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Abstract

Attention-enhanced Deep Learning Models for Data Cleaning and Integration
By Jing Zhang

Data cleaning and integration is an essential process for ensuring the accuracy and
consistency of data used in analytics and decision-making. Schema matching and
entity matching tasks are crucial aspects of this process to merge data from various
sources into a single, unified view. Schema matching seeks to identify and resolve
semantic differences between two or more database schemas whereas entity matching
seeks to detect the same real-world entities in different data sources. Given recent
deep learning trends, pre-trained transformers have been proposed to automate both
the schema matching and entity matching processes. However, existing models only
utilize the special token representation (e.g., [CLS]) to predict matches and ignore rich
and nuanced contextual information in the description, thereby yielding suboptimal
matching performance. To improve performance, we propose the use of the atten-
tion mechanism to (1) learn the schema matches between source and target schemas
using the attribute name and description, (2) leverage the individual token represen-
tations to fully capture the information present in the descriptions of the entities, and
(3) jointly utilize the attribute descriptions and entity descriptions to perform both
schema and entity matching.
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Chapter 1

Introduction

1.1 Motivation

Data integration is an important process in data management and analysis. Data from

multiple sources can be stored in different formats and structures, and are subject to

different rules and constraints. Data integration can overcome the challenges related

to heterogeneity and interoperability in data by combining multiple data sources

into a single, coherent view. Furthermore, inconsistencies and errors in data can

be identified and resolved by combining information across multiple sources. As a

result, the data integration process can also enhance the quality and accuracy of data

by aligning and harmonizing this data. Thus, data integration is essential to data

warehousing, business intelligence, and data mining applications by ensuring the data

is consistent and reliable.

Usually, data integration contains four steps: (1) source selection, (2) schema

matching, (3) entity matching, and (4) data fusion as shown in Figure 1.1. Among

these stages, schema matching and entity matching are the most time-consuming

aspects of the process. Schema matching and entity matching aim to identify and

match the similarities and differences between different data sources, and to find
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Figure 1.1: Data integration process: multiple data sources to one single view [27]

correspondences between entities in the data sources, respectively.

By identifying and matching common elements in the data sources, these methods

allow data to be shared, queried, and analyzed across multiple sources. Such work is

necessary for any downstream analytic tasks to extract value from the data. While

schema matching and entity matching have been extensively studied in the database

community, most solutions are often ad-hoc and require substantial effort to annotate

the data or generate features [74]. As such, data scientists still spend more than 80%

of their time curating the data [17].

Various automated schema matching methods have been proposed, including

constraint-based approaches [28, 65, 72] and linguistic-based approaches [36, 39, 46,

83]. While the existing methods have achieved high performance in different do-

mains, they suffer from several limitations. The constraint-based approaches analyze

the element contents, which are not always guaranteed to be the same across the two

schemas. Moreover, it assumes the data on both sides can be queried, which can vio-

late privacy constraints. For the linguistic approaches, the relations are hand-coded

between the two schemas or may not properly capture the similarity between the field
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descriptions. Numerous matching tools (or matchers) can generate correspondences

between pairs of schemas [9, 28]. Yet they rely on heuristic techniques. Recently,

a deep learning (DL)-based model, ADnEV, was proposed to utilize similarity from

existing matchers and post-process the results to work across domains [70]. However,

the model is limited by the capability of existing matchers and may not generalize to

all domains.

Similarly, recent entity matching models have posed the problem as semantic sim-

ilarity matching. As a result, pre-trained natural language processing (NLP) models

can serve as token-centric solutions to achieve impressive performance [18, 52, 54,

56, 62, 85]. These algorithms, leveraging the popular transformer models such as

BERT [18], can automatically identify important entity description features using

labeled examples without extensive engineering [73]. While the vanilla transformer

model can be useful for entity matching tasks, there are several limitations. First,

the model was designed to capture semantic interactions at the token level. However,

existing entity matching models construct entity descriptions by concatenating all

attribute values thereby introducing semantic discontinuity and impeding the over-

all performance. Second, while fine-tuning the transformer can be effective, it may

not utilize the nuanced contextual information in the entity description. Finally, the

masked language model training objective optimizes token-level predictions but ran-

domly masking some crucial information (i.e., the similar segments) can hamper the

relatedness understanding for the entity pair. As such, introducing other sub-tasks

can enrich the pragmatic knowledge encoded by BERT (as shown in [61]) and im-

prove the performance. Unfortunately, only using the special token representation

from BERT can unnecessarily constrain the entity representation.
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1.2 Research Contributions

Given the limitations of existing matching models to fully utilize the rich and nu-

anced contextual information in the attribute and entity descriptions, we propose

new matching models that leverage the attention mechanism to improve performance.

Attention has been proposed to focus the model on specific parts of the input when

making predictions, rather than considering the entire input equally [8]. Attention

has been shown to improve the model’s performance on certain tasks, particularly

when dealing with long sequences of data such as natural language processing and

machine translation. It can also help to reduce the computational complexity of a

model by allowing it to focus on the most relevant parts of the input, rather than pro-

cessing the entire input equally. This can make the model more efficient and easier to

train. In addition, attention mechanisms can improve the interpretability of a model

by providing a way to visualize which parts of the input the model is focusing on when

making predictions. This can be useful to gain insight into the model’s behavior and

to identify potential areas for improvement. In this dissertation, we introduce sev-

eral attention variants that are specifically designed for schema matching and entity

matching, as shown in Figure 1.2. Our main contributions are briefly summarized

below.

1.2.1 Attention-over-Attention Deep Learning SchemaMatch-

ing Model

We posit the schema matching process can be viewed as inferring the relatedness (or

similarity) between the source and target fields to leverage recent advances in natural

language processing and sentiment analysis. We propose SMAT, a DL-based model

that uses attention-over-attention (AOA) mechanism [16] to capture the interactions

between attribute names and their descriptions to identify the field-to-field mapping.
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Figure 1.2: Dissertation Contributions

Our contributions include:

• A new DL model to automatically capture the semantic correlation from the

source schema elements and their attributes to the target schema elements and

their attributes based on the element and attribute descriptions. The model

does not rely on existing matchers nor requires encoding prior domain knowl-

edge.

• A new benchmark schema matching dataset for the healthcare domain, OMAP,

that annotates several source to target conversions for sharing electronic health

records. Existing schema matching models perform poorly on OMAP and illus-

trate the lack of generalizability to a variety of domains.

1.2.2 Multi-Task Learning with Attention-over-Attention for

Entity Matching

We propose an AOA mechanism for the entity matching task to better capture the

relationships across the pair of entity token representations. Rather than rely on
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a single special token to combine the dual-objective of binary matching and entity

identifier prediction as proposed in [62], we introduce EMBA to learn the aggregation

weights from the individual entity tokens. This provides flexibility for each entity

classification task to identify the important aspects of the description without re-

quiring significant amounts of training data. In summary, our contributions are as

follows:

• We propose to utilize the BERT token representations for both the auxiliary

(entity identifier prediction) and main (entity matching) tasks. We align the

token representations using the AOA mechanism to capture cross-entity token

interactions to better capture the semantic similarity.

• We illustrate the benefits of AOA by visually analyzing the matching decisions

of our model with existing state-of-the-art entity matching methods and empir-

ically assessing the individual components of our model.

1.2.3 Cross-Attention Multi-task Learning for Schema and

Entity Matching

We introduce a new multi-task paradigm that jointly captures both schema matching

and entity matching simultaneously. To combine these two tasks, we utilize cross

attention [91], which allows the model to quickly and accurately switch the focus

between different viewpoints or perspectives. Existing research has shown that cross-

view attention is associated with increased cognitive flexibility and adaptability, as

well as improved social skills and decision-making abilities. Our new model, CaSE, can

deal with realistic entity matching problems where attribute values may be missing

or misaligned. Our contributions are as follows:

• A new cross attention-based DL model that can jointly model the attribute

names and values to deal with incorrectly entered values or differing column
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names.

• A newly curated benchmark dataset that combines both schema matching and

entity matching tasks into a single model.

1.2.4 Organization

The remainder of this dissertation is organized as follows. Section 2 summarizes ex-

isting work in schema matching, entity matching, and various attention mechanisms.

Section 3 introduces SMAT, the AOA-based model to automate the schema matching

process. Section 4 uses the AOA mechanism to improve the entity matching perfor-

mance using the vanilla transformer model. Section 5 introduces the new multi-task

learning objective that combines schema matching and entity matching and our new

cross attention model to deal with real-world databases. Section 6 concludes the

dissertation and discusses the future directions of our work.
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Chapter 2

Background

2.1 Schema Matching

Across many domains, data is collected using a wide variety of database systems

with customized schemas developed for each company or purpose. As a result, sim-

ilar collections of data can be stored using different physical formats, terminologies,

or even logical organizations. Customized databases can hinder data exchange and

data integration. Moreover, the process of standardizing different data formats into

one common standard enables better downstream processing of the data, including

large-scale analytics. Schema matching aims to establish the correspondence between

the fields of a source and target database schema – a decisive initial step in the mi-

gration of different databases. Automation in schema matching has received steady

attention in the database and artificial intelligence communities over the years. It

has also been adopted as a practical and principled tool to improve the modeling and

implementation of data exchange and data integration [3, 5, 22, 40, 47]. Yet, this

problem remains largely unsolved. Existing solutions are not suitable for real-world

database schemas [6], since field and table names can be cryptic and involve domain-

specific abbreviations and acronyms. Although systems exist to support the creation
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of schema matching [9, 20, 67], designing the matching process requires significant

manual labor.

One line of schema matching work is the constraint-based approach. Most schemas

contain constraints to define the attributes such as data types and value ranges,

uniqueness, optionality, relationship types, and cardinalities [65]. Similarity can be

measured by data types and domains, key characteristics (e.g., unique, primary, for-

eign), and relationship cardinality [2, 29, 55]. Recently, [4] proposed a hybrid of the

constraint-based approach using key characteristics and the instance itself to create

the meta-schema. Unfortunately, such approaches cannot readily handle the n:1 sce-

nario that can be found in schema matching. For example, if the source schema

contains “starttime” and “endtime” and the target schema contains “Duration”, the

meta-schema mapping can not generate and convert the two attributes into a single

target.

An alternative method is the linguistic content-based approach, which utilizes

names and text to explore semantically similar schema elements. There are two pri-

mary linguistic data mapping techniques: name matching and description matching.

The idea behind these techniques is to calculate similarity based on either the name

of the fields or the description of the fields, respectively. In name matching, the sim-

ilarity of names can be defined and measured through equality of names, equality of

synonyms, similarity of names based on common substrings, and user-provided name

matches. Examples include [38] which helps database designers visualize similarity

and dissimilarity based on attribute names and [86] which uses a prescribed dictio-

nary to obtain the aggregation among attributes. However, consulting a synonym

lexicon has limitations since it is common to use abbreviations for attribute names

(e.g., DOB for date of birth, SSN for Social Security number, etc.) and may not

identify the relationships.

Description matching is based on the idea that schemas usually contain comments
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or descriptions in natural language to express the intended semantics of schema ele-

ments. The process involves the identification of two semi-related data objects and

the creation of mappings between them. In a recent work [46], the authors utilized the

UMBC EBIQUITY-CORE technique [37] to obtain the similarity of the comments of

schemas. Yet, it may not capture the similarity between the descriptions. For exam-

ple, the similarity score between “the comment of the book” and “the review of the

article” is 0.39 where 1 is highly similar and 0 is different. Another work used word

embeddings to link datasets [30]; however, they only embedded the table name which

may not yield sufficient information. [57] proposed a probabilistic graphical model

and achieved a good score on precision and recall. Recently, ADnEV was proposed

to utilize a DL technique to post-process the matching results from other matchers

and performed better than the work in [21, 33, 57, 75]. However, the quality of the

matchers limits the potential of the model.

2.2 Entity Matching

Entity matching is a crucial data integration problem that identifies whether two

data entries refer to the same real-world entity. It is an essential process for cleaning

and integrating data across single or distributed data sources [26, 42, 49, 61, 77].

In a variety of fields including e-commerce and medicine, entity matching serves as

a longstanding critical problem in data integration [24, 53] and data cleaning [1].

Figure 2.1 illustrates the entity matching for different entries from different data

sources. Matching entities accurately and quickly has enormous practical implications

in commercial, scientific, and security applications [34]. However, the process of

determining the pairs of matching entries can be time-consuming, especially in the

presence of heterogeneous and large data sources. It still remains a challenging task

for automated approaches because it requires a depth of language understanding and
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Figure 2.1: Examples of EM to determine the matching entries from two sources

domain knowledge to match and distinguish entity information [52].

There are three categories of existing entity matching work: attribute-centric,

token-centric, and hybrid-centric, which are defined by where the comparison level

[25]. The first approach usually follows the alignment-comparison-summarization

paradigm which involves comparing aligned attributes and aggregating the similarity

vectors to determine the input for a binary classification system. Although these

methods are generally successful, they fail in common real-world occurrences like

schema heterogeneity (e.g., schemas are different across the two entities). Accordingly,

most recent research has been token-centric [50], which compares individual attributes

(e.g., tokens) and then aggregates the token-level comparison features into entity

matching signals, or hybrid-centric [31], which aligns the tokens according to the

attributes from two tables.

