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Abstract 

Macrolide Resistance in Streptococcus pneumoniae 

By Max R. Schroeder 

 

Streptococcus pneumoniae, the pneumococcus, is an obligate commensal of the 

human nasopharynx, but an important opportunistic pathogen. The explosive, widespread 

use of macrolides in the last thirty years has been a strong selective pressure contributing 

to the expansion of macrolide-resistant S. pneumoniae. Macrolide resistance in 

pneumococci is primarily due to ribosomal methylation by a methyltransferase encoded 

by erm(B) and an efflux system encoded by mef(E)/mel, an operon of the macrolide 

efflux genetic assembly (Mega) element. These determinants are present on an expanding 

group of mobile composite genetic elements. 

Through a prospective study of invasive pneumococcal disease (IPD) using 

established population-based surveillance, the incidence of IPD and macrolide-resistant 

IPD (MR-IPD) in Atlanta, Georgia from 2003-2013 was studied. The heptavalent 

pneumococcal conjugate vaccine (PCV-7) introduced in 2000 was previously found to 

decrease IPD and MR-IPD caused by PCV-7 vaccine serotypes through individual and 

herd protection. In this work, we demonstrated a continued decline of IPD and MR-IPD 

caused by PCV-7 serotypes and observed “serotype replacement” by serotypes 7F for 

IPD and 19A for MR-IPD. The increase in MR-IPD from 2003-2009 was largely due to 

the clonal expansion of the serotype 19A clonal complex 320 isolates that contained 

Tn2010, a new composite mobile element with both erm(B) and mef(E)/mel. We 

documented a rapid decline of these isolates following PCV-13 introduction. 

By creating isogenic mutants, we assessed the contributions of dual macrolide 

resistance determinants in Tn2010 for pneumococcal fitness and macrolide resistance. 

We found erm(B) confers high-level macrolide resistance in Tn2010-containing strains, 

but mef(E)/mel encoded efflux remains functional. We also identified and assessed high-

level macrolide-resistant IPD isolates caused by insertions of Mega, Mega-2.IVa and 

Mega-2.IVc, associated with the pneumococcal pathogenicity island. Deletion of 

mef(E)/mel eliminated macrolide resistance in these isolates. Using in vitro competition 

experiments, we found that, in the presence of erythromycin, high-level macrolide-

resistant S. pneumoniae (conferred by erm(B) or Mega-2.IVa) have a growth fitness 

advantage. These data indicate the ability of S. pneumoniae to generate high-level 

macrolide resistance by efflux or ribosomal methylation, that either high-level 

mechanism affords a selective advantage, and that the efflux pump may have additional 

biological functions. 



 

Macrolide Resistance in Streptococcus pneumoniae 

 

By 

 

Max R. Schroeder 

B.A., Ohio Wesleyan University, 2009 

 

 

 

Advisor: David S. Stephens, M.D. 

 

 

 

 

 

A dissertation submitted to the Faculty of the  

James T. Laney School of Graduate Studies of Emory University 

in partial fulfillment of the requirements for the degree of  

Doctor of Philosophy 

in 

Graduate Division of Biological and Biomedical Sciences 

Microbiology and Molecular Genetics 

 

 

2016 



ACKNOWLEDGMENTS 

Thank you to all of those that have helped me become the scientist I am today. To 

my advisor Dr. David Stephens, I want to thank you for the years of support and 

encouragement. You have taught me to develop questions, address experimental 

setbacks, and look for the biological significance of the data. I am a better scientist today 

thanks to your example. Thank you also to my committee: Drs. Keith Klugman, Charles 

Moran, Philip Rather, Timothy Read, William Shafer, and Jorge Vidal. Your advice and 

direction over the years has helped me stay focused and ultimately complete this work. I 

would also like to thank Dr. David Weiss for your mentorship and ongoing investment 

into my graduate career; it is a pleasure to work with you. Thank you Dr. Scott Chancey 

and Dr. Dorothea Zähner for teaching me about Streptococcus pneumoniae. Also, thank 

you to Dr. Yih-Ling Tzeng for assistance in troubleshooting experiments, analyzing data, 

preparing presentations and papers, and ongoing support in the completion of this 

dissertation. 

To Dr. Monica Farley and members of the Georgia Emerging Infections Program, 

past and present, thank you for maintaining the pneumococcal surveillance network and 

openly collaborating with me; without our collaboration much of my work would not 

exist. I truly appreciate all of the assistance you have provided. Emily Crispell thank you 

for helping me learn better ways to manipulate S. pneumoniae and for your constant 

positive outlook toward laboratory work. And Dr. Sarah Satola, you are a mentor in life 

and science, and I thank you for always listening and providing guidance. 

 My undergraduate professors and research advisors, Dr. Laura Tuhela-Reuning 

and Dr. Edward (Jed) Burtt were integral in my initial research training. Laura, your 



excitement for microbiology is contagious and I caught it from you. Jed, you are a mentor 

and one of my best friends. Thank you for all the encouragement and advice over the 

years.  

 To my family, thank you for the support throughout my education. Mom and Dad, 

thank you for the love and encouragement throughout my many years of school. You 

have taken pride and shared news of all my accomplishments and you listened and 

provided words of wisdom during my difficulties. I am truly blessed to have parents like 

you. And Mom, thank you for always making time for my phone calls, even if I have 

nothing to talk about. Molly thank you for being an amazing sister and my oldest friend. 

Your enthusiasm for your career and love for others is inspiring. Jack, Kathleen, Jason, 

and Courtney thank you welcoming me into your family and for the love, support, and 

prayers throughout this journey. To my Atlanta family, Sandy, Luther, and Amelia I have 

loved the opportunity to spend so much time with you since moving to Atlanta in 2010. 

Graduate school certainly would have been unbearable without our many weekends 

together. 

 To my lovely wife to whom I dedicate this dissertation, Morgan, I thank you for 

you love and support. Throughout this journey of graduate school, you have been by my 

side. Thank you for accompanying me on late night trips to the lab to streak out a strain, 

providing advice on preparing better presentations, and proofreading almost everything I 

write. Your optimism is a joy. Thank you for the years of support. Now that this journey 

is coming to an end, I look forward to our next adventures. 



TABLE OF CONTENTS 

 

Chapter 1:  Introduction        1 

Chapter 2:  A population-based assessment of the impact of 7- and  36 

13-valent pneumococcal conjugate vaccines on macrolide-resistant 

invasive pneumococcal disease: emergence and decline of 

Streptococcus pneumoniae serotype 19A (CC320) with dual 

macrolide resistance mechanisms      

Chapter 3:  Composite mobile genetic elements disseminating macrolide  81 

resistance in Streptococcus pneumoniae     

Chapter 4:  High-level macrolide resistance in Streptococcus pneumoniae  123 

Chapter 5:  Final Discussion        164 

 

 

Appendix A:  Subversion of host recognition and defense systems by  187 

  Francisella spp.         

Appendix B:  Rapid killing of Acinetobacter baumannii by polymyxins is  210 

mediated by a hydroxyl radical death pathway    

Appendix C:  A CRISPR-Cas system enhances envelope integrity mediating 219 

antibiotic resistance and inflammasome evasion    

Appendix D:  Pleomorphic structures in human blood are red blood   226 

cell-derived microvesicles, not bacteria     



LIST OF TABLES AND FIGURES 

Chapter 2 

Table 1: Incidence of macrolide-resistant invasive pneumococcal disease (MR-

IPD) in Atlanta, GA (2003-2013). 

Figure 1: The incidence of MR-IPD and macrolide resistance genotypes. 

Figure 2: The incidence of MR-IPD cases in individuals <2 years, 2-4 years, and 

≥65 years. 

Figure 3: S. pneumoniae serotype distribution of MR-IPD. 

Figure 4: S. pneumoniae MR-IPD isolates with dual resistance genes (mef(E)/mel 

and erm(B)). 

Figure 5: The incidence of invasive pneumococcal disease (IPD) by capsular 

serotypes (1994-2013). 

Figure 6: The incidence of IPD caused by PCV-7 serotypes. 

Figure 7: The incidence of IPD caused by the six PCV-13 serotypes not 

represented in PCV-7. 

Figure 8. The incidence of IPD caused by serogroup 6. 

Figure 9: The incidence of IPD caused by non-vaccine serotypes. 

Table S1: Incidence of macrolide-resistant invasive pneumococcal disease (MR-

IPD) in Atlanta, GA (2003-2013), by serotype. 

 

Chapter 3 

Figure 1: Macrolide resistance determinants associated with mobile elements in 

pneumococci. 

Figure 2: Whole genome SNP-derived phylogenetic tree. 

Table 1: Insertion sites of Mega. 

Figure 3: Mega insertion sites. 

Figure 4: Variations of the Pneumococcal Pathogenicity Island-1 associated with 

Mega. 

Table 2: Tn916-like elements inserted directly into the chromosome backbone of 

invasive S. pneumoniae isolates from Atlanta, GA. 

Figure 5: Insertion sites of Tn916-like elements. 



Table 3: Atlanta invasive isolates containing composite ICE encoding macrolide 

resistance. 

Figure 6: Comparison of ICESp23FST81-like elements encoding macrolide 

resistance. 

Figure S1: S. pneumoniae isolates clustered by MLST typing. 

Table S1: Whole-genome sequenced S. pneumoniae isolates. 

Table S2: Macrolide resistance element insertion sites. 

Table S3: Tn916-like elements in S. pneumoniae. 

Chapter 4 

Table 1: S. pneumoniae isolates macrolide resistance gene classification and 

erythromycin minimum inhibitory concentrations (MICs). 

Table 2. Erythromycin MICs for S. pneumoniae strains and mutants used in this 

study. 

Figure 1: Macrolide resistance phenotypes of S. pneumoniae by macrolide 

resistance genotype. 

Figure 2: mef(E) expression in strain GA44288 after 15 min exposure to 

erythromycin. 

Figure 3: The competitive index of isogenic GA44288 mutants in vitro with 

erythromycin (0.5 µg/ml) grown for approximately 50 generations. 

Figure 4: The competitive index of high-level macrolide resistance strains with 

distinct mechanisms (erm(B) and Mega-2.IVa) in vitro with erythromycin (0.5 

µg/ml) grown for approximately 50 generations. 

Table A1: Primers used in the study. 

Figure A1: Clustal W alignment of mef(E) regulatory regions. 

Figure A2: Competitive index of GA44288 mutants grown without erythromycin. 

Appendix A 

Figure 1: Stages of Francisella pathogenesis in the macrophage. 

Figure 2: Complement evasion by Francisella. 

Figure 3: Shielding of inflammatory PAMPs in Francisella. 

Figure 4: Escherichia coli and Francisella lipid A structures. 



Figure 5: Intracellular fates of Francisella after uptake by different macrophage 

receptors. 

Figure 6: Competition for iron during Francisella infection. 

Figure 7: Subversion of adaptive immune responses by Francisella. 

Appendix B 

Table 1: MICs for strains utilized in this study. 

Figure 1: Polymyxins induce rapid killing of Acinetobacter baumannii cultures. 

Figure 2: Polymyxins induce hydroxyl radical production. 

Figure 3: Polymyxin killing is delayed by hydroxyl radical quenching. 

Figure 4: Polymyxin killing is mediated by iron. 

Figure 5: Colistin induces hydroxyl radical production in MDR clinical isolates. 

Figure 6: Clinical isolates are killed through hydroxyl radical production during 

Polymyxin treatment. 

Appendix C 

Figure 1: The Cas9 regulatory axis is necessary for polymyxin resistance. 

Figure 2. Cas9 is necessary for enhanced envelope integrity during intracellular 

infection. 

Figure 3: Cas9 and enhanced envelope integrity promote evasion of 

inflammasome activation. 

Figure 4: A cas9 deletion mutant is rescued for virulence in mice lacking both 

ASC and TLR2. 

Appendix D 

Figure 1: Representative electron micrographs of pelleted material from 

supernatant of red blood cell (RBC) storage units. 

Figure 2: Analysis of bacterial DNA in pelleted material from RBC storage units 

and serum. 

Figure 3: Vesicles isolated from supernatant of RBC storage units are membrane-

bound, intact, and contain RBC surface antigen and RBC-specific miRNA. 



1 
 

 
 

Chapter 1: Introduction 

I. The Pneumococcus 

Streptococcus pneumoniae, the pneumococcus, is an obligate commensal of the 

human nasopharynx, an opportunistic pathogen and a leading cause of death for children 

worldwide (1). In 2007, the World Health Organization estimated that up to 1.6 million 

people died each year due to pneumococcal infections including almost one million 

children under the age of five (2). In addition to severe invasive disease including 

bacteremia and meningitis, the pneumococcus causes localized, non-invasive infections 

such as otitis media and pneumonia. S. pneumoniae is identified through growth on blood 

agar as alpha-hemolytic colonies that are sensitive to optochin, a quinine analogue that 

was used in the treatment of lobar pneumonia in the early twentieth century. Despite a 

lack of catalase production, S. pneumoniae is aerotolarant. Microscopically, pneumococci 

are classified as a Gram-positive diplococcic due to their characterized lancet-shaped cell 

morphology. There are over 90 serotypes of S. pneumoniae that are distinguished based 

on differences in the structure of capsular polysaccharide expressed (3). 

A. Discovery 

 S. pneumoniae was independently co-discovered by George Miller Sternberg from 

the United States and Louis Pasteur from France (4, 5). In September of 1880, Sternberg 

identified Micrococcus lanceolatus, later named S. pneumoniae, by inoculating rabbits 

with his own saliva (6). In December of the same year, Pasteur also inoculated rabbits 

with saliva of a boy who died of rabies (7). After the rabbits died, both Sternberg and 
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Pasteur isolated and cultivated diplococcal bacteria from the blood of the rabbits and in 

their publications the two microbiologists described the same organism. Although Pasteur 

is often credited as the discoverer of the pneumococcus (5), Sternberg was the first to 

photograph the pneumococcus and isolate the organism from several carriers. Subsequent 

researchers found the pneumococcus to be a common colonizer in the human upper-

respiratory tract and a frequent cause of pneumonia (4, 5). 

B. Capsular Polysaccharide 

When initially describing the microscopic appearance of the pneumococcus in 

1881, Pasteur described an aureole that surrounded the diplococci (7) which was later 

identified as polysaccharide capsule. In 1916 Laura Stryker from the U.S. found 

pneumococcal virulence to be dependent on the presence of the capsule, as capsule loss 

was associated with a reduction of virulence (8). In 1900 the German physician Friedrich 

Neufeld described bile solubility of the pneumococcus as a key microbiological 

identifying feature (4, 9). A few years later in 1904 Neufeld first published the Quellung 

reaction (10) which has remained as a gold standard for serotyping of S. pneumoniae. In 

the Quellung reaction bacterial cells are treated with capsule specific antibodies that bind 

to capsular polysaccharide and cause capsule swelling that may be observed 

microscopically. Today PCR-based molecular methods are used to complement Quellung 

reactions (11). Over 90 pneumococcal capsular polysaccharide serotypes have been 

identified to date (3, 12). 

C. Transforming Principle 

 Groundbreaking experiments that lead to the identification of DNA as the 

hereditary material in cells were first performed with S. pneumoniae. In 1928, Frederick 
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Griffith published the first observation of bacterial transformation (13). In his 

experiments, Griffith inoculated mice with bacterial cultures from smooth (encapsulated) 

or rough (unencapsulated) pneumococcal isolates and found that only mice inoculated 

with the smooth isolate died. Furthermore, smooth pneumococci were isolated from dead 

mice and rough pneumococci were isolated from surviving mice. When bacterial cultures 

were heat-killed prior to inoculation all inoculated mice survived. When Griffith used a 

combination of live rough bacteria with heat-killed smooth bacteria, the inoculated mice 

died and live smooth S. pneumoniae were isolated from the dead mice. Therefore, the 

presence of the heat-killed “smooth” pneumococci contributed an unknown factor to the 

“rough” pneumococci which transformed the organism to a smooth phenotype, and the 

phenomenon was termed the “transforming principle.” 

 Continuing the work of Griffith, three medical doctors in the United States, 

Oswald Avery, Colin MacLeod, and Maclyn McCarty determined that the transforming 

principle was DNA (14, 15). In their experiments the heat-killed smooth bacterial lysate 

was separated into purified DNA, RNA, proteins, lipids, and carbohydrates, and each 

fraction was combined with the rough bacteria as an inoculum (15). Through meticulous 

purification methods they ascertained that purified DNA was capable of transforming 

rough bacteria in vivo into smooth bacteria that resulted in death of the mice. The 

conclusion was that DNA is the transforming principle from the Griffith experiment and 

thus DNA is the hereditary material of life.  
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II. Pathogenesis 

A. Non-Invasive Diseases 

The pneumococcus is an opportunistic pathogen with high rates of asymptomatic 

carriage based on age, race, and socioeconomic status. The highest rates of carriage are in 

young children. Studies have found that up to 75% of children under the age of 5 and 

30% of adults living in households with young children are colonized by S. pneumoniae. 

Pneumococcal acquisition and colonization is considered a prerequisite for disease as it 

provides an opportunity for the bacteria to migrate from the nasopharynx to local or 

systemic sites of infection (16). 

1. Acute Otitis Media 

 Otitis media is an infection of the middle ear that results in ear pain, fluid 

accumulation, sometimes drainage from the ear, loss of hearing, and low-grade fever. 

Interestingly, acute otitis media is the most common reason for pediatric office visits in 

the U.S. with more than 20 million visits annually coded as otitis media. Although the 

majority of cases of otitis media are caused by viruses, bacterial otitis media is common 

and S. pneumoniae is the most common cause of bacterial otitis media. Migration of 

colonizing S. pneumoniae from the nasopharynx to the middle ear using the Eustachian 

tube as the passageway may result in acute otitis media. Otitis media is often a self-

limiting infection for which clearance can occur without the need of antibiotic 

intervention (17). In Europe, ibuprofen is typically prescribed for treatment of otitis 

media to reduce discomfort due to middle ear inflammation. In the U.S., otitis media is 

often treated with antibiotics such as amoxicillin, or for patients with a penicillin allergy, 

macrolides. Added benefits of antibiotic treatment include shortening the duration of 
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infection and reducing the risk of permanent hearing damage (17, 18). Interestingly, 

recent studies in mice have found increased pneumococcal colonization and translocation 

of pneumococci to the middle ear following vaccination with live attenuated influenza 

virus (19, 20). This suggests vaccination of children with FluMist®, the quadrivalent live 

attenuated influenza vaccine, might increase the risk of pneumococcal otitis media. 

2. Pneumonia 

Pneumococcal pneumonia is the most common type of community-acquired 

pneumonia worldwide (21). In 2015, pneumococcal pneumonia was the cause of an 

estimated 922,000 deaths of children under five years old representing 15% of deaths of 

children in this age group (22, 23). The highest rates of pneumococcal pneumonia occur 

in developing countries, specifically Sub-Saharan Africa. Pneumonia is medical 

syndrome wherein the alveoli, or microscopic air sacs, become inflamed. While a variety 

of microorganisms may cause pneumonia, bacteria and viruses are the most common 

etiologic agents. Pneumococci descend from the nasopharynx to the lower respiratory 

tract where they may infect the alveoli, often as a secondary infection following the 

common cold virus or influenza. Symptoms of pneumococcal pneumonia are acute and 

include cough with green or blood-tinged mucus, chest pain, malaise, nausea and 

vomiting, diarrhea, and fever. Influenza has a high association with pneumococcal 

disease, specifically pneumonia (24, 25). During the 1918 influenza pandemic, co-

infection with influenza and S. pneumoniae may have caused extensive pulmonary 

thrombosis that contributed to the high mortality of this pandemic (26). Respiratory 

syncytial virus (RSV) also had a significant association with pneumococcal pneumonia 

(27). 
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B. Invasive Pneumococcal Diseases (IPD) 

 During acute local infection by S. pneumoniae, the pneumococcus may reach the 

bloodstream and disseminate to other sterile sites, such as joints or the meninges. 

1. Bacteremia 

 When pneumococci replicate in the bloodstream, the infection is classified as 

pneumococcal bacteremia or septicemia. Bacteremia is often associated with fever that 

may be accompanied by shaking chills, hypotension, gastrointestinal distress, and altered 

sensory perception. Bloodstream infections are life-threatening and may result in the 

systemic inflammatory response syndrome. Historically, the pneumococcus was an 

important cause of endocarditis. Though the molecular mechanisms are still not fully 

understood (28), there is evidence that colonization of the nasopharynx, by pneumococci 

especially in young children, may lead directly to bloodstream entry from the 

nasopharynx to cause occult bacteremia, e.g. bacteremia without a local pneumococcal 

infection (29, 30). Improved patient outcomes are attributed to antibiotic therapy when 

treated with macrolides (31) or combination therapy (32).  

2. Meningitis 

 Spread of pneumococci directly from a non-invasive infection (e.g. otitis media) 

or via bacteremia to the subarachnoid space containing the meninges is termed 

meningitis. Meningitis is a life-threatening disease of inflammation of the subarachnoid 

space and meninges, the protective outer membranes that line the brain and spinal cord. 

