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Abstract 

 

 

 

Next-generation sequencing studies have the potential to increase understanding 

of genetic architecture of complex diseases in more depth than ever before, but require 

the development of robust and powerful statistical methods to identify trait-influencing 

variation. During the past few years, interests have shifted from identifying common 

susceptibility variation in the population to rare susceptibility variation. However, the 

infrequent observation of rare variants (<5% in the population) poses difficulties in 

developing powerful statistical methods. Although methods have been proposed to 

analyze rare susceptibility variation in population-based or case-control designs, few of 

these methods can be applied to family-based study designs. Family-based designs have 

several advantages including higher power due to increased genetic load, robustness to 

population stratification, and the ability to identify de-novo mutations by sequencing 

trios. In our first project, we developed a flexible and robust method for rare variant 

analysis of quantitative traits in nuclear families and trios. Our method uses a kernel-

machine framework to analyze rare variants in aggregate, and has the advantages of 

analytical calculation of p-values and robustness to population stratification. The method 

also employs a screening step to improve power. This method, as with other existing 

methods, mainly focuses on trios and nuclear families while ignoring the information 

provided by other types of relatives. As more studies tend to re-sequence subjects from 

previous linkage analysis studies, which normally involve more than two generations, 

statistical methods to analyze sequencing studies of large pedigrees are needed. In our 

second project, we develop a method for family-based rare-variant analysis of 

quantitative outcomes that can accommodate any family structure and size. Our first and 

second projects are designed to perform family-based tests that consider association 

between a gene and a single phenotype. However, there has been increasing interest in 

identifying pleiotropic genes through joint testing of multiple phenotypes; such 

approaches are both biologically meaningful and statistically more powerful than 

univariate testing of individual phenotypes. Therefore, in our third project, we develop a 

cross-phenotype association test for case-parent trio studies. Based on the kernel distance 

covariance framework, our test can incorporate multiple traits (both binary and 

continuous in nature) and is more powerful compared to analogous univariate tests of 

individual phenotypes.  
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1.1 Background 

The human genome is the code of our life; it affects traits like hair color and height, and, 

more importantly, it affects one’s risk of disease. Because of this, genomics is playing a more 

and more important role in public health research. According to the Centers for Disease Control 

and Prevention (CDC), genetic factors are associated with nine of the ten leading causes of death 

in the United States, including heart disease, cancer, diabetes, and Alzheimer disease 

(https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm).  

Over the past decade, researchers used genome wide association studies (GWAS) to 

identify genetic susceptibility variants that were common (population frequency > 5%) under the 

common-disease common-variant hypothesis (CDCV: Complex disease is attributable to a 

moderate number of common variants, each of modest effect on disease risk). This kind of 

research identified over 5000 SNP-trait associations for over 600 traits as of 2013 (Welter, 

MacArthur et al. 2014). However, most of these associated SNPs have very small effect sizes 

(odds ratio between 1.1-1.5), and the proportion of heritability (proportion of phenotypic 

variance in a population attributable to additive genetic factors) explained by these SNPs is at 

best modest for most traits. For example, current findings can only explain 6% of the heritability 

of type 2 diabetes (Manolio, Collins et al. 2009, Mathieson and McVean 2012). Given common 

susceptibility variants fail to explain a large proportion of heritability for most complex diseases, 

interest has shifted toward identifying disease-associated rare variants with population allele 

frequencies < 5%. Recent development of cost-effective sequencing technologies, especially 

next-generation sequencing methods, has made direct sequencing and analysis of rare variants 

feasible. 

Association analysis of rare susceptibility variants is hampered by the fact that power to 
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detect a risk variant is often limited since power generally decreases with a decrease in variant 

frequency when sample size and effect size are held constant. Because of this, standard analytic 

methods used for GWAS (e.g. Cochran-Armitage trend test) lose substantial power in rare 

variant sequencing studies. In my dissertation, I will focus on solving this issue by developing 

powerful and robust statistical methods for analysis of rare trait-influencing variation. 

Specifically, my methods will focus on methods for analyzing rare variants collected in family-

based studies of complex traits.  

Family-based designs have several advantages over population-based designs in that they 

enable the use of statistics that, by design, are robust to confounding due to population 

stratification. Population stratification is a well-known problem that can cause inflated false 

positive rates and decreased power to detect real association. Stratification arises from a 

systematic difference in allele frequencies between subjects sampled from different populations 

whose disease prevalence and allele frequencies are significantly different from each other. This 

is because each population has a unique social and genetic background; and social or cultural 

events, such as the mating process, will greatly influence the genetic architecture of a population 

(Cardon and Palmer 2003). Marchini et al. (Marchini, Cardon et al. 2004) showed that with the 

large sample size required for GWAS, even a small fraction of admixture between different 

populations will lead to a greatly inflated type 1 error rate, which increases rapidly as the sample 

size grows large or the population structure becomes more extreme. In our earlier work (Jiang, 

Epstein et al. 2013), we showed that for rare variant sequencing studies in case-control designs, 

type 1 error rate could increase up to 0.9 at alpha=0.05 when population structure is extreme. As 

a result, it is very important to adjust for population stratification or develop a method, which by 
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design, is robust to population stratification. Using family-based designs, it is possible to create 

robust tests that are insensitive to population stratification.  

Family designs also can solve genetic problems that are hard to answer in population-

based studies. For example, sequencing the parents of affected subjects can identify de novo 

mutations and also allow the study of rare homozygous genotypes, which are difficult to find in 

population-based designs (Do, Kathiresan et al. 2012). Families are also attractive to study 

because they often provide increased genetic load for a disease or trait: while carriers of a rare 

risk allele will be hard to sample in the general population, they are more likely to be found in 

families of probands (Zollner 2012). Finally, family studies allow the study of the segregation 

pattern of complex disease (Ott, Kamatani et al. 2011). Because of these appealing features and 

the fact that there are many familial samples from past linkage studies that are available, family-

based resequencing studies are gaining in popularity. Several recent studies have identified 

disease-associated rare variants through family-based designs, including rare variants associated 

with multiple sclerosis (Ramagopalan, Dyment et al. 2011), simplex autism (Krumm, O'Roak et 

al. 2013), dilated cardiomyopathy (Norton, Li et al. 2011), and Alzheimer’s disease (Cruchaga, 

Haller et al. 2012).  

In the remainder of this chapter, I will review literature on analytic methods for rare-variant 

analysis of complex traits, discuss outstanding issues in the area, and then provide some general 

detail about how the proposed work in this proposal for family-based analysis fills an important 

gap in the literature. I then provide a concluding paragraph describing an outline of subsequent 

chapters of this proposal.   

 

1.2 Literature review 
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1.2.1 Existing methods for rare variant analysis 

As the power of statistical methods decreases as allele frequency of a tested variant 

decreases, there has been general consensus that, rather than analyze rare variants individually, a 

test that groups or aggregates rare variants in a gene or region for analysis is likely optimal. 

These aggregate approaches can be broadly categorized as either burden tests that collapse 

grouped rare variants into a single aggregate variable that is then regressed on phenotype (Kwee, 

Liu et al. 2008, Madsen and Browning 2009, Morris and Zeggini 2010, Zawistowski, 

Gopalakrishnan et al. 2010), or kernel machine regression tests that relate phenotype to rare 

variants in a region as a function of a variance component (Wu, Lee et al. 2011). This 

aggregation strategy also extends to joint testing of multiple phenotypes together to identify rare 

variants in genes that are pleiotropic in nature. In the presence of pleiotropy, joint testing of these 

phenotypes is not only biological meaningful but also statistically more powerful than univariate 

analysis of each separate phenotype accounting for multiple testing.  In subsequent paragraphs, 

we describe both univariate and cross-phenotype tests for rare-variant sequencing studies in 

detail. 

1.2.1.1 Statistical methods for testing individual phenotype   

 Burden Tests The central idea of burden tests is to collapse all the rare variants in a 

region together into a composite variable (e.g. number of copies of rare variants a subject 

possesses in a gene), and then test the association between the composite variable and the 

disease. The disadvantages of the collapsing method are that it combines the functional and 

nonfunctional variants together and is sensitive to misclassification. Li and Leal polished this 

method by developing a “Combined Multivariate and Collapsing” (CMC) method (Li and Leal 

2008). It collapses the rare variants in a region to several composite variables according to 
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whether the variant is functional or not, and then does a multiple marker test. Their simulation 

results show that the CMC method has high power to identify disease associated rare variants 

and is sensitive to misclassification Madsen and Browning (Madsen and Browning 2009) 

improved this method by giving more weight to rare variants in a collapsed group that are rarer 

in the population (with the idea that the rarer the variant, the more likely it is causal since it is 

selected against in the population due to its deleterious nature). Price et al. (Price, Kryukov et al. 

2010) developed a pooling method by assigning different thresholds to collapse variants for 

different genes. The idea of their method is that the effect size of a variant is not necessarily 

inversely proportional to the allele frequency in all situations. Instead of arbitrarily pooling 

alleles based on a specific minor-allele threshold, their pooling method analyzes the data 

multiple times across various frequency thresholds and then uses permutations to accommodate 

multiple testing.  

The burden methods work well when all causal variants affect the outcome in the same 

direction (i.e. all causal variants increase risk or all causal variants decrease risk). However, the 

association of the composite variable will be attenuated when causal variants in a gene act in 

different directions on phenotype. In addition, the majority of variants typically have null or 

negligible effects on the outcome; when the causal variants are collapsed with these null variants, 

the power to identify the causal variant will also be attenuated. To deal with a potential sparsity 

of signal in a gene-based test, as well as the possibility that variants might act in different 

directions on phenotype, a new class of variance-component methods for rare-variant testing 

emerged, which we describe in the next section.  

Kernel Machine Regression: Wu et al. (Wu, Lee et al. 2011) proposed a kernel-machine 

regression procedure for rare-variant association test, which they named the sequential kernel 
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association test (SKAT) method. The SKAT method is a variance-component score test that is 

robust to direction of effects of the causal variants in the region and retains power when the 

signal among rare variants in a gene is sparse. They model the outcome as follows: 

                                                                                                (1) 

where is the expected value of outcome ,   for continuous traits and 

 for binary traits,  is the intercept term, is the vector of covariates 

for individual i, and  is a vector of the corresponding coefficients.  is a vector of genotypes 

for p variants within the region, where components in  represent allele counts for each variant 

and take the value of 0, 1, or 2 under an additive model (one can also use a dominant or recessive 

model, if desired). To test whether variation within the region significantly associates with the 

outcome or not, traditional omnibus methods require p degrees of freedom to test 

. This type of test has very low power, especially for rare variant 

tests. To overcome this issue, Wu et al.’s method assumes that for any j,  follows an arbitrary 

distribution with mean zero and variance , where  is the pre-specified weight (with such 

weights, like the method of Madsen and Browning, being based on minor-allele frequency). It 

can be seen that testing whether rare-variants are associated with phenotype in SKAT is 

equivalent to testing whether the variance parameter τ is equal to zero. SKAT adopts a score test 

of the variance component , which is shown to be the locally most powerful test by Lin 

(Lin 1997). The test statistic takes the form: 

                                                                                                        (2), 

 is the kernel function, which measures the genetic similarity between subjects, and 

is the weight matrix. wj can take different values based on pre-specified 
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knowledge about the variant in the region. If all the wj=1, then this is a linear kernel.  Several 

other kernels are available for different situations, and a correctly specified kernel can help to 

increase power (Wu, Lee et al. 2011). Under the null hypothesis, the test statistic follows a 

mixture of chi-square distributions and one can analytically calculate p-values using Davies’ 

method (Davies 1980), with no need for permutation. In addition to being powerful, the SKAT 

test is also computationally efficient, as it only needs to fit under the null model:  

                                                                                                              (3) 

In summary, SKAT has the advantages of power over a burden test when a region contains rare 

variants that act in different directions on phenotype. Additionally, SKAT is computationally 

efficient as it analytically derives p-values with no need for permutation. The method can also 

incorporate prior knowledge of the test region to increase power. 

 

1.2.1.2 Statistical methods for joint testing of multiple phenotypes   

Pleiotropy refers to the situation when one gene affects multiple phenotypes. For 

example, mutations in the Phenylalanine Hydroxylase Gene (PAH gene) are associated with 

mental retardation, eczema, and pigment defects(Paul 2000). Therefore, joint testing of 

phenotypes is biologically meaningful when analyzing pleiotropic genes. In addition, joint tests 

can increase effective sample size and thus gain power over univariate tests that consider each 

phenotype separately. In this section, we review existing methods for testing pleiotropic genes in 

rare-variant sequencing study when one consider gene-based testing of rare variants.   

Kernel distance covariance test of independence Broadaway et al. (Broadaway, Cutler et 

al. 2016) proposed a cross-phenotype test based on the kernel distance covariance framework 

(Gretton, Fukumizu et al. 2007). The kernel independence test is a widely used approach in 

g(mi ) = a0 +a 'Xi
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machine learning area to test the dependency of two random variables in the kernel space. After 

forming a kernel for each random variable, the method calculates the canonical correlation of 

two kernels. One important feature of this method is that the expectation of the cross-covariance 

of two kernels equals zero if and only if the underlying two random variables are independent 

(Bach and Jordan 2002). Despite the popularity of the test, it is hard to find an empirical estimate 

of the dependency criteria. To tackle this issue, Gretton et al. (Gretton, Fukumizu et al. 2007) 

proposed the use of Hilbert-Schmidt norm as a measure of the dependency. The idea is that if the 

correlation matrix equals zero then the sum of the square singular values of the matrix will also 

not deviate from zero.  