2.2.1 Single Task Deep Learning Models

Recent state-of-the-art entity matchers are DL based and approach entity matching

as a binary classification problem. DeepER [25] trains entity matching models based

on the LSTM [41] neural network architecture with word embeddings such as GloVe

[63]. DeepER also proposed a blocking technique to represent each entry by the

LSTM’s output. DeepMatcher [56] extends recurrent neural networks with an atten-

tion mechanism and takes two data entries of the same quality as input and aligns

their attributes before passing them on to the matching algorithm.

The vanilla transformer model (e.g., BERT [18] and RoBERTa [54]) has also been
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proposed where the self-attention mechanism is used to carry out pair-wise semantic

similarity of tokens between the two candidate records by using BERT’s input format:

[CLS] ENTITY1 [SEP] ENTITY2 [SEP].

More recent works utilize a pre-trained transformer and leverage the [CLS] token

to determine whether two entities match [7, 73, 89]. DITTO further builds on BERT

by serializing both data entries as one input while introducing structural tags [52].

As an example from Figure 2.1, it serializes each entity in the pair as e = [COL]

title [VAL] Zotac · · · ocUK [COL] Brand [VAL] Zotac, and generates the pair as

[CLS] e [SEP] e′ [SEP]. Auto-EM [90] improves DL-based entity matching models by

pre-training the entity matching model on an auxiliary task of entity type detection.

2.2.2 Multi-Task Deep Learning Models

Tangential to attribute, token, and hybrid-centric entity matching is the multi-task

learning paradigm. Multi-task learning techniques have been used in concert with

NLP to obtain more general representations, by complementing the main task objec-

tive with auxiliary training tasks. The idea is to improve the learning of a model for

task t by using the knowledge contained in the tasks where all or a subset of auxiliary

tasks are related [88]. By learning across related tasks, the learned representation

can outperform a single task.

JointBERT [62] introduces the multi-task learning paradigm to the entity match-

ing task to achieve a better performance compared with the single-task models. The

model uses the [CLS] token in BERT for both the entity matching task and a multi-

class object to predict the entity identifier of each of the two entity descriptions. As

JointMatcher [85] incorporates the joint learning paradigm, we also categorize it as

multi-task learning. JointMatcher customizes the sequences of the entity description

by introducing two special tokens, [COL] and [VAL] to help identify similar segments

and develop sensitivity to numerical values. JointBERT achieves higher performance
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than JointMatcher on larger datasets, yet utilizes the [CLS] token for its multi-class

objective which is suboptimal.

2.3 Common Deep Learning Models used for Em-

bedding Schema and Entities

We briefly introduce two DL models that have been used for embedding entities or

attributes.

2.3.1 Bidirectional LSTM Network

Given the variable length of text, long short-term memory (LSTM) networks were

introduced to represent sequences of data [41] and are used to avoid the gradient

vanishing problem in recurrent neural networks. Given an input word at the tth

location in the sentence, et, the LSTM network can be formalized as follows:

ft = σ
(
W⃗f ·

[
h⃗t−1, e⃗t

]
+ b⃗f

)
(2.1)

it = σ
(
W⃗i ·

[
h⃗t−1, e⃗t

]
+ b⃗i

)
(2.2)

ot = σ
(
W⃗o ·

[
h⃗t−1, e⃗t

]
+ b⃗o

)
(2.3)

gt = tanh
(
W⃗g ·

[
h⃗t−1, e⃗t

]
+ b⃗g

)
(2.4)

c⃗t = ft ∗ c⃗t−1 + it ∗ gt (2.5)

h⃗t = ot ∗ tanh (c⃗t) , (2.6)

where α is the sigmoid activation function, it, ft, ot are the input gate, forget gate,

and output gate, respectively. The weights of the network are
−→
W i,

−→
W f ,

−→
W o,
−→
W g ∈

Rd×(d+dv) and the bias of each gate are b⃗i, b⃗f , b⃗o, b⃗g ∈ Rd, where d is the hidden

dimension size and dv is the size of input. Equation (2.1) represents the forget gate
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and decides what information should be thrown away or kept. Equation (2.5) decides

whether to update the cell state based on the previous hidden state or the input word.

Finally the output gate, or Equation (2.6) decides what the next hidden state should

be.

However, the standard LSTM can neglect the future contexts, which can nega-

tively impact the predictive performance as the meaning of words may only make

sense in the future context [68]. Bidirectional LSTM (BiLSTM) networks add a sec-

ond layer, where the data flows in the opposite order of the first layer. Thus, the

BiLSTM model can utilize both past and future information. The backward LSTM

follows a similar process and is concatenated along with the forward LSTM. For any

t ∈ [1, 2, ..., n] where n is the sentence length, the concatenation of the forward and

backward LSTM ht is obtained as follows:

−→
ht =

−−−−−→
LSTMt(e1, ..., en) (2.7)

←−
ht =

←−−−−−
LSTMt(e1, ..., en) (2.8)

ht = [
−→
ht ,
←−
ht ] ∈ R2d (2.9)

BiLSTM has been used to convert each entity tuple to a distributed representation

(or vector) which can be used to capture similarities between tuples [25].

2.3.2 Transformers

Transformers-based entity matching models [7, 18, 52, 54, 73, 89] learn the seman-

tics of words better than previous entity matching solutions that were trained using

word embeddings (e.g. word2Vector, GloVe, and FastText) and recurrent neural net-

work architectures tailored to the domain. This is primarily due to the fact that

the transformer calculates token embeddings for all tokens in an input sequence, and

as a result, the embeddings it generates are highly contextual and capture seman-
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Figure 2.2: Illustration of AOA [16].

tic and contextual information. According to [52], the entity records often contain

abbreviations (e.g., deluxe & dlux, and 2.0 & 2) and transformer-based models can

embed deluxe and dlux similarly given their same respective contexts. This language

understanding capability can improve the entity matching performance.

2.4 Attention Mechanisms

Attention was introduced to focus the model on specific parts of the input rather than

considering the entire input equally [8]. The idea was to model the human cognitive

function that only selectively pays attention to specific parts as needed. Attention

has been widely used across a variety of application domains in conjunction with deep

learning [58]. Here, we briefly introduce the two forms of attention relevant to this

dissertation.

2.4.1 Attention-over-Attention (AOA)

AOA was first proposed for the question-answering task [16] shown in Figure 2.2. It

allows the model to attend to multiple levels of abstraction within the input sequence
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Figure 2.3: Illustration of cross attention [44].

or features through similarity generation (e.g., dot product). It captures the inter-

actions of the query term and document-level sequences by summing each individual

attention across both column and row. Since we can formulate the schema matching

and entity matching tasks as sequence relatedness tasks, therefore, this mechanism

can help to explore the relations of tokens between each matching pair.

2.4.2 Cross attention

Cross attention (illustrated in Figure 2.3) is an attention mechanism in Transformer

architecture that mixes two different embedding sequences, and it is widely used in

multi-modal and multi-scale architecture, such as image-text classification [44, 51, 10],

machine translations [78, 35], and video recognition [84]. To capture the relatedness

between the two sequences, cross attention combines one of the sequences as a query

input, while the other as a key and value inputs. With the mechanism, it will amplify

the attention weights that are similar with the query terms [51]. With cross attention

mechanism, we can not only explore and visualize the relation between tokens, but it

also brings the computational efficiency.
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Chapter 3

Attention-over-Attention Deep

Learning Schema Matching Model

Schema matching is an integral task for data exchange and data integration. As

a motivating example, we consider the Observational Health Data Sciences and In-

formatics (OHDSI) community which seeks to bring out the value of health data

through open-source, large-scale analytics and evidence gathering. Since healthcare

data is collected using different systems and formats, the OHDSI community adopted

the Observational Medical Outcomes Partnership (OMOP) Common Data Model

(CDM) standard, to harmonize the heterogeneous data into a common data stan-

dard. Thus, each institution that participates in the community needs to perform

the time-consuming task of manually mapping their original health data schema into

the OMOP CDM, as data can not be readily shared due to patient privacy concerns.

Further complications can arise from multiple attribute-to-attribute matching. Fig-

ure 3.1 illustrates a schema matching example for the MIMIC dataset to the OMOP

CDM standard.

Given the rising importance of schema integration involving sensitive data, such as

in healthcare, we focus on schema-level matching rather than instance-level or hybrid
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Figure 3.1: The schema matching design to convert the MIMIC dataset into the
OMOP CDM standard [59]. For simplicity, only two elements from MIMIC (patients
and admissions) are matched to OMOP (person and death). A match is given by
double-arrow dashed edges.

schema matching. We posit that the schema matching process (i.e., source schema

elements to target schema elements and its attributes matching) can be viewed as

inferring the relatedness (or similarity) between the source and target fields. We pro-

pose SMAT, a DNN-based model with attention that extends recent advances in NLP

and sentiment analysis. Our model can be used to automatically generate the match-

ing between the source and target schemas without encoding domain knowledge. We

perform an extensive evaluation of SMAT on a new benchmark dataset and three other

popular schema matching datasets. The empirical results demonstrate the potential

of SMAT. We also present a case study to gain further insight into the automation

process.
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3.1 Approach

We introduce SMAT, an attention-based DNN model to automate the schema matching

between the source and target schemas. Under the paradigm where schema matching

is viewed as inferring relatedness, the data dictionaries containing the elements and

attributes descriptions/contents can be used to automatically capture the semantic

correlation between the two fields without requiring explicit domain knowledge. In

this section, we first formulate the problem and then introduce the various components

of SMAT.

3.1.1 Problem Formulation

A schema contains a set of elements, such as relational tables and columns or XML

elements and attributes. For our model, we extract tables and columns with their

contents or descriptions to construct ‘sentences’. SMAT assumes the semantic nature

of the elements and attributes descriptions/contents can be used to learn universal

sentence representations in a supervised manner. Since only the descriptions/contents

of the fields themselves may not be sufficient to reveal the mappings, SMAT utilizes both

the table description/content and column description/content to reveal the relations

between them.

Formally, given two table descriptions/contents ST1 and ST2, two attributes names

NF1 and NF2, and their descriptions/contents SF1 and SF2 from the source and

target schema respectively, we construct two sets of sentences. Sentence set STF1 =

{ST1, SF1} = {w1, w2, ..., wn} consists of n words (e.g., Des 1 in Table. 3.1), and

sentence set STF2 = {ST2, SF2} = {v1, v2, ..., vn′} consists of n′ words (e.g., Des 2 in

Table. 3.1). Moreover, for the training data, there is an annotated label L(STF1, STF2)

(e.g., Label in Table. 3.1), where L(STF1, STF2) = 0 denotes two fields are not related

(i.e., mapped to each other), and L(STF1, STF2) = 1 denotes two sentences are related
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(i.e., corresponding attribute-to-attribute matching). The task objective is then to

classify the semantic relation of each sentence pair to reveal the attribute-to-attribute

matching.

3.1.2 Overview

We observe that the task of determining the relatedness between two attributes’ de-

scriptions/contents is similar to inferring the similarity of two sentence pairs in NLP

tasks. Since DNNs can be trained end-to-end without any prior knowledge [71] (i.e.,

no need to implement feature engineering), DNN models are utilized for text simi-

larity tasks. InferSent utilized this approach to encode sentences with a downstream

sentiment classification task and achieved higher performance than existing sentiment

analysis models [15]. Yet there are two major limitations to adopting the InferSent

model for the schema matching task. First, the element and attribute description

may not contain sufficient information to distinguish it from others. Second, the de-

scriptions may have abbreviations or words that have unknown word representations.

To address the above limitations of InferSent, SMAT consists of 4 major modules.

First, the input embedding of the sentences utilizes a hybrid encoding to deal with

large vocabularies for any input text. Second, a BiLSTM network (see Section 2.3.1)

is used to capture the hidden semantics of the words in the description and the col-

umn name separately. Third, SMAT adopts the AOA mechanism (discussed in Section

2.4.1) to capture the correlation between the column name and its description. The

final prediction layer uses the sentence representations to make an accurate classifi-

cation. The overall architecture of SMAT is shown in Figure 3.3. We also introduce

two techniques to deal with the class imbalance problem that is present in schema

matching tasks.
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3.1.3 Input Embedding

Existing word embedding models such as GloVe [63] are limited by vocabulary size or

the frequency of word occurrences. As a result, rare words especially abbreviations like

ICD-9 are not captured and result in unknown tokens. Byte-Pair Encoding (BPE) is

a hybrid between character- and word-level representations which could deal with the

large vocabularies common in natural language corpora [69]. Instead of full words,

BPE relies on sub-words units, which are extracted by performing statistical analysis

of the training corpus. Using bytes, it is possible to learn a sub-word vocabulary of

modest size (50K units) without introducing any “unknown” tokens. Thus, SMAT uses

BPE as the initial tokenizing technique.

After text tokenizing with BPE, in order to map each word/sub-word wi in the

sentence S1 = {w1, w2, ..., wn} to a high dimensional vector ei, SMAT employs the

embedding matrix M ∈ Rdv×|V | for word searching, where dv is the word vector

dimension and V is the fixed-sized vocabulary. Each word wi is converted to its

embedding ei with the formula:

ei = Mxi (3.1)

where xi is a vector with size |V |, which is only 1 at the index ei and 0 for all

other positions. Each sentence, S1 = {w1, w2, ..., wn}, is then transformed into a

real-valued vectors embS1 = {e1, e2, ..., en}. In addition to embedding the sentence

descriptions, the column name is also embedded as a separate representation embNF1
.

