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Abstract

Predicting Time-to-Event and Clinical Outcomes from High-Dimensional
Unstructured Data

By Pooya Mobadersany

This dissertation addresses challenges in learning to predict time-to-event outcomes
such as survival and treatment response from high dimension data including whole
slide images and genomic profiles that are being produced in modern pathology labs.
Learning from these data requires integration of disparate data types, and the ability
to attend to important signals within vast amounts of irrelevant data present in each
sample. Furthermore, clinical translation of machine learning models for prognostica-
tion requires communicating the degree and types of uncertainty to clinical end users
who will rely on inferences from these models.

This dissertation has addressed these challenges. To validate our developed data
fusion technique, we have selected cancer histology data as it reflects underlying
molecular processes and disease progression and contains rich phenotypic information
predictive of patient outcomes. This study shows a computational approach for learn-
ing patient outcomes from digital pathology images using deep learning to combine
the power of adaptive machine learning algorithms with survival models. We illustrate
how these survival convolutional neural networks (SCNNs) can integrate information
from both histology images and genomic biomarkers into a single unified framework
to predict time-to-event outcomes and show prediction accuracy that surpasses the
current clinical paradigm for predicting the overall survival of patients diagnosed with
glioma. Next, to capture the volume of data and manage heterogeneity within the
histology images, we have developed GestAltNet, which emulates human attention to
high-yield areas and aggregation across regions. GestAltNet points toward a future
of genuinely whole slide digital pathology by incorporating human-like behaviors of
attention and gestalt formation process across massive whole slide images. We have
used GestAltNet to estimate the gestational age from whole slide images of placental
tissues and compared this to networks lacking attention and aggregation capabilities.
To address the challenge of representing uncertainty during inference, we have devel-
oped a Bayesian survival neural network that captures the aleatoric and epistemic
uncertainties when predicting clinical outcomes. These networks are the next gener-
ation of machine learning models for predicting time-to-event outcomes, where the
degree and source of uncertainty are communicated to clinical end users.
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1

Chapter 1

Introduction

1.1 Motivation

Histology has been an important tool in cancer diagnosis and prognostication for more

than a century. Anatomic pathologists evaluate histology for characteristics like nu-

clear atypia, mitotic activity, cellular density, and tissue architecture, incorporating

cytologic details and higher-order patterns to classify and grade lesions. Although

prognostication increasingly relies on genomic biomarkers that measure genetic alter-

ations, gene expression, and epigenetic modifications, histology remains an important

tool in predicting the future course of a patient’s disease. The phenotypic information

present in histology reflects the aggregate effect of molecular alterations on cancer cell

behavior and provides a convenient visual readout of disease aggressiveness. However,

human assessments of histology are highly subjective and are not repeatable; hence,

computational analysis of histology imaging has received significant attention.

Many important problems in the clinical management of cancer involve time-to-

event prediction, including accurate prediction of overall survival and time to pro-

gression. Despite overwhelming success in other applications, deep learning has not

been widely applied to these problems. Survival analysis has often been approached
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as a binary classification problem by predicting dichotomized outcomes at a specific

time point (e.g., 5-y survival) [1]. The classification approach has significant limita-

tions, as subjects with incomplete follow-up cannot be used in training, and binary

classifiers do not model the probability of survival at other times. Time-to-event mod-

els, like Cox regression, can utilize all subjects in training and model their survival

probabilities for a range of times with a single model. Neural network-based Cox

regression approaches were explored in early machine learning work using datasets

containing tens of features, but subsequent analysis found no improvement over basic

linear Cox regression [2]. More advanced “deep” neural networks that are composed

of many layers were recently adapted to optimize Cox proportional hazard likelihood

and were shown to have equal or superior performance in predicting survival using

genomic profiles containing hundreds to tens of thousands of features and using basic

clinical profiles [3].

Learning survival from histology is considerably more difficult. Time-to-event pre-

diction faces many of the same challenges as other applications where CNNs are used

to analyze histology. Compared with genomic or clinical datasets, where features

have intrinsic meaning, a “feature” in an image is a pixel with meaning that depends

entirely on context. Convolution operations can learn these contexts, but the result-

ing networks are complex, often containing more than 100 million free parameters,

and thus, large cohorts are needed for training. This problem is intensified in time-

to-event prediction, as clinical follow-up is often difficult to obtain for large cohorts.

Data augmentation techniques have been adopted to address this problem, where

randomized label-invariant positional and color transformations are used to synthe-

size additional training data [4, 5, 6, 7, 8, 9, 10, 11, 12]. Intratumoral heterogeneity

also presents a significant challenge in time-to-event prediction, as a tissue biopsy

often contains a range of histologic patterns that correspond to varying degrees of

disease progression or aggressiveness. The method for integrating information from
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heterogeneous regions within a sample is an important consideration in predicting

outcomes. Furthermore, risk is often reflected in subtle changes in multiple histologic

criteria that can require years of specialized training for human pathologists to rec-

ognize and interpret. Developing an algorithm that can learn the continuum of risks

associated with histology can be more challenging than for other learning tasks, like

cell or region classification.

To date, convolutional neural networks have proved to be the most powerful model

for learning representation from images in different domains and applications [13, 14,

15, 16, 17, 18]. Most networks are limited to analyzing and learning from a single

image patch or a batch of randomly selected image patches at a time. Conversely, the

daily practice of pathologists is to examine a Whole Slide Image (WSI), identify the

features present, weigh evidence supporting competing interpretations, and aggregate

over those features to come to a final evaluation of the patient’s status. This task of

gestalt formation is common in pathology and medical imaging but is also relevant in

broader domains of complicated image analysis where the whole is greater than the

sum of its parts. Learning in aggregate addresses a fundamental challenge in applying

convolutional networks in digital pathology and can solve a wide variety of problems.

Furthermore, when modeling outcome for patients based on their histologic or ge-

nomic features, samples with rare characteristics might yield erroneous identification

of representative patterns which might have catastrophic consequences when deployed

in clinical practice [19]. This makes it important to model uncertainty in survival pre-

diction models that can yield to more reliable identification of new patterns to use in

clinical practice.
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1.2 Research Contributions

Pathology driven prognostication is critical for realizing treatment strategies to op-

timize the quality of life and survival for patients. Genomics holds promise for im-

proving the classification and prognostication of malignancies, yet oncology practice

continues to rely heavily on histopathology analysis as a fundamental tool due to its

ability to provide information about cancer severity and patient status. Evaluating

these pathology images remains a largely manual and subjective practice among the

pathologists, where they spend a lot of time analyzing these images by zooming in

and out and panning throughout these huge images, looking for some histologic char-

acteristics that represent the patient outcome. This procedure is highly biased by the

pathologist’s knowledge and state of mind and can lead to highly variant and subjec-

tive prognostications. This manual procedure generally cannot account for variations

in tissue processing present in multi-institution studies, cannot be reproducible, and

cannot be meaningfully extended or integrated with existing resources to optimize

classification and prognostication strategies. New learning tools are needed for robust

histopathology analysis and for the integration of these images and clinical outcomes.

There might be a lot of latent patterns in pathology images that pathologists don’t

recognize while studying these WSIs. However, these patterns once revealed might

help improve their prediction accuracy and classification of patients.

The goal of this dissertation is to develop algorithms for quantitative analysis

of Hematoxylin and Eosin (H&E) stained histopathology slides and to enable im-

proved prognostication and outcome prediction from histology and genomics through

unbiased learning algorithms. This research builds on the development of machine

learning methods for prognostication in high-dimensional unstructured data and en-

ables predicting patient survival time from Whole Slide Images (WSI), gives a better

solution for incorporating more data from these large-scale images, and introduces

a pipeline for Bayesian modeling of uncertainties in survival prediction. The rest of
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this section highlights the details of our research contributions.

1.2.1 Survival Prediction based on Convolutional Neural Net-

work (Chapter 3)

In this section, I consider predicting patient outcome from histology images and pro-

pose a model that enables end-to-end extraction of features inside each High Power

Field (HPF) sampled from WSIs and prediction of patient outcome based on these

features. This model is based on Convolutional Neural Networks (CNN) because they

are a class of machine learning models that have been proved to outperform other

models in many image prediction and classification tasks by capturing the visual

patterns in images [13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24]. CNNs are unbiased

dissimilar to how pathologists are, which makes them a great candidate to use in this

field. We name our model Survival Convolutional Neural Network (SCNN), which

provides highly accurate predictions of time-to-event outcomes from histology im-

ages. Our SCNN framework uses an image sampling and risk filtering technique that

significantly improves prediction accuracy by mitigating the effects of intratumoral

heterogeneity and deficits in the availability of labeled data for training. I use heat

map visualization techniques applied to whole-slide images to show how SCNN learns

to recognize important histological structures that neuropathologists use in grading

diffuse gliomas and suggest relevance for patterns with prognostic significance that

is not currently appreciated. I systematically validate our approaches by predict-

ing overall survival in gliomas using data from The Cancer Genome Atlas (TCGA)

Lower-Grade Glioma (LGG) and Glioblastoma (GBM) projects. To integrate both

histologic and genomic data into a single unified prediction framework, I developed a

Genomic Survival Convolutional Neural Network (GSCNN) that enables end-to-end

learning and inference from genomic and histology data fusion. The GSCNN learns

from genomics and histology simultaneously by incorporating genomic data into the
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fully connected layers of the SCNN. Both data are presented to the network during

training, enabling genomic variables to influence the patterns learned by the SCNN

by providing molecular subtype information.

1.2.2 Architectures for Aggregate Learning (Chapter 4)

In this chapter, I consider the problem of learning the outcome from a set of im-

ages. Convolutional neural networks have proved to be the most powerful model

for learning representation from images in different domains and applications. Most

networks are limited to analyzing and learning from a single HPF or batch of ran-

domly selected HPF at a time. In these traditional learning models training explicitly

links clinical outcome to a single HPF (Figure 1.1.A). While this approach might be

practical in tasks like tumor detection, for more challenging tasks such as predicting

patient survival, the daily practice of pathologists is to examine a WSI, identify the

features present, weigh evidence supporting competing interpretations, and aggregate

over those features to come to a final evaluation of the patient’s status. This task of

gestalt formation is not only common in pathology and medical imaging but is also

relevant in broader domains of complicated image analysis where the whole is greater

than the sum of its parts. For these challenging applications, contrary to CNN’s basic

assumption of one image corresponding to one label, it is a collection of Regions of

Interest (ROIs) that correspond to each patient outcome. So, in applications such as

predicting patient outcome from histology, an ideal model has to learn in aggregate

from a collection of images. Therefore, we need to introduce a training model that

links the clinical outcome to a set of HPFs (Figure 1.1.B). In this section, I have

developed a model that learns to predict patient outcome from a collection/set of

HPFs. This enables incorporating more regions from each WSI during the learning

procedure. Our end-to-end pipeline has 3 key features - glimpsing, attention, and

aggregation which altogether emulate human attention to high-yield areas and aggre-
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Figure 1.1: Different Learning strategies. (A) Traditional pipeline: learning the
outcome from single HPF. (B) Aggregate learning: learning the outcome from the
collection of HPFs.

gation across regions. I used this network to estimate the gestational age (GA) of

scanned placental slides and compared it to a similar network lacking the attention

and aggregation functions. Our proposed model, GestaltNet, points toward a future

of genuinely whole-slide digital pathology by incorporating human-like behaviors of

attention and aggregation.

1.2.3 Bayesian Neural Networks for Survival Prediction (Chap-

ter 5)

In this chapter, I investigate the use of Bayesian neural networks in modeling the

aleatoric and epistemic uncertainties in survival prediction. In general, it is impor-

tant to build models that enable uncertainty quantification in tasks where the lack

of confidence in predictions can have catastrophic effects. Besides, it is important to

appropriately differentiate the epistemic and aleatoric uncertainties, as each of them

has different underlying causes that require different handling. The aleatoric uncer-

tainty is based on the noise or some inherent variability in the data, such as mislabeled

data; this type of uncertainty cannot be addressed by incorporating more samples into

model training but is reducible by measuring additional features. Whereas, the epis-

temic uncertainty is based on the uncertainty in model parameters and is reducible by

incorporating more samples into model training. In applications such as predicting

outcomes for cancer patients, underlying uncertainty in prediction can have a direct
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impact on our decisions on the individualized course of treatment for patients. In

such tasks, erroneous predictions might result in irreparable outcomes. In practice,

we cannot deploy a model in medical settings, unless we build a model that reliably

knows what it doesn’t know and asks for extra measurements or the human specialist

to intervene in the decision making process in cases where there is a lack of confi-

dence in its predictions. Most traditional deep learning settings make it impossible

to quantify the uncertainty. This includes both the applications of deep learning for

regression where the output is generated as a single scalar value and classification

where the output is often represented as a normalized vector obtained from a soft-

max layer [19]. To be able to build confidence intervals over predictions, the model

has to have the ability to represent the output as a posterior distribution that is

dependent on the potential noises in input features caused by the errors in measure-

ments and/or potential variations in the data-driven model parameters caused by the

variations in the number of samples at the model’s search space. Dropout which has

been initially introduced as a regularization method in neural networks to prevent

overfitting [25] has been proposed as a means of Bernoulli approximation for the epis-

temic uncertainty. The Bernoulli dropout is potentially estimating the uncertainty

in model parameters by applying an approximate variational Bernoulli distribution

over these parameters [26]. This approach is called Monte Carlo Dropout (MCD).

The quality of MCD in modeling uncertainty is contested. There have been studies

illustrating that the distribution generated by MCD can be a poor approximation to

most reasonable Bayesian posteriors, hence, yielding to bad decisions [27, 28]. Ian

Osband in [28] notes that for a simple deep neural network the predictive uncertainty

computed by MCD does not decrease with more data. This raises the question of

whether MCD is a good approximation to a Bayesian posterior and whether MCD

estimates epistemic uncertainty as the developers of MCD suggest. Ian Osband sug-

gests that MCD estimate is in fact an approximation to the aleatoric uncertainty, not
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to the epistemic uncertainty; hence, it seems that MCD is only applicable under only

specific assumptions.

In recent years, there have been a lot of improvements in building deep survival

neural networks for survival prediction [29, 3, 30]. However, there have been a few

works that have addressed the problem of modeling uncertainty in survival prediction

[31, 32]. Also, it is unclear which type of uncertainty most of these proposed methods

for deep survival networks are modeling, and there have not been enough attempts to

differentiate these different sources of uncertainties in survival neural networks, de-

spite its critical role in building reliable survival models. Therefore, this chapter seeks

to model the aleatoric and epistemic uncertainties in deep survival neural networks

under a Bayesian framework.
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Chapter 2

Background & Related Work

2.1 Survival Analysis

Survival analysis is the branch of statistics where the random variable under study is

the time to event data. In this dissertation, we are focused on medical applications.

In medical applications, the event might be the death of the patient or the recurrence

of a disease. Analyzing survival in this domain is important as it can reveal critical

information regarding optimized treatments for each individual patient. In this sec-

tion, we will briefly explain the common issue of censoring in survival analysis and

will provide a brief background over different approaches for modeling survival.

Censoring

One of the common issues in survival analysis is the censored data, where there might

be some subjects for which the event is not observed because they might have left

the study, lost to follow up, the study has been terminated before every subject has

shown the event of interest or the true event date is not known. It is important

to incorporate censored subjects into the study as it can provide information about

long-term survivors. The censoring in the survival analysis context is usually assumed
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to be random. This type of censoring is called non-informative censoring, where the

censoring times are statistically independent of the event of interest. Non-informative

censoring can be because of a predefined termination time for study, or some random

loss of follow-up over patients irrespective of their disease status. In this entire disser-

tation, we assume the censoring is non-informative. It is important to appropriately

characterize the censoring type in the study, as assuming a non-informative censor-

ing where the study is subject to informative censoring yields inaccurate statistical

inference about patients’ survival.

In general, there are three types of censoring: right-censoring, left-censoring, and

interval-censoring. Right-censoring, which is the most common type of censoring

in survival analysis data happens where the true unobserved event is to the right

of the censoring time. Left-censoring occurs when the event of interest has already

happened before including the subject in the study but the true event time is not

known. Interval-censoring happens when the only information about the subject

event time is that the event happened between two examinations (check points). In

this entire dissertation, the censoring type of data will be right-censored. Different

censoring types are all illustrated in Figure 2.1.

Survival function

Let T be a non-negative continuous random variable that represents time to event

data for subjects of interest. For instance, if the subjects of interest are patients with

a specific disease, then T might be their time to death or time to recurrence of the

disease after treatment for those patients. The survival function S(t) is a function

that gives the probability that the event of interest occurs after any specific time t

and is given by:

S(t) = P (T > t) = 1− F (t) =

∫ ∞
t

f(u)du (2.1)
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Figure 2.1: Different types of censored and uncensored subjects. Subject 1 is left-
censored as the event has already happened before the start of the study but it is
unknown; subject 2 is interval-censored as we only know the interval in which the
event has happened; subject 3 is right censored as the event is not observed by the
end of the study; subject 4 is right-censored as the subject is lost to follow up; subject
5 is uncensored as the true event is observed.
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where f(t) is the probability density function (PDF) for time to event random

variable T , and F (t) is the cumulative distribution function (CDF) which is given by:

F (t) = P (T ≤ t) =

∫ t

0

f(u)du, T ∈ [0,∞) (2.2)

Hazard function and cumulative hazard function

Besides the survival function, there is another way to model data distribution in

survival analysis which is called hazard function. Hazard function models the chances

of the event in each minuscule period of time given that the event of interest has

not happened before that time frame and represents the instantaneous risk that an

event of interest will happen within each very narrow time frame. Therefore, hazard

function h(t) is given by:

h(t) = lim
∆t−→0

P (t < T < t+ ∆t | T > t)

∆t
= lim

∆t−→0

S(t)− S(t+ ∆t)

∆t.S(t)
=
f(t)

S(t)
(2.3)

Although hazard function is often thought of as the probability of event at each

small time frame, it can exceed 1, hence, it is not a probability.

