insights. We develop a Bayesian model that combines both

functional and structural information to help characterize FC networks. Leveraging

SC to quantify FC, our model yields more accurate and more informative results than

considering solely functional data.
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Chapter 3

Identifying Functional

Co-activation Patterns in

Neuroimaging Studies via Poisson

Graphical Models

3.1 Introduction

It is fundamental to our understanding of brain function to study the interactions

among different brain regions. Neuroscience has established functional activation as

a principle of brain organization in humans. The integration of activation regions has

been proven to be more changeling to assess. One question of interest is to estimate

the statistical dependences between activation regions. This characterizes functional

connectivity of brain and leads to an estimate of the brain’s functional network. There

are various analytical methods of functional connectivity for functional neuroimaging

studies. Typically, for a functional magnetic resonance imaging (fMRI) study, one can

estimate the spatial correlation, partial correlation or mutual information between the
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time series of blood oxygenate level dependent (BOLD) signals. In this article, we

perform functional connectivity analysis from a different perspective by identifying

functional co-activation patterns across independently performed functional imaging

studies.

The number of functional imaging studies has risen dramatically in recent years.

However, due to the relatively small sample size of most imaging studies, many prob-

lems such as inflated false positive rates and low reproducibility (Thirion et al. 2007)

have emerged. Meta-analysis, which provides solutions to these problems by combing

the results from independent studies, addresses this issue in a unique and important

way. Functional neuroimaging studies rarely report entire statistical parametric maps

(SPMs), but instead only report the peak activation coordinates. We refer to these

as foci, or a single focus. Thus, the most popular approach is coordinate-based meta-

analysis (Fox et al., 1997; Nielsen and Hansen, 2002; Turkeltaub et al., 2002; Wager

et al., 2004; Kober et al., 2008; Eickhoff et al., 2009; Radua and Mataix-Cols, 2009;

Kang et al., 2011), where multilevel density kernel analysis (MKDA) (Wager et al.,

2007a) and modified activation likelihood estimation (ALE) (Eickhoff et al., 2009) are

two commonly used approaches. Both of these construct a statistical map for each

study and produce the consistency of activations across studies. Kang et al. (2011)

provide a much richer inference on the population level activation locations from a

Bayesian perspective.

In addition to identifying the consistency of activations in imaging studies, a

few approaches have been proposed to address another interesting problem, i.e., the

evaluation of co-activation patterns, which provide information about functional con-

nectivity between brain regions. Nielsen and Hansen (2004) proposed a matrix factor-

ization algorithm, similar to principal component analysis, to identify the distributed

patterns in the brain. Kober et al. (2008) proposed a functional grouping approach,

which analyzes the spatial density of reported foci using MKDA, and then combines
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non-metric multidimensional scaling and cluster analysis to group regions based on

their co-activation patterns. A structural learning approach for the Bayesian network

is developed to construct a directed functional network (Neumann et al., 2010). In-

stead of functional or effective connectivity, a probabilistic dependency between brain

regions is presented. However, all of the above methods suffer one or more of the fol-

lowing shortcomings. First, the functional co-activation patterns are by-products of

approaches which primarily target for problems of consistent activations; thus lacking

sounding statistical modeling. Second, the directed networks produced by some of

the methods lead to difficulty in the interpretation. Third, no formal statistical tests

can be performed.

To fill this gap, in this article, we propose a Poisson graphical model to estimate

co-activation patterns, and thus identify the functional network in the meta-analysis

of functional neuroimaging studies. We characterize region-level co-activation pat-

terns using the covariance of the number of peak activations in different regions,

where these region-specific activation counts are jointly modeled by a multivariate

Poisson distribution (Kawamura 1979) (a review of the multivariate Poisson distri-

bution is available in Appendix A). We impose sparsity on the covariance function

by assuming that only some region pairs are co-activated for a particular brain func-

tion. We propose a penalized likelihood approach to efficiently estimate the sparse

covariance function. Specifically, we introduce a set of latent variables to facilitate

obtaining the penalized maximum likelihood estimates (PMLE) of the covariance via

the expectation-maximization (EM) algorithm. The latent variables explicitly model

the expected number of co-activation foci between regions. The non-directed func-

tional network is then determined by the region-level estimated covariance between

the numbers of foci. The proposed shrinkage method is tuned to reproduce the spar-

sity found in brain networks. The shrinkage tuning parameter is optimized based on

the predictive log-likelihoods. We apply our approach to a meta-analysis of emotion
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studies and conduct simulations studies to evaluate its performance.

The novel contributions of our models are several-fold. First, we are among the

very first to propose a generative model for the sparse brain network analysis using

functional neuroimaging meta-analysis count data. Second, our model provides more

interpretable results by explicitly modeling the strength of functional co-activations

compared with existing methods. Third, we propose a fast computational algorithm

for model parameter estimation as well as a feasible permutation testing procedure

to assess the significance of the identified brain network.

3.2 Data

We consider findings from 162 functional neuroimaging studies, including 57 positron

emission tomography (PET) and 105 fMRI studies. Collectively, these studies yield

439 contrasts (e.g., happy vs. neutral) as in Kober et.al (2008). These studies are

published in English from 1990 to 2005. We consider seven different emotions: sad-

ness, happiness, anger, fear, disgust, surprise, and affective. These studies all meet

the following criteria: (1) All the subjects included in the studies are healthy; (2) All

the studies measure regional cerebral blood flow (PET) or blood oxygenation (fMRI)

across the entire brain instead of regions of interest; (3) The activation coordinates

are determined using image subtraction methodology; (4) Standard Talairach or Mon-

treal Neurological Institute (MNI) coordinates are provided to ensure the results are

spatially normalized to standard coordinate systems, thus allowing for comparison of

findings across different studies. For our analysis, all data were converted into MNI

space. For each study, the activation locations for these contrasts are included when

they meet the criteria of significance defined each individual study. A total of 2478

activated coordinates are reported for 439 contrasts.
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3.3 Methods

3.3.1 The Bivariate Model

We start with a model for any two regions i and j in the brain. For simplicity, we

use region 1 and 2 as an example in this section. Suppose we collect foci data from n

contrasts. For k = 1, . . . , n, let X1,k and X2,k represent the number of foci in region 1

and 2 respectively. We assume that (X1,k, X2,k)
′ follows a bivariate Poisson distribu-

tion with parameter λ= (λ11, λ22, λ12) (Kocherlakota and Kocherlakota, 1992). The

joint probability function is

P (X1,k = x1,k, X2,k = x2,k)

=e−(λ11+λ22+λ12)
λ
x1,k
11

x1,k!

λ
x2,k
22

x2,k!

min(x1,k,x2,k)∑
s=0

(
x1,k
s

)(
x2,k
s

)
s!

(
λ12

λ11λ22

)s
.

(3.1)

This implies that X1,k and X2,k are marginally Poisson distributed with parameters

λ11 + λ12 and λ22 + λ12, respectively. Also, the covariance between X1,k and X2,k is

λ12, which can be interpreted in our model as the strength of co-activation between

regions 1 and 2. A covariance λ12 = 0 implies that there is no statistical dependence

between the two regions.

We also impose sparsity on the brain network in our model. This implies that

λ12 = 0 for many region pairs. It is natural to introduce a penalty term into the

likelihood (3.1) to efficiently estimate the sparse co-activations between the two re-

gions. In particular, we minimize the following penalized negative log-likelihood with
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respect to λ given θ:

− lobs(λ; X1,X2) + θλ12

=
n∑
k=1


2∑
i=1

[λii −Xi,klog(λii)] + λ12 − log

min(x1,x2)∑
s=0

(
X1,k

s

)(
X2,k

s

)
s!

(
λ12

λ11λ22

)s
+θλ12,

(3.2)

where the parameter θ controls the degree of sparsity. Larger values of θ will tend to

shrink the covariance parameters toward zero, reflecting more sparsity in the brain

network. The joint probability function of (X1,X2) is complicated, especially when

the number of dimensions is large. Kano and Kawamura (1991) derived a recursive

scheme for constructing the probability function of a multivariate Poisson distribu-

tion; however, the computational intensity as well as the errors induced by recursion

increase with the number of dimensions. Thus, a maximum likelihood estimation

method without calculating the probability function is desired. Kalis (2003) proposed

an EM algorithm (Dempster et al., 1977; Meng and Van Dyk, 1997; McLachlan and

Krishnan, 1997) based on the multivariate reduction derivation of the multivariate

Poisson distribution for estimation.

In our case, to simplify the computation, for each contrast k, we introduce three

latent Poisson variables Y11,k, Y22,k and Y12,k to represent X1,k and X2,k. Specifically,

we have 
X1,k = Y11,k + Y12,k,

X2,k = Y22,k + Y12,k,

(3.3)

and

Y∗,k
i.i.d∼ Poisson(λ∗), for ∗ ∈ {11, 22, 12}, (3.4)

where Y11,k and Y22,k represent the number of localized foci in regions 1 and 2 respec-
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tively. And Y12,k denotes the number of co-activations between the two regions. Note

that the expectation of Y12,k is λ12 which characterizes the covariance between X1,k

and X2,k.

Model representation (3.3) involves the unobserved data Y12,k, Y11,k and Y22,k for

k = 1, . . . , n. Note that Y11,k = X1,k − Y12,k and Y22,k = X2,k − Y12,k based on (3.3).

Since we observe X1,k and X2,k, the only missing data is Y12,k, and the complete data

is (Y12,k, X1,k, X2,k) for k = 1, . . . , n. Write Y12 = (Y12,1, . . . , Y12,n)′. The penalized

complete negative log-likelihood is given by

− lcomp(λ; Y12,X1,X2) + θλ12

=
n∑
k=1

{
2∑
i=1

[λii − (Xi,k − Y12,k)log(λii)] + λ12 − Y12,klog(λ12)

}
+ θλ12.

(3.5)

We propose to use an EM-algorithm to minimize (5). The E-step calculates the

conditional expectation of unobserved data Y12 given the observed data X = (X1,X2)

using the current estimates of the parameters. And then we minimize the penalized

complete negative log-likelihood in the M-step.

The EM algorithm is described as follow, with an initial value of λ(0), for t =

0, · · · , T − 1, in the (t+ 1)th step,

� E-step, compute

Y
(t+1)
12,k = E[Y12,k|X1,k, X2,k;λ

(t)] (3.6)

=

min(x1,k,x1,k)∑
y12,k=0

y12,kP (Y12,k, X1,k, X2,k;λ
(t))∑min(x1,k,x2,k)

y12,k=0 P (Y12,k, X1,k, X2,k;λ
(t))

,
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� M-step, update the estimates by

λ
(t+1)
12 =

∑n
k=1 Y

(t+1)
12,k

θ + n
,

λ
(t+1)
ii =

1

n

n∑
k=1

Xi,k −
θ + n

n
λ
(t+1)
12 .

(3.7)

The iteration proceeds between the E-steps and M-steps and stops when specified

convergence criteria are attained. The joint probability function P (Y12,k, X1,k, X2,k)

in (3.6) is derived in Appendix B.

The algorithm described above is a special case of the approach of Kalis (2003),

which considered multivariate cases with the same covariance for all pairs of obser-

vations. Below, we consider a more general case that assumes different covariances.

3.3.2 The Multivariate Model

We consider a general extension to the bivariate model. In theory, a n-dimensional

Poisson model might include n-way interactions. This leads to a very complicated

model and might result in extremely high computational cost. Thus, in practice, a

m-way interaction model is adequate for application, for a relatively smaller m. In our

case, the two-way interaction, i.e., the covariance between Xi and Xj for 1 ≤ i, j ≤ p,

is sufficient to construct a brain network which is of primary interest in this paper.