Our model uses GloVe embeddings [63] due to its popularity, but any word embedding

representation can be used.
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Figure 3.2: Bidirectional LSTM with max-pooling

3.1.4 BiLSTM

After obtaining the word representations, embNF1
, embSTF1

, embNF2
, embSTF2

, we feed

these four sets of words into four BiLSTM networks respectively. The final represen-

tation from the BiLSTM is a concatenation of the hidden representations from the

forward and backward LSTM. Therefore, each input (i.e. word) results in a vector

representation of size 2d. In order to capture all the information in the sequence, a

common mechanism is to use the max-pooling to compress the sequence into a single

vector as described in [14]. Our BiLSTM model is illustrated in Figure 3.2.

3.1.5 Attention-over-Attention

One limitation of using the representation from max-pooling is the inability to capture

interactions between the attribute name and its description. Another approach to deal

with the hidden semantic representations from BiLSTM is calculating the attention

weights for the text via an AOA module. Our AOA module in Figure 3.3 uses

mutual attention to simultaneously capture the relationships between attribute name

to description and description to attribute name.
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Figure 3.3: Illustration of SMAT’s structure
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Let hc ∈ Rm×2h denote the attribute name representation, where m is the at-

tribute name length (i.e., number of words in the attribute name) and h is the hidden

dimension. Let hs ∈ Rn×2h denote the element-attribute description representation,

where n is the description length and h is the hidden dimension. The module first

calculates the pair-wise interaction matrix I = hs · hT
c , where the value of each entry

represents the correlation of each word pair between the description and attribute

name. A column-wise softmax and row-wise softmax are applied to the interaction

matrix I, to obtain the attribute name to description attention, α, and description

to attribute name attention, β, respectively. Thus for the tth attribute word and kth

text description, the associated attentions are:

α(t) = softmax(I(1, t), I(2, t), · · · , I(m, t)) (3.2)

β(k) = softmax(I(k, 1), I(k, 2), · · · , I(k, n)) (3.3)

Then, the attribute name-level attention β̄ is calculated using a column-wise averaging

of β. This attention indicates the important words in the attribute name. Finally, the

sentence-level attention γ ∈ Rn can be obtained by a weighted sum of each individual

attribute name to description attention α. By considering the contribution of each

aspect word explicitly, the AOA module learns the important weights for each word

in the sentence.

αij =
exp(Iij)∑
i exp(Iij)

(3.4)

βij =
exp(Iij)∑
j exp(Iij)

(3.5)

β̄ =
1

n

∑
i

βij (3.6)

γ = α · β̄T (3.7)
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3.1.6 Data Augmentation & Controlled Batch Sample Ratio

As attribute-to-attribute mapping generally results in a skewed distribution, SMAT uses

data augmentation and controlled batch sample ratio (CBSR) to achieve better pre-

dictive performance. Data augmentation occurs on two levels. The first is to generate

new positive samples using synonyms for different words in the descriptors. For ex-

ample, an augmented sample may replace the word “uniquely” with “unambiguously”

and “identify” with “describe”. However, since the number of synonyms is limited,

we utilize a second technique to improve the attribute name description. We use the

part-of-speech (POS) tags for the descriptions and concatenate the identified nouns

to enlarge the dataset safely.

Since SMAT uses batch stochastic gradient descent (SGD) to learn the parameters, a

batch can contain no positive samples and thus only properly learn the representation

for negative samples. Thus, we controlled the ratio of positive samples in each batch

size to ensure that our model learns from a few positive examples for each batch [23].

Note that since the positive samples are small, they are likely to be chosen repeatedly,

while there is diversity in the negative samples.

3.2 OMAP: A New Benchmark Dataset

Since existing schema matching datasets only span purchase orders, web forms, and

bibliographic references, we created OMAP, a new benchmark schema-level matching

dataset that annotates several source-to-target mappings in the healthcare domain.

Healthcare data is collected worldwide using a wide variety of coding systems. To

draw conclusions with statistical power and avoid systematic biases, a large number

of samples should be analyzed across disparate data sources and patient populations.

Such broad analyses require data harmonization to a common data standard (e.g., the

Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM)
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Table 3.1: An example entry from the OMAP dataset.

CDM schema Source schema
CDM description
(Des 1)

Source description
(Des 2)

Label

person-person id
beneficiary
summary-
desynpuf id

the person domain
contains records that
uniquely identify each
patient in the source
data who is time at-risk
to have clinical observations
recorded within the source
systems.a unique identifier
for each person.

beneficiarysummary pertains
to a synthetic medicare
beneficiary. beneficiary code

1

standard) to facilitate evidence gathering and informed decision-making [59]. Since

patient data cannot be queried due to privacy concerns, schema-level matching is of

great importance. OMAP maps between three different healthcare databases (source

schema) and the OMOP CDM standard (target schema).

1. MIMIC-III [45]: A publicly available intensive care unit (ICU) relational database

from the Beth Israel Deaconess Medical Center.

2. Synthea [80]: An open-source dataset that captures the medical history of over

one million Massachusetts synthetic patients.

3. CMS DE-SynPUF [13]: A set of realistic claims data generated from 5% of

Medicare beneficiaries in 2008.

For each dataset, the element table name with its descriptions and attribute col-

umn name with its descriptions are used to construct a sentence. The label is based

on the final extract, transform and load design. If the table-column in the source

schema was mapped to a table-column in the OMOP CDM the label is 1, otherwise

it is 0. Table 3.1 provides one example from the OMAP dataset.

The summary statistics for each of the three conversions are captured in Table 3.2.

Note that the dataset does not contain any patient information, only attributes and

their descriptions.
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Table 3.2: Summary statistics of each conversion captured in OMAP.

Data source # elements # attributes # positive labels # sentence pairs

MIMIC 25 240 129 64080
Synthea 12 111 105 29637
CMS 5 96 196 25632

Table 3.3: Summary statistics of the additional benchmark datasets used.

Data source # elements # related # pairs # Domains

Purchase Order[20] 50-400 659 63933 1
OAEI1 80-100 9494 825021 1
Web-forms[32] 10-30 5548 201769 18

3.3 Experiments

We designed the experiments to answer the question: How accurate is SMAT in au-

tomating the schema matching?

3.3.1 Datasets

We used the OMAP dataset and three popular schema matching benchmark datasets

(summarized in Table 3.3). Reference matches in additional datasets were manually

constructed by domain experts and considered as ground truth for our purposes.

The experiments are performed for each dataset and the settings are consistent with

existing schema matching papers [33, 57, 75]. For each dataset, 80% was used to

train the initial prediction model, 10% was used to further tune the weights, and the

remaining 10% was used to evaluate the experiments.

1The OAEI competitions can be found at http://oaei.ontologymatching.org/2011/

benchmarks/

http://oaei.ontologymatching.org/2011/benchmarks/
http://oaei.ontologymatching.org/2011/benchmarks/
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3.3.2 Baseline Models

SMAT is evaluated against five baseline models. For data sensitivity purposes, we

focused only on schema-level matching. The entity matching solutions that involve

semantic relatedness technique are chosen to represent the existing schema matching

or entity matching work.

• ADnEV [70]. A schema matching model that utilizes DNN to post-process

results from state-of-the-art matchers in an iterative manner.

• InferSent [15]. A state-of-the-art sentence embedding model that classifies the

sentiment between two sentences. The last layer is modified to tackle a binary

classification task. GloVe embeddings [63] are used for the input sentences.

• DeepMatcher [56]. An entity matching solution that customizes the recurrent

neural network architecture to aggregate the attribute values and then compares

the aggregated representations of attribute values.

• DITTO [52]. A state-of-the-art entity matching model that cast the problem

as a sequence-pair classification and fine-tunes RoBERTa [54], a pre-trained

Transformer-based language model.

• BERT [18]. Bidirectional Encoder Representations from Transformers (BERT)

has achieved state-of-the-art results in many natural language understanding

tasks. We fine-tuned the pre-trained BERT-base-uncased model on our datasets.

3.3.3 Experimental Setup

We implemented SMAT and the baseline models in Python 3.6 using PyTorch. Perfor-

mances were measured on the Google Cloud Platform with Intel Xeon E5 v3 CPU @

2.30Ghz, and a Nvidia Tesla K80 with 12 GB Video Memory.
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For experiments in this paper, the embedding dimension is 300. The number of

hidden units of BiLSTM is 1024 for InferSent and 300 for SMAT. For the classification

model, we apply a fully connected layer with one hidden layer of 512 hidden units.

SGD is chosen as the optimization algorithm with a batch size of 64. The learning

rate and weight decay are 0.1 and 0.99 for InferSent and 0.001 and 0.99 for SMAT. For

AdnEV, DeepMatcher, DITTO, and fine-tuning BERT model, Adam is chosen as the

optimization algorithm with a learning rate of 0.001, 0.001, 3e−5, 2e−5, respectively,

and the batch size as 64, 64, 64, and 32 respectively. These parameters were obtained

from initial experiments on a subset of the training data as they provided the most

robust performance across multiple runs.

3.4 Predictive Performance

Evaluation of SMAT with existing baseline models. Table 3.4 summarizes the

results of the six models tested on the six datasets. We observe that the precision and

recall varies depending on the dataset suggesting differences in the semantic content

of their attribute names and descriptions. The results demonstrate that SMAT does

not require additional hand-coding due to the overall strong performance. It achieves

the best performance across all three metrics in 3 of the datasets (OAEI, MIMIC,

CMS). It also yields the best F1 score for all but the Purchase Order dataset. Thus,

our proposed model is fairly versatile.

ADnEV achieves a higher precision on Purchase Orders and Webforms and a

better F1 score on Purchase Orders than others. Yet, SMAT outperforms the ADnEV

model on OAEI and Web-forms in terms of F1 score by 12.4% and 16.1% respectively.

Moreover, the results on the OMAP datasets illustrate the pitfall of ADnEV. Since

ADnEV leverages other matchers, it is limited by the capability of the matchers.

Thus, ADnEV may not be suitable for all domains. Furthermore, comparisons of the
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Table 3.4: Comparison of precision (P), recall (R), and F1 (F) on the datasets.

Dataset
ADnEV InferSent DeepMatcher DITTO BERT SMAT

P R F P R F P R F P R F P R F P R F
MIMIC 0.08 34 0.16 9.8 76.9 17.4 0.04 38.1 0.09 0.3 46.2 0.6 0.4 84.6 0.7 11.5 84.6 20.2
CMS 0.49 44 0.97 20.8 80.0 32.9 0.31 60.7 0.62 2.4 40 4.5 2.4 55.0 4.5 33.9 95.0 50.0
Synthea 0.14 21 0.28 19.2 90.9 31.7 0.06 48.8 0.13 0.7 63.6 1.3 0.9 100 1.8 24.4 90.9 38.5
Purchase Order 80 77 78 14.3 59.6 23.1 48.9 80.2 60.8 54.5 98.6 70.2 54.0 98.2 69.7 57.9 99.5 73.2
OAEI 78 76 76 84.5 99.9 91.5 56.1 62.9 59.3 80.5 99.9 89.2 78.3 99.8 87.8 87.8 99.9 93.5
Web-forms 81 69 72 68.4 99.8 81.2 48.2 74.5 58.5 68.8 95.5 80 63.5 96.3 76.5 79.1 99.3 88.1

Average 34.3 49.9 32.5 33.6 78.2 43.3 22.0 56.8 25.8 29.7 69.4 35.4 28.6 88.8 34.7 45.7 87.0 56.3

DNN-based models (InferSent, Fine-tuned BERT, and SMAT) and ADnEV in terms

of F1 and recall also illustrate the power of end-to-end training without requiring

additional feature engineering.

For the OMAP dataset, SMAT achieves a higher precision and recall score suggesting

that the prediction capability of SMAT is better than the other models. However, the

precision across these four datasets is noticeably lower than those of Purchase Order,

OAEI and Web-forms. This may be a result of the more complex textual information

in the healthcare domain. Moreover, there are many abbreviations that can prevent

the general model from achieving a higher score. Simply finetuning the BERT could

not help much. For example, the Purchase Order contains abbreviations much less

than OMAP, after finetuning the BERT, it could improve the results comparing with

other none transformer based model. This highlights the importance of benchmarking

the models across various applications and supports the development of OMAP.

The results also capture the difference that arises from schema-level matching.

Even though DITTO and DeepMatcher perform well in the entity matching task,

they do not offer comparable performance across the different datasets. This may

be due to the inconsistencies across the datasets present in the textual information.

Moreover, InferSent seems to provide better F1 scores compared to the more complex

transformer models outside of the Purchase Dataset. This suggests that the Bi-

LSTM based sentence modeling approach shared by InferSent and SMAT may offer

better predictive power compared to the more complex transformer-based models. In

comparing InferSent and SMAT, the results suggest that SMAT’s attention mechanism
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and representation can help capture the elements and attributes in source schema

and target schema differences better than the other models regardless of whether the

textual information is rich (OMAP) or not (Purchase Order, OAEI and Web forms).

3.5 Ablation Study

To gain further insights of the various components in SMAT, we conducted an ablation

study. In particular, we examined the effectiveness and contributions of the AOA

module, the BiLSTM module, and pooling strategy.