Cumulative hazard function is the accumulation of hazard over time and is an

alternative to represent the hazard function. Given the hazard function h(t) the

cumulative hazard function is defined as follows:

H(t) =

∫ t

0

h(u)du = −log(S(t)) (2.4)

Therefore, the survival and cumulative hazard functions are related by the follow-

ing equation:

S(t) = e−H(t), t > 0 (2.5)
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2.2 Survival models

In this section we will briefly describe different methods for modeling the distribution

of survival time or time to event (T ).

2.2.1 Parametric survival models

In parametric survival models, we assume a parametric form for the distribution of

time to event (T ). We can consider any distribution that is defined for t ∈ [0,∞) as

a survival distribution. In general, we can convert all distributions that are defined

for x ∈ (−∞,∞) to a survival distribution by considering t = ex, which maps the

(−∞,∞) space to (0,∞).

Exponential, Weibull and log-logistic are three of the most popular distributions

for survival time or the time to event. In order to model the effect of covariates on

each of these parametric models, their distribution parameters can be defined as a

function of covariates.

Exponential

The exponential distribution is one of the continuous probability distributions that

has only one parameter which is called rate parameter (λ > 0) [33]. The exponen-

tial distribution is the only continuous distribution that assumes a constant hazard

function:

h(t) = λ, λ > 0 (2.6)

Considering equation 2.6, the cumulative hazard function for exponential distribu-

tion is H(t) = λt. Plugging this into the equation 2.5, yields to the following survival

function for the exponential distribution:
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S(t) = e−λt (2.7)

The PDF for the exponential distribution is:

f(t | λ) = λe−λt, t ≥ 0 (2.8)

Therefore, in exponential distribution,

P (T > t+ ∆t | T > t) =

∫ ∞
t+∆t

λe−λxdx = e−λ(t+∆t) = e−λte−λ(∆t) (2.9)

And as we know from equation 2.7, e−λt is the survival function at time t. Given

that we know the event has happened after t, we will have P (T > t) = 1. Hence,

e−λt = 1, which results in:

P (T > t+ ∆t | T > t) = e−λ(∆t) = S(∆t) = P (T > ∆t) (2.10)

Therefore, the exponential distribution is a memoryless distribution, as P (T >

t+ ∆t | T > t) = P (T > ∆t), and it might not be an appropriate distribution to pick

where the knowledge that an event has not happened until a specific time changes the

probabilities for the occurrence of that event or when the hazard varies over time. For

instance, when modeling the distribution of recurrence of a disease after treatment,

assuming exponential distribution is not appropriate if the knowledge that the disease

has not recurred until a specific time after treatment changes the probability of its

recurrence.

Weibull distribution

The Weibull distribution is another continuous probability distribution that is a gen-

eralization for the exponential distribution and is particularly popular in survival
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analysis, as it can accurately model the time to events and is flexible despite having

only two parameters [34]. These parameters are scale (λ > 0) and shape (k > 0).

The hazard function for Weibull distribution is as follows:

h(t) = (
k

λ
)(
t

λ
)k−1 (2.11)

Depending on the value of shape parameter, its hazard function takes different

shapes. Whenever, k < 1 its hazard function will be monotonically decreasing over

time, when k = 1 its hazard function becomes a constant function over time and

Weibull distribution reduces to an exponential distribution. And, when k > 1 the

hazard function will be monotonically increasing over time. The PDF for the Weibull

distribution is:

f(t | λ, k) = 1− e−(t/λ)k , t ≥ 0 (2.12)

This yields to the following survival function for Weibull distribution:

S(t) = e−(t/λ)k (2.13)

Log-logistic distribution

The log-logistic distribution is another continuous probability distribution that is

widely used in survival analysis [35]. Similar to Weibull distribution, there is two

parameters for a log-logistic distribution. These parameters are scale (α > 0) and

shape (β > 0). The PDF for log-logistic distribution is:

f(t | α, β) =
(β/α)(t/α)β−1

(1 + (t/α)β)2
, t ≥ 0 (2.14)

and its survival function is:
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S(t) =
1

1 + (t/α)β
(2.15)

The hazard function for log-logistic distribution is:

h(t) =
(β/α)(t/α)β−1

1 + (t/α)β
(2.16)

Unlike the Weibull distribution, the log-logistic distribution can have a non-

monotonic hazard function. Whenever β > 1, its hazard function becomes unimodal

and when β ≥ 1, the hazard function becomes monotonically decreasing over time.

Therefore, the log-logistic distribution covers more possible shapes for hazard func-

tion compared to the Weibull distribution and is a reasonable choice for instances

where the failure rate increases initially and decreases later, e.g. when the event of

interest is the mortality of cancer patients after diagnosis or treatment.

If the censoring times are all known constants, the likelihood of the event of

interest for all the aforementioned models is the multiplication of PDFs for uncensored

subjects and survival functions for censored samples as follows:

l(t, δ) =
∏
i

f(ti)
δiS(ti)

1−δi (2.17)

or by replacing f(t) = h(t)S(t) based on the equation 2.3 we can rewrite the

likelihood function as:

l(t, δ) =
∏
i

h(ti)
δiS(ti) (2.18)

where i is the subject number, and δi is the event indicator (δi = 1: event observed,

δi = 0: censored).

Taking the logarithm of the likelihood function will result in the following log

likelihood function:
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L(t, δ) =
∑
i

(
δilog

(
h(ti)

)
+ log

(
S(ti)

))
(2.19)

which by replacing the equation 2.4 results in following log likelihood function:

L(t, δ) =
∑
i

(
δilog

(
h(ti)

)
−H(ti)

)
(2.20)

that, if we consider the model’s distribution parameters as functions of covariates,

then this log likelihood function can be maximized over the coefficients of the un-

derlying parametric model’s distribution parameters to produce maximum likelihood

estimates of the model parameters.

One of the limitations of the parametric models is that they might not cover

all distributions of outcomes. An alternative to address this issue is using mixture

distributions that we will explain briefly in the following subsection.

Mixture distributions

Mixture distributions are the convex combination of the distributions of the same

family. The convex combination is a weighted sum, with non-negative weights that

sum to 1 altogether, which guarantees that the mixture of the probability distributions

will still be a probability distribution. The individual distributions that form the

mixture distribution are called the mixture components, and the weights associated

with each of these component are called the mixture weights. There is no limit in

selecting the number of components in a mixture distribution. Assuming that fn(t),

Fn(t), Sn(t), hn(t) and Hn(t) are the PDF, CDF, survival function, hazard function

and cumulative hazard function of the nth component in the mixture, respectively, and

wn is the mixture weight of the nth component we will have the following equations

for a mixture distribution that consists of N components:
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f(t) =
N∑
n=1

wnfn(t), where
N∑
n=1

wn = 1 (2.21)

F (t) =
N∑
n=1

wnFn(t) (2.22)

based on equation 2.1 this results in:

S(t) = 1− F (t) = 1−
N∑
n=1

wnFn(t) (2.23)

as we know in the mixture distribution we have
N∑
n=1

wn = 1, by replacing it in the

equation 2.23 this results in:

S(t) = 1−
N∑
n=1

wnFn(t) =
N∑
n=1

wn −
N∑
n=1

wnFn(t) =
N∑
n=1

wn(1− Fn(t)) =
N∑
n=1

wnSn(t)

(2.24)

and based on equations 2.3 and 2.4, following will be the hazard function and

cumulative hazard function for the mixture distribution:

h(t) =
f(t)

S(t)
=

N∑
n=1

wnfn(t)

N∑
n=1

wnSn(t)

(2.25)

and

H(t) = −log
(
S(t)

)
= −log

( N∑
n=1

wnSn(t)

)
(2.26)

The likelihood and log likelihood functions of the mixture distribution will exactly

be the same as in equations 2.18, 2.19 and 2.20. Similar to the single distribution

models the log likelihood function can be maximized over the coefficients of the un-

derlying mixture distribution parameters to produce maximum likelihood estimates
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of the model parameters.

2.2.2 Non-parametric survival models

In this section, we will briefly describe the survival models that do not have any

parametric assumption over the distribution of time to event.

Kaplan–Meier estimator

The Kaplan–Meier estimator or product limit estimator is a non-parametric step

function with discontinuities in the form of jumps at the observed death times, that

estimates the survival function [36] in the presence of censoring. Let di be the number

of events at ti and ni be the number of individuals exposed to risk at time ti, or in

another terms ni is the number of individuals that have not yet had an event or been

censored just before time ti. Then, the Kaplan-Meier estimator of survival function

is:

Ŝ(t) =
∏
i:ti<t

(1− di
ni

) (2.27)

While Kaplan-Meier estimate might be useful to examine the probability of event

in the form of population level survival, or in the medical applications to compare the

effectiveness of treatment methods, it is limited in its ability to estimate individual

level survival that is adjusted for covariates. However, the parametric survival models

and the Cox proportional hazards model which is a semi-parametric survival model

that will be discussed in next sub-section, can be useful to estimate individual level

survivals by taking into account the covariates for each individual.
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Nelson-Aalen estimator

The Nelson-Aalen estimator is another non-parametric approach for modeling survival

that is used to directly obtain an estimation of cumulative hazard function H(t)

[37, 38, 39]. The Nelson-Aalen estimate of cumulative hazard function is:

Ĥ(ti) =
i∑

j=1

dj
nj

(2.28)

The Nelson-Aalen estimator estimates the hazard at each distinct time of event

tj as the ratio of the number of events to the number of individuals exposed to risk.

In equation 2.28, dj is the number of events at tj and nj is the number of individuals

exposed to risk at time tj. Having the estimation of cumulative hazard function from

equation 2.28, and plugging it into the equation 2.5 the estimation of the survival

function can be obtained as follows:

Ŝ(t) = e−Ĥ(t) (2.29)

This estimation of survival function is asymptotically equivalent to Kaplan-Meier

estimation of survival. Specifically, when the number of events is smaller than number

of exposed individuals its results are very close to the Kaplan-Meier estimator results.

2.2.3 Semi-parametric survival models

Proportional hazards model, proportional odds models and linear transformation

models are three of the most commonly used semi-parametric survival models. They

are called semi-parametric because they have both the parametric and non-parametric

components. Here we will briefly describe the Cox proportional hazards model which

makes a parametric assumption about the effect of the covariates on the hazard func-

tion, but makes no assumption about the distribution of the hazard function h(t).
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Cox Proportional hazards model

In 1972 Cox observed that if we assume each covariate in the study has a multiplicative

effect in the hazards function, then there is no need to consider the hazard function

to describe how the hazard varies in response to explanatory covariates [40]. This

approach is called Cox proportional hazards (CPH) model which assumes that each

covariate has a multiplicative effect in the hazards function that is constant over time.

But, unlike what we discussed for parametric models such as exponential, Weibull and

log-logistic, this model does not assume any parametric form for the hazard function.

The hazard function in CPH model is:

h(t | X) = λ0(t)eβ
TX (2.30)

where λ0(t) is the baseline hazard function which is the hazard at the baseline

levels of covariates at time t and X is the matrix of all covariates where the ith column

is the covariate vector for the ith subject in the study and β is the vector of coefficients

in which each element corresponds to one of the covariates. In our notations in this

thesis the vectors are column vectors by default, unless stated otherwise; also, T in

βT is the transpose sign, not the time to event.

The likelihood of the event of interest for subject i at time Yi can be written as:

li(β,X) =
h(Yi | Xi)∑

j∈Ωi

h(Yi | Xj)
(2.31)

where Ωi is the set of “at-risk” samples with event or follow-up times Ωi = {j |

Yj ≥ Yi} (where Yi is the event or last follow-up time of subject i). By plugging

the equation 2.30 in equation 2.31 and cancelling the λ0(Yi) from the numerator and

denominator, this yields to following likelihood for cox proportional hazards model:
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li(β,X) =
eβ

TXi∑
j∈Ωi

eβTXj
(2.32)

Assuming the subjects are statistically independent of each other, the joint prob-

ability of all observed events is obtained by the following partial likelihood:

l(β,X) =
∏
i∈U

li(β,X) (2.33)

where U is the set of all uncensored samples. Taking the logarithm of the equation

2.33 and plugging in the equation 2.32 yields to the following log partial likelihood

function of the CPH model:

L(β,X) =
∑
i∈U

(
βTXi − log

(∑
j∈Ωi

eβ
TXj
))

(2.34)

that can be maximized over coefficients (β) to produce maximum partial likelihood

estimates of the CPH model parameters.

Several approaches are proposed for handling tied events in CPH models. When

using the log partial likelihood function in equation 2.34 as is, the Breslow’s method

is used by default. If there are many tied events in the study that makes handling

them important when estimating the model parameters then it might be better to

consider other methods such as Efron’s method that yield to better results in the

existence of tied events [41].

Overall, the Cox proportional hazards model is more popular than parametric

models, because its non-parametric estimate of the hazard function offers more flexi-

bility in comparison with most parametric approaches. However, a parametric model,

if it is selected appropriately, offers some advantages as it provides higher efficiency

by estimating fewer parameters, and enables extrapolating beyond the range of the

data under study. Furthermore, the parametric models can yield more relevant in-
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terpretations of the model if they are appropriately selected to match the underlying

data.

Parametric alternative to the proportional hazards model (Accelerated

failure time model)

Accelerated failure time model (AFT model) is a class of parametric models which is

used as an alternative to the proportional hazards model [42]. In the proportional haz-

ards model, each covariate has some constant multiplicative effect on hazard, whereas

in an AFT model each covariate has some constant multiplicative (acceleration or de-

celeration) effect on the time to event (survival time). For any AFT model the PDF

is:

f(t | β,X) = f0(te−β
TX)e−β

TX (2.35)

where eβ
TX denotes the joint effect of covariates. This PDF results in the following

survival function:

S(t | β,X) = S0(te−β
TX) (2.36)

and the hazard function will be:

h(t | β,X) = λ0(te−β
TX)e−β

TX (2.37)

We can write the time to event (survival time) in AFT model as follows:

log(T ) = βTX + ε (2.38)

where βTX represents the fixed effects of the covariates and ε represents the

noise. The noise is distributed as log(T0) and is independent of the covariates. This
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reduces the accelerated failure time model to regression model in the absence of

censored data. However, in practice we generally have censored data, so we have

to extend the model to handle censoring. The censored observations provide some

challenges for estimating the model, if the distribution of T0 is unusual. Different

distributions of noise (ε) determines the distribution of baseline survival function

S0(t) of the AFT model, e.g. a Logistic distribution over ε implies a Log-logistic

distribution for the baseline survival function S0. Accelerated failure time models are

generally named after the distribution of their baseline survival function. The log-

logistic distribution is the most commonly used distribution in AFT model, because its

CDF and therefore survival function S(t) has a simple closed form, which is important

when fitting censored data. Note that based on equation 2.38, whenever ε has a

logistic distribution, then time to event T will have a log-logistic distribution. Similar

to other classes of parametric models explained before, the log likelihood function in

equation 2.19 can be maximized over the coefficients of the underlying parametric

model’s distribution parameters to produce maximum likelihood estimates of the

AFT model parameters.

In general, unlike proportional hazards models, the coefficients estimated from

AFT models are robust to omitted covariates. They are also less affected by the

choice of probability distribution [43, 44]. Furthermore, the results of AFT models

are easily interpreted, as they are directly modeling the effect of covariates on survival

time, rather than hazard ratio which is harder to explain.

2.3 Survival Convolutional Neural Networks

Deep convolutional neural networks (CNNs) have emerged as an important image

analysis tool, and have shattered performance benchmarks in many challenging ap-

plications [45]. The ability of CNNs to learn predictive features from raw image
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data presents exciting new opportunities in medical imaging [46, 6, 7]. Medical im-

age analysis applications have heavily relied on feature engineering approaches where

algorithms are designed to delineate or detect structures of interest, and to mea-

sure pre-defined characteristics of these structures that are believed to be predictive.

In contrast, the feature learning paradigm of CNNs does not rely on biased a pri-

ori definitions of features, and does not require the explicit delineation of anatomic

structures which is often confounded by artifacts and variations in image acquisition.

While feature learning has become the dominant paradigm in general image analysis

tasks, medical applications present unique challenges. Large amounts of labeled data

are needed to train CNNs, and medical applications often suffer from data deficits

that hurt performance. As “black box” models, CNNs are also difficult or impossible

to deconstruct, and so their prediction mechanisms cannot be understood. Despite

these challenges, CNNs have been successfully used extensively for medical image

classification and segmentation applications [4, 5, 47, 8, 48, 9, 49, 50, 51, 52, 53].

Many important problems in the clinical management of cancer involve time-to-

event prediction, including accurate prediction of overall survival, time to progres-

sion, and time to metastasis. Despite overwhelming success in other applications,

deep learning has not been widely applied to these problems. Survival analysis has

often been approached as a machine-learning classification problem by dichotomizing

outcomes (e.g. alive vs. deceased at 5 years) [1]. Neural network based Cox regres-

sion approaches were explored in early work with low-dimensional clinical datasets,

but subsequent analysis found no improvement over basic Cox regression [2]. Deeper

networks that are capable of feature learning were recently adapted to optimize Cox

proportional hazard likelihood and were shown to have superior performance in pre-

dicting overall survival from genomic signatures and clinical datasets [54, 3]. For

images, similar convolutional networks were applied to predicting overall survival us-

ing lung cancer histology but achieved only marginally better than random prediction
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accuracy (0.629 c-index), and were not compared to simple models based on clinical

predictors like age, sex, stage or histologic grade [55].