Broadaway et al. (Broadaway, Cutler et al. 2016) leveraged KDC’s framework to form a 

cross-phenotype test. Their method consists of two steps: they first construct a similarity matrix 

P for phenotypes and a similarity matrix K for genetic variants; they then form the test statistic as  

                                        𝑄 ∝ 𝑡𝑟𝑎𝑐𝑒(𝐾𝐻𝑃𝐻),                                                      (4) 

where 𝐇 = (𝐈 − 1𝑁1𝑁
𝑇 /𝑁) is the centering matrix. Similar to KMR, choice of P and K depends 

on prior knowledge about the gene and the phenotypes. As shown in (4), the test statistic Q has a 

very simple form, which makes the calculation very straightforward. Asymptotically, Q follows 

a mixture of chi-square distribution thus p-values can be derived efficiently using Davies’ 

method (Davies 1980). The method can also easily be adjusted for covariates by regressing each 

phenotype separately on the covariates and using the residuals to form the similarity matrix P. 

These characteristics make KDC ideal for testing pleiotropic genes in rare-variant sequencing 

study. 

Besides KDC, another method that can be used for testing pleiotropic genes is 

multivariate kernel machine regression (MV-KMR(Maity, Sullivan et al. 2012). Similar to 
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univariate KMR, MV-KMR can be reduced to a multivariate linear mixed model. Hua and 

Ghosh established the link between MV-KMR and KDC (Hua and Ghosh 2015).  They showed 

that the test statistics of MV-KMR could also be written as:

                                   (5) 

Comparing (4) and (5), it can be shown that if the same K is used for two tests and linear kernel 

is used to form P in (4), then the two test statistics will have the same form. Theoretically, tests 

using KDC will achieve a least as much power as MV-KMR. If the correct phenotype similarity 

matrix is chosen, KDC will have greater than KMR.  

 

1.2.2 Existing methods for family-based studies 

Several methods have been proposed for univariate rare-variant association testing in 

families. Schaid et al. (Schaid, McDonnell et al. 2013) developed a method for complex traits 

that accounts for relatedness among study subjects. Their method took a retrospective view of the 

sample, which assumes that the outcome is fixed while the genotype is random, and is 

particularly appealing for the analysis of datasets that are collected under non-random 

ascertainment (such as those collected for linkage studies). Chen et al. (Chen, Meigs et al. 2013) 

developed a rare-variant test for quantitative traits in families by extending kernel-machine 

methods (Kwee, Liu et al. 2008, Wu, Lee et al. 2011) to pedigree analysis by inserting a random 

familial effect due to shared polygenes within the modeling framework; a similar idea was 

employed by Schifano et al. (Schifano, Epstein et al. 2012) and Oualkacha et al (Oualkacha, 

Dastani et al. 2013). Jiang et al. (Jiang and McPeek 2014) adopted a similar strategy and 

extended the SKAT-O (Lee, Emond et al. 2012) method to family studies of quantitative traits. 
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1.2.3 Population stratification and QTDT 

 

Although the above methods for family-based studies account for correlation within 

families, they do not consider potential bias caused by population stratification. Population 

stratification can lead to substantially inflated false positive rates in sequencing studies of rare 

variants (Epstein, Duncan et al. 2012, Jiang, Epstein et al. 2013, Liu, Nicolae et al. 2013), and 

standard GWAS approaches to correct for such stratification (such as principal components or 

EMMAX (Kang, Sul et al. 2010)) may not be effective when applied to rare variants (Mathieson 

and McVean 2012). Therefore, a rare-variant association test that maintains validity in the 

presence of such stratification is needed. Ionita-Laza et al. (Ionita-Laza, Lee et al. 2013) 

proposed such a method based on the family-based association test (FBAT) framework. Although 

this method is robust to population stratification, it ignores between-family information that 

could perhaps be exploited to boost power. Fang et al. (Fang, Sha et al. 2012, Fang, Zhang et al. 

2013) used between-family information for this purpose in an adaptive rare-variant association 

test for quantitative traits; however, the procedure requires computationally intensive 

permutations for inference, so it is unclear whether the approach is scalable to large-scale 

resequencing efforts. 

 

In our project, we will adapt the QTDT (Abecasis, Cardon et al. 2000) framework to 

overcome the issue induced by population stratification. The QTDT framework decomposes each 

genotype into a between-family component (sensitive to population stratification) and a within-

family component (robust to population stratification). This kind of decomposition was first 
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introduced in Fulker et al. (Fulker, Cherny et al. 1999), which mainly addressed the situation 

where only siblings are available.  Abecasis (Abecasis, Cardon et al. 2000) extended this method 

by incorporating parental information into the construction of between-family components. The 

method to calculate within-family components (Saad and Wijsman) and between-family 

components (Bij) is very intuitive: 

         . 

After Bij is obtained, Wij can be obtained by subtracting the between-family component from the 

genotype: 

                                                          
.                                                       (6) 

If the minor allele is considered the reference allele, a positive value of Wij means excess 

transmission of the minor allele while a negative value means excess transmission of the major 

allele. Following the biometric model, Abecasis et al. model the estimated value of the outcome 

through the following model: 

 
,               (7) 

where gij is the genotype score of the jth individual in the ith family, and  is the population 

mean. They further assume that the mean trait value for individual j in the ith family takes the 

form: 

                                                       
,                                                   (8) 

where a, the additive genetic effect value, is the expected value of . However, if the 

population is admixed, and families were sampled from different populations, then 

 
,        (9) 

and 

Bij =
Average genotype of parents, if parental information is available

Average genotype of siblings, if parental information is not available

ì
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î

ü
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þ
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,  (10) 

where is the population mean of the ith population, is the number of children in each family, 

and is the total number of children. and are allele frequencies of the population 

from where the ith family was drawn, and is the variance of  the genotype score.  It can be seen 

that under population stratification, the expected value of  is different for each sub-population. 

However, after decomposing the genotype into the within-family component and the between-

family component, Abecasis et al.(Abecasis, Cardon et al. 2000) showed that 

                                     ,                                       (11)

 

where  is the variance of the between-family components. From (9) we can tell that only the 

between-family component is influenced by the population structure, since it includes  while 

the within-family component is free of . This shows that tests based solely on the within-

family component are robust to population stratification.  

 

1.2.4 Screening methods 

 

One potential drawback of tests using only the within-family component is that ignoring 

the between-family component might lead to power loss. We borrowed ideas of Purcell et al. 

(Purcell, Sham et al. 2005) and Van Steen et al. (Van Steen, McQueen et al. 2005) to adopt a 

two-stage screening procedure. Van Steen’s (Van Steen, McQueen et al. 2005) method was 

originally designed to overcome the multiple comparison issue in GWAS to increase power. 
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Their strategy is to first estimate the genetic effect for each SNP, screen and test these effects at 

the first stage, and at the second stage, only test on the top SNPs identified from the first stage. In 

order to avoid bias, data used for testing in stage one of the screening process needs to be 

independent of the data used to test in the second stage. However, due to the unique advantage of 

the QTDT framework, the between-family component and the within-family component are 

orthogonal to each other (Fulker, Cherny et al. 1999); hence, we do not need to recruit different 

individuals to test in the second stage. In our study, we test on the between-family component in 

the first stage, while in the second stage we test on the orthogonal within-family component. 

Purcell et al.’s method (Purcell, Sham et al. 2005) showed that incorporating parental 

information in the test could increase power. We borrowed their idea and screen on parental 

genotype at the first stage while testing on the offspring-based within-family component at the 

second stage.  

 

1.3 Summary 

As discussed above, family-based rare-variant sequencing studies have several 

advantages compared to their population counterparts. However, existing methods for family-

based designs mostly ignore the potential bias caused by population stratification. As more and 

more studies adopt family designs to identify traits associated rare-variants, powerful and robust 

statistical methods are needed. In my dissertation research, I will focus on developing statistical 

methods for rare variant studies in family designs that are robust to population stratification 

while maintaining high power. In the following chapters, I will present my first method in 

Chapter 2: Flexible and Robust Methods for Rare-Variant Testing of Quantitative Traits in Trios 

and Nuclear Families. In this method, we integrate the QTDT framework with the kernel-
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machine framework, and adopted two screening methods to improve power. Our method has the 

advantages of analytical calculation of p-values and robustness to population stratification. This 

work is now published in Genetic Epidemiology (Jiang, Conneely et al. 2014). In Chapter 3, I 

will present my second project titled ‘Robust Method for Rare Variant Testing of Quantitative 

Traits in General Pedigrees. This method preserves all the advantages of our previous method 

described in Chapter 2, but can be applied to large pedigrees of arbitrary size and structure; 

statistical methods for the analysis of large pedigrees are generally lacking in the literature. This 

work has now been submitted to Statistics in Biosciences and is in minor revision at the journal. 

Next, in chapter 4, I will present my third project titled ‘Powerful and Robust Cross-Phenotypes 

Association Tests of Rare Variants in Case-Parent Trios’, which takes the QTDT framework 

used in Chapter 2 and implements it into KDC-based testing of multiple phenotypes 

simultaneously to allow for robust testing of pleiotropy in family studies. Finally, in Chapter 5, I 

will provide a conclusion section summarizing our findings and describe future extensions and 

areas of research.  
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 ABSTRACT 

Most rare-variant association tests for complex traits are applicable only to population-based or 

case-control resequencing studies. There are fewer rare-variant association tests for family-based 

resequencing studies, which is unfortunate since pedigrees possess many attractive 

characteristics for such analyses. Family-based studies can be more powerful than their 

population-based counterparts due to increased genetic load and further enable the 

implementation of rare-variant association tests that, by design, are robust to confounding due to 

population stratification. With this in mind, we propose a rare-variant association test for 

quantitative traits in families; this test integrates the QTDT approach of Abecasis et al. 

(Abecasis, Cardon et al. 2000) into the kernel-based SNP association test KMFAM of Schifano 

et al. (Schifano, Epstein et al. 2012). The resulting within-family test enjoys the many benefits of 

the kernel framework for rare-variant association testing, including rapid evaluation of p-values 

and preservation of power when a region harbors rare causal variation that acts in different 

directions on phenotype. Additionally, by design, this within-family test is robust to confounding 

due to population stratification. While within-family association tests are generally less powerful 

than their counterparts that use all genetic information, we show that we can recover much of 

this power (while still ensuring robustness to population stratification) using a straightforward 

screening procedure. Our method accommodates covariates and allows for missing parental 

genotype data, and we have written software implementing the approach in R for public use.  
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2.1 Introduction 

The emergence of next-generation sequencing technology, along with the development of 

the exome chip, have led many investigators to study the role of rare genetic variation in 

complex human traits. Rather than analyze rare variants individually, many statistical approaches 

for rare-variant association mapping employ grouping strategies that aggregate rare variants in a 

gene or region for analysis to improve power. These approaches can be broadly categorized as 

either burden tests that collapse grouped rare variants into a single aggregate variable that is then 

regressed on phenotype (Kwee, Liu et al. 2008, Madsen and Browning 2009, Morris and Zeggini 

2010, Zawistowski, Gopalakrishnan et al. 2010), kernel tests that relate phenotype to rare 

variants in a region as a function of a variance component (SKAT, (Wu, Lee et al. 2011)), and 

unified tests that combine burden and kernel tests together (SKAT-O, (Lee, Emond et al. 2012)). 

Burden tests are preferred when a region harbors rare causal variants that all act in the same 

direction on phenotype (all protective or all deleterious) whereas kernel tests are optimal when a 

region harbors rare causal variants that act in different directions on phenotype (Wu, Lee et al. 

2011).  

Although these rare-variant methods generally have improved power compared to tests of 

individual rare variants, almost all of these tests are restricted to case-control or population-based 

study designs and cannot be used in family-based studies. Family-based designs have several 

advantages over population-based designs in that they enable the use of statistics that, by design, 

are robust to confounding due to population stratification. Family designs also can solve genetic 

problems that are hard to answer in population-based studies. For example, sequencing the 

parents of affected subjects can identify de novo mutations and also allow the study of rare 

homozygous genotypes, which are difficult to find in population-based designs (Do, Kathiresan 
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et al. 2012). Families are also attractive to study because they often provide increased genetic 

load for a disease or trait: while carriers of a minor risk allele will be hard to sample in the 

general population, they are more likely to be found in families of probands (Zollner 2012). 

Finally, family studies allow the study of the segregation pattern of complex disease (Ott, 

Kamatani et al. 2011). Because of these appealing features and the fact that there are many 

familial samples from past linkage studies, family-based resequencing studies are gaining in 

popularity. Several recent studies have identified disease-associated rare variants through family-

based designs, including rare variants associated with multiple sclerosis (Ramagopalan, Dyment 

et al. 2011), simplex autism (Krumm, O'Roak et al. 2013), dilated cardiomyopathy (Norton, Li et 

al. 2011), and Alzheimer’s disease (Cruchaga, Haller et al. 2012).  

Recently, a few methods have been proposed for rare-variant association testing in 

families. Schaid et al. (Schaid, McDonnell et al. 2013) developed a method for complex traits 

that accounts for relatedness among study subjects. Their method took a retrospective view of the 

sample, which assumes that the outcome is fixed while the genotype is random, and is 

particularly appealing for the analysis of datasets that are collected under non-random 

ascertainment (such as those collected for linkage studies). Chen et al. (Chen, Meigs et al. 2013) 

developed a rare-variant test for quantitative traits in families by extending kernel-machine 

methods (Kwee, Liu et al. 2008, Wu, Lee et al. 2011) to pedigree analysis by inserting a random 

familial effect due to shared polygenes within the modeling framework; a similar idea was 

employed by Schifano et al. (Schifano, Epstein et al. 2012) and Oualkacha et al (Oualkacha, 

Dastani et al. 2013). Jiang et al. (Jiang and McPeek 2014) adopted the similar strategy and 

extended the SKAT-O (Lee, Emond et al. 2012) method to family studies of quantitative traits. 