• SMAT w/o AOA: The AOA module in Figure 3.3 is dropped and instead the

outputs of the attribute name BiLSTM and description BiLSTM are max-pooled

together and concatenated with the difference of the two descriptions.

• SMAT w/o BiLSTM : The BiLSTM is substituted with the LSTM.

• SMAT w/o Max-pooling : The Max-pooling is changed to mean-pooling.

• SMAT w/o attribute name: The attribute name is dropped from the input, and

the description itself is fed into the AOA module, so it calculates the mutual

information with itself. The difference between the two descriptions and the

two AOA outputs of descriptions are then concatenated together.

• SMAT w/o DA: The data augmentation with additional positive samples and

concatenation of nouns to the column name is omitted during the training

process.

Table 3.5 shows the results of ablation experiments on F1. It can be seen that the

complete SMAT model outperforms the rest models on F1. In particular, comparing

the result with SMAT w/o AOA illustrates the importance of the AOA module. The

module captures the interaction between the description/content of attribute and
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Table 3.5: Results for ablation experiments on F1. The best performance is bolded.

Datasets SMAT w/o AOA w/o BiLSTM w/o Max-pooling w/o attribute name w/o DA

MIMIC 20.2 18.3 18.8 6.7 18.2 18.6

CMS 50.0 36.3 39.9 13.8 38.6 39.0

Synthea 38.5 26.1 31.1 17.7 33.3 36.4

Purchase Order 73.2 26.2 59.6 64.7 28.5 58.9

OAEI 93.5 90.7 91.1 81.4 91.2 92.4

Web-form 88.1 84.9 86.4 81.1 84.1 82.3

the correlated attribute name better than max-pooling the outputs from BiLSTM.

The same conclusion can also be drawn by comparing the result SMAT w/o AOA and

SMAT w/o attribute name, the precision from SMAT w/o AOA is lower than that from

SMAT w/o attribute name. It means even when there is no attribute name feature and

data augmentation, the AOA module can still generate more useful features. Without

BiLSTM module the performance drops significantly. Comparing the importance

between BiLSTM and pooling strategies, we can see that the BiLSTM could be a

more important module.

3.6 Case study

We compared the prediction from the different models to illustrate the potential and

difficulty of automating the schema matching process. For illustrative purposes, we

focus on the conversion of MIMIC-III database to the OMOP CDM as it has one of

the most extensive column and table descriptions.

3.6.1 Correct prediction from all methods

An example where all the methods correctly assess the relatedness of two attributes is

the match for the attribute drug exposure-start date in OMOP to prescriptions-

startdate in MIMIC, which is shown in the first row of Table 3.1. As can be seen

in the Table, there are common synonyms between the two field descriptions such as
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“drug”, “medication”, and “prescription” as well as “start date”, “date prescription

was filled” and “date when the prescription started”. The similar words as well as the

simple context structure results in the automatic mapping between these two fields.

3.6.2 Correct prediction from only SMAT

An example where only our method correctly assess the relatedness of two attributes

is the match for the attribute drug exposure-start datetime in OMOP to in-

putevents mv-starttime in MIMIC. The description for the attribute in MIMIC is

“inputevents mv is input drug data for patients from metavision icu databases. start-

time records the start time of a drug input event.” For SMAT, AOA module could

extract the relation between attribute name, description tags, and the description,

which means inputevents mv related drug in MIMIC attribute name and its descrip-

tion. Similarly AOA also can capture the drug exposure-start datetime with

its description about drug. However, InferSent, which utilizes max-pooling, poten-

tially loses the concentration on the term “drug” because of the long sentence. Thus,

InferSent and the other models often fail when the field description and table descrip-

tion are long. Also, DITTO predicts the relation with specific domain topic input,

however, there is no healthcare-related topic word in their topic dictionary, so it also

failed on the prediction. With the sub-words of the column name, the BERT also

could not learn the useful information between the column name and its descriptions.

3.6.3 Incorrect prediction from all models

The final example is a match where all the methods fail to correctly identify the relat-

edness between the attributes visit detail-care site id in OMOP and transfers-

curr wardid in MIMIC. The element and attribute description of visit detail-

care site id is visit detail table is an optional table used to represent details of each

record in the parent visit occurrence table. for every record in visit occurrence table
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there may be 0 or more records in the visit detail table with a 1 : n relationship where

n may be 0. the visit detail table is structurally very similar to visit occurrence table

and belongs to the similar domain as the visit; a foreign key to the care site in the care

site table that was visited. The description of transfers-curr wardid is transfers are

physical locations for patients throughout their hospital stay; curr wardid contains the

current ward in which the patient stayed. One of the possible explanations for the

failure are that the two descriptions are ambiguous, and it is unclear that visit and

wards are equivalent to one another. In addition, the operation object ID is also

vague and prevalent in many other fields. Moreover, the second description only

mentions ward without any additional attributes which hampers the contextual sim-

ilarity. Thus, under such scenarios, fully automating the schema mapping may not

be feasible without better field descriptions.
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Chapter 4

Multi-Task Learning with

Attention-over-Attention for

Entity Matching

DNN methods have become the de-facto standard for tackling entity matching. By

posing entity matching as semantic similarity matching, pre-trained NLP models can

serve as token-centric solutions to achieve impressive performance [18, 52, 54, 56, 62,

85]. These algorithms leverage the popular transformer models such as BERT to

automatically identify important entity description features using labeled examples

without extensive engineering [73].

Unfortunately, the entity matching training samples may not provide sufficient

information to learn the relatedness between entity pairs. As such, other sub-tasks

can enrich the pragmatic knowledge encoded by BERT and improve performance.

JointBERT [62] introduces the multi-task learning formulation by adding auxiliary

tasks of identifying the individual entity classes to achieve state-of-the-art perfor-

mance across some of the datasets [62]. However, one major drawback is that it fails

to fully leverage the token representation power as only the representations of the
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special [CLS] token are used for the downstream tasks. Although it can be used to

represent the meaning of the entire sentence, it cannot be used for all kinds of tasks

(e.g., sequence tagging, or question answering). This ignores the rich semantic infor-

mation from the individual tokens (e.g., the subword and character embeddings for

the RECORD1) that potentially capture nuances in the entity description. Recent

NLP work regarding sentence representation has highlighted the limitations of the

special tokens [11, 43].

In this chapter, we demonstrate that individual token representations should be

exploited for both the auxiliary and main tasks to improve the overall matching

performance. We present EMBA, an entity matching multi-task learning model that

uses the BERT individual tokens and attention-over-attention mechanism, to combine

the dual-objective of binary matching and entity identifier prediction. We present

a multi-class classification module for the entity identifier (such as GTIN, ISBN,

or ORCID numbers) prediction task that learns the aggregation weights from the

individual entity tokens using the AOA mechanism as shown in Figure 4.1. This

provides flexibility for each entity classification task to identify the important aspects

of the entity token description. In this fashion, EMBA can identify the subword and

character embeddings that are important for each task without requiring significant

amounts of training data.

We compare our model against the existing multi-task learning entity match-

ing model, JointBERT [62], the joint matching model, JointMatcher [85], and several

vanilla transformer-based entity matching models [18, 52, 54, 56] on four entity match-

ing benchmark datasets. Our results demonstrate that EMBA generally outperforms

both models with multi-task objectives and those with single-task objectives with

improvements ranging from 1-8%.
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Figure 4.1: An example of the input to the BERT-based models and the prediction
results from JointBERT and EMBA

4.1 Approach

4.1.1 Problem Definition

Given two entity IDs, IDe1 and IDe2 , and their respective descriptions De1 =

{D1
e1
, D2

e1
, · · · , Dm

e1
} and De2 = {D1

e2
, D2

e2
, · · · , Dn

e2
}, where D1

e1
, D2

e1
· · · , Dm

e1
are the

attributes (i.e., title, description, and brand in Figure 4.1) of an entity description,

the goal is to learn (1) whether the two entities refer to the same object (i.e., entity

matching task) based on the descriptions (i.e., De1 and De2) and (2) predict the entity

ID (IDei) based on the description Dei . The latter task is known as a multi-class

classification task where each entity ID is a class.

4.1.2 Overview

EMBA follows the common BERT input format used for entity matching. The two

entity descriptions are concatenated together as follows: [CLS] {D1
e1
, D2

e1
, · · · , Dm

e1
}

[SEP] {D1
e2
, D2

e2
, · · · , Dn

e2
} [SEP]. As shown in Figure 4.2, the output representa-

tions of the different entity tokens of the last encoder layer from BERT (i.e., Ee1 =

{ED1
e1
, · · · , EDm

e1
} and Ee2 = {ED1

e2
, · · · , EDn

e2
}) are passed into different modules,

which are shown as follows,

• Ee1 will feed to a linear layer and softmax layer trained to predict the first entity

identifier, IDe1 , based on its description.
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• Ee2 will feed to a linear layer and softmax layer trained to predict the second

entity identifier, IDe2 , based on its description.

• Both Ee1 and Ee2 will feed into the AOA module to capture the interaction

across the pair of entities, whose output is then passed to a linear layer and a

softmax layer trained on the entity matching task.

There are two major architecture modifications from JointBERT related to the

use of the individual tokens (i.e., {ED1
e1
, · · · , EDm

e1
} and {ED1

e2
, · · · , EDn

e2
}) and also

the use of the AOA module for the entity matching task. In JointBERT, the training

objective consists of two parts: (1) a binary cross-entropy loss for the entity matching

problem and (2) one or more cross-entropy losses for the auxiliary task such as the

entity identifier IDei prediction based on their respective description Dei . The output

representation of the [CLS] token is used to learn the task-specific modules for the two

parts of the objective. While [CLS] is commonly used in NLP for many downstream

classification tasks, this may not always yield the best performance. Furthermore,

enforcing the same shared representation for multiple tasks can be beneficial with

limited training data, but restricts the weights to be the same for all tasks. This

scenario is suboptimal especially if the same token is used to predict two different

entity identifiers, as the second entity description may not be fully reflected when

using [CLS].

4.1.3 Entity Identifier Prediction

A major motivation for moving away from the [CLS] token is recent NLP work that

suggests that aggregating the token embeddings themselves may offer better sentence

embeddings [11, 43]. Thus, for the entity identifier prediction task, we propose the

use of the token embeddings themselves as the input representation for the cross-

entropy loss. We note that one näıve approach is to use a different special token
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Figure 4.2: EMBA framework

(e.g., [SEP] token) for the second entity identifier prediction task, as the original

[CLS] special token may not fully capture this entity description. However, as we

will demonstrate in the ablation study, this offers marginal improvement as the [CLS]

token remains a suboptimal representation for the first entity. Therefore, EMBA uses

the token embeddings from the entity description, EDei
directly for both auxiliary

tasks. The token embeddings are passed to a linear layer that learns the task-specific

weights to aggregate the representation and feeds it to the softmax layer. In this

manner, each task can identify the subset of tokens that are indicative of the entity

identifier. We also note that since each entity description has different lengths, m

and n for entities 1 and 2, respectively, the weights are task-specific.

4.1.4 Attention-over-Attention for Entity Matching Predic-

tion

For the entity matching problem, we again use the token representations for the two

entities, Ee1 and Ee2 . These representations are fed to an AOA module to model the



40

token-level interactions between these two pairs. The AOA module introduces mutual

attention to simultaneously capture the relationships between the specific values of

the first entity description to other values of the second entity description.

Our AOA module captures the correlations between the entity description using

two mechanisms. Notice that Ee1 ∈ Rm×h denotes the first entity representation,

where m is the first entity token length and h is the BERT token dimension. Sim-

ilarly, Ee2 ∈ Rn×h denotes the second entity representation, where n is the second

entity token length. The module first calculates the pair-wise interaction matrix

I = Ee1 · ET
e2, where the value of each entry represents the correlation of each token

pair between the first and second entity. A column-wise softmax is applied to the

interaction matrix I to obtain α, a probability distribution for each column, where

each column represents the individual token-level level distribution for the second

entity when considering the first entity. A row-wise softmax is applied to interaction

matrix I to obtain β, the attention from the second entity description to the first

entity description. Thus for the kth token embedding from entity 1 and the tth token

embedding from entity 2, the associated attentions are:

α(t) = softmax(I(1, t), I(2, t), · · · , I(m, t)) (4.1)

β(k) = softmax(I(k, 1), I(k, 2), · · · , I(k, n)) (4.2)

Then, the averaged second entity attention β̄ is calculated using a column-wise

averaging of β. Finally, the attention-over-attention γ ∈ Rm is obtained as a weighted

sum of the averaged second entity attention, β̄, to α. By considering the contribution

of each token explicitly, the AOA module learns the important weights for each token
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in the two different embeddings.

β̄ =
1

n

∑
k

= 1nβ(k)

γ = α · β̄T

The resulting AOA vector, γ is then multiplied with the entity 1 representation, Ee1,

to yield a vector representation, x ∈ Rh×1 that is sent to the final classification layer

which consists of a linear layer and a softmax layer to predict whether or not two

entities are matching.

4.1.5 Dual Objective Training

EMBA uses the binary cross-entropy loss (BCEL) for the entity matching task and the

cross-entropy loss (CEL) for the entity identifier prediction (multi-class prediction).