Therefore, we ignore interactions between three or more Xi’s.

Suppose for k = 1, · · · , n, we observe the number of foci in p regions, Xk =

(X1,k, · · · , Xp,k)
′. We assume that Xk follows a multivariate Poisson distribution

with parameters λ= (λij)1≤i,j≤p. Similar to (3.3), we have

Xi,k =

p∑
j=1

Yij,k, for i = 1, · · · , p, (3.8)

where Yk= (Yij,k)1≤i≤j≤p is a collection of independent Poisson random variables,
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and each Yij,k follows a Poisson distribution with parameter λij respectively. Also,

each Xi,k follows a Poisson distribution with parameter
∑p

j=1 λij. To simplify the

notation, we let Yij,k = Yji,k and λij = λji, for 1 ≤ i < j ≤ p. The observed number

of foci in region i, Xi,k can be decomposed into p parts: Yii,k, the number of localized

activations in region i, and {Yij,k}j 6=i, the number of co-activations in region i and

the remaining regions.

To incorporate sparsity in the covariance structure of the brain network, we utilize

the following penalized observed log-likelihood:

−lobs(λ; X1,X2, · · · ,Xn) + θ

p∑
i=1

p∑
j=i+1

λij. (3.9)

Note that it is computationally intensive to evaluate the observed data likelihood.

Similar to the bivariate model, however, we can easily compute the complete data

likelihood for (Ỹk,Xk), where Ỹk = {Yij,k}1≤i<j≤p contains all the information of co-

activations patterns. Specifically, we consider the following penalized complete data

negative log-likelihood

− lcomp(λ; Ỹ1, · · · , Ỹn,X1, · · · ,Xn) + θ

p∑
i=1

p∑
j=i+1

λij

=
n∑
k=1

p∑
i=1

p∑
j=i

[λij − Yij,klog(λij)] + θ

p∑
i=1

p∑
j=i+1

λij.

(3.10)

To minimize the observed negative log-likelihood (3.9) using the EM algorithm, we

will need to calculate the conditional expectation of each Yij,k given the observed

data and current estimates of the unknown parameters. Note that the conditional

probability of Yij,k given the observed data only depends on Xi,k and Xj,k, i.e.,

E(Yij,k|Xk;λ)) = E(Yij,k|Xi,k, Xj,k;λ).

Given the initial value λ(0), in the (t+ 1)th step, for t = 0, · · · , T − 1,
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� E-step, for i = 1, · · · , p, j = i+ 1, · · · , p, compute

Y
(t+1)
ij,k = E[Yij,k|Xi,k, Xj,k;λ

(t)] (3.11)

=

min(xi,k,xj,k)∑
yij,k=0

yij,kP (Yij,k, Xi,k, Xj,k;λ
(t))∑min(xi,k,xj,k)

yij,k=0 P (Yij,k, Xi,k, Xj,k;λ(t))

� M-step, update the estimates by

λ
(t+1)
ij =

∑n
k=1 Y

(t+1)
ij,k

θ + n
, for 1 ≤ i < j ≤ p

λ
(t+1)
ii =

1

n

n∑
k=1

Xi,k −
θ + n

n

∑
j 6=i

λ
(t+1)
ij

(3.12)

The joint probability function P (Yij,k, Xi,k, Xj,k) in (3.11) is derived as shown in

Appendix C.

3.3.3 Tuning Parameter

We consider the predictive log-likelihood as the criteria to determine the optimal value

of the tuning parameter θ. In our upcoming simulation studies, we also examine the

mean-squared error as a supplementary tool to verify our findings.

Letting λ̂ij(θ) denote the estimate of λij derived from the EM algorithm, given θ,

the predictive log-likelihood given λ̂(θ) = {λ̂ij(θ)}1≤i,j≤p is defined as:

l(λ̂(θ); X) =
n∑
k=1

l(λ̂(θ); Xk). (3.13)

The probability function of Xk is given by

P (Xk|λ̂(θ)) =
∑
yk

P (Yk,Xk|λ̂(θ)) =
∑
yk

P (Xk|Yk, λ̂(θ))P (Yk|λ̂(θ))

=
∑
yk

P (Yk|λ̂(θ))

P (Yk|Xk, λ̂(θ))
P (Xk|Yk, λ̂(θ))P (Yk|Xk, λ̂(θ))

(3.14)
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where P (Xk|Yk, λ̂(θ)) = 1, if
∑p

j=1 Yij,k = Xi,k, for all i ∈ {1, · · · , p}; otherwise

P (Xk|Yk, λ̂(θ)) = 0. Therefore, the probability function can be expressed as

P (Xk|λ̂(θ)) = EYk|Xk

[
P (Yk|λ̂(θ))

P (Yk|Xk, λ̂(θ))

]
. (3.15)

Details of the conditional probability in (3.15) are presented in Appendix D.

We select the value of θ that yields the maximum predictive log-likelihood, where

the predictive likelihood can be obtained as previously described. We use five-fold

cross validation to choose the optimal estimation of θ in the simulation studies and

ten-fold cross validation in the data application.

To verify the findings from the predictive log-likelihood, we also use the mean-

squared error (MSE) in the simulation studies, defined as

MSE(θ) =
∑
i≤j

(λij − λ̂ij(θ))2. (3.16)

We select the value of θ that gives the smallest MSE. In our data application, we only

use the predictive log-likelihood measure for optimizing the tuning parameter, since

the MSE depends on the true value of λ. In Section 4, we show that the MSE and

the predictive log-likelihood strategies select very similar values of θ.

We perform two independent grid searches when determining the optimal value of

θ, from a more coarse grid to a finer grid in a certain range for these two approaches.

The value that we find achieves the maximum predictive log-likelihood and relatively

small MSE within the searching range and at the level of precision which equals to

the finer grid. It is possible that the optimal value is beyond the searching range or

the level of precision is smaller than the finer grid. The simulation studies show that

the selected θ yields the estimated covariance matrix with small MSE.
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3.3.4 Statistical Testing

Our modeling framework enables us to perform statistical testing on the λij’s to make

inferences on the co-activation patterns between regions and the associated functional

network. We conduct permutation tests to detect the existence of connections between

regions and check whether the identified network is statistically significant. First, we

say that two regions are not connected if the estimated λij obtained with the penalty

term θ is below a fixed cutoff, here 10−3. This implies that on average there are no

co-activating foci reported on the two regions across 1000 independent studies (in our

application, we only have around 500 studies). Then we apply the algorithm again

for more accurate estimates without the penalty term as our final estimates for the

model.

We build the functional network based on the estimated non-zero λij’s. Let Φ

denote the set of region pairs within the identified network, we consider the following

hypothesis for the network identification:

H0 : λij = 0,∀{ij} ∈ Φ vs. Ha : ∃{ij} ∈ Φ s.t. λij > 0.

For each region i, we denote a permuted data of Xi by X̃i = (Xi,τ1 , . . . , Xi,τn), where

(τ1, . . . , τn) is a permutation of (1, . . . , n). We compute the estimated λij for each

permuted dataset and then obtain a null distribution of λ̂ij given that there is no

connection between region i and j.

Also, we perform a permutation test to examine H0 : λij = 0 vs. Ha : λij > 0,

correcting for multiple comparisons using the false discovery rate (FDR) approach by

Benjamini and Hochberg (1995). Suppose we have m tests H1, H2, · · · , Hm and the

corresponding p-values P1, P2, · · · , Pm are ordered as P(1) ≤ P(2) ≤ · · · ≤ Pm. Let h

be the largest i such that P(i) ≤ i
m
α, where α is the significance level, then all H(i)

for i = 1, 2, · · · , h are rejected.
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3.3.5 Graph Theoretical Properties of the Network

We perform graph theoretical analyses of co-activation patterns to demonstrate topo-

logical properties of the brain network. Each network is composed of n nodes and

k edges, which represent n brain regions and k co-activation connections, respec-

tively, in the brain imaging analyses. Several distance metrics have been developed

to describe the relationships between nodes. For example, the clustering coefficient C

measures the average likelihood of connecting neighbors. For each node i, it is defined

as Ci = 2Ei/ki(ki − 1), where ki is the degree of node i, and Ei is the number of di-

rect links connecting neighbors of node i. The path length L is the average minimum

number of connections to link two nodes. Network topology is described as a small-

world network (Watts and Strogatz 1998) if comparing to a similar random network,

the small-world index σ = (C/Crandom)/(L/Lrandom) > 1 (Humphries et al. 2006).

Here, a similar random network is defined as a network with same number of nodes,

same number of edges and same degree distributions. We conduct statistical testing

on the small-worldness property of identified functional network by performing the

following hypothesis test using permutation approach: H0 : σ ≤ 1 vs. Ha : σ > 1.

Hubs in the network are of high importance since they serve as the common

connections between other edges. The nodes with high degree (D) or high centrality

(CEN) are defined as hubs. The centrality of node i is the number of shortest paths

between any nodes that pass through node i (Sporns and Zwi 2004). We examine

the high-degree or high-centrality nodes, i.e., the nodes with a degree or centrality at

least one standard deviation above the network mean, in the network (Sporns et al.

2007).

3.3.6 Initial Values of EM Algorithm

In the EM algorithm, the choice of initial values is of great importance as it may have

a substantial impact on convergence time. A number of methods have been proposed
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for addressing the problem of choosing the initial values, e.g., a grid search for setting

the initial values (Laird 1978) and forming clusters with supplementary information

and using means as initial values (Leroux 1992). We use another natural choice of the

starting points for our estimations, namely estimates obtained by the method of mo-

ments. Specifically, we let λ
(0)
ij = ĉov(Xi,Xj), i.e., the sample covariance. By setting

reasonable initial values, we achieve relatively fast convergence of the algorithm.

3.4 Results

3.4.1 A Meta Analysis of Functional Neuroimaging Studies

We apply our proposed method to a meta analysis of emotion functional neuroimag-

ing studies. Our data collects the findings of 439 contrasts from 162 emotion related

functional neuroimaging studies. A total of seven different emotions are considered,

including sad (45 contrasts), happy (36 contrasts), anger (26 contrasts), fear (68 con-

trasts), disgust (44 contrasts), surprise (2 contrasts) and “affective” (175 contrasts), a

placeholder term for a blend of emotions elicited by complex stimuli such as aversive

pictures. For each contrast, the coordinates of the activation locations are reported,

and the reported points are assigned to different brain regions based on the coor-

dinates. The number of the reported points in each region is our data input. On

average, approximately 6 activated coordinates are reported for each contrast. In our

analysis, we use the GlaxoSmithKline Clinical Imaging Centre (CIC) (Tziortzi et al.

2011) brain atlas based on Harvard-Oxford atlas (Makris et al. 2006) and consider

19 regions of interest (ROIs) related to emotion processing, yielding a 19× 439 data

matrix. The objectives of this study include estimation of the co-activation patterns

and the corresponding functional network for emotion process, statistical testing for

the connections between regions, and testing for the identified brain network.

Among 19 ROIs, the dorsolateral frontal cortex (DLFC) is the region that is
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Table 3.1: The distribution of number of activations reported in DLFC and cuneus
across all the contrasts included in the study.

