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Abstract

Bayesian Spatial-Temporal Models for Areal Count Data

By

Qiang Ling

Analyses of spatial-temporally correlated areal data arise frequently in public
health. In this dissertation, a series of hierarchical models are developed for spatial-
temporal count data in the Bayesian framework, with a focus on addressing potential
overdispersion and inflated zero counts in the data.

The ability to predict areal count data and quantify the associated prediction un-
certainty is valuable for describing population health. We first consider recent devel-
opments in Bayesian hierarchical modeling approaches with flexible spatio-temporal
interactions, and examine their use in projecting future annual county-level cancer
incidence rates, with an application to the Colorado cancer incidence data reported
to the National Program of Cancer Registries at the US Centers for Disease Control
and Prevention for 1998 to 2007. By examining the 2-year ahead predictive perfor-
mance of models with different random effect specifications, our results demonstrate
the advantages of considering temporal trends in spatial associations when modeling
cancer incidence rates.

Overdispersion due to zero-inflation is a common challenge in analyzing count
data. To address this issue, we first develop spatial-temporal zero-inflated models,
which has two parts: a Poisson count model and a logisic model for predicting excess
zeros. We further consider a class of two-part hurdle models. The hurdle models
also consist of two components: a binary component modeling the probability of any
occurrence and a truncated count component modeling the counts given occurrence.
The two components in zero-inflated and hurdle models address, respectively, the
abundance of zeros and the skewness of the nonzero counts. Several distributions for
the non-zero component are considered, including Poisson, negative binomial, and
generalized Poisson. We also evaluate the spatial-temporal dependence between the
two model components via multivariate conditionally autoregressive priors, which
provide spatial and temporal smoothing.

The zero-inflated and hurdle models are applied to (1) Iowa cancer data reported
to the Surveillance, Epidemiology, and End Results (SEER) program of the National
Cancer Institute during 1998-2007, and (2) emergency department visits data in the
Duke University Health System. Results demonstrate that the two component models
using negative binomial and generalized Poisson as the base distribution outperform
the standard Poisson models.
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1

Chapter 1

Introduction

1.1 Overview

Health-related data are often aggregated over different geographic areas and collected

at many time points, exhibiting complex spatio-temporal structure. Examples of

spatial areal data include the percentage of a surveyed population with household

income below the federal poverty limit for a collection of regions, or a choropleth map

of land use classification. These different types of data are like pieces of a jigsaw

puzzle, into which researchers have devoted themselves to modeling and interpreting

the data, such that government funds can be efficiently allocated to public health

programs, diseases can be effectively monitored and diagnosed at early stages, and a

healthy population can be maintained.

Motivated by the extensive and diverse databases of areal information available in

public health, in this dissertation, I develop Bayesian hierarchical models that utilize

recent methodological advances for application in medical and public health research.

In the analysis of areal units, statistical research interests over spatio-temporal

data in recent years have been focused on a few areas. A common inferential issue

of areal data is to identify and quantify spatial patterns of disease. Health outcomes
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for areal units near each other tend to be more similar than units further apart.

Intuitively, changes in disease rates should be indifferent from how the arbitrary,

administrative boundaries were set. Second, there exist extreme values as in any

sample data. To obtain a surface of estimated disease rates with better precision,

especially for small areas and rare diseases, it may be beneficial to consider smooth-

ing the data. Third, the modifiable areal unit problem (MAUP)[Banerjee et al., 2004]

causes inferential challenges. It’s very common that areal units are modified in geo-

graphic boundary sets. For example, U.S. Census tract boundaries often change to

accommodate population shifts in those areas. Statisticians are challenged with using

data from one set of geographic boundaries to make inference for another[Goovaerts

and Xiao, 2011]. Finally, in studies with multiple outcomes, such as several poten-

tially related cancer types, another research topic is to handle the dependence among

the multivariate components, while accounting for spatial dependence between areal

units.

1.2 Proximity Matrix W

A core concept in any spatial-temporal methodology for areal data is the proximity

matrix, which describes how areal units are spatially-related to each other. Given a

total of n areal units in a study, the proximity matrix W is defined as a n×n matrix

where the ωij describes the closeness of areal unit j to areal unit i. The matrix W

has diagonal elements ωii = 0 for i = 1, 2, · · · , n. There are different ways to set up

values of ωij. One intuitive approach is to set ωij equal to the Euclidean distance

between the two centroids of areal unit i and unit j. Another possibility is to use a

binary indicator: if unit i and unit j share common boundary, then ωij = 1; otherwise

ωij = 0. In the two choices above, ωij = ωji and W represents a symmetric matrix.

However, W does not necessarily need to be a symmetric matrix. For example for a
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given i, we could set ωij = 1 if j is one of the K nearest neighbors of i. For unit j,

ωji 6= 1 if i is not one of the K nearest neighbors of j.

1.3 Spatial and Temporal Association

Spatial, temporal and spatial-temporal effects are often parameterized as random ef-

fects within the framework of generalized linear mixed models (GLMM). Standard

linear mixed models often assume that individual contribution to the log-likelihood

of different groups/clusters can be summed up due to the assumed independence of

random effects. However, the independence assumption is often violated in spatial-

temporal data, and statistical research has developed new flexible approaches to ad-

dress this challenge.

Currently, to model autocorrelation for areal data, one of the most widely used

frameworks is conditional independence, which assumes that data from different areal

units are independent of each other, conditional on random effects at a higher level

of the hierarchy. Often, inclusion of spatial correlation through conditional indepen-

dence only partially accounts for spatial effects as there are residual correlation effects

due to unobserved covariates or due to complete randomness.

Based on Brook’s lemma[Gelman et al., 2013],

p(y1, y2, · · · yn) =
p(y1|y2, · · · , yn)

p(y10|y2, · · · , yn)
.
p(y2|y10, y3 · · · , yn)

p(y20|y10, y3 · · · , yn)

· · · p(yn|y10, · · · , yn−1,0)

p(yn0|y10, · · · , yn−1,0)
.p(y10, · · · , yn0)

where y = (y10, · · · , yn0)
′

is a realization of the distribution of p(y1, · · · , yn). Brook’s

lemma states, given p(y1, y2, · · · yn), if the full conditional distributions p(yi|yj, j 6=

i), i = 1, 2, · · ·n, are uniquely determined, then the joint distribution exists. In

spatial-temporal data, the use of a conditional distribution for each spatial unit forms
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the basic construct of Markov random field (MRF)[Rue and Held, 2004]. It also pro-

vides a convenient approach for sampling the joint posterior distribution in Bayesian

Markov chain Monte Carlo (MCMC) computation. An explicit form of the joint dis-

tribution is not necessary in Bayesian inference and computation. Instead, posterior

samples are realized via iterative simulation from the joint distribution. Spatial cor-

relation is accounted for and appears inside a prior distribution instead of in the like-

lihood itself. For spatial data, we often assume that dependence only exists between

areal units close to each other; so for each spatial unit i, the conditional distribution

can be simplified as:

p(yi|yj, j 6= i) = p(yi|yj, j ∈ ∂i) (1.1)

where ∂i denotes the neighborhood of unit i.

1.4 Conditional Autoregressive Prior Distributions

The Conditional Autoregressive (CAR) Distribution has been widely used as a prior

in spatial-temporal modeling because of its convenience in computation under the

Bayesian hierarchical framework. To account for spatial correlation, the general form

of the conditional distribution in (1.1) is usually assumed to follow a Gaussian dis-

tribution. The conditional autoregressive distribution is specified as:

Yi|yj, j ∈ ∂i ∼ N

(∑
j

bijyj, τ
2
i

)
, i = 1, 2, · · ·n.

If let bij = ωij/ωi. and τ 2
i =

τ 2

ωi.
, through Brook’s Lemma, the joint distribution is

given by:

p(y1, y2, · · · , yn) ∝ exp

{
− 1

2τ 2
y

′
(D −W )y

}
,
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where W is the proximity matrix and D is diagonal with Dii = ωi.. The joint distri-

bution expression above suggests Y follows a joint multivariate normal distribution

with mean 0 and variance matrix Σ = (D −W )−1τ 2.

1.5 Bayesian Model Comparison

There are several approaches to access model fit. In this dissertation, we used two

methods.

The first one is a discrepancy measure, which is used to check data fit by comparing

the expected number under the model to the observed, Here we use the Weighted

Mean Squared Error (WMSE) given by:

T (y, θ) =
1

n

n∑
i=1

(yi − E(yi|θ))2 /var(yi|θ).

to measure the lack-of-fit specifically.

The other comparison, Deviance comparison, is a standard summary statistic to

examine model fit. Deviance is denoted as -2 times the log-likelihood: D(y, θ) =

−2 log p(y|θ) [Gelman et al., 2004], which shows the discrepancy between data and

model depends on model parameters θ as well as the data y.

To derive a summary statistic that depends only on y, D̄ is defined as:

Dθ̂ (y) = D
(
y, θ̂(y)

)

where θ̂ is a point estimate for θ, for example the mean of the posterior sample.

Another Deviance statistics, the D̂, is the average deviance over the posterior

simulations of θn:

D̂avg (y) =
1

N

N∑
n=1

D(y, θn).

The estimated average discrepancy above is a better summary of model error than
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the discrepancy of the point estimate. The point estimate θ̂(y) generally results in

the model fitting better than it really does. In that sense, D̂ is generally larger than

D̄.

The difference between the posterior mean deviance and the deviance at θ̂

pD = D̂avg(y)−Dθ̂(y), (1.2)

describes the effect of model fitting and is used as a measure of the effective number

of parameters in a Bayesian model. So pD is conveniently used in Bayesian statistics

as a measure of the model complexity. For a normal linear model with unconstrained

parameters pD is equal to the number of parameters in the model. So pD can be

considered as the number of ‘unconstrained parameters’ in the model, where a pa-

rameter counts as 1 if it is estimated with no constraints or prior information; 0 if

it is fully constrained or if all the information about the parameter comes from the

prior distribution; or an intermediate value if both the data and prior distribution

are informative. From another point of view, in (1.2), we see that pD represents the

decrease in the deviance or the expected improvement of model fit.

To estimate the expected error when applying the fitted model to out-of-sample

(replicate) data yrep,

Dpred
avg (y) = E

[
1

n

n∑
i

(yrepi − E(yrepi |y))2

]
(1.3)

Similarly, the expected deviance for replicated data is computed as:

Dpred
avg (y) = E

[
D(yrep, θ̂(y))

]
(1.4)

The estimated predictive deviance has been suggested as a criterion of model fit

and has been used in selecting the best fit model. In practice, Deviance Information
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Criterion (DIC) is a approximation of the expected predictive deviance (1.4), which

can be written as:

DIC = 2D̂avg(y)−Dθ̂(y),

which is the criterion we use for Bayesian model selection in this dissertation work.

Model with the minimum DIC will have the best short-term predictions. DIC can also

be used to compare alternative prior distributions as well, if the priors are independent

of the data [Spiegelhalter et al., 2007]. However, when the difference in DIC is small,

such as ∆DIC < 5, relaying on DIC only for model selection might be misleading

[Spiegelhalter et al., 2007]. WinBUGS provides user the convenience of requesting

deviance and DIC values for parameters in WinBUGS distribution syntax. However,

user might have to calculate DIC themselves for parameters of other distributions.

