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Abstract 

The Neural Coding of Loss 

By Andrew M.  Brooks 

 

After decades of research, we know that the mesolimbic dopamine pathway is heavily 

involved in nearly all aspects of financial decision-making.  Its role has been defined by 

its involvement in reward-related learning as it relates to monetary gains.  There is little 

evidence implicating it in aversive or loss-related learning.  This dissertation was 

designed to advance our understanding of this systems involvement in aversive and loss 

related decision making.  To do this, we use functional magnetic resonance imaging 

while human participants engage in experimental economic tasks that deal with financial 

decisions over gains and losses.  We show that, 1) during decision-making, the ventral 

striatum tracks the expected values of gambles that are entirely aversive, 2) heterogeneity 

in loss-holding behavior in the stock market can be explained via activity within the 

ventral striatum, and 3) the ventral striatal processes earnings announcements which lead 

to financial loss, and are correlated with subsequent changes in stock price.  We find that 

the BOLD response in the ventral striatum to loss outcomes in all three of our 

experiments fit with the prediction error hypothesis of dopamine activity.  Finally, we 

discuss future research in financial loss, and its implications for sub-optimal behavior, 

such as gambling addiction. 
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Chapter 1 

Introduction 

Goals of the Research Project 

If any single conclusion can be drawn from the past decades of research on the 

neurobiology of human decision-making, it is that the mesolimbic dopamine system is 

the hub of reward-related learning.  Consisting of the ventral tegmental area, the ventral 

striatum, and regions of the pre-frontal cortex, the mesolimbic dopamine system has been 

shown, first by electrophysiological experiments in the 1950s (Olds and Milner, 1954), 

and more recently by human neuroimaging (Breiter et al., 1997; Samanez-Larkin et al., 

2008), to be intricately involved in signaling reward-related cues that reinforce behavior.   

Neuroeconomics is a relatively recent field dedicated to studying human decision using 

neuroscience tools but with the rigor and incentives of economic paradigms.  Research in 

neuroeconomics has found that when decisions are made over money, structures in the 

mesolimbic dopamine system encodes various aspects of decision, including value.   

The majority of studies in neuroeconomics have focused on how the human brain 

encodes monetary gains, but only a small portion of the neuroeconomic literature has 

come to any consensus on how the brain encodes monetary loss.  This is likely due to a 

multitude of reasons, not the least of which is the difficulty of having participants 

experience true monetary loss in an experimental paradigm.  This is because it is only 

ethical to make sure that participants receive compensation for their time.  Even with the 

experimental research that has been done on monetary loss, there is still no conclusion 

yet on whether the mesolimbic dopamine system encodes both sides of the monetary 

coin.  Experiments both supporting (Delgado et al., 2003; Seymour et al., 2007; Tom et 
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al., 2007) and refuting (Yacubian et al., 2006; Levin et al., 2012) this single-system idea  

exist in the literature.  Nor is there any conclusive evidence to suggest alternative loss-

value encoding structures, though candidate regions do exist.  My dissertation tries to 

advance our understanding of how the brain encodes financial loss, using functional 

magnetic resonance imaging (fMRI).  Furthermore, my research aims to use current 

theories on reinforcement learning to help explain both individual investor and market 

behavior as it relates to loss.  The primary goals assigned to each chapter are as follows: 

 

1. To explore whether economic paradigms used to study monetary gains and 

losses elicit the same neural responses when all of the outcomes are 

unpleasant. 

 

2. To help explain loss-holding behavior in the stock market by using fMRI to 

distinguish between several proposed theories of the behavior. 

 

3. To test whether the ventral striatal processes company’s earnings 

announcements when they miss or beat expectations, and whether these 

responses are correlated with market return. 

Background 

The Mesolimbic Dopamine System 

 Through decades of research, the mesolimbic dopamine system has been 

identified as the primary reward-related pathway.  More recent research has expanded its 

role to a more general valuation system that works across both primary and secondary 
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rewards (Zink, 2005; Kable and Glimcher, 2007; Haber and Knutson, 2010).  This system 

and its structures are the focus of my dissertation research, and thus an understanding of 

the system’s neuroanatomy is important before proceeding further.  Figure 1-1 outlines 

the three most prominent structures of the mesolimbic dopamine system as they relate to 

this dissertation.  As the name implies, the primary neurotransmitter of the mesolimbic 

dopamine system is dopamine.  The synthesis of dopamine occurs in two midbrain 

regions, the ventral tegmental area (VTA) and the substantia nigra (SN).  These regions 

contain tyrosine hydroxylase-positive neurons, a necessary enzyme for the synthesis of 

dopamine from its precursors.  Efferent projections from the VTA and SN terminate in 

the striatum, both dorsally and ventrally.  In the rat, VTA projections end primarily in the 

ventral striatum, which includes the nucleus accumbens (NAcc) and olfactory tubercule 

(Moore and Bloom, 1978).  SN neurons on the other hand terminate primarily in the 

dorsal striatum (Smith and Kieval, 2000).  The NAcc lies within the ventral part of the 

striatum, and thus the term ‘ventral striatum’ is often used interchangeably with NAcc, 

despite the NAcc only being a subset of the ventral striatum.  The VTA indirectly 

connects to the prefrontal cortices via cholinergic neurons in the basal forebrain (Gray, 

1999). 

 The ventral striatum lies in a position well suited for integration of sensory input 

and ultimately calculation of value.  Besides the VTA, the ventral striatum also receives 

excitatory afferents from nearly all the prefrontal association cortices, the basolateral 

amygdala, and the hippocampus via mostly glutamatergic neurons.  Thus it is in a prime 

location for integration of past experience, current sensory input, and higher-order 

executive output, all of which are requirements for the computation of value.  Other areas 
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of the striatum receive input mainly from motor cortices and the thalamus.  The output 

targets of the ventral striatum include the globus palladus, hypothalamus, and SN, which 

projects back to the thalamus (Nicola et al., 2000).  The ventral striatum is thus in a 

position to influence motor action via globus palladus and thalamic projections. 

Within the ventral striatum, the majority of the neurons are inhibitory GABAergic 

medium spiny neurons.  Afferents from the VTA terminate primarily on the neck of the 

dendrites of spiny neurons in the ventral striatum, while glutamatergic input from the 

cortical regions, hippocampus, and amygdala, terminate on the head of the same 

dendrites.  The close proximity of these two inputs allows dopamine to serve as a 

neuromodulator of the glutamatergic input (Pisani et al., 2001).   

Dopamine’s modulatory role in the ventral striatum is quite complex.  Its 

influence on glutamatergic input depends on which receptor subtype it is bound to (D1-

like vs.  D2-like dopamine receptors), which itself is governed by both the concentration 

of the receptors and of dopamine.  Dopamine neuron firing can also take on two different 

temporal states – either tonic firing or phasic firing.  Tonic firing of dopamine neurons 

determines the baseline steady-state concentrations of dopamine within the synaptic cleft 

and extracellular space.  Phasic dopamine firing on the other hand occurs in bursts and 

release much higher concentrations of dopamine than tonic firing.  Reward prediction 

error, a behaviorally-relevant learning signal discussed throughout this dissertation, is 

thought to be signaled via phasic dopamine firing (West et al., 2003; Glimcher, 2011). 

Reward Prediction Error 

 Though we know that the mesolimbic dopamine pathway is involved in all types 

of reward behavior; the application of reinforcement learning theories from artificial 
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intelligence has helped shed light on exactly what dopamine might be signaling.  The 

current consensus is that dopamine signals reward prediction error (RPE), and thus far the 

model best able to explain empirical findings from electrophysiological and fMRI 

experiments, is the temporal-difference model of learning.  RPE in its simplest form is 

the difference between what reward is expected, and what reward is actually received.  

Unexpected rewards elicit positive RPEs, while fully-predicted rewards elicit no RPE.  

The first manifestation of RPE was in a mathematical formulation by Bush and Mosteller 

(1953).  This formula was based on Pavlov’s dogs, who learned to associate a bell that 

preceded feeding with food, evidenced through the dog’s salivation at the bell.  They 

formulated the following equation to describe the bell-food association: 

_ 	 _ 	 _ 	 _  

What the equation describes is the probability that a dog will salivate to a bell on the next 

trial (Anext_trial) based upon the probability of the last trial (Alast_trial), plus a correction 

term.  This correction is the difference between the reward received in the current trial 

(Rcurrent_trial) and what was expected in the previous trial (Alast_trial), which forms the basis 

of RPE.  The rate at which new information from the correction term updates 

expectations is represented by α, which ranges from 0 to 1.  Over multiple trials, Anext_trial 

becomes a weighted sum of previous rewards, with the weights being determined by α.  

Thus if α = 0.5, the probability of salivating rests 50% with Rcurrent_trial, 25% with Rt-1, 

12.5% with Rt-2, and so on.  The equation does a sufficient job of modeling the most 

basic of classical conditioning. 

 All subsequent models of reinforcement learning that are prominent in helping 

explain dopamine activity build upon Bush and Mosteller’s equation, which did an 



6 
 

 

accurate job at representing basic associations between a single stimulus and subsequent 

reward.  Rescorla and Wagner (1972) built on this model by allowing multiple 

conditioned stimuli to predict a single reward, each vying for association with the reward.  

The Rescorla-Wagner model of reinforcement learning is arguably the most well-known 

of the reinforcement learning theories (Wynne and Staddon, 1998; Glimcher, 2011).  

However, both the Bush and Mosteller and Rescorla-Wagner models are limited in their 

scope – they allow an agent to learn the association between a stimulus and reward based 

on past rewards.  Modeling a more complex decision-maker requires the ability to update 

values and actions in real-time, and not only by trials.  Furthermore, complex decisions 

require the association not just of stimuli to reward, but of stimuli to other stimuli which 

predict reward.   

 Sutton and Bartow (1998) created the temporal difference (TD) model of learning 

to account for the shortcomings of previous models.  In the TD model of learning, the 

ultimate goal of an agent is to build the most accurate prediction of future rewards.  The 

RPE in a TD model is the difference between what rewards one expects to receive on into 

the future and what rewards/signals they currently are consuming.  Also, unlike the Bush 

and Mosteller (1953) or Rescorla-Wagner (1972) models, the TD model updates 

expectations not on a trial-wise basis but at discrete points in time.  To illustrate this, take 

the expectation of future reward an agent might have at time point t.  In the TD model, 

this is given by the following equation: 

1 			 	 	 	 ⋯  
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where the expectation of future reward at time t is given by Vt.  Reward or average 

reward at a given time point is given by r, and is discounted into the future by a factor of 

 (because humans discount rewards received in the future).   

Clearly there is no way to predict what future rewards will be received with 

complete accuracy, and thus an estimation of Vt must be made.  Because of the recursive 

nature of the value function, future expectations of reward can be estimated by adjusting 

the current expectation based on new information about future reward.  This estimated 

value of Vt, denoted ,	is given by: 

2 			 	 	  

3 			 	 	 	  

In equation (2), α is the rate of learning (similar to α in the Bush and Mosteller model), 

and δt is the RPE term.  Unlike the Bush and Mosteller model though, the current 

prediction is updated not only by the reward received at the current state in time (rt), but 

also by the difference between the current expectation (  and the previous 

expectation ( . One can see that by substituting equation (3) in for RPE in equation (2) 

and ignoring the learning rate, yields the following equation which is an estimate of Vt 

given in equation (1): 

4 			 	  

The most important aspect of the TD model as it relates to dopamine signaling, is 

that the RPE back-propagates to the first piece of information which predicts future 

reward.  That is, δ is 0 when expectations are fully met.  Schultz et al.  (1993; 1997) 

showed that during a classical conditioning task in monkeys, before training, midbrain 

dopamine neurons fired to a reward received after an unconditioned cue.  After learning 
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the association between the cue and the reward, midbrain dopamine neurons would fire 

exclusively to the cue, consistent with a TD-model RPE.  A large literature now supports 

the role of dopamine in signaling RPE in humans (Pagnoni et al., 2002; O’Doherty et al., 

2004), monkeys (Mirenowicz and Schultz, 1996), honey bees (Hellstern et al., 1998), and 

rats (Roesch et al., 2007).  The ventral striatum has a very dense innervation of 

dopaminergic afferents.  Thus, the interpretation of signals gleaned from the ventral 

striatum during human decision making can best be interpreted through the view of RPE 

and related reinforcement learning theory models. 

Functional Magnetic Resonance Imaging 

MRI Physics 

 Much of the contemporary decision making research in the field of neuroscience 

utilizes functional magnetic resonance imaging (fMRI).  Because fMRI is a non-invasive 

and relatively safe method that allows the indirect measurement of neural activity in 

awake and behaving human participants, it is the primary method of this dissertation 

research.  Most of the literature supporting mesolimbic structures in signaling RPE and 

other aspects of reinforcement learning models in humans mentioned above have done so 

using fMRI.  As fMRI is a relatively complex technique in regards to both the physics 

behind it, and the analysis of the data, a brief overview is presented below.   

As the name implies, functional magnetic resonance imaging relies on a property 

of protons known as nuclear magnetic resonance.  Protons are abundant in the human 

body.  When subjected to a strong magnetic field, proton nuclei will precess parallel to 

the magnetic field, a low-energy state.  If these protons are then subjected to energy at 

their Larmor frequency (the frequency at which protons precess around the longitudinal 
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axis), they will absorb the energy and ‘flip’ into a high-energy state that is anti-parallel to 

the magnetic field; this is known as excitation.  After the Larmor frequency energy is no 

longer present, these nuclei will return to the low-energy parallel state, emitting a photon 

equivalent to the difference between the low-energy and high-energy state.  This release 

of energy upon relaxation is what constitutes the MR signal that MRI scanners measure. 

The MR signal changes over time, based on 1) longitudinal recovery (T1*), and 

2) transverse magnetization decay (T2).  Longitudinal relaxation occurs after a proton 

absorbs Larmor frequency energy, and begins to relax back into the low-energy state.  