Let yemi
, ye1i , ye2i denote the entity matching label, and the two entity identifiers,

then we define the loss L as follows,

Li = BCEL(yemi
, ŷemi

) + CEL(ye1i , ŷe1i) + CEL(ye2i , ŷe2i) (4.3)

where i stands for each pair. Algorithm 1 illustrates the process of applying multi-task

learning to EMBA in which all layers in the model are refined. As a first step, similar

to JointBERT, we initialize the parameters of the pre-trained BERT model and then

randomly initialize the parameters of the task-specific layers, including entity match-

ing classification, first entity ID prediction, and second entity ID prediction. During

the training stage, both objectives are jointly optimized, so that the entity match-

ing task will be improved by the other two multi-class classification tasks training

simultaneously.
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Algorithm 1 Multi-task learning for EMBA

1: Initialize:
Model parameters θ:
a. Shared layer parameters by BERT;
b. Task-specific layer parameters randomly;

2: Generate B by merging mini-batches for each dataset;
3: while epoch < Epoch Num do
4: Shuffle B;
5: for Element in B do
6: Compute loss L from Eq. (4.3);
7: Compute gradient: ∇(θ);
8: Update model: θ = θ − η∇(θ);
9: end for
10: end while

4.2 Experiments

We designed the experiments to answer three key questions: (1) How accurate is

EMBA in automating the entity matching? (2) How important are the different com-

ponents of EMBA? (3) What are the important words that are learned for the matching

decisions?

4.2.1 Datasets

We compare the performance of EMBA with several existing baseline methods on four

entity matching benchmark datasets. The statistics pertaining to the training and

testing sets are provided in Table 4.1.

WDC datasets. The WDC Product Data Corpus for Large-scale Product

Matching [64], was built by extracting product offers from the Common Crawl. The

WDC datasets serve as a popular entity benchmark dataset, and have been used for

evaluation in DITTO, JointBERT, and the Semantic Web Challenge on Mining the

Web of HTML-embedded Product Data at ISWC2020 [89]. It contains the titles,

descriptions, and product identifiers from the e-shops’ HTML pages. We utilize the

same training, validation, and test configuration as JointBERT across four categories
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computers, cameras, shoes, and watches. The training sets are available in four sizes,

labeled small, medium, large, and xlarge, ranging from around 2,000 to 70,000 prod-

uct offer pairs. All entities that are contained in the test sets are also represented

with different entity descriptions in the training set.

For our experiments, we used the attributes brand, title, description, and specTable-

Content which are predominantly text and contain long sequences of words. The

attribute values were gathered from the Web and may contain noise as a result of

extraction errors. As such, we limit the number of words used for each attribute to

meet the 512-token maximum length limit for BERT-based transformer models by

only keeping at most twice the median length of the attribute value.

Other structured and textual datasets. We also compare the models using

the abt-buy, dblp-scholar, and company entity matching benchmark datasets. The

same preprocessed splits as the JointBERT and DeepMatcher evaluation settings are

used. For these three datasets, each dataset represents a match between two mostly

deduplicated datasets for different domains, namely products (abt-buy), scientific

texts (dblp-scholar) and companies. Since the abt-buy and companies datasets do

not contain multiple entity descriptions for many of the described entities, the results

illustrate how EMBA performs in these settings.

4.2.2 Baseline Models

EMBA is evaluated against six baseline models. This section summarizes each of the

models, along with their specific training settings. The models are trained three

times and we report the average of the F1 score for the positive class. For all but

JointBERT, we present the best result from either the JointMatcher or JointBERT

paper [62, 85]. This means that for five of the six models, we will not report their

standard deviation with their average.

• DeepMatcher [56]: An entity matching solution that customizes the recurrent
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Table 4.1: Statistics about the datasets

Dataset Size # Pos. Pairs # Neg. Pairs Test Set # Entities

WDC computers

xlarge 9690 58771

1100 745
large 6146 27213

medium 1762 6332
small 722 2112

WDC cameras

xlarge 7178 35099

1100 562
large 3843 16193

medium 1108 4147
small 486 1400

WDC watches

xlarge 9264 52305

1100 615
large 5163 21864

medium 1418 4995
small 580 1675

WDC shoes

xlarge 4141 38288

1100 562
large 3482 19507

medium 1214 4591
small 530 1533

abt-buy default 822 6837 1916 819

dblp-scholar default 4277 18688 5742 1635

company default 22560 67569 22503 5640

neural network architecture to aggregate the attribute values and then compares

the aggregated representations of attribute values. According to the paper, it

fixes the batch size at 16 and sets the positive-negative ratio, which controls

the class weighting, to the actual distribution of each training set. It keeps

the default values for all other hyper-parameters and uses fastText embeddings

pre-trained on the English Wikipedia as input.

• DITTO [52]: A state-of-the-art entity matching model that cast the prob-

lem as a sequence-pair classification and fine-tunes RoBERTa, a pre-trained

Transformer-based language model [54]. We report the results from [62] which

injected domain knowledge via the offered spans for the product or general do-

main according to the datasets. To make it comparable with JointBERT, the

authors use the pre-trained BERT model rather than RoBERTa and set the
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Table 4.2: Comparison of F1 on the test sets for the different datasets. The best
performance is bolded and the second best performance underlined.

Dataset Size Deepmatcher BERT RoBERTa DITTO JointMatcher JointBERT EMBA

WDC computers

xlarge 88.95 94.57 94.73 96.53 95.73 96.37(±0.97) 99.03(±0.23)
large 84.32 92.11 94.68 93.81 94.03 94.81(±1.69) 97.96(±0.18)

medium 69.85 89.31 91.90 88.97 90.10 86.55(±0.91) 93.06(±0.35)
small 61.22 80.46 86.37 81.52 86.95 76.15(±0.99) 83.15(±0.75)

WDC cameras

xlarge 84.88 91.42 94.39 94.74 93.57 96.34(±1.99) 99.33(±0.42)
large 82.16 91.02 93.91 94.41 92.00 93.55(±0.78) 97.84(±0.02)

medium 69.34 87.02 90.20 87.97 89.26 85.36(±2.01) 91.88(±0.79)
small 59.65 77.47 85.74 78.67 84.15 77.33(±0.84) 80.98(±0.99)

WDC watches

xlarge 88.34 95.76 94.87 97.05 96.61 96.99(±1.29) 99.18(±0.17)
large 86.03 95.23 93.93 97.17 95.89 96.66(±2.09) 99.05(±0.12)

medium 67.92 89.00 92.28 89.16 93.18 85.66(±2.09) 93.80(±0.12)
small 54.97 78.73 87.16 81.32 91.31 74.16(±2.78) 83.91(±0.16)

WDC shoes

xlarge 86.74 87.44 88.88 93.28 90.22 95.49(±3.60) 98.72(±0.25)
large 83.17 87.37 86.60 90.07 89.01 92.40(±3.14) 97.83(±0.08)

medium 74.40 79.82 81.12 83.20 85.63 78.73(±1.63) 88.65(±0.22)
small 64.71 74.49 80.29 75.13 78.42 68.84(±1.96) 74.79(±2.66)

abt-buy default 62.80 84.64 91.05 82.11 - 82.76(±0.28) 85.42(±0.82)
dblp-scholar default 94.70 95.27 95.29 94.47 - 94.12(±0.21) 94.83(±0.09)

company default 92.70 91.70 91.81 90.68 - 91.39(±0.48) 92.73(±0.54)

batch size to 8 due to memory constraints with warmup.

• BERT-based Models: Both uncased BERT and RoBERTa models are pre-

sented as in [62]. The attributes of each entity description are concatenated into

a single string with any further preprocessing omitted and left to the tokenizer

of the respective models. Both models use the full input length of 512 tokens.

• JointBERT [62]: It is a dual-objective training method for BERT, which com-

bines binary matching and multi-class classification. The model uses the [CLS]

token to predict the entity identifier based on each entity description in a train-

ing pair in addition to the matching decision. It achieved state-of-the-art results

on the WDC datasets in large and xlarge settings.

• JointMatcher [85]: It is a novel entity matching method that forces the trans-

former model to learn the contextual information from the textual records. It

contains a relevance-aware encoder and the numerically-aware encoder to pay

more attention to similar segments and segments with numbers, respectively.

As such, it does not need to inject any domain knowledge when small or medium
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size training sets are used. Since its implementation is not accessible publicly,

we summarize the results on the WDC datasets.

We train EMBA and JointBERT on a single NVIDIA Tesla V100 GPU with 16GB

VRAM. The attributes of each entity description are concatenated into a single string.

Any further preprocessing is omitted and left to the tokenizer of the respective models.

All models are allowed the full input length of 512 tokens. We fix the batch size at

32 and use the Adam optimizer to train the models for 50 epochs using a linearly

decaying learning rate with one epoch warmup. A learning rate sweep is done over

the range [1e-5, 3e-5, 5e-5, 8e-5, 1e-4]. Also, we apply the early stopping strategy

if a model performance on the validation set does not increase over 10 consecutive

epochs. Both models are trained three times and we report the average performance

with its standard deviation.

4.3 Predictive Performance

Table 4.2 summarizes the F1 results of the experiments across all models and datasets.

With regards to the WDC datasets, EMBA achieves the best performance except for

the small training size setting where JointMatcher and RoBERTa achieve a higher

F1 score. It offers a performance improvement over the single-objective models such

as BERT and RoBERTa by 1-11% and DITTO by 1-8% in the medium to xlarge

settings.

The results also illustrate that EMBA achieves the best performance on the company

dataset and the second-highest performance on the abt-buy dataset. From the results,

we observe that for smaller datasets (abt-buy, dblp-scholar, and the small training size

for WDC datasets), RoBERTa can obtain a better result than EMBA. Since RoBERTa

pre-trains on a larger corpus, the fine-tuning process is less likely to overfit on the

small dataset. Yet once there are sufficient samples for fine-tuning, the effect of pre-
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Table 4.3: The Entity ID prediction results on WDC Cameras datasets, where #1 is
the first entity ID prediction task, and #2 is second entity ID prediction task.

JointBERT EMBA

#1 Accuracy #2 Accuracy Overall F1 #1 Accuracy #2 Accuracy Overall F1
xlarge 0.98 0.98 0.98 1 0.98 0.99
large 0.98 0.97 0.98 0.99 0.98 0.99

medium 0.93 0.93 0.93 0.97 0.94 0.96
small 0.11 0.19 0.33 0.71 0.6 0.63

training on a large corpus is mitigated, as can be seen from the shrinking performance

gap between BERT and RoBERTa. In the future work, we will explore the reason

that RoBERTa failed on these large datasets.

JointMatcher also exhibits a similar trend as RoBERTa, where it can yield bet-

ter performance than EMBA for the smaller WDC training sizes. We posit that since

JointMatcher utilizes the pre-trained RoBERTa embeddings, this gives it a perfor-

mance boost over the BERT-based models (BERT, DITTO, JointBERT, and EMBA).

We note that half the time, JointMatcher outperforms RoBERTa, which suggests that

the relevance-aware encoder and numerically-aware encoder may have some poten-

tial impact but only for specific datasets. We also note that JointMatcher does not

provide a consistent improvement over the single objective models, especially when

compared to DITTO.

In comparison with JointBERT, EMBA can improve the performance up to 8%.

Moreover, there is no setting where JointBERT offers better performance than our

model across the four different datasets. This illustrates that using the [CLS] token

for all three tasks is suboptimal, as it restricts the representation power of the em-

bedding. By adopting the token-based representation for all three tasks, EMBA has

more flexibility to learn a better overall representation without constraining the [CLS]

token to generalize to all three tasks.



48

4.3.1 Auxiliary Tasks Analysis

Since JointBERT and EMBA are dual-objective models, this paper will explore their

performance on the auxiliary tasks. We retrieved the WDC cameras results from

both models as shown in Table 4.3. EMBA outperforms JointBERT over all datasets.

It shows that using different representations of the entities instead of [CLS] token for

all tasks could improve the prediction performance. When we focus on small dataset,

EMBA improves the results at most 60% comparing with JointBERT, which states the

effectiveness of token utilization. However, it should be noticed that, even though the

entity matching is the main task, the two auxiliary subtasks would weigh more than

the entity matching task. In the future, we would develop other subtasks to serve the

main task better.

4.3.2 Statistics Analysis

We conduct an analysis to determine whether EMBA provides a statistically significant

improvement over JointBERT and assess the stability of the models. To do this, we

perform two additional training sessions for both models and use the one-tailed t-test

on the resulting five F1 scores from each model on the four different datasets. The

null hypothesis (H0) and alternative (Ha) hypotheses are as follows:

H0 : µEMBA ≤ µJointBERT

Ha : µEMBA > µJointBERT

Figure 4.3 shows the mean and standard deviation of the F1 scores for each model and

the result of the t-tests. We notice that for all but dblp-scholar, we can reject the null

hypothesis suggesting that EMBA provides statistically significant performance over

JointBERT. For dblp-scholar, the null hypothesis cannot be rejected as the largest F1

score (94.36) from JointBERT is greater than the smallest of five F1 scores (94.31)
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Figure 4.3: Statistical significance analysis of the F1 performance between EMBA and
JointBERT. The mean and standard deviation (error bars) are shown, as well as the
result of the t-test. * denotes if p < 0.05, ** if p < 0.01, *** if p < 0.001, **** if
p < 0.0001, and ns if p ≥ 0.05.

from EMBA.

