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Abstract

Extremal Optimization for Ground States of the Three-Spin Mean Field Spin Glass
By Ginger Lau

While the ground state energy of the p = 2 mean field spin glass has been analytically
obtained by Parisi, the analogous p = 3 spin glass has not yet been solved. Instead,
a variety of numerical methods, simulations, and heuristics have been developed to
approximate complex combinatorial optimization problems such as spin glasses. This
honors thesis project applied the extremal optimization (EO) heuristic to estimate
the ground state energy of the three-spin mean field spin glass. In this research, two
key modifications were made to the existing version of EO. First, multiple spins are
now flipped at each time step in a parallelized update scheme to increase efficiency.
Second, an auxiliary matrix is now used to hold intermediate fitness calculations and
reduce run duration. The heuristic contains two tuning parameters: t, total number of
update steps, and τ , a parameter to determine how many spins to flip once the system
reaches a local minimum. Values for these quantities were chosen to be t = (0.3)N3

and τ = 1.4. Applying the modified EO to system sizes up to N ≈ 100, the ground
state energy density of the three-spin mean field spin glass in the N → ∞ limit was
obtained to be ⟨e∞⟩ = −0.4708(1). This value is within a 0.001 error of previous
studies in the literature. The finite-N scaling correction was obtained to be ω = 4/5
through fitting methods.
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Chapter 1

Introduction

Optimization problems permeate physics, biology, computer science, business, and

many other fields. Whether in survival of the fittest or cost-benefit analysis, many

methods have been developed to find the optima of their respective systems. As the

complexity of a system increases, it becomes increasingly difficult to develop efficient

optimization schemes.

One combinatorial optimization problem in physics is determining the ground state

of a spin glass. These systems, characterized by geometric frustration, are therefore

difficult to solve for analytically. This research focuses on the Sherrington-Kirkpatrick

(SK) [19] spin glass model. In the SK model, spin orientation is binary. The model

can also be described as a p = 2 mean field spin glass, meaning that bonds describe

the relationship between exactly two spins. There exist two possible bond relations:

spins aligning in the same direction decrease the energy of the system, or spins with

opposite orientations decrease the energy of the system.

For the p = 2 mean field spin glass, an analytical solution was famously calculated

by Parisi [18] to be ⟨e∞⟩ = −0.7633. Many numerical methods have also been applied

to the spin glass problem, such as gradient descent [5, 10], simulated annealing [12], and

extremal optimization [7]. For the p = 3 mean field spin glass (one bond connecting

1
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three spins), an analytical solution has not yet been determined. However, numerical

studies [1] have obtained values of ⟨e∞⟩ = −0.46950(6).

In this honors thesis, the extremal optimization heuristic [6, 8] is applied to the

p = 3 mean field spin glass optimization problem. The goal is to approximate the

ground state energy (normalized by number of spins) in the limit N → ∞. To

accomplish this, two main modifications were made to the existing EO heuristic:

improving efficiency through parallelizing updates, and reformulating the data storage

structure of the heuristic to accommodate p > 2 problems. The data collected in this

study were ground state energies for thousands of different bond instances, for system

sizes up to N ≈ 250. From results up to system sizes N ≈ 100, a good approximation

of the ground state energy per spin is extrapolated to the N → ∞ limit. We calculated

this value to be ⟨e∞⟩ = −0.4708(1).

In the following sections, Chapter 2 describes the EO heuristic and provides an

introduction to spin glasses. Chapter 3 introduces the three-spin problem and details

the EO code development process. In Chapter 4, experiments to determine optimal

user-tuned parameters are performed, and comparisons to solvable models are made.

Chapter 5 describes the data collection and analysis process to obtain an estimate for

the ground state energy density of a p = 3 mean field spin glass. Lastly, Chapter 6

summarizes the EO modifications and three-spin SK spin glass optimization results,

and provides suggestions for future work.



Chapter 2

Background

2.1 Extremal Optimization

The extremal optimization (EO) local search heuristic was developed by Boettcher

and Percus [8] to solve combinatorial optimization problems. In this heuristic, each

member of a system is assigned a fitness value to describe how well it optimizes the

system. To dynamically update the system, low fitnesses are identified and replaced

with new, random ones to evolve the system towards a local fitness maxima.

A key feature of EO is that instead of choosing only the lowest (worst) fitness

to update, a tuning parameter τ is introduced to allow choosing of any fitness. A

preference for lower fitnesses still remains. This key feature eliminates deterministic

loops that may arise from only choosing the lowest fitness, while still maintaining that

lower fitnesses are chosen at a higher rate. The occasional random replacement of an

average or above average fitness, then, drives the system out of a local optimum and

allows the exploration of many local optima, in an attempt to find the global optimum.