ROIs Number of Activations
0 1 2 3 4 5 6

DLFC
312 77 26 14 6 2 2

(71.07%) (17.54%) (5.92%) (3.19%) (1.37%) (0.46%) (0.46%)

GP R
436 3

(99.32%) (0.68%)

reported most often (217 from 439 contrasts), and the right globus pallidus (GP R)

is reported the least often (3 out of 439 contrasts). On average, each region is found

to be associated with the neural processing of emotions 61 times out of 439 contrasts.

Table 3.1 shows the distribution of number of activations reported in DLFC and

GP R across all the contrasts included in the study.

We perform cross validations to choose the value of θ that yields the largest predic-

tive likelihoods, and we conduct estimation of the covariance parameters based on the

selected θ. Following the steps described in section 3.3.4, we identify the functional

network and perform statistical testing on the network and marginal distributions

of co-activations between regions. Among the 19 ROIs included in the analysis, the

total number of possible region pairs is 171. After estimation, we detect a network

including 17 ROIs with 79 connections.

We find strong functional co-activation patterns within the limbic system, basal

ganglia and other most reported emotion related brain regions, as shown in Figure

3.1 and Figure 3.2. The anterior cingulate cortex (ACC) is thought to be involved in

reward and other diverse affective/motivational processes. It is found to be connected

with other 11 regions in the network. Especially, among the first 6 region pairs with

highest covariance estimates, ACC appears 4 times, while the rest two region pairs

are bilateral regions. For example, ACC is functionally connected with orbitofrontal

cortex (OFC), which is one of the major centers for affective proceses (λ̂ij = 0.023, p <



63

Figure 3.1: The functional network identified from 162 functional neuroimaging stud-
ies with 439 contrasts. 17 ROIs are included in the network. The size of each node
represents the degree of the node. Ins – Insular, ATP – Anterior Temporal Pole,
para-HCMP – Parahippocampal, Amy – Amygdala, HCMP – Hippocampus, DLFC
– DorsoLateral Frontal Cortex, MFC – Medial Frontal Cortex, frOP – Frontal Oper-
culum, PCC – Posterior Cingulate Cortex.

0.005∗ 1). Strong co-activation is also identified between ACC and striatum (Str)

(λ̂ij = 0.018, p < 0.005∗); ACC and thalamus (Thal) (λ̂ij = 0.013, p < 0.005∗),

as well as ACC and frontal operculum (frOP) (λ̂ij = 0.012, p < 0.005∗). Overall,

we build a functional network with brain regions that are involved in the neural

processing of different emotions as shown in Figure 3.1 and 3.2 (p < 0.005∗). Also,

almost all of the marginal connections between each region pair is significant after

FDR correction(p < 0.005∗).

We also examine graph theoretical properties of the identified network. The clus-

tering coefficient of the identified network C = 0.710, and the path length L = 1.129.

Comparing to the average of 1000 random networks (Crandom = 0.693, Lrandom =

1λij with a p-value less than or equal to 0.01 is considered to be a significant connection, denoted
by *.
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Figure 3.2: Three different views of the functional network identified from 162 func-
tional neuroimaging studies with 439 contrasts. 17 ROIs are included in the network.

1.131), the corresponding small-world index σ̂ = 1.027 is significantly greater than

1 (p < 0.005), which indicates that the identified network has properties which are

consistent with a small-world network. We use degree and centrality measures to

identify the network hubs as described in the previous section. We find several

regions which play important roles in the network, e.g., the right insular (Ins R)

(D=14, CEN=18.34), Thal (D=14, CEN=14.69), the left amygdala (Amy L) (D=11,

CEN=14.08) and the medial frontal cortex (MFC) (D=12, CEN=13.07). Ins, Thal

and Amy are among the most reported emotion-related regions, and MFC is involved
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Figure 3.3: The functional networks identified from 162 functional neuroimaging
studies with 439 contrasts for negative emotions – anger, disgust, fear, and sad.

in cognitive control and related processes in a variety of settings, and may reflect some

of the cognitive “ingredients” of the emotion generation process or, alternatively, play

a more direct role in the generation of emotional feelings.

We further examine the subnetwork within the identified network separately for

each emotion, especially for the negative emotions due to the restricted number of

positive emotions and relatively small number of studies for positive emotions. For

all the region pairs within the identified network, we count the number of times

that both regions have at least one peak activation coordinates reported for different

emotions, and they are considered as connected region pairs in the subnetwork. We

expect to see more sparse networks for distinct emotions as compared to the network
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Table 3.2: The region pairs with top frequencies of co-activations for anger, disgust,
fear and sad.

Emotion Region Region Frequency (%)
Anger ATP L Amy L 3 (11.54%)

DLFC MFC 3 (11.54%)
OFC ACC 3 (11.54%)

Disgust OFC ACC 8 (18.18%)
Ins R OFC 5 (11.36%)

Fear Amy L Amy R 6 (8.82%)
ACC Str 5 (8.62%)

Sad DLFC MFC 10 (22.22%)
MFC Thal 6 (13.33%)

containing all emotions (see Figure 3.3). The region pairs with top frequencies for

anger, disgust, fear, and sad are reported in Table 3.2. Within each network, we focus

on the region pair that co-activates most and find that some of the emotions share

same co-activation patterns. For instance, the region pair DLFC and MFC, both

of which are involved in cognitive control, is identified by anger and sad emotions.

The region pair OFC and ACC is found to activate a lot in anger and disgust, which

indicates these two emotions may stimulate similar brain activities. In addition, as

a primary region in the processing of emotions, bilateral co-activation in amygdala

is detected in fear. The subnetwork analysis show that although different types of

emotions have their own contributions to the network identified from all emotions,

similar emotions may share same co-activation patterns.

3.4.2 Simulation Studies

3.4.2.1 Simulated Data Sets

Data set 1

The first simulation setting includes three regions and six non-zero parameters. Specif-
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ically, we let

λ =


1 3 1

2 5

3

 .

A total of 300 data sets are generated, and for each simulation, 100 samples

are simulated from a bootstrap resampling strategy to evaluate the accuracy of the

estimations.

Data set 2

The second simulation setting builds a network including eight regions. We assume

the existence of co-activations for a total of eight region pairs. For example, region 1

and 2 (λ12 = 3), region 1 and 5 (λ15 = 4), region 1 and 6 (λ16 = 2), region 2 and 7

(λ27 = 2), region 3 and 6 (λ36 = 3), region 4 and 8 (λ48 = 4), region 5 and 7 (λ57 = 5),

region 7 and 8 (λ78 = 1). We generate 500 data sets for this setting.

3.4.2.2 Accuracy of the Estimations

First, we consider the situation that θ = 0. In a simulation study using simulated

data set 1, we estimate the six non-zero parameters λij’s by applying our penalized

multivariate Poisson model, calculate the variance of each parameter by a bootstrap

resampling method, and examine the coverage rate of the estimations. Table 3.3

shows the average bias, with the percentage change in parenthesis, and the coverage

rate of the estimation from 300 simulations. The average bias is 0.008 with an average

of 0.46% change over six parameters. Also the average coverage rate is 94.17%. The

results indicate that our method can accurately estimate the parameters of interest

in the model with coverage rate close to 95%.

We compare our proposed method to the method of moments approach in which

λij is estimated by calculating the covariance between Xi and Xj. The results in

Table 1 indicate that our penalized multivariate Poisson model substantially improves
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Table 3.3: Comparison of the bias, with the percentage changes in parenthesis and
the coverage rates of λ̂ for networks with three regions from 300 simulations between
proposed method and covariance approach.

Penalized Multivariate Poisson Model
Bias (%) Coverage Rate

0.0020 0.0019 0.0115
93.33% 95.00% 90.67%

(0.20%) (0.06%) (1.15%)
0.0142 0.0024

96.00% 95.00%
(0.71%) (0.05%)

0.0169
95.00%

(0.56%)

Covariance Method
Bias (%) Coverage Rate

0.1657 0.0624 0.1381
92.00% 92.33% 91.67%

(16.57%) (2.08%) (13.81%)
0.0576 0.1457

96.33% 91.67%
(2.88%) (2.91%)

0.2747
92.00%

(9.16%)

the performance by decreasing the biases (0.008 vs. 0.141) with percentage changes

(0.46% vs. 7.9%) and increasing the coverage rates (94.17% vs. 92.67%).

3.4.2.3 Impact of θ on Networks

We conduct a simulation study to examine the impact of θ on the number of con-

nections in the network. Here, we use the simulated data set 2. In this network, we

have eight regions, resulting in 28 connections, eight of which are non-zero values as

indicated in the simulation settings. Therefore, the number of zeros is 20.

We consider different values of the penalty term θ on a natural log scale from -1

to 6 which ranges θ from 0.37 to 403. We set λij = 0, if the estimated value is below

10−3. Generally speaking, as θ increases, the number of zeros also increases as shown

in Figure 3.4. When θ varies within a small range, the change on the number of
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Figure 3.4: The change of average number of zeros detected from 100 simulations vs.
ln(θ). The blue line indicates the true number of zeros.

zero connections is small. As θ gets closer to 200, all the connections shrink to zeros,

which shows the impact of the penalty term on the estimation of the network.

3.4.2.4 The Choice of θ

Next, we perform simulation studies to choose the optimal tuning parameter θ based

on the predictive log-likelihood from (3.13) and the mean-squared error using (3.16).

We consider the same brain network as described in the second simulation setting.

From coarse to finer parcellation of θ, we find that θ = 3 yields the largest average

predictive log-likelihood -12.039 from five-fold cross validation. The smallest MSE,

which equals to 0.5497, is achieved when θ = 2.8. We notice that when θ varies

from 2.0 to 3.6, the difference between the calculated MSE and smallest MSE is less

than 0.01. In addition, the mean-squared error is the sum of the squared difference

between all λij’s and λ̂ij’s; as a result, it is the sum of all 28 squared-differences in our

case. Therefore, 0.01 difference in MSE leads to an average of less than 0.02 difference

between λij and λ̂ij. We do not restrict the range of θ during the grid search of the

MSE approach to allow it to search for the best solution. Figure 3.5 shows the trend
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Figure 3.5: The relationship between the predictive log-likelihood and θ (left); the
predictive log-likelihood achieves the smallest value when θ = 3. The relationship
between the mean-squared error and θ (right); the MSE achieves smallest value when
θ = 2.8.

of the predictive log-likelihoods and the change of the mean-squared errors within

a small range of θ identified by simulation studies. We can see that the optimal θ

obtained from these two criterion are very close to each other.

3.5 Discussion

We propose a Poisson graphical model to identify functional co-activation patterns

and produce undirected brain networks in the meta analyses of neuroimaging stud-

ies. Our method jointly models the region-level numbers of foci that are reported

by different independently performed studies. The estimated sparse covariance ma-

trix between regions is used to construct the undirected brain network associated

with a particular brain function. We also perform a permutation test to assess the

significance of the functional connectivity between regions. We extend the original

multivariate Poisson model by including a penalty term to account for the sparsity of
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the brain network and perform estimation using the EM algorithm. The simulation

studies show that our method achieves about 95% coverage rate. Also, we select

the tuning parameter by optimizing the predictive log-likelihood and the MSE. The

results show that the shrinkage method produces more accurate estimates of the co-

variance and reduces the computation time. We show that the two criteria choose a

similar optimal value in simulation studies.

Meta-analysis techniques for brain imaging studies increase the accuracy and

power compared to single analyses. Using the meta-analysis data, our method pro-

vides a systematic framework to estimate the co-activation patterns, which can be

used to test for specific relationships among brain regions of interest or to establish

groups of contiguous voxels that show similar functional characteristics and may be

treated as prior information in the future studies. We address this problem by ex-

tending a well-developed model, which however, has never been applied in the field of

brain imaging studies. Our penalized multivariate Poisson model can also be applied

to other public health or statistical problems.