1.6 Overall Goals and Organization

The overarching goal of this dissertation is to develop, apply and evaluate Bayesian

spatio-temporal hierarchical models for mapping and projecting areal counts. Specif-

ically, our interest is in providing areal incidence and rate estimates, as well as their

associated uncertainties for small areas. We consider two motivating examples: U.S.

Cancer Registries[NCI, 2010, CDC, 2010] and Emergency Department Visits in the

Duke Health System[Neelon et al., 2013]. The Bayesian framework allows flexible

spatial and/or temporal correlation structures in cancer incidence data across coun-

ties and years. We are particularly interested in the use of Gaussian Markov random

fields (GMRFs) to model relative risks across discrete areal units, which has been

employed extensively in disease mapping applications. Given the contiguous spa-

tial units that arise naturally from administrative boundaries, the GMRF framework

borrows information across spatial units. Similar to small-area estimation problems,

spatial smoothing is particularly useful for areas with small at-risk populations where
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crude cancer rates are associated with high estimation uncertainty. Finally, another

advantage of the Bayesian approach is that uncertainty in parameter estimation can

be easily propagated in cancer incidence projections via posterior predictive distribu-

tions.

In study 1, we are interested in evaluating Bayesian spatio-temporal approaches

for short-term cancer incidence projection. To serve the needs of epidemiology

research and facilitate decision making for improving public health and reducing

cancer burden, registries should have the capacity to provide estimates about newly

diagnosed cancer cases before the actual cases are reported to National Program of

Cancer Registries (NPCR). However, there is a standard two-year delay in reporting

cancer cases to central registries after the end of a calendar year. It is a common

practice in cancer surveillance to estimate the number of new cases diagnosed at the

current year, which provides an up-to-date perspective on the occurrence of different

types of cancers in different geographic regions.

In study 2, we will develop spatio-temporal zero-inflated Poisson (ZIP)

mixture models to account for excess zeros in count data. Excess zeros are ubiqui-

tous in cancer registry data, especially for rare cancer sites at the county level. Also,

the data often become sparse when stratified into different demographic categories or

a finer spatial/temporal scale. High occurrence of zeros can reach a level such that

standard Poisson regression exhibits lack of fit even after adjusting for covariates or

introducing random effects in the model.

In study 3, to address the excess zeros and the corresponding overdispersion, we

will develop spatio-temporal hurdle models. We will compare model fit and

prediction between hurdle Poisson models, hurdle generalized Poisson models and

hurdle negative binomial models. In addition, we will examine the correlation between

two random effect components: the zero component and the positive count component

in hurdle models.
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This dissertation is organized as follows:

Chapter 2 provides a review of Bayesian spatio-temporal areal models and presents

a case study of their application in Colorado lung and bronchus cancer. Model perfor-

mance is compared and 2-year ahead cancer incidence projections are obtained and

compared with the actual reported cancer incidence at the county level.

Chapter 3 begins with a review of current methods to account for zero inflation

in count data. We then describe the development of zero-inflated mixture models,

including zero-inflated Poisson models, zero-inflated negative binomial models and

zero-inflated generalized Poisson models, for modeling cancer incidence data. The

methods are implemented in a case study using Iowa lung and bronchus cancer data.

Preliminary results assessing the degree of zero-inflation are also given.

Chapter 4 considers spatial-temporal hurdle multivariate conditional autoregres-

sive (CAR) models, including hurdle Poisson models, hurdle generalized Poisson mod-

els and hurdle negative binomial models, for large number of zero cases reported in

Emergency Department Visit data from Duke Health System. Model fit will be com-

pared.

Finally, future directions appear in Chapter 5.
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Chapter 2

STUDY 1: BAYESIAN

SPATIAL-TEMPORAL DISEASE

MAPPING AND PROJECTION

FOR COLORADO LUNG AND

BRONCHUS CANCER DATA

2.1 US Cancer Surveillance

Cancer is the second-leading cause of death among Americans. Disease surveillance

for public health, defined as “the ongoing systematic collection, analysis, and inter-

pretation of health data”[Thacker and Berkelman, 1988], is essential to the planning,

implementation and evaluation of public health practice.

In 1971, as a result of the National Cancer Act, the National Cancer Institute’s

(NCI) Surveillance Epidemiology and End Results (SEER) program was initialized

and debuted as a system of population-based cancer registries in five states and four
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metropolitan areas. Since 1992, following the passage of the Cancer Registries Amend-

ment Act, the National Program of Cancer Registries (NPCR) at the U.S. Centers

for Disease Control and Prevention (CDC) has been funding and supporting cancer

registries outside the SEER areas. As a result, additional state-wide cancer registries

were established and existing registries began collecting cancer data of increasing

quality in a timely manner during the 1990s. In 2002, jointly with SEER, NPCR

progressed to become a national cancer surveillance which receives cancer incidence

data from 49 states, the District of Columbia (DC) and three U.S. territories (Palau,

Puerto Rico and the Virgin Islands), covering 96% of the U.S. Population[Hutton

et al., 2001].

The ability to utilize information from population-based surveillance data is crit-

ical to the mission of the U.S. central cancer registries. Since 1999, CDC, NCI and

the North American Association of Central Cancer Registries (NAACCR) have jointly

published the United States Cancer Statistics, a complete annual report to the nation

on US cancer incidence and cancer mortality[CDC, 2010]. Also, the SEER program

publishes annually the Cancer Statistics Review (CSR) that reports on the most re-

cent cancer incidence, mortality, and survival statistics. In addition, the American

Cancer Society (ACS) publishes the Cancer Facts & Figures annually which provides

estimates of the contemporary cancer burden every year[Pickle et al., 2007].

In the above annual reports, statistical methods have played an important role

in describing the trends in cancer incidence and mortality, identifying disparities by

population demographics, estimating public health burden, and projecting new cancer

cases and deaths. With an ambition of recording every primary cancer in a timely

and accurate manner, cancer central registry data are massive and complex. Different

cancer sites also have diverse cancer profiles. For example, in 2008, the highest annual

cancer incidence rate was estimated to be 144.8 per 100,000 population at risk for

prostate, but ovarian cancer has a much smaller estimated annual rate of 9.2 per
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100,000 population at risk[CDC, 2010]. Over the last 40 years, different cancer sites

have demonstrated different cancer incidence trends.

2.2 Statistical Challenges and Objectives

Due to changes in cancer incidence and the growing availability of U.S. cancer data,

there has been a constant interest in developing statistical methods for estimating

timely cancer trends over the past decades[Pickle et al., 2005, 2007]. Earlier methods

were developed based on the National Cancer Institute’s Surveillance, Epidemiology,

and End Results (SEER) program, a comprehensive cancer surveillance database

dating from 1975. First, a piecewise joinpoint linear regression was used to model

temporal trends and identify temporal changes in incidence data[Kim et al., 2000].

Then an autoregressive quadratic time-trend model was developed to forecast can-

cer incidence to be diagnosed and cancer mortality to be anticipated[Tiwari et al.,

2004, Pickle et al., 2003]. This method is a multistep procedure. It first models the

long-term trend of cancer incidence as a function of time and the square of time.

An autoregressive model was then fit to the residuals to account for the short-term

fluctuation of the incidence trend. Additional approaches to model temporal trends

have also been proposed, including state-space models[Tiwari et al., 2004] and semi-

parametric regressions[Ghosh and Tiwari, 2007].

To address geographic variability in incidence rates, the projection method has

been further improved to a spatial-temporal model implemented in SAS/GLIMMX by

ACS [Pickle et al., 2007]. County-level socioeconomic status (SES) and lifestyle pro-

files, including urban/rural status, household characteristics, income, education, oc-

cupation, medical facilities and the percentage distribution of the population by race

and ethnicity, are taken from the Area Resource File (Bureau of Health Professions

1999) and Census data. By including spatially-varying SES and lifestyle profiles as
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additional cancer risk factors, this method provides both state- and county-level esti-

mated cancer incidence for the first time. Residual spatial correlations are accounted

for by including a non-parametric median-based smoother using the population as

weights[Mungiole et al., 1999].

The above methods, however, have several limitations when applied to the NPCR

data. First, to conduct piecewise joinpoint linear regression, it is necessary to have

data covering a long time period. For the SEER data, previous methods have utilized

cancer incidence data over 27 years [Kim et al., 2000] to successfully capture long

time trends, whereas NPCR only began in 1994. Moreover, the joinpoint approach

cannot effectively deal with recent changes in cancer rates. Specifically, as new data

become available, the joinpoint procedure described in [Kim et al., 2000] will identify

the best fitting set of joinpoints over the whole range of data. The sequential test

procedure by Zhang [1995] fixes the joinpoint regression parameters and searches for

additional joinpoints, which might lead to different parameter solutions for the same

data.

A second challenge in cancer incidence estimation is the ability to estimate and

project cancer incidence for locations lacking high quality incidence data, for example

due to small population size. To address this issue, the autoregressive quadratic time-

trend model made an assumption that the ratio of each state’s incidence to mortality

is the same as that for the combined SEER registries, which might not be justifiable

in all cases[Frey et al., 1994]. The spatial-temporal model by Pickle et al. [2007] could

provide estimates of cancer incidence rates at the county-level. Nevertheless, the au-

thors have observed that counties with fewer residents may have a higher degree of

uncertainty in the estimated number of expected cancer cases. Practice from using

those methods in estimating US cancer incidence at the ACS has shown substan-

tial geographic variation in projection performance for many cancer sites. Another

challenge in relying on spatial projection using spatially-varying SES and lifestyle
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covariates is that the temporal resolution and availability of these variables are often

limited. Uncertainty quantification for incidence projection is also difficult with the

non-parametric spatial smoothing approach[Mungiole et al., 1999].

2.3 Overview

This chapter presents a case study utilizing a NPCR registry from Colorado between

the period 1998 to 2007. We focus on Lung and Bronchus cancer which is the most

common cause of cancer-related death worldwide, responsible for 1.37 million deaths

annually[Organization, 2012]. We consider 4 spatial-temporal models for areal data

with different specifications of the spatial and temporal components of baseline risk,

and evaluate their performance in 2-year ahead projection. This is motivated by the

standard 2-year delay in cancer reporting. We also describe an approach to account

for geographical boundary change during the study period.

2.4 Methods

Cancer incidence data were obtained from CDC’s NPCR program reported by state

health departments or their designees as of January 2009. Primary cancer sites were

coded according to the International Classification of Diseases for Oncology (ICD-

O) 3rd Edition (for International Classification of Disease codes for these sites, see

http://seer.cancer.gov/siterecode/icdo3 d01272003/ ). Only malignant tumors were

included, while in situ and other benign tumors were excluded. Individual level

demographic variables were also available, including patient’s diagnosis year, race,

sex, age and county of residence. Only lung and bronchus cancer cases reported for

diagnosis years between 1998 to 2007 from Colorado were analyzed in this study.