2.4 Learning from Sets

Most machine learning models are designed to map one input vector to one output

vector where a function f transforms an input from the vector space Rd to the discrete

space in classification tasks or a continuous space R in regression tasks. Unlike these

models that learn to map fixed dimensional vectors, models that handle sets as their

inputs (set-input) or outputs are often overlooked as it is not a trivial task [56,

57]. In these models, the model function f transforms the input that is a set X =

{x1, x2, ..., xN} to an output that is permutation invariant to the order of objects in

the set [58]. Developing models that can learn from unordered sets seems essential

in many practical domains. For instance, when modeling the patient outcome from

whole slide images (WSI) the relevant information is often present throughout the

slide. But we cannot analyze the whole image with a CNN since the relevant content

is mostly available at higher magnification levels, in which the dimensions of each

slide might be 80K × 80K which is not practical to feed in to the model in whole.

Therefore, smaller image patches across the WSI are randomly sampled to feed into

the CNN; however, in the basic CNN formulation each image has one label, but in

reality it is a collection of the regions all over the WSI that are contributing to the

outcome that makes it essential to build a model which learns to map sets of image

patches to the patient outcome.

In general, a model has to satisfy two critical requirements in order to handle

problems where the input is a set. First, it should be permutation invariant where

the output of the model should not change under any permutation of the elements in

the input set. Second, it should be able to process input sets of any size [59].
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These requirements are not easily satisfied in neural-network-based models. The

problem of processing permutation invariant sets by neural nets is a very general

and fundamental problem and has a broad application, ranging from learning the

structure of point clouds [60], to cosmology [61, 62], to estimation of population

statistics [63]. Sets in general and unordered sets specifically, comprise a class of data

which are challenging to address with traditional deep learning methods. A simple

feed-forward neural network such as a multi-layer perceptron (MLP) [64] would need

enormous amounts of data and classical feed-forward neural networks violate both of

the aforementioned critical requirements [59]. Recurrent neural networks (RNN) are

well known for their power on handling data that are naturally organized as a sequence

or ordered sets, but they cannot be really sequence agnostic and their performance

for unordered sets suffer as they are are sensitive to the input order. Even if the

RNN model is trained on randomly permuted sequences, the ordering of the inputs in

RNN does matter and it cannot be totally omitted [65]. [66] moved natural language

processing (NLP) away from using sequence dependent RNNs as things that work for

sets may work for sequences but not vice versa.

Permutation invariance is an important factor when building models to learn from

unordered sets. Permutation equivariance is another concept that is closely related

to the permutation invariance. In permutation invariance functions, the output of

the function dos not change by permuting the input. In permutation equivariance

functions in another hand, the output sequence is permuted in the same manner as

the input. In other words, a permutation invariant function f : XN → Y N for any

permutation π has the following property

f([xπ(1), ..., xπ(N)]) = f([x1, ..., xN ]) (2.39)

while a permutation equivariance function has the following property
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f([xπ(1), ..., xπ(N)]) = [fπ(1)(x), ..., fπ(N)(x)] (2.40)

A model that performs pooling over embeddings extracted from each element

inside the set is a simple example of a permutation invariant model. Zaheer et al.

[67] have demonstrated that all permutation invariant function f can be represented

as follows

f([x1, ..., xN ]) = g

( N∑
i=1

h(xi)

)
(2.41)

where g and h are any continuous functions and N is the number of instances inside

the set. Lee et al. [59] conceptually deconstructs this into an encoder part h which

independently acts on each element of a set and a decoder g
(∑

(.)
)

which aggregates

the encoded features and produces the desired output. Most of the available networks

for set-input problems follow this encoder-decoder structure. Ravanbakhsh et al. [68]

propose a computationally efficient permutation equivariant layer and illustrate that

pooling over the output of a permutation equivariant function results in permutation

invariance. In other words the model in equation 2.41 remains permutation invariant

even if the encoder is a stack of permutation-equivariant layers [67, 59].

Edwards and Storkey [69] and Zaheer et al. [67] propose neural network architec-

tures which meet both critical requirements. In their approach, each element in the

set is first independently fed into a feed-forward neural network that takes fixed-size

inputs which results in feature-space embeddings for each element in the set. Then,

these feature-space embeddings are aggregated using one of the mean, sum or max

pooling operations. The final output of their model is obtained by the non-linear

processing of the aggregated embedding. This model satisfies both aforementioned

requirements, and more importantly, it is proven to be a universal approximator for

any set function [67]; because of this property, it is possible to learn a complex map-
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ping between input sets and their target outputs. However, it is not clear whether we

can obtain a good approximation for complex mappings when using only instance-

based feature extractors and simple pooling operations. Also, some of the information

regarding interactions between elements inside the set will be discarded, because ev-

ery individual element in the set is processed independently which might cause some

problems that are difficult to address.

Recently, Lee et al. [59] have proposed a neural network architecture to learn from

set-inputs. Their model has a self-attention mechanism to process every element in

the input set which allows their model to encode pairwise or higher-order interactions

between elements in the set. In order for their model to scale for large input sets they

have introduced a method to reduce the O(n2) computation time of full self-attention

to O(nm) where m is a fixed hyperparameter. The self-attention mechanism in their

model is used to aggregate features.

During the recent years, some deep learning architectures have been introduced to

explicitly address the unique challenges proposed by sets in natural language process-

ing domain. Iyyer et al. [70] proposed deep averaging networks (DANs) to classify

text from an unordered sets of words. A DAN is basically a traditional feed-forward

neural network which does an element-wise average of word embeddings in a vector

space to generate its main distinguishing feature. Iyyer et al. illustrated how DANs

outperform complex network architectures for the same task. However, they did not

consider learning word embeddings as part of the architecture, instead they used a set

of predefined embeddings. Also, their model was using only averaging to aggregate

the word embeddings.

Hill et al. [71] developed a model that learns linear embeddings and does sum-

mation instead of averaging over the embeddings. However, Gardner et al. [72] show

that linear embeddings are not sufficient for all tasks and indeed are unnecessary with

certain pooling operations such as averaging and summing.
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Gardner et al. [72] propose convolutional deep averaging networks (CDANs) for

classifying and learning feature representations of datasets that contain instances with

unordered features. Their model is applicable to variable-size input and is invariant

to permutations of the input’s order. Their model considers the effects of functions

other than averaging such as taking element-wise maximums or sums.

Richard and Gall [73] have developed a neural bag-of-words model that is equiva-

lent to a single-layer-embedding CDAN with average pooling. The embedding in their

model is constrained by a softmax output, because each dimension of the embedding

in their model is interpreted as a conditional probability of a Gaussian-distributed vi-

sual word given the embedded element. The instances in their model are not explicitly

treated as sets, but their architecture is still permutation invariant. After pooling in

their model pipeline, they have incorporated a specialized layer representing a support

vector machine (SVM).

Multiple instance learning (MIL) [74, 75] is another example of problems that deal

with set-structured data, where the input is a set of instances and the corresponding

output is the label for the entire set (bag). MIL has this assumption of one positive

instance inside a bag resulting in a positive bag; this formulation might be appropriate

for tasks such as tumor detection or cancer classification based on sets of input image

patches, but it might not be an appropriate approach where the goal is to predict a

continuous output for the bag based on some continuous values associated with the

instances inside the bag e.g. when the goal is to predict the survival of patient based

on the sets of their input image patches.

Attention networks simulate selection from a set. They mimic the cognitive at-

tention of human and are used as high-pass filter to capture the relevant context of

the input data. Attention mechanism is widely used in computer vision [76] and NLP

[77, 78]. Multiplicative (dot-product) attention and multi-head attention are two

of the most commonly used attention techniques. Multiplicative attention obtains
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the attention by performing a dot-product between vectors. Multi-head attention in

another hand, combines several different attention techniques to obtain the overall

attention of a network.

Xu et al. [76] have applied the attention mechanism to images in order to generate

captions. In this paper they define soft vs hard attention, depending on whether the

attention has access to the entire image or only a patch. In the soft attention, the

attentions are learned and placed over all patches in the source image [77]. How-

ever, in the hard attention, only one patch in the whole image is selected by a hard

threshold to attend at each time. Soft attention is differentiable, but it might be

computationally expensive specially when the input image is large. Hard attention

in another hand is computationally efficient as it needs less calculation. But, hard

attention is non-differentiable which might need more complicated methods to train

such as reinforcement learning [78].
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Chapter 3

Predicting Cancer Outcomes From

Histology and Genomics Using

Convolutional Networks

In this section, we consider predicting patient outcome from histology images and

propose a model that enables end-to-end extraction of features inside each image

patch sampled from WSIs and prediction of patient outcome based on these features;

we call these image patches High Power Field (HPF). The model we have developed

combines a CNN with a Cox model to learn the image patterns that are associated

with the patient outcome. We call this model Survival Convolutional Neural Net-

work (SCNN), which provides highly accurate predictions of time-to-event outcomes

from histology images. To train this model we are using a negative log partial likeli-

hood of the Cox proportional hazards model that encourages the model to generate

risk values that are associated with the patients actual survival times. Our SCNN

framework uses an image sampling and risk filtering technique that significantly im-

proves prediction accuracy by mitigating the effects of intratumoral heterogeneity and

deficits in the availability of labeled data for training. We use heat map visualization
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techniques applied to whole-slide images to show how SCNN learns to recognize im-

portant histological structures that neuropathologists use in grading diffuse gliomas

and suggest relevance for patterns with prognostic significance that is not currently

appreciated. We systematically validate our approaches by predicting overall survival

in gliomas using data from The Cancer Genome Atlas (TCGA) Lower-Grade Glioma

(LGG) and Glioblastoma (GBM) projects. The current World Health Organization

(WHO) standard for classification of gliomas is based on a tiered procedure of molec-

ular subtyping and histologic grading. Therefore, to integrate both histologic and

genomic data into a single unified prediction framework, we developed a Genomic

Survival Convolutional Neural Network (GSCNN) that enables end-to-end learning

and inference from the fusion of genomic and histology data. The GSCNN learns

from genomics and histology simultaneously by incorporating genomic data into the

fully connected layers of the SCNN. Both data are presented to the network during

training, enabling genomic variables to influence the patterns learned by the SCNN

by providing molecular subtype information.

3.1 Abstract

Cancer histology reflects underlying molecular processes and disease progression, and

contains rich phenotypic information that is predictive of patient outcomes. In this

study, we demonstrate a computational approach for learning patient outcomes from

digital pathology images using deep learning to combine the power of adaptive ma-

chine learning algorithms with traditional survival models. We illustrate how this ap-

proach can integrate information from both histology images and genomic biomarkers

to predict time-to-event patient outcomes, and demonstrate performance surpassing

the current clinical paradigm for predicting the survival of patients diagnosed with

glioma. We also provide techniques to visualize the tissue patterns learned by these
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deep learning survival models, and establish a framework for addressing intratumoral

heterogeneity and training data deficits.

3.2 Introduction

Histology has been an important tool in cancer diagnosis and prognostication for more

than a century. Anatomic pathologists evaluate histology for characteristics like nu-

clear atypia, mitotic activity, cellular density, and tissue architecture, incorporating

cytologic details and higher-order patterns to classify and grade lesions. Although

prognostication increasingly relies on genomic biomarkers that measure genetic alter-

ations, gene expression, and epigenetic modifications, histology remains an important

tool in predicting the future course of a patient’s disease. The phenotypic information

present in histology reflects the aggregate effects of molecular alterations on cancer

cell behavior, and provides a convenient visual readout of disease aggressiveness.

However, human assessments of histology are highly subjective and not repeatable,

hence computational analysis of histology imaging has received significant attention.

Aided by advances in slide scanning microscopes and computing, a number of image

analysis algorithms have been developed for grading [79, 80, 81, 82], classification

[83, 84, 85, 86, 4, 87], and prediction of future metastasis [5] in multiple cancer types.

Deep convolutional neural networks (CNNs) have emerged as an important image

analysis tool, and have shattered performance benchmarks in many challenging appli-

cations [45]. The ability of CNNs to learn predictive features from raw image data is a

paradigm shift that presents exciting new opportunities in medical imaging [46, 6, 7].

Medical image analysis applications have heavily relied on feature engineering ap-

proaches where algorithms are designed to delineate or detect structures of interest,

and to measure pre-defined characteristics of these structures that are believed to

be predictive. In contrast, the feature learning paradigm of CNNs does not rely on
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biased a priori definitions of features, and does not require the explicit delineation of

anatomic structures which is often confounded by artifacts and variations in image

acquisition. While feature learning has become the dominant paradigm in general

image analysis tasks, medical applications present unique challenges. Large amounts

of labeled data are needed to train CNNs, and medical applications often suffer from

data deficits that hurt performance. As “black box” models, CNNs are also difficult or

impossible to deconstruct, and so their prediction mechanisms cannot be understood.

Despite these challenges, CNNs have been successfully used extensively for medical

image classification and segmentation applications [4, 5, 47, 8, 48, 9, 49, 50, 51, 52, 53].

Many important problems in the clinical management of cancer involve time-to-

event prediction, including accurate prediction of overall survival, time to progression,

and time to metastasis. Despite overwhelming success in other applications, deep

learning has not been widely applied to these problems. Survival analysis has often

been approached as a machine-learning classification problem by dichotomizing out-

comes (e.g. alive vs. deceased at 5 years) [10]. Neural network based Cox regression

approaches were explored in early work with low-dimensional clinical datasets, but

subsequent analysis found no improvement over basic Cox regression [11]. Deeper

networks that are capable of feature learning were recently adapted to optimize Cox

proportional hazard likelihood and were shown to have superior performance in pre-

dicting overall survival from high-dimensional genomic signatures [1], and with low-

dimensional clinical datasets [2]. For images, similar convolutional networks were

applied to predicting overall survival using lung cancer histology but achieved only

marginally better than random prediction accuracy (0.629 c-index).

In this section, we present a convolutional network based approach called Survival

Convolutional Neural Networks (SCNN) that can predict overall survival and other

time-to-event outcomes from histology images with accuracy that equals or surpasses

clinical paradigms based on genomic biomarkers and manual histologic grading. We
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provide a new training and prediction framework based on image resampling that

significantly improves prediction accuracy by mitigating the effects of intratumoral

heterogeneity and deficits in the amounts of labeled training data. We also illus-

trate how genomic and histology imaging data can be integrated into a single SCNN

prediction model to significantly improve prognostic accuracy. Finally, we show how

the prediction mechanisms of SCNN models can be interpreted using whole-slide risk

heatmaps that visualize the risks associated with various regions in a histologic spec-

imen. We systematically validate these approaches by building models to predict

overall survival in gliomas using data from The Cancer Genome Atlas Lower Grade

Glioma (LGG) and Glioblastoma (GBM) projects.

3.3 Learning patient outcomes with deep survival

convolutional neural networks

The SCNN model architecture is depicted in Figure 3.1 and Figure 3.2 illustrates the

detailed architecture of the CNN component in the SCNN model. Hematoxylin and

eosin tissue sections are first digitized to large whole-slide-images. These images are

reviewed using a web-based platform to identify regions-of-interest (ROIs) with rep-

resentative histologic characteristics [88]. High-power fields (HPFs) from these ROIs

are then used to train a deep convolutional network that is seamlessly integrated with

a Cox proportional hazards model to predict patient outcomes. The network is com-

posed of interconnected layers of image processing operations and nonlinear functions

that sequentially transform the HPF image into highly-predictive prognostic features.

Convolutional layers first extract visual features from the field image at multiple scales

using convolutional kernels and pooling operations. These image-derived features feed

into fully-connected layers that perform additional transformations, and then a final

Cox model layer outputs a prediction of patient risk. The interconnection weights
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and convolutional kernels are trained by comparing risk predicted by the network

with survival or other time-to-event outcomes using a backpropagation technique to

optimize the statistical likelihood of the network.

To improve the performance of SCNN models, we developed resampling techniques

to address the limited availability of training samples and intratumoral heterogene-

ity (see Figure 3.3). For training, new HPFs are randomly sampled from each ROI

at the start of each training iteration, providing the SCNN model with a fresh look

at each patient’s histology and capturing heterogeneity within the ROI. The SCNN

is also trained using multiple such HPFs for each patient (one for each region) to

further account for intratumoral heterogeneity across ROIs. For predicting the risk

of a new patient with unknown survival, we integrate information from many HPFs

by randomly sampling multiple fields in each ROI and using averaging and rank-

ing procedures to create a robust patient-level prediction that rejects outlying risk

predictions. These resampling procedures are described in detail in Methods.

3.4 Methods

3.4.1 Data and image curation

Whole slide images, clinical and genomic data were obtained from The Cancer Genome

Atlas via the Genomic Data Commons (https://gdc.cancer.gov/). Images of diag-

nostic hematoxylin and eosin stained formalin-fixed paraffin-embedded sections from

the Brain Lower Grade Glioma (LGG) and the Glioblastoma (GBM) cohorts were

reviewed to remove images containing tissue processing artifacts including bubbles,

section folds, pen markings and poor staining. Representative regions of interest con-

taining primarily tumor nuclei were manually identified for each slide that passed

quality control. In the case of grade IV disease, some regions include microvascular

proliferation as this feature was exhibited throughout tumor regions. Regions con-

https://gdc.cancer.gov/
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Figure 3.1: The SCNN model. The SCNN combines deep learning CNNs with tradi-
tional survival models to learn survival-related patterns from histology images. (A)
Large whole-slide images are generated by digitizing H&E-stained glass slides. (B) A
web-based viewer is used to manually identify representative ROIs in the image. (C)
HPFs are sampled from these regions and used to train a neural network to predict
patient survival. The SCNN consists of (i) convolutional layers that learn visual pat-
terns related to survival using convolution and pooling operations, (ii) fully connected
layers that provide additional nonlinear transformations of extracted image features,
and (iii) a Cox proportional hazards layer that models time-to-event data, like overall
survival or time to progression. Predictions are compared with patient outcomes to
adaptively train the network weights that interconnect the layers.

