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Abstract

Edge Detection and Enriched Subspaces

By Ziyi Yin

We describe an image reconstruction algorithm that reconstructs the image

using approximate image basis obtained from the image segmentation algo-

rithm. Unlike similar approaches which reconstruct the image directly, our

algorithm highly improves the accuracy of reconstruction in most cases espe-

cially with only a limited range of X-ray projection angles. We first use the

image segmentation method to detect the edge of the object, then use the

segmentation result as the approximate image basis to reconstruct the image.

Moreover, our algorithm can be applied to different kinds of objects, such as

a single object, separated objects and overlay objects, and the accuracy of

the reconstruction image is always improved.
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Chapter 1

Introduction

Image processing is a scientific method to convert an image into digital

form on which operations are performed. The field of image technology is

important in many real-life applications such as military [4] [6],

computerized photography [7] [17], medical/biological imaging [14] [15] and

also other industrial applications [1][2].

In this thesis, two of the most significant fields of image processing are to

be mentioned, which are image reconstruction and image segmentation.

The image reconstruction problem, which is often the most important part,

requires solving an inverse problem,

Ax = b

where A is the projection matrix related to the models how the X-ray
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beams travel through the object; b is the projection data which represents

the energy loss of the X-ray beams while they pass through the object,

which is also called sinogram; x is the information about the shape of the

object.

In real applications, there are many difficulties of reconstructing the image

from the projection data. First, measuring the projection data b accurately

is always very difficult, which means that b of the system is usually

perturbed with some inevitable error ε. Also, the range of projection angles

may not be a full range of angles (from 0 to 180), but a limited range of

angles (e.g. from 0 to 45). As a result, even though the perturbation on b is

comparatively small, the error of the solution x from the inverse problem

may be very high due to the ill-conditioned property of A. Therefore, the

aim of image processing algorithms is to solve the inverse problem in order

to obtain the object information from the projection data, with high

accuracy and efficiency.

To understand more about the image processing problem, more background

material about inverse problems is mentioned in the following Chapter 2.

The image reconstruction process is discussed in Chapter 3, and the image

segmentation process is discussed in Chapter 4. The idea of enriched

Krylov subspace methods is discussed in Chapter 5, and how segmentation

can be used to construct a good set of basis vectors for the enrichment

process. Numerical experiments are given in Chapter 6, and concluding
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remarks in Chapter 7.
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Chapter 2

Background

To solve the inverse problem in Chapter 1

Ax = b

We first need to understand the computing difficulties when attempting to

solve inverse problems with some numerical linear algebra concepts. In a

numerical point of view, we could also consider solving the problem as

min
x
{||Ax− b||2}
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2.1 Computational Difficulties

A naive approach to solve x in this inverse problem, is to multiply the A−1

on both sides, so that a naive solution x is yielded by

x = A−1b

However, there are a lot of disadvantages of doing this:

1. To obtain the inverse of matrix A is very computationally expensive. In

many cases, A has a certain sparse structure which can be exploited for

numerical computing, but A−1 will be very dense. Therefore, explicitly

computing the whole matrix of A−1 and doing matrix multiplications with

A−1 becomes very expensive.

2. Moreover, the solution from A−1 may not be numerically accurate for

ill-posed problems even though A−1 is computed accurately. This is

because A is highly ill-conditioned.

To understand how the ill-conditioning of A can produce inaccurate

solutions, consider the singular value decomposition (SVD) of A,

A = UΣV T =
n∑
i=1

σiuiv
T
i

where A is an m× n matrix, U is an m×m matrix, Σ is an m× n matrix

and V is an n× n matrix. Also, U and V are both orthogonal matrices,

which means that UTU = UUT = Im×m and V TV = V V T = In×n.
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And Σ is a diagonal matrix with diagonal entries as σ1, σ2, ..., σn, which are

called singular values and satisfy

σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0

In the SVD sense, an ill-conditioned matrix A indicates that

1. The singular values σi decay very fast and cluster at 0.

2. The right singular vectors vi oscillate way more intensely for small

singular values [3][11].

Suppose that we compute U,Σ, V accurately for matrix A, then a true

solution x can be yielded by

xtrue = A−1b = (UΣV T )−1b =
n∑
i=1

uT
i b

σi
vi

However, if there is a small perturbation ε in our projection data vector b

which changes b to b̃ = b+ ε, then the solution x will be also perturbed to

x̃, where

x̃ = A−1(b+ ε) = (UΣV T )−1(b+ ε) =
n∑
i=1

uT
i (b+ ε)

σi
vi

=
n∑
i=1

uT
i b

σi
vi +

n∑
i=1

uT
i ε

σi
vi = xtrue + error
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which yields the error term as

error =
n∑
i=1

uT
i ε

σi
vi

Here, even assuming the perturbation ε is very small with respect to vector

b, since the small singular values σi are almost zero when i is large, and the

reciprocals of these multiply extremely oscillating vectors vi, the error term

could be terribly large.

Due to the disadvantages of the naive approach of computing A−1b, it is

rarely used in numerical inverse problems. More methods including matrix

decomposition or iterative approaches are derived to avoid the numerical

instability, which are used more widely.

2.2 Regularization Methods

There are many remedies to avoid the ill-conditioned property of matrix A.

The basic idea is to use a filter vector φ specifically for the terms with

small singular values in order to decrease the error term.

The general solution form is

xsol =
n∑
i=1

φi
uT

i b̃

σi
vi
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2.2.1 Truncated SVD

In the truncated singular value decomposition (TSVD) method, the

regularization is implemented by replacing inversion of the small singular

values in A by 0. Therefore, denoting the user-defined tolerance as τ , the

TSVD solution is given by

xTSV D =
k∑
i=1

uT
i b̃

σi
vi

where σk ≥ τ > σk+1.

The filter factors φi for the TSVD are

φi =


1 if i ≤ k

0 if i > k

In this way, we avoid the numerical instability of the terms with small

singular values, which helps control the error term so that it does not grow

too large.

However, there are some disadvantages of using the TSVD method.

1. Overall, computing the SVD can be very computationally expensive

when matrix A is large. Even though it avoids oscillations at the end of the

singular values, it is not an efficient algorithm compared to other

approaches, such as iterative methods.

2. Since the filter vector is so sharp that it simply cuts off the last n− k
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components, an important limitation for this method is where to truncate

the SVD. Choosing a tolerance which is too big would end up with losing

too many singular values that contain important information of matrix A,

and can also cause error. Choosing a tolerance which is too small would

end up with some small singular values in the denominator of the filtered

inverse solution and thus would still lead to a large error. Therefore, there

are some other methods with smoother filters to avoid this kind of problem.

2.2.2 Tikhonov Regularization

For Tikhonov regularization, we shift the problem from solving

min
x
{||Ax− b||2}

to

min
x
{||Ax− b||22 + λ2||x||22}

which is the same as

min
x


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 A

λI

x−
 b

0


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2


which is also the same as using filter factors

φi =
σ2
i

σ2
i + λ2
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where λ controls the ”smoothness” of the regularized solution.