Since minority race groups account for a very small proportion of the total incidence

data for Colorado (0.73%), only white (including both Hispanic and non-Hispanic)



15

and black subpopulations were included in this study. Population data for years 1998

to 2007 were obtained from the CDC National Center of Health Statistics (NCHS).

2.4.1 Bayesian spatio-temporal models for areal data

Given the 10 years of incidence data available, we used the first 8 years (1998-2005)

for fitting the spatio-temporal models and the last 2 years (2006, 2007) for evaluating

model projections. Let s index a patient’s residency county, s = 1, 2, · · · , S (S = 64

for Colorado), and let t index reporting year. We categorized age into 6 groups

(≤ 44, 45-54, 55-64, 65-74, 75-84, and ≥ 85 years old). We aggregated the data by

combinations of race, sex, and age group (24 strata in maximum). About 46% of the

combinations of county, reporting year, sex, age group and race had no cases reported,

which were treated as 0. For the sth county, we observed Ostk, the number of observed

cancer cases reported from county s during year t in stratum k. With Pstk denoting the

corresponding at-risk population size, we assume the following hierarchical Poisson

regression model:

Ostk ∼ Poisson (Pstke
µstk) . (2.1)

The log of relative risk, µstk, is partitioned into the following different terms:

µstk = µ+ β0(t) + β0(s) + β0(s, t) + Xstkβ, (2.2)

where µ is the overall average log baseline relative risk; β0(t) is the purely temporal

component that describes the temporal trend in cancer incidence; β0(s) is the purely

spatial component that describes the spatial trend in cancer incidence; β0(s, t) repre-

sents space-time interaction or the residual error term; and lastly, Xstk denotes the

vector of indicators for a particular age, sex and race group, and β is the correspond-

ing vector of regression coefficients.
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2.4.2 Modeling space-time random effects

We first consider a static model where the spatial random effects are constant in

time without space-time interaction (β0(s, t) = 0). A common approach in disease

mapping is to decompose β0(s) into two independent random effects:

β0(s) = θs + ψs.

Here θs captures the unstructured heterogeneous random effects with θs
iid∼ N(0, σ2

θ),

and ψs captures the spatial dependence. We assume ψ = (ψ1, ψ2, · · · , ψS) follows a

Gaussian Conditionally Autoregressive (CAR) distribution. The CAR(τ 2
ψ) distribu-

tion is often specified via a conditional probability density function with

ψs|ψs′ 6=s ∼ N(µs, σ
2
s),

where µs =
∑
s′ 6=s wss′ψs′∑
s
′ 6=s wss′

and σ2
s = 1

τ2ψ
∑
s
′ 6=s wss′

. The weights wss′ are fixed constants

that measure the proximity of counties s and s
′
. In this study, wss′ takes a value of 1

when county s and s
′
share boundaries, and 0 otherwise. Therefore the full conditional

mean is the average of the spatial neighbors and σ2
s controls the degree of spatial

dependence. Since ψs is unidentifiable jointly, we add the constraint
∑S

s=1 ψs = 0

[Xia and Carlin, 1998]. To facilitate projection for function years, we assume a linear

temporal trend β0(t) during the last 4 years (2002-2005)[Fay et al., 2006]. Since

the spatial trend is constant in time in this model, all years prior to 2002 have a

year-specific effect.

We next consider a nested model described by Waller et al. [1997], where the

static model above is applied to each time point separately. Therefore the spatial

random effects and their spatial dependence are allowed to vary across time points.

Following equation 2.2, we set β0(s) = β0(t) = 0, and the log of the space-time varying
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relative risk, β0(s, t), is parameterized as

β0(s, t) = θs,t + ψs,t.

Here θs,t and ψs,t are the unstructured heterogeneity and spatial random effects

that vary in time, with

θs,t
iid∼ N(0, σ2

t ),

ψt ≡ (ψ1,t, ψ2,t, · · · , ψs,t) ∼ CAR(τ 2
t ).

The above model does not borrow information across time in estimating spatial as-

sociation because σ2
t and τ 2

t are year-specific. Therefore, we also considered a nested

model with identical precisions ( σ2 and τ 2) across the time periods.

The third model we consider allows the spatial random effects to evolve across

time. Following the dynamic spatial model by Chang et al. [2011] and Banerjee

et al. [2004], we assume the following structure for log relative risk effects partitioned

in 2.2 as follows. The purely spatial effect β0(s) = ψs is modeled jointly by a intrinsic

CAR distribution,

ψ ≡ (ψ1, ψ2, · · · , ψS) ∼ CAR(τ 2
ψ)

The spatio-temporal random effects, β0(s, t), have a dynamic structure:

β0(s, t) = ρβ0(s, t− 1) + ξs,t

ξt ≡ (ξ1t, ξ2t, · · · , ξSt) ∼ CAR(τ 2
ξ )

with ρ ∈ [−1, 1]. For identifiability purpose, we set β0(s, 1) = 0. Parameter ρ

describes the temporal dependence between the spatial random effect at each location.



18

Residual errors ξt are modeled as another spatial CAR process independent across

time. The temporal trend in the dynamic model follows a flexible first-order random

walk distribution with

β0(t)|β0(−t) =


N (φβ0(t+ 1), τ 2) , t = 1

N
(
φ
2

(β0(t− 1) + β0(t+ 1)) , τ
2

2

)
, t = 2, · · ·T − 1

N (φβ0(t− 1), τ 2) , t = T

Finally, the 4th approach we assessed in this study is an autoregressive approach

recently introduced by Mart́ınez-Beneito et al. [2008]. Similar to the dynamic model,

this model allows the spatial random effects to vary smoothly in time. However, it

also constrains the spatial random effect to be stationary with an identical covariance

matrix at each time point. Following equation 2.2, we set β0(s) = 0, and

β0(s, t) = (1− ρ2)−
1
2 (θs,t + ψs,t), t = 1

β0(s, t) = ρβ0(s, t− 1) + θs,t + ψs,t, t > 1

θs,t
iid∼ N(0, σ2

θ)

ψt ≡ (ψ1t, ψ2t, · · · , ψSt)
iid∼ CAR(τ 2

ψ).

Again parameter ρ ∈ [−1, 1] captures temporal dependence. For this model, we

consider modeling the temporal trends, as (1) linear in last 4 years; (2) first-order

random walk; and (3) setting β0(t) = 0.



19

2.4.3 Accounting for geographic unit boundary changes

In November of 2001, a new county (Broomfield, FIPS code 08014) was created from

portions of Adams, Boulder, Jefferson and Weld counties in Colorado. Consequently,

some of the census tracts before 2000 in these four counties now wholly or partially

belong to the newly created Broomfield County. Spatial misalignment is a common

challenge in spatial epidemiology where the analysis is carried out at different spatial

resolution or aggregation than the collected data. There exists considerable literature

on this issue. For areal unit data, this problem was also known as the modifiable areal

unit problem (MAUP), to describe the variable’s distribution at a new level of spatial

aggregation[Banerjee et al., 2004, Gotway and Young, 2002].

In order to allow the spatial random effects to vary temporally, we propose the fol-

lowing approach to account for changes in county boundaries during the study period

(1998-2007). When fitting the spatial-temporal models, we use the most recent county

geography (2007) that includes Broomfield. Then from 2002 till 2007,we observe count

Ostk given the at-risk population size Pstk without boundary mismatch. Before 2002,

we assume Ostk arises from the unobserved counts Õitk for t = 1998, · · · 2001 given by

Ostk =
I∑
i=1

αsikÕitk,

where αsik are known constants that represent the proportion of the at-risk population

group k in region i that resides in the desired region s. By conditional independence,

the observed counts before 2002 has the likelihood

Ostk ∼ Poisson

(
I∑
i=1

αsikPitke
µitk

)

If county i did not change boundary, αsik = 1 for a unique i, and αsik = 0 for
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all other i. Otherwise, the counts observed in county s consists of a weighted sum

of counts as if the 2007 county geography was used before 2002. Therefore, our

approach models the latent log relative risk µitk across the entire study period and

treats observed values that do not conform to the spatial geography as coarsened

data. We note that the choice of county geography in this approach is not important

as long as we can identify sensible weights to relate the latent risks and the observed

counts, usually through the at-risk population distribution. Here we chose to use

the county boundaries in the most recent year (2007) to simplify posterior predictive

calculations when projecting future cancer incidence.

The CDC National Center for Health Statistics (NCHS) does not provide popu-

lation estimates of years before 2002 for Broomfield County. To estimate the propor-

tions of population in the newly-created Broomfield who actually lived inside Adams,

Boulder, Jefferson or Weld counties before 2002, we utilized the American Community

Survey 5-year estimate data of census tract-level population counts.

2.4.4 Estimation and computation details

All model fitting and posterior distribution analysis were implemented in WinBUGS

and R using MCMC algorithm. We chose prior distributions, gamma(0.5, 0.005) and

gamma(0.5, 0.005), respectively for precision parameters τ 2
θ and τ 2

ψ. Noninformative

priors were chosen for fixed effects β. In each model, we ran 2 independent sampling

chains with 20,000 iterations, where the first 10,000 samples were discarded as burn-

in.

Cancer incidence projections were obtained by sampling from the corresponding

posterior predictive distributions. Specifically, from equation 2.2, the log relative risk

is decomposed into the fixed effect Xstkβ and the county-level baseline risks: β0(s, t),

β0(s) and β0(t). We assumed the fixed effects to be identical for the future period

and their posterior samples are used directly for future year’s projection.
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For the nested models, spatial correlations were estimated independently across

years. Therefore, parameters associated with β0(s, t) for the most recent year (2005)

were carried forward as they should most closely reflect the spatial residual for the

counties in the future years. However, for the dynamic and auto-regressive models,

with a lag-1 autoregressive spatial-temporal effect, it’s not necessary to carry over

the model’s last year heterogeneity and spatial random effects. Instead, we predicted

the future values forward in time, by directly sampling the spatial effects and hetero-

geneity terms for year 2006 and year 2007 in sequence, given the parameter values in

year 2005.

We followed Schmid and Held [2004] to obtain posterior predictive samples of

the CAR spatial random effects. Specifically, we assume θ follows a zero-mean

CAR distribution with precision parameter τ 2. We wish to obtain a sample of

θ = (θ1, θ2, · · · , θS) under the linear constraint
∑
θs = 0. The precision matrix

of θ is given by Q = τ 2(D−W) of rank n− 1, where W is a symmetric adjacency

matrix, with its element Wss′=1 indicating that two units share boundaries, and D

is a diagonal matrix with Dss =
∑

sWss′ .

The density of θ subject to the constraint 1
′
θ = 0 is proportional to

exp

(
−1

2
θ

′
(Q + 11

′
)θ

)
. (2.3)

To obtain a sample x ∼ [θ|1′
θ = 0], first sample z ∼ N(0, Q̂−1), where Q̂ =

Q + 11
′
.

Then compute

x = z− Q̂−11(1
′
Q̂−11)−1(1

′
z).

