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Abstract 

Statistical Assessment of the Impact of Coronary Geometry on their Functionality 

By Qinyi She 

Coronary artery disease has become a prevalent cause of death globally. Studies have shown that 

the hemodynamics within arteries are strongly correlated with vascular geometry. This paper 

combines numerical analysis and statistical analysis to investigate the impact of curvatures of 

coronary arteries’ centerline on their functionality, which is measured by Fractional Flow 

Reserve (FFR), on a data set of 12 patients affected by coronary artery disease. The project 

involves a pipeline of algorithms to process the data including image segmentation that 

reconstructs vascular network from image data, centerline computation that calculates the spatial 

coordinates of vessel centerline, free knot regression spline for curvature estimation, and 

correlation analysis that applies a random effects model. A negative correlation was found 

between estimated curvatures and FFR, though the significance level is not high enough. This 

insignificance in the correlation might be caused by the small data set we processed and the lack 

of variability elimination during preprocessing.  
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1 Introduction

In recent years, the prevalence of coronary artery disease has raised awareness in exploring

the method to prevent and diagnose the disease. According to a study, coronary artery disease is

the most common cause of death globally in 2013, resulting in 8.14 millions deaths (GBD 2013

Mortality and Causes of Death Collaborators 2015). The increasing cases of death due to coronary

artery disease motivate the studies in coronary geometries in order to understand the pathology and

hence be able to identify the disease at its early stage.

Understanding the physiological formation of coronary artery disease is essential to the disease

identification. Coronary artery disease is a chronic disease that occurs when part of coronary

arteries develops atherosclerosis and swollen with calcium and fatty deposits (Thiriet and Parker

2009). These deposits gradually forms a plaque. Because the plaque limits the blood flow to heart,

coronary artery disease causes myocardial cell to die from lack of oxygen, which leads to severe

heart muscle damage and induces myocardial infarction or heart failure.

Although groups of studies have associated the occurrence of coronary artery disease with

some risk factors such as smoking, obesity, and diabetes, these risk factors are more applicable

to disease prevention instead of diagnosis purposes (Torpy, Burke, and Glass 2009). Finding an

efficient and accurate method to identify coronary artery disease has become a growing need. The

physiology of coronary artery disease provides evidence that the disease increases the myocardial

blood flow and the pressure on vessel walls. Since coronary autoregulation maintains the blood

flow at a rather stable level, a hyperemic stimuli is needed to observe a difference in blood flow

and thus induce useful information. Starting from 1990s, several drugs have been introduced to

allow rapid change of blood flow (Johnson, Kirkeeide, and Gould 2015). Fractional Flow Reserve

(FFR), for example, is a popular diagnostic tool that was first proposed in 1979 (Grüntzig, Senning,

and Siegenthaler 1979). It measures the pressure differences across coronary artery stenosis to

determine the functionality of the artery. FFR is defined as

FFR =
Pd
Pa
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where Pd is the pressure distal to the lesion and Pa is the pressure proximal to the lesion, with

both measured during maximal hyperemia (Pijls et al. 1996). Generally, a FFR below 0.8 is a

strong predictor that narrowing is causing ischemia, which justifies a surgical procedure for treating

coronary artery disease.

A variety of studies have shown that the hemodynamics of arteries are strongly correlated with

vascular geometry (for example Friedman et al. 1983, Caro 2009, Nerem 1984). Arteries can be

described as hollow cylindrical pipes, and are characterized by features such as bends, branching,

and bifurcations. Particularly, an adimensional index called Dean number has been used a lot to

quantify fluid stability in a circular pipe. With R representing the radius of the pipe, Rcurv being

the radius of curvature of the pipe’s centerline, and µ being the viscosity of the fluid, ρ being the

density, and U0 being the fluid’s mean velocity, the Dean number is

D =
2ρU0R

µ

(
R

Rcurv

)1/2

Figure 1: Illustration of a FFR mea-
surement (Telecor n.d.).

The index explains the reason that estimating the vessel

curvature accurately is fundamental to understanding the

local hemodynamics of coronary artery. Although FFR is

efficient in determining the functional severity of ischemia,

the measurement procedure requires an angiogram proce-

dure that inserts a thin guide wire into the artery to mea-

sure the flow and pressure in blood vessel after a hyper-

emic agent, as displayed in Figure 1. The procedure is

expensive and the hyperemic agent might bring potential

influences on patients. Because curvature is an important

entity to understand the hemodynamics inside coronary artery, FFR and curvature might be cor-

related. If a statistically significant correlation can be found between FFR and curvature, taking

an intravascular ultrasound will be able to provide enough information for preliminary diagnosis,
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making the diagnostic procedure much simpler and safe.