Given that the original problem to solve minx{||Ax− b||2} is

ill-conditioned, the basic idea of the Tikhonov method is to add a penalty

term λ2||x||22 to keep ||x||2 small. We could also see this as a shift of the

normal equations (see [3][11] for more information of normal equations)

from

ATAx = ATb

to

(ATA+ λ2I)x = ATb

where ATA and ATA+ λ2I are both n× n square matrices.

For the original problem, the eigenvalues of ATA are the square of singular

values of A, as σ2
i , which decay very fast to 0. However, for the regularized

problem, the eigenvalues of ATA+ λ2I are σ2
i + λ2, which will be bounded

away from 0 if λ > 0. Therefore, the Tikhonov regularized problem is more

well-conditioned than the original problem, which means that it is more

numerically stable.

Similarly to the TSVD method, choosing the correct λ for the Tikhonov

method is also very important to solve the problem. Especially, when k is

chosen such that σk = λ, the sharp filter TSVD can be seen as an

approximation to the smooth filter of Tikhonov regularization.
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2.2.3 Modified Tikhonov Regularization

In the classical Tikhonov regularization method, the aim is to keep ||x||2

small. However, this may not always be desirable. Sometimes, we already

have a temporary guess for the solution, denoted as x0 and we do not want

the final solution too far from our guess x0. Then, we can change the

penalty term λ2||x||22 to λ2||x− x0||22, which yields the method as

min
x
{||Ax− b||22 + λ2||x− x0||22}

which is the same as solving the corresponding normal equation

(ATA+ λ2I)x = ATb+ λ2x0

In some special cases, the guess for the solution is more complicated and

there can also be other constraints on our solution x. Then a matrix L is

needed for the penalty term as λ2||Lx||22, which yields the modified

Tikhonov method as

min
x
{||Ax− b||22 + λ2||Lx||22}

which is the same as

min
x


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 A

λL

x−
 b

0


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2
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If L = I, then this reduces to the classical Tikhonov regularization. This

modified Tikhonov method is very important for the image reconstruction

idea in Chapter 3 and Chapter 5.

We provide some background material on the basic image reconstruction

problem in Chapter 3, and for image segmentation in Chapter 4. The idea

of enriched Krylov subspace methods is discussed in Chapter 5, and how

segmentation can be used to construct a good set of basis vectors for the

enrichment process. Numerical experiments are given in Chapter 6, and

concluding remarks in Chapter 7.
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Chapter 3

Image Reconstruction

3.1 Math Modeling

In the field of image reconstruction, X-rays are projected through the

object and then projection data is collected. Notice that the loss of X-ray

energy follows the Beer-Lambert Law [20],

T =
φte
φie

= e−τ

and

τ =
N∑
i=1

τi =
N∑
i=1

σi

∫ l

0

µi(z)dz

where
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φte is the radiant flux transmitted by the material sample,

φie is the radiant flux received by the material sample,

τ is the optical depth of the material sample,

σi is the attenuation cross section of the attenuating species i in the

material sample,

µi is the attenuation coefficient of species i in the material sample,

l is the path length of the X-ray beam through the material sample.

X-ray

↘↘↘↘↘↘↘↘

µ1 µ2 µ3 µ4

µ5 µ6 µ7 µ8

µ9 µ10 µ11 µ12

µ13 µ14 µ15 µ16

Therefore, assuming that in each pixel of the object, the attenuation

coefficient is distributed evenly, and we use µi to denote the attenuation

coefficient for the i-th pixel in the object, then considering one beam of

X-ray of index k we obtain that

− lnTk =
N∑
i=1

µidik = (dk,µ)

where dik denotes the length of the path through which the beam of light

goes through pixel i, and the parentheses are used to denote the inner

product.
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By adding more X-rays in each projection angle and rotating the X-rays

gradually, a set of projection data with a number of beams in different

angles is collected.

Therefore, the image reconstruction problem can be modeled in a linear

algebra sense.

Ax = b

where

A is projection matrix with entries of dik, which only contains information

about the X-ray projection methods,

b is the projection data collected from multiple beams in different angles,

which is called a sinogram,

x is the coefficient vector with entries of attenuation coefficient ui, which

contains the object information.

Therefore, to compute the object x, an inverse problem needs to be solved.

Also, due to the ill-conditioned property of the projection matrix A,

regularization methods mentioned in Chapter 2 need to be used to solve the

problem more accurately. More image modeling background can be found

in [12].
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3.2 Reconstruction Example

Figure 3.1 shows an example for the image reconstruction process.

In this example, the true object is generated by phantom in MATLAB,

along with the associated projection data for an x-ray projection problem,

where projections were done at angles 0, 1, 2, . . . , 180 degrees. The

reconstructed image was computed using a hybrid version of LSQR, called

HyBR [8], which is an iterative method to solve the least squares problem

with Tikhonov regularization mentioned in Chapter 2; see also [16, 10]. We

can see that with full projection angles, the image reconstruction result

given by the IRhybrid lsqr method is a very good approximation to the

true object.

20 40 60 80 100 120 140 160 180
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True image Projection data Reconstructed image

Figure 3.1: Example of an image reconstruction problem, where projection
data is taken for angles 0, 1, 2, . . . , 180 degrees, and the IRhybrid lsqr in
[10] is used to compute the reconstructed image.

However, there are some cases in which the standard iterative approach

does not work well. In the example of Figure 3.2, the projection is done by
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a limited range of angles of 0, 1, 2, . . . , 45. Therefore, the width of the

projection data decreases from 180 to 45. With the limited information, the

reconstruction image is distorted a lot compared to the original object.

More importantly, the reconstruction object in the middle is almost mixed

with the background and it is somewhat hard to separate the object from

the background in the upper left and lower right corners.
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Figure 3.2: Example of an image reconstruction problem, where projection
data is taken for angles 0, 1, 2, . . . , 45 degrees, and the IRhybrid lsqr in [10]
is used to compute the reconstructed image.

These two examples of image reconstructions indicate that even though

Tikhonov regularization method is implemented to avoid the ill-positioned

property of the projection matrix A, due to the limited angle projection,

the reconstructed image is still not good enough. Therefore, improving the

reconstruction result with only limited projection angles becomes a very

important issue. In the following chapters, an image segmentation method

in Chapter 4 is used to detect the edge of the object and an enriched
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subspace method in Chapter 5 is used as a crucial idea to include an image

basis as constraints so that a more accurate image can be reconstructed.
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Chapter 4

Image Segmentation

Image segmentation is to consider the object in another way. Instead of

seeing the object from the view of intensity values in each pixel, a

parametric curve is used to represent the edge of the object. And then we

consider the intensity is 1 inside the curve, 0 outside the curve. Therefore, a

parametric curve corresponds to a particular object.