Although the methods of both groups adjust for kinship in family studies, they do not consider 
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potential bias caused by population stratification. Population stratification can lead to 

substantially inflated false-positive rates in sequencing studies of rare variants (Epstein, Duncan 

et al. 2012, Jiang, Epstein et al. 2013, Liu, Nicolae et al. 2013), and standard GWAS approaches 

to correct for such stratification (such as principal components or EMMAX (Kang, Sul et al. 

2010)) may not be effective when applied to rare variants (Mathieson and McVean 2012). 

Therefore, a rare-variant association test that maintains validity in the presence of such 

stratification is needed. Ionita-Laza et al. (Ionita-Laza, Lee et al. 2013) proposed such a method 

based on the family-based association test (FBAT) framework. Although this method is robust to 

population stratification, it ignores between-family information that could perhaps be exploited 

to boost power. Fang et al. (Fang, Sha et al. 2012, Fang, Zhang et al. 2013) used between-family 

information for this purpose in an adaptive rare-variant association test for quantitative traits; 

however, the procedure requires computationally intensive permutations for inference, so it is 

unclear whether the approach is scalable to large-scale resequencing efforts.  

In this paper, we propose a novel two-stage method for rare-variant analysis of 

quantitative traits in trios and nuclear families. The approach is based on the QTDT (quantitative 

transmission disequilibrium test) framework of Abecasis et al. (Abecasis, Cardon et al. 2000) for 

SNP association mapping. The QTDT framework decomposes the observed individual genotypes 

into between-family and within-family components. The within-family component is robust to 

population stratification, while the between-family component is sensitive to the phenomenon. In 

this paper, we calculate the within-family component for each rare variant in a region, and then 

integrate these components within the kernel procedure KMFAM of Schifano et al. (Schifano, 

Epstein et al. 2012), which was previously developed for SNP-set association testing of 

quantitative traits in families. Specifically, within KMFAM, we create a kernel matrix based on 
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the within-family component, and then use this kernel matrix to test for association with 

phenotype using a modified score statistic. By using the within-family component only, our rare-

variant association test for quantitative traits is robust to confounding due to population 

stratification. Also, the approach calculates p-values analytically rather than via resampling and 

is thus scalable to exome sequencing and whole-genome resequencing studies. Because the 

approach relies on a kernel framework, it also preserves power when a region contains a mixture 

of trait-increasing and trait-decreasing variation. The approach also allows for covariates and, for 

nuclear families, can be implemented when phenotype and genotype data on parents are missing, 

so it can be applied in the study of quantitative traits related to late-onset diseases. 

 A potential drawback of using only within-family information for analysis is that power 

is reduced by ignoring the (sensitive) between-family information within the analysis (Ionita-

Laza, Lee et al. 2013). However, borrowing ideas from Purcell et al. (Purcell, Sham et al. 2005) 

and Van Steen et al. (Van Steen, McQueen et al. 2005), we propose using between-family 

information as a screening tool to identify the most interesting regions (based on the magnitude 

of the p-value for the region) that merit further investigation. We then apply our within-family 

test to only these top regions, thereby reducing the multiple-testing burden (compared to within-

family testing of all regions) and potentially gaining power. We note that the first stage of the 

analysis (using the between-family information) is independent of the second stage (which uses 

orthogonal within-family information). We also note that, by using within-family information in 

the second stage, our approach is still robust to confounding due to population stratification.   

 In subsequent sections, we first describe the KMFAM procedure and then, for rare 

variants, discuss how we integrate the QTDT framework into the model to make the method 

robust to population stratification. We next describe our screening procedure to improve power. 
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We then evaluate our approaches using simulated sequence data in trios and nuclear families and 

show how screening can improve power of within-family testing while maintaining an 

appropriate type I error rate, even under population stratification. Finally, we summarize our 

method and discuss potential extensions.  

 

Materials and Methods 

2.2.1 Notation and KMFAM Model: We initially present the KMFAM model of Schifano 

et al. ((Schifano, Epstein et al. 2012) (also used by Chen et al. (Chen, Meigs et al. 2013)), and 

then show how to modify the framework to develop a within-family association test of rare 

variation for quantitative traits. As in KMFAM, we assume a sample of N nuclear families that 

are genotyped for s rare-variants in a gene or region of interest. Let denote the quantitative 

outcome for the jth individual in the ith family, where i=1,2,3…N and j=1,2,..ni. We define as 

a c×1 vector that represents the covariates for the jth individual in the ith family and further define 

Gij as an s×1 vector that represents the genotypes of the s rare variants for each subject (where 

each rare-variant genotype is coded as the number of copies of the rare allele the subject 

possesses at each site). We assume that the outcome, Yij, follows a multivariate normal 

distribution with mean and variance defined through the model:   

                                                      ,                                           (1)
  

where is a c×1 vector of coefficients for  and is a sx1 vector of coefficients for Gij. While 

we assume the coefficients in are fixed effects, we instead assume the coefficients for the 

genotype effects are random and follow an arbitrary distribution with variance t . With this 

assumption, we can test for association between rare variants and phenotype by considering the 

Yij

Xij

Yij = Xij
Ta +Gij

Tb + fij + eij
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hypothesis  rather than an s degree of freedom fixed-effects test: = 

0, which will have low power.  

To complete the formulation of model (1) for pedigree data, we let  denote the random 

effect to account for within-family correlation due to shared polygenes. We assume the effect 

within a family follows a multivariate normal distribution: fi ~MVN(0,2Fis pg

2 ), where is 

the kinship matrix for family i and is the variance due to the effect of polygenes. We also 

define as the random error term. From model (1), we calculate the variance of 

outcome as 

                               ,                                         (2) 

where K=GIGT is the kernel matrix, and G is a matrix composed of the vectors Gij such that each 

row is Gij
T for a single individual. Note that here we use a linear kernel, but if previous 

information is available for the rare variants in the gene, the use of other kernels, such as a linear 

weighted kernel, can increase power  (Wu, Lee et al.); in this case I can be replaced with a 

weighting matrix Z, where elements in Z represent the weight. There are several methods to 

specify the weight, based on the belief of the variant’s contribution to the outcome. One common 

method is to calculate weight as a function of the minor allele frequency (MAF); Wu et al. (Wu, 

Lee et al.) considered such a weight that modeled MAF using a Beta distribution, but other 

weights are possible, as well.  

 To test whether the rare variants in the gene are associated with the outcome, we 

construct a variance component score test derived from model (1) (Lin 1997, Zhang and Lin 

2003). The null hypothesis is H0: , and the test statistic takes the form: 

                                       ,                                       (3) 
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where all parameters are estimated under the null hypothesis. We define  and as the 

estimates of V in (1) and a under the null. Further, we define a projection matrix

, such that . Thus, under the null, we have 

                                            
,                                                      (4)     

where are eigenvalues of , here . As 

 are independently and identically distributed random variables, Q is distributed as an 

asymptotic mixture of chi-square distributions, and the p-values can be calculated using the 

Davies method (Davies 1980). 

2.2.2 Robust Rare-Variant Association Test: One issue with the KMFAM framework 

described above is that the resulting score tests from model (1) are sensitive to population 

stratification. To resolve this issue, we integrate the QTDT (Abecasis, Cardon et al. 2000) 

framework into our model. The QTDT framework decomposes the observed genotype Gij into a 

between-family component (which we denote by Bij) and an orthogonal within-family 

component (which we denote by Wij). The between-family component takes the following value: 

 . 

Once we obtain the between-family component, we then construct the within-family component, 

Wij, by subtracting the between-family component from the observed genotype such that Wij=Gij-

Bij.  

By design, association analyses of complex traits that base inference on the within-family 

component Wij, are robust to population stratification. Based on this observation, we can 
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construct a robust rare-variant association test for trios and nuclear families by replacing the 

observed genotypes G in the kernel matrix K described in (2) with their corresponding within-

family components W. We then construct the score statistic Q in (3) as before to derive our 

robust family-based association test.  

2.2.3 Screening Procedure: Although the QTDT framework ensures the robustness of our 

proposed score test to potential confounding due to population stratification, the discarding of 

between-family information when confounding due to population stratification is not an issue 

can lead to sizable power loss compared to use of the observed genotype. In attempts to restore 

the power of our within-family association test to levels anticipated when using observed-

genotype information, we suggest a two-stage screening approach that uses both the within- and 

between-family rare-variant information. In the first stage, we use between-family information to 

screen and identify the top regions for follow up. If parental phenotype and genotype information 

are available, we carry out the first stage by performing the SKAT (Wu, Lee et al. 2011) test on 

parents only, and then select a subset of regions for follow-up investigation based on smallest p-

values. If parental information is unavailable, we instead conduct the first-stage screening by 

applying KMFAM to the outcomes and between-family components of the offspring. In the 

second stage, we construct the robust test (using the within-family components calculated for the 

offspring) only on those top regions selected from the first stage. By only testing a reduced 

number of regions in the second stage using the within-family component, we reduce the number 

of robust tests that are conducted thereby reducing the multiple-testing burden and increasing 

power. As discussed in Abecasis et al. (Abecasis, Cardon et al.), the between-family and within-

family components are orthogonal to each other, such that the first-stage and second-stage tests 

are independent.   
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2.2.4 Type I Error Simulations: We evaluated the type I error and power of our approach 

using simulated sequencing data. We used cosi (Schaffner, Foo et al. 2005) to simulate sequence 

data for a pool of 5000 European and 5000 African haplotypes, each of length 30 kb. Rare 

variants were defined as variants with a minor-allele frequency less than 3% in the region. To 

simulate family data, we randomly paired subjects within each population and simulated 

offspring by sampling one haplotype from each parent. When considering nuclear families with 2 

or more offspring, we performed simulations for the situation where all parental information is 

available, as well as where 20-100% parental information is missing.  

Using this concept, we first performed type 1 error rate simulations to verify that our 

method is robust to population stratification. We simulated the outcome through the null model: 

Yij = g IAfrican, ij + fij + eij ,                      (5) 

where is the mean trait difference between European and African subjects, IAfrican, ij
 is an 

indicator variable that is 1 if the subject is African and 0 otherwise, and all other terms are the 

same as defined in model (1). We specified  and such that the overall trait heritability was 

0.35. To induce confounding due to population stratification in our simulations, we first assumed 

our sample consisted of a mixture of European and African families, with the percentage of 

European families ranging from 25% to 75%. We then assumed a value of in model (5) that 

ranged from 0 (no confounding due to population stratification) to 3 (extreme confounding due 

to population stratification).  

2.2.5 Power Simulations: To estimate power, we simulated a region of 300 kb, divided 

into 10 non-overlapping regions of 30 kb each, and selected one region at random as causal (the 

other 9 regions are assumed to be independent of outcome). To generate trait data for each 

subject based on the causal region, we used the idea of Wu et al. (Wu, Lee et al. 2011) and 

g

fij eij

g
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assumed a certain percentage (5% or 15%) of rare variants (defined as variants with a minor 

allele frequency less than 3%) in the region influenced the outcome, with the effect size of a 

causal variant defined as , where we varied the constant c among values 

between 0.4 and 0.6. We then included these effects due to rare variants within model (5) to 

simulate the outcome. To keep power at a reasonable range for the 300kb region, we fixed g at 

0.25 for power simulations under stratification. As with the null simulations, we assumed the 

trait heritability was 0.35. 

 

2.3 Results 

2.3.1 Type I Error: We first performed type I error rate simulations on parent-offspring 

trios to demonstrate that population stratification can lead to spurious rare-variant association 

with quantitative traits in families. Figure 2.1 presents type I error results for two methods: our 

robust rare-variant approach that uses within-family information from the offspring only and a 

SKAT test of rare-variant association that uses the observed offspring genotype (constituting 

both the within- and between-family components). For these simulations, simulated datasets 

consisted of 500 trios where 50% are of European descent and the remaining 50% are of African 

descent. When the mean trait difference between European and African populations is 0 (such 

that there is no confounding due to population stratification), both the within-family test and 

observed-genotype test had appropriate type I error. However, when we induced confounding 

due to population stratification by assuming a non-zero mean trait difference between Africans 

and Europeans, we found the standard SKAT test using the observed genotype had inflated type I 

error. Our robust rare-variant association test, in contrast, maintained the proper type I error rate 

under confounding.  

b = c´ | log10MAF |
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We next performed another set of type I error simulations, where we assumed datasets 

consisting of 500 nuclear families each with two children. We varied the proportion of nuclear 

families that were of European origin between 25% and 75% and assumed the mean trait 

difference between African and European samples to be 2 (thereby inducing confounding due to 

population stratification). We further assumed the proportion of nuclear families within each 

dataset that was missing parental genotype information ranged from 0% to 100%. In our first set 

of simulations (shown in Figure 2.2), we studied the type I error rates of methods assuming 

examination of the 30-kb region in its entirety. We compared the type I error rates using the 

observed genotype information in the offspring only (which corresponds to the test of Chen et al. 

(Chen, Meigs et al. 2013)), as well as using our robust rare-variant association test that relies 

only on the within-family information in the offspring. Our results indicated that rare-variant 

association tests using observed genotype information led to considerable inflation in type I error 

rates across different simulation models, whereas our robust within-family association test 

remained valid in all situations. The validity of the robust rare-variant association test was 

confirmed both when parental genotype information was available on all participants, as well as 

when such genotype information was completely absent in the dataset. Thus, for late-onset 

diseases in which parental information might not be available, our method is still robust to 

population stratification. 