This paper, in particular, mimics the steps of ANEURISK project on coronary arteries for

a preliminary proof of concepts. The ANEURISK project is a joint research program that in-

volves researchers from several scientific fields to investigate the role of vessel morphology, blood

fluid-dynamics, and biomechanical properties of vascular wall on the pathogenesis of cerebral

aneurysms (Sangalli, Secchi, Vantini, and Veneziani 2009). The project collected the image data

of 65 patients and then performed the following operations for each patient (see Figure 2 for an

example that illustrates the first four steps of this flow of work):

1. The three-dimensional geometric representation of the carotid arteries of interest was recon-

structed with level set approach that is implemented by Vascular Modeling Toolkit (VMTK).

Figure 2(a)(b) shows the input and output of image segmentation.

2. The centerline of the reconstructed vascular network was extracted using the concept of

embedded Voronoi diagram that is also implemented by VMTK. Figure 2(b) exemplifies

the application of Voronoi diagram. Figure 2(c)(d) illustrated the process from setting up

the Voronoi diagram to extracting centerline and the radius of associated maximal inscribed

sphere.

3. The estimated centerlines underwent a process of registration in order to remove the other

variability such as size of arteries and age of patient.

4. An modified free knot regression spline algorithm fit the centerline to a spline function and

then estimate its first, second, and third derivatives to compute the curvatures and torsions

of the centerline. Figure 2(d) displays the estimated curvatures and torsions of the centerline

color-coded with the values.

5. The estimated curvatures and torsions were then studied in computational fluid-dynamics

(CFD) modeling.

6. Primary component analysis (PCA) was performed on the curvatures and torsions data and
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(a) Image data (b) Reconstructed Surface (c) Voronoi diagram

(d) Extracted centerline (e) Estimated curvatures and torsions

Figure 2: Illustration of steps that were carried out in the ANEURISK project (Piccinelli et al.
2009). (a) The image data obtained from 3-D rotational angiography (RA); (b) Reconstructed
surface model using level set approach; (c) Internal Voronoi diagram of the reconstructed model;
(d) The centerline computed with Voronoi diagram that is color-coded with the corresponding
radius of the maximal inscribed sphere; (e) Color-coded estimation of curvatures and torsions
achieved from free knot regression spline.
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quadratic discriminant analysis (QDA) was carried out to cluster the geometric features into

the occurrence of ruptures.

Because this project is only a proof of concept, some steps that were performed in ANEURISK

project are skipped in this project. This paper focuses on determining the existence of the cor-

relation between curvatures of centerlines with FFR using a pipeline of methodologies and tools

including image segmentation, centerline computation, free knot regression spline algorithm, and

random effects model. In addition, we would evaluate the performance of free knot regression

spline algorithm, which was developed to solve curvature estimation problem for inner carotid

artery, by comparing the estimates with the result achieved from central differences.

The analysis for this project is carried out in three steps. The first step of the analysis is covered

in Section 2, which mainly discusses the reconstruction of the three dimensional geometries from

imaging data and centerline computation with surface smoothing using VMTK. After retrieving

the centerline from image data, the next step is related to curvature estimation by estimating the

derivatives along each coordinate. In Section 3, the free knot regression spline algorithm is in-

troduced and applied to the centerline in order to estimate smoothed first and second derivatives.

The estimated curvatures of the coronary arteries are then derived from the estimated derivatives.

After introducing the algorithms that are applied to this project, we describe how the entire process

is carried out for the data we have in Section 4. The third step includes the correlation analysis

between FFR and the estimated curvatures by fitting a random effects model, which is covered in

Section 5. Lastly, results and discussions are drawn in Section 6.



6

2 Image Reconstruction and Processing

After gaining patients’ data from intravascular ultrasound (IVUS) procedure, image segmen-

tation is performed to reconstruct the geometric characteristics of coronary arteries. Then, the

centerline of each artery is computed using the surface coordinates constructed by image seg-

mentation. These two processing steps are both achieved by VMTK, which is an open source

framework that processes for image segmentation, geometric characterization, mesh generation

and computational hemodynamics specifically developed for the analysis of vascular structures

(Antiga et al. 2008).

The project utilizes an interface called VMTK Lab that integrated within VMTK but is much

easier to understand for front-end users. The implementation of VMTK Lab follows a two-layers

approach, where the algorithms for each module are implemented with C++ while the algorithms

that dynamically assembled the processing pipelines use Python (Antiga et al. 2008). Figure 3 is a

screen shot of the interface VMTK Lab.

The general idea of the two methodologies, image segmentation and centerline computation,

are discussed below.