4.1 Segmentation Example

Figure 4.1 shows an example of image segmentation given by the method

from [9]. The left image of Figure 4.1 shows the true image. Instead of

marking intensity values inside and outside correspondingly, the object is

described by 18 vertices in a clockwise order. The intensity of the region

inside the curve is marked by 1 - white, and the intensity of the region
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True image Projection data Image segmentation result

Figure 4.1: Example of an image segmentation problem, where projection
data is taken for angles 0, 12, 24, . . . , 180 degrees, and the iterative method
in [9] is used to compute image segmentation result.

outside the curve is marked by 0 - black. The image in the middle of

Figure 4.1 shows the projection data of the object, with 15 columns

corresponding to 15 projection angles. The right image of Figure 4.1 shows

the result of image segmentation, as a red parametric curve circumscribing

the object. Notice that the number of vertices may be different for the true

curve and the result curve. There are 18 vertices on the original curve but

there are 500 vertices on the result curve from the segmentation. Despite

the different of number of vertices, the two objects described by the

parametric curve are almost the same.

In this case, the projection range is from 0 to 180 degrees, in 12 degrees

increment, which collects information all around the object. It is obvious to

see that the parametric curve result is a very good approximation to the

object, as it almost follows the edge of the object. However, the image
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segmentation process may also be subject to limited angles sometimes,

which is shown in Figure 4.2.

True image Projection data Image segmentation result

Figure 4.2: Example of an image segmentation problem, where projection
data is taken for angles 0, 6, 12, . . . , 90 degrees, and the iterative method in
[9] is used to compute image segmentation result.

Figure 4.2 shows an example of projecting the same object in a limited

range of angles from 0, 6, 12, . . . , 90. In this case, even though the true

object is the same as in the Figure 4.1, the segmentation result is not a

good approximation compared to the full range of angles in Figure 4.1.

Although the lower part of the curve almost follows the edge of the object,

the right part of the curve is somewhat distorted and fails to follows the

shape of the object, due to the limited range of projection angles.

In the following sections, the method in [9] will be discussed to show the

importance of image segmentation before reconstructing the image.
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4.2 Segmentation Method

In this section, an iterative method of image segmentation is given by [9].

Initialize curve c as a circle;

while not converged do

compute p̂kj for c and µ̂ = 1 - forward model;

compute µ for p̂kj and skj - update attenuation coefficients;

update c - curve deformation;

end

Algorithm 1: Image Segmentation Method

Finally, the method aims to minimize the external energy, as

Eext(µ, c) =
J∑
j=1

K∑
k=1

(skj − µp̂kj)2

where

k denotes the projection angle,

j denotes x-ray in each projection angle,

µ denotes attenuation coefficient,

pkj denotes predicted sinogram,

p̂kj denotes projection of the curve c for attenuation µ = 1,

skj denotes the true sinogram.
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4.2.1 Step 1: Forward Model

The part of forward model aims to get the temporary sinogram denoted as

p̂kj from current curve assuming the attenuation coefficient µ = 1. The

basic idea of the model is to project two adjacent vertices to the detector

pixels and then update the sinogram entry corresponding to the line

segment. The forward model algorithm is shown below.

close the curve;

for k = 1, 2, . . . , K do

for n = 1, 2, . . . , N do

compute l(n, k);

compute l(n+ 1, k);

compare l(n, k) and l(n+ 1, k) (determine sign);

add signed contribution of cncn+1;

end

end

Algorithm 2: Forward Model

Figure 4.3 shows an example of using the forward model on the initial guess

as a circle. As the projection angle changes from 0 to 180, the projection

data is exactly the same. The forward model is used to project the current

curve to obtain the current projection data. In comparison to the real

projection data, the curve information can be efficiently updated.
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Initial Guess Current Sinogram

Figure 4.3: Example of the forward model, where the current curve is the
initial guess as a circle, which is shown on the left. The current sinogram is
shown on the right.

4.2.2 Step 2: Attenuation Update

After obtaining the current sinogram p̂kj from the current curve by the

forward model, the method updates the attenuation coefficient µ for the

object by minimizing the external energy

Eext(µ) =
J∑
j=1

K∑
k=1

(skj − µp̂kj)2

By taking the derivative of E with respect to µ

dEext(µ)

dµ
=

J∑
j=1

K∑
k=1

(skj − µp̂kj)p̂kj = 0

The optimal µ is given by
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µ =

∑J
j=1

∑K
k=1 skj p̂kj∑J

j=1

∑K
k=1(p̂kj)

2

which corresponds to a least squares fit of µp̂kj to skj.

After updating the attenuation, the projection is given by

pkj = µp̂kj

4.2.3 Step 3: Curve Update

After obtaining the current sinogram of the curve, the curve can be

updated by minimize the difference of the true sinogram and the current

sinogram. The curve update contains two parts - curve deformation and

curve regularization.

We denote δn as a signed displacement for the vertex cn, as

cnewn = cn + δnjn

where jn is a unit vector perpendicular to the gradient of the curve at cn.

Then, the form of external energy is given by a quadratic function of δn

Eext(δn) = E0 +
K∑
k=1

[(skl(n,k) − pkl(n,k) + µδn)2 − (skl(n,k) − pkl(n,k))2]

where E0 is the energy before displacing the point cn.
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Then by taking the derivative of E with respect to δn

dEext
dδn

= 2µ
K∑
k=1

(skl(n,k) − pkl(n,k) + µδn) = 0

the optimal δn is given by

δn =
1

µK

K∑
k=1

(pkl(n,k) − skl(n,k))

Therefore, every vertex on the curve is deformed by

cnewn = cn + δnjn

In order to maintain stability of the curve, the curve is regularized by

∆cn = α(cn−1 − 2cn + cn+1) + β(−cn−2 + 4cn−1 − 6cn + 4cn+1 − cn+1)

where α controls the elasticity term (second derivative)-to control the curve

length, and β controls the rigidity term (fourth derivative)-to control the

curve bending. See also [13] for more details about curve regularization.

Therefore, the curve regularization is given by

cn = cnewn −∆cnewn
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Curve update

Figure 4.4: Example of the curve update process in segmentation process
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Figure 4.4 shows an example of the curve update process. The image

segmentation process starts from an initial guess as a circle. During each

iteration, each point on the curve moves according to the difference of the

true sinogram and current sinogram. The whole curve keeps moving along

with the shape of the white object in the center. Finally, the curve

successfully follows the shape of the edge of the object.

After updating the curve, the method goes back to step 1 to repeat the

iteration. More details about stopping rule and the accuracy of the

algorithm will be discussed in Chapter 6.

4.3 Comparison of Reconstruction and

Segmentation

Image reconstruction and image segmentation are two different kinds of

process to obtain information of the object. Image reconstruction

represents the object as intensity values in each pixel. The reconstruction is

processed by forming the matrices and updating the attenuation coefficient

in each pixel accordingly.