We performed a final set of type I error simulations for nuclear families of size two under 

our proposed screening scheme where, in this instance, we split the 300-kb region into 10 non-

overlapping regions, each of size 30 kb. Using between-family information, we identified a 

subset of regions for follow up (based on p-value) that we then investigated further using the 

within-family component. Our results are shown in Figure 2.3. Overall, our results show that our 
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screening procedure (conducted using either parental information or between-family information 

in siblings, if parents are not available) preserved type I error across models, with differing 

missing parental information as well as different proportions of regions that were then followed 

up using within-family information. These results demonstrate that our screening procedure 

maintains appropriate type I error, even when there is confounding due to population 

stratification, due to the fact that the between-family component and within-family component of 

the offspring genotype are orthogonal to one another.  

 2.3.2 Power: In the previous section, we showed that our robust rare-variant association 

tests that uses the within-family component remains valid in the presence of population 

stratification. We next studied the power of our proposed robust test to detect association with a 

trait under various trait-influencing models. We assumed either 5% or 15% of rare variants in a 

region were causal and assumed the effect size of such causal variants was , 

where c ranged from 0.4 to 0.6. We first compared the power of our robust within-family 

association test to the standard observed-genotype test considered by Chen et al. and Schifano et 

al. under models with no population stratification (to ensure the power of the observed-genotype 

test was valid). We generated sequence and trait data on 500 nuclear families each with two 

offspring. We first analyzed the observed rare-variant genotypes in the family using the kernel 

test of Chen et al., and then repeated the analysis using our robust within-family association test. 

As shown in Figure 2.4, the power of the kernel test using observed genotype information 

(shown as black bars) is, as expected, more powerful than the same test using within-family 

information alone (shown in gray bars) across different simulation models. In attempts to see 

whether we could restore some power to the robust test, we then applied our screening procedure 

to these simulated datasets using between-family information. For each dataset, we tested the 

b = c´ | log10MAF |
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between-family components of each of the 10 regions, and then subsequently considered only the 

top 10%, 20%, 30%, or 40% (based on minimum p-value) of these regions using our within-

family test. The results show that, when screening is performed using parental genotype and trait 

information, our screening procedure restores power to levels similar to those using the 

observed-genotype information (see top panels of Figure 2.4). If screening is instead performed 

using between-family information, the robust within-family association test also shows a power 

increase, although it is not as notable as using parental information (see bottom panels of Figure 

2.4). Thus, it appears that our initial screening step improves the power of the within-family 

association test, while preserving appropriate type I error under the null.  

 While we obtained our results in Figure 2.4 under simulation models that assumed no 

confounding due to population stratification, we also observed simulated trends in simulation 

models that were generated with confounding due to population stratification. Figure 2.5 presents 

power results under confounding due to population stratification that assumed a mean trait 

difference between African and European samples. As the observed-genotype test under 

confounding is not valid, here we report the empirical adjusted power (black bars). To get the 

empirical adjusted power, we first simulated under the null distribution at the present of 

population stratification and get the confounded empirical distribution. We then adjusted the 

observed genotype’s power based on this empirical distribution. The remaining bars denote the 

power of the robust within-family association test, along with variations that screen using 

parental or between-family information. The results show that screening can improve power of 

the robust rare-variant test, particularly as the percentage of causal variants and the magnitudes 

of their effect increase. The results in Figure 2.5 were for simulated datasets consisting of 
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nuclear families with two offspring each; we saw similar trends when analyzing parent-offspring 

trios, as well (see Supplemental Figure 2.1). 

 

2.4 Discussion 

In this chapter, we proposed a kernel method for analyzing rare-variant sequencing 

studies in trios and nuclear families that is robust to confounding due to population stratification. 

We also introduced a screening procedure using parental or between-family information to 

improve the power of this robust test and showed that this procedure can increase power to levels 

near those of the observed-genotype test when confounding due to stratification is not an issue. 

In addition to robustness, our approach has many other practical features. The method easily 

allows for covariates and permits rapid calculation of p-values using analytic procedures. We 

have implemented our procedure in R software, which is available from our website (see Web 

Resources). Our approach is computationally efficient, as the analysis of a 30-kb region for 500 

nuclear families each of size two takes on average 53.08 seconds on a 768 processor running 

Linux OS with 2.6 gigahertz of RAM. Based on the computational speed, we believe the 

approach can be scaled reasonably to whole-exome or whole-genome resequencing studies on a 

multi-node cluster.  

Family-based genetic studies of complex traits occasionally have information available 

from additional unrelated singletons. While we cannot use these individuals within our robust 

within-family association test of rare variation, the information from such singletons can be used 

in our screening step (treating them in the same way as the parental information) to identify the 

most interesting regions for follow up using the robust test. Such information could be helpful in 

screening and should not affect the validity of the second-stage robust test, even if there is 
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confounding due to population stratification and/or coverage differences between the family and 

unrelated arms of the study.  
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Figure 2.1 

 

Figure 2.1: Empirical type 1 error rates of rare-variant association tests applied to 30-kb 

sequenced regions in parent-offspring trios. Simulated datasets consisted of 500 parent-offspring 

trios (50% of European ancestry, 50% of African ancestry). The mean trait difference between 

European and African subjects varies from 0 (no stratification) to 3 (extreme stratification). Total 

trait heritability is 0.35. We analyzed each simulated trio dataset twice: once using SKAT to 

analyze the observed offspring genotypes (“Observed genotype,” blue line) and once using our 

proposed kernel test that used only the within-family component of the observed offspring 

genotypes (“Within component,” red line). Each result is based on 1000 replicates. 
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Figure 2.2 

 

Figure 2.2: Empirical type 1 error rates of rare-variant association tests applied to 30-kb 

sequenced regions for nuclear families with 2 children each (total heritability is 0.35). Simulated 

datasets consisted of 500 nuclear familes each with 2 children. Percentage of European varies 

from 25% to 75%. Percentage of missing parents varies from 0% to 100%. The mean trait 

difference between European and African subjects is 2. For each simulated dataset, we used 

SKAT to analyze the observed offspring genotypes (“Observed genotype,” brown bars) and used 

our proposed kernel test that used only the within-family component of observed offspring. For 

within-family results, we present findings assuming percentage of missing parents was 0%, 20%, 

60%, and 100%. Each result is based on 1000 replicates. 
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Figure 2.3 

 

Figure 2.3: Empirical type 1 error rates of rare-variant association tests applied to ten 30-kb 

sequenced regions for nuclear families with 2 children each (total heritability is 0.35). Simulated 

datasets consisted of 500 nuclear families each with 2 children. The mean trait difference 

between European and African subjects is 0.25. For each simulated dataset, we first used 

KMFAM to analyze the observed offspring genotypes (“Observed genotype,” black bars); we 

then used our proposed kernel test to analyze the within-family component of offspring without 

screening, and then applied screening procedures. We applied two screening processes: 

screening by parental information (blue bars) and screening by the between-family component 

(green bars). Left: screen by parental genotype. Right: screen by within-family component. Top 

10% to 40% of regions with smallest p-value were selected through the screening process and 

analyzed in the second stage. Each result is based on 1000 replicates. 
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Figure 2.4 

 

Figure 2.4: Empirical power of rare-variant association tests applied to ten 30-kb sequenced 

regions for nuclear families without stratification. Simulated datasets consisted of 500 European 

families each with 2 children. Three effect sizes were used: , 

, and . As in Figure 2.3, for each dataset we used KMFAM 

to test the observed genotype; then we used our method to test the within-family component 

without screening, and then applied two screening methods. Top panel: screen by parental 

genotype. Bottom panel: screen by between-family component. Each result is based on 1000 

replicates. 
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Figure 2.5 

 

 

Figure 2.5: Empirical power of rare-variant association tests applied to ten 30-kb sequenced 

regions for nuclear families with/without stratification. Black bars are adjusted empirical power. 

Other simulations were performed under population structure such that 25% of families are 

European, and the mean trait difference between European and African subjects is 0.25. Three 

effect sizes were used: , , and . Top panel: 

screen by parental genotype. Bottom panel: screen by between-family component. Each result is 

based on 1000 replicates. 
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Supplementary Figure .2.1 

 

Supplementary Figure 2.1: Empirical power of rare-variant association tests applied to ten 30-

kb sequenced regions for trios with/without stratification. All causal variants have positive effect 

on the trait value. Black bars are baseline power (no stratification). Other simulations were 

performed under population structure such that 25% of families are European, and the mean trait 

difference between European and African subjects is 0.25. Three effect sizes were used: 

, , and . Left panel: 5% of rare variants in 

the region are causal. Bottom panel: 15% of rare variants in the region are causal. Each result is 

based on 1000 replicates. 
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Supplementary Figure 2.2 

 

 

Supplementary Figure 2.2: Empirical power of rare-variant association tests applied to ten 30-

kb sequenced regions for trios with/without stratification. 50% causal variants have positive 

effect, 50% causal variants have negative effect on the trait value. Black bars are baseline power 

(no stratification). Other simulations were performed under population structure such that 25% 

of families are European, and the mean trait difference between European and African subjects is 

0.25. Three effect sizes were used: , , and . 

Left panel: 5% of rare variants in the region are causal. Bottom panel: 15% of rare variants in the 

region are causal. Each result is based on 1000 replicates. 
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Chapter 3. Robust Rare-Variant Association Tests For 

Quantitative Traits in General Pedigrees 

 
This chapter has been submitted to Statistics in Biosciences and is in minor revision  
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Abstract 

Next generation sequencing technology has propelled the development of statistical 

methods to identify rare polygenetic variation associated with complex traits. The majority of 

these statistical methods are designed for case-control or population-based studies, with few 

methods that are applicable to family-based studies. Moreover, existing methods for family-

based studies mainly focus on trios or nuclear families while 2nd or higher degree relatives are 

ignored. To fill this gap, we propose a method for rare-variant analysis in large pedigree studies 

that can utilize information from all available relatives. Our approach is based on a kernel-

machine regression (KMR) framework, which has the advantages of high power, as well as fast 

and easy calculation of p-values using the asymptotic distribution. Our method is also robust to 

population stratification due to integration of a QTDT framework (Abecasis, et al. 2000b) with 

the KMR framework. In our method, we first calculate the expected genotype (between-family 

component) of a non-founder using all founders’ information and then calculate the deviates 

(within-family component) of observed genotype from the expectation, where the deviates are 

robust to population stratification by design. The test statistic, which is constructed using within-

family component, is thus robust to population stratification. We illustrate and evaluate our 

method using simulated data and sequence data from Genetic Analysis Workshop 18 (GAW18). 
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3.1. Introduction 

 

Next-generation sequencing (NGS) studies of complex human traits and diseases are 

becoming commonplace for investigating the role of rare polymorphic variation in such 

phenotypes. Many analytic methods have been developed for the analysis of such rare variants 

with a particular emphasis on techniques that first aggregate information on rare variants within a 

gene of interest and then contrast this aggregated genetic information with the phenotypic 

outcome. The majority of such aggregation-based methods (Kwee, Liu et al. 2008, Madsen and 

Browning 2009, Morris and Zeggini 2010, Zawistowski, Gopalakrishnan et al. 2010, Wu, Lee et 

al. 2011, Lee, Wu et al. 2012) focus on population-based designs or case-control designs. 

However, family-based study designs are gaining traction in NGS projects since they provide 

inherent benefits over the traditional population-based designs. In particular, families ascertained 

based on multiple relatives with a particular phenotype tend to enrich the sample for rare causal 

variants compared to a general population, thereby making such variants easier to detect (Zöllner 

2012).  

The appeal of family-based NGS studies has lead to the development of a few analytic 

methods tailored for rare-variant analysis in such designs. Such methods (Chen, Meigs et al. 

2013, Schaid, McDonnell et al. 2013, Jiang and McPeek 2014, Jiang, Conneely et al. 2014) 

generally apply a modeling framework that accounts for the relatedness of familial samples 

through appropriate modeling of kinship. However, such methods do not take into account the 

potential bias of findings due to population stratification.  Population stratification is the 

presence of systematic differences between sub-populations both in the allele frequencies of the 

rare variants under study as well as in the distribution of phenotype. Failure to model these 

differences will lead to inflated false positive rate and decreased power to detect real 
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associations. For rare variants, the issue of population stratification is more severe than for 

common variants, as rare variants are more likely to be young mutations which are more 

population specific (Gravel, Henn et al. 2011). It has been shown that inclusion of self-reported 

ethnicity as a covariate is not sufficient to adjust for population stratification (Serre, Montpetit et 

al. 2008). Similarly, standard methods to adjust for population stratification for common variants 

may not be as effective an adjustment for rare variants. In particular, genomic control can lead to 

very conservative results for rare variants (Jiang, Epstein et al. 2013). Although principal 

components works well for spatially distinctive populations, the procedure fails for spatially non-

distinctive populations (Mathieson and McVean 2012).   

With these concerns in mind, Jiang et al. (2014) developed a rare-variant association test 

for quantitative traits in parent-child trios and nuclear families that, by design, was robust to 

population stratification. The method was motivated by the QTDT framework (Abecasis, et al. 

2000a), which showed that the observed genotype of a familial subject could be partitioned into 

orthogonal between-family and within-family components. The between-family component can 

be defined as the expected value of the subject’s genotype within the family and can be 

constructed as the average of the parents’ genotype or the average of the siblings’ genotype. The 

within-family component is the deviation of the observed genotype from the between-family 

component. While the between-family component is sensitive to population stratification, the 

within-family component is robust to stratification since its based on a family-specific deviation. 

