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Abstract 
 

Genotype prediction based on the gene expression data using Random Forest 

 

 
By Yanlong Yu 

 

 
 

Background: With rapid development of high throughput technologies, thousands of single 

nucleotide polymorphisms (SNPs) have been identified to be associated with human diseases. It’s 

known that SNPs located in regulatory regions are often eQTLs thatcan modulate gene expression. 

Generally, gene expression can beaffected by SNP mutations. But since gene expression data is 

more easily to access than genotype data. We want to explore the relationship between genotype 

and gene expression and make prediction on SNP genotype based on the gene expression data.  

 

Method: We used random forests as our model to test the classification and prediction problems. 

First, we first generated a simulated dataset based on the real data to test the strategy. We used out-

of-bag (OOB) error rate as our metric to test the simulated data. We next tested hundreds of SNPs 

and got their AUC values for comparison. For SNPs achieve the highest AUC scores, we conducted 

a feature importance test.  

 

Result: For the simulation data, the OOB estimate of error rate is 21%. For the real data, the mean 

AUC scores for the 917 SNPs is 0.559 (std=0.108) and the mean OOB scores is 0. 658 (std=0.056). 

The max AUC score is 0.933 and OOB score is 0.860. Most of the AUC scores are between 0.5 

and 0.7, the OOB scores are between  0.6 to 0.7. We also located important features in SNPs with 

the highest AUC. 

 

Conclusion: Through this study, we can see that for some SNPs, it is possible to use gene 

expression data to infer its genotype. However, the majority of the SNPs can not be predicted 

accurately. Also, we find some features that significantly influence the SNP prediction. Further 

study is needed.  
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Introduction 

Over the past few years, reseach on geneticvariability has increased 

substantially due to its potential relevance to the differential disease risk among 

people. One of the researches is genome wide association studies (GWASs). 

GWASs have identified thousands of single nucleotide polymorphisms (SNPs) 

are associated with human diseases and demonstrated that most of the 

variants are found in non-coding regions of the gene and thus are likely to be 

involved in gene regulations [1]. However, there’re still many disease-

associated SNPs remained to be found. This analysis of such vairants in the 

context of gene expression measured in tissues have led to a big field in human 

genetics studying expression quantitative trait loci (eQTLs). An eQTLs is a locus 

that can explain a portion of the genetic variance of a gene expression 

phenotype [2].  

It’s known that SNPs located in regulatory regions are often eQTLs since they 

can modulate gene expression [3, 4]. Some studies report an association 

between eQTLs and GWAS detected SNPs [5, 6]. The identification of a cis 

association of a SNP with gene expression level has been used to validate 

candidate genes for complex traits mapped to the same chromosomal locations 

[7]. Generally, gene expression can be determined by the genotype in SNPs. 

But due to the technical issue, gene expression data is more easily to access 

than the genotypes in SNPs. Due to the potential association between gene 

expression and genotypes, our study is conducted to test if we can predict the 
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genotypes based on the gene expression data. Limited resources of gene data 

was a major obstacle to conduct this hypothesis. With recent years increase 

development on large-scale gene expression analysis, public avaible resources 

like the Genotype-Tissue Expression (GTEx) project, Gene Expression 

Omnibus (GEO) [8] provide an effective way to overcome this limitation. And 

we may assume that not all the SNPs can be predicted precisely by the gene 

expression since some of the SNPs are uncorrelated with eQTLs.  

In the beginning, researchers assumed the gene expression is one-to-one 

correspond to the SNP. However, there’re thousands of gene expression data 

and SNPs, conducting large-scale study to identify this correlation may not be 

feasible. Therefore, combining gene expression data from the same 

chromosome is a useful approach for researchers to conduct a hypothesis. 

Researchers have identified that some gene expression data are highly 

correlated while some gene expression are running indenpendently [9]. 

Interestingly, some SNPs are not just correlated with one gene expression [10] 

while some correlations are not that significant. The specific aims of this study 

are twofolds. First, we explore the association between one SNP and a package 

of gene expression data which are both from one chromosome by using random 

forest model. Second, we identify the prediction accuracy on genotype based 

on gene expression data. Since we know there may exist potential correlation 

between gene expression data and genotypes, we use machine learning 

method to test the score correlation for further understanding.  
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The data we use in this study includes: real data which can be downloaded 

directly from GTEx and simulation data which is similar to the real data but with 

a small size. The sample we use is whole blood sample from chromosome 22.  