The relatively-simple EO evolution can be applied to a wide variety of optimization

problems, and this paper focuses on the application of EO to determine the ground

state of a spin glass.
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2.1.1 Self-Organized Criticality

Extremal optimization was inspired by the Bak-Sneppen model based on self-organized

criticality (SOC). First proposed by Bak, Tang, and Wiesenfeld [4, 2], SOC describes

a method in which complexity in large systems arises. SOC systems are open nonequi-

librium systems driven into a steady state characterized by a broad distribution of

fluctuations. Changes occur via intermittent “avalanches,” rather than through a

smooth and gradual evolution. In this framework, the stable states are called “crit-

ical steady states” in which small disturbances draw the system through broadly

distributed chain reactions.

Following the landmark SOC paper, the Bak-Sneppen model [3, 15] applies SOC to

describe the evolution of an ecosystem. To begin, each constituent species is assigned

a fitness. This numerical value describes the likelihood of survival, analogous to its

definition in biology. Fitness of a species is also correlated to the fitnesses of the other

species in the system; predator and prey would have an inverse fitness relationship,

for example. As a result of this complex coupling, changes in the fitness of one

species affects the fitnesses and the potential future adaptations of other species in

the ecosystem.

Through interactions within the system, the ecosystem will quickly settle into a

local maximum of species’ fitness values. The system can only leave optima states

by going to a worse state before it can find new, potentially better, optima. This

mechanism is unbiased and does not involve adaptive logic to identify better optima;

rather, the mechanism searches many states and “learns” by adding explored states

to memory.
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2.2 Spin Glasses

Spin glasses are magnetic systems in which a property of the atoms forming the

material, called spin, has a preferred orientation. This orientation need not be orderly

or follow any specific pattern. Rather, the specific random couplings of the spin glass

lead to a ground state in which a seemingly random spin configuration optimizes the

energy.

One example of a spin glass is the Sherrington-Kirkpatrick (SK) model [19]. In

this model, spin orientation is binary (Ising); the two possible states are described as

“up” or “down.” Interactions between spins are defined by “plus” and “minus” bonds.

Two spins connected by a “plus” bond want to be oriented in the same direction, and

two spins connected by a “minus” bond want to be oriented in opposite spin directions.

Given a set of spins, the SK model describes a fully-connected system, where each

spin has a bond relation with every other spin in the system. Therefore, in a system

of N spins, each of the spins will have N bonds (counting the “bond” of a spin to

itself as having a value of zero). The system can then be described by N2 bonds.

Recognizing that a bond value is shared between two spins, the final expression for

number of bonds is 1
2
N2.

The spin glass optimization problem is then as follows: Given a specific set of bond

relations in a frustrated spin glass system, what is the optimal orientation for each of

the spins to obtain the ground state (lowest) energy?

To describe the degree of bonds that are satisfied in a system, the Hamiltonian

H = −1

2

∑
i

∑
j

Jijσiσj, (2.1)

can be used, where lower energies correspond to more favorable states. In the equation,

σi and σj denote two spins, and Jij denotes the bond between them. A summation is

performed over all pairs, and then the value is divided by two to account for symmetric
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couplings. In the literature [14], theoretical calculations use Gaussian-distributed

bonds Jij. However, when applying this problem to computational methods, a “plus”

bond is represented as the integer 1 and “minus” as −1, for convenience. Both

representations are identical in leading behavior and second moment, with differences

arising only in higher orders. Therefore, integer bond values Jij = ±1 are used in this

computational study.



Chapter 3

Approach

3.1 Three-Spin SK Model

Another spin glass is the p = 3 mean field spin glass, otherwise known as the 3-spin

Sherrington-Kirkpatrick spin glass. In this model, three spins (instead of two) are

connected by one bond relation. Therefore, the meaning of a “satisfied” bond now

changes. Table 3.1 shows each possible 3-spin configuration to satisfy a “plus” bond

and a “minus” bond. The Hamiltonian for a 3-spin SK system is adjusted to

H = −1

6

∑
i

∑
j

∑
k

Jijkσiσjσk, (3.1)

where the factor of 1
6
divides out repeated counting of the same bond Jijk in the

summation. Again, the bonds are Gaussian-distributed in theoretical representations,

but computational research can use Jijk = ±1 due to identical leading behavior.