(a) Menu of VMTK Lab (b) Module for centerline computation

Figure 3: Screen shot of the interface VMTK Lab that integrated within VMTK

2.1 Image Segmentation

IVUS is a clinical imaging technique that retrieves information about the anatomy of blood

vessels. This methodology provides images from inside of blood vessels, visualizing the inner
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Figure 4: Example of the reconstruction with level set method. (a) Image data of an internal carotid
artery bearing an aneurysm; (b) Gradient magnitude of image intensity; (c) Location of the level
set model with respect to the ridges of the gradient intensity magnitude; (d) The reconstructed
three-dimensional surface model.

wall of the vessels (Garcı̀a-Garcı̀a et al. 2011). IVUS is widely applied to observe the clinical

significance of coronary artery disease because it provides insights to the anatomy of the plaques.

The result of IVUS is represented as a 3D array of grayscale intensities I(x) with x ∈ R3, where

lighter pixels show presence of flowing blood and darker pixels show absence of flowing blood

(Garcı̀a-Garcı̀a et al. 2011).

After retrieving the set of information from IVUS, image segmentation is performed. The goal

is to reconstruct a geometric representation of the vascular network from image data and to identify

the surface corresponding to the boundary between the lumen and the vascular wall (Antiga et al.

2008). Assuming that the lumen boundary exists at the locations of maximal intensity exiting

lumen, the boundary is found where the magnitude of the gradient of image intensity I(x) has a

ridge. Figure 4(a) and (b) shows the identification of lumen boundaries.

The image segmentation employs implicit deformable models, which are deformable surfaces

that are flexible with the topology of the segmenting vessels and are described using the level set

technique. The segmentation process utilizes a less automatic identification process by focusing

more on operating through the seed points chosen from the imaging data (Antiga et al. 2008). The

surface of the vascular model is represented as the zero-level isosurface of Φ(x, t) that satisfies the
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Figure 5: Level set initialization using the Colliding Fronts algorithm (Piccinelli et al. 2009). (a)
Positioning of two seeds on the 3-D image for the identification of the vascular branch of interest;
(b) Initial surface generated with the Colliding Fronts algorithm; (c) The final level set model of
the selected vascular tract.

partial differential equation

∂Φ

∂t
= w2∇ ·

(
∇Φ

|∇Φ|

)
∇Φ− w3∇ · |∇I|∇Φ

where w2 and w3 are user-defined parameters. The equation attracts the surface of the vascular

model to the ridges of the gradient magnitude as shown in Figure 4(c).

Appropriate initial and boundary conditions needs to be found to yield more accurate results.

The optimal initial condition is when the zero-level set of Φ is very close to the target surface,

which is initialized using Colliding Fronts algorithm. Figure 5 demonstrates the initialization steps

for a single vascular segment by selecting two seeds for the vascular branch identification. The

algorithm maintains the robustness to the localization of the lumen boundary and also provides

flexible choice of segmented regions at the same time(Piccinelli et al. 2009). The details of Collid-

ing Fronts algorithm are not discussed here because it is out of range of this paper.

Because VMTK utilizes implicit representation of the surface using the level set approach,

different tracts achieved from level set model can be merged successively to obtain a complete

vascular network.
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Figure 6: Demonstration of embedded Voronoi diagram (Piccinelli et al. 2009). (a) Internal
Voronoi diagram of the 3-D model of an internal carotid artery bearing an aneurysm. (b) and
(c) Details of the Voronoi diagram as a nonmanifold surface composed of convex polygons, whose
vertices are the centers of maximal inscribed spheres; the larger spheres are associated with ba-
sic features of the geometry and the smaller spheres capture the small-scale details of the model
surface.

2.2 Centerline Extraction

As explained in Section 1, the centerline of coronary artery is an important entity for exploring

the geometric feature of a tubular structure. It is defined as the line between two sections of the

lumen, whose minimal distance to the boundary surface is maximized (Piccinelli et al. 2009).

Although coronary arteries exhibit nontubular structure at points such as bifurcation, the vascular

network bifurcations can be automatically identified in VMTK framework because the centerline

intersects the tube surface of another centerline at bifurcation points.

Essentially, centerline computation can be regarded as a functional minimization problem. Let

s be the curvilinear abscissa along a curve c(s) connecting two points that corresponding to s0 and

s1, we look for the centerline c(s) that minimizes the function

E(c(s)) ≡
∫ s1

s0

G(c(s))ds

where c(s) ∈ R3 and G(·) represent a cost-density function.
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Selecting the function G relies on the concept of medial axis and its discrete form, Voronoi

diagram. In 3D, the medial axis refers to the locus of centers of spheres maximally bounded

within an object. The envelope of all maximal inscribed spheres is equivalent to the boundary

surface of the object itself, which allows us to compute the centerline of the object. The medial

axis is approximated using embedded Voronoi diagram, which is defined as the portion of the