With the log relative risk of each record calculated, the corresponding expected

number of cases were obtained by using the population size with the relative risks

stratified by age, sex and race at each county. Posterior samples of the expected cases
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were further used as the mean of a Poisson distribution, from which posterior samples

of projected cases were drawn. We utilized the following 4 statistics to evaluate

the predictive performance of the projections obtained from different spatio-temporal

model specifications: the Average Absolute Relative Deviation (AARD), Root-Mean-

Square Error (RMSE), Mean Absolute Error (MAE), 95% Posterior Interval (PI)

length, and its empirical coverage probability.

2.5 Results

There were a total of 19,398 Lung and Bronchus cancer cases diagnosed between

1998 and 2007 reported to NPCR from Colorado by Dec 2009, within a range of

1744 to 2128 incidence per year. 96.6% of the cases were white, and 52.7% were

male. Among the cases, the age distribution was as follows: 2.1% less than 45 years

old, 8.2% between 45 and 54, 20.7% between 55 and 64, 33.6% between 65 and 74,

28.1% between 75 and 84, and 7.3% older than 84. The total population of Colorado

increased from 3,966,442 in 1998 to 4,628,508 in 2007.

We use the deviance information criterion (DIC) to compare fit between models.

Table 2.1 summarizes the 7 model specifications, their DIC and the effective number

of parameters (pD). The nested models have the largest DIC and pD as they do not

borrow information across years to estimate the spatial random effects. The static

model with constant spatial effects has the smallest DIC and pD, hence the best fit.
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Table 2.1: Model specification and deviance comparisons

Model No. Temporal effect pD DIC

Static model 1 linear trend of last 4 years 56.586 13806.3

Nested Model 2 constant precision parameters 162.175 13924.3

3 year-specific precision parameters 163.398 13935.5

Dynamic model 4 auto-regressive 75.38 13818.4

Auto-regressive 5 auto-regressive 89.046 13814.4

6 none 86.425 13814.8

7 linear trend of last 4 years 88.451 13815.5

Tables 2.2 and 2.3 give the RMSE, AME, 95% PI coverage probabilities and their

average lengths. Results are stratified by counties with less than or greater than 20

cases reported in 2006 and 2007. In counties with less than 20 cases reported, we

have an average of 4.9 cases observed in 2006 and 5.2 in 2007; in counties with more

than 20 cases, there were an average of 109.3 cases observed in 2006 and 117.3 in

2007. We observed that model 7, the autoregressive model with 4 years linear trend,

has a better performance with a coverage closer to 95%, narrower 95% PI lengths,

as well as smaller RMSE and AME for both 2006 and 2007. Across models, greater

prediction errors were also associated for year 2007 compared to year 2006, as we

move farther from the data.
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Although having a smaller DIC value, the static model (model 1) has a larger

coverage probability, a wider PI length, and an elevated RMSE and AME. The spatial

CAR precision (τ 2
ψ) was estimated to be 6.5 with a 95% PI [3.43, 25.8] in model 1,

while the spatial CAR precision of the autoregressive model (model 7), was 175 with

a 95% PI [64.8, 591]. This indicates that stronger spatial associations were estimated

when the spatial random effects are stratified by year. Model 1 also has a smaller

posterior precision (σ2
θ) for the unstructured heterogeneous random effects compared

to model 7. Therefore, for the static model, the constant spatial random effects could

not effectively explain the spatial-temporal variation in the data, resulting in larger

projection uncertainty through the unstructured random effect.

Table 2.4 gives the posterior means and 95% PIs of the parameters in model 7. In

this study, the race effect was found to be not significant in the final model, which is

consistent with findings from others studies[Stellman et al., 2003]. However, due to

small proportion of black population living in Colorado, the estimated relative risk

(RR) of white vs. black should not be extended to the US general population for

scientific reference. We found that higher cancer incidence was also associated with

males and the older age groups. There was also a recent decreasing temporal trend.

The baseline spatial relative risks showed strong temporal correlation from year to

year. In this autoregressive model, the parameter ρ was estimated to be 0.965 [95%

P.I. 0.923, 0.985].
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Table 2.4: Parameter estimates from model (7) with a last 4-years linear trend
Parameters mean 2.5% 97.5%
intercept -6.05 -6.20 -5.92

male 0.26 0.23 0.30

white -0.03 -0.14 0.09

age
< 45 -5.16 -5.28 -5.05

45 ∼ 54 -0.79 -0.86 -0.72
55 ∼ 64 -2.51 -2.57 -2.44
65 ∼ 74 -1.24 -1.29 -1.19
75 ∼ 84 -0.16 -0.20 -0.12
≥ 85 reference

year
1998 -0.02 -0.10 0.07
1999 -0.06 -0.13 0.02
2000 -0.01 -0.09 0.06
2001 0.01 -0.06 0.08
linear -0.04 -0.06 -0.01

σ2
θ 635 264 1294

σ2
ψ 214 65 591

ρ 0.97 0.92 0.99
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Figure 2.1 plots the posterior means of the county-level log baseline relative risks,

β0(s, t) + β0(s) + β0(t), between 1998 and 2005 from model 7. It shows that the

counties along the state borders had generally higher baseline relative risks. Finally,

Figure 2.2 and 2.3 plot the expected (Pstke
µstk) and the projected lung and bronchus

cancer cases for each county. The observed cancer cases are shown by the hollow

circles. Counties with higher projected cancer incidence are associated with higher

standard deviation. Overall, the autoregressive model with linear trend of last 4 years

was able to provide adequate short-term projections.
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Projected and Expected Lung/Bronchus Cancer by County CO 2006

Figure 2.2: Expected(red) and projected (blue) lung and bronchus cancer cases by
county from Model 7, with the observed cancer cases shown by the hollow circles,
Colorado 2006
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Projected and Expected Lung/Bronchus Cancer by County CO 2007

Figure 2.3: Expected(red) and projected (blue) lung and bronchus cancer cases by
county from Model 7, with the observed cancer cases shown by the hollow circles,
Colorado 2007
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2.6 Discussion

Through comparison of the seven Bayesian hierarchical models through DIC and

pD values, we observed that a Bayesian spatial-temporal autoregressive model fits

the data better, which also provided better cancer incidence projection at the county

level. The baseline log relative risks [Figure 1] demonstrated strong spatial correlation

of the risk across time. On the other hand, spatial conditional autoregressive model

smooths the cancer data by fitting a random-effect Poisson model allowing the spatial

correlation to borrow strength from county neighborhoods and time. Omitting this

important feature in cancer registry data will inevitably adversely affect the projection

outcomes, especially of the corresponding variances.

There are additional challenges common to the analysis of cancer incidence that

were not considered in this preliminary study. The first challenge arises from the

fact that excess number of zeros exists often in area count data, where the observed

number of zeros significantly exceeds the expected frequency given the Poisson dis-

tribution assumption. Such excess numbers of zeros are often observed in cancer

incidence data. In the next chapter, we will consider zero-inflated Poisson mixture

models to account for potential zero-inflated cancer data. The second challenge is

to model multiple cancer types efficiently and simultaneously, such that the correla-

tion of different cancer incidence trends can be considered in the modeling. For this

purpose, we can propose other models, such as multivariate CAR model. We believe

the Bayesian spatial-temporal models examined in this chapter can be conveniently

extended and applied to other cancer sites, other state registries, or even the complete

NPCR database.

By comparing projection performance for year 2007 in table 2.4 vs. that for year

2006 in table 2.3, we see that year 2007 posterior projection has a wider variation than

that from 2006. The increased uncertainty in projection could be due to the method

of sequential estimation in model 7: since spatial-temporal random effect for year
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2007 is based on parameter estimation from 2006, uncertainty can be easily increases

as we move further from the data. The higher RMSE, ASE can also reflect the fact

that the most recent 2007 data include greater proportion of unreported cancer cases

than that in year 2006 [Midthune et al., 2005].
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Chapter 3

STUDY 2: BAYESIAN SPATIAL
ZERO-INFLATED MIXTURE
MODELS ACCOUNTING FOR
ZERO-INFLATION AND
OVERDISPERSION IN AREAL
COUNT DATA

3.1 Introduction

When modeling count data, Poisson regression assumes equality of the conditional

mean and variance of the response (equidispersion). However, this assumption is often

violated where the variance could either be larger than the mean(overdispersion), or

smaller than the mean(underdispersion). When the variance is not equal to the mean,

the regression coefficient estimates in a Poisson regression model are still consistent,

but inference based on the estimated standard errors is no longer valid.

One common source of overdispersion in Poisson regression in many disciplines,

such as econometrics[Heilbron, 1994] and health services research, is zero inflation.

Excess zeros are said to be present in data when the observed number of zeros sig-

nificantly exceeds the expected frequency given the Poisson distribution assumption.
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This high occurrence of zeros can reach a level such that standard Poisson regression

exhibits lack-of-fit even after adjusting for covariates or introducing random effects

in the model[Ghosh et al., 2012, Neelon et al., 2010].

Cancer registry data are spatial-temporal and often come with many zeros when

examined within relatively small areas, such as at the county or census tract level.

While some of the zero counts are true zeros of cancer incidence, the other can rep-

resent non-reports[McClintock, 2012], such as those due to possible cancer reporting

delay or reporting error[Midthune et al., 2005].

This paper presents an analysis utilizing data submitted to SEER from the Iowa

Central Cancer Registry (ICCR) between the period 1998 to 2005. ICCR entered

the SEER program in 1973, and has a long history of high data quality. We only

used data covering a recent period of time, such that the method developed could

be implemented toward other cancer registries which have a shorter history of data

collection. We focus on lung and bronchus cancer, the most common cause of cancer-

related death worldwide and responsible for an estimated 1.37 million deaths an-

nually[Organization, 2012]. Since US cancer surveillance, including both the SEER

program and CDC’s National Program of Cancer Registries (NPCR), has a standard

2-year delay in reporting cancer cases to federal partners, this work focuses on pro-

jecting short-term cancer incidence such that the most recent US cancer burden may

be evaluated.

In this study, we consider spatial zero-inflated mixture models based on the Pois-

son distribution for areal data to account for potential excess number of zero inci-

dence. Since [Lambert, 1992], zero-inflated count Poisson (ZIP) models have been

extensively investigated in statistical research and utilized in application. There is a

considerable literature on frequentist approaches to fit generalized linear regression

of zero-inflated data, not only for cross-sectional studies, but also for longitudinal

studies[Hall, 2000, Min and Agresti, 2005]. Recently, several authors have proposed
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Bayesian hierarchical models to fit zero-inflated count data. For example, Agarwal

et al. [2002] first introduced the “spatial ZIP regression” that incorporates spatial

random effects within a Bayesian framework. Ver Hoef and Jansen [2007] further

proposed a space-time ZIP model which includes first-order autoregressive temporal

effects in a Bayesian hierarchical model. Besides zero-inflated models, we also con-

sider two other models for count data: a negative binomial and a generalized Poisson

model which are alternative methods for accommodating overdispersion and under-

dispersion. We will study whether they are flexible in accommodating overdispersion

due to an excess number of zeros compared to the Poisson mixture approach.