3.2 Three-Spin Extremal Optimization

To employ the EO heuristic to optimize the 3-spin SK model, firstly, spin orientations

are randomly initialized. Next, an N3 matrix is filled with values representing the

7
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Bond satisfied Spin configuration
+ ↑ ↑ ↑
+ ↑ ↓ ↓
+ ↓ ↑ ↓
+ ↓ ↓ ↑
− ↑ ↑ ↓
− ↑ ↓ ↑
− ↓ ↓ ↓
− ↓ ↑ ↑

Table 3.1: Spin configurations to satisfy a “plus” and “minus” bond in the 3-spin SK
model.

bond relation between every grouping of three indices. Then, the fitness λi of each

spin σi is calculated using

λi =
1

6
σi

∑
j

∑
k

Jijkσjσk, (3.2)

such that the sum of all spin fitnesses equals the negative of the Hamiltonian in Eq.

3.1. Fitnesses in the 3-spin SK model contain one more level of summation compared

to the 2-spin SK model. Next, to evolve the system, spins are flipped at each time

step. The fitnesses of each spin are recalculated after each flip, and the total energy is

adjusted accordingly.

The main dynamics of EO, selecting which spins to flip at each time step, differs

from what was originally described in [7]. A parallelized update scheme is now

introduced. Rather than flipping only one spin per time step, multiple spins can now

be changed. To begin Phase I of the update procedures, the heuristic flips spins with

negative fitness at a given probability rate. At each time step, the heuristic attempts

to conduct Phase I. If at least one spin is flipped, the heuristic moves to the next time

step once all spins under the criteria are flipped. If no spins are identified to flip, it

means the system has reached a state where all (or almost all) fitnesses are positive,

signaling a local energy minimum. At this point, the heuristic moves into Phase II to

complete the time step.
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Once a local energy minimum is reached (most or all spins have positive fitness),

the tuning parameter τ is utilized in Phase II of the update procedures. This parameter

decides how many spins to flip in order to “kick” the system out of a local minimum

so it can continue traversing the energy landscape. This value is important because

it balances the heuristic between not enough randomness (getting stuck in a local

minimum) and too much randomness (a simple random walk). The exact mechanism

to use τ is described in Sec. 3.4. Once Phase II is successfully performed, the heuristic

resumes with Phase I at the next time step and the process repeats. The approximate

split between how often Phase I versus Phase II occurs is 90% versus 10% of update

time steps, respectively.

Two methods of choosing spins to flip are described later in Sec. 3.4.1, but the

key concept is that the higher the fitness of the spin(s) flipped, the more radically

the entire system is altered. There is no bias towards or away from visited states, but

rather, the method of choosing spins includes mechanisms to avoid back-and-forth

flipping of potentially coupled spins. Therefore, visiting the same state twice is unlikely.

After this “kick,” the system should have a considerable amount of negative fitnesses

again, and the process of flipping and updating fitnesses is repeated until another

local minimum is found, and so on. The heuristic terminates when a certain number

of time steps have been completed. The best local minimum with the lowest energy is

determined to be the global minimum, and the corresponding spin configuration is

considered the ground state of the given bond configuration.

3.3 EO Heuristic Initialization

The EO algorithm, as described in [6], has been modified for the research in this honors

thesis. Namely, a Python implementation is chosen to utilize the numpy package array

operations. Furthermore, the EO heuristic must be adapted for 3-spin interactions,
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since the existing EO was only for 2-spin interactions. To this end, the representation

of bond relations and spin fitness definitions must be modified.

To establish the system, initial values for N spins and N3 bond relations are chosen.

The bond relations are represented as a matrix with dimensions N×N×N . The indices

of each bond matrix entry identify which three spins the bond relation connects. The

number of unique bonds can be represented with only a three-dimensional triangular

matrix; however, all N3 values are filled to create a symmetric matrix for ease of

future calculations. For mutually distinct indices i ̸= j ̸= k, the bond value is

Jijk = ±1, and everywhere else with one or more identical indices is zero. As a result,

an unrestricted summation can be used for the Hamiltonian, with nonsensical bond

relations contributing zero to the total energy.

To initialize the N spins, each is randomly assigned a value ↑ = +1 or ↓ = −1

with equal probability. Once the bond matrix and spin array are initialized, the initial

spin fitnesses can be calculated using Eq. 3.2. In adapting the 2-spin EO to the 3-spin

EO, an auxiliary matrix, γ, is introduced to facilitate intermediate fitness calculations.

The γ matrix is an N ×N matrix, with each entry of the matrix taken to be

γij = σiσj

∑
k

Jijkσk. (3.3)

This allows fitness to be redefined as

λi =
1

2

∑
j

γij, (3.4)

which changes the computational complexity of the fitness update procedure, as will

be shown in Sec. 3.4.3 via Fig. 3.1.