The rate at which the proton relaxes is the T1-recovery time constant, usually a few 

hundred milliseconds to a few seconds.  Transverse magnetization decay refers to the fact 

that initially, all protons subjected to Larmor frequency energy will be in-phase in the 

transverse plane, but over time, due to spin-spin interactions with surrounding nuclei, 

they fall out-of-phase with each other, resulting in decay of the MR signal.  The time it 

takes for this to happen is governed by the T2-time constant, which ranges from 10ms – 

200ms depending on the tissue type.  Other factors, such as magnetic field 

inhomogeneities, also affect the time it takes for excited nuclei to go out of phase.  Both 

T1 and T2 rates differ based on tissue type, thus providing contrast.  T2* rates are what 

provide the signal for functional MRI, as the rate of T2* depends not just on interactions 

with surrounding nuclei, but also on magnetic inhomogeneities – including those created 

from the flow of oxygenated blood. 

 

Cerebral Blood Flow and the BOLD Response 
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 The flow of oxygenated blood to a brain region, and the resulting change in T2* 

effects provide the contrast for fMRI.  Oxygenated blood is diamagnetic, which means it 

has no unpaired electrons and no magnetic moment.  Deoxygenated blood is 

paramagnetic, as it has unpaired electrons and a magnetic moment.  Because it is 

paramagnetic, it contributes to a faster transverse decay (a shorter T2* time).  Thus more 

MR signal will be picked up in regions with higher amounts of oxygenated blood 

(Ogawa, 1990).  This forms the basis of the blood-oxygenation-level-dependent response 

(BOLD) – the MR signal captured in a brain region where activity has increased.  Taking 

a single snapshot of the brain from T2*-weighted images would not provide any 

information regarding cognitive processes that occur over time.  fMRI is able to capture 

activity related to cognitive processes by capturing T2*-weighted MR signal over time.  

A typical fMRI experiment will capture the BOLD response over time with a temporal 

resolution of around 2 seconds, though this time varies across experiments (Huettel et al., 

2009). 

Using the BOLD response as an indirect measure of neuronal activity relies on the 

observation that as synaptic activity increases in a region of the brain, cerebral blood flow 

(CBF) also increases to that region.  Neurons and astrocytes require ATP for their energy.  

These cells utilize pathways known as cellular respiration to replenish ATP stores, 

including glycolysis, aerobic respiration, and anaerobic respiration.  The cellular 

respiration process breaks down glucose using oxygen (if present), and the downstream 

result is ATP.  When a neuron or astrocyte requires more glucose or oxygen for ATP 

synthesis, local vasoactive substances help dilate surrounding blooding vessels resulting 

in higher CBF to that region.  Still-undetermined regional messengers tasked with 
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signaling the need for more CBF are also released.  One of these candidates is nitric 

oxide, which can act as both a local and distant vasodilator. 

It is important to note that an increase in CBF does not necessarily mean neurons 

in that region are increasing in their action potential frequency.  Work by Logothetis et al.  

(2001; 2002) has demonstrated that the BOLD response is mainly correlated with local 

field potentials, as opposed to action potentials from neurons in that region.  Local field 

potentials are driven by all dendritic synaptic activity (excitatory or inhibitory), and thus 

the BOLD response is likely to reflect not only synaptic input into a region, but also 

intra-regional processing. 

 

Data Preprocessing 

 Before fMRI data can be analyzed, it must go through a series of processing steps.  

These steps help with two aspects of the data – they help improve the signal-to-noise 

ratio (SNR), and help prepare data for analysis.  The first step that is typically done is 

slice-timing correction.  Because each slice in a 3D volume of the brain is captured at 

slightly different points in time, and because adjacent slices are often not captured in 

sequential order (even slices are often captured first, odds second, or visa-versa), slice 

timing correction is often applied so that each slice’s data can be ‘assumed’ to be the 

same temporally.  This is done using interpolation, where data from previous and 

succeeding slices are used to estimate the current slices data.  To do this, a reference slice 

is given, and all other slices are interpolated with that slice. 

 The second step of standard data pre-processing is motion correction.  Head 

motion is highly detrimental to fMRI data.  An important assumption for data analysis is 
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that each voxel remains in the same spatial position over time.  Movement violates this 

assumption, and can result in spurious findings.  Prevention of head motion using foam 

blocks and participant training is often done.  To some degree, motion can be corrected 

for after data acquisition by using algorithms which find the best way to translate and 

rotate volumes to match a reference volume.  These algorithms utilize cost functions, 

which are measures of how similar two images are from one another.  The goal of motion 

correction is to minimize the cost function between the reference volume and other 

volumes in the data set.  Most neuroimaging tools adhere to this type of motion 

correction, however the types of cost functions that are used differ based on the 

neuroimaging packages used.  Another step that can be taken to account for mild to 

moderate movement, is to include motion correction parameters, which describe the 

degree to which each volume has to be moved to minimize the cost function.  This helps 

absorb variance in the data attributed to movement, though it can never fully account for 

all motion related artifact (Johnstone et al., 2006). 

 For group analyses, a third step in fMRI data preprocessing is spatial 

normalization.  As the adult human brain can differ by up to 42% (Allen et al., 2002), 

each individual’s fMRI data must be transformed into the same coordinate system in 

order for group-level statistics to be accurate.  Furthermore, transformation to templates 

allows for cross-study comparison of brain activation.  The Montreal Neurological 

Institute template or Talairach templates are the most commonly used templates 

(Talairach and Tournoux, 1988; Evans et al., 1993).  Similar to motion correction, spatial 

normalization procedures attempt to find the best transformation that minimizes the 

differences between two images, based on landmarks that are manually labeled or on 
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voxel intensities.  Spatial normalization can be done in a linear fashion (12-parameter 

affine transformation), non-linear (which allows warping), or both (Huettel et al., 2009). 

 Finally, fMRI data typically undergoes spatial smoothing to help increase the 

probability of signal detection.  Spatial smoothing works to improve the signal-to-noise 

ratio if the size of the kernel is similar to the size of the signal of interest, a principle 

known as matched filters (Friman et al., 2003).  Spatial smoothing is accomplished by 

convolving the data with a Gaussian function, such that neighboring data points are 

averaged.  The distance and weights with which neighbors are averaged are determined 

by the kernel size, usually given in terms of full width at half maximum (FWHM).  

FWHM describes the width of the Gaussian kernel at half its maximum height.  A larger 

FWHM will smooth the data over more voxels, whereas a smaller FWHM will limit the 

smoothing to a smaller region.  fMRI studies will typically employ kernel sizes of 4 -

8mm at FWHM.  Generally, the kernel size is chosen based on the size of the regions 

expected a priori to be active during the task along with the resolution of the data. 

Data Analysis 

 The most common type of fMRI statistical analysis for human cognition studies is 

the general linear model (GLM).  A GLM model takes the form: 

β 	  

Where Y is a matrix of dependent variables, X is a matrix of independent variables, β is a 

matrix of estimates of the relationship between the independent and dependent variables, 

and ε is an error term.  In terms of an fMRI task, Y is the pre-processed BOLD signal, 

and X is a design matrix where the number of columns represent events of interest (and 

their interactions) convolved with a hemodynamic response function (HRF).  A simple 
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task where a participant stares at a screen which either flashes a checkerboard (ON) or is 

blank (OFF), might model each individual voxel the following way: 

	 	 ⊗ 	 	  

The index of scans is represented by i, β0 is the baseline composed of all non-modeled 

events, and β1 is an estimate of the effect of the checkerboard on the BOLD response in 

that voxel.  The BOLD response from a single event takes on a characteristic shape, the 

HRF, which peaks between 4-6 seconds and lasts around 10 seconds, and is followed by 

a slight undershoot (Figure 1-2).  Thus the regressors which represent events in the task 

must first be convolved (⊗  with an HRF before being regressed onto the BOLD signal.  

This regression is run for each voxel in the brain and for each participant in the study 

before moving onto group-level statistics. 

 The majority of group-level statistics use random-effects analyses, where variance 

for each subject is calculated, as opposed to fixed-effects models where variance is 

estimated scan-by-scan (Friston et al., 1999).  Random-effects analyses allow for 

inferences about the population from which the sample was pulled, whereas fixed-effects 

models allow only inferences about the sample itself.  To do a random-effects analysis, 

contrast maps for each participant are created.  For example, a contrast map representing 

the effect of the checkerboard would be a 3D volume where each voxel represents β1 

from the GLM.  A random-effects analysis takes the contrast map representing β1 for 

each participant and runs a one-sample t-test on every voxel in the brain to test whether 

β1 is equal to zero or not.  All group-level analyses in this dissertation represent random-

effects models. 
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 The statistical thresholding of the group-level t-maps has been the focus of much 

research interest (Forman et al., 1995; Genovese et al., 2002; Loring et al., 2002; 

Lieberman and Cunningham, 2009).  Because a t-test is performed for each voxel in the 

brain, and there can be as many as 10,000 voxels, at a threshold of α = 0.05, 500 voxels 

can be expected to show significance due to random chance.  This summarizes the 

multiple comparisons problem, which is inherent in the analysis of any type of large data 

set, including genome-wide association studies (Moskvina and Schmidt, 2008).  

Fortunately, there are many methods to account for multiple comparisons without being 

unnecessarily strict.  A Bonferroni correction at α=0.05 would yield a voxel-wise α of 5 x 

10-6, assuming 10,000 voxels in the brain, which is unreasonably strict given the SNR of 

fMRI data.  Alternatives such as cluster-thresholding, false-discovery rate correction, 

AFNI’s AlphaSim estimation, and family-wise error rate correction through Gaussian 

random field theory all provide more reasonable ways of multiple comparisons 

correction.  All results presented in this dissertation include some method of multiple 

comparisons correction. 

Gains and Losses in the Brain 

 The bulk of the research in how the brain processes financial gains and losses 

comes from the field of neuroeconomics.  Neuroeconomics emerged in the late 1990s 

(Loewenstein et al., 2008).  Neuroeconomics merges the more rigid theory-based 

approach of economists, with psychology that focuses on the subjective experience of 

humans in their decision making, along with neuroscience that seeks to understand the 

mechanics behind our decision making process (Glimcher and Rustichini, 2004).  This 
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powerful approach allows us to discover where and how decision variables such as risk, 

expected value, losses and gains are represented in the brain. 

 Early neuroeconomic studies sought to locate where expected utility was 

represented in the brain.  Utility is a term that describes the subjective value a person 

places on something.  The term comes from expected utility theory, an economic theory 

of human choice under uncertainty (Von Neumann and Morgenstern, 1947).  Before the 

use of fMRI, utility was only observable via human choice.  That is, if a person picks one 

item over another, it is said that the chosen item confers more utility to the person than 

the non-chosen option.  However, if the brain ultimately perceives, processes, and carries 

out decisions, utility might be able to be captured using fMRI.  Thus the field of 

neuroeconomics was born. 

 An early series of studies done by Knutson et al. (2000, 2001a) captured the 

brain’s response to outcomes of differing monetary value, and presumably differing 

utility.  Participants in these studies completed what is known as the monetary incentive 

delay (MID) task.  The MID task was modeled after a reward anticipation task that 

Schultz et al.  (1997) used to demonstrate TD-model-like RPE in VTA dopamine 

neurons.  For each trial in the MID, the participant sees a cue that indicates what the 

potential outcome will be (a reward, punishment, or control trial; for Knutson et al.  

(2001a) the cue indicated the amount of potential reward).  Following a brief delay, 

participants were required to make a button press response within a brief window of time 

in order to win money or avoid loss of money from an endowed amount.  This window of 

time was adjusted for each participant, such that 60% of the time participants were 

successful.  Both dorsal and ventral (among a host of other regions) showed an increased 
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BOLD response to potential monetary reward.  In a follow-up study, the BOLD response 

scaled to the size of the potential reward – thus larger rewards evoked a larger BOLD 

response than smaller rewards. 

 A host of subsequent studies have shown that the mesolimbic structures signal 

much greater complexities of value than monetary tasks with single potential outcomes – 

most notably expected value, which combines both probability and magnitude into a 

single term.  Expected value is a fundamental concept in economics, probability theory, 

and a host of other disciplines.  It describes the weighted average that a random variable 

can take on, calculated by: 

	 	 ⋯ 	  

 where E[X] is the expectation of random variable X, and where outcome xi occurs with 

probability pi.  Take a simple 50/50 gamble of $10 and $0.  If this gamble is played a 

large number of times, on average, the player can be expected to win $5.  From the above 

equation: 

$10 • 0.5 $0 • 0.5  

$5 

Objectively, a gamble with a higher expected value earns a player more money over the 

long term than one with a lower expected value.  In fMRI studies, the BOLD response in 

the ventral striatum increases with expected value during both decision-making and 

anticipation, suggesting that the striatum is representing expected value, or some 

correlate of it (Kable and Glimcher, 2007; Staudinger et al., 2009).  It is unclear whether 

probability and magnitude, both required for expected value calculations, are represented 

in the ventral striatum, or are calculated in spatially different regions or separated 
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temporally (Knutson et al., 2005; Preuschoff et al., 2006; Yacubian et al., 2007; Berns 

and Bell, 2012).  In either case, the observed BOLD response in the ventral striatum is 

consistent with a TD-model RPE (Montague and Berns, 2002).   

There is strong evidence for a common neural ‘currency’ when it comes to 

positive-valence stimuli.  Social rewards (Rilling et al., 2002; Izuma et al., 2008, 2010), 

food rewards (Kelley and Berridge, 2002; Smeets et al., 2006), juice reward (Bowman et 

al., 1996; Pagnoni et al., 2002), and monetary reward are all correlated with increases in 

the BOLD response in the ventral striatum.  When it comes to monetary loss, the picture 

becomes less clear.  Some studies have shown a decrease in BOLD response to signals of 

a monetary loss, as would be expected from a RPE standpoint (Delgado et al., 2000, 

2008).  Others have not (D’Ardenne et al., 2008).  Tom et al.  (2007) demonstrated that 

the ventral striatum increased in BOLD response for higher potential gains and decreased 

in response to higher potential losses.  They also showed that the slope of the response to 

losses was twice that of gains – reflecting the observation that people weight financial 

losses twice as much as financial gains (Kahneman and Tversky, 1979).  Others find no 

striatal response to monetary loss in the ventral striatum, but increases to monetary loss in 

other regions such as the amygdala and insula (Yacubian et al., 2006). 