Utilizing a kernel-machine regression (KMR) framework for multi-marker analysis of familial 

quantitative phenotypes (Schifano, et al. 2012, Chen, et al. 2013), Jiang et al. (2014) created a 

robust rare-variant test by replacing observed sample genotypes in the standard KMR with their 

corresponding within-family genotypic components. Simulation results demonstrated the 
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approach yielded appropriate type-I error even when strong confounding existed within the 

sample. As with other KMR approaches, the Jiang et al. (2014) approach derived p-values 

analytically using Davies’ (1980) method, thereby allowing easy application to large scale 

sequencing studies.  

The work of Jiang et al. (2014), like many other existing methods, can only be applied to 

parent-child trios and nuclear families. Robust and powerful methods for extended pedigrees that 

include 2nd or 3rd degree relatives like grandparent/grandchild and first cousins are lacking in the 

literature. Large pedigrees have unique features that make them ideal for mapping traits 

associated with rare variants. Compared to nuclear families or trios, rare variants are further 

enriched in large pedigrees (Wijsman 2012). It has been shown that large pedigree studies have 

increased power compared to smaller families with the same total number of samples, especially 

for rare-variant sequencing data (Wijsman and Amos 1997, Simpson, Justice et al. 2011, Wilson 

and Ziegler 2011). In addition to improved power, analysis of large pedigrees can provide 

evidence for both co-segregation and association, while population based studies can only 

provide evidence for association (Laird and Lange 2006, Wijsman 2012, Ott, Wang et al. 2015). 

Further, the study of large pedigrees provides a cost-effective strategy for rare-variant analysis as 

it enables in silico imputation of rare-variant genotypes in non-sequenced subjects using 

information from sequenced relatives coupled to knowledge of inheritance flow (Wijsman 2012, 

Cheung, Blue et al. 2014). With a large pedigree-based study design, researchers can also 

combine sequencing-based association studies with linkage analyses (Ott, Wang et al. 2015). 

Recent research has identified rare variants associated with several diseases or traits like 

hyperkalemic hypertension (Louis-Dit-Picard, Barc et al. 2012), spinocerebellar ataxias (Wang, 

Yang et al. 2010), hypolipidemia (Musunuru, Pirruccello et al. 2010), and lithium-responsive 



 45 

bipolar disorder (Cruceanu, Ambalavanan et al. 2013) by combining association and linkage 

approaches.  

 In this paper, we expand on the work of Jiang et al. (2014) to allow robust rare-variant 

analysis of quantitative traits within general pedigrees of arbitrary size and structure. To do so, 

we employ a modified QTDT framework for extended pedigrees developed by Abecasis et al. 

(2000b) that uses information from all genotyped family members to construct a more 

informative between-family genotypic component. We then derive the within-family component 

for each genotype and integrate this information within the KMR framework of Schifano et al. 

(2012) to obtain a rare-variant test that is robust to population stratification. In the following 

sections, we will first introduce our study setting, followed by how we use the QTDT framework 

to decompose genotype information to obtain a robust within-family component. We then show 

how to integrate this information within a KMR framework to yield our robust test. We will also 

describe how we can improve the power of our robust test by pre-screening potential trait-

influencing genes using genotype and phenotypic information from founders across families. 

Such founder information is orthogonal to the within-family information used in our proposed 

test. We then evaluate our method using both simulation studies and sequencing data from a 

study of systolic and diastolic blood pressure (SBP and DBP) provided by the Genetic Analysis 

Workshop 18 (GAW18). 

 

 

 

2. Materials and Methods 

3.2.1 Study Design and Notation:  We assume a family-based study consisting of N 

families, where each family consists of a large pedigree. While we use Figure 3.1 as an example 
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here to show the structure of the large pedigree, our method can be applied to any family 

structure and can accommodate any family size. Suppose there are s rare variants in a gene of 

interest, and let 𝑮𝑖𝑗, a  vector, represent the genotypes of the s rare variants for the jth 

(j=1,2…,ni) individual in the ith (i=1,2…N) family. We assume an additive model, and let 

components in 𝑮𝑖𝑗 take the value of 0, 1, 2, indicating the number of copies of minor alleles at 

each site.  If an individual is not genotyped, then we leave 𝑮𝑖𝑗 undefined. Let Xij, a  vector, 

denote the covariates, and denote Yij as the value of the quantitative outcome for the jth individual 

in the ith family. For non-founders (defined as individuals with ancestors included in the 

pedigree, e.g. individuals 5,6,7,8,9,10 in Figure 3.1), let Mij and Fij be the index of mother and 

father of jth individual in the ith family respectively.  For founders (defined as individuals with no 

ancestors in the pedigree, e.g. individuals 1,2,3,4 in Figure 3.1), we leave Mij and Fij undefined. 

3.2.2 KMR Framework for Pedigree Data: We create our robust rare-variant association 

test for a quantitative trait based on the KMR test of Schifano et al. (2012) and Chen et al. (2013) 

for association testing of a group of genetic variants with a continuous phenotype allowing for 

related individuals. As shown by these authors, the KMR test can be implemented in a linear 

mixed-modeling framework with mean and variance defined through the model: 

𝑌𝑖𝑗 = 𝑿𝑖𝑗
𝑇 𝛼 + ℎ(𝑮𝑖𝑗) + 𝑓𝑖 + 𝜖𝑖𝑗 (1) 

where is a c×1 vector of coefficients for Xij, is the random effect to account for within 

family correlation, and  is the random error term. We further assume that the random effects 

within a family, , follow a multivariate normal distribution . Here is 

the kinship matrix for the ith family, elements in represent the kinship coefficients between 

s´1

c´1

a fij
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subjects in the ith family, and represents the variance due to the shared polygenic effect. We 

also assume that the random effect  is normally distributed with mean 0 and variance .   

 Within equation (1) above, ℎ(𝑮𝑖𝑗) is a function of 𝑮𝑖𝑗 defined through a positive semi-

definite kernel function . It is worth noting that the kernel function, 𝐾(𝑮𝑖𝑗 , 𝑮𝑖′𝑗′), measures 

the genetic similarity between subject j in family i and subject j’ in family i’ and contrasts this 

similarity to phenotypic similarity between the two subjects. It has been shown that appropriate 

choice of the kernel can increase the power (Wu, Lee et al. 2011). Frequently used kernels 

include the identity-by state (IBS) kernel or the linear weighted kernel. The IBS kernel, which 

takes the form 𝐾(𝑮𝑖, 𝑮𝑖′) = ∑ (2 − |𝐺𝑖𝑗 − 𝐺𝑖′𝑗|),𝑠
𝑗=1  measures the genetic similarity as the 

number of alleles that share by state. It assumes a nonlinear effect of each rare variant and can 

thus enable the study of epistatic effects. The linear weighted kernel, on the other hand, assumes 

a linear relationship between the trait and the variants. The kernel takes the form 𝐾(𝑮𝑖, 𝑮𝑖′) =

∑ (𝑤𝑗𝐺𝑖𝑗𝐺𝑖′𝑗′)𝑠
𝑗=1 . Prior knowledge of the gene can be incorporate by assigning each variant a 

weight. If prior knowledge is not available, weights can also be calculated as a function of minor 

allele frequency. Wu et al. (2011) suggests calculating the weights based on a beta distribution, 

which assigns greater weight to less frequent variants.  

 It can be easily shown that the estimator of h takes the same form as in the linear mixed 

model with h as a random effect (Liu, Lin et al. 2007, Schifano, Epstein et al. 2012):  

 .       (2) 

Thus, the test of whether genotype is associated with the outcome is equivalent to testing 

whether the random component h equals 0 or not. We adopted the variance component score test, 

which is the locally most powerful test (Lin 1997). For the random effect h, it follows an 

arbitrary distribution with mean 0 and variance K. As a result, the test of whether h=0 is 
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equivalent to testing whether = 0.  The null hypothesis is H0: , and the test statistic takes 

the form: 

                                       ,                                       (3) 

where all parameters are estimated under the null hypothesis. To obtain the null distribution of 

Q, we define a projection matrix , such that . Thus, 

under the null, we have 

                                            
,                                                      (4)     

where are eigenvalues of , here . As 

 are independently and identically distributed random variables, Q is distributed as an 

asymptotic mixture of chi-square distributions, and the p-values can be calculated using the 

Davies method (Davies 1980).  

3.2.3 QTDT Framework for General Pedigrees: In the presence of population 

stratification, association testing of Gij
 
with Yij in models (1) and (2) may lead to spurious 

association due to the underlying differences in allele frequencies of the sub-populations. 

However, for family studies, family members can be used as internal controls, where an expected 

genotype can be constructed using the family members’ information. Tests based on the within-

family component (deviation of observed genotype from expected within family) will not be 

influenced by population structure, even in the most extreme case, where each of the N pedigrees 

is drawn from a different population. Here, we leverage the work of Abecasis et al. (Abecasis, 

Cookson et al. 2000) and present the method to calculate transmission scores for individuals in 

general pedigrees.  
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The QTDT framework (Abecasis, Cardon et al. 2000) for general pedigrees decomposes 

a genotype into a between-family component (which is sensitive to population stratification) and 

a within-family component (which is robust to population stratification). For relative j in family 

i, let Bij and Wij denote vectors of between-family and within-family genotype components for 

the s rare-variant genotypes in Gij.  Assuming all parents in the pedigree are genotyped, the 

between-family component for founders (with no ancestors included in the pedigree) will be 

equal to their observed genotypes, while the between-family component for non-founders at each 

rare-variant genotype is equal to the average genotype of the between-family components of that 

individual’s parents: such that 𝑩𝒊𝒋 =
𝑩𝑴𝒊𝒋

+𝑩𝑭𝒊𝒋

𝟐
. Using the pedigree in Figure 3.1 as an example, 

suppose all the individuals in the pedigree are genotyped.  Suppressing the family index for ease 

of presentation, the between-family components for founders 1, 2, 3, 4 are B1=G1, B2=G2, 

B3=G3, B4=G4 respectfully. For the non-founders in the second generation, the between-family 

component for individual 5 is 𝑩𝟓 =
𝑩1+𝑩2

𝟐
, and between-family component for 6 is 𝑩𝟔 =

𝑩𝟑+𝑩𝟒

𝟐
. 

For the non-founders in the third generation, the between-family components for individual 7, 8, 

9, and 10 are 
𝑩5+𝑩6

2
=

𝑩1+𝑩2+𝑩3+𝑩4

4
. It can be seen that, in the situation where all founders are 

genotyped, the between-family component of any non-founder is calculated as: 

        𝑩𝑖𝑗 = ∑ 2𝜑𝑖𝑓𝑮𝑖𝑓𝑓∈𝐹 ,       (5) 

where in the ith family, f is the index of founders, Gif  is the rare-variant genotype vector of the 

founder, is the kinship coefficient between individual j and founder f, and F is the set of all 

the genotyped founders.  

In the situation where the parents’ genotypes are missing, the between-family component 

Bij is equal to the average of the genotypes for all sibling of relative j. For example in Figure 3.1, 

jijf
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if individuals 5 and 6 are not genotyped, then the between-family component for individuals 7, 8, 

9, and 10 is 
𝑮7+𝑮8+𝑮9+𝑮10

4
. The average of genotypes of siblings in the family is the sufficient 

statistic for the between-family component (Abecasis, Cardon et al. 2000).  

The within-family genotype vector for the s rare-variant genotypes Wij is then calculated 

as the difference between the observed genotype vector and the between-family genotype vector: 

  𝑾𝑖𝑗 = 𝑮𝑖𝑗 − 𝑩𝑖𝑗 (6) 

Positive values within Wij indicate excess transmission of the minor (reference) allele, while 

negative values of Wij indicate excess transmission of the major allele. As discussed above, the 

within-family component is not influenced by population substructure; thus, the test on the 

within-family component is robust to population stratification.   

As discussed before, directly testing based on the observed rare-variant genotypes in 

models (1) and (2) will lead to spurious association in the presence of population stratification. 

For our robust test, we follow the same approach as in our earlier work (Jiang et al., 2014) and 

simply calculate Wij as described above, replace Gij with Wij in equations (1) and (2), and 

construct our score statistic Q in (3) using Wij. 

3.2.4 Screening Methods: Although the within-family component has the advantage of 

robustness to population stratification, constructing tests based only on the within-family 

genotypic component while ignoring the between-family component reduces power. However, if 

founders’ phenotype and genotype data are available, we can borrow the idea of Purcell et al. 

(Purcell, Sham et al. 2005) to implement a screening procedure to potentially increase power. 

Specifically, we use the founders’ phenotype and genotype information in the first stage to 

identify those regions showing strongest signals of association. We can perform such testing 

using standard burden or variance-component tests for unrelated subjects. We then implement a 
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second stage where we test only the top regions from the first stage using our proposed test in (3) 

based on the within-family genotypic component; The number of top regions in the second stage 

can take a value between 1 and the total number of regions. In this project, we assume 10%-50% 

of the regions enter the second stage. By pre-screening in this manner, we reduce the multiple-

testing burden for our robust test thereby increasing power. As the within-family component and 

the between-family component are orthogonal to each other by design (Abecasis, Cookson et al. 

2000), population stratification that can invalidate the first-stage analysis using founders will not 

invalidate the within-family component test.  

3.2.5 Simulation Studies: We evaluate type 1 error rate and power of our method using 

simulated sequencing data generated by cosi (Schaffner, Foo et al. 2005), which has high 

resemblance with empirical data. To simulate large pedigrees, we first use cosi to simulate 5000 

haplotypes of European ancestry and 5000 haplotypes of African ancestry. We then randomly 

draw and pair haplotypes within each population and randomly select one haplotype from each 

parent to pass down to offspring. Our simulated pedigree has the same structure as Figure 3.1. 