Figure 3.2: Detailed diagram of the CNN component in SCNN architecture. The
architecture is a variation of the VGG19 network and combines convolutional, maxi-
mum pooling, local normalization, and fully connected layers.
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Figure 3.3: SCNN uses image re-sampling to improving the robustness of training and
prediction. (A) During training, a single 256× 256 pixel high-power field is sampled
from each region, producing multiple HPFs per patient. Each HPF is subjected to
a series of random transformations that simulate image acquisition variations, and is
then used as an independent sample to update the network weights. New HPFs are
re-sampled at each training epoch (one training pass through all patients). (B) When
predicting the outcome of a newly diagnosed patient, 9 HPFs are sampled from each
region of interest and a risk is predicted for each field. The median risk in each region
is calculated, the median risks are sorted, and the second highest risk is selected as
the risk of the patient. This process was designed to deal with tissue heterogeneity by
emulating the process of histologic evaluation by a pathologist, where prognostication
is based on the most malignant regions within a heterogeneous sample.
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taining geographic necrosis were excluded. A total of 1061 whole-slide images from

769 unique patients were analyzed.

Regions of interest images (1024×1024 pixels) were cropped at 20X objective mag-

nification using OpenSlide and color-normalized to a gold-standard H&E calibration

image to improve consistency of color characteristics across slides. High-power fields

(HPFs) at 256 × 256 pixels were sampled from these regions and used for training

and testing as described below.

3.4.2 Network architecture and training procedures

The survival convolutional neural network combines elements of a variation of VGG19

convolutional network architecture with a Cox proportional hazard model to predict

time-to-event data from images (see Figure 3.2) [14]. Image feature extraction is

achieved by four groups of convolutional layers: 1) The first group contains two con-

volutional layers with 64 3 × 3 kernels, interleaved with local normalization layers,

then followed with a single max-pooling layer 2) The second group contains two con-

volutional layers (128 3 × 3 kernels) interleaved with two local normalization layers,

followed by a single max pooling layer 3) The third group interleaves four convolu-

tional layers (256 3 × 3 kernels) with four local normalization layers, followed by a

single max pooling layer 4) The fourth group contains interleaves of eight convolu-

tional (512 3× 3 kernels) and eight local normalization layers, with an intermediate

and a terminal max pooling layer. These four groups are followed by a sequence of 3

fully connected layers containing 1000, 1000, and 256 nodes respectively.

The terminal fully connected layer outputs a prediction of risk R = βTX asso-

ciated with the input image, where β ∈ R256×1 are the terminal layer weights and

X ∈ R256×1 are the inputs to this layer. To provide an error signal for backprop-

agation, these risks are input to a Cox proportional hazards layer to calculate the

negative partial log-likelihood
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L(β,X) = −
∑
i∈U

(
βTXi − log

(∑
j∈Ωi

eβ
TXj
))

(3.1)

Where βTXi is the risk associated with HPF i, U is the set of all uncensored

samples, and Ωi is the set of “at-risk” samples with event or follow-up times Ωi =

{j | Yj ≥ Yi} (where Yi is the event or last follow-up time of subject i).

The adagrad algorithm was used to minimize the negative partial log-likelihood

via backpropagation to optimize model weights, biases and convolutional kernels [89].

Parameters to adagrad include the initial accumulator value = 0.1, initial learning

rate = 0.001, and an exponential learning rate decay factor = 0.1. Model weights were

initialized using the variance scaling method [90], and a weight decay was applied to

the fully connected layers during training (decay rate = 4e-4). Models were trained

for 100 epochs (1 epoch is one complete cycle through all training samples) using

mini-batches consisting of 14 HPFs each. Each mini-batch produces a model update,

resulting in multiple updates per epoch. Calculation of the Cox partial likelihood

requires access to the predicted risks of all samples, which are not available within any

single mini-batch, and so Cox likelihood was calculated locally within each mini-batch

to perform updates (U and Ωi were restricted to samples within each mini-batch).

Local likelihood calculation can be very sensitive to how samples are assigned to mini-

batches, and so we randomize the mini-batch sample assignments at the beginning of

each epoch to improve robustness. Mild regularization was applied during training

by randomly dropping out 5% of weights in the last fully connected layer in each

mini-batch during training to mitigate overfitting.

3.4.3 Training resampling

Each patient has possibly multiple slides, and multiple regions within each slide that

can be used to sample HPFs. During training, a single HPF was sampled from each
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region, and these HPFs were treated as semi-independent training samples. Each

HPF was paired with patient outcome for training, duplicating outcomes for patients

containing multiple regions / HPFs. The HPFs are resampled at the beginning of

each training epoch to generate an entirely new set of HPFs. Randomized transforms

were also applied to these HPFs to improve robustness to tissue orientation and color

variations. Since the visual patterns in tissues can often be anisotropic, we randomly

apply a mirror transform to each HPF. We also generate random transformations

of contrast and brightness using the “random contrast” and “random brightness”

TensorFlow transformations to modify the HPF and simulate color variations. These

resampling and transformation procedures, along with the use of multiple HPFs for

each patient, has the effect of augmenting the effective size of the labeled training data.

Similar approaches for training data augmentation have demonstrated considerable

improvements in general imaging applications [91]. The resampling procedure during

training is illustrated in Figure 3.3A.

3.4.4 Testing resampling and model averaging

Resampling was also performed to increase the robustness and stability of predic-

tions: 1) 9 high-power fields are first sampled from each region j corresponding to

patient m 2) The risk of the kth HPF in region j for patient m, denoted Rj,k
m , is then

calculated using the trained SCNN model 3) The median risk Rj
m = mediank{Rj,k

m }

is calculated for region j using the aforementioned HPFs to reject outlying risks 4)

These median risks are then sorted from highest to lowest R̂1
m > R̂2

m > R̂3
m... , where

the superscript index now corresponds to the risk rank 5) The risk prediction for

patient m is then selected as the second highest risk R∗m = R̂2
m. This filtering proce-

dure was designed to emulate how a pathologist integrates information from multiple

areas within a slide, determining prognosis based on the region associated with the

worst prognosis. Selection of the second highest risk (as opposed to the highest risk)
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introduces robustness to outliers or high risks that may occur due to some imaging

or tissue-processing artifact. Since the accuracy of our models can vary significantly

from one epoch to another, largely due to the training resampling and randomized

mini-batch assignments, a model averaging technique was used to reduce prediction

variance. To obtain final risk predictions for the testing patients that are stable, we

perform model averaging using the models from epochs 96-100 to smooth variations

across epochs and increase stability. Formally, the model-averaged risk for patient m

is calculated as

R∗m =
1

5

100∑
γ=96

R∗m(γ) (3.2)

where R∗m(γ) denotes the predicted risk for patient m in training epoch γ.

3.4.5 Validation procedures

Patients were randomly assigned to non-overlapping training (80%) and validation

(20%) sets that were used to train models and evaluate their performance. If a patient

was assigned to training, then all slides corresponding to that patient were assigned

to the training set and likewise for the testing set. This ensures that no data from any

one patient is represented in both training and testing sets to avoid overfitting and

optimistic estimates of generalization accuracy. We repeated the randomized assign-

ment of patients training/testing sets 15 times, and used each of these training/testing

sets to train and evaluate a model. The same training/testing assignments were used

in each model (SCNN, GSCNN, baseline) for comparability. Prediction accuracy was

measured using Harrell’s c-index (CI) to measure the concordance between predicted

risk and actual survival for testing samples [92].
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3.4.6 Statistical analyses

C-indexes generated by Monte Carlo cross-validation were performed using the Wilcoxon

signed rank test. This paired test was chosen because each method was evaluated

using identical training/testing sets. Comparisons of SCNN risk values across grade

were performed using the Wilcoxon rank-sum test. Cox univariable and multivariable

regression analyses were performed using predicted SCNN risk values for all training

and validation samples in the randomized training/validation set 1. Analysis of the

correlation of grade, molecular subtype, and SCNN risk predictions were performed

by pooling predicted risks for validation samples across all experiments. SCNN risks

were normalized within each experiment by z-score prior to pooling. Grade analy-

sis was performed by determining “digital” grade thresholds for SCNN risks in each

subtype. Thresholds were objectively selected to match the proportions of samples

in each histologic grade in each subtype. Statistical analysis of Kaplan Meier plots

was performed using the log-rank test.

3.4.7 Hardware and software

Prediction models were trained using TensorFlow (v0.12.0) on servers equipped with

dual Intel(R) Xeon(R) CPU E5-2630L v2 @ 2.40GHz CPUs, 128GB RAM, and

dual NVIDIA K80 graphics cards. Image data was extracted from Aperio .svs

whole-slide image formats using OpenSlide (http://openslide.org/). Basic im-

age analysis operations were performed using HistomicsTK (https://github.com/

DigitalSlideArchive/HistomicsTK), a Python package for histology image analy-

sis.

http://openslide.org/
https://github.com/DigitalSlideArchive/HistomicsTK
https://github.com/DigitalSlideArchive/HistomicsTK
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Table 3.1: Summary of dataset clinical features
Molecular subtype

Characteristic Total, n=769
Astrocytoma IDH WT,

n=335 (48%)
Astrocytoma IDH mutant,

n=220 (32%)
Oligodendroglioma,

n=142 (20%)

WHO histologic grade (%)
II 181 (25) 14 (4) 96 (48) 69 (53)
III 205 (28) 57 (17) 88 (44) 60 (46)
IV 350 (47) 262 (79) 17 (8) 1 (1)a

Age at diagnosis, y
Range 10-88 10-88 14-73 17-75
Median 51 ± 15.5 58 ± 14.0 36 ± 11.3 45.5 ± 12.7

Sex, female (%) 308 (42) 137 (41) 86 (43) 54 (42)
Median survival, y

Grade II - 2.1 8.2 14.2
Grade III - 1.7 6.3 9.7
Grade IV - 1.2 3.0 N/Ab

aGrade IV is not defined for oligodendroglioma. This sample was initially classified as an astrocytoma
under the older histological classification paradigm (before molecular subtyping).

bN/A, not applicable.

3.5 Assessing the prognostic accuracy of SCNN

The prognostic accuracy of SCNN models was assessed using Monte Carlo cross-

validation. Using the Digital Slide Archive, we first identified ROIs in 1061 whole-

slide images of hematoxylin and eosin stained sections obtained from 769 gliomas from

the TCGA dataset. This dataset comprises lower-grade gliomas (WHO grades II and

III) and glioblastomas (WHO grade IV), contains both astrocytomas and oligoden-

drogliomas, and has overall survivals ranging from less than 1 to 14 y or more. A

summary of demographics, grades, survival, and molecular subtypes for this cohort is

presented in Table 3.1. Patients were assigned to either training (80%) or validation

(20%) to form 15 randomized datasets to evaluate the prognostic accuracy of meth-

ods. Accuracy was measured using Harrell’s c-index, a non-parametric statistic that

measures concordance between predicted risks and actual survival [92]. A c-index

of 1 indicates perfect concordance between predicted risk and overall survival, and a

c-index of 0.5 corresponds to random concordance.

SCNN networks demonstrated substantial prognostic power, achieving a median

c-index of 0.754 (see Figure 3.4B). For comparison, we also measured the accuracy
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of baseline models generated using the genomic biomarkers and manual histologic

grading used in the World Health Organization (WHO) classification (see Figure

3.4A). The WHO assigns gliomas to three genomic subtypes defined by mutations in

isocitrate dehydrogenase (IDH1 / IDH2) and co-deletion of chromosomes 1p and 19q.

Within these molecular subtypes, gliomas are further assigned a histologic grade based

on criteria that vary depending on cell of origin (either astrocytic or oligodendroglial).

Subtypes with an astrocytic lineage are split by IDH mutation status, and the combi-

nation of 1p/19q codeletion and IDH mutation defines an oligodendroglioma. These

lineages have histologic differences; however, histologic evaluation is not a reliable pre-

dictor of molecular subtype [93]. Histologic criteria used for grading include mitotic

activity, nuclear atypia, the presence of necrosis, and the characteristics of microvas-

cular structures. WHO baseline models based on molecular subtype and manual

histologic grade had a median c-index of 0.774, outperforming SCNN networks based

on machine-learning from histology images (Wilcoxon signed-rank p=2.61e-3). The

manual histologic grade baseline models had a median c-index of 0.745, with perfor-

mance similar to SCNN models (p=0.307). The molecular subtype baseline models

had a median c-index of 0.746, and were significantly outperformed by the SCNN

models (p=4.68e-2).

We also evaluated the benefits of our resampling methods in improving the per-

formance of SCNN models. Repeating the SCNN experiments without resampling

techniques reduced the median c-index to 0.696, significantly worse than for SCNN

models where resampling was used (p=6.55e-4).
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Figure 3.4: Prognostication criteria for diffuse gliomas. (A) Prognosis in the diffuse
gliomas is determined by genomic classification and manual histologic grading. Diffuse
gliomas are first classified into one of three molecular subtypes based on IDH1/IDH2
mutations and the codeletion of chromosomes 1p and 19q. Grade is then determined
within each subtype using histologic characteristics. (B) Comparison of the prognostic
accuracy of SCNN models with that of baseline models based on molecular subtype or
molecular subtype and histologic grade. Models were evaluated over 15 independent
training/testing sets with randomized patient assignments and with/without training
and testing sampling. (C) The risks predicted by the SCNN models correlate with
both histologic grade and molecular subtype, decreasing with grade and generally
trending with the clinical aggressiveness of genomic subtypes. (D) Kaplan–Meier
plots comparing manual histologic grading and SCNN predictions. Risk categories
(low, intermediate, high) were generated by thresholding SCNN risks. N/A, not
applicable.
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3.6 SCNN predictions correlate with genomic sub-

types and manual histologic grade

To further investigate the relationship between SCNN predictions and the WHO

paradigm, we visualized how risks predicted by SCNN networks are distributed across

molecular subtype and histologic grade (see Figure 3.4C). SCNN predictions were

highly correlated with both subtype and grade, and were consistent with expected

patient outcomes in each category. Firstly, within each molecular subtype, the risks

predicted by SCNN increase with histologic grade. Secondly, predicted risks are con-

sistent with the published expected overall survivals associated with genomic subtypes

[93]. Astrocytomas with wild-type IDH are highly aggressive with a median survival

of 18 months, and the collective risks for these patients is higher than for patients

from other subtypes. Astrocytomas having IDH mutations are another subtype with

considerably better overall survival ranging from 3-8 years, and the predicted risks

for patients in this subtype are more moderate. Notably, in this subtype, SCNN

risks are not well separated for grades II and III, consistent with reports of histologic

grade being an inadequate predictor of outcome in this subtype [94]. Gliomas with

mutations in IDH and co-deletion of chromosomes 1p/19q are described as oligoden-

droglioma, have a distinct differentiation, and have the lowest overall predicted risks

consistent with survivals of 10+ years for this subtype. Finally, we noted a significant

difference in predicted risks for grade III gliomas in the astrocytic subtypes (rank-sum

p=6.56e-20). These subtypes share an astrocytic lineage, are graded using identical

histologic criteria, and are not known to have any distinguishing histological charac-

teristics. Despite the inability of pathologists to discriminate between these subtypes

using histology, SCNN can predict risks that are consistent with worse outcomes for

grade III IDH wild-type astrocytomas (median survival 1.7 years) compared to grade

III IDH mutant astrocytomas (median survival 6.3 years).
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To illustrate how SCNN risks can be used to assign a categorical “digital” grade,

we performed a Kaplan Meier analysis to stratify patients based on SCNN risks (see

Figure 3.4D). Risk thresholds defining digital grades were established for each molec-

ular subtype separately. The proportions of each histologic grade in each subtype

were used as a guideline to set thresholds on SCNN risks. In each subtype, the digital

grades capture survival differences in a manner analogous to manual histologic grad-

ing. A comparison to stratification by histologic grade is presented in Figure 3.4D.

Based on these results we observed that digital and manual histologic grades have

similar prognostic power in IDH wild-type astrocytomas (log-rank p=1.23e-12 versus

p=7.56e-11 respectively). In IDH mutant astrocytomas, both digital and manual his-

tologic grades have difficulty separating Kaplan Meier curves for grades II and III,

yet both clearly distinguish grade IV as being associated with worse outcomes. Dis-

crimination for oligodendroglioma survival is also similar between digital and manual

histologic grades (log-rank p=9.73e-7 versus p=8.63e-4 respectively).

3.7 Improving prognostic accuracy by integrating

genomic biomarkers

To leverage both histologic and genomic data in predicting survival, we developed

a hybrid Genomic-SCNN model (GSCNN). The GSCNN learns prognosis from both

genomics and histology by incorporating genomic variables into the fully-connected

layers of the SCNN to improve prognostic accuracy (see Figure 3.5). This configu-

ration enables the genomic variables to influence the patterns learned from histology

by providing information on molecular subtype near the terminal network layers.

We repeated our experiments using GSCNN models with histology images, IDH

mutation status, and 1p/19q co-deletion as inputs, and found that the median c-index

improved to 0.801. The addition of genomic variables improved the performance by
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Figure 3.5: Genomic-SCNN models integrate genomic and imaging data for improved
performance. (A) A hybrid architecture was developed to combine histology image
and genomic data to make integrated predictions of patient survival. These models
incorporate genomic variables as inputs to their fully-connected layers. Here, we show
the incorporation of genomic variables for gliomas, however any number of genomic or
proteomic measurements can be similarly used. (B) The GSCNN models significantly
outperform SCNN models, as well as the WHO paradigm based on genomic subtype
and histologic grading.