If monetary loss is akin to a physically aversive stimulus, then there is lots of 

support for the idea that loss can be tracked in the ventral striatum.  Separate sub-

populations of dopaminergic neurons have been shown to respond to aversive stimuli by 

an increase in firing rate, and other neurons by an inhibition of firing (Coizet et al., 2006; 

Matsumoto and Hikosaka, 2009).  The anticipation of pain has been shown to increase 

the BOLD response in the ventral striatum (Becerra et al., 2001; Jensen et al., 2003).  
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Appetitive RPEs that signal better-than-expected outcomes as well as aversive RPEs that 

signal worse-than-expected outcomes have both been found in the ventral striatum, but 

separated spatially (Seymour et al., 2004, 2005).  Just as primary rewards activate similar 

regions as secondary rewards such as monetary gains, we might expect primary 

punishments or aversive stimuli to activate similar regions as monetary loss.  It is unclear 

whether this should manifest itself as a decrease in activation or increase in activation to 

monetary loss, as neuronal populations exist for both appetitive and aversive RPE.   

Experiment Overview 

To better understand how the brain encodes loss, I setup three experiments to test 

different aspects of human decision making.  The first experiment (chapter 2) was 

designed to tackle a problem inherent in the majority of research studies using money as 

the primary outcome.  Research study participants must be compensated for their time, 

thus participants can’t leave with less money than they arrived with.  In most experiments 

dealing with financial loss, participants are endowed with a sum of money at the 

beginning of the experiment, and can gain or lose from that amount.  Whether this 

prompts participants to behave as if the money was their own is unclear, though it is 

known that behaviorally, people behave more risky when given a windfall gain – known 

as the ‘house money effect’ (Thaler and Johnson, 1990).  To attempt to get around this 

problem, researchers will often modify their incentive structure to make participants feel 

more like the money is their own.  One way of doing this is to pay participants upon 

signing up for the experiment, and have them bring that money with them when they 

return for the actual task several weeks later (Tom et al., 2007).  Though likely to be the 

best way to have participants experience a financial loss, it is difficult to implement.  An 
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alternative is to have participants work for their endowment prior to completing the 

actual task. 

To bypass this issue entirely, we take an economic paradigm commonly used to 

study what brain structures track monetary value, but instead use a medium unpleasant 

for most people – electric shocks.  In this paradigm, participants make a decision to 

accept or reject mixed gambles of electric shocks while undergoing fMRI.  Mixed 

gambles are gambles that consist of both a gain and a loss.  If traditional value-related 

structures in the mesolimbic dopamine system, namely the ventral striatum, track 

aversive stimuli – we should expect to see an increase in BOLD response in these regions 

for better gambles. 

In second experiment (chapter 3), I use fMRI to help differentiate theories of the 

disposition effect, a behavior which has a large loss-related component.  We focus on 

ventral striatal activity, and interpret it through the TD-model RPE framework.  The 

disposition effect is a phenomenon first observed in the stock market where investors 

hold onto losing assets longer than they hold onto gaining assets (Shefrin and Statman, 

1985).  There are a multitude of theories behind what drives the behavior, but no 

conclusive way to differentiate them based on behavior alone.  Focusing on participant 

behavior over financial losses, and instituting an incentive structure designed to make 

financial losses more salient, we test whether activity in the ventral striatum can help 

explain which theories are more likely to be correct. 

In the third experiment (chapter 4), we test hypotheses related to how investors 

process company earnings announcements, and its relation to subsequent changes in 

stock price.  In this experiment, second-year MBA students serve as proxies for investors.  
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They take a position (long or short) in a firm’s stock based on past earnings per share 

information, and past and current analyst consensus forecasts.  We then capture the 

ventral striatum’s BOLD response to the actual earning’s announcement for the current 

quarter.  Participants’ monetary compensation is based on the subsequent change in stock 

price.  I focus first on whether the ventral striatum processes both positive and negative 

earnings announcements, akin to a monetary gain and loss.  Second, I test whether an 

aggregated BOLD response to both the positive and negative earnings announcements 

from the ventral striatum can predict the subsequent change in market price.  Third, I test 

whether the position (long or short) affects the aforementioned striatal responses. 
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Figures and Tables 

 

Figure 1-1: Relevant anatomical structures of the mesocorticolimbic dopamine system to 

neuroeconomic literature.  Synthesis of dopamine in the mesolimbic dopamine system 

occurs in the ventral tegmental area (VTA), and extensive axonal projections from this 

region terminate in the ventral striatum (VS).  Cortical regions, including the medial pre-

frontal cortex (mPFC) have projections back to the VS, making the VS an ideal area for 

the integration of information related to value.  The magnitude of unexpected financial 

gains and losses have been shown to correlate with synaptic activity in the VS and mPFC. 
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Figure 1-2.  Canonical hemodynamic response function (HRF) from the SPM8 

neuroimaging package.  The response to a single stimulus evokes a bloody-oxygenation-

level-dependent (BOLD) response which peaks between 4-6 seconds, lasts 10 seconds, 

followed by an undershoot before returning to baseline.  In the SPM neuroimaging 

package (Wellcome Department of Imaging Neuroscience, University College of 

London), a double-gamma function is used to model the peak and undershoot of the HRF. 
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Chapter 2 

From Bad to Worse: Striatal Coding of the Relative Value of Painful 

Decisions 

Introduction 

Many real world decisions involve the possibility of both good and bad outcomes, 

but sometimes the choices are between bad and worse.  Consider, for example, an 

individual who purchases a cell phone plan only to realize that the reception with that 

carrier is terrible.  The individual is then faced with the decision to either stay with the 

carrier and suffer bad reception, or pay an exorbitant cancellation fee.  In either case, the 

outcome is bad.  The recent advent of neuroeconomics has brought new methods of 

analysis to the study of human decision-making, but the vast majority of these studies 

have focused on decisions in which all possible outcomes are non-negative (Knutson et 

al., 2001b; McClure et al., 2004a; Padoa-Schioppa and Assad, 2006; Preuschoff et al., 

2006; Tobler et al., 2007).  But because relatively few studies have examined decisions 

made entirely in the domain of losses, it is not clear how the brain gauges relative value 

when all of the outcomes are bad.  One hypothesis regarding valuation in the brain 

suggests that the utility of positive outcomes is evaluated by a separate neural system 

from that of negative outcomes.  In its simplest form, the dual-systems hypothesis 

associates the ventral striatum and the orbitofrontal cortex (OFC) exclusively to the 

evaluation of gains (Mirenowicz and Schultz, 1996), and the amygdala and insula 

exclusively to the evaluation of losses (Yacubian et al., 2006). 
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There is some evidence that the striatum and other orbitostriatal structures are 

involved in both gain and loss processing (Delgado et al., 2003; Seymour et al., 2007; 

Tom et al., 2007).  However, most of these studies pitted a potential gain against a loss, 

used a medium that is generally rewarding (money), or focused solely on the anticipation 

of the gain or loss, and thus it is not clear that when all outcomes are negative, whether 

the striatal system would still be engaged or whether a separate system would perform the 

decision-making processing.  Some research suggests that anticipation and experience of 

aversive stimuli activate the striatum (LaBar et al., 1998; Becerra et al., 2001; Jensen et 

al., 2003; Seymour et al., 2004).  Indeed, there are populations of dopaminergic neurons 

that respond to aversive stimuli (Coizet et al., 2006; Matsumoto and Hikosaka, 2009).  

Thus, we hypothesized that the striatal system also processes the value of non-rewarding 

stimuli during the decision-making process itself, as opposed to solely the anticipation of 

the stimuli.  For painful outcomes (electric shocks), we predicted that fewer electric 

shocks from a reference amount would be viewed as a “gain” and more electric shocks as 

a “loss.” Furthermore, we predicted that the ventral striatum would be involved in 

processing “gains” (fewer electric shocks) even though the overall outcome medium was 

always unpleasant. 

To test these hypotheses, we used fMRI along with a gambling task involving 

electric shocks.  In a manner similar to that in the task used by Tom et al.  (2007), 

participants were asked to accept or reject a 50/50 gamble of “more” or “fewer” electric 

shocks compared to a reference amount that they received at the beginning of each trial.  

If participants rejected the gamble, they received the reference amount of shocks.  If they 

accepted the gamble, they either received “more” or “fewer” shocks from the reference 



26 
 

 

amount.  Using this task, we tested whether participants’ choice behavior was consistent 

with an adaptation of their status quo to the reference level of shocks.  Our analysis of the 

neuroimaging data focused on the period in which participants decided whether to accept 

or reject these lotteries.  This allowed us to identify regions involved specifically in 

decision-making as opposed to the anticipation of the outcomes. 

Materials and Methods 

Participants 

Thirty-six participants (18 female, 18 male; 18–45 years) were recruited from the 

Emory University campus.  All participants were right-handed, reported no psychiatric or 

neurological disorders, or other characteristics that might preclude them from safely 

undergoing fMRI, and provided informed consent to experimental procedures approved 

by the Emory University Institutional Review Board.  Participants received a base pay of 

$40. 

 

Experimental Procedures 

A Biopac STM100C stimulator module with a STMISOC isolation unit (Biopac 

Systems, Inc., CA, USA) was used to deliver electric shocks cutaneously to the dorsum 

of the left foot through shielded, gold electrodes placed 2–4 cm apart.  The STMISOC 

unit controlled current output to the electrodes, with each pulse lasting 15 ms.  The 

stimulator module was connected via a serial-interface to a laptop which controlled the 

timing and delivery of the shocks. 

Prior to scanning, shock intensity was calibrated by finding each participant’s 

“maximum shock intensity”, Imax.  Participants were told that their maximum shock 
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intensity would be set to the highest intensity that they could bear.  For the calibration 

procedure, each trial consisted of 18 shocks over 340 ms (the maximum number per trial 

in the subsequent experiment).  The current was slowly increased until participants 

notified the experimenter that they couldn’t bear it anymore, and this current level was 

set as their Imax.  The current level for all shocks throughout the experiment was set at 

90% of Imax. 

To gain familiarity with the different numbers of shock outcomes, participants 

were passively exposed to all possible outcomes.  An attempt to induce a status quo of 10 

shocks was made by subjecting participants to the 10 shocks at the beginning of each 

trial.  On each outcome, the number of shocks (SN) was evenly spaced in time over 340 

ms, yielding an inter-pulse interval of 340/(SN-1).  This was done to avoid confounding 

the number of shocks with the total duration of shocks.  The number of shocks, SN, 

within a trial was 2, 3, 4, 5, 6, 8, 10, 12, 15, or 18.  These numbers were determined 

based on previous literature that suggests that the Weber fraction for many stimuli range 

from 0.01 to 0.10, meaning that a difference of at least 1–10% between stimuli is needed 

in order to be distinguishable from each other (Teghtsoonian, 1971; Lavoie and Grondin, 

2004).  To insure that participants could distinguish between different numbers of shocks, 

a difference in number of at least 25% between shocks was used.  The status quo was set 

at 10 shocks, and so a relative gain was framed as “2, 4, 5, 6, 7, or 8 less” and a relative 

loss as “2, 5, or 8 more.” 

Following the calibration phase of the experiment, participants entered the 

scanner to begin the experimental phase, which was modeled after a monetary gambling 

paradigm used by Tom et al.  (2007).  Each trial began with a status quo (10 shocks), 



28 
 

 

which was indicated by the presentation of a circle with the text “Sure Thing” centered in 

the middle (Figure 2-1).  After 2 s, this circle turned yellow, indicating the impending 

onset of the shocks, which occurred after a further 2 s.  Following an interstimulus 

interval (ISI) of 3 s, a 50/50 gamble appeared with the words “Accept” and “Reject” 

below it.  This gamble consisted of two possible outcomes, indicated by separate, equally 

sized slices of the circle, where the left side was always more potential shocks and the 

right side always fewer potential shocks.  The number of shocks more and less than the 

reference amount varied between trials, such that every possible combination of shocks 

was presented. 

Two seconds after presentation of the gamble, participants were allowed to 

“Accept” or “Reject” the gamble by using a button box in the scanner.  If participants 

accepted the gamble, a pink ball flipped between options for a varying amount of time 

between 3 and 6 s, landing with a 50/50 chance on the more shocks or fewer shocks 

outcome.  The side on which the ball landed turned yellow, indicating the outcome of the 

gamble and impending shocks, which occurred 4.7 s after the outcome was revealed.  If 

participants rejected the gamble, an identical presentation including the ball-flip and 

outcome selection occurred.  However, in this case the reference shocks were the only 

possible outcome.  After the shocks were administered, the outcome remained on screen 

for 3 s, and was followed by an inter-trial interval (ITI) of 3 s.  The experimental phase 

consisted of three runs with 18 trials per run (54 trials in total).  Trials were randomly 

ordered for each run within-subjects, but remained the same between-subjects.  COGENT 

2000 (FIL, University College London) was used for stimulus presentation and response 

acquisition for this phase. 
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To confirm that participants could distinguish between the different numbers of 

shocks and that increasing shocks were increasingly averse, participants rated all possible 

sets of shocks relative to the reference shocks (after the above procedure but while still in 

the scanner).  A visual analog scale (VAS) was presented on screen, with a white arrow 

in the center labeled as “reference shocks.” Participants were given the reference shocks, 

and then were given another set of shocks, blinded to the number.  They were asked to 

rate “How much better or worse it is from your reference,” by moving the arrow on 

screen either left (“better”) or right (“worse”).  All possible sets of shocks were given 

three times each for a total of 30 data points. 

 

fMRI Measurements 

Functional imaging was performed with a Siemens 3 T Trio whole-body scanner.  

T1-weighted images (TR = 2300 ms, TE = 3.04 ms, flip angle = 8,192 × 146 matrix, 176 

sagittal slices, 1 mm cubic voxel size) were acquired for each subject prior to the three 

experimental runs.  For each experimental run, T2*-weighted images using an echo-

planar imaging sequence were acquired, which show blood oxygen level-dependent 

(BOLD) responses (echo-planar imaging, TR = 2350 ms, TE = 30 ms, flip angle = 90, 

FOV = 192 mm × 192 mm, 64 × 64 matrix, 35 3-mm thick axial slices, and 3 

mm3 voxels). 

 

fMRI Analysis 

fMRI data were analyzed using SPM5 (Wellcome Department of Imaging 

Neuroscience, University College London) using a standard 2-stage random-effects 
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regression model.  Data were subjected to standard preprocessing, including motion 

correction, slice timing correction, normalization to an MNI template brain and 

smoothing using an isotropic Gaussian kernel (full-width half-maximum = 8 mm). 