To fill the γ matrix, a nested for loop over 0 ≤ j < i within a for loop over

0 ≤ i < N is run. For each i, j combination, the bond submatrix Jij is taken. This will

be a row vector. Then, using numpy for array operations, the bond submatrix vector
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is multiplied element-by-element to the spin vector (representing all σk). The sum of

the elements of this resultant vector is taken, then multiplied by the corresponding

σi and σj, and then stored to the γij matrix element. Once the auxiliary matrix γ is

filled, the fitness λi of each spin σi is calculated by summing over the row (or column;

the matrix is symmetric) with the index corresponding to the spin index. Finally, the

initial energy of the system is calculated by taking

H = −1

3

∑
i

λi. (3.5)

3.4 EO Heuristic Update Procedure

The dynamical update procedure used in this study differs from previous EO work

in the literature [8, 7, 6] because a parallel spin flip update scheme is used instead.

At each time step, rather than only choosing one spin to flip (using a rank-ordered

scheme as in [7]), the parallel-update EO flips multiple spins. Therefore, a threshold

to determine which spins to flip must be established.

Several methods were tested to determine how the heuristic should handle states

at or near a local minimum, a state characterized by all or almost all the spins having

positive fitnesses. The foundation of the update methodology is similar to the 2-spin

EO. The degree of randomness in choosing spin updates is introduced through the

τ -dependent power law:

y =

[
1− x

(
1− 1

N (τ−1)

)]−( 1
τ−1)

. (3.6)

To use this to generate a probability density function for EO, x is restricted to a

univariate probability density function with 0 ≤ x < 1. The range of outputs of Eq.

3.6 therefore lies in 1 ≤ y < N . Outputs y are then rounded to the nearest integer, and

this value q = int(y) is used in Phase II of the heuristic update procedure (described
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in Sec. 3.4.2).

3.4.1 Code Development: Parallel Spin Updates

The first attempt at defining the update procedure involved flipping spins with negative

fitness at a 50% probability rate for Phase I until the system gets close to a local

minimum. When the system reaches a time step where no spins are chosen to flip

(because no negative fitnesses exist or none were chosen due to the 50% probability

rate), the heuristic moves into the Phase II treatment of a local minimum. In Phase

II, a “threshold” value is chosen by randomly drawing a value from the distribution

in Eq. 3.6 and rounding the output to the nearest integer. Now, all the spins with

fitnesses below this threshold value are flipped with a 50% probability. If no spins

were randomly chosen to flip, then the process of choosing a new threshold would be

repeated, drawing a new value from Eq. 3.6 and adding it to the existing threshold.

This ensures that even though a configuration is energetically favorable, at least one

spin will be flipped each time step.

The main issue with this approach is in Phase II. The outputs of Eq. 3.6 are

restricted between 1 ≤ q < N , while fitness values exist on a much wider scale.

Therefore, the repeated drawing and adding of values from this distribution in order

to reach usable threshold values is not computationally effective. This reveals that

the heuristic treatment of states near local minima should not use the fitness scale to

create a threshold using Eq. 3.6. It also reveals that the 50% flip rate may be too low,

since the threshold needed to be increased constantly despite having spins already

under the fitness threshold.

The next attempt involved first flipping 80% of spins with negative fitness during

Phase I until a local minimum is approached. This 80% rate seems to strike a good

balance between flipping enough spins to efficiently evolve the system, but does not

force all candidate spins to be flipped and thus avoids deterministic loops. Then, when
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the system is at or near a local minimum, Eq. 3.6 is used to determine the number of

spins, of the N total, to flip in Phase II. This differs from the previous attempt by

not using Eq. 3.6 on a scale of spin fitnesses, but instead using a scale of number of

spins. Once this threshold value, q = int(y), is chosen in Phase II (a random value is

drawn from the distribution only once!), the goal is to flip the q number of spins with

the lowest fitnesses.

3.4.2 Parallel Spin Update Scheme

The final method tested was successful. It eliminates dependence on a fitness scale

by ordering the spin fitnesses into a histogram and selecting spins bin-by-bin. Each

histogram has a bin width of one fitness unit. Spins to flip are identified bin-by-bin

beginning with the lowest fitness, until the next bin contains more spins than the

remaining number of spins to flip. With this final bin, each spin to flip is chosen with

a probability calculated by dividing number of remaining spins to flip by number of

spins in the final bin.

Once all q spins to flip are identified, they are flipped one at a time by multiplying

spin value by −1. After each individual spin flip, all fitnesses, and subsequently

the total energy, must be updated. Fitness updates must occur in parallel before

another spin is flipped; otherwise, calculations will no longer match the given spin

configuration.