5% on average over SCNN models that are trained on histology images alone. The

GSCNN models also significantly outperform the WHO baseline subtype-grade model

trained on equivalent data (signed-rank p=1.06e-2). We compared GSCNN with a

more superficial integration approach, where an SCNN model was first trained using

histology images, and then, the risks from this model were combined with IDH and

1p/19q variables in a simple three-variable Cox model as illustrated in Figure 3.6.

This superficial approach did not perform as well as GSCNN, with a median c-index

of 0.785 (signed-rank p=4.68e-2), illustrated as “SCNN + subtype” in Figure 3.5B.

To evaluate the independent prognostic power of risks predicted by SCNN and

GSCNN, we performed a multivariable Cox regression analysis (see Table 3.2). In

a multivariable regression that included SCNN risks, subtype, grade, age, and sex,

SCNN risks were prognostic when correcting for all other features including manual

grade and molecular subtype (p=2.71e-12). Manual histologic grade was not signifi-

cant in this regression analysis. We also performed a similar multivariable regression
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Figure 3.6: Superficial integration of histology and genomic biomarkers. We evaluated
the benefit of including genomic biomarkers in GSCNN training by evaluating the
accuracy of a more superficial integration approach. We first trained an SCNN using
histology images alone (step 1). After this training, we combined the risks produced
by this SCNN with genomic variables using a simple linear Cox regression model.
This Cox model was trained using the training samples and was evaluated on testing
samples to measure prediction accuracy.
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Table 3.2: Hazard ratios for univariable and multivariable Cox regression models.
Single Variable Multivariable (SCNN) Multivariable (GSCNN)

Variable c-index Hazard ratio 95% CI P value Hazard ratio 95% CI P value Hazard ratio 95% CI P value

SCNN 0.741 7.15 5.64, 9.07 2.08e-61a 3.05 2.22, 4.19 2.71e-12 - - -
GSCNN 0.781 12.60 9.34, 17.0 3.08e-64 - - - 8.83 4.66, 16.74 9.69e-12

IDH WT astrocytoma 0.726 9.21 6.88, 12.34 3.48e-52 4.73 2.57, 8.70 3.49e-7 0.97 0.43, 2.17 0.93
IDH mutant astrocytoma - 0.23 0.170, 0.324 2.70e-19 2.35 1.27, 4.34 5.36e-3 1.67 0.90, 3.12 0.10

Histologic grade IV 0.721 7.25 5.58, 9.43 2.68e-51 1.52 0.839, 2.743 0.159 1.98 1.11, 3.51 0.017
Histologic grade III - 0.44 0.332, 0.591 1.66e-08 1.57 0.934, 2.638 0.0820 1.78 1.07, 2.97 0.024

Age 0.744 1.77 1.63, 1.93 2.52e-42 1.33 1.20, 1.47 9.57e-9 1.34 1.22, 1.48 9.30e-10
Sex, female 0.552 0.89 0.706, 1.112 0.29 0.85 0.67, 1.08 0.168 0.86 0.68, 1.08 0.18

aBold indicates statistical significance (p<5e-2)

with GSCNN risks, and found GSCNN to be significant (p=9.69e-12). In this multi-

variable regression, molecular subtype was not significant, and histologic grade was

only marginally significant. We also used Kaplan–Meier analysis to compare risk cat-

egories generated from SCNN and GSCNN (Figure 3.7). Survival curves for SCNN

and GSCNN were very similar when evaluated on the entire cohort. In contrast, their

abilities to discriminate survival within molecular subtypes were notably different.

3.8 Visualizing prognosis with SCNN heatmaps

Deep learning networks are often criticized for being “black-box” approaches that

do not reveal insights into their prediction mechanisms. To investigate the visual

patterns SCNN models learn from histology images, we created risk heatmap overlays

to visualize the risks associated with different regions in a whole-slide image. These

heatmaps were generated by predicting risk for each non-overlapping HPF in a whole-

slide image. The predicted risks of each HPF were used to generate a color-coded

transparent overlay that represents the SCNN risk predictions across the entire slide.

A selection of risk heatmaps from three patients is presented in Figure 3.8, with

inlays demonstrating how SCNNs associate risk with important pathologic phenom-

ena. For TCGA-DB-5273 (Grade III, IDH mutant astrocytoma), the SCNN heatmap

clearly highlights regions of early microvascular proliferation, an advanced form of

angiogenesis that is a hallmark of malignant progression, as being associated with
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Figure 3.7: Kaplan–Meier analysis of SCNN and GSCNN. (A) We compared the over-
all prediction power of SCNN and GSCNN in the samples from all subtypes using
tertiles. Although the log rank test for GSCNN indicates slightly better separation
of survival curves, visually, the curves for SCNN and GSCNN are remarkably similar.
(B) SCNN risk categories perform well when examined within each molecular sub-
type. SCNN is not able to assign patients to these subtypes reliably, however, since
its predictions are based entirely on histology. (C) GSCNN risk categories overlap
significantly when examined in each molecular subtype. Although some separation is
apparent, most of the predictive power of GSCNN comes from its ability to reliably
assign patients to molecular subtypes.
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high risk. Risk in this heatmap also increases with cellularity, heterogeneity in nu-

clear shape and size (pleomorphism), and the presence of abnormal microvascular

structures. Regions in TCGA-S9-A7J0 have varying extents of tumor infiltration,

ranging from normal brain, to sparsely infiltrated adjacent normal regions exhibiting

satellitosis (where neoplastic cells cluster around neurons), to moderately and highly

infiltrated regions. This heatmap correctly associates the lowest risks to normal brain

regions, and can distinguish normal brain from adjacent regions that are sparsely in-

filtrated. Interestingly, higher risks are assigned to sparsely infiltrated regions (region

1, upper panel) than to regions containing relatively more tumor infiltration (region

2). We observed a similar pattern in TCGA-TM-A84G, where edematous regions

(region 1, lower panel) adjacent to moderately cellular tumor regions (region 1, up-

per panel) are also assigned higher risks. These latter examples provide novel risk

features embedded within histologic sections that have been previously unrecognized

and could inform and improve pathology practice.

3.9 Discussion

We developed a deep learning algorithm for learning survival directly from histologi-

cal images, and systematically evaluate its prognostic accuracy in the context of the

current clinical standard based on genomic classification and histologic grading. In

contrast to a previous study that achieved only very marginal prediction accuracy,

SCNN rivals or exceeds the performance of highly trained human experts in assessing

prognosis. Our study provides new insights into applications of artificial intelligence

in medicine, and also new technical approaches for dealing with intratumoral het-

erogeneity and training data deficits. We also developed a visualization technique

that allows pathologists to explore the associations between histological patterns and

prognosis over large whole slide images that inevitably exhibit significant heterogene-
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Figure 3.8: Visualizing risk with whole-slide SCNN heatmaps. We performed SCNN
predictions exhaustively within whole slide images to generate heatmap overlays of
the risks that SCNN associates with different histologic patterns. Red indicates rel-
atively higher risk, and blue lower risk (the scale for each slide is different). (Top) In
TCGA-DB-5273, SCNN clearly and specifically associates early microvascular pro-
liferation with high-risks (region 1), and also higher risks with increasing tumor in-
filtration and cell density (region 2 versus 3). (Middle) In TCGA-S9-A7J0, SCNN
can appropriately discriminate between normal cortex (region 1, lower panel) and
adjacent regions infiltrated by tumor (region 1, upper panel). Highly cellular regions
containing prominent microvascular structures (region 3) are again assigned higher
risks than lower density regions of tumor (region 2). Interestingly, low density infil-
trate in the cortex was associated with high risk (region 1, upper panel) (Bottom)
In TCGA-TM-A84G, SCNN assigns high risks to edematous regions (region 1, lower
panel) that are adjacent to tumor (region 1, upper panel).
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ity.

Our study investigated the ability to predict overall survival in gliomas, a disease

with wide variations in outcomes, and an ideal test case where histologic grading

and genomic classifications have independent prognostic power. Remarkably, SCNN

performed as well as manual histologic grading or molecular subtyping in predict-

ing overall survival in our dataset. Further investigation of the associations between

SCNN risk predictions, genomic subtypes, and histologic grades revealed that SCNN

can effectively discriminate outcomes in each subtype, effectively performing digital

histologic grading. Furthermore, SCNN can effectively recognize differences in im-

ages that associate with genomic subtypes, and predict risks accordingly. Oligoden-

drogliomas have a distinct histology, and so the ability to discriminate this subtype is

not unexpected. For astrocytomas, the SCNN network could correctly predict higher

risks for grade III IDH wild-type astrocytomas than for grade III IDH mutant astro-

cytomas, suggesting that SCNN may be able to recognize subtle histologic differences

associated with IDH mutations that are not yet appreciated by pathologists. The

broad hypermethylation induced by IDH mutations could plausibly affect nuclear ap-

pearance, providing a possible explanation of visual differences that are detectable by

SCNN, but more investigation of this topic is needed.

To integrate genomic information in prognostication, we developed a hybrid ap-

proach that learns from both histology images and genomic biomarkers. The GSCNN

model presented in our study significantly outperforms the WHO standard based on

identical inputs. By providing molecular subtype data directly to the network, in-

stead of relying on inferences from histology, GSCNN can focus more attention on

learning histologic patterns associated with disease progression in each subtype. This

result illustrates how complementary genomic and image data can be practically inte-

grated into a single prediction framework, an issue that presents a significant barrier

in the clinical implementation of computational prognostication. Our previous work
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in developing deep-learning survival models from genomic data has shown that accu-

rate survival predictions can be learned from high-dimensional genomic and protein

expression signatures (34). Incorporating additional genomic variables into GSCNN

models is an area for future research, and requires larger data sets with both histologic

images and rich genomic annotations.

While deep learning methods frequently deliver outstanding performance, the in-

terpretability of these models is limited, and remains a significant barrier in their

validation and adoption. The risk heatmap provides insights into the histologic pat-

terns associated with increased risk, and can also serve as a practical tool to guide

pathologists to tissue regions associated with worse prognosis. This approach suggests

that our network can learn visual patterns associated with histologic criteria used in

grading including microvascular proliferation, cell density, and nuclear morphology.

Microvascular prominence and proliferation are associated with disease progression

in all forms of diffuse glioma, and these features are clearly delineated as high-risk

in the heatmap presented for TCGA-DB-5273. Likewise, increases in cell density

and nuclear pleomorphism are also associated with increased risk in all examples.

In addition to these results, the heatmap analysis provided some interesting results

that need to be further investigated. In region 1 of TCGA-S9-A7J0, SCNN assigns

higher risk to sparsely infiltrated cerebral cortex than to region 2 that is infiltrated

by a higher density of tumor cells (adjacent normal cortex in region 1 is properly

assigned a very low risk). Widespread infiltration into distant sites of the brain is a

hallmark of gliomas, and results in treatment failure since surgical resection of visible

tumor leaves residual neoplastic infiltrates. It is not clear that this is the reason for

SCNN assigning high risk to sparsely infiltrated regions, but nonetheless, it is an in-

teresting finding worth pursuing. Similarly, region 1 of TCGA-TM-A84G illustrates

a high risk associated with low cellularity edematous regions, compared to adjacent

oligodendroglioma with much higher cellularity. Edema is frequently observed within
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gliomas and in adjacent brain and its degree may be related to the rate of growth

[95] yet its histologic presence has not been previously recognized as a feature of ag-

gressive behavior or incorporated into grading schemes. These observations confirm

that risks predicted by SCNN are not purely a function of cellular density or nuclear

atypia and demonstrate that these methods can identify novel, potentially practice

changing features associated with increased risk embedded within pathology images.

3.10 Limitations and future work

Although our study provides insights into deep learning for precision medicine, it

has some important limitations. A relatively small portion of each slide was used

for training, and the selection of regions of interest requires expert guidance. More

advanced methods are needed for automatically selecting regions and for incorporat-

ing more of the slide into the learning and prediction process. A single whole slide

image can contain remarkable heterogeneity, and so incorporating more of the slide

into the learning process will require more advanced training methods. Our method

currently produces a dimensionless risk by optimizing partial likelihood, and learning

of the baseline hazard would permit calibrated prediction of actual survival times. Fi-

nally, while we have applied our techniques to gliomas, validation of these approaches

in other diseases is needed and could provide additional insights. Furthermore, our

methods are not specific to histology imaging or cancer applications, and could be

adapted to other medical imaging modalities and biomedical applications.
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Chapter 4

Architectures for Aggregate

Learning

The models we developed in previous chapter learn to map each single input image

(HPF) to the patient outcome during the training. But, in reality it is not only one

HPF that is contributing to the patient outcome, but it is a pool of HPFs which

altogether with different significance are contributing to the patient outcome. To

address this challenge, in this chapter, we have developed an model that learns to

predict patient outcome from a collection/set of HPFs. Our end-to-end pipeline

has 3 key features - glimpsing, attention, and aggregation which altogether emulate

human attention to high-yield areas and aggregation across regions. To evaluate our

model performance we have shifted focus from glioma data to placenta as there is a

clear application here for learning from aggregation as different spatial locations and

patterns inside the placenta data has different implications. We used this network

to estimate the gestational age (GA) of scanned placental slides and compared it

to a similar network lacking the attention and aggregation functions. Our proposed

model, GestAltNet, points toward a future of genuinely whole-slide digital pathology

by incorporating human-like behaviors of attention and aggregation.
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4.1 Abstract

The placenta is the first organ to form and performs the functions of the lung, gut,

kidney, and endocrine systems. Abnormalities in the placenta cause or reflect most

abnormalities in gestation and can have life-long consequences for the mother and

infant.

Placental villi undergo a complex but reproducible sequence of maturation across

the 3rd-trimester. Abnormalities of villous maturation are a feature of gestational dia-

betes and preeclampsia, among others, but there is significant interobserver variability

in their diagnosis. Machine learning has emerged as a powerful tool for research in

pathology. To capture the volume of data and manage heterogeneity within the pla-

centa, we developed GestAltNet, which emulates human attention to high-yield areas

and aggregation across regions. We used this network to estimate the gestational age

(GA) of scanned placental slides and compared it to a baseline model lacking the

attention and aggregation functions.

In the test set, GestAltNet showed a higher r2 (0.9444 vs. 0.9220) than the

baseline model. The mean absolute error (MAE) between the estimated and actual

GA was also better in the GestAltNet (1.0847 weeks vs. 1.4505 weeks). On whole

slide images, we found the attention sub-network discriminates areas of terminal villi

from other placental structures. Using this behavior, we estimated GA for 36 whole

slides not previously seen by the model. In this task, similar to that faced by human

pathologists, the model showed an r2 of 0.8859 with an MAE of 1.3671 weeks.

We show that villous maturation is machine-recognizable. Machine-estimated GA

could be useful when GA is unknown or to study abnormalities of villous maturation,

including those in gestational diabetes or preeclampsia. GestAltNet points toward a

future of genuinely whole-slide digital pathology by incorporating human-like behav-

iors of attention and aggregation.
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4.2 Introduction

The placenta is the first organ to form and functions as the fetal lung, gut, kidney,

endocrine, and immune systems. As an active participant in gestation, it consumes

as much oxygen at term as the entire fetus [96]. Placental pathology causes and

reflects adverse events in pregnancy [97, 98]. Pathology in the placenta can have

lifelong consequences for mothers and offspring, including increased risk of cardiovas-

cular disease [99], bronchopulmonary dysplasia [100], cerebral palsy [101], colorectal

carcinoma [102], and asthma [103]. Therefore, the examination of the placenta can

yield considerable benefit. Yet, less than 20% of placentas are examined in the United

States, and significant lesions are frequently unrecognized [104, 105].

Digital pathology has the potential to revolutionize our understanding of placen-

tal function and disease [106]. Routine diagnostic pathology relies on qualitative

assessment and pattern recognition. Research studies on human placentas usually

rely on these assessments or quantitative measurements of selected regions done by

hand. A more quantitative, thorough examination may identify new biology and

pathophysiology. The sheer volume of archived glass slides of placentas, 120,000 at

our institution alone, with 500,000 cells in each whole slide image (WSI), provides

an enormous untapped reservoir of material for hypothesis development and testing.

In comparison, clinical examination captures only a fraction of the information

from each slide, and the quality is dependent on the examiner. Despite the accessibil-

ity of placentas at the time of birth, that information is discarded in most cases. Once

an AI system is operating, increasing the scale, adding new populations or diseases

is simple. This could include placentas from low-resource or international settings,

patients with specific sociodemographic factors, or patients with emerging diseases of

pregnancy, like COVID-19.
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4.2.1 Changes over time

Over the course of the 2nd- and 3rd-trimesters, the placental disc increases approxi-

mately 10-fold in size. The most significant microscopic changes are within the ter-

minal villi, with increased numbers of small villi with decreased cellularity, increased

stromal density, migration of capillaries to below the syncytial membrane, and collec-

tion of syncytiotrophoblast nuclei into knots. These changes have the overall effect of

minimizing the distance between maternal and fetal blood [107, 108, 109]. In analogy

with the lung, this results in maximum surface area with minimum diffusion distance

for oxygen and nutrients (Figure 4.1). Determination of the appropriateness of villous

maturation is a key step in assessing a placenta. This task is daunting, as it involves

the integration of the factors mentioned above across multiple slides to form a single

gestalt. Accordingly, interobserver variability is high [110, 111, 112].

Gestational age (GA) is the single most important factor in perinatal well-being.