Voronoi diagram that is lying inside the surface. Voronoi diagram is computed using the union

of the boundaries of Voronoi regions. Let Ω ∈ R3 be a volume with boundary ∂Ω, P be a set of

points on ∂Ω, and p be a point in P , the Voronoi region V (p) is defined as the region whose points

are closer to p than any other points in P , which is expressed as

V (p) = {x ∈ R3 : ||p− x|| < ||q − x||,∀q ∈ P}

The removal of the non-internal part of the Voronoi diagram results in the embedded Voronoi

diagram. Fig. 6(a) and (b) illustrates the internal (or also referred as embedded) Voronoi diagram

for a portion of cerebral vasculature. The embedded Voronoi diagram is formed by the polygons

whose vertices are the centers of the maximal inscribed sphere. The radius of the maximal in-

scribed sphere RM(x) captures basic geometry features for large values and collects small-scale

details for small values. Then, the centerline equals the minimal action path on top of the embed-

ded Voronoi diagram, where the action field G is the inverse of RM(x). Thus, VMTK first solve

the Eikonal equation

|∇T (x)| = G(x) = RM(x)−1

where RM(x) also represents the speed of wave traveling on the Voronoi diagram, and T (x) rep-

resents the arrival time of the traveling wave. Figure 7 shows the embedded Voronoi diagram and

the solutions to the Eikonal equation. The centerline is then generated by tracing the steepest path

of T from each target point, which is equivalent to solving the trajectory equation

dc
ds

= −∇T
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Figure 7: Illustartion of embedded Voronoi diagram with solutions to Eikonal equation (Piccinelli
et al. 2009). (a) Voronoi diagram color-coded with the solution of the Eikonal equation. (b)
Computation of the centerline path between the endpoints. (c) Final centerline: each point x is
associated with RM(x).

where s is the curvilinear abscissa. This method results in centerlines that maximizes the minimal

distance to the boundary.
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3 1D Free Knot Regression Spline

Free knot regression spline algorithm has been a useful tool that applies to many numerical

analysis problems. It is widely preferred because the algorithm implements an optimal knots search

process that minimizes the sum of squared errors and penalizes the dimensions at the same time.

In 2009, the members of ANEURISK project are the first to apply this method to analyze internal

carotid artery (Sangalli, Secchi, Vantini, and Veneziani 2009). Following that, the algorithm was

used to analyze thoracic aorta in 2016 (Volonghi et al. 2016). The successful application of the free

knot spline algorithm to these two problems motivates the idea to apply this algorithm to coronary

arteries.

The process of the application is explained below. Section 3.1 reviews the general idea of

regression spline and section 3.2 introduces the knot search algorithm used in this free knot regres-

sion spline.

3.1 Regression Spline

The general idea of free knot regression spline is to find optimal knots that minimizes the

sum of squared error while progressing the regression spline instead of using evenly spaced knots

(Sangalli, Secchi, Vantini, Veneziani, et al. 2007). After computing the centerline for each coronary

artery with VMTK as described in Section 2, the centerline is fitted to a model using free knot

regression spline and then the first and second derivatives for each coordinate, which are essential

to the accurate estimation of curvature, are estimated from the model.

Consider an interval [a, b] with subintervals split by k1, k2, · · · , knk
where a < k1 < k2 < · · · <

knk
< b, an order-m spline over this interval will give a piecewise polynomial of degree m − 1

with continuous derivatives of order m−2 at the knots. The spline identifies parameters for nk + 1

polynomials of degreem and form−1 continuous constraints at each knot. Hence, the vector space

formed by the set of all order-m spline with knot vector k = (k1, k2, · · · , knk
) has a dimension of

m(nk + 1) + nk(m− 1) = m+ nk. Using the b-spline basis system b
[k]
r,m(s) : r = 1, · · · ,m+ nk,
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the order-m spline over [a, b] can be expressed as the expansion in bases

f(s) =

m+nk∑
r=1

λrb
[k]
r,m(s) where λ = (λ1, · · · , λm+nk

)T

Let vector v = [a, k1, k2, · · · , km+nk
, b, · · · , b]T has 2m+nk entries, the first and second deriva-

tives of the order-m spline can be expressed as f ′(s) =
∑m+nk−1

r=1 λ
[1]
r b

[k]
r,m−1(s) and f ′′(s) =∑m+nk−2

r=1 λ
[2]
r b

[k]
r,m−2(s) where

λ[1]r =
λr+1 − λr
vm+r − vr+1

for r = 1, · · · ,m+ nk − 1

and

λ[2]r =
λ
[1]
r+1 − λ

[1]
r

vm+r − vr+2

for r = 1, · · · ,m+ nk − 2

The regression spline function f̂(s) is the spline that minimizes the sum of squared errors

SSE(λ) =
n∑
j=1

(wj −
m+nk∑
r=1

λrb
[k]
r,m(sj))

2

where wj represents the true data which can be expressed as wj = f(sj) + ej with ej following

identical and independent distribution, E[ej] = 0 and V ar[ej] = σ2.