3.4.3 Code Development: Auxiliary Matrix

In developing the 3-spin EO heuristic, the auxiliary matrix γ was hypothesized to cut

down redundancy of calculations, and therefore reduce overall usage of computational

resources. Two different code implementations were tested, one using the γ matrix

and the other without (it only used summation loops). System sizes of N = [16, 24,

32, 48, 64, 96, 128, 192, 256, 350, 512, 750] were tested. A Python profiler was used to
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measure the duration (in seconds) for runs of each of the two different implementations.

The fitness update procedure was run for 100 spin flips, repeated five times per system

size, and then averaged.

Fig. 3.1 shows the time difference and confirms that using the γ matrix does help

cut down total run duration in the regime that this research focuses on. However, as

system size increases, run duration of the fitness update subroutine increases linearly

if the γ matrix is not used. Contrary to the hypothesis, run duration increases more

steeply for the runs that used the γ matrix.

Figure 3.1: Comparison of using an auxiliary matrix γ in intermediate fitness calcula-
tions versus using only nested loops for the full summation. The blue line with circles
represents not using the auxiliary matrix, and it lies above the red line with triangles
representing the use of the auxiliary matrix.



15

3.4.4 Fitness Update Scheme

To update fitness values, rather than recalculating the Hamiltonian, a fitness adjust-

ment is calculated instead. If spin σα is flipped,

γ′
ij = σiσj

[∑
k ̸=α

Jijkσk + Jijασ
′
α

]

γ′
ij = γij + 2 [Jijασiσjσ

′
α] ,

(3.7)

where σ′
α represents the spin value after it is flipped and γ′

ij applies only where both

i ̸= α and j ̸= α. The row i = α and column j = α of the auxiliary matrix γ are

simply changed as follows

γ′
αj = σ′

ασj

∑
k

Jijkσk = −γαj, (3.8)

γ′
iα = σiσ

′
α

∑
k

Jijkσk = −γiα, (3.9)

by multiplying by −1 due to the spin flip.

The fitness values for each spin σi are then recalculated by summing over the ith

row of the γ matrix. The total energy of the system is updated by subtracting λ′
α

from the previous energy. Once all spins from the chosen candidates have been flipped

(updating the fitness after every spin flip), the time step is completed and the process

of identifying new spins to flip repeats.



Chapter 4

Experiments

4.1 Runtime and τ Test

While EO is a simple algorithm, two parameters must be chosen by the user. The first

is the total runtime t. Runtime is measured in number of time steps; one time step is

one pass of either Phase I or Phase II. The second parameter is the tuning parameter

τ used in the Eq. 3.6 probability distribution to determine the degree of flipping at

Phase II time steps. Larger τ corresponds to fewer spins flipped, and smaller τ leads

more spins flipped in the time step. The quantity of interest in optimizing is the

energy density of the 3-spin SK spin glass, not the Hamiltonian in Eq. 3.1. Energy

density divides out N -dependence from the Hamiltonian for better comparison across

system sizes.

To determine an optimal t and τ combination, a study on system sizes N = [32, 64,

128] was conducted. Combinations of the values τ = [0.7, 1.2, 1.7, 2.2, 2.7, 3.2] and

runtimes t = [1N2, 2N2, 4N2, 8N2] were tested. In this study, 100 different random

bond configuration instances were used. Each bond instance was run 30 times, with

a different spin orientation initialization each run. The runtime t = 1N2 was run 16

times. The runtime t = 2N2 was repeated 8 times, t = 4N2 was repeated 4 times, and

16
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t = 8N2 was repeated twice. The results are shown in Fig. 4.1.

Figure 4.1: Results of the initial runtime and τ combination test. System sizes
N = [32, 64, 128] were each tested over four runtimes t = [1N2, 2N2, 4N2, 8N2] and
τ values between τ = [0.7, 3.2]. For all runs, energy density increases as τ > 2.2, and
as more runtime is added, energy density decreases. Note that the energy scale for
each system size N is different.

Based upon the results, it appears that increasing runtime lowers energy; therefore,

a sufficient runtime has not yet been determined. In the next test, runtime based on

N3 time is tested. Combinations of τ = [0.8, 1.1, 1.4, 1.7, 2.0] and t = [(0.25)N3,

(0.50)N3, (0.75)N3, (1.00)N3] were tested for N = 32 and N = 64. Each runtime

(rounded to the nearest integer) is repeated six times for each bond instance (each run

again initialized with different spins), over a total of 10 bond instances. The results

are shown in Fig. 4.2.