3.2 Methods

3.2.1 Iowa Central Cancer Registry Data, 1998-2007

Cancer incidence data from the Iowa Central Cancer Registry (ICCR) were submitted

to the National Cancer Institute’s (NCI) SEER program in 2009[NCI, 2010]. Pri-

mary cancer sites were coded according to the International Classification of Diseases

for Oncology (ICD-O) 3rd Edition (available at http://seer.cancer.gov /siterecode

/icdo3 d01272003/), and only lung and bronchus cancer cases reported for diagnosis

year between 1998 to 2007 were analyzed in this study. Only malignant tumors were

included, while in situ and other benign tumors were excluded. We did not exclude

Death Clearance Only (DCO) cases in the analyses. Individual level demographic

variables were also available, including patient’s diagnosis year, race, sex, age and

county of residence. Since minority race groups account for a very small proportion

of the total incidence data (2.5%) for Iowa, only whites (including both Hispanic and

non-Hispanic) were used in this study. Population count data for year 1998 to 2007

were obtained from the CDC’s National Center of Health Statistics (NCHS).
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3.2.2 Statistical Models

We developed Poisson models, negative binomial models, generalized Poisson models

and zero-inflated Poisson models using the Iowa Cancer incidence data diagnosed

between 1998 to 2005. Given the 10 years of incidence data available, we used the first

8 years (1998-2005) for model fitting and the last 2 years (2006, 2007) for evaluating

model projection performance. Let s index patient’s residency county, s = 1, 2, · · · , S

(S = 99 for Iowa), and let t index reporting year. We categorized age into 6 groups

(≤ 44, 45-54, 55-64, 65-74, 75-84, and ≥ 85 years old). We aggregated the incidence

data by all combinations of sex, and age groups. About 43% of the combinations of

county, reporting year, sex and age group had no cases reported, which were treated

as 0.

We first considered the standard Poisson model used in disease mapping. For

county s, we observed Ostk, the number of cancer cases reported during year t in

stratum k, and let Pstk denote the corresponding at-risk population size.

Ostk ∼ Poisson(λstk),

where λstk = Pskte
µstk . The log relative risk, µstk, is further partitioned into the

following different terms:

µstk = µ+ β0(t) + β0(s) + Xstkβ, (3.1)

where µ is the overall average log baseline relative risk; Xstk denotes the vector of

indicators for a particular age and sex groups to capture potential disparities in in-

cidence; β is the corresponding vector of regression coefficients. β0(t) is the purely

temporal component that describes the temporal trend in cancer incidence. We used

binary indicators for the first 4 years, and a linear trend for the last 4 years to cap-

ture the most recent temporal change in rate; β0(s) is the purely spatial component
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that describes the spatial trend in cancer incidence, and follows a Gaussian Condi-

tionally Autoregressive (CAR) distribution, and its precision (the inverse of variance,

σ2
θ) has a prior of gamma(0.5, 0.001). The CAR distribution defines a joint distri-

bution of Markov random fields, which facilitates spatial smoothing and identifies

spatial/temporal patterns. To simplify our models, We assume there is no space-time

interaction in this model of this study. Prior distributions for other parameters were

given previously (Chapter 2).

We then consider a negative binomial model

Ostk ∼ NB (γ, pstk) . (3.2)

with mean E(Ostk) = λstk = (1−pstk)γ
pstk

, and variance V (Ostk) = (1−pstk)γ

p2stk
= λstk

pstk
.

Since pstk ∈ (0, 1), its variance is larger than the expected value. Therefore, a nega-

tive binomial distribution can account for the overdispersion problem in count data.

We chose gamma(0.1, 0.1) as the hyperprior for γ. To model cancer incidence, we

parametrized pstk = γ
γ+λstk

, where λstk = Pskte
µstk and µstk has the same components

as in (3.1). Overdispersion, the ratio between its variance and mean, is estimated by

1
pstk

=
(

1 + λstk
γ

)
.

We then consider a generalized Poisson distribution which has the advantage that

it can be fitted accounting for both overdisperison and underdispersion:

Ostk ∼ GenPoisson (α, λstk) . (3.3)

and the probability density function as in [Ismail and Jemain, 2007] was specified as

Pr(Ostk = y) =

(
λstk

1 + αλstk

)y
(1 + αy)y−1

y!
exp

(
−λstk (1 + αy)

1 + αλstk

)
, y = 0, 1, · · ·B(α),

(3.4)
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where B(α) = b− 1
α
c (floor function, maps a real number to its previous largest

integer) if α < 0, otherwise B(α) =∞ if α ≥ 0. The generalized Poisson distribution

has mean E(Ostk) = λstk > 0, and variance V (Ostk) = λstk (1 + αλstk)
2. Note that

because α can take both negative and positive values, its variance can account for

both over- and under-dispersion. If α = 0, generalized Poisson distribution reduces to

a Poisson distribution [Fuentes et al., 2006]. We chose beta(0.5, 0.5) as the hyperprior

for α. Furthermore, we assume that α ∼ uniform(l, u). The lower bound of α was

set to be − 1
Omax

such that (1 + αOstk) > 0, and the upper bound was set to 1. We

transformed α to y (see appendix) for easy MCMC estimation.

The zero-inflated model assumes the excess of zeros is comprised of a mixture of

a degenerate distribution at 0 and a standard Poisson, denoted as ZIP (p, λ) :

P (Y = 0|λi) = p+ (1− p)π(0|λi) , 0 ≤ p < 1

P (Y = yi|yi > 0, λi) = (1− p)π(yi|λi)
(3.5)

where π(y|λi) denotes the standard Poisson distribution probability mass function

(PMF), and p denotes the proportion of the additional point mass at zero (structural

zeros). When p = 0, the model reduces to the Poisson(y|λ). When 0 < p < 1, the

model takes into account the inflated zeros p+ (1− p)π(0|λi) > π(0|λi).

The mean and variance of the ZIP model are given by:

E(Y |p, µi) = (1− p)λi

V (Y |p, µi) = p(1− p)λ2
i + (1− p)λµi ,

(3.6)

and we see that that expected value for ZIP (p, λ) is always smaller than its variance

by p(1− p)λ2
i , so equidispersion is no longer a necessary assumption for ZIP model.

To introduce covariate information in both the zero and non-zero components,

the canonical links are used. Following equation (3.6), let λstk = Pstke
µstk , and µstk

has the same partition terms as in (3.1). Let pstk represent the probability of the
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degenerate distribution at 0.

log (µstk) = µ+ β0(t) + β0(s) +Xstkβ

logit(pstk) = µ
′
+ α0(t) + α0(s) +X

′

stkα
(3.7)

Based on preliminary analysis, Xstk included age groups and sex. Given the above

regression specification, three models with different spatial random effect specifica-

tions were studied. The first is a model without α0(s), the purely spatial component.

This model assumes that the probability of zero incidence does not vary across coun-

ties after being adjusted for the temporal and covariate effects. The second model has

a purely spatial component α0(s), independent from β0(s) in the log link partition in

equation (3.7).

The last ZIP model we studied includes correlated spatial random effects between

the Bernoulli and Poisson components modeled by a joint bivariate intrinsic Con-

ditional Autoregressive distribution (biCAR(Σ)) for α0(s) and β0(s) as described

by Neelon et al. [2013]. Joint modeling of the spatial random effects can reduce

bias of the spatial covariance parameters and the intercept of the Poisson compo-

nent as well. To be specific, let s denote the area unit spatial location, and let

ΦT = (Φ1,Φ2, · · · ,Φs, · · ·ΦS) where each Φs = (αs, βs)
′

is a 2× 1 vector and has the

following joint conditional distribution:

Φs|Φ(−s) ∼ N2

(
1

ms

∑
l∈∂s

Φl,
1

ms

Σ

)
,

where ms is the number of neighbors of area unit s, ∂s is the set of neighbors for unit

s, and Σ is a 2 × 2 variance-covariance matrix. In addition, we assume a IW (3, I2)

prior for Σ. To simplify our notation, we denote Φ = (Φ1 · · ·ΦS) ∼ biCAR(Σ).
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3.3 Results

There were a total of 22,246 lung and bronchus cancer cases in the study popula-

tion between 1998 and 2007 reported to SEER program from ICCR by November

2009[NCI, 2010], with a range of 2,131 to 2,341 incident cases per year. Among the

cases, 57.5% are male. And the age distribution was as follows: 1.9% less than 45

years old, 7.9% between 45 and 54, 19.5% between 55 and 64, 32.8% between 65 and

74, 29.6% between 75 and 84, and 8.3% older than 84. The total population of Iowa

started from 2,795,851 in 1998, which climbed in the first 2 years and then slipped

back to 2,800,261 by 2003. The population then grew to a peak of 2,826,220 in 2007.

When the data are aggregated at the county level and stratified by age groups(≤ 44,

45-54, 55-64, 65-74, 75-84, and ≥ 85 years old) and sex, the percentage of annual

number of zeros ranged from 41.3% to 45.4% (see table 3.1).

Table 3.2 summarizes the 6 model specifications, and gives an assessment of fit

based on their deviance information criterion (DIC) and the effective number of pa-

rameters (pD) [Spiegelhalter et al., 2002]. All models included county-level spatial

effects for cancer relative risks of the means. The three ZIP models differ by whether

the structural zeros were modeled with a spatial effect (ZIP2), and whether the struc-

tural zero spatial effects were correlated with spatial effects for cancer relative risks

(ZIP3). The negative binomial model and generalized Poisson model had the smallest

DIC and pD values indicating the best fit. Model ZIP3 (model 6) has the largest DIC

and pD values. This model comparison suggested that the Iowa cancer incidence data

exhibited overdispersion which can not be explained solely by excess zeros.

We utilized the following 5 statistics to evaluate the predictive performance of the

projections obtained from different spatio model specifications: the Average Absolute

Relative Deviation (AARD), Root-Mean-Square Error (RMSE), Mean Absolute Error

(MAE), 95% Posterior Interval (PI) length, and its empirical coverage probability

(See Chapter 2). The 5 statistics are summarized in Table 3.3 and 3.4 , with results
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stratified by counties with less than or greater than 20 cases reported in 2006 and

2007. In the stratum of counties with less than 20 cases reported, we have an average

of 10.8 cases observed for both 2006 and 2007; in the other stratum of counties with

at least 20 cases observed, there were an average of 61.9 cases observed for 2006

and 59.8 cases for 2007. Overall, we found that all models performed similarly in

term of coverage probability. Despite its DIC value, predictions from the negative

binomial model had the largest PI length, AARD, RMSE, and MAE. Across models,

greater prediction errors were also associated for year 2007 compared to year 2006

as we move further from the data. We observed that that negative binomial model

(model 2) and generalized Poisson model (model 3) have wider PI from both 2006 and

2007 compared with other models, which resulted from the model’s accommodation

of overdispersion in the data.