 

Method 

The prediction of the SNP genotype can be as simple as a binary classification 

problem. The input is the transcriptome of a sample in the form of gene counts 

matrix, and the output is the probability of SNP genotype of the sample. The 

method we applied in this dataset is the random forest, which can handle large 

datasets and can provide a good measure of feature importance. We first test 

this method in simulated datasets. Subsequently, we conducted real data 

analysis using GTEx RNA-sequence SNP genotype data.  

A random forest is a collection of trees with variations in structure generated 

using tow modifications to the deterministic tree-growing algorithm [1]. Decision 

trees are a popular method for various machine learning tasks. Tree learning is 

invariant under scaling and various other transformations of features values. 

Besides, it is robust to irrelevant features included. However, a single decision 

tree is not accurate and easy to overfit the model. The random forest can 

average thousands of decision trees to significantly lower the variance to 

prevent the over-fitting problem by building thousands of decision trees. We 

choose a random forest since it can substantially improve performance in term 

of prediction and accurace.  
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In a random forest algorithm, given a training set with n samples {𝑋, 𝑌}, for 𝑏 =

1,2, … 𝐵:  

1. Take n samples from 𝑋 with replacement, make up a collection {𝑋𝑏 , 𝑌𝑏}; 

2. Train decision tree in sample {𝑋𝑏 , 𝑌𝑏}; 

After training, taking the average of all models as output: 

𝑓 =
1

𝐵
∑ 𝑓𝑏

𝐵

𝑏=1

(𝑥′) 

Where B is an adjustable parameter.  

Generally, we will use hundreds or thousands of trees or use a cross-validation 

method to choose the best B.  

As we know, a single decision tree can be easily influenced by noise data, which 

could be highly variant. Implementing a random forest model can successfully 

solve this problem. However, if we keep training decision trees with the same 

data, we could also get a highly correlated tree, which may significantly impact 

our accuracy in the test set. So we apply the bootstrap sampling method to 

select different data to train decision trees.   

When using the bagging method, there’s a straightforward way to estimate the 

test error without using cross-validation. Recall that in bagging, trees are 

repeatedly fit to bootstrapped subsets. We can prove that, on average, two-

thirds of the observations are used to bag the tree while rest one-third 

observations that not be used to fit the trees are referred to as out-of-bag (OOB) 

observations. Therefore, we can use these OOB observations to make 
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predictions. It will yield 𝐵/3  predictions for the 𝑖𝑡ℎ  observations since we 

have 𝐵/3 observations as a test set. We can obtain a single prediction for the 

𝑖𝑡ℎ  observation by averaging these responses. Therefore, we can get the 

overall OOB MSE or classification error. The OOB error is an estimate for the 

test error. OOB score is another metric in OOB method to evaluate the 

classification rate. OOB score is calculated as the number of correctly predicted 

observations from the out of bag samples which were not necessarily used 

during the model analysis, so with OOB we are not using the full samples. In 

this way, OOB sample is a little more random than validation set. Therefore, 

OOB score may on average have a less good accuracy compared to using 

validation set as prediction. But it’s more helpful when we have limited samples 

since we can’t subset a validation set to test the model.  

However, while bagging can improve model accuracy in prediction by using a 

single tree. Unfortunately, it can also lead to difficulty in interpretation. Therefore, 

random forests provide an improvement over bagging. In bagging, we train a 

number of decision trees on bootstrapped samples. For every split of a tree, a 

random sample of 𝑚 predictors is chosen from the full predictors 𝑝 . In each 

split, a new sample of m predictors is taken as a split candidate. This can 

successfully prevent highly correlated in every tree. For instance, if there’s a 

strong predictor in the first split, then basically all trees will be similar to each 

other. Therefore, on average (𝑝 − 𝑚)/𝑝  of the splits will not consider the 

strong predictor. This improvement can be seen as a decorrelating process for 
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the trees.  