The vector λ that minimizes the sum of squared errors is calculated by solving the equation

that sets the derivative of SSE(λ) to zero. Let {B[k]
m }j,r = b

[k]
r,m(sj), the estimated λ can be written

as

λ̂ = (B[k]
m

T
B[k]
m )−1B[k]

m

Tw

with

ŵ = B[k]
m (B[k]

m

T
B[k]
m )−1B[k]

m

Tw = Hw

where H = B
[k]
m (B

[k]
m

T
B

[k]
m )−1B

[k]
m

T
being an orthogonal projection matrix with tr(H) = m+ nk.

In order to obtain smooth estimates of the first and second derivatives, order-5 spline is usually
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chosen to make sure that the algorithm can use a cubic piecewise polynomial to estimate the second

derivatives.

3.2 Optimal Knots Search

The free knot regression spline algorithm utilizes an algorithm that updates the total number

and positions of knots to improve the quality of spline estimation. The optimal knots are selected

by minimizing an error function that penalizes the dimension of the fitted model. In this case, the

algorithm uses the Stein’s unbiased risk estimate (Stein 1981)

pSSE(λ,k) =
n∑
j=1

(wj −
m+nk∑
r=1

λrb
[k]
r,m(sj))

2 + Cσ̂2(m+ nk)

which can be rewritten in matrix form as

pSSE(λ,k) = (w−B[k]
m )T (w−B[k]

m ) + Cσ̂2(m+ nk)

where C is the penalization constant, and σ̂2 is an estimate of errors variance.

The accuracy of the estimation depends on the choice of the penalization constant C, where

a higher value of C gives a more loose model with fewer knots and higher sum of squared error.

The penalization term is fixed as indicated by the classical bias/variance tradeoff. Hence, when the

penalization increases, the average squared error increases while the degrees of freedom decreases

(Sangalli, Secchi, Vantini, Veneziani, et al. 2007).

The algorithm of searching for the optimal knots is based on the algorithm developed by Zhou

and Shen (Zhou and Shen 2001). This algorithm includes knot relocation moves and thus signif-

icantly improved the stepwise forward/backward knot selection procedures which suffered from

knot confounding problems originally. For computational convenience, we search for optimal

knots along the curvilinear abscissa s. Using the grid values s1, · · · , sn will not affect the perfor-

mance of the knot searching algorithm because the grids are very fine.
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We start with a set of initial knots which are evenly spaced along the grid. Then, the algorithm

alternates between the two steps below.

Knot Addition Let k = (k1, · · · , knk
) be the current knot vector, and λ be the corresponding

estimate of the coefficient. Set k0 = a and knk+1 = b. We check each subinterval [kr, kr+1] for

r = 0, 1, · · · , nk for possible addition of a knot. For each subinterval, a knot sj with kr < sj <

kr+1 is added to the current knot vector k that creates a new knot vector k∗j and a new estimate

λ̂∗ = (B
[k]
m

T
B

[k]
m )−1B

[k]
m

T
w if

pSSE(λ∗,k∗j) < pSSE(λ,k) and

sj = argminsl:kr<sl<kr+1pSSE(λ∗,k∗j)

In addition, if k is not the initial knot vector, the subinterval [kr, kr+1] is checked for possible

knot addition only if at least one among the neighbor knots, kr−2, kr−1, · · · , kr+3, has been added

in the previous iteration.

Knot Relocation/Deletion Let k = (k1, · · · , knk
) be the current knot vector. For r = 1, · · · , nk,

if kr is the neighbor of a knot added in the preceding step, then the knot is checked for potential

relocation or deletion. The knot kr is removed from the knot vector, which results in a new knot

vector k∗j and a new estimate λ̂∗ = (B
[k]
m

T
B

[k]
m )−1B

[k]
m

T
w if

pSSE(λ∗,k∗j) < pSSE(λ,k)

The knot is relocated to a new position sj with kr < sj < kr+1 and creates a new knot vector

k∗j and a new estimate λ̂∗ = (B
[k]
m

T
B

[k]
m )−1B

[k]
m

T
w only if

pSSE(λ∗,k∗j) < pSSE(λ,k) and

sj = argminsl:kr<sl<kr+1pSSE(λ∗,k∗j)
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When the knot addition does not add any additional knots for the first time, the algorithm

searches all knots for relocation and deletion, sets the resulting knot vector as the initial knot

vector, and then proceeds to another loop. When the knot addition fails to add any new knots for

the second time, the algorithm searches all knots for relocation or deletion and then terminates.