4.1.1 Optimal τ Value

The ideal τ value corresponds to a minimum in the energy density. It is worth noting

that there exists an optimal range of τ , not just one value. This minimum range will

therefore be represented by a small plateau in the energy density versus τ plot. Initially,

Fig. 4.1 reveals that any τ values above τ = 2.2 do not need to be considered. This

range corresponds to not enough randomness introduced, and the system therefore

gets stuck in a local minimum. For the lower bound on τ , the N = 128 curves reveal

where τ is too small by showing an increase in energy density. It is most apparent in
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Figure 4.2: An extension of the first runtime and τ combination test. System sizes
N = [32, 64] were tested over four longer runtimes t = [(0.25)N3, (0.50)N3, (0.75)N3,
(1.00)N3] and τ in the narrower range τ = [0.8, 2.0]. For nearly all the runtime and τ
combinations, the same energy density value was obtained and the curves are therefore
flat. Note that the energy scale for each system size N is different.

the t = 2N2 line of the N = 128 plot of Fig. 4.1, where an increase in energy density

near τ = 0.7 establishes the existence of a minimum τ .

The results in Fig. 4.2 indicate that the τ parameter does not need to be tuned

to very high precision. The four plots show that any τ in the τ = [0.8, 2.0] range is

capable of obtaining the ground state configuration, so long as the runtime is sufficient.

Therefore, for the study in the next chapter (Sec. 5.1), the value τ = 1.4 is used

because it lies in the approximate region near the energy density minimum of the

N = 128 curves of Fig. 4.1.

4.1.2 Optimal Runtime

The optimal runtime was determined by analyzing a variety of factors. Since the

energy density kept decreasing at longer runtimes in Fig. 4.1 (based on N2 time), a

cubic-based time scale was instead tested in Fig. 4.2. When using the N3 runtimes, the

energy densities were almost all the same across the increasing prefactors, indicating

that the ground state was likely obtained. Additionally, observing that the energy
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density stayed the same across the different τ (x-axis) values indicates that the

runtimes significantly exceeded the minimum runtime required to obtain the ground

state. Therefore, regardless of the exact value of τ , the ground state was still obtained

in Fig. 4.2.

In the domain of system sizes used in this research, a value of t = (0.3)N3 is chosen

as the optimal runtime for the study in Sec. 5.1. In this regime, it appears to be the

best tradeoff between success and efficiency. As shown later, this runtime may not be

sufficient for larger system sizes, in which an adaptive scheme [6] should instead be

used.

4.2 Testing Solvable Models: Ferromagnet

To test that the EO heuristic actually obtains ground state energies, a ferromagnetic

and antiferromagnetic case are tested. The ground state energies of these specific

systems can be calculated via the Hamiltonian in Eq. 3.1. For the ferromagnetic case,

the EO bond matrix is manually set to all “plus” bonds between spins. The energy

obtained by the EO heuristic indeed matches the expected ferromagnetic ground state

of H = −
(
N
3

)
, with all spins pointing up. For the antiferromagnetic case, the EO bond

matrix is set to all “minus” bonds between spins. The ground state energy obtained

again matches the expected analytical solution H = −
(
N
3

)
, with all spins pointing

down.

4.3 Branch-and-bound for Solvable Models

In the final phase of evaluating the EO heuristic for accuracy, small-N systems are

solved using a branch-and-bound (BB) algorithm [13]. This method, popular for NP-

hard optimization problems, systematically searches and tests many spin configurations

to determine the ground state. It is therefore less efficient as system size grows large.
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However, it serves as a powerful tool to corroborate the energies obtained by EO.

In this study, the same bond configurations were tested by both the EO heuristic

and the BB algorithm. System size N = 16 was chosen to test because it was

small enough for the BB algorithm to handle efficiently. The average ground state

energy density over 300 given bond configuration instances was obtained by BB to be

⟨e16⟩ = −0.3895. Then, EO was run for the same 300 instances. For this test, a range

of τ = [−3.2, 3.2] was run, at increments of τ = 0.5. Each bond instance was repeated

24 times, with eight runs each at runtimes of t = [(0.25)N3, (0.50)N3, (1.00)N3]. All

EO results were averaged to obtain Fig. 4.3.

Figure 4.3: Extremal optimization and branch-and-bound results for N = 16 systems.
Three runtimes t = [(0.25)N3, (0.50)N3, (1.00)N3] over a wide range of τ = [−3.2, 3.2]
were tested. The ground state calculated by BB is shown as a red horizontal line near
⟨e16⟩ = −0.3895.

The branch-and-bound results offer a powerful insight into whether the EO heuristic

is accurate and matches other predictions. As expected, it again confirms that runtime

plays a large role in actually reaching the ground state. In this general domain, the

ability to reach the ground state is shown to lie in the t = (0.25)N3 to t = (0.50)N3

range, given the proper τ chosen. It confirms that runtimes as long as t = (1.00)N3

are not necessarily needed.