One limitation of our model is that it is based on the pre-defined parcellation of

the brain. However, this is a common problem in other meta-analytic approaches

for functional networks, and more broadly for a range of region-based functional con-

nectivity approaches. Possible remedies to this problem include starting the analysis

from voxel level and then reducing the dimension of the data by the singular value

decomposition (SVD). Another possible extension to our model is to account for the

over-dispersion problem for the Poisson distribution by setting

Xi,k = ai

p∑
j=1

Yij,k, for i = 1, · · · , p, (3.17)

where ai is a positive integer.

In our meta-analysis of 162 functional neuroimaging emotion studies, we only
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use foci reported from different studies as the dataset. However, those studies may

have different imaging modalities, sample sizes, criteria and thresholds for testing of

statistical significance. To obtain a set of standardized count data, we can consider

a Poisson covariance regression model estimating the co-activations adjusted for the

significance levels and other covariates, which will increase the flexibilities of our

proposed method in application.
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Chapter 4

A Bayesian Spatial Model to

Predict Disease Status Using

Imaging Data from Various

Modalities

4.1 Introduction

Functional and structural neuroimaging play important roles in understanding the

neurological basis for major psychiatric disorders or mental illness such as schizophre-

nia, depression, Alzheimer’s diseases, and Parkinson’s disease (PD). Several methods

have been proposed to make the prediction of follow-up imaging scans based on the

baseline scans (Guo et al., 2008; Derado et al., 2012). However, the classification or

prediction of the disease status based on the imaging data has not been fully inves-

tigated. Though the diagnostic criterion may have been established for the above

diseases, a prediction model can help to reveal the underlying neural basis of the

diseases, thus informing the development of future treatments; in addition, it can be
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used for diagnoses of other diseases which have not been fully studied yet.

To predict the follow-up brain activity based on the baseline functional neuroimag-

ing data, Guo et al. (2008) propose a Bayesian hierarchical model for functional

magnetic resonance imaging (fMRI) and positron emission tomography (PET) data;

Bowman et al. (2008) develop a model which considers inter-regional and intraregional

correlations for analyzing functional neuroimaging data; and Derado et al. (2012) ex-

tends the model by introducing both spatial correlations between voxels and temporal

correlations between baseline and follow-up functional imaging scans. For structural

data, Stonnington et al. (2010) propose a relevance vector regression (RVR) model

to predict the clinical scores using MRI T1 weighted scans.

The most commonly used approaches to predict a single outcome from high-

dimensional data are LASSO (Tibshirant, 1996) and elastic-net (Zou and Hastie,

2005), which perform regularization and variable selection for regression models. Sup-

port vector machine (SVM) classifies the data by constructing an optimal separating

hyperplane in a high dimensional space in which the data are mapped to (Cortes

and Vapnik, 1995). As an alternative to SVM for prediction of high-dimensional

data, Gaussian process (GP) finds the posterior function distribution which is closest

to the training data based on Bayesian theory (Marquand et al., 2010). Ham and

Kwak (2012) propose a boosted-principal component analysis (PCA) algorithm for

binary classification problems, which combines the procedure of feature selection and

classification. However, these methods do not consider the existence of the spatial

correlations in imaging scans or the associations between different imaging modali-

ties, and build the statistical model directly for the prediction purpose rather than

starting from the imaging data.

We propose a novel Bayesian hierarchical model to predict the disease status us-

ing imaging scans of different modalities in both grey and white matter to reflect the

functional as well as the structural properties of the brain. We consider a two-level
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brain parcellation and assume different spatial correlation structures between voxels

within a subregion, within a region, and in different regions. We perform Markov

Chain Monte Carlo (MCMC) estimations via Gibbs sampling. The predictions for

disease status are conducted based on the predictive posterior probabilities. Both

whole-brain and voxel-level prediction are performed using leave-one-out cross vali-

dation (LOOCV). Also, feature selections are conducted to identify the regions that

are associated with the disease based on the voxel-level prediction results. We apply

our approach to a PD study and conduct simulation studies to evaluate its perfor-

mance.

4.2 Parkinson’s Disease Data

A total of 20 subjects, 11 of which are diagnosed as PD patients, and the rest are

healthy controls, are included in the study. The average (± standard deviation) age is

66 (± 11) years old, and 12 of them are males. Resting-state fMRI scans, T1-weighted

MRI scans, and diffusion tensor imaging (DTI) scans are obtained.

We extract voxel-level information from these three types of imaging scans, in-

cluding fractional amplitude of low-frequency fluctuation (fALFF) from resting-state

fMRI scans, voxel base morphometry (VBM) from T1-weighted MRI scans, and frac-

tional anisotropy (FA) from DTI scans. fALFF reflects the amplitude of spontaneous

blood-oxygen-level-dependent (BOLD) signal fluctuations of each voxel. VBM mea-

sures the localized intensity value of each voxel after spatially normalizing all the

images to a standard space, and extracting white or grey matter from the normalized

images (Ashburner and Friston, 1999). FA has a single value for each voxel which

measures the difference in directions along different axes of the random motion of wa-

ter molecules in the brain. In summary, fALFF provides the functional information,

while FA and VBM describe the structural properties of the brain.
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The imaging preprocessing are performed by statistical parametric mapping (SPM)

(Wellcome Department of Cognivite Neurology, http://www.fil.ion.ucl.ac.uk/spm)

and FMRIB (Functional Magnetic Resonance Imaging of the Brain) Software Library

(FSL) (Smith et al., 2004).

4.3 Methods

We propose a novel Bayesian hierarchical model to predict the disease status using

imaging data of different modalities, including fALFF, VBM, and FA. For resting-

state fMRI scans and DTI scans, the functional and structural information lie in grey

matter and white matter, respectively. Most VBM analysis focus on grey matter;

however, VBM in white matter has also been found to be associated psychiatric

diseases such as Alzheimer’s diseases and schizophrenia (Li et al., 2011; Di et al.,

2009). Thus, our prediction model involves the voxels in grey or/and white matter

for different imaging modalities.

4.3.1 Model and Estimation

We consider a two-level brain parcellation consisting of G brain regions defined by

the automated anatomic labeling (AAL) system (Tzourio-Mazoyer et al., 2002). Each

region g consists of Lg subregions, which are built based on the brain parcellation

algorithms described in Appendix E. Each subregion l is composed of Vl voxels. Let

Xilg(v), Yilg(v) and Zilg(v) respectively denote the observed fALFF, FA and VBM for

subject i at voxel v in subregion l region g, for i = 1, . . . , n, v = 1, . . . , Vl, l = 1, . . . , Lg,

g = 1, . . . , G. Let Ng(l) ⊆ {1, . . . , Lg} denote the neighbors of subregion l in region g,

and nlg be the number of members in Ng(l). In our model, all the subregions in region

g are considered as neighbors of subregion l; therefore, we have Ng(l) = {1, . . . , Lg},

and nlg = Lg. Let Di ∈ {0, 1} denote the disease status, where 0 means non-disease;
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and Wi = (Wi1, · · · ,WiQ) denote the covariates, where Q is the number of covariates

in the model. Let B, W and G respectively represent the whole brain region, the

white matter region and the gray matter region.

We propose a model that accounts for the spatial correlations between voxels

within a same subregion, between subregions within a same region, and between re-

gions. First, we assume consistent correlations between voxels in a same subregion.

Then the spatial correlations between subregions within a same AAL region is de-

scribed by a conditional autoregressive (CAR) model, which allows the estimations at

subregion level borrow strength from their neighbors within the same AAL region. In

addition, we introduce unstructured spatial correlations between AAL regions. The

proposed model has the following hierarchical structure:

For any v ∈ G,

[Xilg(v) | Zilg(v), Di,Wi, • ]

∼ N

{∑
k=0,1

[cxzklg(v)(Zilg(v)− Z̄lg(v)) + Wiγ
x
klg(v) + βxklg(v) + αxilg + ηxkg]I(Di = k), δxzlg

}
,

for any v ∈ W ,

[Yilg(v) | Zilg(v), Di,Wi, • ]

∼ N

{∑
k=0,1

[cyzklg(v)(Zilg(v)− Z̄lg(v)) + Wiγ
y
klg(v) + βyklg(v) + αyilg + ηykg]I(Di = k), δyzlg

}
,

for any v ∈ B,

[Zilg(v) | Di,Wi, • ] ∼ N

{∑
k=0,1

(Wiγ
z
klg(v) + βzklg(v) + αzilg + ηzkg)I(Di = k), δzlg

}
,

cxzklg(v) ∼ N(ζxzklg, ω
xz
klg), ζxzklg ∼ N(aζ , bζ), ωxzklg ∼ InvG(aω, bω),

cyzklg(v) ∼ N(ζyzklg, ω
yz
klg), ζyzklg ∼ N(aζ , bζ), ωyzklg ∼ InvG(aω, bω),
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γxklgq(v) ∼ N(0, sxklg), sxklg ∼ InvG(as, bs),

γyklgq(v) ∼ N(0, syklg), syklg ∼ InvG(as, bs),

γzklgq(v) ∼ N(0, szklg), szklg ∼ InvG(as, bs),

βxklg(v) ∼ N{βxklg, λxklg}, λxklg ∼ InvG(aλ, bλ),

βyklg(v) ∼ N{βyklg, λ
y
klg}, λyklg ∼ InvG(aλ, bλ),

βzklg(v) ∼ N{βzklg, λzklg}, λzklg ∼ InvG(aλ, bλ),

[βxklg | {βxkl′g}l′ 6=l, • ] ∼ N

 ρxg
Lg

∑
l′∈Ng(l)

βxkl′g,
φxg
Lg

 ,

[βyklg | {β
y
kl′g}l′ 6=l, • ] ∼ N

 ρyg
Lg

∑
l′∈Ng(l)

βykl′g,
φyg
Lg

 ,

[βzklg | {βzkl′g}l′ 6=l, • ] ∼ N

 ρzg
Lg

∑
l′∈Ng(l)

βzkl′g,
φzg
Lg

 ,

ρxg ∼ U({0, 0.05, 0.1 · · · , 0.8, 0.81, · · · , 0.9, 0.91, · · · , 0.99}), φxg ∼ InvG(aφ, bφ),

ρyg ∼ U({0, 0.05, 0.1 · · · , 0.8, 0.81, · · · , 0.9, 0.91, · · · , 0.99}), φyg ∼ InvG(aφ, bφ),

ρzg ∼ U({0, 0.05, 0.1 · · · , 0.8, 0.81, · · · , 0.9, 0.91, · · · , 0.99}), φzg ∼ InvG(aφ, bφ),

αxilg ∼ N(0, τxlg), τxlg ∼ InvG(aτ , bτ ),

αyilg ∼ N(0, τ ylg), τ ylg ∼ InvG(aτ , bτ ),

αzilg ∼ N(0, τ zlg), τ zlg ∼ InvG(aτ , bτ ),

ηxk = (ηxk1, . . . , η
x
kG)

′ ∼ N(0,Σx
k), Σx

k ∼ InvW(Λ, ν),

ηyk = (ηyk1, . . . , η
y
kG)

′ ∼ N(0,Σy
k), Σy

k ∼ InvW(Λ, ν),

ηzk = (ηzk1, . . . , η
z
kG)

′ ∼ N(0,Σz
k), Σz

k ∼ InvW(Λ, ν),

δxzlg ∼ InvG(aδ, bδ),

δyzlg ∼ InvG(aδ, bδ),

δzlg ∼ InvG(aδ, bδ).
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We assume that the probability of disease status P (Di = ki) is a constant, and

independent of all the parameters. Also, we assume conditional independency among

voxels and different modalities of data. Our model reflects the assumption that for

each voxel v in the grey matter, the fALFF value Xilg(v) follows a normal distribution

conditioning on the VBM value Zilg(v); for each voxel v in the white matter, the FA

value Yilg(v) follows a normal distribution conditioning on the VBM value Zilg(v);

and for each voxel v included in the analysis, the VBM value Zilg(v) follows a normal

distribution. The mean structure of the model is composed of several parameters

given different diseases status, which is denoted by subscript k: cklg(v) is the slope

term for centered VBM values; γklg(v) = (γklg1(v), · · · , γklgQ(v))′ is the covariates’

parameters; βklg(v), αilg, and ηkg are the voxel-level intercept term, subregion level

random effect, and region level intercept term, respectively. Each imaging modality

is assumed to have a same subregion-level variance δlg for both disease status.