The figure also illustrates the stability of EMBA. As the WDC training size increases,

we can observe that there is less variation in the performance of EMBA. However,

this trend is not necessarily observed in JointBERT as can be seen by the standard

deviation for the camera category and the xlarge training size setting. Moreover,

EMBA consistently has smaller standard deviations than JointBERT, which suggests a

more stable performance.

4.4 Ablation Study

To gain further insights of the various components in EMBA, we conducted an ablation

study. In particular, we examined the effectiveness and contributions of the AOA
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Figure 4.4: JointBERT-S where the [SEP] token is used for the second entity identifier
prediction task and the [CLS] token is used for the binary classification and first entity
identifier prediction.

module, and token representation strategy for the auxiliary (i.e., first and second

entity ID prediction) and main (i.e., entity matching) tasks across the four benchmark

datasets.

• JointBERT with [SEP] token (JointBERT-S): This is the näıve extension of

JointBERT to use a different special token, [SEP], for the second entity ID

prediction task as shown in Figure 4.4. Note that the [CLS] token is used for

the entity matching and first entity ID prediction task.

• JointBERT with word-tokens representations (JointBERT-T): We utilize the

average token representations for all the tasks. For the entity ID prediction

task, the average of the token representations from the entity description is

passed to a softmax layer. Similarly, for the entity matching task, we average

the two entity token representation.

• JointBERT with [CLS] token and word-tokens representations (JointBERT-

CT): We utilize the word-token representations for the two auxiliary tasks

(same average token representation as JointBERT-T) but keep the [CLS] special
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Table 4.4: Results for ablation experiments on F1. The best performance is bolded
and the second best performance underlined.

Dataset Size JointBERT JointBERT-S JointBERT-T JointBERT-CT EMBA-CLS EMBA-SurfCon EMBA

WDC computers

xlarge 97.49 98.83 97.49 97.65 97.48 96.86 99.03
large 96.90 97.83 96.68 97.50 95.52 97.33 97.96

medium 88.82 92.33 89.86 90.65 89.48 89.34 93.06
small 77.55 81.74 76.47 80.18 77.31 67.52 83.15

WDC cameras

xlarge 98.02 98.32 98.00 99.01 98.19 98.60 99.33
large 96.51 97.66 95.44 97.04 96.03 97.34 97.84

medium 87.91 91.13 86.46 88.44 86.11 84.07 91.88
small 78.30 80.24 74.66 75.80 78.12 57.92 80.98

WDC watches

xlarge 97.09 98.32 98.35 98.84 98.01 97.79 99.18
large 98.46 98.84 97.87 98.33 98.02 97.84 99.05

medium 87.46 93.23 89.03 91.22 87.44 84.42 93.80
small 75.83 83.77 75.10 79.65 79.37 57.38 83.91

WDC shoes

xlarge 97.88 98.67 97.81 97.99 96.99 97.46 98.72
large 95.16 97.50 97.84 96.88 96.11 93.07 97.83

medium 82.61 85.67 80.65 87.50 81.63 71.74 88.65
small 73.13 73.73 68.89 69.94 71.64 57.20 74.79

abt-buy default 83.44 85.17 81.35 81.72 83.29 79.86 85.42
dblp-scholar default 93.99 94.58 94.40 93.17 94.13 94.01 94.83

company default 91.40 91.94 91.54 91.15 89.17 90.69 92.73

token for the entity matching task.

• EMBA only with [CLS] token (EMBA-CLS): The [CLS] special token is used

for the two auxiliary tasks but the AOA module is used for the binary matching

problem.

• EMBA with SurfCon [81] (EMBA-SurfCon): The SurfCon framework pro-

posed an encoding component and a context-matching component to capture

sequence-level and token-level similarity. We substitute the AOA module with

the SurfCon framework while maintaining the same configuration as EMBA for

all the other parts.

The results of the ablation study are summarized in Table 4.4. Unsurprisingly,

EMBA model outperforms the other models, suggesting that all the components are

needed for better matching performance. We can observe that simply swapping the

representation to the [SEP] token for the second entity ID prediction task (JointBERT-

S) improves the performance and in some cases provides the second-best performance.

This demonstrates that using the [CLS] token for all three tasks is suboptimal, as it

restricts the representation power of the embedding.
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The ablation study results also highlight the importance of using the individual

token representations. Even using a simple average of the tokens (JointBERT-T)

does not hinder the performance and even in some cases provides a slight benefit.

This suggests that the [CLS] token may not provide the best entity representation.

This phenomenon can also be observed when comparing results between EMBA and

EMBA-CLS. Notably, the main difference is that [CLS] token is used in the latter model

for the two auxiliary tasks. However, this change results in a significant drop in

performance for EMBA-CLS, especially for the smaller training sizes.

To identify the impact of the AOA module, we first compare the results of Joint-

BERT with EMBA-CLS. We observe that AOA alone is often insufficient without

using the token representation for the auxiliary tasks. However, in conjunction with

the token representation (i.e., EMBA), the AOA module can better tease out impor-

tant attention weights as the embedding is fine-tuned to better reflect the task. The

results also illustrate that the AOA module is necessary as swapping it out for the

average or even the SurfCon framework does not yield better results than EMBA.

In addition, we compared the other multi-class classification tasks within these

models (i.e., entity ID prediction). When using [SEP] token for second entity ID pre-

diction, or averaging each entity tokens for 1st/2nd entity ID prediction respectively,

F1 scores on small datasets are improved by 30%, while on large datasets they are

improved by 20% comparing with JointBERT. We can also find details in the case

study section.

We do note that since the lengths of entity pairs are different, it is hard to simply

batch the outputs from BERT. We apply the sample-wised computation to the AOA

module, which will be slower than batched computation. Based on this, we also tried

a simple padding strategy to enable batching of the outputs from BERT, which will

expedite the computation of AOA module. However, traditional padding is applied

before the model, so that it can learn the zero paddings to avoid the skewness. We
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(a) Two entity descriptions

(b) LIME explanation by the JointBERT model

(c) LIME explanation by the EMBA model

Figure 4.5: LIME explanations for a non-match classified incorrectly by the Joint-
BERT and correctly by the EMBA.

Figure 4.6: Attention visualization of an entity pair

experiment on small and xlarge datasets of WDC computers, and the F1 scores on

small and xlarge datasets are 79.16 and 96.68, which is much lower than those in

EMBA. It means the intermediate padding for the AOA will skew the representation

for the downstream tasks.

4.5 Case Study

To better understand the potential benefit of EMBA in terms of explaining the match-

ing decision, we investigate the word and token importance between our model and

JointBERT. We use an example where a non-match is classified incorrectly by Joint-

BERT but correctly by EMBA to illustrate the differences. The entity descriptions for

two entities are shown in Figure 4.5a. As can be seen, the brand names of these two

entities are different and thus should not match. However, we can also observe that

they share many similar attribute values such as 4gb, 50p, cf, CompactFlash, card,
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and retail.

We first analyze the word importance using the same methodology used for Joint-

BERT [62]. In particular, we utilize the Mojito framework [19] which is based on the

LIME algorithm [66] and has been used to explain deep matching decisions [62]. LIME

perturbs all pairs of entity descriptions by randomly dropping words and then labels

for all perturbed instances are queried from the model. A surrogate linear regression

model is then trained using this set of instance/label pairs and serves as a local ap-

proximation for the original model. The resulting linear regression coefficients then

provide the importance of the individual word in determining the matching decision.

Figure 4.5 illustrates the LIME explanations generated with Mojito for a match-

ing decision by JointBERT (see Figure 4.5b) and by EMBA (see Figure 4.5c). Orange-

colored words push the model toward a non-match whereas blue-colored words have

the opposite effect (pushing toward a match). As can be seen from the figure, Joint-

BERT considers the brand transcend as a match signal, while EMBA identifies the same

attribute as a non-match. We can also observe that the non-match words identified

from EMBA have a higher negative weight (darker orange color), whereas the match

words identified by JointBERT display a higher positive weight (darker blue color).

The figure highlights some of the benefits of using the individual token representa-

tions to make the entity prediction and matching decision, as too much similarity

between the entity descriptions can drown out the non-match signal from a small but

important subset of attribute values.

To demonstrate the intuitive benefits of token-level representation, we visualize

the variation in the attention score of similar segments in the same entity pair us-

ing JointBERT and EMBA. Figure 4.6 illustrates the attention scores of each word in

the entity description. We note that in some cases, the record pair is split into to-

ken sequences by the WordPiece tokenizer to deal with out-of-vocabulary words like

“sdcfh-004g-a11”. For a split-up word, we sum the attention scores over its tokens
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based on the multi-head attention in the last layer as suggested by [82]. It can be

seen that in JointBERT, most of the attention scores focused on a few words with

contextual semantics, such as “compactflash” and “sdcfh-004g-a11” in entity 1, and

“compactflash” and ”ts4gcf300” in entity 2. The high attention to “compactflash”

in both entities lead JointBERT to incorrectly conclude that there is a match. The

brand name “sandisk” in entity 1, and “transcend” in entity 2 did not obtain enough

attention in JointBERT. Also, JointBERT gives low attention scores for several align-

ments on the parameters, such as “4gb 50p” and “300x”, which could provide other

evidence of a non-match. In contrast, EMBA enhanced the attention scores of the brand

name, “transcend” and “sandisk”. Moreover, both “sdcfh-004g-a11” and “ts4gcf300”

have higher attention along with some of the other attributes. These higher weights

help EMBA focus on the small subset of attributes to achieve the correct label for the

entity pairs.

We hypothesize that one potential reason why the attention loses focus on some

important words in JointBERT is that the [CLS] token denotes the representation

for the sequence pair. As such, it is hard to untangle the representation of the two

individual entities, and there are no strong signals to give feedback to optimize the

model parameters. However, EMBA feeds the token representations rather than special

tokens to the tasks, and it can obtain the appropriate feedback from different tasks

to optimize the attention weights. Therefore, the attention could focus on the crucial

tokens such as the brand names and model numbers, so that it could improve the

results.

We also explored the case where EMBA incorrectly predicts a non-match but Joint-

BERT correctly predicts a match. For example, consider the two entities, 1. corsair

cmso4gx3m1a1333c9 4gb ddr3 1333mhz sodimm unbuff cl9 for laptops laptops for

$38.54.; 2. corsaer 4gb (1x4gb) ddr3 1333 mhz (pc3 10 666) laptop memory blank

media - page 2 — all tech toys. The golden standard indicates that these two are the
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same entity. In the datasets, if the entity pair is the same, their pre-defined entity

IDs are also the same. When we analyze its entity ID prediction tasks, both of them

belong to the same pre-defined entity ID, and JointBERT predicts them right, but

the results of EMBA are different. We posit this is because we aggregate the word

token of each entity, which can integrate noisy information especially when the entity

contains a long description. This suggests that there are cases where aggregating over

long token sequences can be harmful in which case the [CLS] special token offers a

better representation.
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Chapter 5

Cross-Attention Multi-task

Learning for Schema and Entity

Matching

Integrating data from multiple sources requires a common understanding of the un-

derlying schema and the entities represented within each dataset. Both schema and

entity matching are increasingly being performed using DL techniques. These ap-

proaches have shown promising results in improving the accuracy and efficiency of

matching algorithms. Despite the fact that schema matching and entity matching are

related, they involve different levels of abstraction and require different matching al-

gorithms and techniques. Separating these tasks can allow specialized techniques and

algorithms that are better suited to each task’s requirements, leading to improved

accuracy and performance. Unfortunately, serializing the two stages can result in

error propagation and amplification.

There are three key underlying assumptions of existing entity matching studies:

(1) the entity descriptions share a common schema, (2) the matching attributes in the

datasets are positioned in the same relative order by the construction of the entity
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Table 5.1: Preliminary results for shuffling the order of attribute values

Models Attributes aligned Computers Cameras Watches Shoes abt-buy dblp-scholar

BERT
Yes 80.46 77.47 78.73 74.49 84.64 95.27
No 73.69 70.37 65.86 61.45 78.58 81.79

JointBERT
Yes 76.15 77.33 74.16 68.84 82.76 94.12
No 71.72 71.83 66.99 62.36 81.03 87.20

pairs [61], and (3) the values have been correctly entered (i.e., not misaligned where

the value is accidentally placed with the previous attribute) nor missing. However,

such methods are not applicable in practical scenarios where attribute values and

names are not fully aligned. The first two assumptions assume that schema matching

has been done properly without any mistakes, which is not practical given existing

automated schema matching models as discussed in Chapter 3.

We illustrate the performance degradation under a simple permutation of the

attributes. For example, the first entity is “brand + title + description” and the

second entity is “title + description + brand”. As shown in Table 5.1, the performance

of BERT and JointBERT is reduced by at most 13% and 7%, respectively. This

demonstrates the potential limitations of existing BERT-based models that rely on

perfect attribute alignment to achieve reasonable performance.

Misalignment of the attribute values can also affect entity matching models that

serialize the record pair with special tokens for splitting the column name and its

content [52, 85]. For example, the restaurant address can be mistakenly placed with

the business title. Thus, even preserving the relative order of the attribute across

different tables can cause unexpected performance problems or require a significant

amount of manual labor to properly align the values.