Meningeal infection and associated inflammation can lead to cerebral edema and 

infection of blood vessels that can result in collateral damage to the brain parenchyma, 

which may lead to coma and death (33). With a variety of agents causing meningitis, 
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identification of the pathogen is critical in implementing a successful treatment regimen. 

In pneumococcal meningitis, about half of all surviving patients experience neurological 

sequelae and approximately 25% of children experience moderate or severe symptoms 

(34). S. pneumoniae has remained the leading cause of bacterial meningitis in the United 

States, where it is responsible for three times as many cases of bacterial meningitis as the 

next leading agents (35). Though the mechanisms are still unknown, S. pneumoniae is 

thought to penetrate the blood-brain barrier through a receptor-mediate process (36). 

Pneumococci present in the blood adhere to the specific receptors that allow the organism 

to cross the blood brain barrier. 

III. Treatment and Prevention 

A. Antibiotic Therapy  

 During the mid-1990s, the emergence and high prevalence of penicillin resistance 

among S. pneumoniae resulted in a shift in the recommended treatment for non-

meningitis pneumococcal infections from beta-lactams to macrolides. Macrolides are 

often used as the first line of treatment against upper respiratory tract infections and 

community acquired pneumonia. Macrolides are defined by a complex macrocyclic 

structure with a 14-, 15-, or 16-membered lactone ring substituted with neutral or amino 

sugar groups. Macrolides inhibit bacterial protein synthesis by binding to the large 50S 

ribosomal subunit and disrupting protein elongation by causing the dissociation of the 

peptidyl-tRNA. The introduction of new macrolides and their widespread use beginning 

in the 1990s resulted in increased macrolide resistant in S. pneumoniae (37, 38). 
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Erythromycin, discovered in 1952, is a 14-membered macrolide produced by 

Streptomyces erythraeus (39). After the discovery of erythromycin and other naturally- 

produced macrolides, research focused on the creation of synthetic and semisynthetic 

macrolides (40). Azithromycin and clarithromycin are semisynthetic macrolides 

approved for use in the United States. Others macrolides are approved in different 

countries worldwide or are used as a growth supplement in animals. Macrolides bind 

reversibly to the 23S rRNA at a site near the peptidyl transferase center of the 50S 

ribosomal subunit. This binding occurs in pre-structured ribosomal assemblies (41). The 

smaller macrolides (14- and 15-membered) partially block the nascent peptide channel to 

inhibit the elongating peptide chain while larger macrolides (16-membered) fully block 

the nascent peptide channel and cause ribosomal disassociation that reversibly inhibits 

protein synthesis (42). Though distinct in chemical structure, the antibiotics lincosamide 

and streptogramin have overlapping binding sites with macrolides and similar 

mechanisms of action. 

B. Vaccines 

During World War I, as many as one million people participated in various 

clinical trials of heat-killed whole pneumococcal cell-based vaccines, but the efficacy of 

these vaccines was not established (4, 43). During World War II the United States 

military had a successful clinical trial using a tetravalent capsule polysaccharide vaccine, 

but the success of penicillin for treatment of bacterial infection virtually eliminated 

commercial interest in pursuing vaccine development (44). It was not until 1977 that the 

first pneumococcal polysaccharide vaccine, PPSV-14, with capsular polysaccharide 

antigens from 14 serotypes of S. pneumoniae (serotype 1, 2, 3, 4, 6A, 7F, 8, 9N, 12F, 14, 
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18C, 19F, 23F, and 25), became licensed in the U.S. (45). In 1984, PPSV-14 was 

replaced by PPSV-23, which contained capsular polysaccharide antigens individually 

extracted from serotypes 1, 2, 3, 4, 5, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 

18C, 19A, 19F, 20, 22F, 23F, and 33F, combined to create the final formulation (46). The 

effectiveness of this vaccine has been challenged but it has continued to be recommended 

for adults at risk of pneumococcal disease including individuals aged 65 years and older 

(47, 48). 

The pneumococcal conjugate vaccine (PCV-7), containing seven capsular 

polysaccharides of serotypes 4, 6B, 9V, 14, 18C, 19F, and 23F conjugated to the CRM197 

diphtheria protein, was licensed in 2000 for use in children under five years old in the 

United States (49, 50). Following PCV-7 introduction, clonal expansion of non-vaccine 

strains was observed worldwide (51-53). The emergence of non-PCV-7 serotypes 

resulted in development of additional PCV formulations. In 2010, an additional six 

serotypes (1, 3, 5, 6A, 7F, and 19A conjugated to CRM197) were added to the PCV-7 

serotypes to create the 13-valent conjugate vaccine (PCV-13), which replaced PCV-7 in 

the U.S. (50, 54). In addition to direct protection, pneumococcal conjugate vaccines have 

yielded sustained reductions in pneumococcal carriage of vaccine serotypes (55) and also 

disease caused by vaccine serotypes in unvaccinated (herd protection) (56, 57). The 

continued expansion of pneumococcal conjugate vaccination into developing countries is 

greatly reducing the global burden of pneumococcal disease (50). 
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IV. Macrolide Resistance 

As noted widespread macrolide use is associated with increased macrolide 

resistance in S. pneumoniae (37, 38). Clinical failures of macrolide treatment of 

pneumococcal infections have been reported for lower respiratory tract infections (58) 

and bacteremia (59, 60). The widespread use of macrolides provides a selective pressure 

that has contributed to the expansion of macrolide-resistant S. pneumoniae (37, 61). 

Globally, erythromycin resistance among S. pneumoniae is geographically variable but 

ranges from <10% to >50% of isolates (62). 

A. Mechanisms of Macrolide Resistance 

Macrolide resistance in S. pneumoniae is mediated through three distinct 

mechanisms: modification of the macrolide ribosomal target site, macrolide efflux, and 

chromosomal mutations to macrolide binding sites. 

1. Ribosomal Modification 

Erythromycin ribosomal methylase (erm) family genes encode an adenine-

specific N-methyltransferases that methylates the 23 rRNA to prevent antibiotic binding 

(63). When present in Escherichia coli the 23S rRNA is methylated at A2058, which is 

considered to be the target for methylation and macrolide binding (64). The ribosomal 

methylase found in S. pneumoniae is encoded by the erm(B) gene whose gene product 

dimethylates this target site of the 23S rRNA (65). Ribosomal methylation by Erm(B) 

confers resistance to macrolides, lincosamide, and streptogramin B, which is 

characterized as the MLSB phenotype (63). In addition to the expanded spectrum of 

resistance, erm(B) provides high-level resistance to macrolides (erythromycin MICs ≥256 

µg/ml). 
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The induction of erm(B) allows high-level translation of Erm(B) in the presence 

of inducers such as erythromycin (66). In the pneumococcus, erm(B) expression may be 

inducible or constitutively expressed to high levels. As expression of erm genes is 

frequently repressed in the absence of inducing drugs through a mechanism of 

translational attenuation, erm(B) expression has been proposed to have a bacterial fitness 

cost (67-69). A recent study found that a Staphylococcus aureus strain expressing erm(C) 

was outcompeted by S. aureus expressing catalytically-inactive erm(C) (68), supporting 

the need for tight regulation of expression. Interestingly, deletion of the leader sequence 

of erm(B) in S. pneumoniae was found to confer resistance to telithromycin, the first-

generation ketolide which is a semi-synthetic macrolide antibiotic, by allowing 

constitutive expression (70). 

2. Macrolide Efflux 

Macrolide efflux in S. pneumoniae is the most common cause of macrolide 

resistance in North America (62, 71). Pneumococcal macrolide efflux is encoded by the 

mef(E)/mel operon and occurs through an poorly understood mechanism of macrolide 

binding and membrane targeting for efflux (72). Macrolide resistance in S. pneumoniae 

requires both mef(E) and mel (73, 74). These genes are carried on the macrolide efflux 

genetic assembly (Mega) element and are expressed from a single promoter inducible by 

14- and 15-membered macrolides (e.g. erythromycin and azithromycin) (74-76). 

Expression of mef(E) and mel is tightly controlled through transcriptional attenuation 

(75). 

The first gene, mef(E) shares 90% sequence identity with mef(A) from 

Streptococcus pyogenes (77, 78). In S. pneumoniae, mef(E) encodes a 405 amino acid 
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protein that belongs to the major facilitator superfamily, which utilizes proton motive 

force-driven efflux to expel molecules from cells (77). The second gene, mel (also 

msr(D)) is a homolog of the S. aureus gene mrsA (78), which encodes an ATP-binding 

cassette (ABC) transporter protein but lacks typical hydrophobic, membrane-binding 

domains and is thought to interact with chromosomally encoded transmembrane 

complexes (74). Mef(E) and Mel have been shown to operate as a dual efflux pump in S. 

pneumoniae (74). A recent study in Escherichia coli suggests a physical interaction 

between Mef(E) and Mel and that Mel may bind macrolides and localize to the 

membrane (79). 

S. pneumoniae with mef(E)/mel have been shown to have an M phenotype, which 

is resistance to 14- and 15-membered macrolides (e.g. erythromycin and azithromycin) 

while retaining susceptibility to lincosamides and streptogramin B (77). While most 

mef(E)/mel-containing strains are resistant to low levels (1-8 µg/ml) of erythromycin, 

strains with increased expression of mef(E)/mel have increased levels of macrolide 

resistance (80). Induction of mef(E)/mel by macrolides causes increased expression and 

thus increased levels of macrolide resistance (to ≥16 µg/ml) (66, 74). In addition to 

macrolides, the presence of mef(E)/mel has been shown to increase resistance to the 

human antimicrobial peptide LL-37, which was also found to induce expression of the 

efflux pump (81). This suggests the macrolide efflux pump may be expressed during 

nasopharyngeal colonization and prime mef(E)/mel-containing pneumococci for exposure 

to macrolide antibiotics. 
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3. Ribosomal Mutations 

 Point mutations in 23S rRNA at or near the macrolide binding residue A2058 (E. 

coli ribosome) have resulted in macrolide resistance (82, 83). Mutations of ribosomal 

proteins L4 and L22 confer macrolide resistance in pathogenic and nonpathogenic 

bacteria including pneumococci. L4 and L22 are ribosomal proteins with domains on the 

surface of the ribosome as well as tentacles that extend into the exit tunnel in proximity to 

the macrolide-binding site (84). In E. coli, a Lys-63-Glu change in the L4 protein (rplD) 

as well as a triple amino acid deletion of Met-82, Lys-83, and Glu-84 from L22 (rplV) 

confer resistance to macrolides (85, 86). A variety of additional L4 and L22 mutations 

have also been found to confer macrolide resistance (87, 88). While the overall incidence 

is rare, some L4 and L22 mutations have resulted in macrolide resistance in S. 

pneumoniae (82). 

4. Dual Macrolide Resistance Genotype 

 S. pneumoniae containing both erm(B) and mef(E)/mel were first reported in the 

late-1990s (89, 90) and are now found worldwide (62). The dual macrolide resistance 

genotype occurred in 12% of global isolates collected from 2003-2004, which is twice the 

frequency reported from 1999-2000 (62). In 2004, 18.4% of S. pneumoniae isolates from 

the United States were found to have the dual erm(B) and mef(E)/mel genotype (71); and 

in a study published this year, up to 52% of macrolide-resistant isolates from Arizona 

were found to contain both macrolide resistance genes (91). Tn2010 has been identified 

as the composite mobile element that contains erm(B) and mef(E)/mel (Mega) (92). 

Tn2010 was first identified in S. pneumoniae serotype 19. Following introduction of the 

7-valent pneumococcal conjugate vaccine (PCV-7) the “replacement” serotype 19A 
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(ST320) with Tn2010 emerged (93). ST320 is a multidrug resistant strain that appears to 

represent a “capsule switch” from serotype 19F and is responsible for global pandemic in 

the wake of PCV-7 introduction (53, 94). This emergence of S. pneumoniae with dual 

macrolide resistance determinants is intriguing. The high-level and broader resistance 

conferred by erm(B) would predict that mef(E)/mel is functionally redundant in erm(B)-

containing S. pneumoniae. 

B. Dissemination of Resistance Determinants 

1. Macrolide Resistance Chromosomal Locations 

The mef(E)/mel-containing genetic element Mega is found in six distinct 

chromosomal sites within the pneumococcal genome (76, 95, 96). Mega insertion sites 

are distributed around the chromosome: (I) a phosphomethylpyrimidine kinase (TIGR4 

SP_1598), (II) a DNA-3-methyladenine glycosylase (SP_0180), (III) a capsule 

biosynthesis gene (SP_0103), (IV) the RNA methyltransferase rumA (SP_1029) (76), (V) 

orf6 of Tn916-like elements (95), and (VI) a novel insertion into a S. suis homolog 

element found in S. pneumoniae (96). Due to genetic variations at insertion site IV, this 

class is subdivided: (IVa) Mega and ISSmi element insertion along with deletion of the 

30.7 kb pneumococcal pathogenicity island-1 (PPI-1), and (IVb) simple insertion of 

Mega into rumA with intact PPI-1, and (IVc) same as IVa with a S. equi subspecies 

zooepidmicus-related ICE (42 kb) inserted upstream of Mega (96). The Mega element is 

horizontally transferred through transformation and homologous recombination between 

pneumococci but the element per se lacks genes required for transposition (76). Analysis 

of the insertion sites revealed a putative target sequence of 5’-TTTCCNCAA-3’ about six 

base pairs upstream of the insertion and Tn916-like coupling sequences (96). The genes 
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required for Mega transposition may be present on other conjugative elements of the 

pneumococcal genome and in non-S. pneumoniae commensal organisms (76, 96). 

However, Mega is infrequently transferred through transposition but once stabilized can 

be widely disseminated through horizontal DNA exchange and homologous 

recombination.  

Tn916 is the prototype conjugative transposon that contains the tetracycline 

resistance gene tet(M), and is found in many Gram-positive bacteria. Tn916 may 

incorporate additional antibiotic resistance determinants which comprise larger Tn916-

like composite elements (97). The history and molecular mechanisms of the Tn916 

family are beyond the scope of this review, but have been explored previously (98). The 

most common Tn916-like elements in S. pneumoniae containing erythromycin resistance 

cassettes include Tn2009, Tn6002, and Tn2010 (96). Tn2009 is a Tn916-like element 

with Mega inserted into orf6 of Tn916 to provide macrolide resistance, the M phenotype 

(99). Tn6002 is also a Tn916-like element with macrolide resistance, MLSB phenotype, 

due to the incorporation of an erm(B)-containing element into orf20 of Tn916 (100). The 

erm(B) gene may also be incorporated into Tn916. A Tn917, an erm(B)-containing 

transposon, insertion into orf9 of Tn916 creates Tn3872 (100). S. pneumoniae with the 

dual macrolide resistance genotype contain Tn2010 or the less common and newly 

described Tn2017 (101). Tn2010 is a Tn916-like element that with Mega in orf6 and the 

erm(B) element in orf20 of Tn916 (102). Tn2010 likely arose through the homologous 

recombination of Tn2009 with Tn6002. A similar recombination event likely occurred 

with Tn2009 and Tn3872 to create Tn2017, which was found to be a Tn916-like element 

with a Mega insertion in orf6 and Tn917 in orf9 of Tn916 (101). 
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2. Interspecies Exchange of Macrolide Resistance 

S. pneumoniae is naturally transformable. During its growth cycle, pneumococci 

develop a natural state of competence and acquire DNA from their environment. A 

mechanism of DNA repair allows for integration of new DNA through homologous 

recombination (103, 104). The human nasopharynx is the primary ecological niche for 

the pneumococcus during asymptomatic carriage that is a prerequisite for pneumococcal 

infections (16). In the nasopharynx, S. pneumoniae have the opportunity to acquire DNA 

from a wide diversity of commensal bacteria of the upper respiratory tract which may act 

as a reservoir for antibiotic resistance.  

 Bacteria other than S. pneumoniae that reside in the human upper respiratory tract 

also carry the macrolide resistance genes erm(B) and mef(E)/mel as Mega. Tn6002 is the 

most common erm(B)-containing mobile genetic element of S. pyogenes (100). A recent 

study found Mega, Tn2009, Tn6002, and Tn2010 in commensal viridans group 

streptococci isolated from the throats of patients with pharyngitis (105). In this study, S. 

mitis was the most commonly isolated streptococci and isolates were found with the 

macrolide resistance elements including Mega, Tn2009, Tn6002, and Tn2010 (105). 

Various Gram-positive bacteria have been shown to carry erm(B) and/or mef(E) (106-

108). The Tn2009 element has also been found in the commensal, Gram-negative 

Acinetobacter junii, and the authors found evidence of this Mega-containing transposon 

in additional Gram-negative species including E. coli, Enterobacter cloacae, Klebsiella 

sp., Proteus sp., and Pseudomonas sp. (109). Interspecies dissemination of mobile 

genetic elements containing antibiotic resistance cassettes appears common. 
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 Asymptomatic pneumococcal carriage occurs in children and adults with rates in 

children ranging from less than 15% to greater than 90% in developing countries and 

varies based on other factors include geography and socioeconomic class (16, 110). 

During nasopharyngeal carriage S. pneumoniae forms complex biofilm structures and 

enhance natural transformation (111). Genetic exchange during co-colonization by two 

pneumococcal strains is extremely efficient with transformation efficiencies of up to 10
-2

 

(112). Therefore, nasopharyngeal carriage provides an opportunity for S. pneumoniae to 

acquire mobile genetic elements and macrolide resistance genes from co-colonizing 

pneumococci and commensal organisms. This environment may also have allowed for 

the assembly and selection of the dual macrolide resistance elements, Tn2017 and the 

more common Tn2010. 

V. Specific Aims 

S. pneumoniae is an important obligate human pathogen with efficient 

mechanisms of horizontal genetic exchange. Two major selection pressures, new 

vaccines that impact pneumococcal biology and widespread antibiotic use have led to the 

emergence of adapted pneumococcal strains. In this dissertation, we focused on the 

emergence of macrolide resistance in pneumococci, the impact of new conjugate 

pneumococcal vaccines on macrolide resistance, the evolution of the genetic basis for 

macrolide resistance in pneumococci and the effects of macrolide resistance on 

pneumococcal fitness. We were fortunate to have used an established population-based 

surveillance program for this work. Invasive pneumococcal disease (IPD) has been 

assessed in Atlanta, Georgia since 1994 using prospective surveillance by the Georgia 

Emerging Infections Program as a part of the Centers for Disease Control and Prevention 
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(CDC) national Active Bacterial Core surveillance network (113-117). The initial impact 

of PCV-7 introduction on the incidence of IPD and the incidence of IPD caused by 

macrolide-resistant S. pneumoniae has been previously reported (115). The specific aims 

for this dissertation were:  

 

1) To determine the molecular basis of macrolide resistance in invasive 

pneumococcal disease isolates from the Atlanta metropolitan area, during the 

PCV-7 era and after the introduction of PCV-13. 

2) To determine the genetic basis responsible for and the biological advantage of 

efflux-mediated high-level macrolide resistance in S. pneumoniae and the 

emergence of S. pneumoniae with dual macrolide resistance determinants, 

mef(E)/mel and erm(B). 
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RESEARCH IN CONTEXT 

Evidence before this study 

Streptococcus pneumoniae is a major cause of sepsis, meningitis, otitis media and 

pneumonia and is a leading cause of death among children and the elderly worldwide. 

Antibiotic resistance has emerged as a major concern in the treatment of S. pneumoniae 

infections. The emergence of penicillin resistant S. pneumoniae and the introduction of 

new synthetic macrolides led to the widespread use of macrolides for presumptive 

pneumococcal pneumonia and otitis media. However, in the 1990s the incidence of 

disease caused by macrolide-resistant S. pneumoniae began to increase worldwide.  

The introduction of the heptavalent pneumococcal conjugate vaccines (PCV-7-containing 

serotypes 4, 6B, 9V, 14, 18C, 19F, and 23F) in pediatric populations reduced the 

incidence of pneumococcal disease by direct protection and by herd protection of 

unvaccinated individuals. However, “replacement” serotypes, especially serotype 19A, 

emerged following the introduction of PCV-7. In 2010, the US licensed the use of PCV-

13 (containing the PCV-7 serotypes and serotypes 1, 3, 5, 6A, 7F, and 19A). Other 

countries have now incorporated PCV-13 or other expanded coverage pneumococcal 

conjugate vaccines.  

Using an established population-based surveillance network, we investigated the impact 

of the 7- and 13-valent conjugate vaccine on macrolide resistant invasive pneumococcal 

disease in Atlanta, Georgia, USA. As background evidence for this study, we searched 

PubMed for publication for various combinations of “pneumococcal conjugate vaccine”, 

“PCV-7”, “PCV-13”, “Streptococcus pneumoniae”, “macrolide resistance”, “mef(E)”, 
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“erm(B)”, “serotype 19A”, “Tn2010”, “serotype replacement”, “pneumococcal carriage”, 

“CC320”, and “invasive pneumococcal disease”. We focused on studies of invasive 

pneumococcal disease and pneumococcal carriage in the United States and other 

countries that had implemented PCV-7 and/or PCV-13 vaccination programs. 