However, image segmentation is a process which represents the object as a

parametric curve. The object is given by the region inside the curve, which

takes the same attenuation coefficient uniformly.

Therefore, the image segmentation process focuses primarily on a single
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object which takes the same attenuation coefficient uniformly. The

segmentation method aims to detect the edge of the object and clearly

separates the object from the background, as is shown in Figure 4.5.

However, the image reconstruction process focuses primarily on computing

the attenuation coefficient in every pixel in the full range. Therefore, the

reconstruction process does a good job of detecting the part inside the edge

of object. But it is sometimes difficult for the reconstruction process to

separate the object from the background, as is shown in Figure 4.5.

Therefore, the basic idea of enriched subspace, discussed in the following

chapters, is to segment the image before reconstruction, so that we can

detect the edge of the object and feed this information into the

reconstruction algorithm to obtain a more accurate final image. More

numerical experiments will be mentioned in Chapter 6.

Segmentation example Reconstruction example

Figure 4.5: Example of some results from image reconstruction and image
segmentation
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Chapter 5

Enriched Krylov Subspace

Methods

In this chapter, the image segmentation method and the image

reconstruction method are to be combined to solve the image processing

problem. First, it is necessary to understand the background of Krylov

subspace methods.

5.1 Krylov Subspace Method

A Krylov subspace method is an iterative method to solve the inverse

problem.

Ax = b
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In linear algebra, the order-r Krylov subspace generated by n-by-n matrix

A and a vector b of dimension n is given by

Kr(A, b) = span{b,Ab,A2b, . . . ,Ar−1b}

The Krylov subspace method aims to find the solution of Ax = b in the

span of the Krylov subspace. In order to get a good approximation to the

exact solution of Ax = b, in each iteration of the Krylov subspace method,

the euclidean norm of residual is minimized, with the solution xm inside

the m-order Krylov subspace Km(A, b).

min
xm

||Axm − b||2

subject to

xm ∈ span{b,Ab,A2b, . . . ,Am−1b}

Notice that because every subspace is contained in the next subspace, the

residual does not increase. Also, assume A is an n-by-n matrix, then

(assuming exact arithmetic) after n iterations, the Krylov subspace method

will get the exact solution. More details can be found in [18]. Some

preconditioning schemes to improve efficiency can be found in [19].
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5.2 Enriched Subspace

From the Krylov subspace method, the final solution is restricted in a

particular r-order Krylov subspace Kr(A, b). However, there may be

sometimes that more restrictions can be added to the object if more

information about the object is provided. Therefore, those restrictions can

be added in the form of enriched basis of the Krylov subspace.

If some parts of the object are already provided, then the information of

those parts can be added directly to the subspace in the form of basis

vectors.

Assume that there are k parts in the object that are already provided to

describe the object, then if we set 1 inside the part and 0 outside the part,

k vectors can be formed as

u1,u2, . . . ,uk

By adding those k vectors into the subspace, the final solution from the

Krylov subspace method will contain the information of the image

basis.Therefore, instead of starting from an empty subspace in the Krylov

subspace method, the enriched Krylov subspace starts from the subspace of

span{u1,u2, . . . ,uk}.
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Then, the enriched Krylov subspace is given by

K̂r(A, b) = span{u1,u2, . . . ,uk, b,Ab,A
2b, . . . ,Ar−1b}

Since there are more restrictions on the object, the final solution from the

enriched Krylov subspace method would ideally perform better than the

general Krylov subspace method. More details about enriched Krylov

subspace method can be found in [5].

Here is an example. In Chapter 3 we showed an example of a limited angle

reconstruction; recall the results in Figure 3.2. We first consider the best

possible basis, which consists of segmenting the true image. Each basis

image is obtained by assigning a value of 1 inside the region of each

segmented piece, and 0 outside the region; Figure 5.1 displays these basis

images.

If we use this ideal basis in the enriched Krylov method (which is

implemented in the IR Tools code IRenrich [10]), only one iteration is

needed to compute an outstanding reconstruction. However, if we continue

the iterations, finally the parts other than the ideal basis will dominate the

solution, which makes the solution almost the same as the solution given by

IRhybrid lsqr. This is shown in Figure 5.2, along with the solution

computed using IRhybrid lsqr.

We also show a plot of the relative errors at each iteration in Figure 5.4.

Note that with the ideal basis, the enriched Krylov subspace computes an
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Figure 5.1: Segmenting the true image in Figure 3.2, we obtain this set of
basis images for each segmented piece.

True image IRenrich Reconstruction IRhybrid lsqr Reconstruction

Figure 5.2: Example of an image reconstruction problem using the enriched
Krylov subspace method, with an ideal basis obtained by segmenting the
true image.
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excellent solution after one iteration, but if we continue to iterate, the

solution eventually converges to the same solutions as computed by the

IRhybrid lsqr methods. More experiments will be shown in the next

chapter when the basis is only an approximation.

5.3 Alternative Approach - Modified CGLS

Instead of adding basis to the Krylov subspace, the general conjugate

gradient least square (CGLS) method can be modified in order to add the

basis information into the approach.

Instead of solving the general least squares problem as

min
x
{||Ax− b||2}

we first denote a matrix W , which contains all of the basis vectors, as

W = [u1,u2, . . . ,uk]

We want the final result to contain the basis information, which means that

we want the numerical solution x to be a linear combination of all possible

basis vectors, which ideally would be

x = c1u1 + c2u2 + . . .+ ckuk = Wc
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where c denotes a column vector with the weights of all the basis vectors.

Therefore, recall from the idea of modified Tikhonov regularization in

Chapter 2, a penalty term of ||x−Wc|| can be added to restrict the

solution x, which finally yields the modified CGLS method of minimizing

||b−Ax||22 + λ2||x−Wc||22

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 b

0

−
 A 0

−λI λW


 x
c


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

= ||b̂− Âx̂||22

where

b̂ =

 b
0



Â =

 A 0

−λI λW



x̂ =

 x
c


In this way, we transform the penalized function to a larger least squares

problem. Finally we will use the CGLS method to solve the least squares

problem and get the solution for x̂. Then after taking the first n entries, we

will get the solution for x. More details about CGLS method can be found
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in [3].

True image IRcgls Reconstruction IRhybrid lsqr Reconstruction

Figure 5.3: Example of an image reconstruction problem using IRcgls

method in [10], with an ideal basis obtained by segmenting the true image.

Figure 5.3 shows an example of using the modified CGLS method to

reconstruct the phantom image. If we use the ideal basis in the modified

CGLS method, which is implemented in IRcgls in [10], we will get a very

good approximation which is shown in the middle of Figure 5.3.

We also show a plot of the relative errors at each iteration in Figure 5.4.