Four main regressors were included in the first-level models.  (1) The status quo 

shock at the beginning of each trial was modeled as an impulse function.  (2) The 

“decision” period, during which a decision to accept or reject the gamble was required, 

was modeled from the onset of gamble presentation until button press.  The expected 

value of the gamble was also included as a parametric modulator for this period.  (3) The 

“ball” period, in which the gamble outcome was resolved over a varying period of time 

between 3 and 6 s, was modeled as a variable duration function.  (4) The “wait” period 

was modeled from the display of the gamble outcome to the receipt of the shocks.  For 

this period, the number of shocks received was included as a parametric modulator.  

Subject motion parameters were also included as regressors.  All regressors were 

convolved to the standard HRF function. 

Because we were interested in investigating the neural basis of decision 

parameters that affect choice, the second-level analysis focused on the decision period 

(#2 above).  To identify regions involved in valuation during choice, we first identified 

regions showing correlations with the expected value of the gamble.  We assumed shocks 

are “bad” and have negative value; for example, the reference shocks would have an 

expected value (EV) of −10.  We calculated the expected value of the gambles with the 

equation: EVgamble = −10 + (number of shocks less – number of shocks more)/2.  

EVgamble ranged from −7 for the best gamble, and −13 for the worst gamble.  This 

parameter was expected to directly affect choice, because a less negative EVgamble would 
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indicate a better gamble and a more negative EVgamble a worse gamble, assuming 

individuals find electric shocks unpleasant.  To further analyze the interaction between 

potential outcomes with less or more shocks within identified regions, we performed an 

ROI analysis using beta estimates from a different first-level model in which the number 

of shocks less and the number of shocks more than the reference amount were modeled 

by separate parametric modulators.  This allowed us to identify the extent to which better 

and worse potential outcomes separately contributed to EVgamble. 

Finally, another first-level model was constructed in order to extract BOLD 

responses for each individual gamble type during the decision period.  Instead of a single 

lottery period modulated by the number of shocks less and number of shocks more than 

the reference amount, this model included each lottery period associated with a different 

gamble as a separate regressor, such that there were 18 columns in the design matrix for 

the decision period, along with the remaining regressors that appeared in the primary 

first-level model described above.  This allowed the average BOLD activity during the 

decision period for each separate gamble to be extracted.  These values were then used to 

create “heat maps” of activation which give snapshots of how a particular region 

responds to all possible gambles. 

 

Results 

Behavioral 

For monetary payments, if an individual prefers to receive a certain payment 

rather than a gamble with the same expected value, he is said to be risk averse.  If he 

instead prefers the gamble, he is said to be risk seeking.  Prior research with monetary 



32 
 

 

payments shows that on average, individuals are risk-averse (risk-seeking) for positive 

(negative) payoffs.  We consider whether the shock quantities in our experiment are 

treated in the same way.  To consider the issue, participant behavior in symmetric 

lotteries was analyzed.  Symmetric lotteries were lotteries with the same amount of 

shocks less and more than the reference amount, and therefore had the same expected 

value as the reference shocks.  Averaged across all runs for all participants, the 

symmetric lotteries were chosen over the reference shocks 74% of the time, which 

suggests risk-seeking behavior.  For the individual symmetric lotteries of 8/8, 5/5, and 

2/2, participants chose the lottery 56%, 78%, and 89% of the time, respectively.  

Interestingly, this was significantly different between the three symmetric lottery types 

(F(2,105) = 10.21; p < 0.0001). 

As another indicator of overall risk-preference, the average indifference point 

across participants was determined by graphing the probability of choosing the lottery as 

a function of the expected value of the gambles.  A sigmoidal curve, shown in figure 2-2, 

was fit to the data using a logistic function to determine the average indifference point.  If 

participants on average were risk neutral, their indifference point would equal the 

expected value of the reference shocks (−10).  If participants were risk-seeking, their 

indifference point would be less than −10.  The average indifference point was −10.94 

shocks (f(−10.94) = 0.500 ± 0.218), indicating risk-seeking behavior.  The reference point 

of −10 did not lie within the 95% confidence interval of the logistic fit (f(−10) = 0.720 ± 

0.214), and therefore it is likely that this observed indifference point was significantly 

different from risk-neutrality. 
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To determine individual risk-preference, the curvature of the utility function, u(x) 

= xα was estimated for each participant using a non-linear least-squares regression.  

Participant values were not normally distributed nor were they lognormal, and therefore 

non-parametric statistics were used to test for significance.  A Wilcoxon signed-rank test 

indicated that, on average, participant α values (median α = 0.934, SD = 0.309) were 

significantly different from one (p = 0.0381).  Due to the method of estimation (where a 

larger expected value is a more unfavorable gamble), an α < 1 indicates convexity over 

losses and therefore a preference for risk-seeking behavior, whereas an α = 1 indicates a 

risk-neutral preference.  In addition, average VAS ratings for each possible outcome in 

the study were computed and normalized to the reference shock ratings.  When plotted, 

these ratings revealed a convex function resembling a value function over losses (see 

figure 2-3).  The slope of the VAS rating over more and less potential shocks were 

computed for each participant, using linear regression.  A paired-samples t-test revealed 

that the slope for less potential shocks (M = 1.974, SD = 0.644) was significantly greater 

than the slope for more potential shocks (M = 0.920, SD = 0.548), p < 0.001, consistent 

with a convex value function. 

 

fMRI 

The expected value of the gambles, EVgamble, was used to identify brain regions 

involved in the valuation of gambles during the decision period (see figure 2-4).  Used as 

a parametric modulator, this allowed for identification of regions of the brain whose 

BOLD signal correlated with the objective gamble value.  Positive correlations between 

EVgamble and BOLD activity were found in the visual cortex, intraparietal sulcus, frontal 
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eye fields, and the left ventral striatum, among other areas (see upper portion of table 2-

1).  A less negative EVgamble indicated a better gamble, which demonstrates that these 

regions responded in a graded manner to comparatively better possible outcomes – even 

though all outcomes were still painful.  Given that all outcomes were aversive, it is 

interesting that ventral striatum activity increased for relatively “less bad” outcomes.  

Regions with negative EVgamble correlations, or a greater response for worse outcomes 

(more expected shocks), included the posterior cingulate, anterior cingulate (ACC), 

inferior parietal lobule, insula, and the lateral OFC (lower portion of table 2-1). 

To determine how these regions responded to the individual components of the 

gambles (less or more potential shocks), beta values for the lottery ×number of shocks 

less and lottery × number of shocks more condition were extracted from regions 

identified in the lottery × EVgamble contrast mentioned above.  The left ventral striatum 

showed significant positive and negative correlations with the number of potential shocks 

less (better) and number of potential shocks more (worse), respectively.  Other areas 

identified in the positive EVgamble contrast revealed the same relationship: a significant 

positive correlation with the number of potential shocks less and negative correlation 

with the number of potential shocks more.  The opposite trend was seen for several 

regions identified in the negative EVgamble contrast: significant positive correlations with 

the number of potential shocks more and negative correlations with the number of 

potential shocks less were observed in the insula, intraparietal sulcus, and dorsomedial 

prefrontal cortex (DMPFC).  To visualize activity to each individual gamble type, we 

extracted beta values from ROIs in the lottery× EVgamble contrast for each gamble type.  In 

the left ventral striatum, gambles with a higher EVgamble were associated with less 



35 
 

 

deactivation, and gambles with a lower EVgamble were associated with more deactivation, 

as revealed in a heat map (see figure 2-5).  A heat map of beta values from the DMPFC 

for each gamble revealed less activation to gambles with a higher EVgamble, and more 

activation to gambles with a lower EVgamble (see figure 2-5).  In other words, more 

potential shocks elicited above-baseline BOLD activity in these regions.  Similar activity 

was observed in the genual ACC (see figure 2-5), with less deactivation for gambles with 

a lower EVgamble. 

 

Discussion 

Contrary to the simplest form of the dual-systems view, which would predict no 

response from the ventral striatum to gambles consisting solely of losses, our results 

indicate that the ventral striatum encodes information regarding value irrespective of the 

type of outcome (e.g., “more” or “less” shocks) and whether the outcomes are globally 

“good” or “bad” (e.g., appetitive or aversive).  In particular, the positive correlation of 

left ventral striatal activity with the expected value of the shock lotteries supports its role 

in valuation and extends this to include the relative valuations of “bads.” While previous 

neuroimaging studies have demonstrated the role of the striatum in integrating the value 

of rewards with a variety of costs (Tom et al., 2007; Croxson et al., 2009; Talmi et al., 

2009), our results extend these findings to the domains of pain and loss even when there 

is no possibility of gain. 

That these decisions were viewed as occurring in the loss domain is reinforced by 

the fact that, despite being exposed to the reference shocks for each trial, participants 

viewed every outcome as a “loss.” This was evidenced by consistent risk-seeking 
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behavior over the full range of lotteries and a larger slope for less shocks than more 

shocks relative to the status quo for the VAS ratings.  These results are consistent with 

past research showing risk-seeking behavior over hypothetically painful outcomes 

(Eraker and Sox, 1981).  Interestingly, this risk-seeking behavior cannot explain the 

changes in striatal activation as others have suggested (Fiorillo et al., 2003; Preuschoff et 

al., 2006) because the variance of the best and worst lotteries is the same in our task.  One 

possible reason for this lack of status quo inducement is the transient nature of the 

reference shocks.  Although participants were presented with reference shocks between 

each trial, the majority of the time participants were not experiencing painful stimuli.  It 

is possible that a constant painful stimulus, such as would arise with the use of capsaicin 

to induce a constant state of pain which can then be attenuated or exacerbated with 

temperature, might be more effective in inducing a status quo (Seymour et al., 2005). 

It is important to distinguish between the loss of something desirable, which has 

been investigated in a considerable number of prior studies, and the receipt of something 

undesirable, which has received less attention.  Previous neuroeconomic studies of loss 

aversion have shown that the ventral striatum deactivates to the prospect of monetary loss 

(Tom et al., 2007).  Similarly, striatal deactivation has been observed with increased 

effort and pain to obtain a monetary gain (Croxson et al., 2009; Talmi et al., 2009).  

These results point to the integrative role of the striatum in determining net value for 

monetary rewards but do not directly address its role in the relative valuation of things 

that are universally bad.  Evidence exists, however, that the striatum dynamically scales 

for relative coding of value (Seymour and McClure, 2008).  In a similar manner, 

dopamine neurons have been observed to adaptively code reward value (Tobler et al., 
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2005), so it is plausible that the striatum could exhibit adaptive signaling even in the 

realm of painful outcomes – for which we find strong evidence here. 

Beyond the striatum’s adaptive coding of value, its more general role in pain 

processing has been hotly debated (Leknes and Tracey, 2008).  Some studies have shown 

ventral striatal activity during the anticipation of painful stimuli (Becerra et al., 2001; 

Jensen et al., 2003), a finding echoed by PET evidence of dopamine release to pain (Scott 

et al., 2006), while others have argued this activity merely reflects the anticipated relief 

(Baliki et al., 2010).  Still others have suggested that the ventral striatum functions more 

generally in motivated behavior (Horvitz, 2000; Zink et al., 2003, 2004; Delgado et al., 

2004; Nicola et al., 2004; Leknes and Tracey, 2008).  Our results showed increased 

ventral striatal activity in anticipation of fewer shocks, which suggests that the striatum is 

not simply functioning to prime the system to avoid pain – i.e., an analgesic effect (Scott 

et al., 2006, 2007; Wood and Holman, 2009).  If that were the case, we would expect to 

see increased striatal activity to more potential shocks.  Instead, we observed the opposite 

trend, precluding an analgesic explanation. 

Although the aforementioned discussion pertains to the role of the striatum in 

relative valuation, we also find evidence for such signals in cortical regions classically 

associated with pain and punishment evaluation (Bechara et al., 1998; O’Doherty et al., 

2001; Koyama et al., 2005; Kringelbach, 2005; Raij et al., 2005; Seymour et al., 2005).  

These regions appear to signal valuation in an inverse manner from the striatum, with 

both systems operating in synchrony during the decision period.  Indeed, evidence for the 

co-existence of both appetitive-valuation and aversive-valuation signals in the brain 

exists, with the aversive-valuation signals residing in some of the same regions that we 
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observe, namely in the lateral OFC and genual ACC (O’Doherty et al., 2001; Small et al., 

2001; Gottfried et al., 2002; Seymour et al., 2005; Nitschke et al., 2006).  In our study, 

the lateral OFC and genual ACC convey this valuation information during decision-

making itself over painful stimuli, as opposed to only during passive learning tasks, 

which build on prior evidence for these structures roles in signaling bad outcomes, 

perhaps to facilitate reversal-learning or changes in action, as has been suggested 

(Kringelbach and Rolls, 2003; Seymour et al., 2005).  Furthermore, given past research 

showing lateral OFC and genual ACC activation to non-painful but aversive stimuli, such 

as monetary loss (O’Doherty et al., 2001; Liu et al., 2007) and unpleasant odors 

(Gottfried et al., 2002; Rolls et al., 2003), this information is likely coded in a “common 

currency”, as has been suggested of activity in the orbitofrontal-striatal system 

(Montague and Berns, 2002; Murray et al., 2007). 

In addition to valuation, the increase in BOLD response to worse gambles that we 

observed could be related to attention or cognitive control in general, which refers to the 

process by which attention, memory, and other cognitive abilities are shifted to 

accomplish a variety of goals.  In addition to the lateral OFC and ACC, we found that the 

DMPFC signaled worse gambles with above-baseline activation in a location that has 

been recently implicated in decision-related control (Venkatraman et al., 2009b), and that 

has been shown to be more active for more difficult decisions and for decisions that run 

counter to overall behavioral strategy (Paulus et al., 2002; Zysset et al., 2006; Hampton 

and O’Doherty, 2007).  Though our experimental design does not allow us to separate 

these functions from valuation or vice-versa, it is likely the case that there exists a 

complex interplay between regions signaling aversive valuation, such as the lateral OFC, 
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and higher-level decision-control regions which integrate these signals, possibly the 

DMPFC.  Much like the striatum, activity in the DMPFC has been demonstrated during 

decision-making over a variety of stimuli, suggesting that its role might be independent 

of the type of outcome that is being decided on (Rushworth et al., 2005; Pochon et al., 

2008; Venkatraman et al., 2009a). 