This method is very useful in our genetic data since we have a large number of 

correlated predictors. Our data is downloaded directly from GTEx portal and we 

use chromosome 22 as our sample. After deleting some unbalanced data and 

null values, we have around 600 observations with 454 gene expression as 

features. And we also have hundreds gene SNPs for which each SNP 

represents a difference in single DNA building block, called a nucleotide. SNP 

can be used to track the inheritance of disease genes with families, or the 

association with complex diseases. Our goal is to use random forests to make 

a classification of SNP and figure out which SNP has the most powerful 

influence on genetic expression. Besides, for the SNP which achieves the 

highest AUC score we would like to test the feature importance.  

In the real data, our main goal is to make a classification, and we may decide 

to predict the class values directly. A common way to compare that predicted 

probabilities for two-class problems is to use the Receiver Operating 

Characteristic curve (ROC curve). It’s a plot of the false positive rate (x-axis) 

versus the true positive rate (y-axis) for a number of different candidate 

threshold values between 0 and 1. In other words, it plots the false alarm rate 

versus the hit rate.  

The true positive rate is calculated as the number of true positives divided by 

the sum of the number of true positive and the number of false negatives. It 

describes how good the model predicts the positive class when the actual 
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outcome is positive, which is also referred to the sensitivity. 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

The false-positive rate is calculated as the number of false positives divided by 

the sum of the number of false positives and the number of true negatives. It’s 

also called the false alarm rate because it summarizes how often a positive 

class is predicted when the actual outcome is negative.  

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

The ROC curves can help in deciding the best threshold value. And the area 

under the curve (AUC) can give the rate of successful classification by the 

random forest model. The AUC makes it easy to compare the ROC curve of 

one model to another.  

Both AUC and ROC are important evaluation metrics for calculating the 

performance of any classification model’s performance. Therefore, using these 

two metrics can help us evaluate our model performance.  

 

Simulation 

We first use the simulated data to test the model. In order to make the data 

close to being realistic, I try to simulate the data based on the original dataset.  

First, I simulated 300 patients with 100 genes and an SNP genotype in each 

patient. Since an SNP genotype can be associated with the expression of 

hundreds of genes and mutations can lead to expression changes. In real data, 

the genotype is coded with three different values: 0, 1, 2, which represent aa, 
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Aa, AA genotype, respectively. However, in the simulation, I combined values 1 

and 2 as one value since their expression features are the same. So in 

simulation data, the SNP genotype is a binary variable with values 0 and 1. 

Among the 100 genes, we don’t know which one is connected to the genotype. 

In fact, some of them have nothing to do with this genotype, while others may 

be the factors that can impact the genotype. So our goal is to find out if the 

mutated genes have an impact on the genotype. During the simulation, I would 

generate just a few mutated genes which are different from the normal one for 

each patient. And each patient has a genotype that is identical to the GTEx data.  

 

The average OOB estimate of error rate is 21%. The parameters for the model 

we use is 500 number of trees and 10 variables for each split. I run the model 

10 times to get a average OOB estimate of error rate This estimate is calculated 

by counting how many points in the out of bag data were misclassified, which 

means that if we give a new patient’s gene expression data, we have a 21% 

chance to misclassify his/her SNP.   

 

Data analysis 

First, let’s take a look at the summary of all data. The data is combined with two 

datasets, one contains patients’ gene expressions, and the other is the SNP 

data. They’re both from chromosome 22 so that the relationships are easier to 

interpret. Gene expression data can directly be downloaded from GTEx Portal 
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[11], while the SNP data needs to be selected with at least one eQTL p-value 

less than 10^-10 since there’re a lot of SNPs and our sample size is limited. So 

we choose the first 1200 SNPs by sort of their normal p-value. After selecting 

the SNP, I found out that there’re a few missing values in the SNP dataset. So 

we need to drop those nulls, and if one SNP contains too many missing values 

(the missing value proportion up to 30%) we would drop this whole SNP. 

There’re 32 SNPs I drop because of too many nulls.  