The probability of a newborn successfully transitioning from womb to nursery to

home increases markedly with GA, and the probability of adverse outcomes including

hypoxic ischemic encephalitis, necrotizing enterocolitis, and bronchopulmonary dys-

plasia markedly decrease [113]. Accurate identification of GA most commonly relies

on sonographic measurements made in the 1st- or 2nd-trimester [114, 115, 116]. These

measurements may not be available in low resource settings or when prenatal care is

inadequate. Other methods, such as the recalled date of the last menstrual period or

sonographic measurements made in the 3rd-trimester, are less accurate.

4.2.2 The placenta and digital pathology

Compared to neoplasia, the placenta is relatively understudied by digital pathology.

Studies using photomicrographs of single fields and manual annotation show the po-

tential for scientific discovery using deep, image-based phenotyping of the placenta.

Manual measurement of villous and vascular surface area has shown changes over
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Figure 4.1: Changes in terminal villi over gestation. In the early 3rd-trimester (24
weeks GA, panels 1 and 3), syncytiotrophoblast (ST) nuclei are evenly spaced. Capil-
laries (C) are distant from maternal blood, which bathes the villi. The stroma consists
of loose extracellular matrix proteins with frequent macrophages and fibroblasts (M
and F). At term (40 weeks GA, panels 2 and 4), the villi are smaller. Syncytiotro-
phoblast nuclei are gathered into knots (K), thinning the vasculo-syncytial membrane.
Capillaries are directly beneath the syncytiotrophoblast layer. Stroma is denser with
lower cellularity.
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pregnancy [107, 108]. Preeclampsia (PreE) has been associated with changes in vil-

lous count, area, diameter, capillary count, and degree of capillarization in the villous

core [109]. Gestational diabetes has been associated with decreased villous vascu-

lar volume [117]. Abnormal villous maturation has a genetic expression signature

- placentas with a diagnosis of accelerated maturation have gene expression more

appropriate for placentas delivered 4.7 weeks later with normal maturation [118].

More recent studies support the feasibility of applying modern machine learning

and digital pathology techniques to the placenta. Studies have shown the ability to

segment villi from scanned slides and measure their stromal density and vessel num-

bers [119, 120]. Published algorithms exist for identifying cytotrophoblast, fibroblast,

macrophage, syncytiotrophoblast, and vascular endothelial cells in the placenta [121].

Deep learning models employing convolutional neural networks (CNN) have shown

impressive performance for identifying image content in multiple domains and tasks,

including digital pathology [29, 20, 21, 22, 23, 24]. In training, networks commonly

learn to associate a single image or HPF to an outcome or finding of interest. Contrary

to CNN’s implicit assumption of one image corresponding to one label, a single WSI

contains thousands of HPF with considerable heterogeneity. Practicing pathologists

must examine all HPF, attend to fields they consider representative, and aggregate

their findings to produce a single diagnosis. The gap between algorithm development

and practice reduces the clinical relevance of many AI studies including those in

the broader medical imaging field. We propose an algorithm that learns the patient

outcome from a collection or set of images in training. This helps to incorporate more

regions from each WSI during the learning procedure.

The problem of aggregation extends beyond digital pathology and is present when-

ever a model receives multiple inputs. Practitioners must decide at which stage of

the pipeline data are incorporated, how they are weighted, and the extent to which

aggregation is trainable. In non-image tasks, data are routinely input as a single
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vector allowing complex trainable interactions. Conversely, ensemble strategies may

aggregate results from multiple separately trained models without back propagation.

Choices in aggregation strategy are liable to be suboptimal if practitioners are un-

aware that a choice is being made.

This study aims to develop a deep learning model that incorporates and pre-

dicts across whole slides and demonstrates the utility of that model in estimation of

gestational age in placenta - a low concordance task in a notoriously heterogeneous

tissue.

4.3 Materials, subjects, and methods

4.3.1 Patients and materials

Pathology reports from patients delivering 1/1/2010 to 10/31/2019 were retrieved

from the laboratory information system (Cerner Build List Id: 2014.08.1.36). GA,

clinical history, and diagnoses, including accelerated, delayed, and appropriate mat-

uration, were extracted using regular expressions (6.2) and the Natural Language

Toolkit (NLTK, version 3.3) on Python (version 3.6.9) as described [122, 123].

We identified cases with an obstetrically determined GA of 24-42 weeks with an

original pathologic diagnosis of appropriate villous maturation, confirmed through a

review by a practicing perinatal pathologist at Department of Pathology at North-

western University (Dr. Jeffery A Goldstein). This GA was considered ground truth

for each case.

Clinical examination of placentas at our institution includes 1 cassette of mem-

branes, 1 of umbilical cord sections, 1 with three incisional biopsies of the placen-

tal disc’s maternal surface (basal plate plus villi), 2 cassettes of representative non-

lesional full-thickness placental disc, and additional cassettes containing any lesions.

The maternal surface biopsies and full-thickness sections are selected from the in-
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3

of the radius of the placental disc were reviewed for possible scanning. We

selected a slide with morphology consistent with clinically determined GA without

mass-forming lesions or villous abnormalities. Given low counts in the earliest GA,

we allowed cases with decidual or chorionic plate pathology (e.g. chorioamnionitis).

One slide per patient with villous tissue, either basal villous wedges or full-

thickness placental disc, was selected and scanned at the institutional Pathology Core

Facility using a Hamamatsu Nanozoomer 2.0 HT scanner at 20X objective magnifica-

tion. 154 slides were split randomly, stratified by GA, into training, validation, and

test sets with proportions of 70% (107 slides), 15% (23 slides), and 15% (24 slides),

respectively. Because deliveries are not evenly distributed across the GA and matu-

ration anomalies are more prevalent at earlier GA, the training, validation, and test

sets are not precisely balanced at each GA. The number of cases and corresponding

ROIs and HPFs is presented in Table 4.1.

Table 4.1: Number of cases and corresponding ROIs and HPFs

WSI
(train; valid; test)

Annotations
(ROIs)

512× 512 Patches
(HPFs)

Annotated Data
154

(107; 23; 24)
1918 26555

Non-annotated Data
(WSI-level testing)

36
(0; 0; 36)

0 152289

Regions of terminal villi with villous maturation consistent with GA were box

annotated by the pathologist. Stem villi, areas of fibrin deposition, and septae were

avoided. On full-thickness sections, parabasal areas were preferentially annotated.

In total, 1918 region annotations (at least 10 per slide) were made. Regions were

extracted with OpenSlide (1.1.1) on Python (3.6.9) and were color normalized using

the method from Macenko et al. [124]. Regions were tiled into 512 × 512 pixel high

power fields (HPF) at 20X magnification level and shrunk to 256 × 256 (effective

magnification 10X), for a total of 26,555 HPF (Table 4.1). During training, HPF are
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augmented by random rotations and changes in brightness and contrast [125].

4.3.2 Baseline model

HPF are input into a feature extraction convolutional neural network based on VGG19

[14] with trainable weights initialized by a pre-trained model on ImageNet [126] in

Keras (Tensorflow 2.3.0). The network is modified by replacing the fully connected

layers in the original VGG19 architecture with a single fully connected layer of size

1024 with ReLU activation function and a dropout with rate 0.5. The extracted

feature map is submitted to the representation learning sub-network, which consists of

sequential fully connected layers of size 1024 and 256 with ReLU activation functions

and a dropout with rate 0.5 after the first fully connected layer, and one linear node

at the end to produce a single value - the estimated gestational age (EGA). The

mean squared error loss between EGA and clinically determined GA (as the ground

truth) is used to train the model. The baseline model was trained for 2000 epochs.

To aggregate across a WSI for inference, the median EGA for all HPF is determined

post hoc.

4.3.3 GestAltNet - input & glimpsing mechanism

In the base model, training explicitly links the clinical outcome to a single HPF. We

propose an alternative network for estimating gestational age, GestAltNet (Figures

4.2 and 4.3). GestAltNet learns in aggregate from a collection of images and relates

the clinical outcome to a set of HPF during training. While the baseline model trains

using a single HPF as input, GestAltNet uses a glimpse as input in training. Each

glimpse consists of 16 randomly selected HPF from a single WSI, generally represent-

ing multiple regions. Glimpses are examined in batches of 64 and consumption of all

batches represents one epoch. HPF and glimpses are resampled as needed to maintain

glimpse and batch sizes. HPF are randomly assigned to glimpses at initialization and
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Figure 4.2: Glimpse and batch formation: Scanned whole slide images are annotated,
and ROI are extracted (left panel). ROI are tiled into HPF (2nd panel, black lines).
HPF are randomly sampled without replacement across all ROI of each patient to
form a glimpse (3rd panel, HPF shading indicates glimpse) 2nd panel from left, colored
HPF indicate their corresponding glimpse. Glimpses are constant size (16) except the
last glimpse (purple oval), which takes the remainder. Glimpses from one patient are
distributed across batches (4th panel, gray ovals are glimpses from other patients).

after every 50 epochs (chosen based on the performance in the validation set).

4.3.4 GestAltNet - pipeline & attention and aggregation

As in the baseline model, images are input into a VGG19 derived network. The

intermediate output of VGG19 at block3, consisting of 256 3× 3 kernels (Figure 4.3,

red squares), is input to the attention sub-network. This sub-network is a feedforward

neural network with two fully connected layers of size 256, 256 with ReLU activation

functions, a dropout with rate 0.5 after the first fully connected layer [25], and one

linear node at the end. The linear node results in a single scalar value for each HPF

in the glimpse, representing its attention. To limit extreme values, attentions are

transformed using softmax.

A single aggregate feature map (f̄ in Figure 4.3) is obtained through weighted

averaging over the feature maps of the 16 HPF within the glimpse, where weights

are the corresponding HPF attentions. The aggregate feature map is submitted to

the representation learning sub-network as in the baseline network to compute EGA.

During training, mean squared error between EGA and clinically determined GA
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Figure 4.3: Model pipeline: Glimpses are submitted as a batch to a convolutional
neural network (feature extraction sub-network). Intermediate outputs (red boxes)
are input to an attention sub-network. Feature maps (f 1− fn) are weighted by their
attentions (a1−an) and aggregated via weighted averaging (oval). The representation

learning sub-network estimates the gestational age (ĜA) based on the aggregated

feature map f̄ . The mean squared error (ĜA − GA)2 inside an entire batch of 64
glimpses is used in backpropagation. The whole learning procedure is done in an
end-to-end manner.

(ground truth) is used as the loss function, and backpropagation is performed end-

to-end across the entire network. GestAltNet was trained for 500 epochs. For whole

slide inference, the median EGA, computed across glimpses, was determined.

4.3.5 Evaluation metrics

To assess the overall accuracy, we measured the coefficient of determination (r2) and

the absolute error in weeks. For test and unannotated slides, EGA was calibrated

using the linear regression of EGA vs. GA for validation regions and whole slides

(respectively). We considered an absolute error of greater than 3 weeks as clinically

significant because 1) accelerated villous maturation has been diagnosed based on

an apparent GA of ≥ 37 weeks with chronologic GA of ≤ 34 weeks, i.e., 3 weeks

[127]; 2) gene expression study showing accelerated villous maturation equates to 4.7

weeks ahead, and delayed maturation equates to 1.5 weeks behind normal gestation

(average 3.1 weeks) [118]; 3) Using the placental weight reference of Pinar et al., [128]

a placenta of average weight at one GA is considered large or small for gestational
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age (LGA, SGA) 3 - 5 weeks earlier or later. For example, a placenta with the mean

weight for 24 weeks, 189 grams, is considered LGA at 21 weeks (expected 114 - 172

grams) and SGA at 27 weeks (expected 192 - 305 grams).

4.3.6 Attention and whole slide estimation of GA

For the whole slide level inference 36 new slides, neither previously annotated nor

part of the training, validation and testing sets were used. The non-tissue area of

the WSI was masked out by first applying gaussian smoothing to the slide’s grayscale

thumbnail, and then applying Otsu’s image binarization method [129] to the thumb-

nail. Attention was determined and GA was estimated on a per-HPF basis for all

HPF. To determine appropriate attention thresholds for the selection of representa-

tive HPF in WSI level inference, we examined the per-HPF attention and accuracy

over the non-overlapping HPF inside the tissue area of the WSI in our validation set.

We set the lower threshold at the median attention of HPF with absolute errors of

≤ 3 weeks and the upper threshold at the 99th percentile of attention for HPF with

absolute errors of ≤ 3 weeks in the validation set.

For generating heat maps, 87.5% overlapping HPF were extracted, and attention

and EGA values were produced on a per-HPF basis. Attention was colored with

minimum and maximum values scaled based on variation in the validation set. EGA

was colored as H&E (appearing pink at low power) for absolute error ≤ 3 weeks, red

if > 3 weeks high and blue if > 3 weeks low.

4.4 Results

4.4.1 Interobserver variability

29,943 placentas were examined over 9.5 years by 8 pathologists. Given a GA de-

termined by clinical parameters, pathologists diagnose whether maturation is appro-
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Figure 4.4: Interobserver variability in clinical diagnoses. Despite well-defined pat-
terns of maturation, pathologists are inconsistent in their diagnoses of whether the
villous maturation is normal (green), accelerated (red), or delayed (yellow) for the
stated gestational age. Each column represents one pathologist.

priate, accelerated, or delayed for the stated GA. Overall, 17,806 (60%) placentas

were diagnosed with appropriate maturation, 5,108 (17%) with accelerated matura-

tion and 1024 (3.4%) with delayed maturation (Figure 4.4). 6,005 placentas (20%)

received multiple diagnoses, for example, “appropriate for gestational age with region-

ally delayed maturation,” or had no description of maturation, which may occur when

maturation is obscured by other findings like chorangiosis or post-mortem changes.

The percentage of cases diagnosed as normal varied from 51% to 77%, as accelerated

from 8.2% to 27%, and as delayed from 0.2% to 13%. Assuming a random distribution

of placentas among pathologists, this represents significant interobserver variability.
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Figure 4.5: Test Results: (a) In the test set, the baseline model shows an r2 of 0.9220
with an MAE of 1.4505 weeks. (b)The GestAltNet shows an r2 of 0.9444 with an
MAE of 1.0847 weeks.

4.4.2 Deep learning model performance

In the test set, the GestAltNet and baseline models showed r2 of 0.9444 and 0.9220,

respectively (Figure 4.5a-b). After calibration, the mean absolute error (MAE) was

1.0847 weeks for the GestAltNet model and 1.4505 for the baseline model. An error

of ≥ 3 weeks is significant in evaluating GA. By this standard, both the GestAltNet

and baseline models adequately estimated GA 24/24 test cases.

4.4.3 Attention and estimation of GA across whole slides

The GestAltNet technique simulates a pathologist’s cognitive process of incorporat-

ing information across multiple regions of interest. However, it still relies on hand-

annotated regions of interest selected to include representative, high-quality areas

of tissue. To explore variation across tissue and emulate the pathologist attention

and gestalt formation process across the whole slide, we obtained attention and EGA

across 36 WSI that were unannotated and not part of the existing training, validation,
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or test sets. This resulted in an r2 of 0.8859 and an MAE of 1.3671 weeks. The model

estimated GA was within 3 weeks of the actual GA in 35/36 (97.22%) cases (Figure

4.6). To illustrate and further examine how WSI attention and prediction relate,

we generated whole-slide attention and predictions for one WSI using overlapping

HPF (Figure 4.7). Perhaps surprisingly, given that we did not train our model to

discriminate between different regions of the placenta, terminal villi show the highest

attention, while stem villi, basal plate, and chorionic plate showed lower attention.

GA estimation was variable within the villous region; however, the most accurate ar-

eas tended to be away from large stem villi or other masses. Some non-villous areas,

including chorionic vessels, are attended to with divergent and inaccurate predictions.

4.5 Discussion

GA is the most significant factor in neonatal well-being. However, practicing pathol-

ogists rely on GA derived from other factors and show considerable inter-rater vari-

ability even in identifying whether the villous appearance is appropriate for the stated

GA. We show that GA can be predicted with extraordinary accuracy from the begin-

ning of viability (24 weeks) to post-term (42 weeks) using a deep learning approach.

In practice, pathologists examine several regions across multiple whole slides, looking

for different features that are either concordant or discordant with the chronological

GA.

Developing a model for this task requires a solution to what we call “The Problem

of Aggregation.” Our solution is to analyze multiple HPF in a glimpse. Aggregation

occurs at the feature map stage. Feature maps are weighted based on the attention

generated by an independent multilayer perceptron. The model takes the form of

a single end-to-end network in which all sub-networks are trainable. We show that

the integration of image features at an early stage with weighting and end-to-end
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Figure 4.6: WSI Level Test Results on unannotated set: In this set of not previously
seen slides, the model estimates GA with an r2 of 0.8859 with an MAE of 1.3671
weeks. 35 of 36 cases were called correctly within +/- 3 weeks (red lines).
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Figure 4.7: Example whole-slide attention (top left, detail - middle row) and EGA
(top right, detail - bottom row). Terminal villi are primarily high attention (yellow,
regions 1). Basal plate (left side of WSI and region 2), stem villi (region 3, intermixed
with villous areas), and chorionic plate (right side of WSI and region 4) are generally
low attention (purple). Estimated gestational age shows variegation with accurate
areas (region 1) intermixed with areas with inaccurate low (blue, region 5) and high
(red, region 6) estimates. Areas with low attention are disregarded (grayscale). The
model is not explicitly trained to recognize tissue types and shows erroneous high
attention to some areas. For example, one chorionic plate vessel (region 4) is part
high- and part low-attention. The attended part of the vessel wall gives an estimate
that misses low. Intravascular blood is attended and misses high.
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trainability provides superior accuracy compared to post hoc averaging used in the

baseline model. The improvement is highlighted by the stress test of calculating EGA

without the regularization provided by human annotation.