We assume that there are 10 non-overlapping regions of interest, each 30kb long.  

For each family, we simulate phenotype data from a multivariate normal distribution, 

whose mean and variance vary according to different scenarios.  For type I error rate simulations, 

all 10 regions are null, while for power simulations we randomly select one region of the 10 to 

harbor causal variation. Rare variants are defined as variants with minor allele frequency (MAF) 

smaller than 3%. To simulate population substructure, we simulate the outcome for the null 

model as: , where is the mean trait difference between European and 

African, and is the indicator variable, which is 1 for African individuals and 0 for 

European individuals. For the power simulations, we let either 5% or 15% of the rare variants in 

Yij = g IAfrican, ij + fij + eij g

IAfrican,ij
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the causal region  influence phenotype. For each causal variant, we define the effect size as 

, where c is a pre-defined constant. Thus, the outcome is simulated as 

. 

3.2.6 GAW18 Data: The Genetic Analytic Workshop 18 (GAW18) provides whole 

genome sequence data for extended pedigrees and phenotypes such as systolic blood pressure 

(SBP) and diastolic blood pressure (DBP). The dataset was drawn from the T2D-GENES 

Consortium Project 2; a family-based study that aims to identify low-frequency variants that 

increase the risk of type-2 diabetes.  The original dataset contains whole genome sequences for 

the odd numbered chromosomes only (chromosomes 1, 3, 5,…,21) for 464 individuals from 20 

Mexican American families. The dataset we used in this project contains 959 individuals. 464 of 

them were directly sequenced by Complete Genomics Inc, while the remaining 495 had sequence 

data imputed from array-based genotype data by the T2D-GENES Consortium. In addition to 

SBP and DBP, the dataset also includes information on age, gender, current use of 

antihypertensive medicine, and current smoking status. We include these phenotypes as 

covariates in our model. Detailed information about the dataset can be found at Almasy et al. 

(Almasy, Dyer et al. 2014)  

 After standard data cleaning procedure removed subjects with missing SBP or  

DBP measurements, our final dataset contained 855 individuals. Genes were annotated using 

information from the 1000 Genome Project (http://www.1000genomes.org/). We tested all genes 

in the 11 odd-numbered chromosomes, where each gene was tested individually. For each gene, 

we calculated the empirical frequency of the variants within the gene and only performed tests 

on the rare variants, where a rare variant was defined as having a minor-allele frequency (MAF) 

b = c´ | log10MAF |

		
Y

ij
=g I

African ,ij
+b

ij
´G

ij
+ f

ij
+e

ij
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less than 3%. We constructed the test statistics using within-family components as defined 

above.  

 

3.3. Results 

   3.3.1 Type I Error: We first performed null simulations to show that population 

stratification can lead to inflated type I error rate for sequencing studies of large pedigrees. 

Figure 3.2 summarizes the empirical type I error rates of a study with 25 European pedigrees and 

75 African pedigrees, each with the same size and family structure as shown in Figure 3.1. We 

first set the mean trait difference ( ) between European and African to be 1 (Figure 3.2 Left) 

and further increased it to 2 (Figure 3.2 Right). Both figures show that in the presence of 

population stratification, test statistics constructed on observed genotype have inflated type I 

error rates (yellow bars in Figure 3.2). As population structure becomes more extreme, the 

inflation becomes more severe (Figure 3.2 Right). We then performed tests based on our robust 

test statistics based on our two-stage screening procedure using founders’ genotypes and 

phenotypes. Figure 3.2 shows that testing on the within-family component combined with the 

screening method leads to appropriate control of the type I error rate in the presence of 

population stratification.  

3.3.2 Power: We next examined power of the proposed robust test. For power 

simulations, we assume the mean trait different between European and African is 0.25. For each 

simulation, we randomly drew 25 European pedigrees and 75 African pedigrees from the 

haplotype pools. We varied the percentage of rare causal variants in the causal region from 5% 

(Figure 3.3a) to 15% (Figure 3.3b). We also assumed different effect sizes ( ) 

for the causal variants by letting c take the values 0.4, 0.5, and 0.6. Figure 3.3 shows that power 

g

b = c´ | log10MAF |
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increases as the percentage of causal variants in a region increases and as the effect size 

increases. We next investigated whether the two-stage screening approach using founder 

information improves power over a within-family analysis that ignores screening. As shown in 

Figure 3.3, screening on the top 10%-50% of hits can yield noticeable improvements in power 

over the naïve strategy.  

 3.3.3 Application to GAW18 Dataset: We used GAW18 data to test for association 

between DBP/SBP and genes on odd chromosomes. Within each gene, we calculated empirical 

frequencies of variants and only tested on variants with frequencies smaller than 3%.  GAW18 

provides longitudinal phenotype information, where SBP and DBP were measured in up to four 

follow-ups for each subject. We used the baseline measurement to test for association. We also 

controlled for age, gender, current usage of anti-hypertensive medicine, and current smoking 

status in our model. The pedigrees are relatively large in the dataset. The median number of 

individuals in a pedigree is 37 (min 22, max 74). Among the participants, 20.2% of them smoke, 

9.4% took medicine, and 57.7% of them are female.   

We performed association tests using our robust test. The genome-wide significance level 

with Bonferroni correction is: 𝛼𝐵𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖 = 0.05/7034 =7.1×10-6. We chose the linear 

weighted kernel and used the Davies method to calculate p-values. Following Wu et al. (2011), 

the weight is calculated as 𝑤𝑗 ∼ 𝐵𝑒𝑡𝑎(𝑀𝐴𝐹𝑗 , 1,25). The results of testing SBP and DBP are 

summarized in Figure 3.4. As shown in Figure 3.4, we did not observe any genes passing the 

genome-wide significance level (7.1×10-6, based on Bonferroni adjustment for 7034 genes). At 

the suggestive level (1×10-4), one gene on chromosome 21is associated with SBP, and one gene 

on chromosome 7 is associated with DBP. The gene associated with SBP is open reading frame 

33 (C21orf33), which is a protein-coding gene and is over-expressed in Down Syndrome 
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(Yahya-Graison, et al. 2007). LSM5 is associated with DBP at the suggestive level. It has been 

found that human LSM1 to LSM7 genes were expressed in Hela cells within cytoplasmic foci 

(Ingelfinger et al., 2002), which contains important factors in the degeneration of mRNA. 

 

 

3.4. Discussion  

In this paper, we presented a framework for rare-variant sequencing studies in large 

pedigrees. Large pedigrees have several important features that make them ideal for finding traits 

associated rare variants. Our model, which combines a kernel machine framework for rare-

variant analysis with a QTDT framework for general pedigrees, provides a powerful, efficient, 

and robust way to identify such associations in large pedigree studies. As the test score statistics 

follows an asymptotically mixed chi-square distribution, the calculation of p-values is much 

easier compared to other methods. This feature also makes our model applicable to large-scale 

genetic studies.  

We also applied our method on GAW 18 data to identify SBP/DBP associated rare 

variants. We tested all the genes on odd numbers of chromosomes. This application gives an 

example that our method can be easily applied to large-scale data. The analysis of a gene takes 

70 seconds on a 768 processors running Linux OS with 512 GB or RAM. 

The data from GAW18 are based on 20 extended Mexican-American families. For studies that 

do not have records of participants’ geographic origin or studies whose participants are from 

different origins, our method provides a robust way to perform the test. 

In this project, we assumed that rare variants only associated with a single phenotype. 

However, there is substantial interest in identifying genetic factors with pleiotropic effects that 
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influence multiple distinct phenotypes. Current methods for family data are not well equipped to 

investigate the effect of pleiotropy. For example, while analyzing GAW18 data, analyses seeking 

to identify genes simultaneously associated with both SBP and DBP cannot be performed. 

However Broadaway et al. (2016) provide a framework that can test cross-phenotype effects of 

rare variants. Their method is based on kernel distance-covariance, whose test statistics also 

asymptotically follow a mixed chi-square distribution. In contrast to our method presented here, 

Broadaway et al. focused only on unrelated individuals. In the future, we would like to combine 

our robust test with the method of Broadaway et al. (2016) to test cross-phenotype effects of rare 

variants in related individuals. 
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Figure 3.1. Pedigree Structure 
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Figure. 3.2. Type 1 Error Rates. Left: Mean trait difference between European and African 

is 1. Right: Mean trait difference between European and African is 2.  

10 30-kb regions are simulated. Yellow bar: Type 1 error rate tested on observed genotype. 

Others: Type 1 error rate tested on within-family component, with different number of 

genes at second stage. Black line: y=0.05 
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Figure 3.3 Power to detect rare-variant association in large pedigrees. Figure 3a: 5% of 

rare variants in the causal region are causal variants. Figure 3b: 15% of rare variants in 

the causal region are causal variants. Yellow bars: Power without screening. Others: Power 

with screening. Mean trait different between European and African is 0.25. 10-50% regions 

entered second stage.  
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Figure. 3.4. Manhattan plots for GAW18 analyses. Figure 3.4a: Association analyses 

between SBP and within-family component of genotypes within genes on odd number of 

chromosomes. Figure 3.4b: Association analyses between DBP and within-family 

component of within genes on odd number of chromosomes. Red line: Genome-wide 

significant level (p<7.1×10-6), Blue line: Suggestive significant level (p<1×10-4).  
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Abstract 

There has been increasing interest in identifying pleiotropic genes within the human genome that 

influence multiple diverse phenotypes. In the presence of pleiotropy, joint testing of these 

phenotypes is not only biologically meaningful but also statistically more powerful than 

univariate analysis of each separate phenotype accounting for multiple testing. While many 

cross-phenotype association tests exist, the majority of such methods assume samples comprised 

of unrelated subjects and therefore are not applicable to family-based designs, including the 

valuable case-parent trio design. In this paper, we describe a robust gene-based association test 

of multiple phenotypes collected in a case-parent trio study. Our method is based on the kernel 

distance covariance (KDC) method, where we first construct a similarity matrix for multiple 

phenotypes and a similarity matrix for genetic variants in a gene; we then test the dependency 

between the two similarity matrices. The method is applicable to either common variants or rare 

variants in a gene and resulting tests from the method are by design robust to confounding due to 

population stratification. We evaluated our method through simulation studies and observed that 

the method is substantially more power than standard univariate testing of each separate 

phenotype. We also applied our method to phenotypic and genotypic data collected in case-

parent trios as part of The Genetics of Kidneys in Diabetes (GoKinD) study and identified a 

genome-wide significant gene demonstrating cross-phenotype effects that was not identified 

using standard univariate approaches.    
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4.1 Introduction 

 

Pleiotropy has been an increasingly important topic in the genetic association literature 

since power may be gained by studying the joint influence of a single gene on multiple 

phenotypes (Solovieff, Cotsapas et al. 2013, Kocarnik and Fullerton 2014). A pleiotropic effect 

occurs when a single molecular function affects multiple biological processes (He and Zhang 

2006). A large number of genes demonstrate pleiotropic effects: a 2011 review article examined 

NHGRI (National Human Genome Research Institute)’s catalog of common variants and found 

233 (16.9%) genes that were significantly associated with multiple traits (Sivakumaran, Agakov 

et al. 2011). The importance of studying genes or genetic variants with cross-phenotype effects 

also extends to secondary phenotypes. For example, diabetes studies typically measure Systolic 

blood pressure (SBP), diastolic blood pressure (DBP), high-density lipoprotein (HDL), body 

mass index (BMI) as secondary phenotypes. Joint analysis of these phenotypes not only provides 

biological insight but also increases effective sample size and subsequently improves power 

(Diggle 2002, Galesloot, Van Steen et al. 2014).  

While a variety of statistical methods exist for testing the association between genetic 

variants and multiple phenotypes (Zhao and Thalamuthu 2011, Maity, Sullivan et al. 2012, 

O’Reilly, Hoggart et al. 2012, Yang and Wang 2012, Guo, Liu et al. 2013, Schifano, Li et al. 

2013, Galesloot, Van Steen et al. 2014, Broadaway, Cutler et al. 2016), several limitations 

remain in this area. The majority of existing methods test association between individual genetic 

variants and multiple phenotypes.  However, gene-based tests that jointly consider multiple 

variants in a region of interest have several advantages over single marker tests. First, gene-based 

tests combine signals from variants within a gene together, which makes them particularly 

appealing for rare-variant sequencing studies where individual rare variants may be difficult to 
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detect. Second, gene-based tests can adopt dimension-reduction tools, such as kernel machines, 

to lower the multiple-comparison burden and accommodate complex relations between markers 

as well as non-linear effect between genetic variants and phenotypes. Several approaches have 

used gene-based testing to improve upon traditional single-marker tests but typically focused on 

a single phenotype rather than multiple phenotypes.  

To address this issue, Maity et al. (Maity, Sullivan et al. 2012) proposed a gene-based test 

of multiple phenotypes for common variants using multivariate kernel machine regression (MV-

KMR). As a multivariate version of kernel machine regression, the estimation of parameters in 

the model has the same form as multivariate linear mixed model.  Similar to other KMR methods 

(Epstein and Kwee 2007, Kwee, Liu et al. 2008, Wu, Kraft et al. 2010, Wu, Lee et al. 2011), they 

also adopted a variance-component score test to reduce multiple testing burden. However, 

limitations arise as the MV-KMR method 1) is only applicable to continuous traits 2) only allows 

linear correlations between phenotypes 3) requires computational intensive permutation 

procedures to calculate p-values. To tackle this issue, Broadaway et al. (Broadaway, Cutler et al. 