Added value of this study 

The impact over two decades of PCV-7 and PCV-13 on macrolide-resistant invasive 

pneumococcal disease (MR-IPD) was assessed. The incidence and molecular basis of 

MR-IPD in the over three million population of metropolitan Atlanta, a mirror of the US 

population we determined. MR-IPD rapidly increased throughout the 1990s, due 

primarily to isolates containing mef(E)/mel carried on the genetic element Mega, which 

confers resistance through macrolide efflux. Following PCV-7 introduction in 2000, the 

incidence of MR-IPD rapidly declined (2000-2003) due to decreases in isolates with 

mef(E)/mel but also in isolates containing the gene for the ribosomal methylase erm(B). 

The incidence of MR-IPD stabilized from 2005-2009, but macrolide-resistant 

pneumococci, mostly serotype 19A CC320, with dual resistance mechanisms (mef(E)/mel 

and erm(B) contained on Tn2010), emerged, while the incidence of MR-IPD in PCV-7 

serotypes continued to decline. Serotype 19A MR-IPD rapidly declined following PCV-

13 introduction. However, increases in MR-IPD caused by serotypes 15A, 15B, 15C, 

22F, 23A, and 35B, not currently represented in PCV formulations, were observed. 

Implications of all the available evidence 

Pneumococcal conjugate vaccine introductions not only reduce the burden of invasive 

pneumococcal disease but have had great impact on the incidence antibiotic-resistant 
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pneumococci. However, the selective pressures of continued macrolide use in populations 

and conjugate vaccine introduction can lead to the emergence and clonal expansion of 

new macrolide resistance genotypes. The study emphasizes the importance of continued 

surveillance of S. pneumoniae and the need for programs that emphasize the judicious use 

of antibiotics. 
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ABSTRACT 

Background. Two major genetic determinants, mef(E)/mel and erm(B), encoding genes 

responsible for macrolide efflux and ribosomal methylation, respectively, confer most 

macrolide resistance in Streptococcus pneumoniae. The introduction of the heptavalent 

pneumococcal conjugate vaccine (PCV-7) in 2000 dramatically reduced macrolide-

resistant invasive pneumococcal disease (MR-IPD) due to serotypes (6B, 9V, 14, 19F, 

and 23F) containing mef(E)/mel or erm(B). The continued impact of PCV-7 (2000-2009) 

and PCV-13 (2010-2013) on was prospectively assessed. 

Methods. A twenty-year prospective study of invasive pneumococcal disease performed 

in Metropolitan Atlanta using population-based surveillance was the basis for this study. 

Genetic determinants of macrolide resistance were evaluated by established molecular 

techniques. 

Findings. During the decade of PCV-7 use (2000-2009), MR-IPD decreased rapidly but 

then increased. In 2003, serotype 19A CC320 isolates containing both mef(E)/mel and 

erm(B) were observed and rapidly expanded in 2005-2009 peaking in 2010 (incidence 

1.38 per 100,000 population), accounting for 36.1% of MR-IPD isolates and 11.7% of all 

IPD. The clonal expansion of 19A CC320 was greatest in the <2, 2-4, and 65+ year old 

populations. Following PCV-13 introduction, a 74.1% decrease in dual macrolide-

resistant IPD was observed (incidence 0.32 per 100,000 in 2013). 

Interpretation. The selective pressures of widespread macrolide use and PCV-7 

introduction on S. pneumoniae were evident in our population. Serotype 19A (CC320) 

with dual macrolide resistance mechanisms emerged following PCV-7 but rapidly 
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declined after PCV-13 introduction. However, other macrolide-resistant serotypes not 

currently represented in current PCV formulations (15A, 15B, 15C, 22F, 23A, and 35B) 

have increased. Continued surveillance of IPD and the judicious use of antibiotics need to 

continue to be a focus public health strategy. 

Funding. Work was supported by a VA Merit Grant and the CDC. The sponsors had no 

role in study design, data collection, or development of this report. 
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INTRODUCTION 

Streptococcus pneumoniae is a commensal of the human nasopharynx and an 

opportunistic pathogen. The pneumococcus causes a range of diseases ranging from 

localized infections (e.g. otitis media and pneumonia) to severe invasive disease (sepsis 

and meningitis) with the highest burden of pneumococcal disease occurring in children 

less than five years old (1). β-lactam resistance emerged in the pneumococcus in the 

1980s and 1990s, complicating the choice of treatment regimens. Macrolide antibiotics 

became a major alternative to the use of penicillins and cephalosporins for the treatment 

of suspected upper respiratory tract infections and community-acquired pneumonia 

caused by pneumococci. However, macrolide resistance rapidly emerged in S. 

pneumoniae following introduction and widespread use, especially, of new semisynthetic 

macrolides (e.g. azithromycin, clarithromycin) (2-4). 

Two major macrolide resistance phenotypes are observed in pneumococci. An M 

phenotype and an MLSB phenotype, mediated through macrolide efflux and ribosomal 

target site modification, respectively (5). The M phenotype results from the expression of 

the macrolide resistance efflux pump encoded by mef(E)/mel, two co-transcribed genes of 

the macrolide efflux genetic assembly (Mega), that confers moderate level resistance to 

14- and 15-membered macrolides (6, 7). The MLSB phenotype is due to the presence of 

the ribosomal methylase encoded by erm(B), which results in high level macrolide 

resistance as well as resistance to the chemically distinct lincosamides (clindamycin) and 

streptogramin B that target overlapping ribosomal sites  (8). Throughout the 1990s, the 

expansion of macrolide-resistant invasive pneumococcal disease (MR-IPD) in the US 

was largely due to mef(E)/mel-mediated macrolide efflux (5, 9, 10). Both mef(E)/mel and 
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erm(B) are contained on conjugative transposable elements or smaller remnants of such 

elements. Horizontal gene transfer and clonal expansion contribute to the dissemination 

of macrolide resistance determinants in pneumococci (11, 12). 

In 2000, the pneumococcal conjugate vaccine (PCV-7) containing seven capsular 

polysaccharides of serotypes 4, 6B, 9V, 14, 18C, 19F, and 23F conjugated to the 

CRM197 diphtheria protein was licensed for use in children under five years old in the 

United States (13, 14). However, serotype replacement was observed (15-17) and in 

2010, an additional six serotypes (1, 3, 5, 6A, 7F, and 19A conjugated to CRM197) were 

added to the PCV-7 serotypes to create a 13-valent conjugate vaccine (PCV-13), which 

replaced PCV-7 in the US (14, 18). PCV-7 and PCV-13 vaccination also decrease 

pneumococcal upper respiratory carriage (19) and disease (20), “herd protection” due to 

the serotypes in the vaccines.  

Using a well-established population-based surveillance network and molecular 

typing, we have followed MR-IPD in Atlanta for over twenty years. We documented the 

initial impact of PCV-7 on the incidence of macrolide resistant S. pneumoniae using 

population-based assessment (3). The aim of the current study was to investigate the 

incidence and molecular basis of macrolide resistance in invasive pneumococcal disease 

isolates in the Atlanta metropolitan area, during the PCV-7 era and after the introduction 

of PCV-13. The emergence and decline of MR-IPD due to serotype 19A belonging to 

clonal complex 320 (CC320) was defined. The clone contained dual macrolide resistance 

mechanisms (both mef(E)/mel and erm(B)). The emergence of MR-IPD due to serotypes 

15A, 15B, 15C, 22F, 23A, 33F, and 35B was also observed. 
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MATERIALS AND METHODS 

Surveillance. Invasive pneumococcal disease (IPD) has been tracked in Atlanta, 

Georgia since 1994 using prospective population-based surveillance (2, 9) as part of the 

Centers for Disease Control and Prevention (CDC) Active Bacterial Core Surveillance 

(ABCs) of the Georgia Emerging Infections Program (3, 21, 22). For this study, S. 

pneumoniae isolates from IPD were collected from all hospitals and laboratories within 

the Georgia Health District-3 (HD-3), which consists of the core metropolitan Atlanta 

counties (Clayton, Cobb, DeKalb, Douglas, Fulton, Gwinnett, Newton, and Rockdale) 

with a 2010 population of 3,682,873. Population census data (2000 and 2010) and post 

census estimates for the HD-3 population were obtained from the US Census Bureau 

each year. 

Bacterial Strains. Each invasive S. pneumoniae isolate collected was serotyped 

and tested for antibiotic susceptibility at the CDC (7, 23). Serotyping was performed by 

standard Quellung reactions (21). Antibiotic minimum inhibitory concentrations (MIC) 

were determined by broth microdilution assays following Clinical and Laboratory 

Standards Institute guidelines (23). Isolates with an erythromycin MICs of ≥1 µg/ml were 

resistant, 0.5 µg/ml were intermediate-resistant, and <0.5 µg/ml were susceptible. All 

non-susceptible pneumococcal isolates, both resistant and intermediate-resistant, were 

then analyzed by PCR for the presence of macrolide resistance genetic determinants (3). 

Of 1170 macrolide non-susceptible isolates from 2003-2013, 1131 (96.6%) were 

available for the molecular determination of the macrolide resistance genotype. 
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Macrolide Resistance Gene Detection. Genomic DNA was isolated from 

erythromycin non-susceptible strains by either a crude lysis procedure (9) or the 

InstaGene™ Matrix (BioRad). One Taq® DNA polymerase and deoxynucleotide 

solution mix (New England Biolabs). PCR amplification of erm(B) of a 551 bp product 

was performed using primers KG1F (5’-TTGGAACAGGTAAAGGGCATT) and 

KG1R2 (5’-TTTGGCGTGTTTCATTGCTTG) (9). Detection of mef(E)/mel was 

determined by the presence of a 555 or 456 bp product from primers KG8 (5’-

GTATCATGTCACTTGCTATGCC) (7) and KG10 (5’-

ACACCTAGCTTGCCTACAAGTG). Whole genome sequences were available for 50 of 

the MR-IPD isolates (11, 24). The multilocus sequence type (MSLT) was determined for 

35 dual macrolide resistant genotype isolates from the mid- and late-PCV-7 era through 

traditional methods and genomic sequence data using the pubmlst.org/spneumoniae 

database (25). 

Statistical Analysis. Statistical analyses were performed using Prism® 5 

(GraphPad). Chi Square analyses were used to compare proportions of cases and 

noncases as previously described (26). Population data was used to calculate incidence 

rates, which are reported as cases per 100,000 population (3).  
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RESULTS 

Changes in Macrolide Resistant Invasive Pneumococcal Disease (1994-2013) 

The emergence of MR-IPD cases in Georgia HD-3 between 1994 and 1999 and 

the initial impact of PCV-7 introduction 2000-2002 on MR-IPD have been previously 

reported (3). MR-IPD increased from 4.5 per 100,000 population in 1994 (16.3% of all 

IPD isolates) to 9.3 per 100,000 in 1999 (31.6% of all IPD isolates) (Figure 1). After 

PCV-7 introduction in 2000, the incidence of MR-IPD declined to 2.9 per 100,000 by 

2002 (a 68.8% reduction, 22.1% of all IPD isolates) (Figure 1). From 2003-2005 to 2006-

2009, the mean incidence of MR-IPD rose significantly from 3.64 to 3.85 per 100,000 

(p<0.0001, 27.9% to 30.3% of all IPD isolates, Figure 1, Table 1). After introduction of 

PCV-13 in 2010, the incidence of MR-IPD decreased to 2.45 per 100,000 by 2013 

(p<0.0001). Between 1999 and 2013 the MR-IPD incidence in our population decreased 

73.7% (9.3 to 2.45 per 100,000). 

Emergence of MR-IPD Due to erm(B) and the Dual Macrolide Resistance Genotype 

In the pre-PCV-7 era (1994-1999) the increase in MR-IPD incidence was due to 

the emergence of mef(E)/mel-containing isolates (Figure 1), which expanded in particular 

in serotype 14 but also in serotypes 6B, 9V, 19F, and 23F (3). The incidence of MR-IPD 

with erm(B)-mediated macrolide resistance fluctuated between 1.5 and 2.3 per 100,000 

from 1994-1999 (Figure 1) and was found predominantly in serotypes 6B, 14, 19F, and 

23F (3). The rapid decline in MR-IPD following the introduction of PCV-7 in 2000-2002 

(Figure 1) was due to a reduction of disease due to mef(E)/mel- and erm(B)-containing 

isolates of PCV-7 serotypes 14, 6B, 9V, 19F, and 23F (3). From 2003-2009, mef(E)/mel-
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mediated MR-IPD continued to decline, from 3.49 to 1.64 per 100,000 (p<0.0001) 

(Figure 1, Table 1). However, this decline was offset by an emergence of isolates with 

erm(B)-mediated resistance after 2003. The incidence of isolates containing erm(B) alone 

significantly increased from the 2003-2009, from 0.22 to 0.87 per 100,000 (p=0.0002) 

(Figure 1, Table 1). Also noted was the emergence of isolates with a mef(E)/mel and 

erm(B) dual macrolide resistance genotype after 2003 (Figure 1, Table 1).  

The dual macrolide resistance genotype was not observed prior to 2000 in our 

population but steadily increased from 0.19 per 100,000 in 2003 to 1.35 per 100,000 in 

2010 (p<0.0001, Figure 1, Table 1). After introduction of PCV-13 in infants and young 

children in 2010, MR-IPD declined from 3.71 per 100,000 in 2009 to 2.45 per 100,000 by 

2013 (p=0.0103) due to the significant reduction of MR-IPD with the dual macrolide 

resistance genotype, which declined from 1.11 per 100,000 in 2009 to 0.32 per 100,000 

by 2013(p<0.0001, Figure 1, Table 1). The incidence of MR-IPD with mef(E)/mel or 

erm(B) alone did not change significantly from 2009 to 2013 (Figure 1, Table 1). 

Age Specific Changes in Macrolide-Resistant Invasive Pneumococcal Disease (MR-

IPD) 

In the <2 year old population, MR-IPD increased from 1994 to 1999 due to 

disease caused by isolates containing mef(E)/mel (incidence increased from 55.6 to 134.1 

per 100,000) or erm(B) (incidence increased from 12.0 to 18.3 per 100,000) (3). MR-IPD 

incidence significantly declined from 2000 to 2002 following PCV-7 introduction, due to 

a marked reduction of isolates with mef(E)/mel or erm(B) (incidence decreased from 17.5 

and 2.7 per 100,000, respectively, by 2002) (3). From 2003-2005 to 2006-2009, the mean 
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incidence of erm(B) alone or both mef(E)/mel and erm(B) increased from 0.00 and 2.48 

to 2.13 and 5.72 per 100,000 in those <2 years (p=0.0077 and p=0.0106) respectively 

(Table 1, Figure 2A). Following PCV-13 introduction MR-IPD rapidly declined in <2 

year olds, overall a 65.7% reduction in MR-IPD incidence was observed by 2013 (2006-

2009 rate of 20.88 to 7.16 per 100,000 in 2013; p=0.0033) (Figure 2A, Table 1). 

Reductions were observed in the incidence of the three macrolide resistance genotypes in 

<2 year olds; MR-IPD caused by mef(E)/mel dropped 47.9% (2006-2009 mean incidence 

of 11.78 to 6.14 per 100,000 in 2013) and erm(B) dropped 51.2% (2006-2009 mean 

incidence of 2.09 to 1.02 per 100,000 in 2013) (Figure 2A, Table 1). After reaching an 

incidence of 10.92 per 100,000 in 2010, MR-IPD caused by the dual macrolide resistance 

genotype disappeared in the <2 years of age population by 2012 (Figure 2A, Table 1). 

MR-IPD in the 2-4 year old population increased from 12.8 to 17.4 per 100,000 

between 1994 and 1999, but after PCV-7 introduction declines by 2002 to 2.8 per 

100,000 (3). From 2005 to 2009, the incidence of MR-IPD in this age group increased 

from 3.70 to 8.22 per 100,000. Following PCV-13 introduction, 2-4 year olds 

experienced a 68.5% reduction in MR-IPD cases (2006-2009 mean incidence of 6.45 to 

2.03 per 100,000 in 2013, p=0.0254) (Figure 2B, Table 1). The mef(E)/mel genotype fell 

43.6% (2007-2009 mean incidence of 3.60 to 2.03 per 100,000 in 2013) (Figure 2B, 

Table 1). After reaching peak rates of 1.55 per 100,000 for erm(B) in 2008 and 4.95 per 

100,000 for the dual resistance genotype in 2010, neither genotype was observed in 2-4 

year olds by 2013 (Figure 2B, Table 1). 

In the ≥65 year old population, MR-IPD caused by isolates containing mef(E)/mel 

increased from 1994 to 1999 to an incidence of 18.3 per 100,000 (3). From 2000-2002, 



49 
 

 
 

following PCV-7 introduction, the incidence of mef(E)/mel-containing isolates decreased 

to 4.5 per 100,000 (3). From 2003-2009, MR-IPD incidence caused by isolates containing 

erm(B) increased from 1.02 to 3.31 per 100,000 and the dual macrolide resistance 

genotype increased significantly from 0.00 to 3.68 per 100,000 (p=0.0024), while the 

incidence of isolates containing mef(E)/mel declined from 13.76 to 6.26 per 100,000 

(Table 1, Figure 2C). After the introduction of PCV-13, MR-IPD in the ≥65 year old 

population decreased 51.4% (2006-2009 mean incidence of 12.23 to 5.94 per 100,000 in 

2013, p=0.0013) (Figure 2C, Table 1). The reduction after 2010 in MR-IPD cases was 

due to decreases in all resistance genotypes: 40.8% reduction of mef(E)/mel (2006-2009 

mean incidence of 7.52 to 4.45 per 100,000 in 2013, p=0.0486), 49.1% reduction of 

erm(B) (2006-2009 mean incidence of 2.34 to 1.19 per 100,000 in 2013, p=0.0546), and 

85.3% reduction of the dual resistance genotype (2006-2009 mean incidence of 2.04 to 

0.30 per 100,000 in 2013, p=0.0169) (Figure 2C, Table 1). MR-IPD in other, lower risk 

age-groups (4-17, 18-39, and 40-64 year old populations) did not change significantly 

from 2006-2009 to 2013 (Table 1). 

Macrolide Resistant Serotypes 

PCV-7 or PCV-13 serotypes. MR-IPD caused by serotypes in PCV-7, and PCV-

13 (4, 6B, 9V, 14, 18C, 19F, and 23F), continued to decline from 2003-2009 from 1.43 to 

0.09 per 100,000 (p<0.0001) and, remarkably, by 2013 no cases of MR-IPD caused by 

PCV-7 serotypes were detected (Figure 3, Table S1). Of the additional six capsular 

serotypes contained in PCV-13 (1, 3, 5, 6A, 7F, and 19A), serotypes 1 and 5 did not 

cause MR-IPD and serotype 7F only caused 3 cases of MR-IPD in our population 2003-

2013 (Figure 3, Table S1). MR-IPD caused by serotype 3 remained stable from 2003-
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2013 at a mean incidence of 0.07 per 100,000 (Table S1). However, incidence of MR-

IPD caused by serotype 19A significantly increased from 0.93 per 100,000 in 2003 to 

2.15 per 100,000 in 2009 (p=0.0001) but, following PCV-13 introduction in 2010, 

sharply declined to 0.43 per 100,000 by 2013 (p<0.0001, Figure 3, Table S1). 

Interestingly, MR-IPD caused by serotype 6A declined from 0.57 per 100,000 in 2003 to 

0.06 per 100,000 in 2009 (p=0.0003) and no cases occurred from 2010-2013 (Figure 3, 

Table S1). 

Non-PCV-7 or PCV-13 serotypes. The incidence of MR-IPD cases due to 

serotype 33F remained stable with a mean incidence of 0.41 per 100,000 from 2003-

2013, causing 9-15% of MR-IPD (Figure 3, Table S1). MR-IPD caused by three other 

serotypes significantly increased from 2003-2013: serotype 15A (p=0.0033), 22F 

(p=0.0230), and 23A (p=0.0379) (Figure 3, Table S1). From 2006-2009 to 2013, 

significant increases in MR-IPD caused by 15B (p=0.0367), 15C (p=0.0047), and 35B 

(p<0.0001) were also observed (Figure 3, Table S1). 

Dual macrolide resistance serotypes. The dual macrolide resistance genotype 

(mef(E)/mel + erm(B)) was first identified in the Atlanta surveillance area in 2000 in 

three serotype 19F isolates (ST236, ST271, and ST3039), all belonging to the multi-locus 

sequence type clonal complex CC320 (11). In 2003, the first MR-IPD serotype 19A, 

ST320 isolate with the dual macrolide resistance genotype was identified (Figure 4). MR-

IPD due to isolates with the dual resistance genotype significantly increased from the 

2003-2009 (p<0.0001, Figure 1 and 4, Table 1). Dual macrolide resistant isolates from 

2003-2005 belonged to CC320 (three 19F included ST271 and two ST3039, while 19A 

isolates were all ST320). All dual macrolide resistance isolates from 2007-2009 were also 
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found to belong to CC320, two 19F isolates (sequence types ST236 and ST3039), 23 

19A, ST320 isolates and one 19A, ST1339 isolate. These isolates contain the newly 

recognized mobile genetic element Tn2010 (12). The dual macrolide resistance genotype 

was also found in serotypes 3, 6C, 11A, 15A, 22F, 23A, 33F, 35B, and nontypeable S. 

pneumoniae (Figure 4). Following PCV-13 introduction in 2010, the number of isolates 

with the dual macrolide resistance genotype steadily declined (Figures 1 and 4). 