One of the characteristics of deep learning algorithms that has made them so

successful in digital pathology is their end-to-end learning approach. These adap-

tive algorithms learn to predict labels directly from pixel values in contrast to prior

approaches that seek to incorporate a-priori knowledge in algorithm design. The un-

biased end-to-end learning method is often credited as enabling deep learning models

to learn latent predictive features in histology that may not be appreciated by human

pathologists, but at the cost of algorithm interpretability.

End-to-end learning becomes practically difficult when labels correspond to an

entire slide or a large region rather than a high-power field due to the scale of data

corresponding to a single label and the limitations of computer hardware used to

train deep learning algorithms. In this scenario, end-to-end learning requires that the

mechanism for aggregating over multiple fields be incorporated into the learning model

and be adaptive. In applications like tumor detection, a single positive field gives

the whole slide label, and have been solved using approaches like multiple instance

learning. Other applications may be more compositional, requiring the interpretation

and weighting of several tissue patterns, or learning to perform a weighted averaging

over regions of the slide.

This paper provides a solution involving exhaustive random sampling of HPF

representing a single case with the differential weighting of HPF by attention. This

strategy is broadly applicable to any scenario when large amounts of data are con-

sumed for each sample. However, it is particularly relevant for image analysis, where

the interpretation of one portion of the image depends on context from other por-

tions. For example, a pedestrian waving to another pedestrian on the other side

of a street is more likely to enter the street than one waving to a departing car.
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In pathology, injured liver adjacent to a liver tumor represents mass effect, not cir-

rhosis. GestAltNet assigns attention weights on a per-HPF basis. This reflects the

variability in information content between HPF, even within human-annotated ROI.

Within-image attention, for example Grad-CAM, has been proposed to address the

problem of interpretability in AI [130]. Theoretically, our attention could be used in

a similar fashion, analogous to the use of dotting pens in pathology practice to anno-

tate key areas for diagnosis. Within-image attention has been criticized for focusing

on edges or complex structures and using similar patterns of attention to explain

correct and incorrect answers [131]. It is not clear that a by-HPF system, such as

GestAltNet, is immune from this problem, and the observation that it assigns similar

attention to correct, miss-high, and miss-low regions (Figure 4.7) is concerning.

Our choice of a single end-to-end network is also appealing in that it reflects human

cognition, and all operations are potentially trainable. This mimics human thought

patterns of aggregating impressions rather than diagnoses. Features may also be a

more worthy area of focus as they are representations of biological phenomena, while

HPF are arbitrary grids imposed by computer memory limitations. Other authors

have addressed the aggregation problem in placenta with success. Clymer et al. use

the multiple-resolution pyramid of images found in scanned slide files to identify

vessels within placental membranes followed by clustering to produce a slide-level

diagnosis as either containing healthy or pathologic maternal vessels [132]. However,

this study did not use end-to-end training.

4.6 Limitations and future work

From a generalizability standpoint, the most significant limitations of this work are

the use of a single site with consistent protocols and a single pathologist reviewer.

Further work is necessary to develop and demonstrate generalizability across institu-
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tions and practitioners. Our demonstration of interobserver variability is limited in

that pathologists are not reviewing the same placenta, but rather placentas submit-

ted more or less randomly from the same population. The remainder of this work

suggests that human-machine collaboration to overcome this variability will be more

productive than perseverating on the precise degree of heterogeneity.

This is among the first studies using machine learning in placental pathology and

demonstrates the potential of this field. The extremely high accuracy in detecting

normal morphology across gestation will allow the classification of many abnormali-

ties, some currently unknown or with too low interobserver reliability to be useful.

In high-resource settings, GA is usually determined by 1st-trimester ultrasound.

The system demonstrated is unlikely to replace this method but could be useful in

cases where the dating of the pregnancy is unclear, or there is a discrepancy between

the stated and apparent GA. In low or middle-income settings, photomicrographs of

relevant areas taken using a smartphone and adapter could be used in lieu of whole

slide images [133]. In this use-case of human-machine cooperation, the small size of

captured images means that a cloud-based network could provide estimated GA in

real-time.

Accelerated and delayed villous maturation are among the most commonly re-

ported placental findings in large data sets [122]. Nonetheless, they show poor inter-

rater reliability, decreasing the significance of these findings. AI could be used in

a quality assurance/improvement paradigm to improve interobserver variability in

practice and is likely useful in identifying maturation abnormalities.

Our solutions to the problem of aggregation, as used in GestAltNet, will have ap-

plications far beyond the placenta. Intratumoral heterogeneity complicates neoplasia

classification and is a marker for adverse outcomes [134, 135, 136]. In other non-

neoplastic diseases, such as idiopathic pulmonary fibrosis, heterogeneity itself may be

a criterion [137]. Beyond digital pathology, attention and aggregation within large
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and complex images remain fundamental challenges of image analysis.

4.7 Conclusion

In conclusion, we report the machine learning-based estimation of GA from scanned

histologic slides of the placenta. This demonstrates the tractability of this system

and may be useful in diagnostic, quality, and research settings. We present a novel

aggregation and attention model to manage and utilize the vast quantity of data

present in whole slides.
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Chapter 5

Bayesian Survival Neural Networks

5.1 Abstract

Applying Bayesian learning to neural networks results in powerful and flexible non-

linear models that can be used in many applications from regression to prediction

and classification. A Bayesian learning framework enables studying all sources of un-

certainties by probabilities. In this chapter, I investigate the use of Bayesian neural

networks in modeling the aleatoric and epistemic uncertainties in survival prediction.

In general, it is important to build models that enable uncertainty quantification in

tasks where the lack of confidence in predictions can have catastrophic effects. In

applications such as predicting outcomes for cancer patients, this can have a direct

impact on the decision-making process for treating patients. In such tasks, erroneous

predictions might result in irreparable outcomes. In practice, we cannot deploy a

model in medical settings, unless we build a model that reliably knows what it doesn’t

know and asks for extra measurements or for the human specialist to intervene in

the decision-making process in cases where there is a lack of confidence in its predic-

tions. In recent years, there have been a lot of improvements in building deep neural

networks for survival prediction from high dimensional data [138, 22, 139, 29, 3].
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However, there have been few works that have addressed the problem of modeling

uncertainty in survival prediction [31, 140]. Also, it is unclear which type of uncer-

tainty most of these proposed methods for survival prediction are modeling, and there

have not been enough attempts to differentiate different sources of uncertainties in

survival neural networks, despite its critical role in building reliable survival models

and in the decision-making process. Two main types of uncertainty are aleatoric

and epistemic uncertainty. The aleatoric uncertainty is based on the noise or some

inherent variability in the data, such as mislabeled data; this type of uncertainty can-

not be addressed by incorporating more samples into model training but is reducible

by measuring additional features. Whereas, the epistemic uncertainty is based on

the uncertainty in model parameters and is reducible by incorporating more samples

into model training. It is important to appropriately differentiate the epistemic and

aleatoric uncertainties, as each of them has different underlying causes that require

different treating. Therefore, this chapter seeks to model the aleatoric and epistemic

uncertainties in survival neural networks under a Bayesian framework.

5.2 Introduction

5.2.1 Uncertainty analysis

Deep learning is known to be a powerful tool for learning representations from high

dimensional data. The predictions made by deep learning methods are often assumed

to be accurate. However, during the past years, this assumption has resulted in

some catastrophic consequences such as a fatal accident caused by the confusion of a

perception mechanism in an assisted driving system [19]. If the algorithm was able to

assign high uncertainty to its erroneous predictions in such a system, it would have

been possible to avoid its disastrous consequence by making a better decision.

Uncertainty analysis is used to help the decision-making process through quantify-
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ing the uncertainties in the relevant variables. Aleatoric and epistemic uncertainties

are two of the main types of uncertainties one can quantify in Bayesian modeling

[141, 19] (Figure 5.1). Both of the aleatoric and epistemic uncertainties are present

in real life applications. The goal in quantifying uncertainties is to express each of

them separately, which is helpful in designing the study, data accumulation, selecting

appropriate measurements and during inference. Following is the brief explanation of

each of the uncertainties.

Aleatoric uncertainty

Aleatoric uncertainty is the type of the uncertainty that arises from the noise that

is inherent in the observations. For instance, this can be the noise inherent in a

measurement process. This type of uncertainty is not reducible by incorporating

more samples, but it can be addressed by additional measurements. Aleatoric un-

certainty is further categorized into homoscedastic and heteroscedastic uncertainties.

Homoscedastic uncertainty is constant for different values of patient features, and

heteroscedastic uncertainty is dependent on the inputs (i.e. patient features) to the

model; in other words the heteroscedastic uncertainty would be conditional on patient

features, and different patients would have different uncertainties in this case. This

is important because some types of disease might have more variability in outcomes

than others.

Epistemic uncertainty

Epistemic uncertainty which is also known as model uncertainty originates from the

uncertainty in the model parameters. This type of uncertainty is because of limited

data and hence knowledge and is reducible by incorporating more samples (data).

Our goal in this chapter is to build a Bayesian neural network for survival pre-

diction that quantifies the aleatoric and epistemic uncertainties.
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Figure 5.1: Different types uncertainty. Aleatoric uncertainty is resulted from the
inherent noise in data and is only reducible with obtaining more features. Epistemic
uncertainty is the uncertainty that originates from the underlying uncertainty in
model parameters and is reducible with obtaining more samples.

5.3 Methods

5.3.1 Bayesian neural network

Bayesian neural networks combine the universal function approximation power of

neural networks with the benefits of probabilistic modeling in building confidence

intervals over the predictions. There have been a lot of advances in this field over the

past three decades, from introducing the foundations of Bayesian neural networks to

the recent advances in leveraging Bayesian neural networks to model uncertainties

[142, 143, 144]. In probabilistic modeling, first a prior is assumed for the model pa-

rameters based on some prior knowledge, and then this prior parameters are combined

with likelihood to obtain the posterior based on the Bayes’ theorem as follows

p(θ|D) =
p(D|θ)p(θ)
p(D)

(5.1)
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Where θ is the set of model parameters, D is the observed data, p(θ|D) is the pos-

terior probability, p(D|θ) is the likelihood, p(θ) is the prior, and p(D) is the marginal

probability of data which is an unknown constant and acts as a scaling factor in this

equation.

Note that the inference in probabilistic modeling gives a complete probability dis-

tribution rather than point estimates; hence, it enables building confidence intervals

around the predictions.

When training the traditional neural networks with maximum likelihood estima-

tion (MLE), in fact we model p(D|θ), by finding model parameters θ that maximize

the probability of the observed data D. However, in the context of probabilistic mod-

eling we first assume some prior distribution over model parameters θ before observing

the data D, also we assume some interaction between the model parameters and the

data by specifying a likelihood. Then, we can estimate the posterior distribution of

model parameters p(θ|D) based on the Bayes’ theorem, by which it is proportional

to the multiplication of the assumed prior and the specified likelihood.

One of the key points during specification of probabilistic models, is that obtaining

the posterior distribution is analytically a challenging task for most of the real-world

priors. Therefore, some sampling methods that mostly include Markov Chain Monte

Carlo (MCMC) approaches or approximation techniques like variational inference

(VI) methods are used to obtain the posterior value of the model parameters.

In MCMC algorithms, the model parameters are sampled in proportion to their

probabilities. Metropolis Hastings, Hamiltonian Monte Carlo or its adaptive exten-

sion No U-Turn Sampler (NUTS) are among the popular MCMC methods [145, 146,

147, 148]. MCMC methods assume no model for the posterior. Hence, these methods

have a low bias but a high variance.

Variational inference methods in other hand, approximate the posterior under

an optimization framework. For this, a surrogate posterior (variational posterior)
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q(θ|V) is assumed to approximate the true posterior p(θ|D), where V defines the

parameter space of the underlying distribution assumed for the surrogate posterior.

The surrogate posterior needs to cover a wide variety of distributions to be able

to capture the true posterior. Then, the Kullback-Leibler (KL) divergence between

the surrogate posterior q and true posterior p is used as the measure of distance

between surrogate and true posteriors; hence, the optimization objective in variational

inference is minimizing the following KL divergence between p and q, over q

KL(q||p) = −
(
Eq
(

log p(θ,D)
)
− Eq(log q)

)
+ log p(D) (5.2)

in equation 5.2, E represents the expectation operator, Eq
(

log p(θ,D)
)
−Eq(log q)

is called evidence lower bound (ELBO) and log p(D) is an unknown constant; There-

fore equation 5.2 can be re-written as follows

KL(q||p) = −ELBO + c (5.3)

where c denotes the unknown constant value (log p(D)). Hence, minimizing the

KL divergence is equivalent to maximizing the ELBO.

In order to apply variational inference, we need derivatives and implementations

that are specific to each model. This process is mathematically and computation-

ally challenging. Automatic Differentiation Variational Inference (ADVI) is one of

the methods that automates the procedure for obtaining the solutions in variational

inference. The inputs in ADVI are the probabilistic model and the observed data,

and the outputs are the posterior inferences about the latent variables in the model

[149].

The MCMC and VI methods have different properties that make each of them

appropriate for different use cases. On one hand, the sampling process of MCMC

methods is generally computationally expensive and heavy but instead, it has no bias;
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hence, these methods are preferred when obtaining more accurate results is important

than the processing time it takes. On the other hand, for the VI methods, although

the choice of the surrogate posterior can clearly introduce a bias, their optimization

process makes these methods particularly appropriate for very large-scale inference

problems where fast computations are the priority. Our ultimate goal is to apply our

models for survival prediction from high dimensional data; therefore, we have selected

VI for our use case.

We have developed a Bayesian parametric survival network by combining a para-

metric survival model with a Bayesian neural network. In order to incorporate the

censoring to the model loss when optimizing through the variational inference, the

log likelihood component of the ELBO is obtained through the following equation

derived from equation 2.17 in Chapter 2

L(t, δ) =
∑
i

(
δilog

(
f(ti)

)
+ (1− δi)log

(
S(ti)

))
(5.4)

where f(ti) and S(ti), as explained in Chapter 2, are the PDF and survival func-

tion at time ti for the corresponding distribution of time-to-event, respectively. In our

model we have assumed a log-logistic distribution for the time-to-event; hence we have

considered a log-logistic survival model as the basis of the Bayesian survival neural

network, where we are using a Bayesian neural network with two outputs that are the

location and scale parameters of the underlying logistic distribution in the log-logistic

model. The output of the log-logistic model is the time-to-event distribution (Figure

5.2). Depending on the problem and the dataset, the log-logistic distribution can be

replaced by any other parametric survival models, e.g. the Weibull distribution or

even the mixture parametric models. The reason we use parametric survival models

is that they model the actual time-to-event, enable building confidence/credible in-

tervals over the inferences of time-to-event, and provide more options for estimation

of uncertainty in time-to-event prediction. For our data and application, we have
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Figure 5.2: The pipeline for Bayesian survival neural network. The patient features
are fed into the Bayesian neural network that outputs the location and scale pa-
rameters of the underlying logistic distribution in log-logistic model. Log-logistic
model is assumed as the basis for time-to-event prediction. Aleatoric and epistemic
uncertainties are obtained through a Monte Carlo sampling over the Bayesian neu-
ral network’s weights and biases. At each round of Monte Carlo sampling, mean
and standard deviation of the time-to-event distribution, obtained from log-logistic
model, is accumulated; once the Monte Carlo sampling is over, the standard devia-
tion of accumulated mean values is considered as the epistemic uncertainty, and the
median of accumulated standard deviations is considered as the aleatoric uncertainty.

opted for log-logistic distribution for the time-to-event, as it appropriately models

hazard rate from cancer following diagnosis or treatment where the hazard rate in-

creases initially and decreases later. Besides, we want to allow people with the same

mean survival to have different variances (conditional on features). Furthermore, the

coupling of mean and variance impacts the modeling of aleatoric uncertainty. Some

models have a strong coupling, for example in exponential distribution which is a

single parameter model, the mean and variance are strongly coupled as the mean and

standard deviation are equal. So, it is important to use a model in which the mean

and variance are less coupled.

This model learns and maps the non-linear relations of the covariates to the pa-

tients survival times. We use VI to approximate the parameters of this model. Our

goal is to quantify the aleatoric and epistemic uncertainties based on this model.
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5.3.2 Quantifying uncertainties in Bayesian survival neural

networks

Most of the existing approaches for quantifying uncertainties in Bayesian neural net-

works, measure the epistemic and aleatoric uncertainty separately. In order to capture

epistemic uncertainty, they place a prior distribution over the model parameters and

measure how the model parameters vary by feeding the data. But, on the other hand,

in order to measure the aleatoric uncertainty they corrupt the model output by plac-

ing some probability distribution over the output. In case of regression, depending

on whether they are modeling the aleatoric uncertainty as either a homoscedastic or

heteroscedastic uncertainty, they corrupt the output by either a constant noise for

all data points or a Gaussian random noise (generally), respectively. Homoscedastic

uncertainty is less of an interest in practice as in reality the uncertainty generally

varies for different values of patient features. To capture the heteroscedastic aleatoric

uncertainty they measure how the variance of the applied random noise varies over

different values of sample (e.g. patient) features [150].

Inspired by [19] our aim in this chapter is to develop a Bayesian neural network

for survival prediction that captures both the aleatoric and epistemic uncertainty

simultaneously. In order to capture the epistemic uncertainty in this neural net-

work, we put a Gaussian prior distribution over its parameters which converts the

traditional neural network with deterministic weights to a Bayesian neural network

[151, 152] that has distributions over its weights that follow a Gaussian distribution

θ ∼ N (0, I), where θ represents the weights of the neural network. Then, we measure

the epistemic uncertainty by studying the variance of model parameters by altering

the number of input samples. In order to simultaneously capture the heteroscedas-

tic aleatoric uncertainty we have to corrupt the output by placing some probability

distribution over it. As mentioned before, one of the common approaches is placing

a Gaussian random noise and studying its variance over different values of patient
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features. However, in tasks such as predicting overall survival for cancer patients

Gaussian distribution seems less practical to capture the uncertainty over the pre-

dicted survival times. Therefore, we decided to place an output noise in the form of

a log-logistic distribution instead. Firstly, this converts the model to a parametric

survival model with log-logistic distribution that is proved to be one of the power-

ful parametric distributions in modeling survival in real-life applications. Secondly,

the variance of this noise (in the form of log-logistic distribution) will enable us to

capture the underlying heteroscedastic aleatoric uncertainty. The parameters of this

parametric survival model or more specifically the location and scale parameters of

the underlying logistic distribution is learned through a Bayesian neural network with

two outputs.