2016) proposed a method for gene-based testing of multiple rare variants using a kernel distance 

covariance (KDC) framework. Unlike the method of Maity et al., this method not only defines a 

similarity matrix among genetic variants in a gene but also defines a similarity matrix for 

phenotypes. The KDC framework then tests whether the individual elements of the phenotype 

similarity matrix are independent of the individual elements of the genotype similarity matrix. 

This method, called GAMuT, can accommodate both binary and continuous traits, and the test 

statistics asymptotically follows a mixture of chi-square distributions, which makes the 

calculation of p-value straightforward.  
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While the methods of Maity et al. (2012) and Broadaway et al. (2016) are valuable, they 

are also limited to studies of unrelated subjects. It would be useful to create a gene-based test of 

multiple phenotypes applicable to family designs, particularly the valuable case-parent trio 

design. An attractive feature of case-parent trio designs is that, by leveraging the QTDT 

framework (Abecasis, Cardon et al. 2000), one can create tests that by design are robust to 

population stratification. Population stratification occurs when samples originate from multiple 

populations with different disease prevalence and different distributions of minor allele 

frequencies. It can lead to power loss and substantially inflated type I error rates when left 

unaddressed (Epstein, Duncan et al. 2012, Jiang, Epstein et al. 2013).  

In this manuscript, we propose a novel gene-based test for cross-phenotype association 

testing in case-parent trio studies that is robust to population stratification. We base our approach 

on the kernel distance-covariance (KDC) framework utilized in the GAMuT test (Broadaway et 

al. 2016) but replace the observed genotype information in that test with robust within-family 

genotypic information derived from the QTDT framework (Abecasis et al. 2000). In the 

following sections, we will first introduce how we construct our test statistics using the KDC 

framework and how we make these statistics robust to population stratification through 

incorporation of a QTDT framework. We evaluate our method using simulations and further 

compare results of our method with gene-based testing of univariate phenotypes. We will also 

apply our method to a real GWAS case-parent trio study of type 1 diabetes-related phenotypes 

collected by The Genetics of Kidneys in Diabetes (GoKinD) study. Finally, we will conclude 

with a summary of our findings and discussion of future extensions.  
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4.2 Materials and Methods 

 

4.2.1 Notation 

We assume a sample of N case-parent trios (parents and offspring) that are genotyped in a 

gene or region of interest and are measured for multiple phenotypes. Let Yi = (Yi1, Yi2… YiL) 

denote the L phenotypes for the offspring in family i, where i=1,2,…N. Let Gi = (Gi1, Gi2,… GiS), 

an S×1 vector, denote the S genotyped variants for the same offspring, where Gis is coded as 

number of minor alleles that the offspring possesses at site s. The variants in the gene can consist 

of either common variants (Kwee et al. 2008) or rare variants (Wu et al. 2011) We further define 

Xi = (Xi1, Xi2,… XiC) as a C×1 vector of covariates for the offspring. Let Y=(Y1, Y2,…,YN)T 

denote the N x L matrix of offspring phenotypes in the dataset and let G=(G1, G2,…,GN)T denote 

the N x S matrix of offspring genotypes.  

4.2.2 Kernel Distance Covariance Test of Independence 

 

We wish to create a robust association test between phenotypes Y and gene-based 

genotypes G for case-parent trios using the Kernel Distance Covariance (KDC) framework 

(Gretton, Fukumizu et al. 2007). To do this, we leverage the work of Broadaway et al. (2016), 

who showed how to create such a KDC-based test (Gene Association with Multiple Traits, 

named “GAMuT”) for gene-based testing of multiple phenotypes in population-based studies. 

We derive their approach first and then discuss how we leverage their work to develop the robust 

test of cross-phenotype effect for case-parent trio studies 

The GAMuT test of Broadaway et al. (2016) is based on the independence test between 

kernels on reproducing kernel Hilbert spaces (RHKS) first introduced by Bach et al. (Bach and 

Jordan 2002). For Hilbert spaces, Bach et al. showed that the canonical correlation of two kernels 

equals zero if and only if the two variables are independent. Based on this finding, Gretton et al. 
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(Gretton, Fukumizu et al. 2007) extended the test to use the Hilbert-Schmidt norm as a measure 

to test the independence between two kernels. The advantages of their method are: 1) the 

calculation is straightforward and computational complexity is proportional to the square of 

sample size, which is appealing for high-dimensional genomics data, and 2) the test statistics 

asymptotically follow a mixture of chi-square distributions, which makes the calculation of p-

value efficient to derive. These characteristics make KDC ideal for testing independence 

between a kernel similarity matrix based on multiple phenotypes, Y and a kernel similarity 

matrix based on multiple variants in G, the gene/region of interest.  

Based on these findings, Broadaway et al. (2016) first constructed a similarity matrix 

between phenotypes (Y) and a similarity matrix between genotypes (G), and then tested for 

dependency between the two similarity matrices. Let P denote the phenotype similarity matrix, 

where commonly used similarity methods to construct P include the construction of a projection 

matrix (P=Y(YTY)-1YT (Wessel and Schork 2006)) or linear kernels (P=(Yij,Yi’j’)=∑ 𝑌𝑖𝑗𝑙𝑌𝑖′𝑗𝑙
𝐿
𝑙=1 ). 

Let K denote the genotype similarity matrix, where commonly used methods to construct K 

include construction of an IBS kernel (K(𝐺𝑖, 𝐺𝑗) = ∑ 𝐼𝐵𝑆(𝐺𝑖𝑠, 𝐺𝑗𝑠)/2𝑆𝑆
𝑠=1 , 𝐼𝐵𝑆(𝐺𝑖𝑠, 𝐺𝑗𝑠) 

calculates the number of alleles shared identical by descent for subject i and j at the sth variant) 

or weighted linear kernel (K=GTGT, where T=diag(weight1, weight2,…..weights)
T is a diagonal 

matrix with relative weight for each variant on the diagonal) (Wu, Kraft et al. 2010). Choice of 

kernels depends on prior assumptions of the relationships between phenotypes or genotypes; 

appropriate choice of the kernel can increase power (Kwee, Liu et al. 2008, Schaid 2010, Wu, 

Kraft et al. 2010).  

The GAMuT test of Broadaway et al. (2016) is based on the test of Bach et al (Bach and 

Jordan 2002) which relies on centered kernels for inference. Therefore we further define a 
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centering matrix 𝐇 = (𝐈 − 1𝑁1𝑁
𝑇 /𝑁) (Schölkopf, Smola et al. 1998) , where I is a N dimensional 

identity matrix and  1𝑁 is a N×1 vector of 1, such that Kc=HKH and Pc=HPH are centered 

matrices. Following the above notation, GAMuT is constructed as  

                                          𝑄 =
1

𝑁
𝑡𝑟𝑎𝑐𝑒(𝐊𝐇𝐏𝐇).                                                 (1) 

Under the null hypothesis of no association, the test statistic follows the asymptotic 

mixed chi-square distribution defined as 
1

𝑁2
∑ 𝜆𝑃𝑐,𝑚𝑚,𝑛 𝜆𝐾𝑐,𝑛𝑧𝑚𝑛

2 , where 𝜆𝐾𝑐,𝑛 is the nth non-zero 

eigenvalue of Kc, 𝜆𝑃𝑐,𝑚is the mth non-zero eigenvalue of Pc , and zmn are independent and 

identical distributed standard normal variables. GAMuT uses Davies’ method (Davies 1980) to 

analytically calculate the p-value of the GAMuT, thereby avoiding the need for computationally 

expensive permutations for inference.  

 

4.2.3 KDC Test for Case-Parent Trios 

 

 As we discussed in the introduction, the limitation of the original GAMuT test based on 

KDC is it cannot be used to construct robust cross-phenotype association tests for use in case-

parent trio studies. To address this issue, we propose a robust modification of the GAMuT test 

statistic for trio data by integrating the QTDT (Abecasis, Cardon et al. 2000) framework within 

the KDC framework.  The QTDT framework decomposes the observed genotype of a trio 

offspring Gis into a between-family component, Bis, and a within-family component, Wis. Bis is 

calculated as the average genotype of the offspring’s parents, which can be viewed as the mean 

genotype of the founder’s sub-population and is thus sensitive to population stratification. The 

within-family component Wis is calculated as Gis- Bis. Because Wis can be viewed as the deviate 

from the sub-population mean, it is thus robust to population stratification. Thus, to create a 

robust gene-based test of multiple phenotypes for use in case-parent trios, we first use parental 
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genotypes to calculate Bis and Wis for each variant in the gene and then replace G with W in the 

construction of K.  By doing this, our resulting test is robust to population stratification.  

 

4.2.4 Simulations 

 

We first evaluate the type I error rate and power of our method using simulated data. For 

each simulation, we use the coalescent simulator cosi (Schaffner, Foo et al. 2005) to simulate a 

pool of 5000 European haplotypes and 5000 African haplotypes, each 30kb long. Cosi uses a 

coalescent model to simulate haplotypes based on empirical patterns of genetic variation 

observed in different ancestral populations. To simulate sequencing data for trios, we first 

randomly select haplotypes within each population and pair them for the father and mother of the 

trio. We then randomly select one haplotype from each parent to form the offspring’s haplotypes. 

In order to examine whether our method is robust to population stratification, we assume the 

sample consists of 75% trios of African origin and 25% trios of European origin. We further 

assume the mean trait difference between European and African subjects is 0.3 (R2: 0.69). We 

consider tests both of common variation as well as rare variation in a gene. Rare variants are 

defined as variants with minor allele frequency less than 3%. Common variants are defined as 

variants with minor allele frequency greater than 5%.  

 

For type I error rate simulation, we assume 6 phenotypes are recorded, and the residual 

correlation among them follows a multivariate normal distribution with pairwise-trait correlation 

sampled from a uniform distribution (0,0.3). To examine the robustness of our model to 

confounding due to population stratification, we assume 2, 4, or 6 phenotypes are affected by 

population stratification. We constructed the test both using the observed genotype information 

(corresponding to the GAMuT test) and just using the robust within-family component.  
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For power simulations, we also assume 6 phenotypes are recorded. As discussed in 

Kocarnik et al. (Kocarnik and Fullerton 2014), pleiotropy involves both highly correlated 

phenotypes and phenotypes that are very diverse. To simulate this, we again assume that 

phenotypes follow a multivariate normal distribution but that the pairwise trait correlations are 

drawn from a uniform distribution.  We separately consider scenarios reflecting low correlation 

(pairwise correlation of phenotypes drawn from a uniform distribution with bounds (0,0.3), 

medium correlation (0.3,0.5), or high correlation (0.5,0.7). We also varied the number of 

phenotypes that are truly associated: we assume either 2 or 4 of the 6 phenotypes are associated 

with the causal variants in the region. For the rare variants test, we assume that 5% of rare 

variants in the region are causal. For each causal variant, we simulated the effect as 𝛽 = (0.4 +

𝑁(0,0.1)) × |𝑙𝑜𝑔10
𝑀𝐴𝐹| such that less frequent alleles have larger effects on the outcome (Wu, 

Kraft et al. 2010). For the common variants test, we assume that 5% of common variants in the 

region are causal. For each causal common variant, we assume a fixed effect where 𝛽 = 𝑙𝑜𝑔𝑒
1.5. 

We compare our method with RF-KMR, a robust univariate gene-based test of a continuous 

phenotype using within-family information (Jiang, Epstein et al. 2013) that does not consider 

multiple phenotypes simultaneously. As RF-KMR tests each phenotype individually, it is 

necessary to adjust for the 6 tests performed. As the phenotypes are correlated, direct application 

of the Bonferroni correction will be conservative. We instead calculate the number of effective 

tests, Leffective, as the number of principal components able to explain 90% of the variance of 

phenotypes. We then calculate the adjusted threshold as 𝛼𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = 𝛼/𝐿𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒. Compared to 

traditional Bonferroni correction, this threshold will achieve appropriate Type I error rate and 

increased power.  
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4.2.5 GoKinD Data Analysis 

As a real-data application example, we applied our method to common variants from a case-

parent trio GWAS study of type 1 diabetes from the GoKinD study(Mueller, Rogus et al. 2006, 

Pezzolesi, Poznik et al. 2009). While GoKinD was initially designed to identify genes associated 

with diabetic nephropathy in type 1-diabetes patients, the study collected additional phenotypes 

that can potentially provide more insights in this line of research, such as systolic blood pressure 

(SBP), diastolic blood pressure (DBP), high-density lipoprotein (HDL), and body mass index 

(BMI). The study made available phenotype and genotype data on 584 parent-offspring trios on 

dbGaP (phs000018.v2.p1 and phs000088.v1.p1). All subjects were genotyped using the 

Affymetrix Mapping 500K array. We used the annotation file from the 1000 Genomes Project to 

identify common SNPs that fell within known genes. After excluding genes with less than two 

common variants, 9,647 genes and 131,366 SNPs were included in our analysis. We used our 

novel cross-phenotype test to test the association between the 9647 genes and SBP, DBP, HDL, 

BMI. We also adjusted for important covariates in our model: gender, age, renal function status 

(proteinuric, dialysis, renal transplant or other), smoking status, insulin intake (yes or no), anti-

hypertension drug intake (yes or no), lipid lowering medication intake (yes or no). We applied 

both our method and univariate RF-KMR testing to the dataset.  

  

4.3 Results 

 

4.3.1 Type I error rate 

 

We first applied our method to 10,000 simulated datasets that were subjected to 

confounding. For each simulation, we sampled 500 trios (125 European and 375 African) from 

the pool of 10,000 simulated haplotypes. We constructed the test statistics using both the 
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observed genotype (sensitive to population stratification) and the (robust) within-family 

component.  We chose the weighted linear kernel to form the genotype similarity matrix, where 

weight was generated through the beta distribution density function evaluated at the minor allele 

frequency: weight~beta(MAF, 1, 25) (Wu, Lee et al. 2011). We further chose the projection 

matrix to form the phenotype similarity matrix.  