Changes in Serotypes Causing Invasive Pneumococcal Disease (1994-2013) 

As previously reported, IPD incidence in the Atlanta population ranged from 27.6 

to 31.6 per 100,000 between 1994 and 1999 and dramatically decreased following PCV-7 

introduction in 2000 to a rate of 13.0 per 100,000 by 2002, a 55.8% reduction from 1999 

(Figure 5A) (3). IPD due to PCV-7 capsular serotypes fell dramatically (Figure 6). PCV-

7 serotypes caused 18.1-22.0 cases per 100,000 from 1994-1999 but only 5.1 cases per 

100,000 in 2002 (Figure 5A) (3). PCV-7 serotypes caused 62-70% of IPD from 1994-

1999 but only 39% of IPD in 2002 (Figure 5B) (3). 

From 2002 to 2009, IPD ranged between 11.0 and 14.1 cases per 100,000 (Figure 

5A), but the proportion of disease caused by PCV-7 serotypes continued to decrease, 

2.5% of IPD cases by 2009 (Figure 5B). After the introduction of PCV-13 in 2010, the 

incidence of IPD caused by PCV-7 serotypes declined to 0.1 per 100,000 by 2013. This 

represented a 99.5% reduction of cases (from 20.4 per 100,000 in 1999) caused by PCV-

7 serotypes. 

From 1994-2000, IPD caused by serotypes 1, 3, 5, 6A, 7F, and 19A, the six 

serotypes added to PCV-13 ranged between 3.2 and 5.6 per 100,000 (Figure 5A) 
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representing less than 15% of IPD cases (Figure 5B). Following PCV-7 introduction in 

2000, IPD caused by these six serotypes ranged between 3.2 per 100,000 in 2000 and 5.9 

per 100,000 in 2006, and remained between 4.7 and 6.2 per 100,000 from 2006-2009 

(Figure 5A). IPD caused by serotypes 1, 3, 5, 6A, 7F, and 19A increased from 14.5% in 

2000 to 48.9% in 2009 (Figure 5B). The incidence was due to both expansion of 

serotypes 7F and 19A, which increased dramatically from 1999 incidence of 0.2 and 0.9 

per 100,000, respectively, to 2.1 and 3.0 per 100,000 in 2009 (Figure 7), and decreases in 

serotype 6A (see below). Interestingly, IPD caused by serotype 1 increased from 1994-

1996, but then decreased from 1997-2004 and only occasionally caused disease 

afterwards (Figure 7). Serotype 5 rarely caused IPD in our population. IPD cases caused 

by serotype 6A decreased following the introduction of PCV-7 (Figure 7). IPD caused by 

serotype 3 was relatively consistent throughout the twenty-year study period (Figure 7). 

Though serotype 6A decreased serotype 6C, first observed in our population in 1999, 

emerged through 2010 (Figure 8). In 2010, of the six serotypes 1, 3 5, 6A, 7F, and 19A, 

only serotypes 3, 7F, and 19A caused IPD (Figure 7). 

Following PCV-13 introduction, a 25.8% reduction of overall IPD from 12.0 per 

100,000 in 2009 to 8.9 per 100,000 in 2013 was observed (Figure 5A). IPD caused by the 

six additional serotypes in PCV-13 decreased 74.8% from 5.9 per 100,000 in 2009 to 1.5 

per 100,000 in 2013 (Figure 5A). The decline was due to reductions of IPD caused by 

serotypes 7F and 19A (Figure 7). Though not represented in PCV-13, IPD caused by 

serotype 6C also declined from 2010 through 2013, suggesting cross-reactivity with the 

serotypes 6A and 6B conjugates present in PCV-13 (Figure 8). 
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IPD caused by non-PCV-13 serotypes (non-vaccine serotypes) was 3.8-3.7 per 

100,000 from 1994-1999 representing approximately 15% of IDP cases (Figure 5). After 

PCV-7 was introduced in 2000, non-vaccine IPD increased from 3.5 per 100,000 in 2000 

to 7.1 cases per 100,000 in 2007 and remained between 5.8 and 7.3 per 100,000 from 

2007-2013 (Figure 5A). Following the 2000 and 2010 introductions of PCV-7 and PCV-

13, respectively, the proportion of IPD caused non-vaccine serotypes continued to 

increase from 15% before vaccination to 81.5% of IPD in 2013 (Figure 5B). The most 

prevalent non-vaccine serotypes causing IPD include serotype 12F, 15A, 22F, 23A, 33F, 

and 35B (Figure 9). Incidence of IPD caused by serotypes 12F and 22F fluctuated 

throughout the study period but remained between 0.2 and 1.4 per 100,000 (Figure 9). 

Following the PCV-7 introduction in 2000, IPD caused by serotypes 15A, 23A, 33F, and 

35B emerged (Figure 9). 

 

DISCUSSION 

Pneumococcal conjugate vaccines (PCVs) have now been introduced into 

populations worldwide, and each time major reductions in the burden of pneumococcal 

disease have followed the introductions (14). PCVs provide individual protection and 

reduce transmission and asymptomatic nasopharyngeal carriage of the serotypes 

contained in PCVs (e.g. herd protection) (27, 28). PCVs also have reduced the incidence 

of antibiotic-resistant S. pneumoniae by decreasing the serotypes that often carry 

multiple, antibiotic resistant determinants (14). In a previous study, we found MR-IPD 

incidence decreased dramatically in the Atlanta population after the introduction of PCV-
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7 in 2000, primarily due to the reduction of PCV-7 serotypes containing the mef(E)/mel 

efflux macrolide resistance determinants (3). A modest reduction of erm(B)-mediated 

resistance in pneumococci was also observed following PCV-7 introduction (3). The 

reductions of IPD and MR-IPD observed in metropolitan Atlanta, GA reflected those 

observed throughout the rest of the US (29). 

However, as we report here, the incidence of MR-IPD stabilized in Atlanta from 

2003-2005 and then increased to 2006-2009. The changes in incidence from 2003-2009 

in IPD and MR-IPD were due to a continued decline in PCV-7 serotypes and “serotype 

replacement” by non-PCV-7 serotypes, especially 7F and 19A (Figures 3, 5, and 7). 

Specifically, a continued decrease in MR-IPD due to mef(E)/mel-containing isolates was 

observed 2003-2009 with PCV-7 use, but the MR-IPD increase was due to the re-

emergence of erm(B)-only isolates and the rapid emergence of serotype 19A isolates 

containing both determinants (Figure 1). Introduction of PCV-13 in 2010 in the pediatric 

population decreased the incidence of MR-IPD caused by dual resistance (mef(E)/mel and 

erm(B)) isolates through the suppression of serotype 19A CC320. The greatest reductions 

in MR-IPD after PCV-13 were observed in the <2 (74%) and 2-4 year age groups (66%), 

and in unvaccinated ≥65 year old populations (51.4%). As of March 2012, only 56% of 

US children under five years old had been vaccinated with PCV-13, so the rapid decline 

in all age-groups may be attributed to both individual and herd protection (30). The data 

are consistent with overall IPD reductions seen throughout the US (20). 

Older adults, ≥65 years of age, are at high risk of pneumococcal disease. Until 

recently, only the 23-valent pneumococcal polysaccharide vaccine (PPV23) was 

recommended for those ≥65 year old. PPV23 provides some protection against IPD but 
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does not impact pneumococcal carriage or transmission (14, 28). In August 2014, the US 

Advisory Committee on Immunization Practices (ACIP) recommended PCV-13 for 

routine use in the 65+ year old population (31, 32). This introduction should further 

reduce the incidence of IPD and MR-IPD in the ≥65 year old population. 

The routine use of PCV-7 in children reduced cases of MR-IPD caused by PCV-7 

serotypes but serotype replacement was observed (3, 15, 28, 33). In addition to 19A, the 

incidence MR-IPD caused by serotypes 15A, 22F, and 23A increased following PCV-7 

introduction (Figures 3). These serotype replacement events were driven by the selective 

pressures of PCV-7 and continued high-level macrolide usage (4, 34). The introduction of 

PCV-13 was followed by decreased incidence of disease due to reduction in the 

additional serotypes of PCV-13, specifically 19A (20). MR-IPD due to serotypes 15B, 

15C, and 35B increased after the introduction of PCV-13. Interestingly, MR-IPD caused 

by serotype 6A declined throughout the PCV-7 era despite a lack of coverage by PCV-7. 

Protection against serotype 6A by PCV-7 likely occurred through immunological cross-

reaction with vaccine-induced antibodies to serotype 6B, which was included in PCV-

7(35). The incidence of 6A was clarified by the discovery of serotype 6C, which was 

previously classified as serotype 6A (35). Continued monitoring of IPD and MR-IPD 

serotypes is important for future pneumococcal conjugate vaccine formulations (14). 

S. pneumoniae containing both of the macrolide resistance determinants, 

mef(E)/mel and erm(B), were first noted in the late-1990s from the US and Japan (36-38). 

MR-IPD caused by dual macrolide-resistant serotype 19A S. pneumoniae belonging to 

CC320 (formerly CC271) (11, 12, 39) increased steadily from 2006-2010 in the Atlanta 

population and worldwide (10, 12, 17, 39). Dual macrolide-resistant isolates were found 
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to contain the mobile genetic element Tn2010 (11) (Figure 4). Tn2010 is a large 26.4-Kb 

element with Mega (mef(E)/mel) and Tn917 (erm(B)) inserted at two distinct sites into a 

Tn916-like conjugative transposon (12). Tn2010 likely arose from a recombination event 

between Tn2009 [a Mega (mef(E)/mel)-containing Tn916-like transposon] and Tn6002 [a 

Tn917 (erm(B))-containing Tn916-like transposon] (11, 12). Introduction of PCV-13 in 

the US in 2010 was followed by a rapid decline in the incidence of IPD cases caused by 

the dual macrolide-resistant S. pneumoniae. By 2013, no invasive disease caused by dual 

macrolide resistant genotype isolates was detected in individuals under 18 years old in 

Atlanta. 

The global use of macrolides is a selective pressure for the development and 

expansion of macrolide resistance in S. pneumoniae (4, 34). While PCVs have reduced 

the burden of MR-IPD (3, 10), macrolide resistance among the pneumococcus has 

continued to increase worldwide. In Atlanta less than 27.5% of IPD isolates from 2013 

were macrolide resistant while in China over 90% of S. pneumoniae isolated are 

macrolide resistant (40, 41). 

In summary, serotype 19A CC320 with dual macrolide resistant mechanisms 

emerged following PCV-7 introduction as a serotype replacement macrolide antibiotic 

resistant clone. The incidence of MR-IPD, due largely to the impact on serotype 19A, 

decreased dramatically among <2 year olds as well as in 2-4 year olds and 65+ year olds 

following the introduction of PCV-13 in 2010. PCVs can significantly reduce the 

incidence of antibiotic resistance in S. pneumoniae. Expanded pneumococcal conjugate 

vaccines continue to reduce the burden of IPD and are important tools in combating 

antibiotic resistance. Moreover, this study emphasizes the impact of ongoing surveillance 
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of S. pneumoniae and the need for programs that emphasize the judicious use of 

antibiotics. 
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Table 1. Incidence of MR-IPD 2003-2013 in Atlanta, GA, by age-group, macrolide 

resistance, and macrolide resistance genotype. Incidence reported as cases per 100,000 

population. 

Incidence 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

All Ages 

           
Overall IPD 14.02 12.29 12.89 13.50 13.23 12.02 11.99 11.51 9.46 8.03 8.90 

Macrolide Resistance 4.09 3.36 3.48 4.34 3.46 3.88 3.71 3.82 2.62 2.72 2.45 

mef(E)/mel 3.49 2.72 2.67 2.59 1.83 2.22 1.64 1.60 1.46 1.61 1.50 

erm(B) 0.22 0.34 0.35 0.52 0.75 0.91 0.87 0.74 0.34 0.54 0.63 

Dual Resistance 0.19 0.08 0.39 1.12 0.68 0.65 1.11 1.35 0.79 0.57 0.32 

<2 years old 

           
Macrolide Resistance 23.82 14.74 16.21 18.79 18.88 25.48 20.36 18.57 16.80 5.28 7.16 

mef(E)/mel 20.42 11.06 13.51 12.16 10.49 13.80 10.67 6.55 8.96 5.28 6.14 

erm(B) 0.00 0.00 0.00 1.11 2.10 3.19 1.94 1.09 2.24 0.00 1.02 

Dual Resistance 2.27 2.46 2.70 5.53 4.19 7.43 7.76 10.92 4.48 0.00 0.00 

2-4 years old 

           
Macrolide Resistance 7.89 4.73 3.70 4.84 6.53 6.19 8.22 7.77 2.08 2.78 2.03 

mef(E)/mel 7.89 3.94 1.48 3.45 4.35 1.55 5.06 2.12 0.69 1.39 2.03 

erm(B) 0.00 0.00 0.74 0.69 0.73 1.55 1.27 0.71 0.69 0.00 0.00 

Dual Resistance 0.00 0.00 1.48 0.69 1.45 3.09 1.27 4.95 0.69 1.39 0.00 

5-17 years old 

           
Macrolide Resistance 0.36 0.36 0.39 0.61 0.48 0.60 0.48 0.67 0.00 0.48 0.31 

mef(E)/mel 0.18 0.36 0.39 0.20 0.32 0.45 0.16 0.17 0.00 0.48 0.15 

erm(B) 0.18 0.00 0.00 0.00 0.16 0.00 0.32 0.00 0.00 0.00 0.15 

Dual Resistance 0.00 0.00 0.00 0.20 0.00 0.15 0.00 0.50 0.00 0.00 0.00 

18-39 years old 

           
Macrolide Resistance 1.73 1.06 1.45 2.29 1.61 1.00 1.80 0.85 1.20 0.73 0.98 

mef(E)/mel 1.62 0.82 1.32 1.72 0.80 0.78 0.54 0.53 0.65 0.27 0.45 

erm(B) 0.11 0.23 0.00 0.11 0.57 0.11 0.45 0.21 0.09 0.09 0.45 

Dual Resistance 0.00 0.00 0.00 0.46 0.23 0.00 0.81 0.00 0.46 0.36 0.09 

40-64 years old 

           
Macrolide Resistance 4.17 4.34 4.54 5.08 3.63 4.13 2.80 3.85 3.30 4.03 3.70 

mef(E)/mel 3.10 3.47 3.50 2.13 1.71 2.16 1.12 1.19 1.74 2.57 1.98 

erm(B) 0.24 0.43 0.70 1.02 0.81 1.41 0.84 1.19 0.55 0.83 0.95 

Dual Resistance 0.36 0.00 0.35 1.83 0.81 0.47 0.75 1.19 0.92 0.64 0.77 

≥65 years old 

           
Macrolide Resistance 14.77 11.72 10.05 13.32 9.75 12.23 13.63 15.33 7.31 8.74 5.94 

mef(E)/mel 13.76 9.96 7.18 10.36 5.32 8.15 6.26 8.82 4.52 4.21 4.45 

erm(B) 1.02 1.76 0.96 0.99 2.22 2.85 3.31 2.68 0.35 2.59 1.19 

Dual Resistance 0.00 0.00 1.44 1.48 1.77 1.22 3.68 3.83 2.09 1.94 0.30 
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FIGURE LEGENDS 

Figure 1. The incidence (2003-2013) of macrolide-resistant invasive pneumococcal 

disease (MR-IPD) (black line) as cases per 100,000 population and incidence by 

macrolide resistance genotype: mef(E)/mel (white squares), erm(B) (white diamond), or 

the dual macrolide resistance genotype (mef(E)/mel and erm(B) (white triangles). 

Figure 2. The incidence (2003-2013) of MR-IPD cases in individuals (A) <2 years, (B) 

2-4 years, (C) ≥65 years. Incidence is shown as cases per 100,000 population with white 

bars for mef(E)/mel incidence, vertical striped bars for erm(B) incidence, and black bars 

for the dual macrolide resistance genotype (mef(E)/mel and erm(B)) incidence. 

Figure 3. The S. pneumoniae serotype distribution of MR-IPD in (A) 2002 (two years 

after PCV-7 introduction), (B) 2003-2005, (C) 2006-2009, and (D) 2013 (three years 

after PCV-13 introduction). Size of pie charts are scaled to represent cases per year: 

Figure 3A (74%), 3B (100%), 3C (120%), 3D (86%). “Other” pneumococcal serotypes 

are non-vaccine serotypes that did not change over the study period. Serotypes contained 

in PCV-13 are underlined. 

Figure 4. S. pneumoniae MR-IPD isolates with dual resistance genes (mef(E)/mel and 

erm(B)) were first observed in the surveillance area in 2000: 19F (black bars), 19A 

(white bars). Other serotypes (striped bars) with the dual macrolide resistance genotype 

first observed in 2006 (11A), 2008 (23A), 2009 (15A, 33F, and two nontypeable strains), 

2010 (two 22F and one nontypeable), 2012 (6C and 35B), and 2013 (serotype 3). 
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Figure 5. The incidence (1994-2013) of invasive pneumococcal disease as cases per 

100,000 population by capsular serotypes: serotypes contained in PCV-7 (black bars), 

additional six serotypes contained in PCV-13 not represented in PCV-7 (left strip bars), 

and non-vaccine serotypes (white bars). 

Figure 6. The incidence (1994-2013) of invasive pneumococcal disease caused by PCV-

7 serotypes as cases per 100,000 population. Incidence for each of the seven serotypes is 

presented: serotype 4 (black bars), 6B (left strip bars), 9V (black dots on white bars), 14 

(horizontal strip bars), 18C (gray bars), 19F (right strip bars), and 23F (white bars). 

Figure 7. The incidence (1994-2013) of invasive pneumococcal disease caused by the six 

PCV-13 serotypes not represented in PCV-7 as cases per 100,000 population. Incidence 

for each serotypes is presented: serotype 1 (black bars), 3 (left strip bars), 5 (black dots 

on white bars), 6A (horizontal strip bars), 7F (gray bars), and 19A (white bars). 

Figure 8. Incidence of serogroup 6 IPD by serotype from 1994-2013. Incidence for 6B a 

PCV-7 serotype (black bars), 6A a PCV-13 serotype (left strip bars), and 6C a non-

vaccine serotype (white bars) are presented. 

Figure 9. The incidence (1994-2013) of invasive pneumococcal disease caused by non-

vaccine serotypes as cases per 100,000 population. Incidence for each of the most 

prevalent serotypes in the Atlanta surveillance area is presented: serotype 12F (black 

bars), 15A (left strip bars), 22F (black dots on white bars), 23A (horizontal strip bars), 

33F (gray bars), and 35B (right strip bars). “Other” serotypes are non-vaccine serotypes 

that caused less than 0.1 cases per 100,000 population and did not change dramatically 

during the course of the study (white bars).
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Figure 2 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Figure 9. 
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Table S1. Incidence of MR-IPD 2003-2013 in Atlanta, GA, by serotype. Incidence 

reported as cases per 100,000 population. 