We use variational inference to approximate the posterior distribution p(θ|D) in

this Bayesian survival neural network (BSNN) which learns to predict the survival

and captures the epistemic and aleatoric uncertainties simultaneously.

More formally, if the outputs of this Bayesian neural network for each random

sampling over the distributions of parameters (θ) are denoted as fµθ (X) and f sθ (X)

for location and scale parameters of the underlying logistic distribution, respectively,

we define the model likelihood as

p
(

log(Y )|fµθ (X), f sθ (X)
)

= Logistic
(
fµθ (X), f sθ (X)

)
(5.5)

where X = {x1, ..., xN} and Y = {y1, ..., yN} are the set of inputs (features)

and outputs (observed times) in the dataset, respectively. Note that, as explained in

Chapter 2, having a logistic distribution for log(Y ) is analogous to having a log-logistic

distribution for Y . Based on this model, the aleatoric and epistemic uncertainties are

defined as follows

A = f̃ sθi(X), i = 1, ...,M (5.6)
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E = σ
(
fµθi(X)

)
, i = 1, ...,M (5.7)

Where A and E are the aleatoric and epistemic uncertainty indicators, respec-

tively. M is the number of samplings done over the parameter space of the Bayesian

neural network, σ(.) denotes standard deviation, and˜ is the median operator. The

whole pipeline for the BSNN model is illustrated in Figure 5.2. This model quantifies

the aleatoric and epistemic uncertainties, while predicting the time-to-event. Equa-

tion 5.6 quantifies the aleatoric uncertainty (inherent variability in the data) based

on the variability in time-to-event, and equation 5.7 quantifies the epistemic uncer-

tainty (underlying uncertainty of model weights and biases) based on the variability

of these parameters (weights and biases). In order to validate our hypothesis about

the aleatoric and epistemic uncertainties we have generated synthetic survival data.

The procedure for generating this synthetic data is explained below.

5.3.3 Generating synthetic survival data

We did an initial validation of our methods on the synthetic data because it gives

freedom in altering the number of samples, adding or reducing the features, and even

perturbing the features to do a more fine-grained analysis and validation of methods.

Besides, the simulation with data that consists of known properties of interest is an

essential step in developing and validating statistical methods. However, simulating

survival data is more challenging in comparison to most of the simulation tasks.

One of the key factors to consider when generating survival data is the generation

process of censoring times. In particular, when generating synthetic survival data

to use in randomized trials, it is critical to make sure the non-informative censoring

assumption is not violated. Censoring is called non-informative when the reason

for censoring is not related to the event of interest. Therefore, the non-informative
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censoring assumption is violated when the censoring criteria is related to the failure

process of subjects. When the non-informative censoring assumption is violated,

the standard statistical methods may give invalid inferences [153, 154]. In order

to produce synthetic survival data of size N , where N is the number of synthetic

samples, we first generate N samples for each random covariate Xi from independent

continuous uniform distributions U .

Xi ∼ U(c
(i)
1 , c

(i)
2 ), −∞ < c

(i)
1 < c

(i)
2 <∞ (5.8)

where c
(i)
1 , c

(i)
2 ∈ R are the randomly selected intervals for ith covariate. Also, we

generate two random coefficients βµ and βs for each of the covariates from another

set of independent continuous uniform distributions. These coefficients will be the

corresponding coefficients for the location µ and scale s parameters of the underlying

logistic distribution that will be used to generate the survival times in the next step.

βi,µ ∼ U(l
(i)
1 , l

(i)
2 ), −∞ < l

(i)
1 < l

(i)
2 <∞ (5.9)

βi,s ∼ U(s
(i)
1 , s

(i)
2 ), −∞ < s

(i)
1 < s

(i)
2 <∞ (5.10)

βi,µ and βi,s are the coefficients of the location and scale parameters corresponding

to the ith covariate, respectively. Then, the location (µ) and scale (s) parameters of

underlying logistic distribution is obtained as µ = βTµX and s = βTs X.

Next, the initial synthetic survival times T are obtained by sampling from a log-

logistic distribution as follows

log (T ) ∼ Logistic(µ, s) (5.11)

To apply non-informative censoring to these times and to simulate the randomness
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in real-world censoring phenomenon, first independent random censoring times (C)

are sampled from an exponential distribution as follows

C ∼ Exp(1/µ) (5.12)

Then, the initial event indicator for these samples is assigned as followed

δ0 =


0 if C < T

1 otherwise

(5.13)

Next, c samples are randomly sampled without replacement from a discrete uni-

form distribution c ∼ U{1, N} where N is the total number of generated samples in

synthetic data. The event indicator based on this uniform sampling process (δu) is

assigned to all N samples as follows

δu =


0 if n ∈ c

1 otherwise

(5.14)

Then, the final event indicator for the samples in this synthetic data is defined as

follows

δ = δ0 ∩ δu (5.15)

Any sample with δ = 0 in the synthetic data is a censored sample and all others

are uncensored. This whole process of random censoring reasonably guarantees that

the non-informative censoring assumption is not violated.
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5.4 Results

5.4.1 Synthetic data

In order to validate the methods, we have generated synthetic survival data with one

feature, with the same procedure explained in the previous section. Incorporating

larger number of features do not change the interpretation behind the results, but

only makes it harder to visualize, so we opted for a single feature experiments in order

to validate our hypothesis. The distribution of our single feature synthetic data with

20, 000 samples is illustrated in Figure 5.3. In this dataset approximately 30.37% of

samples are censored.

In our experiments, we manipulated the distribution of training samples to study

the epistemic and aleatoric uncertainties on the test set. In these experiments we

gradually extended the training samples to more areas and studied how it changes

the aleatoric and epistemic uncertainties. Based on our results in Figure 5.4 we

observed that areas with less training samples get higher epistemic uncertainty (red

area between curves). Also, we observed that areas with higher noise get higher

aleatoric uncertainty (yellow area between curves). Furthermore, we observed that

the epistemic uncertainty decreases when increasing the number of training samples in

sparse areas (Figures 5.4 and 5.5), in other hand the distribution of the train set does

not change the aleatoric uncertainty, and it remains roughly constant for different

train set distributions (Figures 5.4 and 5.6). These results are obtained through 100

samplings over the weights and biases of the Bayesian neural network and clearly

illustrate the expected behaviours for aleatoric and epistemic uncertainties.

5.4.2 Survival prediction for glioma patients

In this section we have applied our Bayesian survival neural network to quantify un-

certainty in predicting glioma patients’ overall survival from their protein expression
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Figure 5.3: Distribution of the generated synthetic survival data of 20, 000 samples.
Pink points show the uncensored samples and blue points show the censored samples.
∼ 30.37% of samples are censored.
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Figure 5.4: Aleatoric and epistemic uncertainties for test set when trained on different
train set distributions. Increasing the number of train set samples from Experiment
1 (left) to Experiment 5 (right). Areas with no training samples get higher epis-
temic uncertainty. Areas with higher feature noise in train set get higher aleatoric
uncertainty.

Figure 5.5: Synthetic data - Epistemic uncertainty decreases by gradually increasing
the number of samples in areas where there was no training sample.



97

Figure 5.6: Synthetic data - Distribution of the train set does not change the aleatoric
uncertainty.



98

Table 5.1: Summary of dataset clinical features
Molecular subtype

Characteristic Total, n=595
Astrocytoma IDH WT,

n=267 (45%)
Astrocytoma IDH mutant,

n=196 (33%)
Oligodendroglioma,

n=132 (22%)

WHO histologic grade (%)
II 186 (31) 17 (6) 97 (49) 72 (55)
III 200 (34) 52 (20) 88 (45) 60 (45)
IV 209 (35) 198 (74) 11 (6) N/Aa

Age at diagnosis, y
Range 14-88 18-88 14-73 17-75
Median 49 ± 15.9 59 ± 14.7 36.5 ± 11.3 45 ± 13.1

Sex, female (%) 254 (43) 113 (42) 86 (44) 55 (42)

aN/A, not applicable.

data. For this purpose, we obtained protein expression and clinical follow-up data for

595 patients from glioma data generated by The Cancer Genome Atlas (TCGA) Re-

search Netwrok (https://www.cancer.gov/tcga). This dataset comprises lower-grade

gliomas (WHO grades II and III) and glioblastomas (WHO grade IV), contains both

astrocytomas and oligodendrogliomas, and has overall survivals ranging from less

than 1 to 14 years or more. A summary of demographics, grades, and molecular

subtypes for this cohort is presented in Table 5.1. We did a random stratified split of

patients into training (70%), validation (15%), and testing (15%) sets. After select-

ing the hyperparameters of the model, the training and validation sets were merged

to build the ultimate training set (85%) and the model performance was reported

on the held-out test set (15%). We used histologic grade, IDH mutation, codeletion

of 1p/19q chromosomes, and event indicator (censorship status) as our stratification

criteria when splitting the data to train, validation, and test sets. This stratification

process guarantees getting similar cohorts inside each split.

We performed different experiments to study the variation of aleatoric and epis-

temic uncertainties when predicting survival for glioma patients. In these experi-

ments, we gradually increased the number of training samples (each time by 20% of

the total number of training samples) and quantified the epistemic and aleatoric un-

certainties on the test set. Based on our results in Figure 5.7 we observed that similar

https://www.cancer.gov/tcga
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Figure 5.7: Epistemic uncertainty decreases by gradually increasing the number of
samples in train set. Increasing the number of samples from Experiment 1 to 5, each
time by 20% of the total number of training samples.

to our expectation, the epistemic uncertainty decreases by increasing the number of

training samples from experiment 1 to 5. Furthermore, we observed that changing the

number of training samples does not change the aleatoric uncertainty, and it remains

roughly constant for different number of samples in train set, similar to what we are

expecting for aleatoric uncertainty (Figure 5.8). These results are obtained through

100 samplings over the model’s parameter space and clearly illustrate the expected

behaviours for aleatoric and epistemic uncertainties. For a more clear visualization

and comparison of underlying uncertainties in different experiments, we are illustrat-

ing the logarithm of the epistemic and aleatoric uncertainty indicators in Figures 5.7

and 5.8.

Also, in order to do a more in-depth analysis of the uncertainties, we compared
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Figure 5.8: The aleatoric uncertainty remains roughly constant by changing the num-
ber of samples in train set. Increasing the number of samples from Experiment 1 to
5, each time by 20% of the total number of training samples.
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the uncertainty levels between three different subtypes for a single model. The KM

curves for these different molecular subtypes of glioma are shown in Figure 5.9. Fig-

ures 5.10 and 5.11 illustrate how the epistemic and aleatoric uncertainties vary over

three different molecular subtypes. Based on Table 5.1, the IDH-wildtype astrocy-

toma has larger number of samples compared to the IDH-mutant astrocytoma and

oligodendroglioma; so we are expecting lower epistemic uncertainty for this subtype

which is evident from the lower values of the corresponding red box in Figure 5.10.

In other hand, higher range of survival times, along with higher percentage of cen-

sored samples for oligodendroglioma (∼ 88% censored in train set) and IDH-mutant

astrocytoma (∼ 80% censored in train set) acts as having more noisy features and

introduces more aleatoric uncertainty for these two subtypes compared to the IDH-

wildtype astrocytoma that has lower percentage of censored samples (∼ 30% censored

in train set) and a limited variation of survival times (mostly focused on about < 1500

as opposed to IDH-mutant astrocytoma and oligodendroglioma where survival times

are expanded smoothly from 0 to > 4000) as evident from corresponding curves in

Figure 5.9.

We also evaluated the Kolmogorov-Smirnov statistic (KS statistic) on the test set,

which is illustrated in Figure 5.12. This is a tool used in gene set enrichment analysis,

where a curve below the straight line suggests enrichment of low uncertainty samples

and above the straight line indicates enrichment of high uncertainty samples. In order

to obtain the KS statistic we rank samples by uncertainty (aleatoric or epistemic,

separately), from lowest uncertainty to highest, and then look at the cumulative

distribution of each molecular subtype in this ranked list.
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Figure 5.9: Kaplan-Meier curves for oligodendroglioma (Oligo), IDH-mutant astro-
cytoma (IDHmut), and IDH-wildtype astrocytoma (IDHwt).

5.5 Conclusion and future work

In this chapter we have looked at the formulation of survival analysis using paramet-

ric models and Bayesian neural networks. We have developed a Bayesian survival

neural network that predicts the survival and estimates the aleatoric and epistemic

uncertainties. To validate our formulation of aleatoric and epistemic uncertainties we

generated a synthetic survival data with non-informative censoring. Our results on

the synthetic data validates our formulation of epistemic and aleatoric uncertainties

at Bayesian survival neural networks, and suggests that our choice of parametric dis-

tribution for the survival models has a direct impact on the quality of the modeled

aleatoric uncertainty. Because, based on our experimental results aleatoric uncer-

tainty in these models is directly proportional to the the standard deviation of the

underlying survival distribution. We validated our hypothesis about the quantifi-

cation of uncertainties by doing experiments on the synthetic survival data. These
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Figure 5.10: Epistemic uncertainty across three different subtypes. Oligoden-
droglioma (Oligo), IDH-mutant astrocytoma (IDHmut), and IDH-wildtype astro-
cytoma (IDHwt). Among all the available training samples ∼ 22% are oligoden-
droglioma, ∼ 33% are IDHmut-astrocytoma, and ∼ 45% are IDHwt-astrocytoma.
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Figure 5.11: Aleatoric uncertainty across three different subtypes. Oligodendroglioma
(Oligo), IDH-mutant astrocytoma (IDHmut), and IDH-wildtype astrocytoma (ID-
Hwt). ∼ 88% of training samples in oligodendroglioma, ∼ 80% of training samples
in IDHmut-astrocytoma, and ∼ 30% of training samples in IDHwt-astrocytoma are
censored.
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Figure 5.12: Kolmogorov-Smirnov statistic across three different subtypes for test set.
Oligodendroglioma (Oligo), IDH-mutant astrocytoma (IDHmut), and IDH-wildtype
astrocytoma (IDHwt). Solid lines: ranked samples by aleatoric uncertainty. Dotted
lines: ranked samples by epistemic uncertainty.
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results illustrates that our model captures the underlying aleatoric and epistemic un-

certainties while predicting the survival. This is important when building models to

predict survival for patients, as depending on the underlying uncertainty it has the

potential to guide us through additional appropriate measurements or sample incor-

poration to improve the model performance and prediction results. Bayesian survival

neural network points toward the future of survival models, where the model reliably

measures the uncertainty while predicting the survival times, recognizes the source

for uncertainty and asks for intervention from human specialist when needed. In fu-

ture, we are planning to use this model to detect out of distribution samples, and to

leverage this model to decide on incorporating more measurements or more samples

to improve the model performance.

Acknowledgements

The results on glioma patinets’ data are based upon glioma data generated by the

TCGA Research Network ( https://www.cancer.gov/tcga).

https://www.cancer.gov/tcga


107

Bibliography

[1] Konstantina Kourou, Themis P Exarchos, Konstantinos P Exarchos, Michalis V

Karamouzis, and Dimitrios I Fotiadis. Machine learning applications in cancer

prognosis and prediction. Computational and structural biotechnology journal,

13:8–17, 2015.

[2] Anny Xiang, Pablo Lapuerta, Alex Ryutov, Jonathan Buckley, and Stanley

Azen. Comparison of the performance of neural network methods and cox

regression for censored survival data. Computational statistics & data analysis,

34(2):243–257, 2000.

[3] Jared L Katzman, Uri Shaham, Alexander Cloninger, Jonathan Bates, Tingt-

ing Jiang, and Yuval Kluger. Deepsurv: personalized treatment recommender

system using a cox proportional hazards deep neural network. BMC medical

research methodology, 18(1):24, 2018.

[4] Le Hou, Dimitris Samaras, Tahsin M Kurc, Yi Gao, James E Davis, and Joel H

Saltz. Patch-based convolutional neural network for whole slide tissue image

classification. In Proceedings of the ieee conference on computer vision and

pattern recognition, pages 2424–2433, 2016.

[5] Dayong Wang, Aditya Khosla, Rishab Gargeya, Humayun Irshad, and An-

drew H Beck. Deep learning for identifying metastatic breast cancer. arXiv

preprint arXiv:1606.05718, 2016.



108

[6] Andrew Janowczyk and Anant Madabhushi. Deep learning for digital pathology

image analysis: A comprehensive tutorial with selected use cases. Journal of

pathology informatics, 7, 2016.

[7] Geert Litjens, Clara I Sánchez, Nadya Timofeeva, Meyke Hermsen, Iris Nagte-

gaal, Iringo Kovacs, Christina Hulsbergen-Van De Kaa, Peter Bult, Bram

Van Ginneken, and Jeroen Van Der Laak. Deep learning as a tool for in-

creased accuracy and efficiency of histopathological diagnosis. Scientific reports,

6:26286, 2016.

[8] Angel Cruz-Roa, Hannah Gilmore, Ajay Basavanhally, Michael Feldman, Shri-

dar Ganesan, Natalie NC Shih, John Tomaszewski, Fabio A González, and
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