Note that with the ideal basis, the error term of IRcgls keeps decreasing

and finally reaches an acceptable tolerance. In comparison to the solution

given by IRenrich and IRhybrid lsqr, IRcgls gives a very good

approximation to the object. Therefore, IRcgls is always used instead of

IRenrich with the aim of adding basis information.

In all the examples in this chapter, the true basis is used as an enriched

subspace to reconstruct the image. However, the true basis is never
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Figure 5.4: This plot shows the iteration history. Specifically, it shows the rel-
ative errors of the computed reconstruction at each iteration, using IRenrich,
IRhybrid lsqr and IRcgls method.
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provided in the real case. Therefore, in order to improve the accuracy of

image reconstruction result, instead of directly reconstructing the image,

image segmentation can be first performed to get an approximate basis of

the image. Then, this approximate basis will be used through the

reconstruction process. More numerical experiments about these methods

with an approximate basis will be shown in the next chapter.
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Chapter 6

Numerical Experiments

6.1 Segmentation Experiments

First, in order to understand how accurate a solution is compared to the

object, two factors are considered in the segmentation case, which are

residual and error.

Error is defined as the difference of the pixels covered by the approximate

curve and the pixels covered by the true curve. It can be considered as the

difference from x to xtrue. It is calculated by assigning 1 inside the curve

and 0 outside the curve for both curves and take the difference of two

vectors. To minimize the error, we use

min
x
{||x− xtrue||2}
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Residual is defined as the difference of the true sinogram and the result

sinogram, which represents the difference of the projection data. It can be

considered as the difference from Ax to b. To minimize the residual, we try

min
x
{||Ax− b||2}

Actually in the real case, since we never know the true object, it is

impossible for us to detect the error of our solution. Therefore, residual

term is usually used as a measurement of the error term. However, in the

following sections, we will see that sometimes the residual is not a good

measurement of error, which means that minimizing the residual does not

minimize the error term.

In the following subsections, we are going to implement the image

segmentation process on different kinds of objects and different ranges of

projection angles.

6.1.1 Single Object

Full Range of Angle: 0-180

Figure 6.1 shows an example of an image segmentation result from a single

object in a full range of projection angles. We can clearly see that with the

full range of angles, the segmentation process does a very good job to

circumscribe the true object on the left. Also, Figure 6.2 shows the error
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plot along with the iterations. Notice that we plot each point through 25

iterations. We can see that both the error and the residual decrease to an

acceptable range.

True image Curve Evolution Segmentation Result

Figure 6.1: Example of an image segmentation from a single object in full
range of projection angles.

In this example, we can clearly see that for a single object, if we use full

range of angles, the segmentation result is very good.

Half Range of Angle: 0-90

Figure 6.3 shows an example of an image segmentation result from the

same single object using only a half range of projection angles. We can

clearly see that with half range of angles, the segmentation result is

somewhat distorted on the right side. Also, Figure 6.4 shows the error plot

along with the iterations. We can see that the error term is somewhat high

at the end, but the residual still decreases to a comparatively small term at
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Figure 6.2: Error of an image segmentation from a single object in full range
of projection angles.



44

the end. Therefore, in this case, the residual term fails to be a good

measurement for the error term.

True image Curve Evolution Segmentation Result

Figure 6.3: Example of an image segmentation from a single object in half
range of projection angles.

In this example, we can see that for a single object, if we use half range of

angles, the segmentation result is not very good.

Quarter Range of Angle: 0-45

Figure 6.5 shows an example of an image segmentation result from the

same single object using only a quarter range of projection angles. We can

clearly see that with this limited range of angles, the segmentation result is

totally distorted on the right side and upper side of the object. Also,

Figure 6.6 shows the error plot along with the iterations. We can see that

the error term is very high at the end, but the residual still decreases to a

comparatively small term at the end. Therefore, in this case, the residual

term still fails to be a good measurement for the error term.
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Figure 6.4: Error of an image segmentation from a single object in half range
of projection angles.

True image Curve Evolution Segmentation Result

Figure 6.5: Example of an image segmentation from separated object in
quarter range of projection angles.
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Figure 6.6: Error of an image segmentation from a single object in quarter
range of projection angles.
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In this example, we can see that for a single object, if we use only one

quarter of the range of angles, the segmentation result is comparatively

bad. We will see more details about the segmentation result in the next

section along with image reconstructions.

6.1.2 Separated Objects

Original Method

In this section, a full range of angles are projected onto two separated

objects. First, the image segmentation method in [9] is used to do the

segmentation, which is shown in Figure 6.7. We can clearly see that the

image segmentation result (which is only a small red dot in the middle of

the image) is far off from the true image. More importantly, the plot in the

middle of Figure 6.7 shows that the iteration goes through a

semi-convergence process. The curve first goes inside toward the edge of the

objects, but finally keeps going inside and fails to follow the edge of the

object. This is because the image segmentation method is primarily

designed for only one object, which corresponds to only one curve. If there

are two separated objects, some parts of the curve will converge, which

means that the forward model of the segmentation method fails to measure

the objects any more.

Figure 6.8 shows the error and residual plot during the iteration. We can

see that the algorithm goes through the semi-convergence process. Both the
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True image Evolution Segmentation Result

Figure 6.7: Example of an image segmentation from a single object in half
range of projection angles.

error and residual term first go down to an acceptable tolerance, then keeps

going up. In this case, we can see that the variation of the residual term

successfully follows the variation of the error term. Even though in the real

case, the error term is never really detected, it is very effective to use

residual term as a measurement of error. Therefore, we can modify the

stopping rule and stop the algorithm as soon as residual starts to increase.

Modified Method

Figure 6.9 shows the segmentation result from the same object while we

stop the iteration when the residual term reaches the minimum. From the

evolution plot, we can see that the curve starts from a circle and keeps

going inside, but stops before the curve converges. Even though the

segmentation result is not good enough to completely follow the shape of

those two objects, it is much better than the original method and it could
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be good enough to form a basis which will be shown in the later

reconstruction part.
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Figure 6.8: Error of an image segmentation from a single object in full range
of projection angles.

Figure 6.10 shows the error and residual plot during the iteration. The only

difference from the previous subsection is that we stop the iteration ahead

of time. We can see that the error term at last falls into an acceptable

tolerance. In this case, the residual term successfully becomes a good

measurement of the error term. Even though error cannot be detected, the

stopping rule based on the residual term successfully improves the
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algorithm of two separated object. We will see more experiments of using

the image segmentation scheme to form the basis for image reconstruction

in the following sections.

True image Curve Evolution Segmentation Result

Figure 6.9: Example of an image segmentation from separated object in full
range of projection angles.