Incidence 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

Overall IPD 14.02 12.29 12.89 13.50 13.23 12.02 11.99 11.51 9.46 8.03 8.90 

MR-IPD 4.09 3.36 3.48 4.34 3.46 3.88 3.71 3.82 2.68 2.72 2.45 

PCV-7 

Serotypes 1.43 0.79 0.60 0.36 0.10 0.13 0.09 0.19 0.15 0.03 0.00 

4 0.11 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 

14 0.57 0.11 0.14 0.13 0.00 0.03 0.00 0.06 0.03 0.00 0.00 

18C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

19F 0.14 0.04 0.18 0.16 0.03 0.00 0.06 0.03 0.00 0.03 0.00 

23F 0.25 0.15 0.14 0.03 0.00 0.00 0.03 0.03 0.00 0.00 0.00 

6B 0.22 0.19 0.14 0.03 0.00 0.06 0.00 0.00 0.00 0.00 0.00 

9V 0.14 0.23 0.00 0.00 0.07 0.03 0.00 0.06 0.09 0.00 0.00 

PCV-13 

Serotypes 1.61 1.73 1.88 2.51 1.83 1.92 2.30 1.88 1.08 0.77 0.51 

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

3 0.11 0.08 0.04 0.13 0.03 0.00 0.09 0.16 0.00 0.15 0.09 

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

19A 0.93 1.43 1.56 2.12 1.66 1.80 2.15 1.72 1.08 0.59 0.43 

6A 0.57 0.23 0.28 0.23 0.10 0.13 0.06 0.00 0.00 0.00 0.00 

7F 0.00 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.03 0.00 

Non-vaccine 

Serotypes 1.04 0.83 0.99 1.47 1.53 1.83 1.32 1.75 1.39 1.92 1.93 

12F 0.00 0.15 0.04 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 

15A 0.04 0.04 0.11 0.26 0.51 0.42 0.36 0.28 0.33 0.35 0.37 

15B 0.00 0.00 0.07 0.03 0.07 0.03 0.00 0.00 0.06 0.06 0.11 

15B/C 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.19 0.03 0.00 0.00 

15C 0.00 0.00 0.00 0.03 0.00 0.03 0.00 0.00 0.00 0.09 0.11 

22F 0.00 0.00 0.00 0.07 0.00 0.13 0.09 0.13 0.03 0.15 0.17 

23A 0.00 0.00 0.00 0.00 0.14 0.26 0.06 0.09 0.06 0.15 0.14 

33F 0.68 0.34 0.60 0.55 0.41 0.45 0.33 0.19 0.27 0.44 0.23 

35B 0.04 0.04 0.04 0.13 0.07 0.10 0.09 0.28 0.18 0.32 0.43 

11A 0.07 0.08 0.00 0.10 0.03 0.10 0.03 0.19 0.09 0.12 0.17 

6C 0.11 0.11 0.11 0.20 0.24 0.19 0.18 0.28 0.24 0.21 0.09 

others 0.11 0.08 0.04 0.10 0.07 0.13 0.15 0.13 0.03 0.03 0.11 
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Figure S1. S. pneumoniae isolates clustered by MLST typing. 
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Table S1. Whole-genome sequenced S. pneumoniae isolates. 
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a
 Collection, Isolates were provided by the following agencies: GEIP, EIP, Sharma, 

PMEN, Pneumococcal Molecular Epidemiology Network 

b
 MRME, Macrolide Resistance Encoding Mobile Element 

C
 MIC, Minimum inhibitory concentration, reported at µg/ml  

d
 S/I/R, Sensitive/Intermediate/Resistant 

 

Antibiotic abbreviations, ERY, erythromycin; CLI, clindamycin; TET, tetracycline 
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Supplemental Table S2. Macrolide resistance element insertion sites. 
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a
 CC, clonal complex 

b
 TIGR4 annotation 

c
 MIC, Minimum inhibitory concentration, reported at µg/ml  

 

Antibiotic abbreviations, ERY, erythromycin; CLI, clindamycin; TET, tetracycline 
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Supplemental Table S3.Tn916-like elements in S. pneumoniae. 
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a
 Type, serotype 

b
 ST, Multilocus sequence type 

c
 CC, Clonal complex 

d
 MIC, Minimum inhibitory concentration, reported at µg/ml  

 

Antibiotic abbreviations, ERY, erythromycin; CLI, clindamycin; CHL, chloramphenicol; 

TET, tetracycline 
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ABSTRACT 

The explosive, widespread use of macrolides in the last thirty years has been a 

strong selective pressure contributing to the expansion of macrolide-resistant 

Streptococcus pneumoniae. Macrolide resistance in pneumococci is primarily due to 

ribosomal methylation by a methyltransferase encoded by erm(B) or due to efflux 

encoded by mef(E)/mel, an operon carried on the macrolide efflux genetic assembly 

(Mega) element. We have documented the recent clonal expansion of serotype 19A 

complex isolates that contain Tn2010, a new, emerging composite mobile genetic 

element with both erm(B) and Mega. In this study we, through creation of isogenic 

mutants, found that erm(B) was critical to confer high-level macrolide resistance in 

Tn2010-containing strains but that mef(E)/mel-mediated efflux remained functional. We 

also report new, high-level resistance (MIC >16 µg/ml) isolates containing Mega alone 

caused by specific genomic insertions, Mega-2.IVa and Mega-2.IVc, associated with the 

presence of ISSmi2 and deletions of the Pneumococcal Pathogenicity Island-1. Deletion 

of mef(E)/mel in these isolates completely eliminated macrolide resistance. Using in vitro 

competition experiments, we found that in the presence of erythromycin, high-level 

macrolide-resistant S. pneumoniae conferred by either erm(B) or Mega-2.IVa, have a 

growth fitness advantage over lower-level macrolide-resistant S. pneumoniae conferred 

by other Mega insertions. These data indicate that the ability of S. pneumoniae to 

generate high-level macrolide resistance by either ribosomal methylation or efflux affords 

a selective advantage for pneumococci in a macrolide environment, and that the efflux 

pump might have additional selective function(s). 
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Keywords: Streptococcus pneumoniae, pneumococcus, macrolide resistance, Mega, 
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INTRODUCTION 

  Streptococcus pneumoniae, the pneumococcus, is an obligate commensal of the 

human nasopharynx and an opportunistic pathogen responsible for morbidity and 

mortality worldwide. S. pneumoniae causes non-invasive diseases such as acute otitis 

media, sinusitis, and pneumonia, as well as invasive diseases such as bacteremia and 

meningitis (1). Antibiotic therapy for community-associated upper respiratory tract 

bacterial infections often includes a macrolide (2, 3). However, the choice of a macrolide 

has been compromised by the rapid emergence of macrolide resistance in S. pneumoniae. 

Widespread use of macrolides has provided a strong selective pressure contributing to the 

expansion of macrolide-resistant S. pneumoniae (4). In the United States, macrolides are 

one of the most prescribed antibiotics with 190 prescriptions per 1000 people in 2011 (2). 

Macrolide resistance in S. pneumoniae rapidly emerged in the early-mid 1990s and 

increased throughout that decade (5, 6). 

Macrolide resistance in S. pneumoniae is predominantly due to ribosomal 

modification or macrolide efflux (7). Macrolides bind to the 23S rRNA (A2058 for 

Escherichia coli) of the 50S ribosome to inhibit protein synthesis (8). A ribosomal 

methyltransferase, encoded by erm(B), prevents binding of macrolides by dimethylating 

the target site on the ribosome (9). Ribosomal methylation results in very high-level 

macrolide resistance (erythromycin MIC ≥256 μg/ml) as well as resistance to 

lincosamides and streptogramin B (the MLSB phenotype). Macrolide efflux is mediated 

by mef(E) and mel, a dual efflux pump carried on the 5.5 kb or 5.4 kb genetic element 

Mega (10, 11). Mega is found in five locations in the pneumococcal genome and also as a 

component of a conjugative transposon or larger composite elements. The mef(E)/mel-
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encoded macrolide efflux pump confers resistance to macrolides only (the M phenotype) 

and is inducible by 14- and 15-membered macrolide molecules (12, 13). In the United 

States, most pneumococcal macrolide resistance is due to efflux (14, 15). Efflux-

mediated macrolide resistance has been generally reported as MICs of erythromycin as 1-

16 µg/ml (12, 16), and the clinical significance of efflux-mediated resistance has been 

debated (17). 

We have identified the mobile genetic elements disseminated macrolide resistance 

in our population and have documented the emergence and clonal expansion of 

macrolide-resistant serotype 19A clonal complex 320 isolates that contain Tn2010, with 

both erm(B) and mef(E)/mel (Chapter 2). In this study, we assessed the contribution of 

erm(B) and mef(E)/mel in Tn2010 isolates Further, we have identified new high-level 

macrolide resistance of S. pneumoniae (MIC >16 µg/ml) with Mega alone. The genetic 

basis responsible for high-level macrolide resistance due to efflux in S. pneumoniae was 

investigated. We also found high-level macrolide resistance, regardless of mechanism, 

provided a competitive growth advantage during exposure to erythromycin. 

RESULTS 

Macrolide resistance in S. pneumoniae and the Mega element. To better 

understand the genetic basis for the wide variation in Mega-associated minimum 

inhibitory concentrations (MICs), a panel of 44 distinct, well-characterized macrolide-

resistant clinical isolates was investigated (Table 1). This panel was selected from 

macrolide-resistant isolates collected through prospective population-based surveillance 

of invasive pneumococcal disease in Atlanta 1994-2011 (18). Strains represented 
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difference years of isolation, serotype, MLST, and clonal complex. The MICs to 

erythromycin of macrolide-resistant S. pneumoniae with the Mega element varied from 2 

to ≥256 µg/ml (Figure 1). Erythromycin MICs of 1-16 µg/ml were classified as 

“resistant” and >16 µg/ml were classified as “high-level resistant.”  

The majority of these Mega-containing S. pneumoniae demonstrated typical 

resistant to erythromycin with MICs of 4-16 µg/ml (Table 1, Figure 1). However, after 

overnight growth with subinhibitory erythromycin (0.1 µg/ml), the erythromycin-induced 

MICs for these strains were 16-64 µg/ml (Table 1, Figure 1). These erythromycin MICs 

and induced-erythromycin MICs are representative of macrolide resistance caused by 

Mef(E)/Mel-mediated macrolide efflux previously reported (11-13). The relationship of 

MIC to the Mega promoter polymorphisms, the 99-bp difference in the mef(E)/mel 

intergenic region and the genomic sites of Mega insertion were assessed. 

The mef(E)/mel promoter region is now well defined and is highly conserved (19). 

The single base pair change in the promoter sequence did not correlate with differences in 

MIC (Figure A1). Specifically, the consensus -19G to -19T found in four of the ten Mega 

classes did not correlate with the MIC. 

Chromosomal insertion sites Mega-1.I, Mega-1.II, Mega-2.II, Mega-1.III, Mega-

1.IVb, and Mega-1.VTn2009 all have erythromycin MICs 2-16 µg/ml uninduced and 16-

64 µg/ml induced (Table 1, Figure 1). These strains had the typical level of macrolide 

resistance associated with efflux for S. pneumoniae. These isolates were also susceptible 

to clindamycin and thus have an M phenotype. The newly described Mega-1.novel 

insertion (20), herein named Mega-1.VI, also exhibited an MIC of 4 µg/ml and an 
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induced-erythromycin MIC of 16 µg/ml. Mega type 1 (Mega-1) and Mega type 2 (Mega-

2), due to a 99 bp insertion/deletion of the intergenic region between mef(E) and mel (11), 

did not contribute to macrolide resistance as both Mega-1.II and Mega-2.II were found to 

have the same erythromycin and induced-erythromycin MICs (Figure 1). 

Mega-containing S. pneumoniae with high-level macrolide resistance. S. 

pneumoniae containing Mega-2.IVa, Mega-2.IVc, or Mega-1.V Tn2010 were found to 

exhibit high-level macrolide resistance, e.g. uninduced MIC of >16 µg/ml and induced 

MIC of ≥64 µg/ml (Figure 1). Of the four S. pneumoniae isolates with Mega-2.IVa, the 

erythromycin MICs were 18-64 with induced-erythromycin MICs of 96 to ≥256 µg/ml. 

To date one S. pneumoniae Mega-2.IVc isolate has been identified (19, 20); this isolate 

has an erythromycin MIC of 64 µg/ml and is inducible to ≥256 µg/ml. Mega-2.IVa and 

Mega-2.IVc isolates were found to be clindamycin susceptible, e.g. M phenotype. No 

other macrolide resistant determinants were found in these isolates (see below). The 

Mega-1.V Tn2010 isolates were found to have uninduced erythromycin MICs of ≥256 

µg/ml, but this was due to the presence of erm(B) (see below). All erm(B)-containing 

isolates, including Tn2010-containing isolates, were clindamycin resistant, the MLSB 

phenotype. 

Macrolide resistance in dual erm(B) and mef(E)/mel, Tn2010-containing S. 

pneumoniae. To define high-level macrolide resistance phenotype observed for Tn2010-

containing S. pneumoniae, isogenic deletion mutations were made in erm(B) or 

mef(E)/mel or both in strain GA44288, an invasive pneumococcal disease isolate (20). 

The deletion of mef(E)/mel from GA44288 (Tn2010), designated MS41, had no effect on 

MIC as MS41 (Tn2010 Δmef(E)/mel) had an erythromycin MIC of ≥256 µg/ml (Table 2). 
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The deletion of erm(B), in GA44288 designated MS32, lowered but did not eliminate 

macrolide resistance. MS32 (Tn2010Δerm(B)) had an erythromycin MIC of 8 µg/ml and 

an induced erythromycin MIC of 64 µg/ml (Table 2). This MIC is similar to Tn2009 

Mega-containing isolates (Table 1, Figure 1). The deletion of both macrolide resistance 

determinants in GA44288 designated MS42 (Tn2010 Δerm(B)Δmef(E)/mel) was found to 

be susceptible to erythromycin (MIC 0.125 µg/ml) (Table 2). This confirmed erm(B) and 

mef(E)/mel as the only macrolide resistance determinants in GA44288 and that high-level 

macrolide resistance of Tn2010-containing S. pneumoniae was due to the presence of 

erm(B). 

In S. pneumoniae the expression of mef(E) and mel is controlled through 

transcriptional attenuation (12, 13, 19). Macrolide-induced ribosomal stalling results in 

deattenuation of mef(E)/mel to produce full-length polycistronic transcripts. In order to 

determine if mef(E)/mel were expressed in presence of erm(B), mef(E) expression was 

measured by qRT-PCR from GA44288 after a 15 min exposure to erythromycin. The 

expression of mef(E) was dose-dependent, and 0.5 µg/ml erythromycin was sufficient to 

induce expression in both the wild type (Figure 2) and Δerm(B) background (data not 

shown). Thus in a dual macrolide resistance isolate, mef(E)/mel were expressed upon 

exposure to macrolides and as shown by MIC data above results in a functional efflux 

pump. 

mef(E)/mel-encoded efflux alone is responsible for high-level macrolide 

resistance in Mega-2.IVa- and Mega-2.IVc-containing S. pneumoniae. Isolates with 

Mega-2.IVa and Mega-2.IVc were found to have high-level macrolide resistance 

(Figure 1). To confirm the molecular basis for this high-level macrolide resistance, 
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mef(E)/mel was deleted from the high-level macrolide-resistant strain GA16242 with a 

Mega-2.IVa insertion (uninduced erythromycin MIC of 64 µg/ml) to create TS9001. 

TS9001 was susceptible to erythromycin at 0.125 µg/ml (Table 2). Similarly, deletion of 

mef(E)/mel from the high-level macrolide-resistant Mega-2.IVc strain GA17545 

(uninduced erythromycin MIC of 64 µg/ml) resulted in susceptibility to macrolides as the 

erythromycin MIC of the mutant designated XZ8012-5 was 0.19 µg/ml (Table 2). Thus, 

mef(E)/mel-encoded efflux alone in this genomic location were responsible for high-level 

macrolide resistance in these S. pneumoniae isolates. 

To further analyze the function of Mega in class IVa and IVc insertions and 

determine whether the high-level macrolide resistance phenotype of Mega was 

transferable, the Mega-2.IVa insertion was transformed into the erythromycin susceptible 

strain NP112 (MIC 0.19 µg/ml). The resulting NP112 Mega-2.IVa isolate (designated 

MS23) demonstrated high-level macrolide resistance with an erythromycin MIC of 32 

µg/ml and was inducible up to ≥256 µg/ml (Table 2). The transfer of Mega-2.IVa 

included the adjacent ISSmi2 element and recreated the pneumococcal pathogenicity 

island (PPI-1) deletion found in Mega-2.IVa isolates (20). Deletion of mef(E)/mel from 

MS23 (MS30) restored macrolide susceptibility (Table 2). Efflux-mediated high-level 

macrolide resistance was also transferred to the GA17457 Δmef(E)/mel deletion strain 

(XZ8009). After transformation with the Mega-2.IVa insertion, the strain designated 

MS27 was found to have an erythromycin MIC of 32 µg/ml inducible up to ≥256 µg/ml 

(Table 2). These data confirm that Mega-2.IVa insertions result in high-level macrolide 

resistance. 
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High-level macrolide resistance, regardless of mechanism, provides a growth 

competitive advantage during exposure to erythromycin. Unregulated erm(C) has 

been found through competitive growth assays to cause a growth defect in S. aureus after 

approximately 40 generations of growth (21). We first sought to determine whether 

erm(B) in S. pneumoniae resulted in a growth defect and whether such defect might be 

alleviated by the presence of mef(E)/mel in Tn2010-containing S. pneumoniae. 

Erythromycin-induced cultures of GA44288 and the isogenic mutants (MS32 and MS41) 

(Table 2) were used as the input for an in vitro competitive index (1:1 ratio), using a 

concentration of erythromycin known to be achieved in human serum during treatment 

(0.5 µg/ml) (22). There was no significant difference between MS41 (GA44288 

Δmef(E)/mel) and GA44288 in this assay (Figure 3A, p=0.5460). This suggested the 

presence of mef(E)/mel did not provide a growth advantage to an erm(B)-containing 

strain during exposure to erythromycin. When MS32 (GA44288 Δerm(B)) was competed 

with GA44288 the competitive index decreased to approximately 0.01 after 50 

generations (Figure 3B), which indicated a significant advantage for GA44288 

(p=0.0012). Similarly, the competitive index of MS32 (GA44288 Δerm(B)) versus MS41 

(GA44288 Δmef(E)/mel) dropped to approximately 0.01 by the endpoint 50 generations 

(Figure 3C, p<0.0001). When these experiments were performed without erythromycin, 

the competitive indexes remained at approximately 1 throughout the course of the 

experiments (Figure A2). In each of the erythromycin-induced competitive index 

experiments, an erm(B)-containing strain (GA44288 and MS41) had a competitive 

advantage over the erm(B) deletion stain (MS30) (Figure 3). The data suggest that 
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erm(B) provided a growth advantage during when S. pneumoniae is exposed to 

treatment-level concentrations of erythromycin. 

To determine whether the competitive advantage for growth of erm(B) during 

erythromycin exposure was due Erm(B)-mediated ribosomal methylation or to the high-

level macrolide resistance of the erm(B)-containing strains, we performed the 

competitive index assay with the GA44288 isogenic strains in competition with 

GA16242, a Mega-2.IVa strain that produces high-level macrolide resistance due to the 

presence of mef(E)/mel (Figure 1, Table 2). In the assay, the competitive index for 

GA44288 versus GA16242 remained ~1 throughout the course of the experiments 

(Figure 4A, p=0.3088). The competitive index for MS41 (GA44288 Δmef(E)/mel) versus 

GA16242 also did not change throughout the experiments (Figure 4B, p=0.4397). These 

data suggest the growth advantage of erm(B) (Figure 3) was due to high-level macrolide 

resistance and was not specific to Erm(B)-mediated ribosomal methylation. Finally, we 

assayed MS32 (GA44288 Δerm(B)) with GA16242 and found the competitive index 

decreased below 0.1 after 50 generations of growth (Figure 4C, p=0.0316). The 

competition advantage of high-level macrolide resistance strains (MS32 and GA16242) 

indicated that high-level macrolide resistance, regardless of mechanism, provided a 

growth competitive advantage during exposure to erythromycin. 

DISCUSSION 

High-level macrolide resistance due to efflux has previously been observed in a 

few clinical isolates (15) but not characterized at a molecular level. We found high-level 

macrolide resistance in S. pneumoniae is due to macrolide efflux caused by specific 
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(Mega-2.IVa and Mega-2.IVc) insertions that are linked to the presence of ISSmi2 and 

deletion of the Pneumococcal Pathogenicity Island-1 (PPI-1). We also defined the 

interesting dual macrolide resistance genotype of Tn2010-containing isolates, which 

emerged in the PCV-7 conjugate vaccine era (Chapter 2). Both erm(B) and mef(E)/mel 

are expressed and functional in these isolates. Further, high-level macrolide resistance, 

due to either ribosomal methylation or efflux, provided a growth competitive advantage 

during exposure to treatment levels of erythromycin. 

The rise of macrolide resistance in the United States throughout the 1990s was 

largely attributed to the increased occurrence of isolates containing the Mega element 

encoding a two-component efflux pump (14, 15). Mega-containing isolates have been 

generally associated with lower levels of macrolide MICs (≤16 µg/ml erythromycin) 

compared to levels observed for erm(B) (≥64 µg/ml erythromycin) (15). Macrolide 

resistance in the pneumococcus, caused by erm(B) and mef(E)/mel, has been linked to 

treatment failures for lower respiratory tract infections and bacteremia (23-25). 

The two most common Mega elements are type 1 and 2, which are distinguished 

by a 99-bp insertion/deletion (Mega-1 at 5.5-kb and Mega-2 at 5.4-kb) (11). Mega has 

inserted into the pneumococcal genome in six distinct sites, termed Mega classes (20). 

Insertion sites numbered I-IV were originally described (11). When inserted into Tn916-

like elements, Mega is classified as insertion site V (26-28). Recently, we reported a 

novel chromosomal insertion site, VI (20). 

Mega class IV has been further classified into three subclasses: Mega-2.IVa, 

Mega-1.IVb, and Mega-2.IVc (20) all of which are upstream of PPI-1. We found Mega-
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2.IVa and Mega-2.IVc have high-level macrolide resistance while the Mega-1.IVb 

insertion has uninduced MICs of 2-16 µg/ml with induced MICs of 24-64 µg/ml 

(Table1). The 99-bp insertion/deletion in the intergenic region between mef(E) and mel, 

the distinguishing characteristic between Mega-1 from Mega-2, does not appear to affect 

the level of macrolide resistance. 

The presence of ISSmi2 adjacent to Mega and the deletion of PPI-1 in Mega-IVa 

and Mega-IVc isolates should be investigated further to assess their roles in high-level 

macrolide resistance. The presence of ISSmi2 upstream of Mega orf3-6 could cause 

upregulation of these genes leading to increased macrolide resistance. Alternatively, the 

deletion of the PPI-1 may result in high-level macrolide resistance of Mega-2.IVa/c 

isolates. The PPI-1 is comprised of a conserved region of 15.1-kb and a variable region of 

15.6-kb (20, 29). Deletion of the piaABCD and phgABC operons of the conserved region 

of PPI-1 decrease virulence in mice (30, 31). Interestingly, the Mega-2.IVa/c isolates in 

this study were recovered from invasive pneumococcal disease patients, which suggest 

the strains have maintained virulence without the presence of the PPI-1. 