The prior belief of the parameters included in the likelihood function is expressed

in the second or lower level of the model. The slope term cklg(v) follows a normal

distribution, whose mean and variance are from noninformative hyperpriors. Each

covariate parameter γklgq(v) is assumed to arise from a normal mean-zero distribu-

tion with variance sklg, which has a noninformative hyperprior distribution. βklg(v)

within a same subregion is assumed to follow a normal distribution with a same mean

βklg, whose distribution will be discussed later, and variance λklg, whose hyperprior

is noninformative. ηk follows a multivariate normal distribution with mean 0 and

covariance matrix Σk which models the spatial dependence between AAL regions

by assuming a unstructured covariance matrix. Spatial associations between voxels

within each subregion are introduced by individual random effect term αilg, which

follows a mean-zero normal distribution with variance τlg, thus assuming same spatial

correlations between voxels in the same subregion.

By assuming a subregion level CAR model, we capture the spatial dependence
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between subregions within each AAL region. In the model, ρg represents the overall

degree of spatial dependence in region g and φg
Lg

is the conditional variance of βklg.

The neighborhood of subregion l, which is in region g, is defined as all the other

subregions in region g in our analysis. The spatial neighborhood effect ρg is assumed

to follow a discrete uniform distribution (Gelfand and Vounatsou, 2003). As we would

like to identify the similarity of the neighboring subregions, we impose 0 ≤ ρg < 1.

Specifically, equal mass is put on the following 36 values: 0, 0.05, 0.1, ..., 0.8, 0.81,

0.82, ..., 0.90, 0.91, 0.92, ..., 0.99, which favors the upper range of ρg The other

hyperpriors are specified accordingly for our model.

It is easy to show that for any diseases status k, the covariance between the

voxels within a same subregion l in region g is contributed by the variance from three

components: βklg, αilg, and ηkg; the covariance between the voxels in two subregions l

and l′, but the same AAL region g, comes from the covariance between βklg and βkl′g,

and the variance of ηkg; and the covariance between the voxels in two AAL regions g

and g′ is determined by the covariance of ηkg and ηkg′ .

We perform estimation using Markov chain Monte Carlo (MCMC) implemented

via Gibbs sampling. The full conditional posterior distributions are derived as shown

in Appendix F.

4.3.2 Prediction

4.3.2.1 Whole Brain Prediction

The objective of our model is to predict the disease status of a subject given imaging

data and other covariates. To achieve this goal, we use the posterior samples from

the estimation step to calculate the posterior predictive probability.

Let θ denote the parameter space, Bi = (Xilg,Yilg,Zilg) denote the observed

imaging data for subject i, Ai = (Bi, Di) denote the combination of the imaging data

and the disease status. Suppose we have n training subjects, and want to predict the
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disease status of the n + 1th subject Dn+1. The posterior predictive distribution for

Dn+1 is given by

P (Dn+1 = k | Bn+1, {Ai}ni=1)

=
P (Dn+1 = k,Bn+1 | {Ai}ni=1)∑

k′=0,1 P (Dn+1 = k′,Bn+1 | {Ai}ni=1)

=
P (Dn+1 = k)

∫
θ
P (Bn+1 | Dn+1 = k,θ)P (θ | {Ai}ni=1)dθ∑

k′=0,1 P (Dn+1 = k′)
∫
θ
P (Bn+1 | Dn+1 = k′,θ)P (θ | {Ai}ni=1)dθ

,

(4.1)

where

P (Bn+1 | Dn+1 = k,θ) =
∏
v∈G

P (Xn+1(v) | Zn+1(v), Dn+1 = k,θ)P (Zn+1(v) | Dn+1 = k,θ)

∏
v∈W

P (Yn+1(v) | Zn+1(v), Dn+1 = k,θ)P (Zn+1(v) | Dn+1 = k,θ),

(4.2)

Suppose we draw a total number of T posterior samples θ(t) from P (θ | {Ai}ni=1), for

t = 1, · · · , T . Let π
(t)
k = P (Bn+1 | Dn+1 = k,θ(t)), the posterior predictive probability

can be expressed by

P̂ (Dn+1 = k | Bn+1, {Ai}ni=1) =
P (Dn+1 = k)

∑T
t=1 π

(t)
k∑

k′=0,1 P (Dn+1 = k′)
∑T

t=1 π
(t)
k

. (4.3)

Then the prediction of Dn+1 is given by

D̂n+1 = arg max
k

(
P (Dn+1 = k)

T∑
t=1

π
(t)
k

)
. (4.4)

To evaluate the performance of our method, we calculate the accuracy rate of

prediction using LOOCV due to the small sample size. Specifically, we use data

A−i = {Au}u6=i to make a prediction of Di, which is denoted by D̂i. The accuracy

rate is defined as the proportion of correct predictions. To obtain D̂i, we compute
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the LOOCV predictive probabilities for i = 1, · · · , n:

P (Di = k | Bi,A−i) =

∫
θ

P (Di = k | Bi,A−i,θ)P (θ | A−i)dθ, (4.5)

which can be estimated via MCMC simulations as in (4.3).

However, the LOOCV is very computational expensive because it involves mul-

tiple posterior simulations with tens of thousands voxels included in the analysis.

Therefore, we employ an importance sampling approach to reduce the computation

of LOOCV of our model (Gelfand et al., 1992; Gelfand, 1996; Alqallaf and Gustafson,

2001; Vehtari and Lampinen, 2002). Specifically, the LOOCV predictive probabilities

can be expressed by

P (Di = k | Bi,A−i) =
P (Di = k)Qkdi∑

k′=0,1 P (Di = k′)Qk′di

, (4.6)

where

Qkdi =

∫
P (Bi | Di = k,θ)

P (Bi | Di = di,θ)
P (θ | {Ai}ni=1)dθ, (4.7)

and di is the observed disease status for subject i. Next, we provide the details of

how Qkdi is derived. The posterior predictive probability can be written as follows:

P (Di = k | Bi,A−i)

=

∫
P (Di = k | Bi,θ)P (θ | Bi,A−i)dθ

=

∫
P (Di = k | Bi,θ)

P (θ | Bi,A−i)

P (θ | Bi, Di = di,A−i)
P (θ | Bi, Di = di,A−i)dθ.

(4.8)
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Note that

P (θ | Bi,A−i)

P (θ | Bi, Di = di,A−i)
=
P (θ,Bi,A−i)P (Bi, Di = di,A−i)

P (Bi,A−i)P (θ,Bi, Di = di,A−i)
=
P (Di = di | Bi,A−i)

P (Di = di | Bi,θ)
.

(4.9)

Therefore,

P (Di = k | Bi,A−i)

P (Di = di | Bi,A−i)
=

∫
P (Di = k | Bi,θ)

P (Di = di | Bi,θ)
P (θ | Bi, Di = di,A−i)dθ

=

∫
P (Bi | Di = k,θ)P (Di = k)

P (Bi | Di = di,θ)P (Di = di)
P (θ | Bi, Di = di,A−i)dθ

:=
P (Di = k)

P (Di = di)
Qkdi .

(4.10)

By using the fact that
∑

k=0,1 P (Di = k | Bi,A−i) = 1, we have

P (Di = di | Bi,A−i) =
P (Di = di)∑

k=0,1 P (Di = k)Qkdi

, (4.11)

thus leading to the above LOOCV predictive probability (4.6). For i = 1, · · · , n and

k = 0, 1, we compute

Q̂kdi =
1

T

T∑
t=1

P (Bi | Di = k,θ(t))

P (Bi | Di = di,θ
(t))

. (4.12)

The estimate of Di is

D̂i = arg max
k

(P (Di = k)Qkdi) . (4.13)

Since there are only two possible values for Di, we only need to calculate P (Bi | Di =

k,θ(t)) and P (Bi | Di = di,θ
(t)), where k 6= di, for each subject i.
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4.3.2.2 Voxel-Level Prediction

Now we use the imaging data Bi(v) = (Xilg(v), Yilg(v), Zilg(v)) for subject i at voxel

v and all the other data A−i = {Au}u6=i to predict the disease status Di for subject

i. Similar to (4.6), the voxel-level LOOCV predictive probabilities can be expressed

by

P (Di = k | Bi(v),A−i) =
P (Di = k)Qkdi∑

k′=0,1 P (Di = k′)Qk′di

, (4.14)

where

Qkdi =

∫
P (Bi(v) | Di = k,θ)/

∑
k′=0,1 P (Bi(v) | Di = k′,θ)P (Di = k′)

P (Bi | Di = di,θ)/
∑

k′=0,1 P (Bi | Di = k′,θ)P (Di = k′)
P (θ | {Ai}ni=1)dθ,

(4.15)

which is estimated by

Q̂kdi =
1

T

T∑
t=1

P (Bi(v) | Di = k,θ(t))/
∑

k′=0,1 P (Bi(v) | Di = k′,θ(t))P (Di = k′)

P (Bi | Di = di,θ
(t))/

∑
k′=0,1 P (Bi | Di = k′,θ(t))P (Di = k′)

.

(4.16)

Then the estimate of Di is

D̂i = arg max
k

(P (Di = k)Qkdi) , (4.17)

which is equivalent to

D̂i = arg max
k

(
P (Di = k)

1

T

T∑
t=1

P (Bi(v) | Di = k,θ(t))

)
. (4.18)

Qkdi is derived in the similar way as in the whole brain analysis. Let Bi(v̄) denote

all the imaging data in the brain except voxel v. First, we write out the posterior
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predictive probability:

P (Di = k | Bi(v),A−i)

=

∫
P (Di = k | Bi(v),θ)P (θ | Bi(v),A−i)dθ

=

∫
P (Di = k | Bi(v),θ)

P (θ | Bi(v),Bi(v̄),A−i)

P (θ | Bi(v),Bi(v̄), Di = di,A−i)
P (θ | Bi(v),Bi(v̄), Di = di,A−i)dθ,

(4.19)

in which

P (θ | Bi(v),Bi(v̄),A−i)

P (θ | Bi,Bi(v̄), Di = di,A−i)
=
P (θ,Bi,A−i)P (Bi, Di = di,A−i)

P (Bi,A−i)P (θ,Bi, Di = di,A−i)
=
P (Di = di | Bi,A−i)

P (Di = di | Bi,θ)
.