To address the above limitations and provide a dataset-invariant approach, we

propose a cross attention-based model, CaSE, to integrate both the attribute name

and values into the modeling process. Cross attention [91] is a type of attention

mechanism that allows models to quickly and accurately switch their focus between

different viewpoints or perspectives. This ability is motivated by the human ability
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to effectively navigate and interact with our environment, such as driving a car or

playing a sport. Existing research has shown that cross-view attention is associated

with increased cognitive flexibility and adaptability, as well as improved social skills

and decision making abilities. Furthermore, deficits in cross-view attention have been

linked to a range of mental health disorders, such as attention deficit hyperactivity

disorder (ADHD) and schizophrenia. Overall, cross-attention is an important cogni-

tive function that plays a crucial role in our daily lives. We introduce it to the entity

matching task to appropriately learn the interaction between the attribute name and

its contents. We also introduce a new multi-task learning objective that combines en-

tity matching and schema matching. By learning the corresponding attributes across

schemas, our model does not require perfect alignment of the attributes to perform

entity matching. Similarly, by leveraging the attribute values, the schema-matching

task can utilize the data distribution to better identify attribute correspondences.

Since we are the first to propose to tackle both matching tasks joint, we curate

a new benchmark dataset that combines both schema matching and entity match-

ing tasks. Our benchmark extends 8 existing schema matching or entity matching

datasets by manually labeling the instances for the other missing task (e.g., entity

matches for a schema matching dataset). In addition, we also create 4 versions of the

dataset to reflect real-world scenarios where the various key assumptions are violated.

Figure 5.1 provides an example comparison between the curated and aligned existing

benchmark dataset and the original, unaligned, and misaligned data. Our experi-

mental results on the new benchmark illustrate that CaSE generally outperforms the

single-task objective models with improvements ranging from 1-13%.
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(a) Current entity matching benchmark examples

(b) Real-world dataset examples

Figure 5.1: Examples for current entity matching benchmark dataset and real-world
datasets

5.1 Approach

5.1.1 Problem Definition

Given a source table and target table, we extract their respective column names as

Dc1 = {D1
c1
, D2

c1
, · · · , Dm

c1
} and Dc2 = {D1

c2
, D2

c2
, · · · , Dn

c2
} (e.g., name, rating, and

phonenumber in Figure 5.1a). We also extract the entity descriptions associated with

the respective tables De1 = {D1
e1
, D2

e1
, · · · , Dm

e1
}, and De2 = {D1

e2
, D2

e2
, · · · , Dn

e2
},

where D1
e1
, D2

e1
· · · , Dm

e1
are the attribute values (e.g., 2 Asian Brothers, 3.1, (773)

681-0268). The goal is to learn (1) whether the two entities refer to the same object

(i.e., entity matching task) based on the descriptions (i.e., De1 and De2) and (2) which

columns in the source table are related to those in the target table.
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Figure 5.2: Illustrations for the multi-task learning with both schema matching and
entity matching.
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5.1.2 Overview

We propose a new cross attention-based framework CaSE that simultaneously solves

both the entity matching and schema matching problem by incorporating a multi-task

learning objective. The idea is for the model to learn both the interactions between

the attribute name and value and between the two different schemas. In this manner,

the model avoids the need to pre-train special tokens to separate the column name

and value (e.g., DITTO) as well as the manual labor associated with aligning the

attributes between two schemas.

As shown in Figure 5.2, we feed four kinds of inputs to CaSE.

1. The source table column names sequences Ic1 = [CLS] D1
c1

[SEP] D2
c1

[SEP] · · ·

[SEP] Dm
c1

[SEP].

2. An entity sequence from the source table Ie1 = [CLS] D1
e1

[SEP] D2
e1

[SEP] · · ·

[SEP] Dm
c1

[SEP].

3. The target table column names sequences Ic2 = [CLS] D1
c2

[SEP] D2
c2

[SEP] · · ·

[SEP] Dn
c2

[SEP].

4. An entity sequence from the target table Ie2 = [CLS] D1
e2

[SEP] D2
e2

[SEP] · · ·

[SEP] Dn
c2

[SEP].

The four sequences are then embedded using a (frozen) BERT layer to obtain Ec =

[c1, c2, · · · , cm], Ee = [p1, p2, · · · , pm], Ec′ = [d1, d2, · · · , dn], and Ee′ = [a1, a2, · · · , an].

These embeddings are fed into the self-attention layer separately and then go to the

cross attention blocks. The self-attention layer follows the function as follows,

fselfAtt(H) = softmax(
q(H)k(H)T√

dk
)v(H) (5.1)

where H is the encoded features from previous layer. q(·), k(·), and v(·) are the query,

key, and values respectively. dk is the number of attention heads for normalization.
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The cross attention block contains two attention modules. Both encoded features (Hc

and He) will feed to this block, and follow the calculations below,

fcrossAtt1 = softmax(
q(Hc)k(He)

T

√
dk

)v(He) (5.2)

fcrossAtt2 = softmax(
q(He)k(Hc)

T

√
dk

)v(Hc) (5.3)

where fcrossAtt1 serves as the operation to discover inner-relationships from column

names to the entity attributes, and fcrossAtt2 captures the alignment between entity

attributes and column names. The numbers of columns and entity attributes are

identically ordered in our inputs. Based on this, the contextual clues can be propa-

gated between the columns and the entity attributes, for example, the column name

can be enhanced by the entity attribute.

For entity matching, we concatenate the outputs from the two cross attention

blocks associated with the entity (i.e., Re and Re′), and feed it to the multi-layer

perceptron (MLP) for the classification task. For schema matching task, we want to

further capture the interactions of columns between source and target tables, so we

feed the source table column representation RC and target table column represen-

tation RC′ to a new cross attention block. Since there are m and n columns in the

source and target tables respectively, there are m × n schema matching pairs. The

matching pair extraction block will extract the corresponding column name represen-

tations from the outputs (i.e., RL, RR) of cross attention block. Specifically, if the

column name contains more than one token, we will average them as the representa-

tion of the column name. Then we feed them into the MLP layer to do the schema

matching task. Since each entity pair will have the same schema matching task, we

will utilize majority voting at the inference stage.
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Table 5.2: Overview of the datasets within our new benchmark dataset.

Datasets # of Tables
# of Records

# of Matches
# of

Non-matches
# of

Attributes
# of schema

matching pairsL R

Restaurants 2 533 331 130 270 5 25

Walmart-Amazon 2 2,554 22,074 1154 - 10 100

Baby Products 2 5,085 10,718 108 292 16 256

Bikes 2 4,785 9,002 130 320 8 64

Books 2 396 3,700 92 305 10 100

Phones 17 447 50 258 22,092 26 676

Headphones 6 444 51 226 22,418 27 729

TVs 8 428 60 182 25,499 61 3721

5.1.3 Dual Objective Training

CaSE uses the binary cross-entropy loss (BCEL) for the entity matching task and the

binary hinge loss (BHL) for the schema matching task. Let yemi
, ysij denote the entity

matching label and the schema matching label, respectively. The loss is then defined

as follows,

Li = BCEL(yemi
, ŷemi

) +
t∑
j

BHL(ysij , ŷsij) (5.4)

= −[yemi
log(ŷemi

) + (1− yemi
) log(1− ŷemi

)] +
t∑
j

max(0, 1− ysij ŷsij) (5.5)

where i represents the entity pair, and for each i, t is the total number of the schema

matching pairs.

5.2 Experiments

5.2.1 Datasets

The new benchmark dataset is obtained by extending 8 existing schema matching

and entity matching datasets shown in Table 5.2. These datasets are for training and

evaluating matching models for various domains including products, publications,
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Table 5.3: Statistics of four types of datasets

Versions Common schema Same attribute order Original values Missingness Rate Mis-alignment Rate

V1 Yes Yes No 2% 0%
V2 No Yes No 2% 0%
V3 No Yes No 35.18% 33.18%
V4 No No No 35.18% 33.18%

and businesses. Each dataset consists of candidate pairs from two or more structured

tables of entity records of the same schema. For the existing schema matching datasets

(i.e., Baby Products and Bikes), we manually annotate the entity matches. For

existing entity matching datasets (the other 6 datasets), we manually add new schema

matching labeled instances to indicate whether two corresponding attributes across

the different tables are the same.

In general, the construction of entity matching benchmark datasets is time-consuming

and labor-intensive [48]. Usually, these are curated by first building a global schema

to unify the incoming data from different sources, which will return a clean and struc-

tural dataset. Figure 5.1 shows an entity matching example in the restaurant dataset.

As can be observed, the attribute names and values are different between the bench-

mark dataset and the real-world dataset (i.e., what is found in the original XML files).

Therefore, we propose four versions of the datasets as shown in Table 5.3. The first

version consists of carefully curated entity matching benchmark datasets. For the

second version (V2), the column names of source and target table reflect the names

in the original files, which means the columns are no longer the same (highlighted

in blue). The third version (V3) more closely mimics the real-world datasets where

both the column names and the attribute values follow the original files. The only

exception is that the relative order of the attributes is the same. The last version (V4)

reflects the ordering of the original files, where schema matching was done beforehand

to align the attribute order. The four versions of data examples can be seen in Figure

5.3.
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Figure 5.3: Four versions of the benchmark datasets.

5.2.2 Baseline models

CaSE is evaluated against two baseline models. This section summarizes each of the

models, along with their specific training settings. The models are trained three times

and we report the average of the F1 score for the positive class.

• DITTO [52]: A state-of-the-art entity matching model that cast the prob-

lem as a sequence-pair classification and fine-tunes RoBERTa, a pre-trained

Transformer-based language model [54].

• SMAT [87]: A state-of-the-art schema matching model that utilizes attention-

over-attention to generate a semantic embedding and then feeds the embedding

to a multi-layer perceptron to conduct the classification task.1

We train CaSE, DITTO, and SMAT on a single NVIDIA Tesla V100 GPU with

16GB VRAM. For DITTO, we follow the input format where the attributes of each

entity description are concatenated into a single string with [COL] and [VAL] special

1Code available at https://github.com/JZCS2018/CrossAttention

https://github.com/JZCS2018/CrossAttention
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Table 5.4: Comparison of F1 on the test sets for the different datasets.

Datasets

CaSE DITTO SMAT

Entity Matching Schema Matching Entity Matching Schema Matching Entity Matching Schema Matching

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

Restaurants 0.87 0.85 0.85 0.81 0.56 0.52 0.52 0.52 0.81 0.76 0.72 0.71 0.51 0.50 0.50 0.50 0.45 0.44 0.44 0.41 0.50 0.50 0.50 0.50

Walmart-Amazon 0.89 0.88 0.85 0.82 0.53 0.51 0.51 0.51 0.86 0.87 0.77 0.69 0.51 0.50 0.50 0.50 0.49 0.46 0.42 0.40 0.55 0.50 0.50 0.50

Baby Products 0.81 0.81 0.79 0.78 0.66 0.62 0.62 0.62 0.72 0.65 0.60 0.54 0.58 0.50 0.50 0.50 0.52 0.47 0.43 0.42 0.62 0.58 0.58 0.58

Bikes 0.89 0.89 0.87 0.85 0.59 0.51 0.51 0.51 0.77 0.70 0.64 0.58 0.53 0.50 0.50 0.50 0.50 0.46 0.40 0.40 0.58 0.52 0.52 0.52

Books 0.84 0.81 0.8 0.77 0.51 0.50 0.50 0.50 0.76 0.72 0.71 0.62 0.52 0.50 0.50 0.50 0.54 0.49 0.42 0.41 0.54 0.52 0.52 0.52

Phones 0.76 0.77 0.77 0.70 0.71 0.71 0.71 0.71 0.75 0.72 0.70 0.63 0.50 0.50 0.50 0.50 0.50 0.46 0.42 0.40 0.53 0.53 0.53 0.53

Headphones 0.83 0.83 0.8 0.78 0.69 0.67 0.67 0.67 0.80 0.78 0.71 0.66 0.50 0.50 0.50 0.50 0.51 0.49 0.45 0.42 0.52 0.56 0.56 0.56

TVs 0.84 0.84 0.8 0.8 0.75 0.70 0.70 0.70 0.76 0.72 0.61 0.53 0.67 0.59 0.59 0.59 0.49 0.45 0.42 0.40 0.69 0.66 0.66 0.66

tokens. Any further preprocessing is omitted and left to the tokenizer of the respective

models. All models are allowed the full input length of 512 tokens. We fix the batch

size at 32 and use the Adam optimizer to train the models for 50 epochs using a

linearly decaying learning rate with one epoch warmup. A learning rate sweep is

done over the range [1e-5, 3e-5, 1e-4]. Also, we apply the early stopping strategy if a

model performance on the validation set does not increase over 10 consecutive epochs.

All models are trained three times and we report the average F1 performance with

its standard deviation.

5.3 Predictive Performance

Table 5.4 summarizes the F1 results of the experiments across all models and datasets.

With regards to the entity matching tasks on all datasets, CaSE achieves the best

performance compared with DITTO with around 1-19% F1 score improvement. We

also note that the difficulty of the entity match increases from version 1 (V1) to

version 4 (V4), as the F1 performance drops for both CaSE and DITTO. However,

the degradation for CaSE is less than that of DITTO. It suggests that CaSE has the

capability to more robustly deal with real-world data where there is misalignment

both in attributes and the values themselves.

We observe that CaSE achieves the best performance of the three models on the

schema matching task. However, the schema matching results for all models are
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Table 5.5: Results for ablation experiments on F1 for the entity matching task.