The current body of research in decision-making points to the idea of a universal 

valuation system that signals how “good” or “bad” a potential outcome is, relative to 

some reference point.  Structures that were originally thought to be involved solely in 

reward processing during decision-making are increasingly being shown to be involved 

in the processing of punishing stimuli as well.  Similar activity in these orbitofrontal-

striatal regions is observed between more abstract punishments (e.g., monetary losses) 

and painful stimuli as we have shown here, much like the similar activation patterns for a 

wide variety of rewarding stimulus modalities.  Future research might focus on how a 

baseline is determined for this valuation activity and whether it is directly related to the 

status quo, and whether loss aversion can be observed for non-monetary outcomes once a 

status quo has been set. 
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Figures and References 

 

Figure 2-1: Schematic and timing of experimental task.  Participants were given a status 

quo number of shocks (10 shocks) indicated by a circle with the text “Sure Thing”, 

followed by the presentation of a 50/50 gamble of more/ less electric shocks from a 

reference amount.  After 2 s of presentation of the gamble, participants could accept or 

reject the gamble.  If they accepted the gamble, a pink ball flipped between outcomes for 

a period varying between 3 and 6 s, and landed with a 50/50 probability on either 

outcome, which turned yellow upon selection.  If they rejected the gamble, the same 

presentation appeared.  However the outcome that appeared in that case was always the 

reference quantity of shocks.  After 4.7 s (two scanner repetition times), the outcome 

shocks were administered followed by a further 3 s of the outcome display.  The ITI 

remained constant throughout the experiment at 3 s. 
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Figure 2-2: Risk-seeking behavior.  To analyze risk attitude, a sigmoid curve was fit to 

the lottery choice data using a logistic function.  An indifference point at the status quo 

characterizes risk-neutral behavior.  Participants’ actual estimated indifference point was 

at a lower expected value than the status quo, indicated by the red correspondence, which 

demonstrates risk-seeking behavior, typical in the realm of losses (Kahneman and 

Tversky, 1979).  The reference point of 10 shocks (−10) did not lie within the 95% 

confidence interval of the logistic fit (f(−10) = 0.720 ± 0.214), suggesting that this 

observed indifference point was significantly different from risk-neutrality. 
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Figure 2-3: Average normalized VAS ratings as a function of the number of shocks 

received.  A second-order polynomial function was fitted to the data in order to 

demonstrate the convexity of the observed ratings (R2 = 0.995).  The reference shocks (10 

shocks) are indicated by the lines at the origin.  A paired-samples t-test revealed that the 

slope for less electric shocks (M = 1.974, SD = 0.644) was significantly greater than the 

slope for more electric shocks (M = 0.920, SD = 0.548), p < 0.001, consistent with a 

convex value function. 
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Figure 2-4: Lottery × EVgamble response.  Regions whose BOLD activity responded in an 

increasing manner to less negative outcomes are shown in the left column, and regions 

whose BOLD activity responded increasingly to more negative outcomes are shown in 

the right column.  Regions shown in the positive contrast include the frontal eye fields, 

intraparietal sulcus, left visual area, and ventral striatum.  Regions shown in the negative 

contrast included the left OFC, DMPFC, genual ACC, and posterior cingulate cortex. The 

contrasts were thresholded at p < 0.05, FDR-corrected (effectively a voxel-wise alpha 

level of 0.002), and with a cluster-threshold of 10. 
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Figure 2-5: Ventral striatum, DMPFC, and genual ACC activity during the lottery 

period.  The ventral striatum showed less deactivation to better gambles (less negative 

EVgamble), as seen in the whole-brain EVgambleanalysis at p < 0.05, FDR (effectively a 

voxel-wise alpha level of 0.002), with a cluster threshold of 10 voxels (A).  A heat map 

of ventral striatum activity for each gamble type was generated by taking the ventral 

striatum ROI (14 voxels) from A and extracting BOLD estimates for each gamble type 

(B).  Activity in the ventral striatum showed a significant positive correlation with the 

number of shocks less than the reference amount and significant negative correlation with 

the number of shocks more than the reference amount (C).  The DMPFC and genual 

ACC showed increasing activity to worse gambles (more negative EVgamble), as seen by 

the whole-brain EVgamble analysis at p < 0.05, FDR, with a cluster threshold of 10 
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voxels (D,G).  A heat map for activity in the DMPFC and genual ACC is shown 

in (E) and (H).  Activity in the DMPFC and genual ACC showed a significant positive 

correlation with the number of shocks more than the reference amount (F,I), and a 

significant negative correlation with the number of shocks less than the reference 

amount (F).  Beta values for the DMPFC and genual ACC were extracted from an 8-mm 

sphere ROI centered on the peak voxel for that cluster (marked with a red cross). 
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Structure L/R Voxels X Y Z Max T
EVgamble Positive             
Primary Visual L 1250 -6 -84 -6 8.59
Pre-Motor L 143 -36 -9 48 5.47
Intraparietal Sulcus R 410 30 -45 54 5.31
Pre-Motor R 82 42 -3 48 4.1
Frontal Eye Fields R 15 -3 66 3.37
Cuneus R 28 18 -90 18 4.67
Frontal Eye Fields L 29 -24 -6 63 4.34
Cerebellum R 15 24 -51 -18 4.33
Insula R 16 39 -21 21 3.92
Ventral Striatum L 14 -12 9 -9 3.85
Superior Temporal Gyrus L 19 -45 -39 12 3.79
Mid-Cingulate Gyrus R 13 12 -18 48 3.7
EVgamble Negative            
Anterior Cingulate/Middle Frontal 1467 0 30 45 6.07
Anterior Insula/Inferior Orbital R 152 -42 24 -12 5.94
Posterior Cingulate 103 3 -24 36 4.87
Angular Gyrus R 229 39 -66 54 4.82
Angular Gyrus L 38 -39 -60 57 4.44
Middle Temporal Gyrus L 43 -66 -42 -6 4.34
Middle Frontal Gyrus R 40 39 15 57 4.12
Angular Gyrus L 16 -33 -75 48 4.05
Precuneus R 20 6 -63 39 3.91
Middle Frontal Gyrus R 11 45 36 30 3.52

 

Table 1.  Regions showing BOLD activity that correlates with the expected value of the 

gamble (EVgamble) during the lottery period. 
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Chapter 3 

Neural Insensitivity to Upticks in Value is Associated with the Disposition 

Effect 

Introduction 

The disposition effect is a behavioral phenomenon in which investors “sell 

winners too early and ride losers too long” (Shefrin and Statman, 1985).  There is robust 

field evidence that investors sell shares of stock significantly more often after an increase 

in the value of the shares, than they do after a decrease in value (Ferris et al., 1988; 

Odean, 1998; Grinblatt and Keloharju, 2001; Choe and Eom, 2009).  This occurs despite 

the behavior being suboptimal in terms of profit earning (Odean, 1998; Choe and Eom, 

2009).  In experimental settings, where complex market forces are not present and 

participants are not experienced investors, the disposition effect still exist (Weber and 

Camerer, 1998; Da Costa et al., 2008; Vlcek and Wang, 2008).  Even when decision-

makers are aware that losing assets are more likely to continue falling, they hold onto 

these assets more than they hold onto rising assets (Weber and Camerer, 1998).  These 

observations suggest that the disposition effect is a common property of decision-making 

and not simply a product of the stock market or limited to investors. 

Several explanations for the disposition effect have been suggested.  The most 

common is preference-based: namely, that people are risk-averse over gains and risk-

seeking over losses (Kahneman and Tversky, 1979; Shefrin and Statman, 1985; 

Lakshminarayanan et al., 2010).  Assuming that the purchase price of an asset is the 

reference point upon which investors judge gains or losses, then risk-aversion over gains 
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would lead to the selling of assets when the value of the shares rise (the less risky option), 

while risk-seeking over losses would lead to holding assets when the value of the shares 

fall (the more risky option).  This explanation is based on prospect theory, which assumes 

a value function that is concave over gains, but convex over losses (Kahneman and 

Tversky, 1979).  Although risk-preference is often suggested as the driving force behind 

the disposition effect, several theoretical papers and experimental studies have questioned 

whether a preference-based explanation can fully explain the disposition effect (Vlcek 

and Wang, 2008; Barberis and Xiong, 2009; Kaustia, 2010).  Alternatively, the 

realization utility hypothesis suggests that investors receive utility from the act of 

realizing a gain or loss, driving investors to sell gains to receive positive utility and hold 

losses to avoid negative utility (Barberis and Xiong, 2008).  Another explanation suggests 

that investors have an irrational belief in mean reversion (Barberis and Thaler, 2003).  

This explanation predicts that an investor would hold onto a losing asset with the 

expectation that it would rise and sell a gaining asset with the expectation that it would 

fall.  Despite it being an important phenomenon in finance, there is no consensus in the 

behavioral economics literature that mean reversion drives the disposition effect, 

although some experimental studies have found evidence for such a relationship 

(Andreassen, 1988; Hung and Yu, 2006).  Hence, the question remains as to whether the 

disposition effect is driven by asymmetric risk-preferences over gains and losses, 

realization utility, or by belief-related mechanisms such as mean reversion. 

In this paper, we utilize functional magnetic resonance imaging (fMRI) during an 

asset-trading task to test these alternative theories of the disposition effect.  We measured 

the blood oxygenation level dependent (BOLD) response in valuation regions of the brain 
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during decisions to keep or to sell an asset that followed a random walk in price.  A 

preference-based explanation for the disposition effect would predict correlations 

between individuals' risk-preferences, the magnitude of their disposition effect, and 

activation in valuation structures of the brain.  A realization utility explanation would 

predict differential responses in valuation regions during the decision to sell versus keep 

an asset that correlate with the magnitude of the disposition effect.  Finally, if participants 

believe that the asset price will eventually revert to the mean, we would predict an 

attenuated ventral striatum response to upticks in value below the purchase price and a 

greater response to upticks in value above the purchase price for individuals with a 

disposition effect.  The ventral striatum has been shown to signal prediction error, and 

thus an expectation of a rise in asset price followed by an uptick should result in lessened 

striatal activity.  Conversely, if an expectation of a fall in asset price is met by an uptick, 

striatal activity should increase.  Of these three theories, the fMRI data were most 

consistent with an irrational belief in mean reversion. 

 

Materials and Methods 

Thirty-eight participants (18 female; 18–51 years) were recruited from the Emory 

University campus and completed the asset-trading task.  Of this group, thirty-three 

participants were scanned using fMRI (17 female; 18–51 years).  Of the thirty-three 

scanned participants, we excluded one participant from our imaging model because of 

excessive motion and five participants because they lacked observations for the 

regressors of interest.  This was due to a high variability in participant behavior that was 

tied to the number of observations in each of the regressors in our model.  All participants 
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were right-handed, reported no psychiatric or neurological disorders, or other 

characteristics that might preclude them from safely undergoing fMRI.  All participants 

provided informed consent to experimental procedures approved by the Emory 

University Institutional Review Board.  Prior to beginning the experiment, participants 

were told that they would be paid $20 for showing up, and $30 for completing three 

questionnaires, including the BIS/BAS, EPQR, and a risk-preference worksheet.  The 

total amount of $50 had to be used in the subsequent asset-trading task, where 

participants could earn an additional $50, or lose $50.  Therefore the total possible 

compensation ranged from $0 to $100 (actual $30–$75). 

 

Asset trading task 

Participants completed 40 trials of an asset-trading task while undergoing fMRI.  

The main screen of the asset-trading task consisted of a graph with relative value (in 

dollars) of an asset on the y-axis, and time (in periods) on the x-axis.  For each trial, 

participants were initially forced to purchase an asset worth $50 using all of the money 

they earned prior to entering the scanner ($50).  A gray circle at relative value zero and 

period 10 indicated the purchase point.  To make sure that the current decision period was 

always centered on the screen, each asset had a 10-period history prior to purchase that 

was different for all 40 assets.  Each history was generated in the same manner as the 

forward asset price trajectory—by generating a random walk beginning at the purchase 

price, but in this case going backwards for ten periods.  After a button press, the asset 

subsequently increased or decreased in value by $5 with equal probability. 
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Participants were then given the choice of keeping the asset for another period, or 

selling the asset for its worth in that period.  If participants chose to keep the asset, it 

again increased or decreased by $5 with equal probability after a 3 second delay.  A 

single decision period is shown in figure 3-1 (panel A).  To avoid influencing participant 

decision-making by having a finite number of periods where participants potentially 

behave differently towards the end of the trial, we implemented an infinite horizon.  This 

was accomplished by using a ‘soft’ ending, where the trial ended and asset force-sold 

with a 5% probability each time the participant chose to keep the asset (Camerer and 

Weigelt, 1993; Noussair and Matheny, 2000).  Participants could therefore keep the asset 

as long as they wanted, keeping in mind that each trial had a 5% probability of ending 

each time they kept the asset.  If participants chose to sell the asset, they earned what the 

asset was worth in that period.  Each sell period was followed by five periods where they 

saw what trajectory the price would have followed had they of kept the asset.  Each time 

the asset was sold or force-sold, participants saw an outcome screen stating the relative 

amount that their asset was sold for.  The maximum relative value that the asset could 

reach was + $50, and minimum of −$50. 

Participants were given full information regarding the determination of asset price 

and the infinite horizon prior (see supplement 1).  Participants were verbally tested on 

the probabilities and independence of the asset pricing, and completed two practice trials 

prior to the actual asset-trading task.  Note that because the size and probability of an 

increase or decrease in asset value was always equal and independent across periods, the 

expected value of keeping the asset was the same as selling the asset at every decision 

point.  Furthermore, because of the random-walk nature of the asset price, there is no 



52 
 

 

optimal selling strategy that maximizes earnings in the task.  Therefore, no matter what 

strategy is taken, participants on average earn a relative value of $0 across trials ($50). 

 

Behavioral data analysis 

To measure the disposition effect for each individual, we computed the integral of 

asset value (in dollars) relative to purchase price over time and averaged across all trials.  

If each asset was held regardless of value and never sold, the average integral would be 

close to zero because the price of the asset followed a random walk (figure 3-1; panel B).  

If assets below the purchase price were held longer than assets above the purchase price, 

then the average integral would be negative (figure 3-1; panel C). 