In the mid-2000s after PCV-7 introduction, clonal expansion of macrolide-

resistant serotype 19A S. pneumoniae with dual resistance determinants, Mega and 

erm(B), was observed worldwide (15, 27, 32, 33) (Chapter 2). This dual macrolide 

resistant genotype results in an MLSB phenotype with high-level macrolide resistance 

(Table 2). The mef(E)/mel operon was inducible in the erm(B) background, which 

indicates co-expression of both macrolide resistance mechanisms. The high-level 

macrolide resistance of S. pneumoniae isolates with the dual macrolide resistance 

genotype, mef(E)/mel and erm(B) (Tn2010-containing), was due to erm(E), but 
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mef(E)/mel provided lower efflux-mediated resistance levels (Table 2) and may provide 

other selective advantages due to mef(E)/mel such as resistance to antimicrobial peptides 

(e.g. LL-37) (34). The introduction of PCV-13 has significantly decreased the incidence 

of serotype 19A and the dual macrolide resistance genotype especially in high-risk 

populations, <5 and ≥65 year old populations (Chapter 2). 

Antibiotic resistance determinants are often inducible and provide a selective 

advantage over non-resistant organisms in an antibiotic-containing environment. 

However, expression of these determinants can be associated with a fitness cost when the 

selective pressure is absent (35). In the pneumococcus, erm(B) commonly is inducible 

and tightly regulated expressed through translational attenuation (36, 37). The mef(E)/mel 

operon is regulated through transcriptional attenuation (19). Overexpression of erm(B) in 

S. pneumoniae by a partial attenuator deletion did not cause a growth defect when the 

strain was grown in vitro as a pure culture (38). However, in Staphylococcus aureus, 

deregulation of erm(C), a homolog of erm(B), results in increased expression of a subset 

of the proteome that causes a 10-fold fitness defect in vitro (21). We found that erm(B) in 

S. pneumoniae did not cause a fitness defect and provided a competitive advantage up to 

100-fold during macrolide exposure. Murine TLR13 is stimulated by a fragment of 

bacterial 23S rRNA but methylation of A2058, the target of erm(C) and erm(B), 

prevented TLR13 activation and prevented detection of the bacteria through this pathway 

(39). Humans do not have TLR13, and thus it is at present unclear if erm(B)-mediated 

ribosomal methylation has a protective effect against the human immune response. 

The recent emergence of S. pneumoniae with dual macrolide resistance 

determinants is a novel event (Chapter 2). The dual macrolide resistance genotype may 
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have arisen by a mef(E)/mel-containing strain acquiring erm(B). A Tn2009-containing 

strain may have acquired erm(B) through homologous recombination of a Tn6002 

fragment with erm(B) flanked by Tn916 orf20 to create Tn2010, which would convert the 

strain from an M phenotype with lower-level macrolide resistance to an MLSB phenotype 

with high-level macrolide resistance. Alternatively, dual macrolide resistance genotype 

may have occurred through a Tn6002-containing strain becoming transformed with a 

Tn2009 fragment with Mega flanked by Tn916 orf6 to create Tn2010. During in vitro 

competitive growth assays, erm(B) provided a growth fitness advantage when subjected 

to erythromycin due to the high-level macrolide resistance conferred by erm(B) as 

mef(E)/mel did not contribute the in vitro survival benefit. The presence of mef(E)/mel 

has been found to enhance resistance to the human antimicrobial peptides LL-37 (34). 

The host immune response may have provided a selective pressure for the acquisition of 

mef(E)/mel by an erm(B)-containing S. pneumoniae. While it is not possible to determine 

the order of acquisition of the macrolide resistance determinants, the close genetic 

linkage of these resistance determinants and non-macrolide resistance determinants (i.e. 

tetracycline resistance) on Tn2010 and Tn2010-like elements may result in a soft 

selective pressure for maintenance (40). With an undetectable fitness burden for 

maintenance of mef(E)/mel and/or erm(B) it is unlikely these determinants would be lost 

from the pneumococcal population, even with reduced use of macrolides in clinical 

settings (35). 

The most effective measure to date in combating macrolide-resistant 

pneumococcal infections has been the introduction of pneumococcal conjugate vaccines 

(PCV). These vaccines provide individual protection for vaccinated individuals, reduce 
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transmission of vaccine serotypes leading to herd protection for unvaccinated individuals 

in the same population (41). PCV-7 containing capsular polysaccharides of serotypes 4, 

6B, 9V, 14, 18C, 19F, and 23F conjugated to diphtheria protein CRM197 was introduced 

into the US pediatric population in 2000. Introduction of PCV-7 was followed by rapid 

decrease in the incidence of local and invasive pneumococcal disease caused by the 

vaccine serotypes; these vaccine serotypes also had the highest frequency of macrolide 

resistance determinants (14). Following serotype replacement by non-PCV-7 serotypes, 

PCV-13 containing capsular polysaccharides of serotypes from PCV-7 and serotypes 1, 

3, 5, 6A, 7F, and 19A conjugated to CRM197 was introduced in the United States in 

2010 and also resulted in decreased pneumococcal disease and macrolide-resistance due 

to the effects on vaccine serotypes (42) (Chapter 2). Overall macrolide-resistant invasive 

pneumococcal disease declined 70% in Atlanta since 1999 (Chapter 2). The dual 

macrolide resistance genotype (Tn2010-containing) has predominately been found in 

association with serotype 19F most commonly 19A, PCV-13 introduction decreased the 

incidence of invasive pneumococcal disease cause by isolates with the dual macrolide 

resistance genotype (Chapter 2). 

In summary, high-level macrolide resistance in S. pneumoniae can result from 

efflux due to the mef(E)/mel-encoded two-component efflux pump, the specifically in the 

context of the Mega-2.IVa or Mega-2.IVc genomic insertions. Tn2010-containing S. 

pneumoniae isolates carry both erm(B) and mef(E)/mel, which are both functional in 

these strains. High-level macrolide resistance regardless of mechanism provides a 

competitive growth advantage during exposure to erythromycin. 
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MATERIALS and METHODS 

Bacterial Strains, Media, and Growth Conditions. The characteristics of strains 

used are listed in Table 1 and 2. All S. pneumoniae strains were routinely grown on 

trypticase soy agar II containing 5% sheep’s blood (blood agar) or in Todd-Hewitt broth 

containing 0.5% yeast extract broth (THY). Plate cultures were grown at 37°C with 5% 

CO2 and broth cultures were grown in a 37°C water bath.  

Antibiotic Susceptibility. Bacterial cultures were grown overnight on blood agar 

and subcultured onto blood agar or blood agar with erythromycin supplementation to 

induce resistance expression as a standard protocol in our laboratory (13, 34). These 

overnight cultures were suspended to a density approximately equal to a 0.5 McFarland 

standard and streaked onto Mueller-Hinton agar containing 5% sheep’s blood. 

Erythromycin susceptibility tests were performed by applying an erythromycin Etest 

strips (bioMérieux). After an overnight incubation, erythromycin susceptibility was 

measured. Uninduced MICs of 1-16 µg/ml were classified as resistant and >16 µg/ml 

were classified as high-level resistant. 

General DNA Manipulation. Primers sequences are listed in Table A1. PfuUltra 

II Fusion DNA polymerase (Agilent Technologies) or Q5 polymerase (New England 

Biolabs), restriction enzymes (New England Biolabs) and T4 DNA ligase (Invitrogen) 

was used for mutational cassette construction. Taq DNA polymerase (Applied 

Biosystems) or One Taq DNA polymerase (New England Biolabs) were used for 

screening putative mutants. 

Transformations. S. pneumoniae was transformed by a standard method that 

utilized the competence-stimulating peptide 1 (CSP-1) for induction of competence(43). 



140 
 

 
 

CSP-1 was synthesized by Emory University Microchemical Facility. Transformations 

were performed using plasmid DNA or PCR products and selected on blood agar 

containing kanamycin at 400 µg/ml, erythromycin at 1 µg/ml, or chloramphenicol at 3.2 

µg/ml as described below. 

Mutants TS9001-3 and XZ8012-5 (Table 2). Competent cells were transformed 

with a previously created plasmid that replaces mef(E) and mel with an aphA-3 cassette 

and double crossover mutants were selected on kanamycin and confirmed by PCR and 

sequencing (34). This method was used to delete mef(E)/mel from GA16242 to create 

TS9001-3 and from GA17545 to create XZ8012-5. 

Mutants MS23 and MS27 (Table 2). A 10.9 kb PCR product containing Mega-

2.IVa was amplified using primers SC173 and SC251 and purified using the QIAquick 

Gel Extraction kit. Purified PCR products were transformed into NP112 to create MS23 

and XZ8009 to create MS27 and transformants were selected on erythromycin. Insertions 

were confirmed by PCR of the left and right junctions of Mega-2 in insertion site IVa 

with primers SC10 with SC173 and SC70 with SC251. 

Mutant MS30 (Table 2). Strain MS23 was transformed with BamHI digested 

mef(E)/mel::aphA-3 plasmid. The desired double crossover was selected on kanamycin. 

The insertion was confirmed by PCR amplification of a 1521 bp product with primers 

SC125 and kanA. 

Mutant MS32 (Table 2). From GA44288 genomic DNA, amplified upstream 

(primers MS34 and MS35) and downstream (primers MS36 and MS37) regions of 

erm(B) were spliced by overlapping extension (SOE) to create an internal XbaI site using 

the PCR amplified regions with primers MS34 and MS37. The resulting 1066 bp product 
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was digested with BamHI and PstI and cloned into double-digested pUC19 vector to 

create pMRS11. The kanamycin resistance cassette, aphA-3 was PCR amplified from 

pSF151 (44) using primers MS53 and MS54 and the product was XbaI digested and 

cloned into pMRS11 to create pMRS13. The aphA-3 cassette was confirmed to be in the 

forward direction by PCR with primers MS34 and MS54. Transformation of GA44288 

cells with pMRS13 and selection on kanamycin to created strain MS32, which was 

confirmed by PCR amplification with primers MS27 and kanA as well as MS28 and 

kanC. 

Mutant MS41 and MS42 (Table 2). PCR amplification of the mef(E) upstream 

region by primers MS64 and MS72, the mel downstream region by primers MS63 and 

MS69, and the chloramphenicol cassette from pEVP3 (45) by primers MS70 and MS71. 

A single SOE PCR reaction with the three PCR products and primers MS63 and MS64 

created a 2 kb Δmef(E)/mel::cm
R
 cassette. This product was used for transformation and 

selection on chloramphenicol for GA44288 to create MS41 and MS32 to create MS42, 

which were confirmed by PCR amplification of a 2 kb product from primers MS63 and 

MS64. 

qRT-PCR. Overnight blood agar cultures were suspended in THY and grown 

until to mid-log phase (OD600=0.3-0.5). Each culture was diluted to OD600=0.05 in 

prewarmed THY and grown to mid-log phase and cultures were divided into tube with or 

without erythromycin as indicated and continued to grow until desired treatment time was 

achieved. Culture aliquots were mixed with RNAprotect Bacterial Reagent (Qiagen) and 

RNA was isolated using the RNeasy Mini Kit (Qiagen). DNA was removed via the 

TURBO DNA-free (Applied Biosystems) and confirmed to be free of DNA by PCR 
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using primers for genes of interest (Table A2). QuantiTect Reverse Transcription Kit 

(Qiagen) was used to create cDNA from the purified RNA. qRT-PCR was performed 

using iQ SYBR Green Supermix (BioRad) with an iCycler iQ Real-Time Detection 

System (BioRad). qRT-PCR primers are listed in Table A2. The measured CT values 

were averaged and wild type untreated condition was used to calculate the relative 

expression, ΔΔCT value. 

Competitive Index. Bacterial growth competitions were developed based on 

methods of Gupta et al. (21). Overnight blood agar cultures were subcultured onto blood 

agar with or without supplementation with erythromycin at 0.5 µg/ml. Each strain was 

suspended in THY broth with or without erythromycin (0.5 µg/ml) and grown to 

OD600=0.5-0.7 and diluted to OD600=0.050 in fresh media. Diluted cultures were mixed 

(1:1) for competition assays or grown independently as non-competition controls and 

grown to OD600=0.5-0.7 and diluted 200-fold in fresh media. Cultures were subcultured 

three times allowing the cultures to grow for approximately 50 generations. Sampling of 

cultures was performed to monitor growth phase by OD600. At T=0 and each time the 

cultures reached late-log/stationary phase, culture aliquots were collected, serially diluted 

in phosphate-buffered saline, and plated on blood agar without selection (total culture 

density) and selective blood agar (one of the mutants): kanamycin 400 µg/ml, 

erythromycin 1 µg/ml, chloramphenicol 3.2 µg/ml, or tetracycline 2 µg/ml. The 

competitive index (CI) was calculated as CI = (mutant CFUoutput/wildtype CFUoutput)/ 

(mutant CFUinput/wildtype CFUinput) and a CI<1 indicates the mutant is less fit than then 

the wildtype. 
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Statistical analysis. Unpaired, two-tailed t tests with 95% confidence intervals 

were performed using Prism® 5 (GraphPad). For the growth competition experiments, 

the competitive index values of input were compared to the endpoint of 50 generations of 

growth. 
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TABLES 

Table 1. S. pneumoniae isolates macrolide resistance gene classification and 

erythromycin minimum inhibitory concentrations (MICs). 

 

Mega 

 

erm(B) 

 

Strain 

 

MIC
a
 

 

iMIC
a,b

 

Isolation 

Year 

 

Serotype 

 

MLST 

Clonal 

Complex 

 

Source 

Mega-1.I None GA17328 4 24 2000 6A 376 CC2090 (20) 

  GA17457 8 48 2000 19A 199 CC199 (20, 34) 

  GA16857 4-6 24-32 2002 6A 376 CC2090 GAEIP 

  GA41348 6-8 32 2004 19A 199 CC199 GAEIP 

  GA41437 3 24 2004 6A 376 CC2090 (20) 

  GA41502 4 32 2004 19A 199 CC199 GAEIP 

Mega-1.II None EU-NP04 4 16-24 2009 6C 2705 CC1379 (20) 

  GA47033 4-6 16-24 2005 6C 4150 CC1379 (20) 

  GA52306 4 12-24 2007 6C 3676 CC1379 (20) 

  GA60190 8 16 2010 6C 1292 CC1379 (20) 

Mega-2.II None GA11757 16 48 2000 14 13 CC15 GAEIP 

  GA16531 8 48 2001 6B 146 CC156 (20) 

  GA17530 16 48 2000 14 81slv - GAEIP 

  GA41538 16 64 2004 6A 384 CC156 (20) 

  GA41688 16 48 2004 14 13 CC15 (20) 

Mega-1.III None GA17301 8 48 2000 9V 156 CC156 (20) 

  GA17570 6 48 2001 9V 156 CC156 (20) 

  GA18641 8-12 48-64 2002 9V 156 CC156 GAEIP 

  GA41277 12-24 64 2004 19A 199 CC199 (20) 

  GA47760 6-8 32 2006 11A 62 CC62 (20) 

  GA62681 6-8 64 2011 15C 199 CC199 (20) 

Mega-2.IVa None GA04375 18 96 1995 19F 236 CC320 (20) 

  GA14846 64 ≥256 2000 6B 1536 CC1536 GAEIP 

  GA16242 64 ≥256 2001 6B 1536 CC1536 (20) 

  GA16374 64 ≥256 2001 6B 1536 CC1536 GAEIP 

Mega-2.IVc None GA17545 64 ≥256 2000 6B 1536slv CC1536 (19, 20) 

Mega-1.IVb None GA17828 16 64 2001 33F 2705 CC100 GAEIP 

  GA19795 4 24 2004 33F 2705 CC100 GAEIP 

  GA40189 2-3 24 2002 33F 2705 CC100 GAEIP 

  GA41317 8 24-32 2004 33F 2705 CC100 (20) 

  GA41318 8 32 2004 33F 2705 CC100 GAEIP 

Mega-1.V 

   Tn2009 None GA16833 4 32-48 2002 19F 5053 CC320 (20) 

  GA17227 8-12 24 2000 23F 242 CC242 (20) 

  GA17371 12 96 2000 19F 8014 CC320 (20) 

  GA41301 12 32 2004 23F 242 CC242 (20) 

  GA41565 3-4 32 2004 19A 81 CC81 (19, 20) 

Mega-1.VI None GA02254 3-4 16 1994 14 124 CC156 (19, 20) 

None Tn3872 GA47597 ≥256 ≥256 2006 3 180 CC180 (20) 

 Tn6002 GA44194 ≥256 ≥256 2005 19A 2543 CC63 (20) 

Mega-2.V 

   Tn2010 Tn2010 GA11856 ≥256 ≥256 2000 19F 271 CC320 (20) 

  GA16121 ≥256 ≥256 2000 19F 236 CC320 (20) 

  GA44288 ≥256 ≥256 2005 19A 320 CC320 (20) 

  GA47688 ≥256 ≥256 2006 19A 320 CC320 (20) 

  GA47778 ≥256 ≥256 2006 19A 320 CC320 (20) 
a
 MICs determined by Etest in at least duplicate and reported as µg/ml. Ranges provided 

when replicates varied, and each range is within a two-fold dilution. 

b
 Subinhibitory concentration used for induction: 0.1 µg/ml. 
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Table 2. Erythromycin minimum inhibitory concentrations (MICs) for S. pneumoniae 

strains and mutants (Mega insertion, serotype, MLST (clonal complex)) used in this 

study. 

 

Strain 

Uninduced 

MIC
a
 

Induced 

MIC
a,b

 

 

Relevant Genotype 

 

Reference 

GA44288 

 

≥256 ≥256 Mega-1.V Tn2010, 9A, ST320 

(CC320) 

(20) 

   MS32 8 64 GA44288 Δerm(B)::aphA-3 This study 

   MS41 ≥256 ≥256 GA44288 Δmef(E)/mel::cat
R
 This study 

   MS42 0.125
 S
 * GA44288 Δerm(B)::aphA-3, 

Δmef(E)/mel::cat
R
 

This study 

GA16242 64 ≥256 Mega-2.IVa, 6B, ST1536 

(CC1536) 

(20) 

   TS9001-3 0.125
S
 * GA16242 Δmef(E)/mel::aphA-3 This study 

GA17545 96 ≥256 Mega-2.IVc 

6B, ST1536slv (CC1536) 

(19) 

   XZ8012-5 0.19
 S

 * GA17545 Δmef(E)/mel::aphA-3 This study 

NP112 0.19
 S

 * no macrolide resistance genes, 

6B, ST1536 (CC1536) 

(20) 

   MS23 32 ≥256 NP112 +Mega-2.IVa This study 

   MS30 0.19
 S

 * MS23 Δmef(E)/mel::aphA-3 This study 

GA17457 8 64 Mega-1.I, 19A, ST199 (CC199) (34) 

   XZ8009 0.125
 S
 * GA17457 Δmef(E)/mel::aphA-3 (34) 

   MS27 32 ≥256 XZ8009 +Mega-2-IVa This study 
 

a
 MICs reported as µg/ml 

b
 Subinhibitory concentration used for induction: 0.5 µg/ml  

S
 Susceptible to erythromycin when MIC ≤ 0.5 µg/ml 

* Susceptible strains were not tested for inducible MIC 
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FIGURE LEGENDS 

Figure 1. Macrolide resistance phenotypes and genotypes of S. pneumoniae. 

Erythromycin minimum inhibitory concentrations (MICs) were determined from 

uninduced (black bars) and cultures induced with 0.1 µg/ml erythromycin (white bars). 

Each bar is the average MIC for a macrolide resistance genotype and strains are detailed 

in Table 1. 

Figure 2.  mef(E) expression in strain GA44288 after 15 min exposure to erythromycin. 

The data are normalized 1, to the expression of mef(E) without erythromycin (0 µg/ml) 

and error bars are the CT value standard deviations of technical duplicates. The data 

presented are representative of experiments from at least three separate days. 

Figure 3. The competitive index of isogenic GA44288 mutants grown in vitro with 

erythromycin (0.5 µg/ml) for approximately 50 generations: (A) MS41 (GA44288 

Δmef(E)/mel) versus GA44288, (B) MS32 (GA44288 Δerm(B)) versus GA44288, and 

(C) MS32 (GA44288 Δerm(B)) versus MS41 (GA44288 Δmef(E)/mel). 