(4.20)

Thus,

P (Di = k | Bi(v),A−i)

P (Di = di | Bi,A−i)

=

∫
P (Di = k | Bi(v),θ)

P (Di = di | Bi,θ)
P (θ | Bi, Di = di,A−i)dθ

=

∫
P (Bi(v) | Di = k,θ)P (Di = k)/P (Bi(v) | θ)

P (Bi | Di = di,θ)P (Di = di)/P (Bi | θ)
P (θ | Bi, Di = di,A−i)dθ

:=
P (Di = k)

P (Di = di)
Qkdi ,

(4.21)

which leads to (4.14).

The voxel-level prediction result can be used as a way to select the regions that

are highly associated with the disease status if the accuracy rate of prediction is high

in these regions. A more sophisticated way to perform feature selection using our

model is discussed in section 4.5.
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4.4 Results

4.4.1 Parkinson’s Disease Data

We applied our proposed Bayesian spatial model to PD data, which has T1 and

resting-state fMRI images available; therefore, our model is reduced to the model

which includes two imaging modalities, VBM and fALFF, and only considers data in

the grey matter. Our goal is to make a whole-brain prediction of the disease status

using the imaging data and discuss the voxel-level prediction as well. By evaluating

the accuracy rate of the prediction at each voxel, we will be able to identify the regions

that are highly associated with Parkinson’s disease, as an alternative way to perform

feature selection.

In the estimation procedure, the hyperparameters for prior distribution are set to

provide vague information to ensure that the results are dominated by the information

in the data. Specifically, all the hyperparameters in the inverse-gamma distribution

are set to 10−3 (Spiegelhalter et al., 1994, 2003), the normal prior for ζklg is assumed

to have mean aζ = 0 and variance bζ = 105. In the inverse-Wishart distribution, the

degrees of freedom ν should be greater than G− 1 to build a proper distribution, so

we set ν = G, which provides the least information based on our data. The scale

matrix Λ is set as 10−3 × IG, where IG is a G×G identity matrix.

We perform a total of 10,000 MCMC iterations including 5,000 burn-in iterations,

and store the results thinning by 10. Due to the huge amount of parameters included

in our model, it is unrealistic to check the convergency of each parameter. We ran-

domly check the trace plots for the parameters at voxel-level, subregion-level, and

region-level, respectively, and some examples are presented in Appendix G.

After estimating the model parameters, we perform a whole-brain and voxel-level

prediction using posterior samples based on procedures described in section 4.3.2.

Here, we have a total of 500 posterior samples. By assuming an equal probability for



87

Figure 4.1: The distribution of average accuracy rates for prediction across subjects
for all the voxels included in the analyses.

Table 4.1: Summary of average accuracy rates for prediction across subjects.

Accuracy rate [80%, 85%) [85%, 90%) [90%, 95%) [95%, 100%) 100%
Number of voxels 5993 9663 12878 14236 12764

(Percentage) (9.97%) (16.07%) (21.42%) (23.68%) (21.23%)

disease and non-disease, our model achieves 100% accuracy rate in the whole-brain

prediction based on LOOCV.

The results from voxel-level prediction provide interesting information as well.

The highest voxel-level accuracy rate is 100%, and the lowest is 50%. Figure 4.1

shows the distribution of the average accuracy rate across subjects for all the voxels

included in the analysis, and Table 4.1 gives the number of voxels that achieves high

accuracy rates. Also, an average whole-brain prediction map based on the results

from voxel-level prediction across subjects are presented in Figure 4.2.

To identify the regions which are predictive for the disease status, we compute

the average accuracy rates across voxels within a region. The right rectus, which is

associated with cognitive impairment in PD patient, and is shown to have different
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Figure 4.2: The average prediction map based on the voxel-level prediction results
across subjects.

grey matter density between PD and controls (Nagano-Saito et al., 2005), is identified

in our analysis. Not surprisingly, we find the bilateral caudate and the left putamen

as regions with accurate predictions since PD is caused by the loss of dopaminergic

neurons in the substantia nigra that project to striatal neurons in the caudate nucleus

and putamen (Spencer et al., 1992). The right fusiform gyrus, which is believed to

related to impaired ability to correctly identify negative facial expressions (Geday et

al., 2006), and the left inferior parietal lobule which is involved in the perception of

emotions in facial stimuli, may play a role of differentiating healthy controls and PD

patients as well. In addition to fusiform and inferior parietal lobule, other regions

which are involved in face perception such as the right mid-temporal pole is also

identified. The left postcentral gyrus, the left superior parietal lobule, and the right

superior medial frontal gyrus also standout since all of them are parts of the sensory

system. A region-level prediction map based on the average accuracy rates across

voxels within a region is shown in Figure 4.3.
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Figure 4.3: The region-level prediction map based on the average accuracy rates
across voxels within a region.

4.4.2 Simulation Studies

We conduct a simulation study to evaluate the performance of our proposed model.

The purpose of this simulation study is to show that the MCMC samplers generated

from our model is close to the true values, also the whole-brain prediction is accurate.

In addition, our model can distinguish the regions that are predictive for disease

status.

We assume that the imaging data is generated from the likelihood function of

our model. We simulate data for 25 subjects from three AAL regions, the number

of subregions within an AAL region has a mean and variance of 3, and the number

of voxels within a subregion has a mean and variance of 50. Here, we specify the

true values for the parameters in the likelihood function, i.e., cklg(v), γklg(v), βklg(v),

αilg, ηkg, and δlg, which are the most relevant parameters for voxel-level inference and

future prediction. In this way, we can compare our posterior estimations with specified

true values. All the other parameters are updated from the posterior distributions.

And the hyperparameters are set as same as in the real data application. We select

some of the subregions to be the regions that are associated with the disease, and
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a region is classified into this category if it contains those selected subregions. We

set different true values of parameters for disease and non-disease group if they are

within the pre-specified regions, otherwise assume same true values for two groups.

A total of 100 data sets are drawn in the simulation study.

First, we evaluate the posterior estimations by comparing the posterior means

to the true values. Instead of examining a total of five thousand parameters which

have known true values separately, we calculate the mean structure and variance

of the likelihood function from posterior samplings and compare them to the truth

since they are the most essential parts for inferences and predictions. The average

bias (percentage change) in mean structure is 3.52 × 10−2 (0.54%), and in variance

is 1.04 × 10−5 (1.04%). Secondly, we calculate the accuracy rate of a whole-brain

prediction. The LOOCV achieves 100% for the whole-brain prediction for all 100

simulated data sets. Thirdly, we identify the regions that are highly associated with

the disease status by evaluating the voxel-level accuracy rates for prediction. We

compare the average accuracy rates for voxel-level prediction between the pre-specified

regions and the others. Within the pre-specified regions, the average accuracy rate is

99.8%; for voxels which are in the other regions, the average accuracy rate is 71.7%.

Here, we can see an improvements in prediction when voxels are from the pre-specified

regions.

In summary, our model accurately perform posterior estimation with small bias,

perfectly predict the disease status with the whole-brain imaging data, and correctly

identify the regions that are highly associated with disease.

4.5 Discussion

We propose a Bayesian spatial model to predict the disease status of a subject using

different modalities of imaging data, including fALFF, VBM and FA in grey and white
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matter. Our framework perform voxel-level estimation for imaging data and conduct

the whole-brain and voxel-level prediction of disease status based on the posterior

predictive probabilities. Our model demonstrates the ability of estimating the mean

and variance structures of the imaging data, predicting the disease status using the

whole-brain imaging data, and identifying the regions which are highly associated

with the disease based on voxel-level prediction results.

In our framework, we consider the spatial correlations at voxel level, subregion

level, and region level, and specify different correlation structures such as exchange-

able, CAR, and unstructured correlation matrices for them. Specifically, the intra-

subregion correlation is described by a single value within each subregion; the inter-

subregion correlation is modeled by a CAR model which borrows information from

the subregions within a same AAL region; the inter-region correlation is assumed to

have a unstructured correlation matrix.

We derive the posterior predictive probability using the whole brain data and data

from a single voxel. Due to the complexity of computation, we adopt an importance

sampling strategy to conduct LOOCV. We evaluate the accuracy rate of the whole-

brain prediction and identify the regions that are predictive for disease based on the

results from voxel-level accuracy rates.

One weakness of our method is the computational time. Since we are performing

voxel-level estimation and the huge number of voxels included in our studies leads to

a total of millions of parameters to estimate. However, by applying the importance

sampling strategy, we only need to perform the posterior estimation once, and then

the posterior predictive probabilities can be computed fairly efficiently.

Comparing to the existing feature selection methods, e.g., LASSO or elastic-net,

our model uses different modeling strategy and criteria for selections. LASSO and

elastic-net approaches model the probability of disease status, while our method starts

from the imaging data. Also, we use posterior predictive probability as the criteria
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to select the features, which is the exact target of the prediction problems; on the

other hand, LASSO and elastic-net, from Bayesian perspective, use posterior mode

to perform feature selections.

In our proposed method, we select the features based on the posterior predictive

probability of each single voxel; ideally, we would like to identify the voxels v ∈ V s.t.

P (Di = k | {Bi(v)}v∈V ,A−i) = P (Di = k | Bi,A−i), (4.22)

which could be a possible extension of our proposed approach.

For Parkinson’s disease, there have been established criterion to perform diagnos-

tics. Although prediction model may not serve as a practical way to diagnose the

patient, it helps to understand the underlying neurological information of the disease,

and to develop the effective treatment based on the findings from our model. Also,

this model can be applied to the diseases which have not been fully investigated yet.

Moreover, our model can be applied to the problem of predicting clinical responses

to treatment based on different sources of imaging scans.
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Chapter 5

Summary and Future Work

5.1 Summary

In this dissertation, we propose three statistical models for two important problems

in the neuroimaging studies: functional connectivity and prediction.

In the first part of this dissertation, a Bayesian model is proposed to evaluate

the functional connectivity in the human brain with additional information from

structural imaging scans. The structural connectivity extracted from the DTI scans

is used as a prior for estimating the functional connectivity, which is measured by

the concurrence of elevated brain activities for BOLD signal from fMRI scans. In

addition, we develop two measurements: functional coherence and ascendancy, one

to capture the functional connectivity, the other to describe the functional hierarchy

relationship between regions. Also, we make task-related inferences based on these

two metrics.

The second model addresses another type of functional connectivity problem: the

co-activation patterns in the meta analysis of functional neuroimaging studies. We

model the number of activated coordinates in each region reported by different papers

using an extension of the multivariate Poisson model by including a penalty to ac-
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count for the sparsity of the functional network in the human brain. The co-activation

patterns are characterized by the covariance between each region pair, and the func-

tional network is built based on the estimated covariance. We perform statistical

testings using permutation tests to evaluate the statistical significance of identified

functional network and marginal co-activations for region pairs.

In the last part of this dissertation, we propose a Bayesian spatial model to predict

the disease status using imaging containing both functional and structural informa-

tion. We consider a two-level brain parcellation, and take into account three levels of

spatial correlations. We perform prediction of disease status based on the estimation

of imaging data using posterior predictive probabilities. Both whole-brain and voxel-

level prediction results are obtained via importance sampling strategy. The voxel-level

results are used as a criteria to identify the regions that are highly associated with

the disease.

5.2 Future Work

In the first part of this dissertation, we perform analysis at region level which includes

90 AAL regions. A possible extension is to define a finer parcellation to create sub-

regions within each AAL region. Also, we use a fixed function to link the structural

and functional information of the data together. Alternatively, we can think about

estimating function either in a empirical way or in a model framework.

In the penalized multivariate Poisson model, we may take into account the over-

dispersion problem for Poisson distribution by multiplying a coefficient to the sum of

the independent Poisson variables. Also, we can work on the algorithms to simplify

it in order to reduce the computational time.