We summarized type I error rates using Quantile-Quantile (q-q) plots in Figure 4.1 (rare 

variants) and Figure 4.2 (common variants). In the presence of population stratification, the 

distribution of p-values for the GAMuT test of observed genotypes significantly deviated from 

the expected uniform distribution (top panels of Figures 4.1 and 4.2). As more phenotypes are 

affected by stratification, the deviation becomes more extreme. However, our method (bottom 

panels of Figure 4.1 and 4.2) yields the expected distribution of p-values under the null under all 

circumstances, suggesting that the correct type I error rate is achieved at all significance levels.  

 

4.3.2 Power 

 

Our type I error rate simulations showed that our method using the within-family 

component is robust to population stratification. In this section, we will evaluate the power of 

our method and compare the results with the robust univariate test, RF-KMR (which is the 

within-family KMR method of Jiang et al. (2014)). We applied our method to 5,000 simulated 

datasets. Similar to above, each simulation sampled 500 trios (125 European and 375 African) 

from the pool of haplotypes.   

 As described in Methods, we simulated such that 5% of rare variants in the region were 

causal and we varied the number of phenotypes associated with the causal variants. We use the 

project matrix as the phenotypic similarity matrix and weighted linear kernel as genotypic 

similarity matrix, where weight~Beta(MAF,1,25). Simulation results are summarized in Figure 
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4.3. Under all circumstances, our method (orange bars) outperforms univariate kernel machine 

regression (green bars). Our method can capture the correlation between phenotypes: power 

increases as correlation between phenotypes increases (Figure 4.3, left to right), while the 

univariate test cannot exploit this information. Power also increases as the number of phenotypes 

associated with the outcome increases for weakly correlated phenotypes (Figure 4.3, left to 

right). For the common variants test, we also simulated such that 5% of common variants in the 

region were causal, but with an effect size (𝑙𝑜𝑔10
𝑀𝐴𝐹) smaller than that assumed for rare variants. 

We use the weighted linear kernel as genotypic similarity matrix, where the weight is calculated 

as 
1

√𝑀𝐴𝐹
 as suggested in Wu et al. (Wu, Kraft et al. 2010). For rare variant tests, we also observed 

that our method achieves higher power compared to the univariate test under all simulation 

settings (Figure 4.4).  

 

4.3.3 GoKinD Data Analysis 

Using genotype and phenotype data from the GoKinD study available from dbGaP (see 

Web Resources and Acknowledgements), we tested the phenotypes SBP, DBP, HDL, and BMI 

for association with common variants. We removed variants whose missing rate is larger than 

5%.  For each phenotype, we replaced missing values with the median value of the phenotype. 

The final sample consisted of 544 trios with genotypes on 131,366 common variants from 9647 

genes, with a median of 13.6 variants in each gene. We analyzed the data using our method, 

which tests all four phenotypes simultaneously, and the univariate RF-KMR method, which tests 

each phenotype individually. For both tests, we tried using both linear kernels and weighted 

linear kernels to form the genetic similarity matrix. We also adjusted for age, gender, renal 

function status, smoking status, insulin intake, anti-hypertension drug intake, lipid lowering 
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medication intake. To adjust for covariates in our method, we first regress each phenotype 

separately on the covariates, and then use the residuals from each regression to form the 

phenotype similarity matrix (linear kernel). We assume a Bonferroni-adjusted genome-wide 

significance level of 0.05/9647≈5×10-6, and a suggestive level of 5×10-4. As the RF-KMR 

method tests each phenotype individually, we adjusted for multiple testing through the following 

procedure: we first find the minimum p-value among the 4 tests, and then multiply it by an 

estimate of the effective number of tests (the number of principal components that can explain 

90% variation of the 4 phenotypes). This procedure is less conservative than Bonferroni 

correction, allowing for a fairer comparison between methods. We construct our test statistics 

using both the observed genotype and the robust within-family component. A QQ plot from the 

observed genotype test showed that there is no inflation in the test statistics (Supplementary 

Figure 4.1.). This is unsurprising, as over 96% of samples are white.  

We first formed the genetic similarity matrix using linear kernel and summarized the 

results in Manhattan plots and QQ plots (Figures 4.5 and 4.6). By utilizing information from the 

correlation between phenotypes, our method systematically yields smaller p-values than RF-

KMR. Using our method, we identified a gene Vacuolar Protein Sorting 41 (VPS41, containing 

47 SNPs in our data) on chromosome 7 that passes the genome-wide significance threshold 

(Supplementary Figures 4.2 and 4.3). We also formed the genetic similarity matrix using a 

weighted linear kernel, where weight is calculated as -𝑙𝑜𝑔10
𝑀𝐴𝐹and, for these weighted analyses, 

VPS41 nearly approached genome-wide significance.  
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4.4 Discussion 

In this paper, we introduced a method of identifying pleiotropic genes in related 

individuals. Our method is a gene-based method that can incorporate prior information about the 

gene and suits for testing both rare and common variants. The test is a non-parametric test based 

on KDC framework. The framework has several appealing features that make it ideal for high-

dimensional data as 1) the calculation of test statistic in very intuitive, 2) the test statistic follows 

an asymptotic distribution which makes the calculation of p-value very easy. Our method further 

incorporated QTDT framework with the KDC framework to make the model robust to 

population stratification and applicable to related individuals. We performed simulation studies 

on both the rare variants and the common variants; both studies showed that our method is robust 

to population stratification and processes more power comparing to the univariate test we 

previously developed. We will make the code available through the web resource 

(http://genetics.emory.edu/labs/epstein/software/). 

 

Applying our method to publicly available data from the GoKinD Study, we identified a 

gene not previously reported to associate with diabetes-related phenotypes (DBP, SBP, HDL, 

and BMI). VPS41 is a member of Vesicle medicated protein sorting family, which plays an 

important role in segregation of intracellular molecules into distinct organelles. Previous work 

has shown that VPS41 associates with class C VPS proteins to form the complete homotypic 

fusion and protein sorting (HOPS) compelx (Plemel, Lobingier et al. 2011).  Expression studies 

have shown that VPS41 is potentially involved in the formation and fusion of transport vesicles 

from the Golgi. 

 

http://genetics.emory.edu/labs/epstein/software/
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Our method tests on either rare or common variants in a gene. There is a growing interest in 

examining the combined effect of rare and common variants. Ionita-Laza et al. (Ionita-Laza, Lee 

et al. 2013) proposed such framework for the uni-variate test. In their paper, they constructed the 

combined test as the weighted sum of the test statistics from rare and common variants test, 

where the weight can be assigned using prior knowledge. It should be easy to incorporate their 

method into our framework to test the combined effect of rare and common variants on multiple 

phenotypes. 
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Figure 4.1 Q-Q plots of p-values for gene-based tests of rare variants with 6 null phenotypes 

using 10,000 simulations. Top panel: Tests on observed genotype. Bottom panel: Tests on 

within-family component. Left panel: 2 phenotypes affected by population stratification. Middle 

panel: 4 phenotypes affected by population stratification. Right panel: 6 phenotypes affected by 

population stratification 
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Figure 4.2 Q-Q plots of p-values for gene-based testing of common variants with 6 null 

phenotypes using 10,000 simulations. Top panel: Tests on observed genotype. Bottom panel: 

Tests on within-family component. Left panel: 2 phenotypes affected by population 

stratification. Middle panel: 4 phenotypes affected by population stratification. Right panel: 6 

phenotypes affected by population stratification 
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Figure 4.3 Power for gene-based testing of rare variants with 6 phenotypes. Orange bar: Power 

of cross-phenotype test using KDC. Green bar: Power of test using univariate RF-KMR with 

adjusted Bonferroni to correct for multiple comparisons. Left panel, 2 phenotypes associated 

with the causal rare variants. Right panel, 4 phenotypes associated with the causal rare variants. 

All tests are constructed using robust within-family component. The results are based on 5000 

simulations 
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Figure 4.4 Power for gene-based testing of common variants with 6 phenotypes. Orange bar: 

Power of cross-phenotype test using KDC. Green bar: Power of test using univariate RF-KMR 

with adjusted Bonferroni to correct for multiple comparisons. Left panel, 2 phenotypes 

associated with the causal rare variants. Right panel, 4 phenotypes associated with the causal rare 

variants. All tests are constructed using robust within-family component. The results are based 

on 5000 simulations 
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Figure 4.5 Cross-phenotype test on GoKinD data. Top: Manhattan plot for cross-phenotype test 

with linear kernel. Red line: genome-wide significance level. Blue line: suggestive level. 

Bottom: Quantile-Quantile Plot 
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Figure 4.6 RF-KMR test on GoKinD data. Top: Manhattan plot for cross-phenotype test with 

linear kernel. Red line: genome-wide significance level. Blue line: suggestive level. Bottom: 

Quantile-Quantile Plo 
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 Supplementary Figure 4.1. Quantile-Quantile Plot, test on the observed genotype, linear kernel.  
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Supplementary Figure 4.2. Cross-phenotype test on GoKinD data, weighted linear kernel. Top: 

Manhattan plot for cross-phenotype test with linear kernel. Red line: genome-wide significance 

level. Blue line: suggestive level. Bottom: Quantile-Quantile Plot  
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Supplementary Figure 4.3. RF-KMR test on GoKind data, weighted linear kernel. Top: 

Manhattan plot for cross-phenotype test with linear kernel. Red line: genome-wide significance 

level. Blue line: suggestive level. Bottom: Quantile-Quantile Plot  
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Chapter 5. Conclusions and Future Work 
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Next-generation sequencing studies continue to advance our knowledge of the genetic 

architecture of complex diseases and traits. Nevertheless, the complex and high-dimensional 

structure of next-generation sequencing data induces a variety of statistical challenges, 

particularly with regards to the analysis of rare trait-influencing variation. In particular, while a 

few methods have been proposed, methods for family-based studies of rare variants are greatly 

lacking in the literature. Our goal is to develop statistical methods that are suitable for studying 

related individuals and are both robust and powerful for detecting genes harboring rare trait-

influencing variation. To achieve this goal, we developed the following three methods described 

below.  

In the second chapter, we proposed a kernel-machine method for rare-variant sequencing 

studies in trios and nuclear families. Our method has the advantages of 1) substantially improved 

power comparing to the standard linear regression model 2) test statistics following an 

asymptotic distribution, which allows easy derivation of p-values (Davies 1980),3) insensitivity 

to situations where rare causal variants in a gene differ in their direction of effect, 4) robustness 

to population stratification through the integration of QTDT framework, and 5) two screening 

methods to boost power. We published our method in Genetic Epidemiology (Jiang, Conneely et 

al. 2014). The screening method proposed in our paper was subsequently adopted by other 

methodological research projects (Jiang, Ji et al. 2017). One limitation of our method in the 

second chapter is that our technique can only be applied to trios and nuclear families. As more 

studies tend to re-sequence subjects from larger pedigrees collected from previous linkage 

projects, we expanded our framework in the third chapter to create an extension of the method to 

permit analyses for general pedigrees that can accommodate arbitrary family size and structure.. 
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By calculating the between-family component using all founders’ information, the large-pedigree 

studies have the potential to improve power compared to nuclear family or trios.   

One direction where we can extend the methods created in chapters 2 and 3 is to modify 

the approach to handle binary outcomes in family-based rare-variant sequencing studies. Binary 

traits, such as schizophrenia, also tend to have increased genetic load in families, and thus are 

appealing to study under family-based designs. However, very few existing methods for family-

based studies can be applied to binary traits. Under the kernel machine framework, the logistic 

mixed model is difficult and computationally taxing to fit. Instead, we could use the generalized 

estimating equation (Wang, Lee et al. 2013)  framework  to rectify this issue. Another possible 

extension is to consider other weighting strategies for considering between-family and within-

family information in our testing procedure. In particular, we can consider an idea similar to 

Mirea et al. (Mirea, Infante-Rivard et al. 2012), who adopted a weighting strategy where the 

between-family and within-family contributions to a test statistic are weighted by a test of 

population-stratification bias. We will explore these ideas in future work. We will also ensure 

these methods possess the same important features of the methods in chapters 2 and 3: 

robustness to population stratification and flexibility regarding direction of effect of causal 

variants in the tested region of interest. 

In chapter 4, we developed a method for testing variants in genes that are pleiotropic and 

influence multiple diverse phenotypes using the kernel distance-covariance (KDC) framework. 

The KDC-based test statistics of our method are very easy to compute and follow a known 

asymptotic distribution. We applied our method both to simulated data and to GWAS data of 

multiple phenotypes from the GoKinD study of type 1 diabetes. Through simulation studies, we 

showed that our method is robust to population stratification and achieves higher statistical 
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power than univariate analysis of each separate phenotype accounting for multiple testing. In real 

data analysis, we identified the VPS41 gene to be associated with diabetes related phenotypes 

(Systolic blood pressure, diastolic blood pressure, high-density lipoprotein, body mass index, 

which has not been reported before. In the future, we would like to extend our method to test the 

combined effect of rare and common variants within a gene or region of interest.  The framework 

proposed by Ionita-Laza (Ionita-Laza, Lee et al. 2013) can be a possible direction for such 

extension. We plan to perform the KDC test on rare and common variants separately and then 

combine the test statistics through a weighted sum approach. Given that there is no cross-

phenotype test to examine the combined effect of rare and common variants, we believe this 

approach can fill an interesting gap in the literature.  
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