Figure 3.1 plots the posterior means of the county-level log baseline relative risks,

β0(s), in equation (3.1), from the Poisson model (model 1), the negative binomial

model(model 2), the generalized Poisson model(model 3), and the zero-inflated Pois-

son model with no spatial effect for structured zeros (model 4). It shows that the

counties along the state borders had generally higher baseline relative risks. Finally,

Figure 3.2 and Figure 3.3 plot the expected (Pstke
µstk) and the projected lung and

bronchus cancer cases for each county. Overall we found good agreement between the

projections and the observed counts. The figures also include 95% posterior intervals

(PI) and our model appears well calibrated. The observed cancer cases are shown by

the hollow circles.

The parameter of γ in equation (3.2), which represents the “number of failures

until the experiment is stopped” in negative binomial model (Model 2) was estimated

to have median of 41.0 and 95% posterior interval is [28.8, 62.0] (posterior sample

provided in Figure 3.4).

The parameter α, given in equation (3.3), in Generalized Poisson model (Model 3)
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was estimated to have posterior median 0.0264 (95% PI 0.0118 - 0.0419). Both nega-

tive binomial model and generalized Poisson model indicate the presence of overdis-

persion in the Iowa Lung and Bronchus cancer incidence data.

The parameter p, the proportion of structured zeros in the zero-inflated Poisson

model (Model 4), was estimated for male and female separately. For male the median

of p was estimated to be 0.659 and 95% PI (0.532, 0.758). For female the median of

p was estimated to be 0.431 and 95% PI (0.366, 0.518).

Table 3.5 gives the posterior means and 95% PIs of the parameters in the negative

Binomial model. In this study, we found that higher cancer incidence was also asso-

ciated with males and older age groups. There was also a recent decreasing temporal

trend.

3.4 Discussion

In general, Bayesian inference has advantages of incorporation of prior information,

and avoidance of asymptotic assumptions. Specifically for small dataset with many

zeros, Bayesian ZIP models have shown to provide better performance compared to

the maximum likelihood in terms of both bias and precision [Ghosh et al., 2006].

In addition including spatial correlation using biCAR prior, Fuentes et al. [2006] il-

lustrates the importance of inclusion of the temporal correlation when doing Bayesian

spatial-temporal modeling of count variables. This approach was evaluated and did

not provide significant improvement in model fit, and the results were not shown here.
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Table 3.1: Percent of Zero Counts in Iowa Lung and Bronchus Cancer Data Stratified
by County, Age Groups and Sex, White Population

Diagnosis Year Total Records Zero Case Percentage

1998 1188 45.4%

1999 1188 43.9%

2000 1188 42.3%

2001 1188 45.1%

2002 1188 42.3%

2003 1188 41.3%

2004 1188 42.8%

2005 1188 41.4%

2006 1188 41.5%

2007 1188 42.6%
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Table 3.3: Average county-level root mean squared error (RMSE), mean absolute
error(AME), 95% posterior interval (PI) average length and coverage probability,
and average absolute relative deviation (AARD) by county incidence size ( < 20 vs.
≥ 20). Predictions are for the year 2006.

Model
95%Coverage PI length AARD RMSE AME
≥ 20 < 20 ≥ 20 < 20 ≥ 20 < 20 ≥ 20 < 20 ≥ 20 < 20

1 97.57% 98.89% 7.48 3.08 0.52 0.66 7.45 1.00 1.68 0.72
2 97.92% 98.8% 8.29 3.14 0.53 0.66 7.81 1.00 1.70 0.72
3 97.57% 98.67% 7.65 3.17 0.52 0.66 7.40 1.00 1.67 0.72
4 97.22% 98.78% 7.45 3.08 0.52 0.66 7.48 1.00 1.68 0.72
5 97.57% 98.67% 7.45 3.08 0.52 0.66 7.47 1.00 1.68 0.72
6 97.22% 98.78% 7.52 3.08 0.52 0.65 7.42 0.99 1.68 0.72

Table 3.4: Average county-level aggregated root mean squared error (RMSE), mean
absolute error(AME), 95% posterior interval (PI) average length and coverage prob-
ability, and average absolute relative deviation (AARD) by county incidence size ( <
20 vs. ≥ 20). Predictions are for the year 2007.

Model
95%Coverage PI length AARD RMSE AME
≥ 20 < 20 ≥ 20 < 20 ≥ 20 < 20 ≥ 20 < 20 ≥ 20 < 20

1 94.79% 98.11% 7.57 3.10 0.69 0.64 8.15 0.94 1.91 0.70
2 96.18% 98.44% 8.42 3.17 0.69 0.64 8.58 0.95 1.94 0.70
3 95.49% 98.67% 7.78 3.18 0.69 0.64 8.11 0.95 1.90 0.70
4 94.44% 98.33% 7.60 3.11 0.69 0.64 8.18 0.94 1.91 0.70
5 94.79% 98.56% 7.63 3.11 0.69 0.64 8.13 0.94 1.91 0.70
6 94.44% 98.22% 7.67 3.11 0.68 0.63 8.07 0.94 1.90 0.70

Table 3.5: Posterior mean and 95% posterior interval for parameters from the negative
binomial model (Model 2) with a last 4-years linear trend

Parameters mean 2.5% 97.5%
intercept -8.17 -8.25 -8.10
male 0.61 0.57 0.64
age
< 45 -2.86 -2.99 -2.74

45 ∼ 54 1.33 1.27 1.40
55 ∼ 64 2.16 2.09 2.22
65 ∼ 74 2.33 2.27 2.39
75 ∼ 84 1.98 1.89 2.05
≥ 85 reference

year
1998 0.0011 -0.0572 0.0633
1999 -0.0119 -0.0735 0.0494
2000 0.0036 -0.0624 0.0631
2001 -0.0331 -0.0945 0.0261
linear 0.0099 -0.0109 0.0301

σ2
θ 13.5 8.7 20.4
γ 42.1 28.8 62.0
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Projected and Expected Lung/Bronchus Cancer by County Iowa 2006

Figure 3.2: Expected(red) and projected (blue) lung and bronchus cancer cases by
county with 95% posterior prediction intervals from negative binomial model (Model
2). The observed cancer cases were shown by the hollow circles, Iowa 2006
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Projected and Expected Lung/Bronchus Cancer by County Iowa 2007

Figure 3.3: Expected(red) and projected (blue) lung and bronchus cancer cases by
county with 95% posterior prediction intervals from negative binomial model (Model
2). The observed cancer cases were shown by the hollow circles, Iowa 2007
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Figure 3.4: Plot of γ for Negative Binomial model (Model 2)

Figure 3.5: Plot of α for Generalized Poisson model (Model 3)
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Chapter 4

STUDY 3: Bayesian Dynamic

Spatial-temporal Hurdle Models

for Zero-inflated Count Data

4.1 Introduction

When it comes to accounting for zero-inflation in count data, statisticians have other

options beside the zero-inflated Poisson (ZIP) model. One of the widely used methods

in this area is the Poisson hurdle model. The Poisson hurdle model, also called

a two-stage model in econometrics[Heilbron, 1994], considers a point mass at zero

and a truncated Poisson distribution for the nonzero observation, such that it does

not distinguish between zeros from the degenerate distribution versus those from the

Poisson distribution as in the ZIP model. Since Poisson hurdle approach models zeros

and nonzeros separately, it has the flexibility of accommodating both zero-inflated

and zero-deflated data, while the ZIP model can only accommodate zero-inflation(see

equation 3.6).

Motivated by a study by Neelon et al. [2013] exploring spatial-temporal trends in
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Emergency Department (ED) use, we develop a class of two-part hurdle models in this

research for the analysis of zero-inflated areal count data. Different from surveillance

data, ED visit data has no “false zeros” [McClintock, 2012]. Thence, hurdle models

fit the health administrative data better than zero-inflated mixture models.

ED visit records, provided from Duke University Decision Support Repository

(DSR) database, contain demographic, diagnostic and treatment information on over

4 million patients of Duke University Health System. There are many unique chal-

lenges in the analysis of these data: the data are spatial-temporal which have demon-

strated considerable geographic and temporal variation in ED use. The DSR data

come with abundant zeros (about 70% patients had no ED visits annually); the pos-

itive counts can go as high as 90 times a year for some patients. And finally, we

need to improve small-area estimation by providing adequate spatial and temporal

smoothing. The unique challenges associated with DSR data are of particular interest

to address as part of this dissertation.

Our aims in this study are to develop spatial-temporal Bayesian models to address

zero-inflation and potential overdispersion in the ER records from the DSR database

submitted to Duke University Health System. We seek to identify areas where ED use

remained persistently high, fluctuated from year to year, or increased systematically

over time. To be consistent with the other two studies in my dissertation, we only

used data covering a recent period of time, such that the method developed could be

implemented toward other count data which have only short history of data collection.

This paper will also present a cross-validation of posterior-predicted ER usage counts

based on the model fit.

We evaluate a class of two-part hurdle models which are specifically designed to

address those unique challenges in ER visit data. The hurdle model consists of two

components: a Bernoulli component that models the probability of any ED use (i.e.,

have any ED visits in a given year) and a truncated count component that models
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the number of repeat visits among users. Together, these components accommo-

date both the high proportion of zeros and the right-skewness observed among the

nonzero counts. To address potential overdispersion in the positive counts, we con-

sider three distributional specifications for the nonzero observations: the truncated

Poisson, the truncated negative binomial, and the truncated generalized Poisson dis-

tribution. Taking advantage of the unique hierarchical structure of the DSR data,

our models incorporate both patient- and region-level predictors, as well as spatially

and temporally correlated random effects for each model component.

We also seek to develop models that could accommodate the correlation between

the two components of hurdle models. The previous study by [Neelon et al., 2013]

has shown the probability of ED use was correlated with the expected number of

ED visits among users. Therefore, the random effects are modeled via multivariate

conditionally autoregressive priors that induce dependence between the components

and provide smoothing across adjacent space and time periods.

4.2 Methods

4.2.1 The DSR Data, 2007-2011

The Duke University Decision Support Repository (DSR) has been in existence for

over a decade, which holds 17 years of demographic, diagnostic, and billing data on

over 4 million patients of the Duke University Health System. As part of a ongoing

exploring study of ED use, researchers recently reviewed ED admission records for

Durham County residents who were seen at either an ED or non-ED clinic between

2007 and 2011, the most recent years for which records were available. The records

were listed by residential address which were subsequently linked at the Census block

level to the 2005-2009 American Community Survey[US Census Bureau, 2010] data.

The final dataset contained over 122,000 records from the 129 Census block groups
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in Durham County, and included information on the annual number of ED visits

for each patient, patient-level demographics, such as age, race, gender and insurance

status, and median household income of each block group.

4.2.2 The Hurdle Model

For the analysis of the DSR data, we consider a broad class of two-part hurdle models

to address both zero inflation and potential overdispersion of the nonzero counts.