When evaluating τ , interesting behavior occurs because negative τ values seem to

work just as well for the Phase II “kick.” This study was performed before the authors
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realized that larger N should be used to tune t and τ , hence why such a wide range

of τ values is included. Fig. 4.3 seems to indicate that in the limit of performing a

random walk (τ → −∞), negative τ values work better. However, this conflicts with

previous work [7] that shows τ should neither be too large nor too small. The authors

therefore hypothesized that perhaps for small enough N , the system space is also

small enough for a random walk to eventually find the ground state. To test this, the

study in Fig. 4.1 was performed. Indeed, results for N = 128 reveal that too-small τ

will not be able to obtain the ground state. Sec. 4.1.1 discusses this in more detail.

Regardless of the small system size N , the BB study results in Fig. 4.3 reveal that

the ground state energy density approximated by the EO heuristic can match the true

ground state energy density obtained by the branch-and-bound algorithm.



Chapter 5

Results and Analysis

5.1 Production Runs

The parameters chosen to produce the experimental data were determined based on

the various studies in Sec. 4.1. For the production runs, the tuning parameter was

τ = 1.4 and maximum runtime was t = (0.3)N3 rounded to the nearest integer. Each

bond instance was run three times, each with a different spin initialization. The

system sizes tested were N = [16, 18, 21, 25, 32, 40, 51, 64, 90, 128, 192, 256]. For

each system size, Table 5.1 lists the total number of runs, the average energy density,

standard deviation, and standard error.

5.2 Ground State Energy Density and Finite-Size

Corrections

The aim of this study is to determine the ground state energy density for the 3-spin

Sherrington-Kirkpatrick spin glass. Firstly, the data from Table 5.1 is plotted in Fig.

A.1 with the average energy density of all runs per system size shown as large blue

circles. As mentioned in Sec. 5.1, each bond instance is run three times. Of the three

22
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N I ⟨eN⟩ σ(eN)
σ(eN )√

I

16 160399 -0.3897 0.0274 0.00007
18 91562 -0.3965 0.0252 0.00008
21 126442 -0.4050 0.0224 0.00006
25 80922 -0.4136 0.0195 0.00007
32 25224 -0.4240 0.0160 0.00010
40 66522 -0.4316 0.0129 0.00005
51 19086 -0.4385 0.0103 0.00007
64 14838 -0.4440 0.0084 0.00007
90 3128 -0.4500 0.0060 0.00010
128 924 -0.4550 0.0040 0.00010
192 127 -0.4590 0.0030 0.00030
256 23 -0.4600 0.0030 0.00060

Table 5.1: Results of production runs for N = [16, 18, 21, 25, 32, 40, 51, 64, 90,
128, 192, 256] to approximate the 3-spin SK ground state energy density. Column I
represents number of bond instances run for the corresponding system size N . The
average energy density is column ⟨eN⟩, standard deviation of the energy density is

σ(eN), and the standard error is σ(eN )√
I
. Note that this is one-third of the total data

collected; from the three restarts per bond instance, only the best of the three is
included in this set.

runs, the lowest energy density for each instance is taken, and the average for each

system size is plotted as a small red square. Standard error bars for the set of best

values per instance are included. The x-axis scale is chosen to be 1/N to identify the

thermodynamic limit (N → ∞) of energy density more easily; this value will therefore

be the y-intercept.

The data set of best values per instance is fit to the linear equation

y = a+ bx, (5.1)

where y corresponds to energy density of a given system size ⟨eN⟩, a corresponds to

energy density in the thermodynamic limit ⟨e∞⟩, x equals 1/N , and b is the slope of

the line. This fitting method yields ⟨e∞⟩ = −0.4636.

In Fig. A.1, the alignment of the data between the set of all values (blue circles)

and the set of best values (red squares), as well as the narrowness of the error bars
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Figure 5.1: Extrapolation plot of energy density over 1/Nω, where ω = 4/5. The large
blue circles represent the average of all data collected for each N , the red squares
with error bars represent the average of the best results from each bond instance.
The green line is the best fit line. The y-intercept of the best fit line represents ⟨e∞⟩,
and is marked at ⟨e∞⟩ = −0.4708 on the y-axis. The value obtained by Alaoui and
Montanari [1] is shown as a horizontal dotted line at ⟨e∞⟩ = −0.4695.

for systems up to N = 128, indicate that the results are good in this region. For the

N = 192 and N = 256 points, the average of the best data deviates from the average

of all data, and there exists a gap in error bars on this scale. These results likely have

not reached the ground state yet given the chosen τ and runtime, and therefore should

not be included in further analysis.