The free knot regression spline algorithm, including the process of searching for optimal knots,

have been coded in R (Sangalli, Secchi, Vantini, Veneziani, et al. 2007).
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4 Data and Model

The dataset used in this project is based on the three dimensional angiographies of 12 patients

that were accepted to a clinical trial from 2007 to 2010 1. All of the patients were experiencing

coronary artery disease with different severity. Among the 12 patients’ data we processed, one

of them is examined to have a FFR less than 0.8, meaning that a surgical procedure is needed,

while 11 patients have a FFR greater than 0.8, meaning that only conservative treatment is needed

at this point. None of these patients have other severe disease that affects their cardiovascular

system. Each patient underwent an angiography procedure to image the cardiovascular system

using IVUS, which is processed later.

For each patient, two steps are applied as data preparation. The first step involves image recon-

struction. The imaging data was processed using image segmentation implemented by VMTK to

reconstruct the geometric representation of the coronary artery. This process utilizes implicit de-

formable models and level set method, as introduced in Section 2.1. After the reconstruction of the

geometric structure for the vascular network, the second step is to compute the three-dimensional

spatial coordinates of the centerline. The algorithm of centerline computation relies on the con-

cepts of medial axis, Voronoi diagram, as well as wave propagation, which is explained in Section

2.2. The result from each step of the data preparation is exemplified in Figure 8.

After the centerline reconstruction, every patient i in the dataset (i = 1, · · · , 12) is represented

as a set of points in R, {(xij, yij, zij) : j = 1, · · · , ni} where x, y, z are the spatial coordinates.

The points are associated with a curvilinear abscissa set {(sij : j = 1, · · · , ni} which measures the

approximate distance to the terminal of coronary artery. The value of sij is defined by

sij − sij−1 = −
√

(xij − xij−1)2 + (yij − yij−1)2 + (zij − zij−1)2 for j = 2, · · · , ni

Figure 9 shows the plot of reconstructed three spatial coordinates of centerline for a patient 1

versus the set s1j , for j = 1, · · · , 256. The number of data points for each patient ni ranges from

1The author of this paper does not have any access to the personal information of the patients. All the analyses in
this paper are directly processed on the reconstructed three-dimensional vascular network.
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Figure 8: Left: Example of a reconstructed vessel using image segmentation, which is also the
input for centerline computation; Right: Example of the resulting centerline with the transparent
grid representing the surface of the reconstructed coronary artery, the white line being the center-
line, and the green and red points representing the source and target seeds respectively.

204 to 385, and it has a strong correlation with the length |sini
− si1| with correlation coefficient

0.845. This means that the grid density of the 12 reconstructed centerline is almost the same.

For each patient i, we represent the true centerline as c(s) and the centerline computed as

(xj, yj, zj) = c(sj) + ej for j = 1, · · · , n

where ej = (e
[x]
j , e

[y]
j , e

[z]
j ) follows an independent and identical distribution with E[ej] = 0 and

V ar[ej] = σ2I. The variance of noise is assumed to be the same for each patient for the fact that

the same set of tools are used to compute the centerline and hence the systematic error should

equal. Hence, the curvature of the centerline is defined by

curvc(s) =
|c′(s)× c′′(s)|
|c′(s)|3

=

√
(x′(s)y′′(s)− x′′(s)y′(s))2 + (y′(s)z′′(s)− y′′(s)z′(s))2 + (z′(s)x′′(s)− z′′(s)x′(s))2

(x′(s)2 + y′(s)2 + z′(s)2)3/2
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Figure 9: Example of reconstructed three spatial coordinates x(s1), y(s1), and z(s1) of the center-
line for patient 1 versus the curvilinear abscissa s1j for j = 1, · · · , 256.

where c′(s) and c′′(s) represent the first and second derivatives of the centerline, respectively. The

classical approach is to use central differences to estimate the derivatives. The estimate of first

derivatives for three dimensions using first central differences is given by

x′(sj) =
xj+1 − xj−1
sj+1 − sj−1

y′(sj) =
yj+1 − yj−1
sj+1 − sj−1

z′(sj) =
zj+1 − zj−1
sj+1 − sj−1

for j = 2, · · · , n− 1. Similarly, second derivatives estimated with second central differences equal

x′′(sj) = 2

xj+1−xj
sj+1−sj −

xj−xj−1

sj−sj−1

sj+1 − sj−1
y′′(sj) = 2

yj+1−yj
sj+1−sj −

yj−yj−1

sj−sj−1

sj+1 − sj−1
z′′(sj) = 2

zj+1−zj
sj+1−sj −

zj−zj−1

sj−sj−1

sj+1 − sj−1

Although central differences are easy to compute, this method creates too much noise. Hence,

free knot regression spline algorithm, which is covered in Section 3, is proposed here to fit the

centerline to a piecewise polynomial and then to get a smoothed derivatives estimation. Instead of

using evenly spaced knots as regression spline, this algorithm improves the accuracy of estimation

by selecting an optimal knot vector with flexible number and positions that minimized a penalized

sum of squared error.
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5 Correlation Analysis

Because the geometric structure of arteries has been proved to be highly correlated with the

hemodynamics within the blood vessel, our hypothesis is that estimating the curvature of coronary

arteries might be a good enough indicator for preliminary diagnosis of coronary artery disease.