Hurdle models are two-part mixtures consisting of a point mass at zero followed by

a zero-truncated count distribution (base distribution) for the positive observations

[Neelon et al., 2013, Mullahy, 1986]. Letting Y denote a count-valued response, the

generic structure of the hurdle model is given by

Pr(Y = y) =


1− π, 0 ≤ π ≤ 1, y = 0

πp(y;µ)
1−p(0;µ)

, y = 1, 2, · · ·
, (4.1)

where π = Pr(Y > 0) is the probability of a nonzero response; p(y;µ) is an untrun-

cated base probability density function with parameter θ; and p(0;µ) is the probability

of probability density function (PDF) evaluated at 0. When 1−π = p(0;µ), the hur-

dle model reduces to its base distribution; when 1−π > p(0;µ), the zeros are inflated

relative to the base distribution; and when 1 − π < p(0;µ), there is zero deflation.

When π = 1, there are no zeros and the model reduces to truncated base distribution;

when π = 0, the model is degenerate at zero. However, we assume that π is strictly

between 0 and 1, so that there is a nonzero utilization probability for all individuals

under study.
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4.2.3 Spatial-temporal Hurdle Model

For analyses in this study, we first included spatial-temporal components into model

(4.1) through the dynamic space-time model developed by Chang et al. [2012]. Let

yijk denote the number of annual ED visits for the kth patient in block group i and

year j. A general form of the spatial-temporal hurdle model is given specified as

following:

Pr(yijk) =


1− πijk, 0 ≤ πijk ≤ 1, yijk = 0

πijkp(yijk;µijk)

1−p(0;µijk)
, yijk = 1, 2, · · ·

g(πijk) = x
′

ijkα+ f1(zijk) + φ1i + ν1j + δ1ij

ln(µijk) = x
′

ijkβ + f2(zijk) + φ2i + ν2j + δ2ij,

(4.2)

where πijk = Pr(Yijk > 0); µijk is the conditional mean of the base distribution

given a set of spatial-temporal random effects; g(.) denotes the logit link; xijk is a

p × 1 vector of fixed-effects, including both individual- and region-level predictors

(here assumed identical for both model components); α and β are p × 1 vectors of

fixed-effect regression coefficients for the two components respectively; f1(zijk) and

f2(zijk) are optional smoothing functions of a continuous predictor zijk (e.g., patient

age) to be modeled via cubic B-splines; φi = (φ1j, φ2j)
′

is a vector representing

the purely spatial “main effects” for the ith block, which are assumed to be spatially

dependent in this analysis; νj = (ν1j, ν2j)
′
is a vector of purely temporal “main effects”

for year j; and δij = (δ1ij, δ2ij)
′

denotes a vector of space-time interactions, with

δi1 ≡ 0 for identifiability. Thus, we partition the spatial-temporal effects into three

parts: a purely spatial component, represented by φi; a purely temporal component,

represented by νj; and a residual interaction term, δij. Together, these parameters

capture subtle, unobserved block-group effects over time.

As a comparison, we also considered a static model where the spatial random



56

effects are constant in time without space-time interaction (δij = (δ1ij, δ2ij)
′ ≡ 0 ),

such that,

g(πijk) = x
′

ijkα+ f1(zijk) + φ1i + ν1j

ln(µijk) = x
′

ijkβ + f2(zijk) + φ2i + ν2j.

4.2.4 Choice of Base Distribution

To accurately capture the dispersion of the positive counts, we consider three choices

for the base distribution: the Poisson, negative binomial, and generalized Poisson

distribution. The spatial-temporal Poisson hurdle model is expressed as

Pr(Yijk = yijk|φi,νj, δij) = (1− πijk)1(yijk=0) +
πijkλ

yijk
ijk e

−λijk

yijk!(1− e−λijk)
1(yijk>0),

where λijk is the conditional mean of the Poisson base distribution, and λijk and

πijk are modeled as in (4.2). The Poisson distribution implies equivalence of the

conditional mean and variance. In many applications, this assumption is restrictive

and can result in poor model fit.

An alternative is to select a negative binomial base distribution, giving rise to the

spatial-temporal negative binomial hurdle model :

Pr(Yijk = yijk|φi,νj, δij) = (1− πijk)1(yijk=0) +
πijk

1−( α
µijk+α

)α
Γ(yijk+α)

Γ(α)yijk!

×
(

µijk
µijk+α

)yijk (
α

µijk+α

)α
1(yijk>0), α > 0,

where µijk is the conditional mean of the negative binomial base distribution, α is a

dispersion parameter, πijk and µijk are modeled as in (4.2). The negative binomial

base distribution is appealing if there is evidence of overdispersion relative to the

Poisson, i.e., a variance exceeding the mean. In particular, if X ∼ NegBin(µ, α),
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then E(X) = µ and V (X) = µ(1 + µ/α), hence µ/α is a measure of overdispersion.

As α→∞, the negative binomial converges to a Poisson distribution with mean and

variance equal to µ. The added flexibility of the negative binomial in accommodating

heterogeneity can yield improved model fit for highly dispersed count data.

Lastly, we consider the spatial-temporal generalized Poisson hurdle model :

Pr(Yijk = yijk|φi,νj, δij) = (1− πijk)1(yijk=0) +
πijk

1−exp(−
µijk

1+αµijk
)

(
µijk

1+αµijk

)yijk
×
(

1+αyijk
yijk!

)yijk−1

exp
{
−µijk(1+αyijk)

1+αµijk

}
1(yijk>0), α > 0,

for yijk = 0, 1, · · · , C(α) [Ismail and Jemain, 2007, Fuentes et al., 2006]. Here,

µijk denotes the conditional mean of the generalized Poisson distribution and α ∈

(−1/ymax,∞) is the dispersion parameter, where ymax is the maximum observed re-

sponse; C(α) = x−1/αy for α < 0 and C(α) = ∞ otherwise, where xy denotes

the floor function; and πijk and µijk are modeled as in (4.2). As in the nega-

tive binomial case, α functions as a heterogeneity parameter accommodating de-

partures from equidispersion. In particular, if X ∼ GPois(µ, α), then E(X) = µ and

V (X) = µ(1+αµ)2. When α = 0, the generalized Poisson reduces to the Poisson dis-

tribution; when α > 0, V (X) > E(X) and there is overdispersion; and when α < 0,

V (X) < E(X) and there is underdispersion. Thus, unlike the negative binomial, the

generalized Poisson allows for underdispersion. Moreover, while both distributions

accommodate overdispersion, the generalized Poisson has a heavier tail compared to

a negative binomial with the same first two moments, and is therefore well-suited for

highly skewed data such as ours[Joe and Zhu, 2005].

4.2.5 Computation Details

Autoregressive priors are subsequently used to provide spatial-temporal smoothing

and “sharing” of information across neighboring block groups and adjacent years.
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Previous work by Neelon et al. [2013] shown the probability of ED use was associ-

ated with the expected number of visits given use (i.e., the model components were

correlated), and explicitly modeling this between-component correlation improved

inferences. To accommodate this association in the current study, and to provide ad-

equate spatial and temporal smoothing, we assume bivariate intrinsic CAR (biCAR)

priors for the spatial random effects φi = (φ1j, φ2j)
′

[Mardia, 1988]. Please see the

previous chapter for the biCAR prior specification.

For the temporal main effects, we consider models with fixed annual effects; we

assign independent N(0, 100) priors to ν1j and ν2j(j = 2, · · · 5), with ν11 and ν21, set

to 0 in correspondence with the reference year 2005.

Since previous studies have suggested a nonlinear effect for patient age[Niska et al.,

2010], we modeled age using cubic B-splines with interior knots at the first, second,

and third quartiles of the age distribution (20, 38 and 55 years, respectively).

The models also included patient race, gender, age, and insurance, and block-

group median income as predictors. We assign improper priors to the fixed-effect

intercepts, and diffuse normal priors to the remaining fixed effects and spline coeffi-

cients, inverse-Wishart (IW) priors to covariance matrices, and a U(0, 1) prior to the

temporal autoregressive dependency parameter, ρ. For the negative binomial hurdle

model, we assign a Gamma prior gamma(0.01, 0.01) to α, and for the generalized

Poisson hurdle model, we assume α ∼ uniform(−1/ymax, M) for a suitably large

M > 0 that ensures α is bounded away from the lower limit, where in our study,

ymax = 91 and M was set to be 10.

Posterior computation proceeds via Markov chain Monte Carlo (MCMC), which

can be implemented easily within WinBUGS. However, since WinBUGS does not

have a pre-designated function for truncated count distributions, we apply the “zeros

trick” to explicitly define the hurdle likelihood [Spiegelhalter et al., 2007]. The BICAR

prior can be specified with the mv.car function, and the remaining MCMC steps are
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readily coded using standard WinBUGS syntax. The WinBUGS codes for some

spatio-temporal hurdle models for DSR analyses are provided in the Appendix.

We monitor MCMC convergence using trace plots and Geweke’s z-test, which

assesses the distributional similarity of disjoint portions of the sampler. For model

comparison, we keep using the deviance information criterion (DIC) for model com-

parison purpose as proposed by Spiegelhalter et al. [2002] in previous chapters.

To further evaluate model fit, we implemented a series of posterior predictive

assessments, whereby the observed data were compared to data replicated from the

posterior predictive distribution. If the model fits well, the replicated data should

resemble the observed data. To quantify the degree of similarity, one typically chooses

a “discrepancy statistic”, such as a sample moment or quantile, that captures some

important aspect of the data. For the DSR analysis, we adopt three discrepancy

measures: the sample proportion of zeros and the sample mean and variance among

the positive observations. For each measure, we compute the posterior predictive

mean and 95% credible interval. A 95% credible interval that includes the observed

sample statistic suggests adequate model fit. In addition to the above measures, for

the final model we also produce a histogram comparing the observed and posterior-

predictive counts of ED visits.

The models were fit in WinBUGS 1.4.3 and called into R using the function

R2WinBUGS. We ran the sampler for 15,000 iterations, discarding the first 5,000 as

burn-in. Trace plots and Geweke diagnostics indicated rapid convergence and efficient

mixing of the chains.

4.3 Results

Summary statistics of patients and geographic block were provided in Table 4.1 for the

five study years period. 59% of the patients were female and 46% and 42% of patients
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are non-Hispanic white and non-Hispanic black, respectively. The median age was

38 years. About 60% had private medical insurance, 11% as part of a University-

sponsored plan. The median household income was just over $45K, approximately

$5000 below the national average [DeNavas-Walt et al., 2013]. The median block

group sample size, combined over five years, was 776.

Table 4.2 presents the model comparison results across models. The negative bi-

nomial and generalized Poisson hurdle models substantially outperformed the Poisson

models with respect to DIC. Overall, the static generalized Poisson model with fixed

map had the lowest DIC value (210983). In terms of posterior predictions, all mod-

els accurately reproduced the observed proportion of zeros and the conditional mean

among the positive values, while none of the models did especially well in predicting

the observed conditional variance. The ordinary Poisson models showed the poorest

fit, confirming overdispersion exists and need to be accounted for in modeling these

data.

Table 4.3 presents the posterior means and 95% credible intervals for the three

hurdle models with fixed annual effects. The effect estimates and intervals for the

binary component were similar across models, which is expected since this component

has the same structure in all three models. Male gender, non-Hispanic black and

Hispanic race/ethnicity, and non-private insurance, including Medicaid, Medicare and

Self-paid, were associated with increased probability of ED use, while patients of Asian

race and Duke insurance were associated with decreased probability of use. Patients’

median household income had minimal impact on ED use.