 

Then we combine the gene expression data with the SNP dataset. After 

matching, we found there’re some unbalanced SNPs and gene expression data, 

which mean too much 0 or 1 (up to 70%). These unbalanced data should not 

be considered in the final model, so we delete these data. The final dataset 

contains a total of around 600 observations; each observation has 454 gene 

expressions as features. We have 917 SNPs as our outputs, which means we 

need to run the random forests model at least 917 times. And since we use 10- 

fold cross-validation method, we will run every single SNP 10 times and 

calculate the mean AUC score for each SNP. Applying 10-fold cross-validation 

has one potential advantage that it often gives more accurate estimates of the 

test error rate than does LOOCV or another method. Then we would have 917 

AUC scores and want to know which SNP gives the highest AUC scores. And 

we would make a ROC curve and Precision-Recall (PR) curve.  
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We will use two different evaluation metrics to compare our final results: OOB 

scores and mean of AUC scores from 10-fold cross-validation. OOB score is 

the accuracy of example 𝑥𝑖 using all the trees in the random forest ensemble 

for which it was omitted during training. Thus, it kind of acts as a semi-testing 

instance. We can get a sense of how well our classifier does by using this metric.  

 

In the final model, we test around 917 SNPs and get a distribution plot of their 

AUC scores and OOB scores. As the following: 

 
Figure1:  Figure1: The distribution of the 10-fold CV AUC scores and OOB Scores. The left plot shows 

that most of the AUC scores are around 0.5 to 0.7. Just a few of SNPs can achieve a 0.9 AUC score. 

The right plot shows the distribution is almost the same as the left one. But in the right figure, most of 

the SNPs’ OOB scores are around 0.6 to 0.73. The highest one is about 0.85.   

These two plots show that two metrics produce almost the same distribution of 

SNP scores, although OOB scores have a higher average score than AUC. 

From figure 2 we can see that the correlation between AUC scores and OOB 

scores. They follow a linear relationship.  
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Figure 2: Correlation between AUC scores and OOB scores. From the plot, we can find out their 

correlations follow a linear line. 10-fold cv AUC scores are calculated as area under the ROC curve 

while OOB scores are calculated with OOB method.  

In the final result, we find out that one SNP: 22_24258777_C_T_b37_C 

achieves the highest AUC scores with 0.932902 (OOB score 0.845) while the 

highest OOB score is from 22_24249458_A_C_b37_A with OOB score 0.86 

and AUC scores 0.929671. Their ROC curves are as following: 

 

 

Figure 3: ROC curves for SNP 22_24258777_C_T_b37_C and 22_24249458_A_C_b37_A. From these 

two curves, we can find out their threads are basically the same. The left one is more steeper than right 

one.  

Then we want to see the importance of the features in the model. Since we 

have a lot of SNPs, we decided to use the one with highest AUC score. Here is 
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the plot:  

  

Figure 4: Feature importance. From the plot, we can see only the first 4 features take most of the 

importance of the model. Other features are basically not that important.  

Since we know, the random forest consists of a number of decision trees. Every 

node in the decision tree is a condition on a single feature., designed to split 

the dataset into two so that similar response values are assigned in the same 

set. The measure based on which the optimal condition is chosen is called 

impurity. The impurity-based feature importance ranks the numerical features 

to be the most important features. From the table 3 in Appendix  above, we 

can find that the first four features take most of the importance in the model. 

Although this just one SNP’s feature importance, we still can take a look at it 

since its AUC score is the highest. Below, we make a feature importance 

summary of the top 6 AUC scores SNPs.  

From the table 1 in Appendix, we can see that the important features for 6 SNPs 

with the highest AUC scores are basically the same, while for some of them, 
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they may not in the same order. And their values are around the same; other 

features may not be that important compared to them.  

The summary for the AUC scores and OOB scores is in the table2 in Appendix. 

The summary table tells us that the mean score of AUC is less than OOB, while 

the highest AUC score is bigger than OOB one. Besides, the standard error for 

the AUC is larger than OOB, which means that the OOB score is more stable 

since it has a small variance.  