We estimated risk-preference and loss aversion parameters using a method 

developed by (Tanaka et al., 2010).  Participants were given three series of paired 

lotteries.  In each series, participants were asked to choose the point at which they would 

switch from lottery A to lottery B.  The expected value of lottery B increased downward 

in each series.  By solving a system of inequalities in which constant relative risk 

aversion is assumed (U(x) = xα), a unique set of risk-preference and loss aversion 

parameters were estimated for each participant. 

To understand the factors that were most important in driving participants' 

decisions to keep or sell, and thus create an imaging model most relevant to participant 

behavior, we estimated a mixed-effects logistic regression with “keep” or “sell” for each 

period as the outcome variable (1 for sell, 0 for keep), five fixed-effects regressors which 

described local asset price characteristics, and a subject-wise regressor describing the 
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magnitude of a participant's disposition effect.  Subject was included as a random-effects 

factor.  The regression took the following form: 

 

Valuet was the value of the asset at time t (which ranged from − 50 to 50 in 

multiples of 5).  Value't was the difference in value from time t to t − 1 (which could 

carry values − 5 or 5).  We subsequently refer to value't as “delta” throughout this paper.  

Value''t was the change in price direction, calculated the following way: 

(valuet − valuet− 1) − (valuet-1 − valuet− 2).  Thus, value''t can carry values of 10, 0, or − 10.  

DE was the average integral across trials for each participant, which was a measure of the 

individual's disposition effect.  We also included interaction terms between DE and the 

main effects in order to probe where people with a disposition effect behaved differently. 

 

fMRI data acquisition and analysis 

Functional imaging was performed with a Siemens 3 T Trio whole-body scanner.  

T1-weighted images (TR = 2600 ms, TE = 3.02 ms, flip angle = 8°, 240 × 256 matrix, 

176 sagittal slices, 1 mm3 voxel size) were acquired for each subject prior to the four 

experimental runs.  For each experimental run, T2*-weighted images using an echo-

planar imaging sequence were acquired, which show blood oxygen level-dependent 

(BOLD) responses (echo-planar imaging, TR = 2000 ms, TE = 30 ms, flip angle = 73°, 

FOV = 192 mm × 192 mm, 64 × 64 matrix, 33 3.5-mm thick axial slices, and 

3 × 3 × 3.5 mm voxels). 

fMRI data were analyzed using SPM8 (Wellcome Department of Imaging 

Neuroscience, University College London) using a standard 2-stage random-effects 
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regression model.  Data were subjected to standard preprocessing, including motion 

correction, slice timing correction, normalization to an MNI template brain and 

smoothing using an isotropic Gaussian kernel (full-width half-maximum = 8 mm).  Task 

regressors were modeled using a standard canonical hemodynamic response function.  

Our model focused on the decision period, which encompassed the time at which the 

outcome of the asset increase or decrease was shown, to the time in which a participant 

made a response.  To attempt to capture the response only to the asset price increase or 

decrease outcome, we also created an alternative model using an impulse function at the 

moment the asset increase or decrease was shown, leaving the rest of the decision period 

in the model baseline.  In both models, we separated these periods into five separate 

regressors: the first period in the trial where participants hit the ‘continue’ button to see 

whether the asset increased or decreased in value, decisions above the purchase price, 

decisions below the purchase price, decisions at the purchase price, and the periods after 

an asset was sold.  Decisions above and below the purchase price were modulated by 

choice (keep vs.  sell), valuet, and delta (valuet − valuet− 1).  We also included a regressor 

for the outcome screen.  The 3-second interval where the participant's choice was 

highlighted was randomly assigned to four regressors of no-interest to prevent correlation 

with the constant.  Because individual behavior varied greatly, and was reflected in the 

number of observations in each regressor, we concatenated all runs in our model together, 

and included n − 1 dummy variables to account for run differences.  This allowed us to 

avoid complex contrast weights for each participant, given the high likelihood of missing 

regressors for multiple runs.  Six motion parameters and a single constant were also 

included for each subject. 



55 
 

 

Statistical thresholds were determined based on the smoothness of the second-

level contrasts.  We used AlphaSim, a routine in AFNI, to estimate the combination of 

height and extent thresholds that yielded a whole-brain FDR < 0.05 (10,000) iterations.  

To do this, we used 3dFWHMx to estimate image smoothness from the square root of the 

masked SPM-generated residual (ResMS) image.  We then used AlphaSim with a voxel-

level threshold of p < 0.001 to find the cluster threshold at which the whole-brain FDR 

would be < 0.05, and which ranged from 42 to 57 voxels, depending on the specific 

contrast. 

 

Results 

We found evidence for a robust disposition effect in our task.  As a measure of the 

disposition effect, we took the integral of asset price averaged across trials.  Across all 

participants (38 including behavioral and scanned), the average integral was − 27.7 

$*periods (σ = 31.4, range = − 113.6–18.9), which was significantly different from zero 

[t(37) = − 5.4, p < 0.001].  This indicates that participants spent significantly more time 

below the purchase price than above the purchase price across trials.  The majority of 

participants displayed the disposition effect (31 of 38 had integrals less than zero).  As 

another measure of the disposition effect, participants sold the asset when it was below 

the purchase price significantly less often (mean = 6.5 trials, σ = 5.6) than when the asset 

was above the purchase price (mean = 14.4 trials, σ = 5.5; t(37) = 5.4,p < 0.001].  

Furthermore, the average number of periods the asset was kept above the purchase price 

(mean = 6.3 periods, σ = 3.0) was significantly lower than the average number of periods 

below the purchase price [mean = 9.3, σ = 5.2; t(37) = − 4.9, p < 0.001]. 
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The magnitude of the disposition effect varied widely across participants, ranging 

from a large disposition effect (integral of − 113.6 $*periods) to an anti-disposition effect 

(integral of 18.9 $*periods).  The heterogeneity in the disposition effect could be driven 

primarily by individual differences in gain-selling behavior, loss-holding behavior, or 

both.  The mean integral was significantly correlated with the average period in which an 

asset was sold or force-sold below the purchase price (r = − 0.73, p < 0.001), but not the 

average period in which an asset was sold or force-sold above the purchase price 

(r = − 0.13, p = 0.43).  This suggests that the heterogeneity in the disposition effect was 

driven primarily by the length of loss holding.  For this reason we focused the imaging 

analysis on decision-making below the purchase price, i.e.  in the loss domain. 

A preference-based explanation of the disposition effect would suggest that risk-

preference should be correlated with the magnitude of the disposition effect.  Overall, our 

risk-preference questionnaire revealed that participants were slightly risk-averse, with a 

mean α = 0.91 (σ = 0.34), which was consistent with past studies on risk preference 

(Tversky and Kahneman, 1992).  The mean loss aversion parameter, however, was higher 

(λ = 3.8, σ = 3.6) than is typically reported in the literature (λ ~ 2).  This was driven 

primarily by several outliers with unusually high estimates for the loss aversion 

coefficient.  The median value of λ = 2.7 was closer to that found in the literature.  We 

found no correlation between the risk-preference parameters, the loss aversion 

coefficients, and the disposition effect, providing further behavioral evidence against a 

preference-based explanation of the disposition effect (Vlcek and Wang, 2008). 

Participants were not asked in a structured manner about their beliefs in the task, 

however casual conversation during debriefing revealed that a large portion of 



57 
 

 

participants expressed a ‘hope’ that the asset would return to the purchase price when at a 

loss, despite being aware of the random-walk nature of the price.  It is important to note 

that self-reporting of the motivation behind investment decisions might not accurately 

reflect the underlying process driving decisions.  More formally, psychological aspects of 

participant behavior were gathered through BIS/BAS and EPQR questionnaires.  We 

found no significant correlations between these personality measurements and the 

disposition effect.  A negative correlation between BAS reward and the disposition effect 

approached significance (r = − 0.32, p = 0.06), however using Bonferroni correction for 

multiple comparisons makes the trend much less compelling. 

In order to build an imaging model that best reflects participant behavior, we ran a 

logistic regression with the decision to sell or keep as the outcome variable, and 

characteristics of the asset price as regressors.  We found that for any given period there 

was a low probability of selling (table 3-1).  The largely negative constant represents the 

fact that for each trial, the participant could sell on only one period (what would be the 

final one).  Consequently, the default prediction, with all other values set to zero, was that 

a participant would keep the asset for any particular period.  We found that three 

regressors significantly (p < 0.05) predicted participant choice behavior: the value of the 

asset, the change in value of the asset from the previous period, and the change in price 

direction.  These three characteristics of the asset price were subsequently included in our 

imaging model. 
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Imaging 

Our neuroimaging model was based on two behavioral observations: 1) that 

heterogeneity in the disposition effect was mostly due to decisions below the purchase 

price; and 2) that the regressors in our behavioral model that described local asset price 

characteristics (valuet, valuet', valuet''), predicted participant keep/sell behavior.  We 

therefore created a model focusing on the decision period, which was divided into 

decisions above the purchase price (gains), and decisions below the purchase price 

(losses).  These decision periods were modulated by participant choice (keep vs.  sell), 

value, and delta.  We report coordinates of activation and their corresponding statistics 

in table 3-2.  As would be expected, a simple contrast between decisions over gains 

versus losses revealed robust ventral striatal activation.  Ventral striatal activity was not 

significantly correlated with overall asset price relative to the purchase (neither in the 

gain nor loss domain).  Instead, we found that the ventral striatum responded to upticks in 

delta both above and below the purchase price, which was the difference between the 

current asset price, and the price in the previous period (figure 3-2).  This suggests that a 

change in asset price from the previous period best explains variation in the BOLD 

response during the decision-making period within the ventral striatum, as opposed to the 

total present value of the asset. 

Because of the evidence implicating the striatum in the process of valuation 

during decision-making, and its role in explaining individual heterogeneity in decision-

making strategies (Venkatraman et al., 2009a), we extracted beta values from the left and 

right ventral striatum and putamen clusters from the aforementioned delta contrast for 

decisions below the purchase price (right panel; figure 3-2).  These beta values describe 
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the slope of the relationship between the BOLD response and delta and were correlated 

with the magnitude of the disposition effect; both correlations approached significance 

(r = 0.367, p = 0.055; r = 0.360, p = 0.057, left and right respectively).  However, in an 

alternative model where an impulse function was used to model the immediate response 

to an increase or decrease in asset value (as opposed to the entire decision period), we 

find significant correlations in the left and right ventral striatum (r = 0.384, p = 0.044 

and r = 0.395, p = 0.037 for left and right, respectively).   

This suggests that our results are likely driven by immediate outcome response as 

opposed to deliberation over keeping vs.  selling the asset.  Participants who did not have 

a disposition effect displayed positive striatal responses to upticks in value, but 

participants who had large disposition effects showed little striatal response (figure 3-3; 

left ventral striatum/putamen cluster).  This relationship was not seen for decisions above 

the purchase price, where the BOLD response was significantly modulated by delta but 

not correlated with the magnitude of the disposition effect (r = 0.252,p = 0.187).  We 

found no correlation between the measured utility curvature (indicative of risk-

preference) of individual participants and overall activity in the left and right ventral 

striatum/putamen below the purchase price (r = 0.09, p = 0.64 and r = 0.10, p = 0.60 for 

both, respectively), as well as above the purchase price (r = − 0.18, p = 0.36).  Whole-

brain correlation analysis revealed no brain regions whose response to delta correlated 

with utility curvature, above or below the purchase price. 

To test whether the disposition effect was driven by a differential response to 

realized (sold) versus paper (kept) gains and losses, we contrasted sell versus keep 

decisions (averaged across gains and losses).  We found a significant difference for this 
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contrast in bilateral insula, DLPFC, thalamus and ACC, among other regions (figure 3-

4; table 3-1), areas consistently activated for risk-averse choices and decisions to quit 

loss-chasing behavior (Paulus et al., 2003; Campbell-Meiklejohn et al., 2008; Preuschoff 

et al., 2008).  However, none of these regions were significantly correlated with the 

magnitude of the disposition effect.  We found no activation in typical reward-related 

regions, such as the ventral striatum or medial prefrontal cortex (MPFC) that was greater 

for sell than keep decisions (even at a liberal threshold of p < 0.05, k ≥ 10).  We also 

found no regions significantly more active for keep than sell decisions at our statistical 

threshold (p < 0.001,k ≥ 57).  However, at a more liberal threshold (p < 0.005, k ≥ 10) we 

found greater activation in the ventral striatum and MPFC for keep versus sell (Kuhnen 

and Knutson, 2005; Campbell-Meiklejohn et al., 2008).  Neither the ventral striatum nor 

MPFC activation from the [keep − sell] contrast correlated with the magnitude of the 

disposition effect (r = − 0.23, p = 0.26, and r = 0.24, p = 0.24, for ventral striatum and 

MPFC, respectively).  Even when separated for decisions above and below the purchase 

price, whole-brain correlation analysis on [keep − sell] and [sell − keep] contrasts 

revealed no brain regions whose activity significantly correlated with the disposition 

effect or with participant risk-preference. 

 

Discussion 

The disposition effect is a robust behavioral phenomenon in which individuals 

hold onto losing assets longer than they hold onto gaining assets.  Here, we tested three 

theories on why people display a disposition effect using an asset-trading task and fMRI: 

a risk-preference, realized utility, and an irrational belief in mean reversion.  We found 
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three pieces of evidence suggesting that a preference-based explanation of the disposition 

effect does not fully explain the phenomenon.  First, we found that a behavioral measure 

of risk-preference did not correlate with the magnitude of the disposition effect.  Second, 

we found no correlation between measured risk-preference parameters and BOLD 

response in valuation regions.  Third, we found no correlation between the disposition 

effect and activation in regions previously shown to be correlated with risk attitude, 

namely the MPFC.  Similarly, we did not find a relationship between the disposition 

effect and differences in keep/sell activations in reward-related brain regions, as would be 

predicted by differences in realized utility.  Instead, our results are more consistent with a 

mean reversion hypothesis.  We show that for decisions below the purchase price, a 

greater disposition effect is correlated with a blunted ventral striatum response to upticks 

in value in some individuals.  Given the established role of the ventral striatum in 

signaling reward-prediction errors (RPE) (Pagnoni et al., 2002; Schultz, 2010), this 

blunted response is consistent with meeting an expectation of an uptick towards the 

mean. 