From these experiments, we can see that the image segmentation result may

be somewhat distorted due to the limited range of projection angles. Also,

the segmentation process does not work very well for separated objects even

though the new stopping rule is implemented. However, the segmentation

result will provide some information as the basis of the image, which can be

used in the later image reconstruction process. More experiments in the

next section will combine the segmentation and reconstruction process

together to improve the accuracy of reconstruction result.
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Figure 6.10: Error of an image segmentation from a single object in full range
of projection angles. Modified stopping rule is used.
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6.2 Reconstruction Experiment

In this section, we will follow the most important idea in this thesis: first

segmentation, then reconstruction. We are going to compare the result of

image reconstruction in a couple of cases: no basis provided (direct

reconstruction), true basis provided and approximate basis provided by

segmentation result. We are going to see how accurate the reconstruction

result can be if the basis is provided by image segmentation. Notice that

because the difficulty of image reconstruction primarily exists in the case of

limited range of projection angles, we are going to focus on the case of

projection angles ranging from 0 to 90, or even more extremely, from 0 to

45.

6.2.1 Single Object

Half Range of Angles: 0-90

Direct Reconstruction Figure 6.11 shows an example of direct image

reconstruction from a single object using only a half range of angles. The

left of Figure 6.11 shows the true image, and the reconstructed image given

by IRhybrid lsqr is shown on the right. We can see that the image

reconstruction does not work well for this case. Much of the edge of the

image is blurry, and it is very hard to detect the object from the blurry

background.



53

True image IRhybrid lsqr Reconstruction

Figure 6.11: Example of a direct image reconstruction from a single object
in half range of projection angles.

True Basis Provided Here, we are going to use a basis of segmenting

the true image, which is shown in Figure 6.12. Notice the basis not only

contains the object, but also contains the outside background.

True basis image

Figure 6.12: The true basis image of the single object in Figure 6.11

Figure 6.13 shows the reconstruction result when using the true basis of the

object given by IRcgls with parameter λ = 2. We can clearly see that the
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True image IRcgls Reconstruction

Figure 6.13: Example of IRcgls image reconstruction from a single object
using true image basis in half range of projection angles.

reconstruction result is much more accurate than the direct reconstruction

result, and it is almost exactly the shape of the true object. However, in

the real case, the true information of the object is never provided so we

have no access to this basis information. What we want to see is how the

reconstruction process goes when the basis information is only an

approximation given by the image segmentation result. In the case of

limited projection angles, it is very necessary to provide the basis

information in order to improve the accuracy of the reconstructed image.

Approximate Basis Provided First, the image segmentation method

in [9] is used to segment the image into two parts - inside and outside, by a

parametric curve. Notice that the range of angles is still limited to 0-90 for
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the segmentation case. Then, the segmentation result and the curve

evolution process is shown in Figure 6.14. Using this image segmentation,

we form an approximate basis which is shown in Figure 6.15.

True image Curve Evolution Segmentation result

Figure 6.14: Image segmentation process from a single object in half range
of projection angles to form an approximate basis.

Basis from segmentation

Figure 6.15: The basis formed by image segmentation from a single object
in half range of projection angles.

We then use the basis from the segmentation result and the IRcgls method

is implemented to reconstruct the image. Figure 6.16 shows the true image

and three kinds of reconstruction results, which are the IRcgls

reconstruction using the true basis, the direct IRhybrid lsqr
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True image IRcgls reconstruction using true basis

IRhybrid lsqr reconstruction IRcgls reconstruction using approximate basis

Figure 6.16: Comparison of reconstruction result from a single object in half
range of projection angles.
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reconstruction and the IRcgls reconstruction using the approximate basis

obtained from the segmentation algorithm. We can see that even though

the IRcgls reconstruction result using the approximate basis is not as good

as the result from true basis, it is significantly better than the direct

IRhybrid lsqr reconstruction result. In particular, the left part of the

reconstructed image has been improved a lot. This example indicates that

our scheme, first segmentation then reconstruction, highly improves the

reconstruction result for a single object in the case of limited angle

projections.

Figure 6.17 shows the corresponding error plot of the three reconstruction

methods, which are thedirect IRhybrid lsqr reconstruction, the IRcgls

reconstruction using the approximate basis obtained from segmentation

algorithm and the IRcgls reconstruction using the true basis. Notice that

the direct IRhybrid lsqr reconstruction is the original approach to solve

the inverse problem with no basis information and the IRcgls

reconstruction using the true basis is only an ideal situation. The most

important curve on the plot is IRcgls seg which reconstructs the image

using the approximate basis. We can clearly see that although the error

term for the magenta curve in the middle is not very close to the best

reconstruction result from the true basis, it is much better than the direct

IRhybrid lsqr method. Therefore, our scheme, first segmentation then

reconstruction, truly improves the reconstruction result for a single object

in half range of angles.
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Figure 6.17: This plot shows the iteration history of image reconstruction
from a single object in half range of projection angles. Specifically, it shows
the relative errors of the computed reconstruction at each iteration, using
IRhybrid lsqr, IRcgls from segmentation basis and IRcgls from true basis
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Quarter Range of Angles: 0-45

Now, assume that we have only a quarter of range of angles, which is 0-45,

and we still aim to do image reconstruction for the same object. In this

limited range of angles, it is very difficult to reconstruct or segment the

image accurately. Following the scheme, first segmentation then

reconstruction, we first use the limited range of angles from 0 to 45 to

segment the image. Figure 6.18 shows the image segmentation process and

Figure 6.19 shows the resulting basis images. Now, we hope to use this

basis information to reconstruct the image with the IRcgls method.

True image Curve Evolution Segmentation result

Figure 6.18: Image segmentation process from a single object in quarter
range of projection angles to form an approximate basis.

Figure 6.20 shows the true image and three kinds of reconstruction results,

which are the IRcgls reconstruction using the true basis, the direct

IRhybrid lsqr reconstruction and the IRcgls reconstruction using the

approximate basis obtained from segmentation algorithm. We can see that

in this very limited angle case, the direct IRhybrid lsqr reconstruction
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Basis from segmentation

Figure 6.19: The basis formed by image segmentation from a single object
in quarter range of projection angles.

with no basis information completely fails to detect the object from the

background, which is shown in the lower left image. Using the true basis

information, IRcgls always gives a very good reconstruction compared to

the true image. In this case, although there is some part missing in the

lower part of the object, the IRcgls reconstruction using the approximate

basis in the lower right image works much better than the direct

IRhybrid lsqr reconstruction. In the reconstructed image, the object is

clearly separated from the background. This example indicates that our

scheme, first segmentation then reconstruction, still highly improves the

reconstruction result.