More specifically, because of the physiological formation of plaques in coronary arteries, we expect

patients with more severe coronary artery disease to have a higher curvature. So, our hypothesis is

that there is a negative correlation between curvature and FFR. If there is a statistically significant

correlation between curvature and FFR, then the estimated curvature can be used as a diagnostic

tool for coronary artery disease. Comparing with the most popular clinical indicator of coronary

artery disease, the FFR index, which requires an invasive procedure and a drug injection, estimating

the curvature of coronary arteries is much easier operatively.

Due to the fine grid we used, the geometric structure of a point would be very similar to its

neighbor. Hence, we cannot ignore the correlation within curvature estimated at each point for a

patient. We need to consider both individual-specific random effects and group-specific random

effects. To take into account of these two effects, a random effects model is applied to conduct the

correlation analysis.

A random effects model is a hierarchical linear model that assumes the data is drawn from

different population. The model is generally written as

Y = Xβ + Zγ + e

where β represents the fixed effect that we are estimating, γ represents the random effects with

E[γ] = 0, Cov(γ) = D and Cov(γ, e) = 0, and e represents the noise in the model with Cov(e) =

R (Christensen 2002). A least square estimate of β is

β̂ =
[
X ′(I −MZ)X

]−
X ′(I −MZ)Y
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where MZ = Z(Z ′Z)−Z ′. The estimate is BLUE.

Random effects model considers the individual specific effects that are uncorrelated with the

independent random variable. In the problem, using a random effects model removes the effect of

the internal correlation within the curvatures of a patient that is uncorrelated with FFR, and only

considers the correlation between each patients’ estimated curvatures and the values of FFR.

Since each patient i only has one FFR index but ni curvatures estimated along the abscissa

parameter s, a new data frame is created to match the dimensions of curvatures and FFR. We

rearrange the data into three columns, where the first column represents the patients’ ID, the second

column represents the estimated curvature and the third column is the corresponding FFR. Each

patient i takes ni rows where first column is a vector filled with value i, the second column records

the estimated curvatures of patient i, and the third column is also a vector but filled with FFRi.

The resulting data frame groups the data with same patient ID as a different population. Then, the

data is fitted to the following model to estimate the fixed effect β (Bates et al. 2015),

curvij = β1 ∗ FFRi + β0 + αi + eij for i = 1, · · · , 12 and j = 1, · · · , ni

where β represents the fixed effect, αi represent the patient-specific random effect which is the

same for each patient i with E[αi] = 0 and V ar[αi] = σ2
α, and e is the noise in the model that

follows identical and independent distribution with E[eij] = 0 and V ar[eij] = σ2
e .

The algorithm that finds the parameters of fitted random effects model is implemented in R

package lme4. After the estimated fixed effect β is calculated, we look at the model to determine

whether the correlation between the curvature and FFR is statistically significant.
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6 Results and Discussion

After reconstructing the centerline from the imaging data with VMTK, the 12 centerlines are

fitted to a spline function using the 1D free knot regression spline algorithm of order m = 5 and

penalization constant C = 4. An order-5 spline is chosen to guarantee smooth estimates till the

second derivatives. C = 4 is chosen as the penalization constant because this value allows the free

knot spline to capture the features of centerlines while avoid overfitting (Sangalli, Secchi, Vantini,

Veneziani, et al. 2007).

Since our data is 3D, the idea is to fit each coordinate of the centerline to a spline function

using this algorithm, calculate the first and second derivative from the estimated spline function,

and eventually determine the curvature of centerline along the abscissa parameter s.

Figure 10 shows an example of the estimation result for patient 1. The estimates of x̂(s), ŷ(s),

and ẑ(s) as well as their first and second derivatives are plotted versus the curvilinear abscissa s.

The vertical lines in the top line show the positions of the optimal knots on s. The estimates

of x̂(s), ŷ(s), and ẑ(s) are superimposed to the original plot of x(s), y(s), and z(s) in black;

and the estimates of the first and second derivatives of the three spatial coordinates, which are

displayed in middle and bottom rows of Figure 10 respectively, are superimposed to the estimations

achieved by first and second central differences that are plotted in black. Figure 11 shows the

corresponding estimated curvatures of patient 1, superimposed to the estimated curvatures using

central differences.