It must be noted that there is curvature of the data around the linear best fit line

in Fig. A.1. Previous literature [17] states that for finite-N systems there exists a

finite-size scaling correction to N . The next fit performed is to the asymptotic form

y = a+ bxc, (5.2)
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where c is the scaling correction ω for finite-size systems. In fitting, only the points

for N = [25, 32, 40, 51, 64, 90, 128] were used. The omission of the N = 192 and

N = 256 due to excessive uncertainty has been explained above. The three smallest

N have also been omitted to serve as a validation scheme. If the data from these three

points align well to the results despite not being included while fitting, it is likely that

the fit is accurate.

The results of fitting to Eq. 5.2 are ⟨e∞⟩ = −0.4708(1) and ω ≈ −0.8. This fit,

plotted on an x = 1/N0.8 scale, is shown in Fig. 5.1. Regarding the points N = [16,

18, 21], they lie nicely on the line despite not being included to fit, which supports

the validity of this fit.

5.3 General Mean Field Spin Glass Ground States

For the 2-spin (p = 2) Sherrington-Kirkpatrick spin glass, there exists an analytical

solution. This was calculated by Parisi [18] to be ⟨e∞⟩ = −0.7633. The finite-size

scaling correction for a 2-spin SK spin glass has been largely agreed through analytic

[17] and numerical [9, 16, 7] studies to be ω = 2/3.

Such solutions for the 3-spin (p = 3) Sherrington-Kirkpatrick spin glass have

not yet been analytically determined. However, other numerical methods have been

employed by Alaoui and Montanari [1], using Gaussian-distributed bonds instead. As

described in Sec. 2.2, the leading behavior is identical to our Hamiltonian. However,

their Hamiltonian definition does differ by a factor of −
√
3, so adjusting their value

⟨e∞⟩
−
√
3
= −0.46950(6). This reveals that our approximation of ⟨e∞⟩ = −0.4708(1) is

within 0.001 of the value in [1]. Alaoui and Montanari also state that local search

algorithms generally have difficulty with the 3-spin SK problem, often getting stuck

at ≈ 0.800 unable to cross the local minimum energy barrier. This suggests that our

parallelized EO heuristic could potentially be more than just a local search heuristic.



Chapter 6

Conclusion

The goal of this honors thesis research was to approximate the ground state energy

density of a p = 3 mean field spin glass. To accomplish this, an implementation of the

extremal optimization heuristic was created in Python, with a few modifications. A

parallel update scheme increased efficiency by flipping multiple spins in each time step.

The introduction of an auxiliary matrix γ to aid in fitness calculations was shown to

cut down run duration in the N ≈ 100 domain.

The main tuning of the heuristic involved finding the right runtime and τ com-

bination. The range of τ that could obtain the ground state turned out to be quite

large. More importantly, sufficient runtime was required. The runtime and τ values

ultimately used in this study were t = (0.3)N3 and τ = 1.4. During the testing phase,

EO was applied to analytically-solvable models in order to check the accuracy of

energies obtained. These solvable models included the (anti)ferromagnet and small

systems solved by a branch-and-bound algorithm.

The results of this study obtained a ground state energy density of ⟨e∞⟩ =

−0.4708(1), which is within a 0.001 error of existing estimations in the literature. The

finite-size scaling correction was obtained to be ω = 4/5 through fitting methods. In

the p → ∞ limit, the random-energy model [11] gives a finite-size scaling correction of

26
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ω = ln(N)/N . Therefore, our value of ω ≈ 4/5 seems plausible for the 3-spin model

as p increases from the 2-spin model.

Future work could include further parallelization via GPU to increase efficiency

in optimizing larger systems. Additionally, this parallelized EO heuristic can be

applied to other systems to further characterize performance and potentially solve

other complex optimization problems.

Stefan Boettcher is an inventor on a patent related to this work filed by Emory

University regarding the parallel-updated version of EO used in this work called

Thresholded Extremal Optimization (TEO) with Patent Application No. 63/558,691,

filed on 2/28/2024.



Appendix A

Figure A.1: Extrapolation plot of energy density over 1/Nω, where ω = 1. The large
blue circles represent the average of all data collected for each N , and the red squares
with error bars represent the average of the best results from each bond instance.
The green line is the best fit line for the data represented by the red squares. The
y-intercept of the best fit line represents ⟨e∞⟩, and is marked at ⟨e∞⟩ = −0.4636 on
the y-axis. The plot shows curvature around the linear fit, indicating that a scaling
factor should be applied to N .

28



Appendix B

When I began working with Dr. Boettcher, my first project was to create a website

illustrating EO dynamics, based on the original EO described in [8, 6]. The website

https://gingyy.github.io/

offers an interactive way to explore extremal optimization and the role of τ .

29
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