Figure 6.21 shows the corresponding error plot of the three reconstruction

methods, which are the direct IRhybrid lsqr reconstruction, the IRcgls

reconstruction using the approximate basis obtained from segmentation

algorithm and IRcgls reconstruction using the true basis. In this case, the

magenta curve goes through a semi-convergence period and finally reaches
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True image IRcgls reconstruction using true basis

IRhybrid lsqr reconstruction IRcgls reconstruction using approximate basis

Figure 6.20: Comparison of reconstruction result from a single object in
quarter range of projection angles.
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Figure 6.21: This plot shows the iteration history of image reconstruction
from a single object in quarter range of projection angles. Specifically, it
shows the relative errors of the computed reconstruction at each iteration,
using IRhybrid lsqr, IRcgls from segmentation basis and IRcgls from true
basis



63

the red curve, which means that finally the reconstruction by

IRhybrid lsqr and IRcgls using the approximate basis reach the same

relative error. Actually, it does not mean IRcgls with the approximate

basis does not improve the accuracy. There may be some reasons for this.

First, in the reconstructed image from IRcgls using the approximate basis,

there are some added parts on the right of the object, which enlarges the

error. Also, the missing part on the lower part of the object enlarges the

error as well. Finally, both two types of errors are very high. However, the

IRcgls reconstruction using the approximate basis still detects the object

despite some distortion.

6.2.2 Separated Object

Half Range of Angles: 0-90

Figure 6.22 shows the image segmentation process of two separated objects,

and Figure 6.23 shows the basis images obtained from image segmentation.

Figure 6.23 also mentions the three true basis images shown on the top,

which are the left square, the right square and the remaining background.

Notice that the segmentation goes through a semi-convergence process;

recall the results in Figure 6.8. In this segmentation process, the iteration is

stopped as soon as the residual term starts to increase. Now, we hope to

use this basis information to reconstruct the image by the IRcgls method.

Figure 6.24 shows the true image and three kinds of reconstruction results,
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True image Curve Evolution Segmentation result

Figure 6.22: Image segmentation process from separated object in half range
of projection angles to form an approximate basis.

True basis image

Basis from segmentation

Figure 6.23: The true basis and the basis formed by image segmentation
from separated objects in half range of projection angles.



65

which are the IRcgls reconstruction using the true basis, the direct

IRhybrid lsqr reconstruction and IRcgls reconstruction using the

approximate basis obtained from segmentation algorithm. We can see that

on the upper right corner, using the true basis information, IRcgls always

gives a very good reconstruction which is almost exactly the same as the

true image shown in the upper left corner. In the lower right corner, we can

see that the IRcgls reconstruction using the approximate basis is

somewhat influenced by errors from segmentation process, which has some

blurred parts around the squares. However, the squares in the IRcgls

reconstruction using the approximate basis are somewhat brighter than the

squares in the direct IRhybrid lsqr reconstruction, which means that the

difference in the attenuation coefficients of the object and background are

larger, indicating that the IRcgls reconstruction using the approximate

basis still works more successfully on distinguishing the object from the

background.

Figure 6.25 shows the corresponding error plot of the three reconstruction

methods, which are the direct IRhybrid lsqr reconstruction, the IRcgls

reconstruction using the approximate basis obtained from segmentation

algorithm and the IRcgls reconstruction using the true basis. In this case,

the magenta curve is obviously lower than the red curve, which means that,

finally in terms of error, the reconstruction given by IRcgls using the

approximate basis is somewhat better than the reconstruction given by

IRhybrid lsqr. Overall, due to the very limited range of angles, errors of
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True image IRcgls reconstruction with true basis

IRhybrid lsqr reconstruction IRcgls reconstruction with segmentation basis

Figure 6.24: Comparison of reconstruction result from a separated objects
in half range of projection angles.



67

0 10 20 30 40 50 60

Iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
e
la

ti
v
e
 e

rr
o
r

IRhybrid_lsqr

IRcgls_seg
IRcgls_true

Figure 6.25: This plot shows the iteration history of image reconstruction
from separated objects in half range of projection angles. Specifically, it
shows the relative errors of the computed reconstruction at each iteration,
using IRhybrid lsqr, IRcgls from segmentation basis and IRcgls from true
basis
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both reconstructed images are somewhat high. However, the IRcgls

reconstruction using the approximate basis still detects the object out of

the background and improves the accuracy of image reconstruction result.

Quarter Range of Angles: 0-45

Figure 6.26 shows the image segmentation process of two separated objects,

and Figure 6.27 shows the image basis obtained from image segmentation.

We can also see that since the image segmentation process always starts

with an initial guess as a circle, the segmentation works generally better for

symmetric objects (e.g. in Figure 6.26 and Figure 6.22) than

non-symmetric objects (e.g. in Figure 6.14). Now, we hope to use this basis

information to reconstruct the image with the IRcgls method.

True image Curve Evolution Segmentation result

Figure 6.26: Image segmentation process from separated object in quarter
range of projection angles to form an approximate basis.

Figure 6.28 shows the true image and three kinds of reconstruction results,

which are the IRcgls reconstruction using the true basis, the direct
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Basis from segmentation

Figure 6.27: The true basis and the basis formed by image segmentation
from separated objects in quarter range of projection angles.

IRhybrid lsqr reconstruction and the IRcgls reconstruction using the

approximate basis obtained from the segmentation algorithm. We can see

that on the upper right corner, using true basis information, the IRcgls

always gives a very good reconstruction which is almost exactly the same as

the true image shown in the upper left corner. The reconstruction given by

the direct IRhybrid lsqr is shown in the lower left corner, which is very

blurred and mixed with the background. In the lower right corner, we can

see that the IRcgls reconstruction using the approximate basis is largely

influenced by the error from segmentation process, which is almost exactly

the same as the shape of image segmentation result. However, the difference

of the yellow part and the red part is very clear, which indicates that the

IRcgls reconstruction using the approximate basis again successfully

detects the edge of the object and distinguishes it from the background.

Figure 6.29 shows the corresponding error plot of the three reconstruction

methods, which are the direct IRhybrid lsqr reconstruction, the IRcgls
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True image IRcgls reconstruction with true basis

IRhybrid lsqr reconstruction IRcgls reconstruction with segmentation basis

Figure 6.28: Comparison of reconstruction result from a separated objects
in quarter range of projection angles.
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Figure 6.29: This plot shows the iteration history of image reconstruction
from separated objects in quarter range of projection angles. Specifically, it
shows the relative errors of the computed reconstruction at each iteration,
using IRhybrid lsqr, IRcgls from segmentation basis and IRcgls from true
basis
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reconstruction using the approximate basis obtained from segmentation

algorithm and the IRcgls reconstruction using the true basis. In this case,

the magenta curve is also lower than the red curve, which means that,

finally in terms of error, the reconstruction given by IRcgls using the

approximate basis is better than the reconstruction given by

IRhybrid lsqr. However, it is very difficult to reconstruct the image

accurately given such a limited range of angles. Errors in both

reconstructed images are very high. However, the IRcgls using the

approximate basis still detects the object out of the background and on

some level improves the accuracy of image reconstruction result.

6.2.3 Overlay Object

First, an overlay object is shown in Figure 6.30 which is a combination of

several basis images shown on the right of Figure 6.30. We want to see how

our scheme, first segmentation then reconstruction, works for this kind of

overlay object. We also consider two cases of limited range of projection

angles, half range and quarter range.