Datasets
CaSE CaSE w/ BERT CaSE w/o CA CaSE w/o BHL

V1 V2 V3 V4 V1 V2 V3 V4 V1 V2 V3 V4 V1 V2 V3 V4

Restaurants 0.87 0.85 0.85 0.81 0.86 0.78 0.76 0.69 0.84 0.81 0.77 0.72 0.76 0.7 0.67 0.57

Walmart-Amazon 0.89 0.88 0.85 0.82 0.85 0.8 0.79 0.74 0.86 0.84 0.8 0.76 0.8 0.76 0.74 0.71

Baby Products 0.81 0.81 0.79 0.78 0.79 0.75 0.74 0.68 0.79 0.76 0.76 0.72 0.71 0.67 0.67 0.62

Bikes 0.89 0.89 0.87 0.85 0.87 0.82 0.81 0.77 0.87 0.83 0.8 0.77 0.72 0.7 0.66 0.61

Books 0.84 0.81 0.8 0.77 0.82 0.76 0.73 0.64 0.83 0.8 0.8 0.72 0.76 0.73 0.72 0.67

Phones 0.76 0.77 0.77 0.70 0.74 0.69 0.66 0.6 0.72 0.7 0.68 0.62 0.7 0.68 0.68 0.63

Headphones 0.83 0.83 0.8 0.78 0.8 0.79 0.76 0.7 0.8 0.79 0.79 0.75 0.77 0.72 0.69 0.64

TVs 0.84 0.84 0.8 0.8 0.8 0.78 0.78 0.72 0.82 0.81 0.8 0.77 0.78 0.76 0.72 0.7

suboptimal, as the highest F1 is 0.75 for TVs. We posit the poor performance is

because of the small size of the schema matching datasets. The number of schema

matching pairs in TVs is larger than others (as summarized in Table 5.2). This

suggests the exploration of more datasets that contain more schema matching pairs.

5.4 Ablation Study

To gain further insights into the various components in CaSE, we conduct an ablation

study. In particular, we examine the effectiveness and contributions of the schema

matching task. We compare the performance of CaSE with the following models:

• CaSE w/o BHL: We use the single task objective in Equation (5.5) without the

binary hinge loss (BHL).

• CaSE w/o CA: We replace the cross-attention module that feeds into the schema

matching MLP with a simple concatenation of the two column representations,

RC and RC′ .

• CaSE w/ BERT: Instead of using the cross-attention column representations,

RC and RC′ , we directly use the BERT embeddings, EC and EC′ .

Table 5.5 shows the results from the ablation experiments on all datasets. As

we can see, for version 1 (V1) where the source and target column names are the
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same, there is no big difference when simply using the BERT embeddings for the

schema matching task (i.e., CaSE w/ BERT) as well as CaSE w/o CA. However, when

the data is more realistic and misaligned, especially the column names in source

and target tables are different, without updating the column names representations,

the performance drops by at least 5%. Comparing CaSE with CaSE w/o CA, we

notice that there exists small performance drops among all datasets. The differences

with/without CA module is not obvious, since the numbers of schema matching

pairs are small, which can not provide more feedback in the dual objective training.

However, to be noticed that, these three multi-task learning methods are better than

the single task approaches, such as DITTO and CaSE w/o BHL.

It can be observed that CaSE w/o BHL performs better than DITTO on V4

datasets, and it infers the cross attention mechanism is better than the self attention

mechanism used in the DITTO configuration, when the orders of the attribute values

are different in the entity pairs.

5.5 Case Study

To better understand the potential benefit of CaSE in terms of explaining the matching

decision, we analyzed several examples for the different versions of the Restaurants

dataset. We present three scenarios as shown in Table 5.6. The first scenarios is a

related entity pair (i.e., label = 1) where CaSE correctly predicts the match on three

data versions while DITTO predicts the match only on V1 and V3. The second is

also a related entity pair (i.e., label = 1) where CaSE correctly predicts the match

while DITTO predicts a non-match. The difference between the first scenario and

second scenario is that there exists different attribute value (e.g., the phone number)

in scenario 2 even though the entity pair is related. The third is a non-related entity

pair, which CaSE predicts correctly while DITTO predicts incorrectly.



70

Table 5.6: Analysis on different Restaurant dataset versions, where CaSE makes a
correct prediction and DITTO does not.

(a) Scenario 1: Two matching entities (Label = 1).

V1

Name Rating PhoneNumber No of Reviews Address

A The Buena Vista 3.9 (415) 474-5044 422
2765 Hyde Street,

San Francisco, CA

A′ Buena Vista Cafe 4 (415) 474-5044 1560
2765 Hyde St,

San Francisco, CA 94109

V3

Name Average Rating Phone Number User reviews Street address

B The Buena Vista 3.9 (415) 474-5044 422
2765 Hyde Street,

San Francisco, CA

Business Name rating value telephone review count address

B′ Buena Vista Cafe 4

(415) 474-5044

15602765 Hyde St,

San Francisco, CA 94109

V4

Name Average Rating Phone Number User reviews Street address

C The Buena Vista 3.9 (415) 474-5044 422
2765 Hyde Street,

San Francisco, CA

telephone Business Name review count address rating value

C′

(415) 474-5044

Buena Vista Cafe 1560 42765 Hyde St,

San Francisco, CA 94109

(b) Scenario 2: Two matching entities with difference (Label = 1).

V1

Name Rating PhoneNumber No of Reviews Address

D The Taco Shop 3.3 (608)250-8226 37
604 University Ave,

Madison, WI

D′ The Taco Bros 4 (608)250-5075 25
604 University Ave,

Madison, WI 53715

V4

Name Average Rating Phone Number User reviews Street address

E The Taco Shop 3.3 (608)250-8226 37
604 University Ave,

Madison, WI

telephone Business Name review count address rating value

E′ (415) 474-5044
The Taco Bros

604 University Ave,
4

25 Madison, WI 53715

(c) Scenario 3: Two non-matching entities (Label = 0).

V1

Name Rating PhoneNumber No of Reviews Address

F Curd Girl 3 (608)555-5555 6 100 State St, Madison, WI

F′ Naf Grill 4 (608) 256-0071 14 555 State St, Madison, WI 53703
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Table 5.6a shows the matching pair examples in different data version. We know

that the CaSE and DITTO all predict right for V1 and V3, even though V3 introduces

the misalignment on the attribute value (e.g., the address for B′ shifts to the tele-

phone). However, when the entity pair’s attribute is different (V4), DITTO can not

predict right. To understand the decision process of CaSE and DITTO, we visualize

the attention weights of both models. For CaSE, we retrieve the attention weights for

each entity from the cross-attention block. For DITTO, we retrieve the weights of last

layer of the RoBERTa. Since DITTO utilizes the classification token < s > for the

entity matching downstream task, we aggregate the corresponding attention weights

to the classification token according to the work [79]. Figure 5.4 and 5.5 show the

attention weights of CaSE and DITTO on data V1 and V3 in scenario 1. As we can

notice that, both CaSE and DITTO could capture the key information (e.g., Phone

Number and Address) to make right predictions, but CaSE could also obtain the in-

formation on the store names. However, when the attribute order of both entity is

different, as we can see in Figure 5.6, CaSE can capture the important information as

data V1 and V3, while DITTO loses concentration on the related attributes in both

entities. The DITTO takes more weights on review counts rather than the address,

phone number, store name, which results in the wrong prediction.

When we focus on Scenario 2 in Table 5.6b, it shows the matching pair in two data

version. And from analysis on Scenario 1, we know that the store name, phone number

and address play an important role for prediction. Comparing scenrio 1, this matching

pair has different attribute values in some of these important roles, for example, they

are the same entity, but they have different phone numbers. CaSE predicts correctly

on all data versions, while DITTO fails on these. To better understand the process of

these prediction from both models, we also retrieve the attention weights in the same

way. When looking at Figure 5.7, we notice that even though they have different

phone numbers, CaSEcaptures other same information, such as the store name and
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(a) Attention weights from CaSE

(b) Attention weights from DITTO

Figure 5.4: Attention weights visualization on data V1 in scenario 1.
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(a) Attention weights from CaSE

(b) Attention weights from DITTO

Figure 5.5: Attention weights visualization on data V3 in scenario 1.
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(a) Attention weights from CaSE

(b) Attention weights from DITTO

Figure 5.6: Attention weights visualization on data V4 in scenario 1.
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address. The analysis in Scenario 1 shows that the DITTO ignores the store name in

different data visions, and it also ignores them, which results in the wrong prediction.

The Figure 5.8 shows the DIITO loses focus on important attributes while CaSE keeps

extracting the important information.

We examine the Scenario 3 in Table 5.6c, which contains the non-related entity

pair. As we can see, their addresses have the same street name, city, and state

name except the street number. CaSEcould capture the same important information

as other scenarios to make the right predictions. Therefore, we will explore where

DITTO fails based on the attention visualization in Figure ??. In Figure 5.10a, we

can see DITTO consider the Phone number and address as the most important blocks

ignoring the store names. Then we further explore the tokens DITTO chooses in the

phone number and address blocks. Figure 5.10b shows the token attention weights in

phone number blocks of both entities. As we can see, the [PHONENUMBER] tokens

in both entities take highest weights comparing with other tokens. We know that the

attribute token [PHONENUMBER] itself cannot decide if the entity pair is related or

not. However, the attribute value tokens (e.g., [(608) 555-5555] and [(608) 256-0071])

can provide crucial information for prediction. We can see the same information for

the address block in Figure 5.10c. The DITTO introduces the attribute names in its

sequence which could hinder the key information exploration.

Finally, from the examples in Figure 5.4b, 5.5b, 5.7b, and 5.10, we notice that

DITTO could extract the important blocks for the predictions. However, from Fig-

ure 5.10, we can see DITTO think these blocks are important, because of the same

attribute names. As a result of this high attention weight, the entity pair could easily

be considered related, but it would also introduce false positives.
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(a) Attention weights from CaSE

(b) Attention weights from DITTO

Figure 5.7: Attention weights visualization on data V1 in scenario 2.
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(a) Attention weights from CaSE

(b) Attention weights from DITTO

Figure 5.8: Attention weights visualization on data V4 in scenario 2.
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(a) Attention weights from CaSE

(b) Phone number attention weights from CaSE

Figure 5.9: CaSE attention weights visualization on data V1 in scenario 3.
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(a) Attention weights from DITTO

(b) Phone number attention weights from DITTO

(c) Address attention weights from DITTO

Figure 5.10: DITTO attention weights visualization on data V1 in scenario 3.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we developed new DL models for schema matching and entity matching

tasks by leveraging attention-based mechanisms.

We first demonstrate the effectiveness of AOA for the schema matching task by

proposing SMAT. AOA can capture the relationships between the attribute name and

columns without requiring prior domain knowledge. We also introduce a healthcare

schema matching benchmark dataset OMAP as existing schema matching datasets only

span purchase orders, web forms, and bibliographic references. The experimental

results show that SMAT could improve the performance on OMAP and general schema

matching benchmark datasets.

Next, we explore the AOA mechanism in combination with the multi-task learning

paradigm on a BERT-based framework for the entity matching task. The proposed

model, EMBA, extends JointBERT to utilize the individual BERT token representations

with the AOA module to capture the relationships across the pair of entity token

representations. The experimental results illustrate that EMBA achieves the best score

on the larger datasets.
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Finally, given the time-consuming and labor-intensive nature of building an entity

matching benchmark dataset coupled with the key assumptions that do not reflect

real-world applications, we curate a new benchmark dataset to contain different lev-

els of entity matching complexity. We also propose to simultaneously perform the

schema and entity matching task to overcome limitations related to the misalignment

of attributes and their values. We introduce CaSE, a cross-attention framework with

multi-task learning, to simultaneously conduct the schema and entity matching tasks.

Our results on the new benchmark dataset demonstrate the potential of jointly match-

ing both schema and entities to achieve comparable performance without requiring

extensive data preprocessing.

6.2 Future Work

The proposed methods can be extended from the following aspects:

• Due to the limitation of existing datasets that support the entity ID predic-

tion subtask in EMBA, we plan to annotate additional datasets to explore the

generalizability of the model.

• When comparing the performance of EMBA with RoBERTa, we observe that

RoBERTa provides better performance. We will try the RoBERTa as the back-

bone module for EMBA as well as other BERT distillation models to improve the

performance for smaller datasets.

• Currently, CaSE considers the entity matching task as the main task, and does

not obtain good performance on the schema matching task. We posit this is

because the size (i.e., number of tables and attributes) of the schema matching

dataset is small. Future work can explore the enrichment of other larger schema

matching datasets to incorporate the entity matching datasets.
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• Data privacy is one of the main concern in schema matching on sensitive

datasets such as the healthcare datasets. We will introduce federated learn-

ing to CaSE through only sharing model updates e.g., the gradient information

rather than the entity data.

• Since the real-world datasets involves data missingness and misalignment, we

could extend our approaches to align the attribute values and impute the miss-

ingness based on the entity matching pairs. This could provide benefits for the

recommender systems in our daily usage.

• It has been demonstrated that large language models (LLMs) are capable of

interpreting and generating sequences across a wide range of domains, including

natural language, computer code, and protein sequences. There also arises

numerous LLMs for question and answering, such as FLAN-T5 [12], LLaMA

[76], and GPT-4 (backbone model of ChatGPT) [60]. We will implement these

LLMs to fit our tasks, and facilitate the data integration domain.
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