Behaviorally, our data did not point towards a risk-preference view of the 

disposition effect.  According to this explanation, the disposition effect reflects an 

asymmetry in risk-preference across gains and losses (Kahneman and Tversky, 1979; 

Lakshminarayanan et al., 2010).  Risk-preference is often measured using choice-based 

paradigms that estimate utility function curvature (Binswanger, 1980; Tversky and 

Kahneman, 1992; Holt and Laury, 2002).  Often these measurements are tied to 

individual variation in aspects of financial and non-financial decision-making, suggesting 

validity in their ability to predict real-world decision-making (Barsky et al., 1997; 
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Anderson and Mellor, 2008).  We used a similar choice paradigm that estimated both 

utility function curvature (risk-preference) and loss aversion (Tanaka et al., 2010).  

Consistent with past literature, we found that our participants were both risk-averse and 

loss-averse on average (Tversky and Kahneman, 1992).  However, neither curvature of 

the utility function nor loss aversion correlated with the disposition effect in our task, 

which builds on evidence that risk attitude is not driving the disposition effect (Vlcek and 

Wang, 2008). 

Our imaging data further suggest that risk-preference does not fully explain the 

disposition effect.  A large body of evidence has demonstrated that a network of brain 

regions, including the ventral striatum, MPFC, and orbitofrontal cortex (OFC) is closely 

associated with the economic concept of expected utility and the behavioral concept of 

reward (Knutson et al., 2001a; Montague and Berns, 2002; Berridge and Robinson, 2003; 

Delgado, 2007; Plassmann et al., 2007).  Activity in these regions scale with both the 

expected and subjective value of stimuli (Knutson et al., 2001a; Kable and Glimcher, 

2007).  Moreover, the ventral striatum and MPFC are not limited to the processing of 

gains, but they also process expected loss during decision-making (Tom et al., 2007; 

Brooks et al., 2010).  Individual risk-preference is directly related to the subjective 

valuation (i.e.  utility) of potential outcomes during choice.  Thus, if risk attitude played a 

role in our task, we should have found that activity in the aforementioned brain regions 

was correlated with risk-preference parameters.  However, none of the relative 

activations between keep versus sell decisions were correlated with subject risk-

preference in these regions.  In addition, there were no brain regions where the BOLD 

response to delta was correlated with risk-preference.  This suggests that subject 
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heterogeneity in risk-preference did not significantly contribute to decisions in our asset-

trading task. 

In addition to finding no valuation regions that correlated with measures of risk-

preference, we found no significant correlation between the magnitude of the disposition 

effect and activity in these same regions.  For example, activity in the ventral MPFC has 

been found to positively correlate with individual measures of risk seeking when risky 

decisions are made, while activity in the lateral OFC and dorsal MPFC positively 

correlates with risk-aversion when less-risky decisions are made (Tobler et al., 2007; 

Christopoulos et al., 2009; Xue et al., 2009).  When we compared risky (keep) versus 

riskless (sell) decisions below the purchase price, we found no correlation between 

ventral MPFC, lateral OFC, or dorsal MPFC activity and the disposition effect.  We 

found the same absence of correlation when comparing riskless (sell) versus risky (keep) 

decisions. 

The realization utility theory suggests that investors get a jolt of positive utility 

when they sell a stock at a gain, and a jolt of negative utility when they sell a stock at a 

loss (Barberis and Xiong, 2008).  In this theory, people want to avoid the pain of negative 

utility so they hold onto losses, and because they want to receive the pleasure of positive 

utility they sell gains.  This hypothesis would suggest that individual differences in the 

disposition effect should be correlated with the magnitude of the BOLD response in 

valuation-related brain regions during the decision to sell versus keep an asset, as others 

have found (Frydman et al., 2011).  In our study, we did not find such correlations.  

However, if the receipt of realization utility requires the act of completing a successful 

investing episode (including purchase and sale), it is possible that our experimental 
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design did not capture this because our participants did not have a choice about 

purchasing the assets (only selling). 

Though the aforementioned lack of results supporting alternative hypothesis is not 

definitive, our results are more consistent with an irrational belief in mean reversion.  We 

found a negative correlation between the magnitude of the disposition effect and the 

ventral striatum response to upticks in value when the asset price was below the purchase 

price.  This finding is consistent with models of reward prediction error (RPE) in the 

striatum (Schultz, 1997; Hollerman and Schultz, 1998; O’Doherty et al., 2003) which 

suggest that the striatum responds only to unexpected upticks in value.  In its simplest 

form, the RPE is computed by taking the difference between the reward received and the 

reward that was expected.  At each period in our task there was a 50/50 probability of an 

increase or decrease in asset value.  Thus, the objective expected value of the asset was 

always $0.  Any uptick in value should therefore result in a positive RPE, and 

consequently a ventral striatum response, regardless of the total present value of the asset.  

Although one might predict a decreasing marginal striatal response as the total asset 

value increases, one would not predict a blunted response to upticks in value when the 

asset value was negative.  Thus, the lack of a striatal response would suggest no RPE, 

even though the asset had increased in value.  Previous neuroimaging studies have shown 

that the striatal response to reward disappears when the subject can fully predict the 

reward (Berns et al., 2001; Pagnoni et al., 2002; McClure et al., 2003; O’Doherty et al., 

2003).  Thus, the lack of striatal response to upticks in value suggests that some subjects 

with a large disposition effect predicted the uptick when the asset was in the loss domain, 

implying that they were expecting a return to the mean.  Our results build on previous 
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behavioral research that supports an irrational belief in mean reversion (Andreassen, 

1988; Weber and Camerer, 1998; Vlcek and Wang, 2008). 
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Figures and Tables 

 

Figure 3-1: Asset trading task overview.  (A) Participants were forced to purchase an 

asset for $50 (purchase point marked by a gray circle).  The asset price then followed a 

random walk, always increasing or decreasing in increments of $5 with equal probability.  
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At each period, participants chose to keep or sell the asset (first panel).  After the 

participant made a choice, the choice was highlighted for 3 seconds (second panel).  The 

next period outcome was then shown and the participant could immediately make a 

decision (third panel).  An infinite horizon was implemented, where there was a 5% 

probability of the trial ending (and asset being force-sold).  Therefore, participants were 

able to keep the asset as many periods as they liked, with the caveat that each time they 

kept the asset, there was a 5% chance of the trial ending.  (B) and (C) show data from 

subjects without a disposition effect (left; average integral of 10.4 $*periods) and with a 

disposition effect (right; average integral of − 46.8 $*periods).  Each data point 

represents the period in which an asset was sold or force-sold (assets that were held until 

the trial ended).  Trials in which the overall integral of asset price through time was 

positive are shown in blue, negative in red, and zero in green.  Forty trials are shown for 

each participant. 
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Figure 3-2: Whole-brain analysis for identifying brain regions responding to positive 

delta.  Regions are shown whose BOLD response increased with an increase in asset 

price from the previous period, above (left) and below (right) the purchase price.  We 

find ventral striatal activity both above and below the purchase price in response to 

upticks in value.  Below the asset price, we also find DLPFC and motor area activation.  

Coronal sections are shown here (MNI y = 11 above, andy = 2 below).  Statistical 

thresholding was set at p < 0.001, k ≥ 53 (above), and k ≥ 42 (below), resulting in a 

whole-brain FDR < 0.05 for both contrasts. 
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Figure 3-3: Relationship between striatal response to upticks in value below the purchase 

price and the magnitude of the disposition effect.  Beta values in the left ventral striatum 

during decisions below the purchase price, modulated by the change in asset price from 

the previous period (delta), correlated with the magnitude of the disposition effect, as 

measured by the integral (r = 0.367, p = 0.055).  A more negative integral is associated 

with a larger disposition effect.  Participants who showed a larger disposition effect were 

more likely to show little or no response in the ventral striatum to upticks in value. 
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Figure 3-4: Whole-brain contrast between decisions to sell versus keep.  A greater 

BOLD response was observed in the bilateral insula, DLPFC, and ACC during decisions 

to sell versus keep an asset (MNI y = 11).  This is consistent with past research where 

participants quit chasing losses, but inconsistent with a realization utility explanation of 

the disposition effect.  Statistical thresholding was set at p < 0.001, k ≥ 57, resulting in a 

whole-brain FDR < 0.05. 
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    Coefficient Std.  
Error 

z  P > z  [95% Conf.  Interval] 

               

Valuet    0.036  0.005  6.95  0.000  0.026  0.047 

Valuet'    ‐0.091  0.016  ‐5.79  0.000  ‐0.122  ‐0.060 

Valuet''    0.027  0.010  2.78  0.005  0.008  0.047 

Integral (DE)    0.021  0.005  4.68  0.000  0.0126  0.031 

Valuet x 
Integral 

  ‐0.001  0.000  ‐7.78  0.000  ‐0.001  ‐0.001 

Valuet' x 
Integral 

  ‐0.004  0.000  ‐8.06  0.000  ‐0.005  ‐0.003 

Valuet'' x 
Integral 

  0.001  0.000  3.78  0.000  0.001  0.002 

Constant    ‐1.90  0.186  ‐10.21  0.000  ‐2.259  ‐1.531 

 

Table 3-1: Results of keep/sell decisions regressed onto local asset price characteristics 

using a logistic regression.  Participants had a greater propensity to sell when the asset 

price increased in value (valuet), decreased from the previous period (valuet’), and had a 

positive change in price direction (valuet'').  Valuet'' was calculated by taking the 

difference between (valuet − valuet− 1) and (valuet− 1 − valuet− 2).  A larger average 

integral (more negative for a greater disposition effect; DE) increased the probability of 

making a sell decision.  We found significant interactions between the disposition effect 

and local asset price characteristics. 
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Table 3-2: Whole-brain analysis results for selected contrasts. 

 
 

 

 

Structure L / R Maximum T Cluster Size Z P (unc) X Y Z

Decision Gain ‐ Decision Loss

Middle Occipital R 10.97 174 6.84 3.9E‐12 18 ‐94 9.5

Ventral Striatum L 7.40 710 5.50 1.89E‐08 ‐18 14 ‐8

Ventral Striatum R 6.88 495 5.26 7.33E‐08 15 14 ‐8

Medial Pre Frontal R 5.83 555 4.70 1.29E‐06 24 47 ‐8

Thalamus L, R 5.74 78 4.65 1.64E‐06 0 ‐7 6

Superior Parietal Lobule L 4.64 382 3.98 3.47E‐05 ‐33 ‐55 45

Superior Parietal Lobule R 4.61 308 3.96 3.71E‐05 21 ‐61 48

Below PP x Delta (Positve)

Middle Occipital R 7.12 87 5.30 5.94E‐08 24 ‐97 9.5

Putamen/Ventral Striatum L 5.75 243 4.61 2.06E‐06 ‐30 ‐13 2.5

Superior Parietal R 5.64 510 4.55 2.74E‐06 21 ‐64 59

Putamen R 5.51 135 4.47 3.89E‐06 33 ‐7 ‐1

Dorsolateral PFC R 5.28 119 4.34 7.23E‐06 57 2 27

Pre‐Motor R 5.03 193 4.19 1.4E‐05 27 11 55

Pre‐Motor L 4.40 57 3.78 7.72E‐05 ‐21 ‐4 59

Superior Parietal L 4.36 131 3.76 8.54E‐05 ‐15 ‐70 59

Above PP x Delta (Positve)

Cuneus L 5.93 466 4.73 1.1E‐06 ‐6 ‐82 17

Ventral Striatum L, R 5.48 236 4.48 3.78E‐06 ‐9 5 ‐12

Lingual Gyrus R 4.23 94 3.69 0.000114 12 ‐82 ‐1

Sell ‐ Keep

Anterior Cingulate L, R 7.52 1097 5.39 3.55E‐08 9 29 27

Cuneus L, R 6.73 1353 5.04 2.38E‐07 12 ‐85 13

Insula R 6.18 1290 4.77 9.17E‐07 42 14 ‐12

Insula L 5.83 360 4.59 2.22E‐06 ‐36 11 ‐1

Thalamus L, R 5.67 354 4.51 3.31E‐06 6 ‐19 2.5

Inferior Parietal R 5.34 226 4.32 7.77E‐06 54 ‐40 59

Dorsolateral PFC R 5.19 157 4.23 1.15E‐05 ‐45 5 31

Posterior Cingulate L, R 5.08 228 4.17 1.53E‐05 6 ‐22 31

Inferior Parietal L 4.94 301 4.09 2.19E‐05 ‐54 ‐34 55

Cerebellum R 4.68 150 3.93 4.30E‐05 24 ‐52 ‐26



73 
 

 

Supplementary Material 

Asset Trading Task Instructions 

This is an experiment in decision-making.  If you follow the instructions carefully 

and make good decisions, you can earn a considerable amount of money.  There are 40 

trials in the experiment.  However, only one of the trials will actually count toward your 

final payment.  A random draw will decide which of the 40 trials will count. 

 

1. For each trial, you initially see the history of an asset you have purchased.  Your 

purchase point is represented by the grey circle at period 10.  On the y-axis is the 

change in value of the asset, and on the x-axis is the period in which the asset is 

in.  At each period, there is a 50/50 chance that the asset increases or decreases in 

value by $5.  Each period is completely independent of one another:  an increase 

or decrease in a previous period does not change the probability of an increase or 

decrease in the following period.   

 

Continue 
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2. After pressing the left or right key, your asset will initially increase or decrease in 

value by $5 with a 50/50 chance.   

 

 

 

 

 

 

 

 

 

 

 

 

Continue 
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3. After the asset has increased or decreased in value, you will be asked if you want 

to keep or sell your asset.  Press the left arrow key to keep the asset and the right 

arrow key to sell the asset: 

 

 

 

 

 

 

 

 

 

 

 



76 
 

 

4. If you choose to KEEP your asset, there is a 5% chance that the trial will end, and 

you will receive what your asset is worth at that period.  If the trial continues, 

there is a 50/50 chance that the asset will increase or decrease in value by $5.  

You can keep as many periods as you like, however keep in mind that there is a 

5% chance that the trial will end every time you choose to keep the asset, and that 

the asset will increase or decrease by $5 with a 50/50 chance if the trial continues. 