Half Range of Angles: 0-90

First, the image segmentation scheme is implemented for the whole object,

and the resulting basis is shown in Figure 6.31. We can see that the

segmentation successfully segments the whole image from the background

but has no indication of the area inside the outer edge of the object. In this
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True image True image basis

Figure 6.30: An example of overlay object with the true basis image.

case, since the some parts of the object overlay each other, the

segmentation basis is very different from the true basis. Next, we will see

how reconstruction works with the segmentation basis.

Figure 6.32 shows the true image and three different reconstruction results,

which are the IRcgls reconstruction using the true basis, the direct

IRhybrid lsqr reconstruction and the IRcgls reconstruction using the

approximate basis obtained from the segmentation algorithm. We can see

that on the upper right corner, using the true basis information, the IRcgls

always gives a very good reconstruction which is almost exactly the same as

the true image shown in the upper left corner. The reconstruction given by

the direct IRhybrid lsqr is shown in the lower left corner, which is very

blurred but gives somewhat clear intensity levels as yellow, orange, red,
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Segmentation basis

Figure 6.31: Segmentation basis of overlay object with half range of angles.

showing the overlay levels. In the lower right corner, we can see that the

IRcgls reconstruction using the approximate basis successfully detects the

outer edge of the object and again distinguishes it from the background. In

terms of image visualization, it is almost as good as the result given by the

IRcgls reconstruction using the true image basis.

Figure 6.33 shows the corresponding error plot of the three reconstruction

methods, which are the direct IRhybrid lsqr reconstruction, IRcgls

reconstruction using the approximate basis obtained from segmentation

algorithm and IRcgls reconstruction using the true basis. In this case, the

magenta curve is also a little bit lower than the red curve, which means

that, finally in terms of error, the reconstruction image given by IRcgls

using the approximate basis is better than the reconstruction given by the

direct IRhybrid lsqr reconstruction. In this case, IRcgls with
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True image IRcgls reconstruction with true basis

IRhybrid lsqr reconstruction IRcgls reconstruction with segmentation basis

Figure 6.32: Comparison of reconstruction result from overlay object in half
range of projection angles.
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Figure 6.33: This plot shows the iteration history of image reconstruction
from overlay object in half range of projection angles. Specifically, it shows
the relative errors of the computed reconstruction at each iteration, using
IRhybrid lsqr, IRcgls from segmentation basis and IRcgls from true basis
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segmentation basis still improves the accuracy of the image reconstruction

result.

Quarter Range of Angles: 0-45

Now we decrease the range of projection angles from half range to quarter

range, and investigate the reconstruction performance in such a limited

range of projection angles. The image segmentation scheme is implemented

to the whole object, and the resulting approximate basis images are shown

in Figure 6.34. We can see that the edge of the segmentation result is very

elastic, which means that in such a limited range of projection angles, the

segmentation result is not very accurate as expected. Similarly, the

segmentation successfully segments the whole image from the background

but has no indication of the area inside the outer edge of the object.

Segmentation basis

Figure 6.34: Segmentation basis of overlay object in quarter range of angles.
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True image IRcgls reconstruction with true basis

IRhybrid lsqr reconstruction IRcgls reconstruction with segmentation basis

Figure 6.35: Comparison of reconstruction result from overlay object in quar-
ter range of projection angles.
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Figure 6.35 shows the true image and three kinds of reconstruction results,

which are the IRcgls reconstruction using the true basis, the direct

IRhybrid lsqr reconstruction and the IRcgls reconstruction using the

approximate basis obtained from segmentation algorithm. We can see that

on the upper right corner, using the true basis information, the solution

given by IRcgls is slightly blurred but is still very similar to the true

object. The reconstruction given by direct IRhybrid lsqr is shown in the

lower left corner, which is very poor. It is very difficult to tell the shape of

the object from this blurry image. In the lower right corner, we can see that

even though the IRcgls reconstruction using the approximate basis is not

good enough to see what is inside the outer edge of object, it still roughly

tells the shape of the whole object. In such a limited range of angles from 0

to 45, it is overall very difficult to reconstruct the image with high accuracy.

Figure 6.36 shows the corresponding error plot of the three reconstruction

methods, which are the direct IRhybrid lsqr reconstruction, the IRcgls

reconstruction using the approximate basis obtained from segmentation

algorithm and the IRcgls reconstruction using the true basis. Surprisingly,

the red curve blows up at the end of the iteration, which is corresponding

to the final poor reconstructed image from IRhybrid lsqr. In this case, the

magenta curve is close enough to the blue curve, which means that the

solution provided by the approximate basis is somewhat close to the

solution provided by the true basis. In this case, the IRcgls reconstruction

using the approximate basis highly improves the accuracy of image
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Figure 6.36: This plot shows the iteration history of image reconstruction
from overlay object in quarter range of projection angles. Specifically, it
shows the relative errors of the computed reconstruction at each iteration,
using IRhybrid lsqr, IRcgls from segmentation basis and IRcgls from true
basis
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reconstruction result.
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Chapter 7

Concluding Remarks

In this thesis, the image segmentation scheme is discussed to detect the

edge of the object. Then, we investigated using the segmentation results to

form an enriched subspace to improve the performance of image

reconstruction. Extensive numerical experiments are presented in

Chapter 6 to see the performance of the algorithms.

• We first tried image segmentation with different ranges of projection

angles for different kinds of objects. We find that image segmentation

performs best on cases of single object and aims to detect the outer

edge of the object. We conclude that for specifically limited range of

projection angles, the image segmentation result is somewhat

distorted. Also, the segmentation process fails to converge for

separated objects. A new stopping rule is needed to improve the

accuracy.
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• We then tried image reconstruction with different ranges of angles.

We can see that when the range of angles is limited, the result from

reconstruction is highly perturbed and it is very difficult even to

detect the shape of the object from the background, which

corresponds to the solution given by the iterative solver

IRhybrid lsqr.

• Next, we tried to add basis information into the subspace of the

image in order to improve the efficiency. We can see that the iterative

solver IRcgls always works well given the true basis of the object.

However, the true basis of the object is never given. Therefore, the

segmentation result can be used to obtain an approximate basis for

the image reconstruction. From the experiments, we can see that

approximate basis successfully improves the accuracy of the

reconstructed image in most cases. Even though in some cases the

error term is not reduced too much, the solution by IRcgls

reconstruction using the approximate basis can be considered better

in a view of visualization.

The effective implementation of the scheme, first segmentation then

reconstruction, demonstrates that this scheme can be used in more future

studies. More segmentation methods could be generated to detect the

inside area of the object in order to improve the basis. Also, the ways to

add the segmentation basis to the subspace can be generated to improve
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the efficiency and accuracy of the reconstruction algorithm.
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