In contrast to the binary component, the parameter estimates in the count compo-

nent varied substantially across the models (Table 4.4), indicating that the choice of

base distribution has a significant impact on estimating covariate effects . For exam-

ple, non-Hispanic black race showed a much stronger effect for the negative binomial

and generalized Poisson models than for the ordinary Poisson models. A similar,
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although less transparent, phenomenon occurred for the federal and self-insurance

categories: while all models showed a positive effect, the effect was most pronounced

in the two overdispersed models. Interestingly, for all models, the estimates for male

gender and Hispanic race reversed direction between the binary and count compo-

nents. Hispanics, for example, were more likely than non-Hispanic whites to visit the

ED at least once; however, among ED users, they tended to make fewer repeat visits

than whites. This points to a potential difference between the way Hispanics and

non-Hispanic whites use ED services. In particular, although modest ED use seems

to be more ubiquitous among Hispanics, they are less inclined than whites to use EDs

repeatedly. And finally, there was moderate correlation between the components for

the spatial main effects (ρφ = 0.46), suggesting a modest benefit to modeling the

between-component association.

Table 4.5 also shows that the binary components in the three hurdle models have

compatible spatial covariance (Sigma.phi[1,1]), while the spatial covariance for the

count component differs from each other quite significantly. The generalized Poisson

hurdle model has the biggest spatial covariance of 0.39, compared to the spatial

covariance of approximate 0.30 for the Poisson hurdle and Negative Binomial models.

The covariance for dynamic CAR covariance is also similar across the three models at

0.03 for the binary components for the three models. The dynamic CAR covariance

for the count component also differs from each other dramatically, with the Poisson

hurdle model having the hightest at 0.16 and the negative binomial having the lowest

at 0.06.

Figure 4.1 displays the predicted spatial-temporal effects, η1 and η2 from the

generalized hurdle model, where η1ij = ν1j + φ1i + δ1ij and η2ij = ν2j + φ2i + δ2ij.

The highest ED activity occurred among the central block groups and the lowest

among the block groups in the southwest corner of the county. Across years, the most

significant change took place between 2007 and 2008, with several central block groups
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transitioning into the highest usage category (represented by the darkest shade) and

the southwestern block groups transitioning into the lowest category (represented by

the lightest shade). The spatial pattern stabilized following 2008 with only minor

fluctuations in select block groups.

4.4 Discussion

Our study has introduced a series of two-part hurdle models for the spatial-temporal

analysis of zero-inflated count data. The proposed models have several attractive

features: spatial and temporal smoothing was incorporated in the modeling in order

to improve small-area estimation; they also incorporate individual and regional-level

information to explain spatial-temporal trends; and the generalized Poisson hurdle

model and negative binomial hurdle models can address potential over- or underdis-

persion in the counts. In addition, the models can be conveniently implemented in

freely available packages such as WinBUGS.

In our other paper, we also presented a spatial-temporal dynamic models, in which

for the space-time interactions, we assume a first-order dynamic biCAR prior[Gelfand

et al., 2005], whereby δij = ρδi(j−1) + ψij as in equation (4.2)and ψij is a biCAR.

For identifiability, we set ψi1 = 0 ∀i. Unlike with the annual main effects, temporal

smoothing is needed here to improve small-area estimation, particularly when one

considers that the minimum block group sample size in a given year is 5, occurring in

2011. Along with the dynamic space-time interaction, we implemented two temporal

effects as introduced in 4.2.5: independent N(0, 100) priors to ν, the same method

as in this paper. For the purely time random effects, we experimented with assigning

a biCAR prior with IW (3, I2) prior for the conditional covariance Σν to νj(j =

1, 2, · · · 5) analogous to the prior for the spatial effects. This choice is particularly

beneficial when the temporal units are sparse, because it allows adjacent time periods



63

to pool information to improve efficiency.

The Spatial and Dynamic CAR covariance comparisons among the three tables

tell that the covariance for the binary components are similar across the three hurdle

models, which is to our expectation. However, the difference among Spatial and

Dynamic CAR covariance for the count components are quite big. The Poisson hurdle

model has the largest the dynamic CAR covariance, the spatial-temporal random

effects (such as the map shown in the Figure 4.1) change the most across the years

in the Poisson hurdle model. As a result, the static Poisson hurdle model has a much

worse DIC compared to that of the dynamic Poisson hurdle model. On the other

hand, the generalized Poisson hurdle model with static spatio-temporal random effect

shows a small DIC difference from the dynamic generalized Poisson hurdle model. The

dynamic CAR autoregressive parameter ρ has a similar value of 0.6 across the three

dynamic models which suggested the temporal dependency is moderate in all three

models.

In our application, models accommodating overdispersion, and in particular the

generalized Poisson hurdle model, substantially outperformed the ordinary Poisson

hurdle model. Given that the negative binomial and generalized Poisson base dis-

tributions include the Poisson as either a limiting distribution (in the case of the

negative binomial) or as a specific submodel (in the case of the generalized Poisson),

their performance should be comparable to the Poisson for equidispersed data, while

providing a distinct advantage for overdispersed data.

Since both distributions arise as a mixture of ordinary Poisson[Joe and Zhu, 2005],

they reduce to the Poisson in the case of a degenerate mixture. In the overdispersed

(or non-degenerate) setting, the choice between the negative binomial and generalized

Poisson base distributions will depend on the structure of the data, with the gener-

alized Poisson typically providing better fit for highly skewed data [Joe and Zhu,

2005].
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Our analysis of the DSR data also yielded several important public health findings.

Non-private insurance, male gender, and non-Hispanic black race were associated with

increased ED use. Compared to non-Hispanic whites, Hispanics were more likely to

use the ED at least once, but less inclined to make repeat visits. In all years, block

groups in the center of county had the highest rates of ED use while those in the

southwest had the lowest. The spatial pattern changed most noticeably between

2007 to 2008 before stabilizing in the following years.

In general, the models developed here are useful for the spatial-temporal analysis

of overdispersed count data. The proposed Bayesian approach provides a practical

framework for fitting such models.
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Table 4.1: Characteristics of DSR Patients (N = 122273) and Census block groups
(n = 129), 2007-2011

Variable n %
Male 49719 41
Race

Non-Hispanic White 56,734 46
Non-Hispanic Black 51,528 42
Hispanic 7,523 6
Asian 3,165 3
Other 3,323 3

Insurance
Duke Insurance 13,932 11
Other Private Insurance 58,918 48
Medicaid 17,761 15
Medicare 19,493 16
Self 12,169 10

Median Range
Age (Years) 38 (1, 103)
Median Household Income ($) 45,330 (5,980, 134,000)
Block Group Sample Size 776 (39, 3,212)
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Chapter 5

Summary

5.1 Conclusions

We developed a series of Bayesian hierarchical spatial and spatial-temporal models.

Models were developed with increasing complexity, from simple static spatial random

effects to dynamic spatial-temporal random effects, from Poisson response models

to two component mixture models (zero-inflated and hurdle), from independent two

component mixture models to introducing correlation between the two components.

Model comparison results have shown that Colorado cancer surveillance data have

little space-time interaction in terms of spatial and temporal random effects. Models

with simple static spatial random effects fits the data better than models considering

the time-space interaction. However, the number of zero reported counts in those data

impose lack-of-fit due to overdispersion if fitting the Poisson model. The generalized

Poisson models and the negative binomial models were shown to be better alternatives

to the Poisson models by providing better fit to both the cancer data and the Duke

Emergency Department visit data.
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5.2 Future Work

In this dissertation, we have evaluated modeling the correlation among the compo-

nents of mixture models (zero-inflated models and hurdle models), as well as corre-

lation among spatial and temporal random effects. One important future direction

is to consider dependence among multivariate responses[Tzala and Best, 2008], such

as modeling areal count data of multiple cancer types[Downing et al., 2008], or of

multiple age groups simultaneously. Gamerman and Moreira [2004] discussed how

multivariate regression models can be accomplished in Bayesian framework, while

accommodating temporal and spatial variations in the covariate effects. Another

advantage of building multivariate response model is the convenience in testing de-

pendence between outcome responses.

For instance, if we assume there are q outcomes, and p independent variables,

then we have the structure of the form:

Ay = Γx + φφφ and φφφ ∼ N (0, ∆∆∆) , (5.1)

with y = (y1, . . . , yq)
′
, and x = (x1, . . . , xp)

′
. Furthermore, A is a q × q matrix with

linear relations between the outcomes, which provides a link between the q univariate

regressions. Γ is a q × p matrix of regression coefficients and ∆∆∆ is a diagonal matrix

with entries δ2
1, . . . , δ

2
q .

If A is full rank, the solution of y above is obtained:

y = A−1Γx + A−1φφφ (5.2)

= Bx + εεε; (5.3)

with B = A−1Γ and εεε ∼ N(0,Σ).

To incorporate spatial and temporal dependence, Gamerman and Moreira [2004]
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have shown that 5.2 can be rewritten as:

y = Wy + Bx + µµµ, (5.4)

µµµ = Wµµµ+ e, (5.5)

where e ∼ N(0, δ2I) and matrix W are defined the same as in section (1.2)

For modeling areal count data, such as cancer data or infectious disease counts

from small areas, we show that Bayesian multivariate models can improve inference

and also the short-term prediction performance when the correlation structure is

correctly addressed.

Usually, data from the National Surveillance system, such as US cancer surveil-

lance, are massive and different subtypes of diseases have diverse gender, racial, and

age group cancer profiles. Comprehensive national analysis cannot be conducted for

evaluating different Bayesian methods in the pilot case studies. Future work can ex-

tend the modeling strategy from regional data to national data. Despite the computa-

tional effort of Bayesian inference and model complexity, recent advances in Bayesian

computation, such as the integrated nested Laplace approximations (INLA) [Rue and

Martino, 2007, Schmid and Held, 2004], may further encourage the use of Bayesian

space-time model for such large datasets. We believe the same methods can be con-

veniently extended and applied to model data in a large scale on a national level.
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Appendix A

Metropolis-Hastings algorithm for

estimating the dispersion

parameter in the generalized

Poisson model.

Let

y = log

(
α− l
u− α

)
such that Y could take a normal prior with parameter space covering(−∞, +∞) .

Since α↔ y is one-to-one monotonic transformation, we can derive the pdf of Y as:

FY (y) = Pr

[
log

(
X − l
u−X

)
≤ y

]
= Pr

[
X ≤ l + uey

1 + ey

]
by taking derivative, we have

fY (y) = fX

(
l + uey

1 + ey

)
d

dy

(
l + uey

1 + ey

)
where since X follows a uniform distribution, fX(.) = 1

u−l . So we have
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fY (y) =
1

u− l
× ey (u− l)

(1 + ey)2 =
ey

(1 + ey)2

To provide MCMC updates by componentwise Metropolis-Hastings (M-H) algo-

rithm, we generate new values of α
′

through target distribution of Y
′ ∼ N(y, σ2).

fY (y) will be factored to provide the MCMC acceptance ratio calculation.
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