 

Discussion  

From the research, we can see some SNPs genotype can be successfully 

predicted based on the gene expression data given we have enough data. In 

this study, we used chromosome 22 as our sample, both SNPs and gene data 

are from this chromosome. We can conclude that some SNPs can be precisely 

predicted with AUC scores up to 90% while some other SNPs may not be that 

precisely predicted. For those with high AUC scores SNPs, we also test their 

feature importance when fitting the model. The result shows that there are four 

features playing important roles in random forest classification: GSTT2, 

GSTT2B, GSTT1, and MIF. Other features may also be important, but in this 

model, they’re not as important as these four features. The research also shows 

that most of the SNPs achieve an AUC score around 0.5 to 0.7; only a few can 

get 0.9. It may imply our model may not be as good as we predicted. They're 

still a lot of improvement we can do to increase our AUC scores. For now, we 
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can conclude that the some gene expression is highly associated with the SNP 

while somo associations are not that significant. Based on the gene expression 

data, we can precisely predict only a small fraction of SNPs. Due to the highly 

correlated in some gene expression features and the feature importance test, 

we may infer that only some features are important on predicting the genotype. 

However, it still needs further study to determine the specific associations 

between gene expression and genotypes.  

 

One thing to be considered is that our data is all from GTEx portal and the 

observations are very limited although we have thousands of SNPs and gene 

expression When we got access to the dataset, we found out the data is not 

clear and with lots of null values in the raw dataset. Different datasets are in 

different formats, and we needed to clear and preprocessed them, which is time 

consuming. In addition, although there’re thousands of SNPs in the dataset, 

some data in the SNP are unbalanced, including too much 0 or other values. 

These unbalanced data would significantly affect the model prediction if we 

didn’t filter them out.  

As for the model, we chose random forests as our model because it has a few 

advantages, including handling thousands of input variables without variable 

deletion, providing a reliable feature importance estimate, Maintains accuracy 

when a large proportion of the data are missing, etc. However, it still has some 

limitations. When we applied our data in the model, such as easy to be 
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overfitted, results are less interpretable compared to other models, cost too 

much time, and computational memory when we have a large dataset. Besides, 

when fitting the decision trees, if the data contains groups of correlated features 

of similar relevance to the output, then the smaller groups are favored over 

large groups. Since there’re too many features in the dataset, it’s a difficult job 

to choose the uncorrelated features. Also, our data contains only 600 

observations while we have hundreds of features to consider, which makes the 

model more difficult to fit.  

 

Finally, we would like to note that our work just takes a small part of the gene 

data, and for some other chromosomes or other tissues, the data may not be 

the same as our sample, so the model may not be that good when fitting other 

sample data. This work is just a small piece of genomic work, and we still need 

more data to validate our hypothesis and make the prediction more accurate.  
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Appendix: 

Table 1: Feature importance for the top 6 AUC scores SNPs. We can see the feature importance is almost the same.  

 

22_24292488_G_T_b37

_G 

22_24249458_A_C_b37_A 22_24266867_G_A_b37_G 

22_24250072_AG_A_b37_

AG 

22_24249616_A_C_b37_A 22_24292178_C_A_b37_C 

Features Importance Features Importance Features Importance Features Importance Features Importance Features Importance 

GSTT2 0.075119 GSTT2 0.076832 GSTT2 0.072134 GSTT2 0.068589 GSTT2 0.075551 GSTT2 0.074203 

GSTT2B 0.055091 GSTT2B 0.043415 GSTT2B 0.049322 GSTT2B 0.062982 GSTT2B 0.041672 GSTT2B 0.056681 

GSTT1 0.040015 GSTT1 0.038567 MIF 0.038099 MIF 0.041304 GSTT1 0.040074 MIF 0.039029 

MIF 0.034338 MIF 0.033499 GSTT1 0.030196 GSTT1 0.034055 MIF 0.039485 GSTT1 0.035524 

 

Table 2: summary for the AUC scores and OOB scores. The mean of AUC scores are less then the OOB 

scores while the highest one is larger than OOB scores. Also, the standard error for the OOB scores is 

less than AUC scores which means OOB scores give a more stable test result 

 Mean Std Min 25% Median 75% Max 

AUC Scores 0.559167  0.107518 0.354759 0.494991 0.540776 0.615156 0.932902 

OOB Score 0.658146 0.056127 0.561667 0.618333 0.650000 0.681667 0.860000 

 

Table 3: Features Importance. The features are from the highest AUC score SNPs.  

 

 Features Importance 

1 GSTT2 0.078946 

2 GSTT2B 0.054679 

3 MIF 0.042828 

3 GSTT1 0.033928 

4 HMGB1P10 0.009399 

5 DDTL 0.006537 

6 RN7SL263P 0.006151 

7 CSNK1E 0.006090 