Figure 4. The competitive index of high-level macrolide resistance strains with distinct 

mechanisms (erm(B) and Mega-2.IVa) in vitro with erythromycin (0.5 µg/ml) grown for 

approximately 50 generations: (A) GA44288 (erm(B)-and mef(E)/mel-containing) versus 

GA16242 (Mega-2.IVa-containing), (B) MS41 (GA44288 Δmef(E)/mel, erm(B)-

containing) versus GA16242 (Mega-2.IVa-containing), and (C) MS32 (GA44288 

Δerm(B)) versus GA16242 (Mega-2.IVa-containing).
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Figure 2 
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Figure 3 

MS41 (Tn2010mef(E)/mel) vs Tn2010

In
put 5 20 35 50

0.0001

0.001

0.01

0.1

1

10

100

Generations

C
o

m
p

e
ti

ti
v
e
 I
n

d
e
x

MS32 (Tn2010erm(B)) vs Tn2010

In
put 5 20 35 50

0.0001

0.001

0.01

0.1

1

10

100
       *          **        **

Generations

C
o

m
p

e
ti

ti
v
e
 I
n

d
e
x

MS32 vs MS41

In
put 5 20 35 50

0.0001

0.001

0.01

0.1

1

10

100
***        ***        ***       ***

Generations

C
o

m
p

e
ti

ti
v
e
 I
n

d
e
x

A

B

C

 



150 
 

 
 

Figure 4 

Tn2010 vs Mega-2.IVa
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SUPPLEMENTAL MATERIALS 

Supplemental Table A1. Primers used in the study. 

Cloning 

Primers 

 

Sequence (5’ to 3’) 

Restriction 

Site
a
 

SC173 CCAGAGATTGTGTCTGTCATGC  

SC251 GCTAGTCACTAGACGGTTTAGACC  

SC10 ACTTGTCAATCACGGACAGC  

SC70 GCAAGTTGCTGCTAGACACTG  

SC125 AGCAAGAGAGTACCAGGATAC  

kanA CTTAGCAGGAGACATTCCTTCCG  

kanC GTGGTATGACATTGCCTTCTGCG  

MS27 AGCGTGCCTATTATGCAGTC  

MS28 TCGCCAAAATGCTGTTGATC  

MS34 ATTAGGATCCTATCAATCGGTATATCCGTT BamHI 

MS35 

CGTGTAACTTTCCAAATTTATCTAGACTTAAGTT

TGCTTCTAAGTC 

XbaI 

MS36 

GACTTAGAAGCAAACTTAAGTCTAGATAAATTT

GGAAAGTTACACG 

XbaI 

MS37 TAATCTGCAGACTTACCAAGATATCACGAA PstI 

MS53 TATATCTAGACAGGACAATAACCTTATAGC XbaI 

MS54 TATATCTAGACCAACTTACTTCTGACAAC XbaI 

MS63 TATAGGATCCCATTTTGATAAAAACTACAACAG

G 

BamHI 

MS64 TATACTGCAGAGCCTTGATTGCAAGGC PstI 

MS69 GCTTATCGATACCGTCGAATTTAAGGTAGTCGCT

GG 

 

MS70 CCAGCGACTACCTTAAATTCGACGGTATCGATA

AGC 

 

MS71 GGAAGTATGAGTCTCATTCCAGTTAGTGACATTA

GAAAACCG 

 

MS72 CGGTTTTCTAATGTCACTAACTGGAATGAGACTC

ATACTTCC 

 

qRT-PCR 

Primers 

 

Sequence (5’ to 3’) 

Amplified 

Locus 

q16S_F2 CCAGATGGACCTGCGTTGTAT 16S rRNA 

q16S_R2 TCCGTCCATTGCCGAAGATT 16S rRNA 

qmef_F3 GTATTCCCGAAACGGCTAAACTG mef(E) 

qmef_R3 TGGAACGCCTGTGCATATTTC mef(E) 

qmel_F2 TTCTGCACCGACTATAGGGTATGG mel 

qmel_R2 AAACCCTAGAGCACAGGATTGC mel 

qerm_F2 CCGAACACTAGGGTTGCTCTT erm(B) 

qerm_R2 TGTGGTATGGCGGGTAAGTT erm(B) 
a
 Restriction sites are underlined. 
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Supplemental Figure A1. Clustal W alignment of mef(E) regulatory regions. 
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Supplemental Figure A2.Competitive index of GA44288 mutants grown without 

erythromycin. 
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Chapter 5: Final Discussion 

I. The Pneumococcus 

 Streptococcus pneumoniae is an opportunistic pathogen that causes non-invasive 

(acute otitis media and pneumonia) and invasive disease such as bacteremia and 

meningitis. As a common commensal of the human nasopharynx, the pneumococcus is 

often carried by young children, less than five years of age (1, 2). Each year 

approximately 1.6 million people die from pneumococcal infections; one million are 

children under the age of five (3). During the mid-1990s, the high prevalence of penicillin 

resistance among S. pneumoniae resulted in a shift from β-lactam to macrolide antibiotics 

for non-invasive pneumococcal diseases and upper respiratory infections. Widespread use 

of macrolides contributed to the expansion of macrolide-resistant S. pneumoniae. 

Globally, erythromycin resistance among S. pneumoniae is geographically variable and 

ranges from <10% to >50% (4).  

II. Invasive Pneumococcal Disease (IPD) Serotypes 

 S. pneumoniae serotypes 4, 6B, 9V, 14, 18C, 19F, and 23F were the most 

common serotypes causing invasive pneumococcal disease (IPD) worldwide through 

2000 (5). This was despite the inclusion of these serotypes in the 23-valent pneumococcal 

polysaccharide vaccine (PPSV-23) which was licensed in 1984. In 2000, a heptavalent 

pneumococcal conjugate vaccine (PCV-7) was licensed for use in children under five 

years old in the United States (6, 7). PCV-7 contains the capsular polysaccharides of 

serotypes 4, 6B, 9V, 14, 18C, 19F, and 23F conjugated to the CRM197 diphtheria 
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protein. With the rise in IPD from non-PCV-7 serotypes, PCV-13 was licensed in 2010 

for use in the pediatric population as a replacement for PCV-7 (7, 8).  PCV-13 contains 

serotypes from PCV-7 with the addition of serotypes 1, 3, 5, 6A, 7F, and 19A conjugated 

to the CRM197 diphtheria protein. 

 We investigated the impact of PCV-7 and PCV-13 on invasive pneumococcal 

disease. In Atlanta, from 1994-1999 the incidence of IPD averaged 30.2 cases per 

100,000 population (9). Pediatric (children <2 years old) vaccination with PCV-7 began 

in Atlanta in 2000 and by 2002 IPD was reduced 57% (9). Worldwide reductions of IPD 

were also observed following PCV-7 introductions in other countries, attributed both 

individual protection and herd protection (10-16). Vaccination with pneumococcal 

conjugate and other bacterial meningitis conjugate vaccines reduces nasopharyngeal 

carriage of vaccine serotypes in populations (7, 17), which protects non-vaccinated 

individuals through interference with human-to-human transmission (12, 18). In Chapter 

2, we determined the effect of PCV-7 and PCV-13 on the incidence of IPD from 2002 

through 2013 as a result of continued vaccine pressure within the population. Although 

IPD caused by PCV-7 serotypes continued to decline following PCV-7 introduction, the 

rate of IPD remained constant at ~12 per 100,000 from 2002-2009 due to serotype 

replacement. “Serotype replacement” following PCV-7 introduction has been observed 

worldwide (10, 11). The expansion of non-vaccine serotypes such as 7F and selection of 

capsule switching events (e.g. a capsule switch event in a highly successful serotype 19F 

led to the expansion of this clone as serotype 19A, which is not represented in PCV-7 

(19, 20), both contributed to “serotype replacement.” Unlike PCV-7, successful conjugate 
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vaccines against other respiratory and meningitis pathogens, Haemophilus influenza and 

Neisseria meningitides, have not resulted in serotype replacement (21-23). 

 As shown in Chapter 2, PCV-13 introduction in Atlanta in 2010 was followed by 

a further decline in incidence of IPD, which by 2013 was 8.8 cases per 100,000 

population. Overall, IPD in Atlanta was reduced 71% from 1994-1999 to 2013 due to 

PCV-7 and PCV-13 introduction. Reduction of IPD in Atlanta following PCV-13 was 

largely due to reductions of IPD caused by serotypes 7F and 19A: worldwide PCV-13 has 

led to reductions in IPD due to each of the six additional serotypes (1, 3, 5, 6A, 7F, and 

19A) (17, 24-27). In Atlanta, IPD caused by serotype 3 was consistent but at low 

incidence throughout the twenty-year study period, while serotypes 1 and 5 infrequently 

caused IPD in this population. Following the 2000 and 2010 introductions of PCV-7 and 

PCV-13, respectively, the proportion of IPD caused by vaccine serotypes continued to 

decline and by 2013 accounted for only 18.5% of IPD in Atlanta. As young children were 

initial target of vaccination, the overall decreased rates of IPD in all age populations 

highlights the success of PCV-7 and PCV-13 vaccine interventions in reducing the 

burden of disease in vaccination and non-vaccinated individuals by herd protection (7, 

10, 13, 14, 25, 28, 29). 

III. Macrolide-Resistant Invasive Pneumococcal Disease (MR-IPD) 

Macrolide resistance rapidly emerged in S. pneumoniae in the early-1990s (9, 30, 

31). The introduction and widespread use of semisynthetic macrolides including 

azithromycin and clarithromycin was an important driver. Macrolides reversibly at a site 

near the peptidyl transferase center of the 50S ribosomal subunit on the 23S rRNA, which 
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inhibits protein synthesis (32, 33). Macrolide resistance in S. pneumoniae is 

predominantly due to two mechanisms: target site modification and macrolide efflux 

(34). The ribosomal methylation by the gene product encoded by erm(B) confers high-

level resistance to macrolide as well as resistance to lincosamide and streptogramin B 

(MLSB phenotype) (35). Pneumococcal macrolide efflux occurs through a yet-undefined 

mechanism by the presence of mef(E)/mel of the transposable genetic element Mega (36), 

confers resistance to 14- and 15-membered macrolides while remaining susceptible to 

lincosamides and streptogramin B (37, 38). 

 Between 1994 and 1999, MR-IPD rapidly emerged in Atlanta, GA, largely due to 

an increase in cases caused by isolates containing mef(E)/mel (9, 39). PCV-7 introduction 

reduced the incidence of MR-IPD. The highest rates of macrolide resistance were present 

in PCV-7 vaccine serotypes (9, 40-42). In Chapter 2, we noted the stabilization of the 

incidence of MR-IPD from 2002 through 2009 due to the continued decline of macrolide-

resistant PCV-7 serotypes that was offset by the rapid emergence of macrolide-resistant 

serotypes not covered by PCV-7 specifically serotype 19A. This serotype replacement 

event was largely caused by clonal expansion of a serotype 19A, ST320, clone that 

belongs to clonal complex 320 (formerly CC271) (43-45). The clone arose from a capsule 

switch event where a 19F strain was transformed to 19A. Interestingly, many macrolide-

resistant serotype 19A CC320 isolates were found to contain both erm(B) and 

mef(E)/mel. 

The incidence of MR-IPD caused by isolates with the dual macrolide resistance 

phenotype (both erm(B) and mef(E)/mel) rapidly increased from 2003 through 2010 and 

expanded worldwide (2, 45-49). Selective pressure by PCV-7 and the frequent use of 
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macrolides clinically provided an opportunity for this clone to become quite successful. 

The introduction of PCV-13, which includes serotype 19A, was successful in reducing 

IPD caused by macrolide-resistant serotype 19A isolates in Atlanta. By 2013, there were 

no cases of MR-IPD caused by isolates from CC320 vaccine-targeted age-groups (those 

<5 years old) and disease due to this clone was greatly reduced in non-vaccinated 

individuals in Atlanta (Chapter 2). Despite challenges with serotype replacement, PCVs 

were an effective intervention in reducing the incidence of disease caused by vaccine 

serotypes with high rates of macrolide resistance. From 1999 to 2013, PCVs decreased 

MR-IPD 74% in the Atlanta population. 

IV. Macrolide Resistance Elements 

 Following the observation that the emergence of MR-IPD in the late-1990s was 

caused by isolates containing mef(E)/mel (39), our lab identified the Macrolide Efflux 

Genetic Assembly (Mega) as the insertion element in S. pneumoniae that carries mef(E) 

and mel under control of a single promoter (50, 51). Mega is related to the Tn916 family 

of conjugative transposons, but due to its lack of transposition genes, Mega is most 

efficiently transferred horizontally through transformation and homologous 

recombination between pneumococci (50). In Chapter 3, we investigated the composite 

mobile genetic elements in S. pneumoniae responsible for macrolide resistance through 

genomic sequencing of 147 isolates, 131 of which were collected from the Atlanta 

population-based surveillance. In addition to the five previously reported Mega insertion 

sites (50, 52), we identified a novel Mega insertion site, now termed the class VI insertion 

site. We found that all Mega insertion sites had putative six base coupling sequences at 

each end of Mega (left junction 5’-CATGTT-3’ and right junction 5’-AGCACA) as well 
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as a consensus recognition sequence of 5’-TTTCCNCAA-3’. These data resemble 

insertion sites of conjugative transposons and suggest conjugative transposition specific 

machinery have facilitated insertion of Mega in to these specific genetic regions. The 

conserved insertion sites suggest very few transposition events may have occurred 

leading to Mega insertion into these genetic contexts. 

 Also, In Chapter 3, we reported the macrolide resistance elements of S. 

pneumoniae detected in our collection of sequenced genomes. In 2004 del Grosso and 

colleagues described the insertion of Mega into orf6 of Tn916 (52), i.e. class V insertion. 

We found this Mega insertion commonly within the sequenced genomes. The presence of 

Mega in a Tn916-like element was identified as Tn2009 (47, 52) while the presence of 

both Mega and erm(B) in a Tn916-like element was identified as Tn2010 (44, 46) Only 

Tn2010 was found within the Atlanta population isolates. Tn6002 and Tn3872, which 

contain erm(B) on Tn916-like elements, were also found in macrolide-resistant S. 

pneumoniae (43). Another dual macrolide resistance element, Tn2017 was not identified 

in the sequenced genomes (53). Tn2017 isolate have been reported in serotype 19F, and 

may not be present in the United States due to vaccine pressure by PCV-7 and PCV-13. 

The Tn2010-containing serotype 19A ST320 clone emerged in the PCV-7 era as a 

vaccine replacement serotype and spread worldwide as both a carriage isolate and as a 

cause IPD (44-46). 

V. High-Level Macrolide Resistance 

 The emergence of the Tn2010-containing serotype 19A ST320 clone was of 

interest due to the presence of dual macrolide resistance determinants. In Chapter 4, 
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through creation of a series of isogenic mutants, we found the presence of erm(B) in 

Tn2010 was critical in conferred a high-level macrolide resistance phenotype similar to S. 

pneumoniae with erm(B) at other sites. The mef(E)/mel operon did not contribute to the 

high-level macrolide resistance or enhance survival in vitro in the presence or absence of 

erythromycin. In Staphylococcus aureus, erm(C)-mediated resistance has been shown to 

exert a fitness cost due to ribosomal methylation (54). However, we concluded that 

expression of erm(B) in S. pneumoniae did not produce a fitness defect for which the 

presence of mef(E)/mel would alleviate. A recent study also found Tn2010 does not 

confer a fitness cost in the pneumococcus (55). Previous research found that S. 

pneumoniae isolates that contained both erm(B) and mef(E)/mel had high rates of 

recombination (56). This may suggest that the ancestor clone was created Tn2010 

through a recombination event wherein Tn2009 acquired erm(B) or Tn6002 acquired 

Mega. A potential explanation for the maintenance of Mega in Tn2010 is discussed later. 

Mega can be found as two isoforms Mega-1 (5.4-kb) and Mega-2 (5.5-kb) due to 

a 99 bp insertion between mef(E) and mel. We investigated the level (MIC) of macrolide 

resistance of six Mega insertion sites and found high-levels (≥32 µg/ml) of macrolide 

resistance were conferred by Mega-2.IVa and Mega-2.IVc insertions (Chapter 4). The 99-

bp intergenic region between mef(E) and mel of Mega-2 was not the cause of high-level 

resistance because Mega-2.II displayed lower levels of macrolide resistance, MICs 1-16 

µg/ml. In addition, we showed that Mega-2.IVa and Mega-2.IVc have a downstream 

deletion of the adjacent Pneumococcal Pathogenicity Island-1 (PPI-1) (Chapter 3), which 

has a conserved 15.1-kb region and a variable 15.6-kb region (43, 57). The elimination of 

certain genetic regions of this island may be involved in up-regulation of mef(E) and mel. 
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Deletion of the piaABCD and phgABC operons of the conserved region and deletion of 

different variable regions has been associated with decreased virulence in mice (58-60). 

Although predicted to be less virulent, all five high-level mef(E)/mel strains were 

invasive isolates. 

 Through our competition experiments, we found that high-level macrolide-

resistant S. pneumoniae have a growth fitness advantage over lower-level macrolide-

resistant S. pneumoniae in the presence of selection. This difference was found to be 

independent of macrolide resistance mechanism causing high-level resistance as either 

high-level erm(B) or a high-level Mega-containing isolate outcompetes a lower-level 

Mega strain. Strains with either high-level macrolide resistance mechanism were equally 

fit in competition with each other under erythromycin pressure. The concentration of 

erythromycin used was the same as is achieved in serum during erythromycin treatment 

(0.5 µg/ml). The presence of mef(E)/mel did not enhance fitness during the competition 

assays, the contribution of mef(E)/mel in dual macrolide resistance isolates is still unclear. 

VI. Future Directions 

 Surveillance programs such as the one essential for this work are critical in 

monitoring the epidemiology of pneumococcal disease including antibiotic resistant IPD 

and pneumococcal carriage. As part of the Active Bacterial Core surveillance (ABCs) 

program the Emerging Infections Program in Atlanta has tracked IPD and collected S. 

pneumoniae isolates for over twenty years. This long-term surveillance program observed 

the emergence of MR-IPD in the late-1990s and was among the first to report on the 

remarkable success of PCV-7 in reducing IPD and MR-IPD in populations and that 
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significant herd protection was resulting from vaccination of young children. As of 2015, 

the Centers for Disease Control and Prevention (CDC) is now performing genomic 

sequencing of all IPD isolates collected from the 10 sites in the United States as part of 

the ABCs program that has a S. pneumoniae surveillance population of over 31 million 

people (Atlanta, GA; Baltimore, MD; Connecticut state; Denver, CO; Minnesota state; 

New Mexico state; Oregon state; Rochester and Albany, NY; San Francisco, CA; 

Tennessee state). Continued prospective population-based surveillance is critical in 

providing data on the incidence of IPD, the serotypes involved and antibiotic resistance.  

 After PCV-7 introduction, serotype replacement and clonal expansion of capsule 

switch clones stalled reductions of pneumococcal disease. Following the introduction of 

PCV-13 IPD and MR-IPD decreased within three years. Continued surveillance is needed 

to determine if these decreases will be sustained and if serotype replacement again 

appeared.  

As discussed in Chapter 3, the non-vaccine serotypes 12F, 15A, 22F, 23A, 33F, 

and 35B are now the most prevalent IPD serotypes and non-vaccine serotypes 15A, 15B, 

15C, 23A, 22F, 33F, and 35B are the most prevalent MR-IPD serotypes. In less than four 

years following PCV-13 introduction, carriage of serotype 35B S. pneumoniae 

significantly increased and 15B, 15C, and 11A remained common carriage serotypes (1). 

With the well documented link between nasopharyngeal carriage and pneumococcal 

disease (61), serotype 35B, 15B, 15C, and 11A are important serotypes to monitor during 

PCV-13 implementation. 
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The rapid emergence of the serotype 19A CC320 clone containing Tn2010, with 

both erm(B) and mef(E)/mel, as a replacement serotype was observed worldwide. With 

the higher-level macrolide resistance and broader range of antibiotic resistance conferred 

by the presence of erm(B) compared to mef(E)/mel, the presence of mef(E)/mel in dual 

macrolide resistance strains appears functionally redundant. We did not find a macrolide 

resistance or fitness benefit of the presence of mef(E)/mel in a strain containing erm(B). 

However, previous works by our group showed that expression of mef(E)/mel are 

inducible by the human antimicrobial peptide LL-37 and the presence of mef(E)/mel 

enhances resistance to LL-37 (62). Thus mef(E)/mel may be maintained and selected for 

in strains containing erm(B) to enhance protection against host antimicrobial peptides at 

mucosal membranes. Future studies should focus on the role of mef(E)/mel during in vivo 

colonization, where they may be induced and expressed and provide initial protection 

during macrolide treatment before erm(B) is expressed. Recently, macrolide-induced 

expression of mef(E)/mel was shown to occur through a tightly controlled regulation 

system of transcriptional attenuation (51). Expression of mef(E)/mel may occur through 

an additional mechanism as LL-37 induction of mef(E)/mel was not due to the same 

induction mechanism as macrolides (Chancey, unpublished data). 