For the prediction model, we identify the regions that are highly associated with

the disease based on the voxel-level prediction results. A more statistically precise



95

way to perform feature selections is to start from the posterior predictive probabilities,

and select the subset of the voxels which achieves closest probability to the predictive

probability which uses the whole brain data. Also, we would like to extend our model

to predict post-treatment clinical responses from the imaging data.
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Appendices

Chapter 3 Appendices

Appendix A: A Review of the Multivariate Poisson Distribu-

tion

Suppose we have a random vector composed of 2p−1 random variables Y = {Ym}m∈Sp ,

where Sp = ({1}, · · · {p}, {12}, · · · {12 · · · p}), and Ym, for m ∈ Sp, independently fol-

low Poisson distributions with nonnegative parameter λm, respectively. Then a mul-

tivariate Poisson random vector X = (X1, · · · ,Xp) can be represented as X = AY,

where A is a p × (2p − 1) matrix with zeros and ones. Denote A = [A1, · · · ,Ap],

where Ai is a matrix of dimensions p × Ci
p, and each column has i ones and p − i

zeros. Each Xi marginally follows a Poisson distribution. For example, (X1,X2,X3)

have a multivariate Poisson distribution with parameters {λm}m∈S3 in which

A1 =


1 0 0

0 1 0

0 0 1

 , A2 =


1 1 0

1 0 1

0 1 1

 , and A3 =


1

1

1

 .
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The corresponding relationship between X and Y can be described as

X1 = Y1 + Y12 + Y13 + Y123

X2 = Y2 + Y12 + Y23 + Y123

X3 = Y3 + Y13 + Y23 + Y123,

(6.1)

where {Ym}m∈S3 are independent Poisson random variables with parameters {λm}m∈S3 .

In this trivariate case, λij is the covariance parameter between Xi and Xj, and λ123 is

a 3-way interaction parameter. The mean vector and covariance matrix can be written

as E(X) = AM and Cov(X) = AΣA′, where M = (λ1, · · · , λ123)′ is the mean vector

of Y and Σ = diag {λ1, · · · , λ123} is the covariance matrix of Y (Mahamunulu, 1967;

Loukas and Kemp, 1983; Johnson et al., 1997; Krummenauer 1998). In our model

specifications, we make small modifications of the notions that are described above,

Yi is equivalent to Yii, and λi is equivalent to λii.

Appendix B: Derivation of the joint probability function in

(3.6)

Since elements inYk are independent, the joint probability function P (Y12,k, X1,k, X2,k)

in (3.6) can be expressed as

P (Y12,k = y12,k, X1,k = x1,k, X2,k = x2,k)

=P (Y12,k = y12,k, Y11,k = x1,k − y12,k, Y22,k = x2,k − y12,k)

=e−λ12
λ
y12,k
12

y12,k!
e−λ11

λ
x1,k−y12,k
11

(x1,k − y12,k)!
e−λ22

λ
x2,k−y12,k
22

(x2,k − y12,k)!

(6.2)

This probability function can also be solved using the following recursive expression

P (Y12,k, X1,k, X2,k) =
λ12

λ11λ22

∏2
i=1(xi,k − y12,k + 1)

y12,k
P (Y12,k − 1, X1,k, X2,k), (6.3)
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which reduces the computation time.

Appendix C: Derivation of the joint probability function in

(3.11)

We use the relation revealed in (3.8) and the independence among Yij,k’s to obtain

the joint probability function P (Yij,k, Xi,k, Xj,k) in (3.11) as follows:

P (Yij,k = yij,k, Xi,k = xi,k, Xj,k = xj,k)

=P (Yij,k = yij,k,
∑
s 6=j

Yis,k = xi,k − yij,k,
∑
s 6=i

Yjs,k = xj,k − yij,k)

=e−λij
λ
yij,k
ij

yij,k!
e−

∑
s 6=j λis

(
∑

s 6=j λis)
xi,k−yij,k

(xi,k − yij,k)!
e−

∑
s 6=i λjs

(
∑

s 6=i λjs)
xj,k−yij,k

(xj,k − yij,k)!

(6.4)

Similarly, we can find the following recursive relationship to reduce the computation

time.

P (Yij,k, Xi,k, Xj,k)

=
λij

(
∑

s 6=j λis)(
∑

s 6=i λjs)

(xi,k − yij,k + 1)(xj,k − yij,k + 1)

yij,k
P (Yij,k − 1, Xi,k, Xj,k),

(6.5)

Appendix D: Derivation of the conditional probability in (3.15)

The conditional probability in (3.15) extends that in (3.11) because here we consider

the probability of all the components of Yk, conditioning on the entire set of elements

in Xk. Using Bayes’ theorem, we can express the conditional probability P (Y|X) as
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follows:

P (Y|X) = P (Y12, · · · , Y1p, Y23, · · · , Y2p, · · · , Y(p−1),p|X1, · · · , Xp)

=
∏
i<j

P (Yij|{Yij′}j′>j, {Yi′j}i′>i,i′ 6=j, Xi, Xj)

=
P (Yij = yij,

∑
j′<j Yij′ = xi −

∑
j′≥j yij′ ,

∑
i′<i Yi′j + Yjj = xj −

∑
i′≥i,i′ 6=j yi′j)∑

yij
P (Yij = yij,

∑
j′<j Yij′ = xi −

∑
j′≥j yij′ ,

∑
i′<i Yi′j + Yjj = xj −

∑
i′≥i,i′ 6=j yi′j)

,

(6.6)

where we drop the contrast index k for simplicity. The joint probability function in

the numerator of (6.6) can be simplified as follows:

P (Yij = yij,
∑
j′<j

Yij′ = xi −
∑
j′≥j

yij′ ,
∑
i′<i

Yi′j + Yjj = xj −
∑

i′≥i,i′ 6=j

yi′j)

=exp(−λij −
∑
j′<j

λij′ − λjj −
∑
i′<i

λi′j)

×
λ
yij
ij

yij!

(
∑

j′<j λij′)
xi−

∑
j′≥j yij′

(xi −
∑

j′≥j yij′)!

(λjj +
∑

i′<i λi′j)
xj−

∑
i′≥i,i′ 6=j yi′j

(xj −
∑

i′≥i,i′ 6=j yi′j)!
,

(6.7)

and further if we denote P (Yij,
∑

j′<j Yij′ ,
∑

i′<i Yi′j + Yjj) by q(Yij), then we obtain

the recursive expression

q(Yij) =
λij
yij

(xi −
∑

j′>j yij′ − yij + 1)∑
j′<j λij

(xj −
∑

i′>I,i′ 6=j yi′j − yij + 1)

λjj +
∑

i′<i λi′j
q(Yij − 1). (6.8)

Chapter 4 Appendices

Appendix E: Brain parcellation

The brain parcellation is based on the AAL regions, of which the first 90 are of

interest. We treat each region independently, and utilize a hierarchical clustering

algorithm with average linkage to construct subregions. The number of clusters in

each region is chosen based on the desired granularity of the sub-parcellation. We
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consider both white and gray matter voxels, with a goal of developing a parcellation

such that each subregion consists of both tissue-types. To enforce the restriction

that subregions should be composed of physically contiguous voxels, we consider a

distance matrix based on the Manhattan distance between voxels. However, using

this criterion alone will yield numerous ties. Therefore, we use information derived

from resting-state fMRI and DTI data to inform tie-breaking. Specifically, assume

dig represents the Manhattan distance between voxels i and j. Then, we can define

our distance matrix as:

Dij =


dij + (1− FCij) if i ∈ G, j ∈ G

dij + (1− SCij) if i ∈ W , j ∈ W

dij otherwise

(6.9)

Specifically, we allow gray matter voxel pairs to be informed by their functional con-

nectivity, which is derived from the Pearson correlation between voxel time series.

For white matter voxel pairs, we utilize DTI information; we consider the Pearson

correlation between “connectivity profiles”, which are based on probabilistic tractog-

raphy implemented through FSL. For voxel pairs composed of different tissue types,

we cannot use fMRI or DTI directly. Instead, we ignore the issue of ties for these

voxels; as a consequence, the algorithm is partial to fusing voxels composed of dif-

ferent tissue types, and we tend to get resulting subregions with a greater balance of

tissue composition.

Appendix F: Posterior distributions

We present the full conditional posterior distributions for Gibbs sampling. Here, we

take the parameters with superscript xz as examples, parameters with other super-

scripts can be derived similarly. Let ξ denote all the parameters except ξ. Denote

Z̃ilg(v) = Zilg(v) − Z̄lg(v). Then the full conditional posterior distributions can be
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derived as follows:

(1) [cklg(v) | Xlg(v),Ylg(v),Zlg(v),D,W, cklg(v) ]

∝ [Xlg(v) | Zlg(v),D,W, cklg(v), cklg(v) ] [cklg(v) | cklg(v) ]

∝exp

− 1

2δlg

n∑
i=1

{
Xilg(v)−

∑
k=0,1

[cklg(v)Z̃ilg(v) + Wiγklg + βklg(v) + αilg + ηkg]I(Di = k)

}2

− 1

2ωklg
(cklg(v)− ζklg)2

}
∝ N

(
µcklg(v), σ

2
cklg(v)

)
µcklg(v) =

ωklg
∑n

i=1 I(Di = k)Z̃ilg(v)
{
Xilg(v)−Wiγklg − βklg(v)− αilg − ηkg

}
+ δlgζklg

ωklg
∑n

i=1 I(Di = k)Z̃ilg(v)2 + δlg

σ2
cklg(v)

=
δlgωklg

ωklg
∑n

i=1 I(Di = k)Z̃ilg(v)2 + δlg

(2) [γklgq(v) | Xlg(v),Ylg(v),Zlg(v),D,W, γklgq(v) ]

∝ [Xlg(v) | Zlg(v),D,W, γklgq(v), γklgq(v) ] [γklgq(v) | γklgq(v) ]

∝exp

{
−
γ2klgq(v)

2sklg

− 1

2δlg

n∑
i=1

{
Xilg(v)−

∑
k=0,1

[cklg(v)Z̃ilg(v) +

Q∑
q=1

Wiqγklgq(v) + βklg(v) + αilg + ηkg]I(Di = k)

}2


∝exp

{
− 1

2δlg

n∑
i=1

I(Di = k)
{
W 2
iqγ

2
klqg(v)

−2Wiqγklgq(v)[Xilg(v)− cklg(v)Z̃ilg(v)− βklg(v)− αilg − ηkg −
∑
q′ 6=q

Wiq′γklgq′(v)]

}
−
γ2klgq(v)

2sklg

}

∝N
(
µγ, σ

2
γ

)

µγ =

sklg

n∑
i=1

I(Di = k)

(
Wiq[Xilg(v)− cklg(v)Z̃ilg(v)− βklg(v)− αilg − ηkg −

∑
q′ 6=q

Wiq′γklgq′(v)]

)
sklg

∑n
i=1 I(Di = k)W 2

iq + δlg

σ2
γ =

δlgsklg
sklg

∑n
i=1 I(Di = k)W 2

iq + δlg
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(3) [βklg(v) | Xlg(v),Ylg(v),Zlg(v),D,W, βklg(v) ]

∝ [Xlg(v) | Zlg(v),D,W, βklg(v), βklg(v) ] [βklg(v) | βklg(v) ]

∝exp

− 1

2δlg

n∑
i=1

{
Xilg(v)−

∑
k=0,1

[cklg(v)Z̃ilg(v) + Wiγklg + βklg(v) + αilg + ηkg]I(Di = k)