In the example, the free knot regression spline algorithm gives a really good fit for x̂(s), ŷ(s),

and ẑ(s), since the original curves are almost covered by the estimated values. Also, the algorithm

produces more smoothed estimates for first and second derivatives of three spatial coordinates as

well as the curvatures of centerlines. The smoothed estimates better detect significant peaks and

troughs, which are extremely important for understanding the interactions between curvature land-

marks and hemodynamics (Sangalli, Secchi, Vantini, Veneziani, et al. 2007). In addition, according

to the comparative simulations carried out by Gervini, free knot regression spline algorithm has a

advantage over other smoothing methods in detecting peaks and troughs (Gervini 2006).
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Figure 10: Example of the estimation result of patient 1. Top: Fitted curves x̂(s), ŷ(s), and
ẑ(s) in red versus abscissa parameter s with vertical lines representing the positions of optimal
knots, superimposed to the plot of original x(s), y(s), and z(s) in black; Middle: First derivatives
of x̂(s), ŷ(s), and ẑ(s) superimposed to the first central differences in black; Bottom: Second
derivatives of x̂(s), ŷ(s), and ẑ(s) superimposed to the second central differences in black.
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Figure 11: Example of the estimated curvatures of patient 1 superimposed to the estimated curva-
tures achieved by central differences in black.

After estimating the curvature of centerlines, we evaluate the correlation between curvature and

FFR. For preliminary analysis, we first look at the relationship between mean curvature of each

patient and corresponding FFR. The correlation between mean curvatures and FFR equals -0.234,

which exhibits a negative correlation as we expected, but not significant enough. Figure 12 is a

scatterplot of FFR versus corresponding mean curvatures. The red line in Figure 12 is the result of

the fitted linear regression model

FFRi = −1.341 ∗mean(curvatures)i + 0.941

Although the coefficient also shows a negative correlation, the associated p value of the coeffi-

cient equals 0.456, suggesting the estimated coefficient is not statistically significant.

To take in to account both individual specific effect and group specific effect when evaluating

the statistical significance of the correlation, we fit the data to a random effects model. As explained

in Section 5, the curvatures of 12 patients and FFR are integrated into a new data frame with 3483



25

Figure 12: Scatterplot of FFR versus the mean curvatures of the patient. The overlaid red line is
the result of fitted linear regression model FFR = −1.341 ∗ ¯curvature+ 0.941.

rows, which represents the total number of curvatures estimated for 12 patients, and 3 columns

including patients’ ID i = 1, · · · , 12, curvatures, and the FFR value corresponding to each patient.

Then, the data frame is fitted to a random effects model and the fixed effect β, which is the slope

in the model, equals -0.04056 with standard error 0.05362. The test statistics of the slope gives

a p-value 0.22 (t value = -0.756 with df = 3841). Although the result did indicate that there is a

negative correlation between curvatures and FFR, the high p-value indicates that in this dataset the

correlation is not significant.

Although the result rejects our hypothesis that there is a significant correlation between curva-

tures and FFR, there are some limitations in this project that might lead to this result. First of all,

the amount of patients’ data available is very limited. With only twelve patients, especially only

one of them has a FFR index less than 0.8, we can expect that noises have a greater influence on the

fitted random effects model. Also, due to the fact that each patient only have one FFR but different

curvature values on hundreds of points along coronary artery, we should expect the correlation

between each curvature and FFR become less significant.

To improve the methodology of this project and to infer more useful information, we might

want to apply this pipeline of methodologies to a larger data set to reduce the influence of noises.
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We will also need to process the data more carefully by, for example, applying registration filters

to remove other variability such as age. Also, we might apply to our data set with a PCA for

dimension reduction and a QDA for clustering as ANEURISK did.

In addition, the torsion of the centerline may also be a field of study in the future. Torsion

measures how the curve is twisting out of the plane of curvature, which is estimated using third

derivatives.

τ(s) =
|c′(s)× c′′(s)| · c′′′(s)
||c′(s)× c′′(s)||2

=

√
x′′′(y′z′′ − y′′z′) + y′′′(x′z′′ − x′′z′) + z′′′(x′y′′ − x′′y′)

(y′z′′ − y′′z′)2 + (x′z′′ − x′′z′)2 + (x′y′′ − x′′y′)2

where c represents the centerline function of coronary artery. The hemodynamics is influenced

not only by vessel radius and curvatures, but also by its torsion, although in a still unclear way

(Sangalli, Secchi, Vantini, Veneziani, et al. 2007). Hence, integrating the estimated torsions into

our model might improve the predictability of the model. Another potential fields of study is to

determine the significance of correlation of torsion and FFR and thus understand deeper about

the interaction between geometric characteristics and hemodynamics as well as functionality of

coronary arteries.
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