The mechanism of macrolide efflux in S. pneumoniae has yet to be fully 

elucidated (37). Efflux is mediated by the gene products of mef(E) and mel for macrolide 

resistance in S. pneumoniae: mef(E) encodes a major facilitator superfamily protein and 

mel encodes an ATP-binding cassette (ABC) transporter protein but lacks a hydrophobic, 

membrane-binding domain (36, 63). While it is thought that Mef(E) and Mel cooperate to 

expel macrolides, a direct interaction of these two proteins has yet to be demonstrated. 
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High-level macrolide resistance is most commonly due to the presence of erm(B); 

but in Chapter 4, we showed Mega in some genetic locations will confer similar high-

level macrolide resistance. As Mega-2.IVa and Mega-2.IVc insertions coincided with a 

unique deletion of PPI-1, this region should be further probed to determine if a product(s) 

of this region is(are) involved in the regulation of mef(E)/mel. Expression of mef(E)/mel 

may be affected by osmotic stress or iron levels that are controlled by the PPI-1 operons 

phgABC and piaABCD, respectively (57, 59), both of which are missing in these high-

level macrolide-resistant Mega-only isolates. Alternatively, a protein or RNA regulator 

encoded on PPI-1 may be involved in suppression of mef(E)/mel expression to levels 

observed in all Mega-containing isolates with an intact PPI-1. These high-level 

expressing Mega isolates are not commonly found but enhanced expression of 

mef(E)/mel may also lead to higher levels of resistance to LL-37 and promote enhanced 

survival during colonization. Additional surveillance for these high-level macrolide-

resistant Mega stains is important during genomic analysis of IPD isolates. 

Pneumococcal conjugate vaccines are widely used now in developed countries are 

of increasing focus in developing countries, which should continue to decrease the 

burden of pneumococcal disease worldwide especially toward reducing the rates of 

childhood mortality. In the United States, PCV-7 and PCV-13 have been successful in 

reducing the incidence of IPD and continued use of PCV-13 is needed to sustain the 

lower incidence of disease. In August 2014, the Advisory Committee on Immunization 

Practices (ACIP) recommended PCV-13 for routine use in the 65+ year old population 

(64, 65), which should further reduce the incidence of IPD and MR-IPD in this high-risk 

population. Some vaccine efforts also seek to target pneumococcal surface proteins that 
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would lead to the eradication of the pneumococcus from the human nasopharynx, but 

such efforts should be pursued with caution as complete elimination from the microbiome 

of children may lead to imbalances and niche availability for another prominent 

opportunistic pathogen with high rates of antibiotic resistance, such as S. aureus. Future 

pneumococcal vaccine development efforts should seek to increase the number of 

serotypes in PCVs to further reduce the incidence of pneumococcal disease. 
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Appendix D: Pleomorphic structures in human blood are red blood cell-derived 
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Abstract 

 

Background: Red blood cell (RBC) transfusions are a common, life-saving therapy for 

many patients, but they have also been associated with poor clinical outcomes. We 

identified unusual, pleomorphic structures in human RBC transfusion units by negative-

stain electron microscopy that appeared identical to those previously reported to be 

bacteria in healthy human blood samples. The presence of viable, replicating bacteria in 

stored blood could explain poor outcomes in transfusion recipients and have major 

implications for transfusion medicine. Here, we investigated the possibility that these 

structures were bacteria.  

Results: Flow cytometry, miRNA analysis, protein analysis, and additional electron 

microscopy studies strongly indicated that the pleomorphic structures in the supernatant 

of stored RBCs were RBC-derived microvesicles (RMVs). Bacterial 16S rDNA PCR 

amplicons were sequenced and found to be highly similar to species that commonly 

contaminate lab reagents.  

Conclusions: These studies suggest that pleomorphic structures identified in human 

blood are RMVs and not bacteria, and they provide an example in which laboratory 

contaminants may confound interpretation of EM data.  

 

 

Key words: nanobacteria, healthy human blood, red blood cell, erythrocyte, microvesicle, 

microparticle 
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Background: 

Red blood cell (RBC) transfusions are a necessary and often life-saving therapy, but have 

been associated with significant morbidity and mortality, though the mechanisms 

responsible for this association remain unclear (1). During the course of studying RBC-

derived microvesicles (RMVs), that are known to accumulate over time in stored human 

RBC units, we detected submicron, pleomorphic structures by negative-stain electron 

microscopy (EM). A review of the literature revealed previous reports of identical, 

submicron, pleomorphic structures in human blood, that were characterized as bacteria 

(2, 3). McLaughlin et al. concluded that the pleomorphic structures were bacteria based 

on bacterial 16S rDNA sequencing, flow cytometry-based fluorescent in situ 

hybridization studies, the apparent ability of the structures to replicate, and their 

sensitivity to antibiotics (2). However, bacteria could not be cultured by standard 

techniques. Intrigued by the possibility of viable nanobacteria in RBC transfusion units as 

a possible etiology of poor clinical outcomes after transfusion, we examined the 

pleomorphic structures isolated from RBC storage units further, and conclude that these 

structures are not bacteria, but rather RMVs. 

 

Results and discussion: 

Electron microscopy of RMVs 

Several groups have published electron micrographs of RMVs, thus we expected to find a 

mostly spherical morphology (4, 5). However, negative stain EM images (Figure 1A and 

B) of the unfixed pellet obtained from the supernatant of stored RBC units appeared 

identical to images published by McLaughlin et al. and Szymanski et al. In both of these 
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latter cases, the pleomorphic structures were reported to be bacteria. We consistently 

identified similar pleomorphic structures in RBC units obtained from >6 healthy donors; 

these structures were present immediately after donation (day 0) as well as after several 

weeks of storage at 4°C, under standard blood bank conditions. We reasoned that these 

pleomorphic structures were either RMVs with unusual morphology (possibly due to 

artifact), or they were in fact microbial in nature. We systematically ruled out possible 

sources of artifact – RBC centrifugation, washing of the carbon grid with water, a lack of 

albumin in the isolated pellet - and also performed TEM and SEM of fixed pellets (Figure 

1, C-F). Regardless of how the unfixed samples were prepared, negative-stain EM 

reliably produced images represented in Figure 1 A and B.  However, detailed analysis of 

fixed material by TEM and SEM revealed that, whereas some of the vesicles were 

pleomorphic and rod-like in shape, many retained the expected ellipsoidal shape (Figure 

1, C-F) (4, 5). Further, comparison of fixed and unfixed samples by negative stain EM 

showed mostly ellipsoidal versus mostly pleomorphic, rod-like shaped vesicles 

respectively (Figure 1G and H). 

 

Microbial DNA analysis of vesicles identifies common contaminants 

To further assess whether bacterial DNA is present in the supernatant of stored RBC 

units, a large microvesicle pellet was isolated by sequential centrifugation of RBCs 

(100mL) that had been stored for 42 days under standard blood bank conditions. The 

pellet contained ~3 billion submicron, calcein-positive vesicles, as determined by flow 

cytometric analysis. DNA was extracted from the pelleted material and analyzed by 

standard gel electrophoresis. S. pneumoniae was used as a positive control, and molecular 
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grade water or molecular grade water passed through the Qiagen DNA extraction 

protocol were negative controls. Despite the isolation of very large numbers of these 

vesicles, no genomic DNA was observed on gel electrophoresis (Figure 2, A). Similar 

results were obtained using a phenol-chloroform based DNA extraction protocol. 

Subsequently, PCR was performed on the pelleted material using the same universal 16S 

rDNA primers as described by McLaughlin et al. PCR product was observed in pelleted 

vesicles and both positive and negative controls (Figure 2, B). The PCR product from 

each sample was purified and sequenced by single pass sequencing (Beckman Coulter 

Genomics) using the same 16S rDNA primers. BLAST analysis revealed that 16S 

sequences in the pelleted material were highly similar to Pelomonas spp. Sequences from 

molecular grade water and water passed through the Qiagen extraction protocol were 

related to Bradyrhizobium spp. and Propionibacterium spp., respectively. All three 

species are known to be common contaminants in laboratory reagents (6). Of note, both 

species identified by McLaughlin et al. are also now known to be typical contaminants 

(Stenotrophomonas spp., Pseudomonas spp.). As expected, 16S rDNA amplified from S. 

pneumonia DNA was identified as S. pneumonia (raw sequences available in 

supplemental material). 

 

16S rDNA levels are unchanged in human serum incubated for up to 10 days 

To further rule out the possibility of viable bacteria in the blood of healthy humans, 

serum from 3 donors was subjected to 16S rDNA qPCR analysis after incubation for 0, 5, 

and 10 days. The abundance of 16S rDNA would be expected to increase over time if 
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viable, replicating bacteria were present. Here, we did not find any change in the amount 

of 16S rDNA over time (ANOVA, p = 0.53) (Figure 2, C). 

 

Flow cytometry, miRNA, and protein analysis indicate isolated structures are RMVs 

Flow cytometric analysis demonstrated that all vesicles in the pelleted material from RBC 

storage units were positive for glycophorin-A (GPA), a RBC specific surface antigen, and 

calcein-AM (Figure 3, A), suggesting that they were membrane-bound and intact (7). 

Calcein-AM is a non-fluorescent, membrane permeable dye that becomes fluorescent and 

membrane impermeant after it is cleaved by esterases. RNA isolated from the vesicles 

was characterized using an Agilent Bioanalyzer and revealed that it contained only small 

RNA (Figure 3, B). miR-451, a miRNA known to be highly enriched in RBCs was highly 

abundant in both RBC and in RMV fractions, as compared to RNA isolated from cultured 

human aortic endothelial cells (HAECs), which have low levels of miR-451 and were 

used as a negative control (Figure 3, C). High levels of hemoglobin-alpha were detected 

in protein lysate of the vesicles and RBCs (Figure 3, D). Since the RMV pellet was 

washed extensively with PBS prior to RNA or protein isolation, it is not expected that the 

miR-451 or hemoglobin-alpha was derived from lysed RBCs in the stored unit. 

 

In summary, unfixed negative-stain EM of material in the extracellular fluid of RBC units 

identified pleomorphic structures that appeared identical to those previously reported to 

be circulating bacteria. Our results suggest that these pleomorphic structures are RMVs, 

not viable bacteria. First, genomic DNA was undetectable in the extracellular material, 

even when very large numbers of vesicles were used for DNA isolation. Second, 
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incubation of serum samples from healthy humans at 30°C for up to 10 days failed to 

show any increase in bacterial 16S rDNA content. Third, 16S rDNA sequences amplified 

by PCR here and previously are known to be common contaminants in laboratory 

reagents (6). Lastly, isolated vesicles had intact membranes, RBC specific antigen on 

their surface, and relatively abundant amounts of hemoglobin alpha and miR-451, a 

miRNA highly expressed in RBCs (8). 

 

The unusual, pleomorphic nature of the vesicles present in unfixed negative stain EM 

appeared to largely be due to the vesicles remaining flexible and deformable just prior to 

grid preparation. Whereas, most vesicles were observed to be ellipsoidal when fixed for 

negative stain EM, thin-section TEM, or SEM. However, a small fraction of particles 

seemed to have a rod-shaped morphology. Why RBC-derived vesicles would assume this 

seemingly energetically unfavorable morphology is not clear, though it may be related to 

the unique structural proteins or lipid content responsible for the biconcave shape of 

RBCs. 

 

While it is accepted that bacteria transiently transmigrate into healthy human circulation, 

the concept that naturally occurring, viable nanobacteria routinely circulate in blood is 

not well supported. In general, the existence of nanobacteria is controversial (9), and, 

whereas multiple groups have provided evidence that nanobacteria-like structures can 

form spontaneously in human serum, the consensus opinion is that these structures are 

likely mineraloprotein complexes rather than microbes (10, 11).  
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Conclusions 

The existence of pleomorphic nanobacteria in healthy human blood has been described 

elsewhere; however, our study suggests that pleomorphic structures observed in negative 

stain electron micrographs of human RBC storage units, plasma and serum are MVs and 

that 16S rDNA PCR products associated with these MVs are contaminants, commonly 

known to be present in laboratory reagents. In the case of RBC storage units, the 

pleomorphic structures in the extracellular fluid are RMVs, derived from RBC plasma 

membranes.  

 

Methods 

The Emory University IRB approved all studies and study participants gave written 

consent prior study participation. 

 

Isolation of RBC-derived vesicles 

Leukocyte-depleted RBC transfusion units were obtained from the blood bank at Emory 

University Hospital and stored from 0-42 days under standard conditions at 4°C. Blood 

product samples were obtained through a syringe port using a sterile 18-gauge needle 

under aseptic conditions. Samples were then prepared using a protocol developed to 

isolate microvesicles (MVs). RBCs were centrifuged at 1900 x g for 1 minute to pellet 

cells, the supernatant was transferred to a sterile tube, and centrifuged a second time at 

800 x g for 10 minutes to pellet any residual RBCs. The supernatant was then centrifuged 

at 16,100 x g for 20 minutes to pellet MVs. The MV pellet was re-suspended in 

molecular grade PBS and either studied immediately or frozen in aliquots at minus 80°C. 
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Electron microscopy 

Negative staining 

The Robert P. Apkarian Integrated Electron Microscopy Core, Emory University 

performed transmission electron microscopy of the RBC vesicles using a standard 

negative staining protocol. Briefly, 400-mesh carbon coated copper grids were made 

hydrophilic by glow discharging. A 5-µl droplet of the pellet suspension, either unfixed 

or fixed with 2.5% glutaraldehyde, was placed on the grid, after 5 minutes, the grid with 

the suspension was rinsed by briefly touching the sample side to three drops of distilled 

water. The excess water on the grid was then removed by blotting the side of the grid on 

a piece of filter paper. For negative staining, 5 µl of 1% phosphotungstic acid (PTA) was 

applied onto the grid immediately after water removal, and then removed as described 

above after 30 seconds. The grid was allowed to completely dry before viewing in the 

microscope. 

 

TEM 

For thin-section TEM examination of embedded RBC vesicles, the samples were fixed 

with 2.5% glutaraldehyde in 0.1 M sodium cacodylate (pH 7.4).  Samples were then 

washed with the same buffer twice and post-fixed with 1% osmium tetroxide and 1.5% 

potassium ferrocyanide in the same buffer, dehydrated through a graded ethanol series to 

100%, and embedded in Eponate 12 resin (Ted Pella Inc., Redding, CA).  Ultrathin 

sections were cut on a Leica UltraCut S ultramicrotome (Leica Microsystems Inc., 

Buffalo Grove, IL) at 70 nm, and counter-stained with 4% aqueous uranyl acetate and 2% 
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lead citrate.  Sections were examined using a 120 kV JEOL JEM-1400 LaB6 transmission 

electron microscope (JEOL, Ltd., Japan) equipped with a Gatan 2k x 2k US1000 CCD 

camera (Gatan, Inc., Pleasanton, CA). 

 

SEM 

For SEM examination of RBC vesicles, the samples were fixed with 2.5% glutaraldehyde 

in 0.1 M sodium cacodylate buffer (pH 7.4).  The samples were then placed onto poly-L-

lysine coated silicon chips and washed with the same buffer twice before post-fixation 

with 1% osmium tetroxide in the same buffer and dehydration through a graded ethanol 

series to 100%.  Silicon chips with vesicles were then loaded into a Polaron E3000 

critical point drying apparatus to exchange 100% ethanol for liquid CO2.  Once liquid 

CO2 was brought to its critical point, it was vented slowly.  The samples on the silicon 

chips were coated with 8 nm chromium in a Denton DV-602 Turbo Magnetron Sputter 

Coater (Denton Vacuum, LLC, Moorestown, NJ) before imaging on the upper-stage of a 

Topcon DS-150 field emission-scanning electron microscope (FE-SEM).    

 

 

Microbial DNA analysis 

DNA was isolated from microvesicle pellets, molecular grade water, and a colony of 

Streptococcus pneumoniae using a QIAamp DNA Mini Kit according to the 

manufacturer’s specified protocol for bacteria (Qiagen). As an alternative, DNA was 

extracted using a conventional phenol-chlorophorm extraction protocol (12). Standard 

agarose gel electrophoresis was carried out on a 1% agarose accompanied by a 1kb DNA 
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ladder (NEB). The same universal 16S PCR primers used by McLaughlin et al. were 

utilized to amplify 16S rDNA: BSF8/20 (5′-AGAGTTTGATCCTGGCTCAG-3′) and the 

reverse primer BSR1541/20 (5′-AAGGAGGTGATCCAGCCGCA-3′) (2). PCRs were 

performed in 20μl reaction volumes with 1X Q5 High Fidelity Master Mix (New England 

Biolabs), 1μM forward and reverse primer, and 6ul of DNA template. Reactions were 

carried out on a Biorad C1000 Touch Thermocycler with the following conditions: 98°C 

x 10 minutes, (98°C x 10 seconds, 70°C x 30 seconds, 72°C x 30 seconds) x 38 cycles, 

72°C x 2 minutes. PCR products were purified using a Qiaquick PCR Purification Kit per 

the manufacturer’s protocol and sent for commercial first pass sequencing (Beckman 

Coulter) using the BSF8/20 and BSR1541/20 primers. 

 

16S rDNA qPCR of human serum 

Under aseptic conditions, blood was collected into serum vacutainers (BD) from 3 

healthy donors (no medications). Cells were removed by centrifugation (3,000 x g for 7 

minutes) and serum was incubated for 0, 5, or 10 days at 30°C. DNA was extracted from 

100ul of serum as described above and used as a template for qPCR. Universal 16S 

primers developed previously for 16S rDNA qPCR were utilized: EUBAC-F (5′-

TCCTACGGGAGGCAGCAGT-3′) and EUBAC-R (5′-

GGACTACCAGGGTATCTAATCCTGTT-3′)(13). These primers were selected for 

qPCR because the amplicon size was more appropriate for qPCR studies than the primers 

used by McLaughlin et al. Reactions were performed in 20μl volumes with 1X Quantitect 

SYBR Green Master Mix, 300nM forward and reverse primers, and 8.8μl DNA. 

Thermocycler conditions were: 95C x 10 minutes, (95°C x 15 seconds, 60°C x 1 minute) 



237 

 

x 40 cycles.  All reactions were performed in triplicate. Relative expression was 

calculated as 2
dCt 

and converted to fold-change by normalizing to the mean expression at 

day 0. Data was analyzed using a one-way ANOVA with the assistance of Prism 

(Graphpad). 

 

Flow cytometry 

Isolated particles were stained with 10μM calcein-AM (Life Technologies) and anti-

CD235a (GPA) fluorescently labeled antibody (PE/Cy7; BioLegend), incubated at room 

temperature for 20 minutes, and analyzed on a BD LSR flow cytometer (BD 

Biosciences). The concentration of RMVs in a sample was calculated by ratiometric 

comparison after adding a known concentration of Flow-Check Fluoroshperes 

(Beckman). 

 

miRNA analysis 

Total RNA was isolated using a miRNeasy Mini Kit according to the manufacturer’s 

protocol (Qiagen) and analyzed on an Agilent Bioanalyzer with the RNA 6000 Pico Kit 

by standard protocol. qRT-PCR analysis of miR-451 was performed using Qiagen 

products (miScript II RT Kit, miScript Primer assay) and analyzer on a StepOne Real-

Time PCR System (ThermoFisher). 

 

Western blot 

Particles were lysed in RIPA buffer, exposed to brief sonication, and protein was 

quantified using the BCA assay. 30μg of protein was separated by gel electrophoresis, 
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transferred to a nitrocellulose membrane, and probed using an anti-hemoglobin-alpha 

antibody (Santa Cruz Biotechnology; sc-21005). 
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Figure Legends 

Figure 1. Representative electron micrographs of pelleted material from supernatant of 

RBC storage units. A, B, Negative stain EM images of the unfixed material, showing 

pleomorphic structures. C,D, Thin-section TEM images, showing membrane encapsulate 

vesicles. E,F, SEM images. G,H, Negative stain EM of fixed (G) versus unfixed (H) 

structures. Vesicles were isolated and imaged as described in Methods section. 

 

Figure 2. Analysis of bacterial DNA in pelleted material from RBC storage units and 

serum. RMVs were isolated from ~100mL of RBCs stored under standard conditions for 

42 days. A, Genomic DNA was isolated and analyzed by gel electrophoresis. Molecular 

grade water and DNA from S. Pneumoniae served as negative and positive controls, 

respectively. Band reflective of genomic DNA was only observed in positive control 

lane. B, Isolated DNA was also subjected to 16S rDNA PCR analysis, using universal 

primers. PCR product was observed for all samples assessed. C, Serum from 3 healthy 

donors was incubated at 30°C for 5 and 10 days, and then analyzed using a 16S rDNA 

qPCR assay. No significant difference in 16S rDNA was observed between the different 

time points. 

 

Figure 3. Vesicles isolated from supernatant of RBC storage units are membrane-bound, 

intact, and contain RBC surface antigen and RBC-specific miRNA. A, Unstained vesicles 

(red, bottom left) or vesicles co-stained with calcein-AM and fluorescent anti-GPA (blue, 

top right) were analyzed by flow cytometry. >99% of the vesicles were positive for 

calcein-AM and anti-GPA. B, RNA from vesicles was analyzed by Agilent Bioanalyzer. 
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Peak on electropherogram at 25 nt is internal standard and small peak to the right reflects 

small RNA. This electropherogram is representative of Bioanlyzer data from six different 

RBC storage units. C, Levels (Ct values) of miR-451 were assessed by qRT-PCR in 

stored RBCs, the RMV pellet, and in human aortic endothelial cells (HAECs, negative 

control). D, Hemoglobin-alpha content of RMV pellet and stored RBCs, as assessed by 

Western blot. Blot is representative of six different RBC storage units. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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