}2

−(βklg(v)− βklg)2

2λklg


∝N

(
µβklg(v), σ

2
klg(v)

)
µβklq(v) =

λklg
∑n

i=1 I(Di = k)[Xilg(v)− cklg(v)Z̃ilg(v)−Wiγklg − αilg − ηkg] + βklgδlg

λklg
∑n

i=1 I(Di = k) + δlq

σ2
βklg(v)

=
δlgλklg

λklg
∑n

i=1 I(Di = k) + δlg

(4) [αilg | Xilg(v), Yilg(v), Zilg(v), Di,Wi, αilg ]

∝
∏
v∈l

[Xilg(v) | Zilg(v), Di,Wi, αilg, αilg ] [αilg | αilg ]

∝exp

− 1

2δlg

∑
v∈l

{
Xilg(v)−

∑
k=0,1

[cklg(v)Z̃ilg(v) + Wiγklg + βklg(v) + αilg + ηkg]I(Di = k)

}2


exp

(
−
α2
ilg

2τlg

)
∝N

{
τlg
∑

v∈l[Xilg(v)− cklg(v)Z̃ilg(v)−Wiγklg − βklg(v)− ηkg]
τlgVlg + δlg

,
δlgτlg

τlgVlg + δlg

}

∝N
(
µαilg , σ

2
αilg

)
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(5) [δlg | Xlg(v),Ylg(v),Zlg(v),D,W, δlg ]

∝
∏
v∈l

[Xlg(v) | Zlg(v),D,W, δlg, δlg ] [δlg | δlg ]

∝exp

− 1

2δlg

n∑
i=1

∑
v∈l

{
Xilg(v)−

∑
k=0,1

[cklg(v)Z̃ilg(v) + Wiγklg + βklg(v) + αilg + ηkg]I(Di = k)

}2

− bδ
δlg

}
× δ−

nVlg
2
−aδ−1

lg

∝InvG (a, b)

a = aδ +
nVlg

2

b = bδ +

n∑
i=1

∑
v∈l

{
Xilg(v)− [cklg(v)Z̃ilg(v) + Wiγklg + βklg(v) + αilg + ηkg]

}2

2

(6) [ζklg | Xlg(v),Ylg(v),Zlg(v),D,W, ζklg ]

∝
∏
v∈l

[cklg(v) | Xlg(v),Zlg(v),D,W, ζklg, ζklg ] [ζklg | ζklg ]

∝exp

{
− 1

2ωklg

∑
v∈l

(cklg(v)− ζklg)2 −
1

2bζ
(ζklg − aζ)2

}

∝N

(
bζ
∑

v∈l cklg(v) + ωklgaζ

Vlgbζ + ωklg
,

ωklgbζ
Vlgbζ + ωklg

)

(7) [ωklg | Xlg(v),Ylg(v),Zlg(v),D,W, ωklg ]

∝
∏
v∈l

[cklg(v) | Xlg(v),Zlg(v),D,W, ωklg, ωklg ] [ωklg | ωklg ]

∝exp

{
− 1

2ωklg

∑
v∈l

(cklg(v)− ζklg)2 −
bω
ωklg

}
ω
−
Vlg
2
−aω−1

klg

∝InvG

(
aω +

Vlg
2
, bω +

∑
v∈l (cklg(v)− ζklg)2

2

)



104

(8) [sklg | Xlg(v),Ylg(v),Zlg(v),D,W, sklg ]

∝
∏
v∈l

[γklg(v) | Xlg(v),Zlg(v),D,W, sklg, sklg ] [sklg | sklg ]

∝exp

{
− 1

2sklg

∑
v∈l

Q∑
q=1

γ2klgq(v)− bs
sklg

}
s
−Q×Vlg/2−as−1
klg

∝InvG

(
as +

Q× Vlg
2

, bs +

∑
v∈l
∑Q

q=1 γ
2
klgq(v)

2

)

(9) [βklg | Xlg(v),Ylg(v),Zlg(v),D,W, βklg ]

∝
∏
v∈l

[βklg(v) | Xlg(v),Zlg(v),D,W, βklg, βklg ] [βklg | βklg ]

∝exp

− 1

2λklg

∑
v∈l

(βklg(v)− βklg)2 −
nlg
2φg

βklg − ρg
nlg

∑
l′∈Ng(l)

βkl′g

2
∝N

(
φg
∑

v∈l βklg(v) + λklgρg
∑

l′∈Ng(l) βkl′g

Vlgφg + nlgλklg
,

λklgφg
Vlgφg + nlgλklg

)

(10) [λklg | Xlg(v),Ylg(v),Zlg(v),D,W, λklg ]

∝
∏
v∈l

[βklg(v) | Xlg(v),Zlg(v),D,W, λklg, λklg ] [λklg | λklg ]

∝exp

{
− 1

2λklg

∑
v∈l

(βklg(v)− βklg)2 −
bλ
λklg

}
λ
−
Vlg
2
−aλ−1

klg

∝InvG

(
aλ +

Vlg
2
, bλ +

∑
v∈l (βklg(v)− βklg)2

2

)

(11) [τlg | Xlg(v),Ylg(v),Zlg(v),D,W, τ lg ]

∝ [αlg | Xlg(v),Zlg(v),D,W, τlg, τ lg ] [τlg | τ lg ]

∝exp

{
− 1

2τlg

n∑
i=1

α2
ilg −

bτ
τlg

}
τ
−n

2
−aτ−1

lg

∝InvG

(
aτ +

n

2
, bτ +

∑n
i=1 α

2
ilg

2

)
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(12) [φg | Xlg(v),Ylg(v),Zlg(v),D,W, φg ]

∝
∏
l∈g

[β0lg,β1lg | Xlg(v),Zlg(v),D,W, φg, φg ] [φg | φg ]

∝exp

− 1

2φg

∑
k=0,1

∑
l∈g

nlg

βklg − ρg
nlg

∑
l′∈Ng(l)

βkl′g

2

− bφ
φg

φ
−Lg−aφ−1
g

∝InvG

aφ + Lg, bφ +

∑
k=0,1

∑
l∈g nlg

(
βklg − ρg

nlg

∑
l′∈Ng(l) βkl′g

)2
2


(13) [ρg | Xlg(v),Ylg(v),Zlg(v),D,W, ρg ]

∝
∏
l∈g

[β0lg,β1lg | Xlg(v),Zlg(v),D,W, ρg, ρg ] [ρg | ρg ]

∝exp

− 1

2φg

∑
k=0,1

∑
l∈g

nlg

βklg − ρg
nlg

∑
l′∈Ng(l)

βkl′g

2
∝exp

− 1

2φg

ρ2g ∑
k=0,1

∑
l∈g

(∑
l′∈Ng(l) βkl′g

)2
nlg

− 2ρg
∑
k=0,1

∑
l∈g

βklg
∑

l′∈Ng(l)

βkl′g




∝L(ρg)

Suppose ρg follows a discrete uniform distribution. In our analysis, ρg can take 36

values {m1, · · ·mn}. Denote the posterior probability of ρg as {p1, · · · , pn}, then

pj =
L(ρg = mj)

L(ρg = m1) + · · ·+ L(ρg = mn)
.



106

(14) Let βkg =
(
βk1g(v1), · · · , βk1g(vV1g), βk2g(v1) · · · , βkLgg(vVLg g)

)T
denote all the

voxels in region g; define ckg, γkg, Xig and Zig in the same way; Vg =
∑Lg

l=1 Vlg denote

the number of voxels in region g; αig = (αi1g, · · · , αiLgg)T ; ∆g = diag(∆1g, · · · ,∆Lgg),

where ∆lg = IVlg ⊗ δlg; � denote Hadamard product.

[ηk | Xlg(v),Ylg(v),Zlg(v),D,W,ηk ]

∝ [Xlg(v) | Zlg(v),D,W,ηk,ηk ] [ηk | ηk ]

∝
n∏
i=1

N

(∑
k=0,1

[cklg(v)Z̃ilg(v) + Wiγklg(v) + βklg(v) + αilg + ηkg]I(Di = k), δlg

)
N (0,Σk)

∝exp

{
−1

2
ηTkΣ−1k ηk

}
exp

{
−1

2

N∑
i=1

G∑
g=1

{
Xig −

∑
k=0,1

{
ckg � Z̃ig + Wiγkg + βkg +

(
1TV1g , · · · ,1

T
VLgg

)T
⊗αig + 1Vgηkg

}
I(Di = k)}T ∆−1g{

Xig −
∑
k=0,1

{
ckg � Z̃ig + Wiγkg + βkg +

(
1TV1g , · · · ,1

T
VLgg

)T
⊗αig + 1Vgηkg

}
I(Di = k)

}}

∝exp

{
−1

2
ηTkΣ−1k ηk

}
exp

{
−1

2

N∑
i=1

G∑
g=1

{∑
k=0,1

1VgηkgI(Di = k)−

(
Xig −

∑
k=0,1

{
ckg � Z̃ig + Wiγkg + βkg +

(
1TV1g , · · · ,1

T
VLgg

)T
⊗αig

}
I(Di = k)

)
︸ ︷︷ ︸

=:tg



T

∆−1g

(∑
k=0,1

1VgηkgI(Di = k)− tg

)}
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∝exp

{
−1

2
ηTkΣ−1k ηk

}

exp

−
1

2

N∑
i=1

G∑
g=1

{∑
k=0,1

1VgηkgI(Di = k)

}T

∆−1g

{∑
k=0,1

1VgηkgI(Di = k)

}
︸ ︷︷ ︸

I

−
N∑
i=1

G∑
g=1

{∑
k=0,1

1VgηkgI(Di = k)

}T

∆−1g tg︸ ︷︷ ︸
II


I =ηTk diag


n∑
i=1

I(Di = k)

L1∑
l=1

[δ−1l1 Vl1], · · · ,
n∑
i=1

I(Di = k)

LG∑
l=1

[δ−1l1 VlG]︸ ︷︷ ︸
Ωηk

ηk

II =ηTk
(
Pηk1 , · · · , PηkG

)′︸ ︷︷ ︸
Pηk

Pηkg =
n∑
i=1

I(Di = k)

Lg∑
l=1

[δ−1lg

Vlg∑
v=1

(
Xilg(v)− cklg(v)Z̃ilg(v)−Wiγklg − βklg(v)− αilg

)
]

Then

[ηk | Xlg(v),Ylg(v),Zlg(v),D,W,ηk ]

∝exp

{
−1

2
ηTk (Σ−1k + Ωηk)ηk − 2ηkPηk

}
∝N

(
(Σ−1k + Ωηk)

−1Pηk , (Σ
−1
k + Ωηk)

−1)
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(15) [Σk | Xlg(v),Ylg(v),Zlg(v),D,W,Σk ]

∝ [ηk | Xlg(v),Zlg(v),D,W,Σk,Σk ] [Σk | Σk ]

∝|Σk|−
1
2 exp

{
−1

2
ηTkΣ−1k ηk

}
|Σk|−

ν+G+1
2 exp

{
−1

2
tr(ΛΣ−1k )

}
∝|Σk|−

ν+G+2
2 exp

{
−1

2
tr
(
Λ + ηkη

T
k

)
Σ−1k

}
∝InvW

(
Λ + ηkη

T
k , ν + 1

)

Appendix G: Trace plots

Figure 6.1: Trace plots for selected voxel-level, subregion-level, and region-level pa-
rameters from posterior sampling.
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