 

In this example, the asset was kept and the trial continued on to the next period, 

where the asset decreased in value by $5. 
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5. If you choose to keep the asset and the trial ends, you will receive what the asset 

is worth for that trial: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Your asset was sold at its purchase price. 
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6. If you choose to SELL your asset, you will receive what the asset is worth for that 

period.  This period is marked by a yellow circle, as seen below.   
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7. After you sell your asset, you may press the left or right arrow key to view what 

would have happened for five more periods if you had kept it.  For example, 

assume you sell your asset in period 12.  After pressing the left or right arrow key 

to continue, you will see what the asset would have done for each of the five 

periods after selling.   

 

 

 

 

 

 

 

Continue 
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8. After the trial in which you sold your asset ends, you will see a screen that tells 

you for how much you sold your asset for in that trial. 

 

 

 

9. After all of the trials are over, you will role dice to determine a trial for which you 

will be paid. 
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Chapter 4 

The Neuroscience Behind the Stock Market’s Reaction to Corporate 

Earnings News 

Introduction 

As many investors can attest to, when corporate earnings announcements beat 

analyst’s forecasts, the stock price of that company generally rises.  Likewise, if 

corporate earnings miss expectations even by a small amount, the stock price tends to 

fall, usually by a larger amount than the rise from beating expectations (Skinner and 

Sloan, 2002).  Analyst forecasts can be thought of as a measurable proxy for actual 

investor expectations, though the relationship between analysts and the companies they 

follow can be complicated.  As stock price is a direct link to shareholder wealth, 

expectations that investors have on earnings announcements carry tremendous weight for 

the managers of a company.  How investors generate their expectations of company 

earnings based on publicly available financials information is still not entirely clear, 

though a large amount of literature has been generated on this topic (Ball and Brown, 

1968; Beaver, 1968; Dugar and Nathan, 1995; Calegari and Fargher, 1997; Libby et al., 

2002; Bradshaw, 2004; Kaniel et al., 2012). 

 Ultimately, the trading behavior of investors is what drives the market reaction to 

earnings announcement beats or misses.  But why do earnings misses lead to larger 

declines in stock price compared to equivalent gains? How do investors process the most 

basic of earnings information, their historical numbers? It is technically unfeasible to 

measure the expectation of each and every individual investor who plays a role in the 
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market; and analyst forecasts are not necessarily an accurate representation of individual 

investor expectations.  Even if every investor could be contacted, investor expectations of 

a company’s performance (and thus earnings surprise) can encompass more than just a 

numerical forecast or factors easily measured through self-report.  Neuroimaing holds 

promise in being able to capture individual investor expectations, which should include 

factors not easily measurable. 

Most of the research in human financial decision making has centered on the 

ventral striatum, a sub-cortical structure in the brain that has been implicated largely in 

reward-processing, and reward-related learning (Delgado et al., 2000; Knutson et al., 

2001a; Rilling et al., 2002; McClure et al., 2004b).  It has been shown to encode the 

subjective value of prospective options, and because it receives input from many cortical 

and sub-cortical regions of the brain, it is a prime structure for the integration of past and 

present sensory information necessary for the generation of expectation (Smith and 

Kieval, 2000).  The ventral striatum has been shown to signal a reward prediction-error 

(RPE), a term which is negative when expectations about present and future reward are 

too low, zero when expectations are met, and positive when expectations are too low 

(Schultz, 1997; Pagnoni et al., 2002; McClure et al., 2003; O’Doherty et al., 2004; Abler 

et al., 2006; Hare et al., 2008).   

We hypothesize that like other forms of monetary reward and punishment, the 

magnitude of earning surprise is signaled in the ventral striatum as a prediction error.  

Furthermore, we hypothesize that the ventral striatum will process both positive and 

negative earnings surprise.  Finally, we hypothesize that an aggregate reward prediction 

error signal across subjects will correlate with subsequent changes in the market price of 
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the stock.  To test these hypotheses, we recruited 36 second-year MBA students to serve 

as proxies for investors.  The participants forecast 60 firm’s earnings per share (EPS) 

numbers using actual EPS figures from three years prior, as well as financial analysts’ 

consensus forecasts.  Based on their own EPS forecasts, participants then take either a 

long or short position in the firm’s stock.  Finally, while undergoing fMRI, the 

participants learn the actual EPS, and the subsequent change in stock market price.  We 

focus on the BOLD response in the ventral striatum during the phase in which the actual 

EPS is revealed, which we expect will capture the difference between the actual earning’s 

numbers participant expectations. 

  

Materials and Methods 

Participants 

 Thirty-six full-time MBA students (8 female; 28 male) were recruited from 

Emory University’s Goizueta Business School.  The average age of participants was 28.  

Full-time MBA students were recruited because of their basic knowledge of accounting 

and investing, which are required for an understanding of the forecasting task.  Full-time 

MBA students have been shown to be a good proxy for informed nonprofessional 

investors, the population we hope to make inferences regarding (Libby et al., 2002; 

Elliott et al., 2006).  All participants reported no psychiatric, neurological, or other 

disorders which would preclude them from safely undergoing fMRI.  All participants 

provided informed consent to experimental procedures approved by the Emory 

University Institutional Review Board.  Participants rolled dice at the end of the 

experiment, which determined the trial participants would be compensated for.  
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Compensation was based on the change in stock price from $50 after the earnings 

announcement for that trial.  Participants earned between $33 and $67. 

 Prior to the forecasting task, we assessed each participant’s knowledge of 

accounting and investing concepts.  To do this, participants completed a 25-question test 

covering topics such as the meaning of long and short positions, earnings announcements, 

and other task-related topics.  We required a minimum of an 80% correct response rate.  

One individual did not make this cut-off, and therefore was excluded from analysis.  The 

majority of participants reported having used financial reports and following and 

investing in the stock market.  Academically, 65.7% of participants are second-year 

MBA students, 54.3% are concentrating in finance, and 60% hold undergraduate business 

degrees.  All participants completed core MBA accounting and finance classes, and 80% 

completed at least two courses in finance, accounting, economics, and statistics. 

Forecasting Task 

 The forecasting task was divided into two parts.  In the first part, participants 

entered forecasts for 60 firms based on historical information, and then took a position 

(long or short) in each of the companies.  In the second part, while undergoing fMRI, 

participants viewed the actual EPS of the companies, and the subsequent change in stock 

price surrounding the announcement.  The first portion of the experiment outside the 

scanner consisted of three screens (figure 4-1; panel A).  In the first screen, participants 

were given three years of historical information – EPS and analyst consensus forecasts, as 

well as the difference between these numbers.  Participants were also given the current 

year’s analysts’ consensus forecast.  After reviewing the historical information, 
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participants had to enter an EPS forecast.  After this, they were asked if they wanted to go 

long or short in the company’s stock. 

 The second portion of the experiment took place while participants were 

undergoing fMRI.  Participants viewed three screens for each company they made 

forecasts for.  On the first screen (figure 4-1; panel B), participants reviewed historical 

information, their forecast, and their position in the company’s stock.  In the second 

screen, the actual EPS was revealed.  In the third screen, participants learned of the 

change in stock price and were told whether won or lost money based on the direction of 

the stock price change and their position.  The interval between each screen and between 

trials was jittered using a negative exponential function with a mean of three seconds.  A 

minimum of two seconds was required before participants could advance the screen. 

Firm Selection 

 Each participant forecasted the EPS of 60 publicly traded companies.  These 

companies were chosen based on several factors.  First, the sample period was restricted 

to the time period between 2000-2009 because of well-documented changes in reported 

earnings, earnings surprise, and earnings thresholds during the last half of the century 

(Francis and Schipper, 1999; Givoly and Hayn, 2000).  Second, we restricted the sample 

to firms with earnings announcement-period stock returns that have the same sign as the 

earnings surprise.  Thus, if a company beats analyst expectations (positive surprise), the 

change in stock price would be positive.  Likewise, if a company misses expectations, the 

change in stock price would be negative.  Meeting expectations could lead to either a 

positive or negative surprise.  This was done in order to prevent information other than 

what our participants viewed, such as CEO explanations as to why the company suffered 
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a loss, from playing a major role in the subsequent change in stock price.  Of the firms we 

selected based on the aforementioned criteria, 45% beat the analyst consensus forecast, 

40% missed the forecast, and 15% met the forecast. 

fMRI data acquisition and analysis 

Functional imaging was performed with a Siemens 3 T Trio whole-body scanner.  

T1-weighted images (TR = 2600 ms, TE = 3.02 ms, flip angle = 8°, 240 × 256 matrix, 

176 sagittal interleaved slices, 1 mm3 voxel size) were acquired for each subject prior to 

the experimental run.  For the experimental run, where participants viewed actual EPS, 

T2*-weighted images using an echo-planar imaging sequence were acquired, which show 

blood oxygen level-dependent (BOLD) responses (echo-planar imaging, TR = 2000 ms, 

TE = 30 ms, flip angle = 90°, FOV = 192 mm × 192 mm, 64 × 64 matrix, 33 3.5-mm 

thick interleaved axial slices, and 3 × 3 × 3.5 mm voxels). 

 fMRI data were analyzed using SPM8 (Wellcome Department of Imaging 

Neuroscience, University College London) using a standard GLM model.  Data were 

subjected to standard preprocessing, including motion correction, slice-timing correction, 

normalization to an MNI template brain, and smoothing using an isotropic Gaussian 

kernel (full-width half-maximum = 8 mm).  Task regressors were modeled using a 

standard canonical hemodynamic response (HRF) function, which combines two gamma 

functions- one to model the peak HRF response, and one to model the undershoot.  

Further analysis of individual participant beta coefficients from the regressions was 

completed in Matlab (Mathworks) and STATA (StataCorp). 
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 To estimate an average ventral striatal BOLD response to the actual earnings 

announcement for each company across individuals, we estimated the within-subjects 

BOLD response by running the following regression: 

	 	 1 	⨂	 	 2 	⨂	

	 3 	⨂	 	 	 

where BOLD is the preprocessed signal in voxel v and time t, and j represents the 

trial/firm.  Additional regressors controlling for separate runs and participant motion were 

included.  Screen1 is the time period in which participants reviewed their position and the 

firm’s historical information, Screen2 is when the earnings of the firm for the current 

period is displayed, and Screen3 is the stock price change.  Because of our a priori 

hypothesis regarding the ventral striatum and earnings surprise, we limited the regression 

to the anatomically defined ventral striatum (figure 4-2).  To obtain an average neural 

surprise response for each company, we simply summate each β2v over all v in the ventral 

striatum ROI and over all participants for each firm j, to obtain 60 average BOLD 

responses.  Some observations were excluded if the participant took the wrong position 

(72 observations), or there were scanner-related problems preventing the capture of a 

response (11 observations). 

To test whether the ventral striatal response is correlated with the change in stock 

price after the company’s earnings announcement, we ran the following linear regression: 

	 	 _ 	  

where CRR represents the cumulative raw return during the three day period centered on 

the earnings announcement, VS_BOLD is the average BOLD response across 
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participants in the ventral striatum, and j represents the firm.  To aid in the interpretation 

of the beta coefficient β2, we flip the sign of the BOLD signal for short positions such 

that they can be interpreted in the same way as long positions.  Additionally, we 

compared a model with the only regressor being earnings surprise (actual EPS – analyst 

forecast) with a model containing both surprise and VS_BOLD described above.  To test 

whether the ventral striatum reflects the larger effect that earnings misses has on stock 

price, we run a model where VS_BOLD is split into beat, meet, and miss categories, 

regressed against CRR.  All regressions used robust standard errors, which help deal with 

heteroscedasticity in the data (though the regression results do not change substantially 

when using regular standard errors). 

 

Results 

Participants’ Behavior 

 The participant estimates of EPS (mean = 2.70, µ = 1.95) were not statistically 

different from the consensus forecast (mean = 2.67, µ = 1.95; t(59) = 0.70), and were 

strongly correlated (r = 0.998, p < 0.001).  The average surprise for each firm, defined as 

the difference between the actual EPS and the forecasts (participant or analysts) averaged 

over firms, significantly differed between participants (mean = 0.02, µ = 0.48) and 

analysts (mean = -0.01, µ = 0.44; t(59) = 2.17) .  Forecasting ability was defined as the 

proportional mean absolute forecast error (Clement et al., 2007), and was not correlated 

with experience, education, or quiz scores when corrected for multiple comparisons using 

the Bonferroni method.   
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BOLD Response Analysis 

 To get rid of generic task-related effects, we subtract the BOLD response to the 

first screen (review) from the screen of interest (surprise).  We find that the direction of 

striatal response to earnings surprise in all categories is as expected – positive when 

companies beat (miss) analyst expectations and participants are long (short), and negative 

when companies miss (beat) expectations and analysts are long (short).  Against what we 

might expect, the BOLD response in the ventral striatum is not significantly different 

from zero in all conditions (table 4-1).  Only in conditions where the participant would 

lose money based on their position, or where it’s unclear if they will lose or gain (when 

the company meets expectations), was the striatal BOLD response significantly different 

from zero at a threshold of α = 0.05.  The absolute response to earnings announcements 

that would subsequently lead to monetary loss for the participant (miss-long and beat-

short), were larger than the absolute response to announcements that would lead to 

monetary gain. 

 Across participants, we find no significant correlation between the magnitude of 

the earnings surprise announcement (actual EPS – analyst consensus) and the BOLD 

response in the striatum during the surprise screen for long (r = 0.02; p = 0.52) or short (r 

= -0.06; p = 0.13) positions.  Calculating earnings surprise using the participant forecasts 

(actual EPS – participant forecast), we also find no correlation with the BOLD response 

in the ventral striatum for long (r = 0.02, p = 0.58) or short (r = -0.05; p = 0.18) positions. 

 To test whether an aggregate BOLD response for each firm would correlate with 

subsequent raw market return, we regressed the BOLD response to company’s earnings 

announcements against raw stock return.  To make beta coefficients more easily 
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interpretable, we flip the sign of the BOLD response on short positions to transform them 

to equivalent long positions.  We find that the average ventral striatal BOLD response for 

each firm significantly correlates with raw return during the announcement period (table 

4-2; panel A).  To test whether the participant BOLD response provides any additional 

information over earnings surprise, we compared two models with earnings surprise, one 

with and without the BOLD data.  As expected, a simple linear regression model with 

analyst surprise as a regressor was significant, with an adjusted R2 of 0.16 (table 4-2; 

panel B).  Adding the average BOLD response in the ventral striatum increases the 

adjusted R2 of the model from 0.16 to 0.41, suggesting that the BOLD data adds 

additional explanatory power to the model (table 4-2; panel C). 

 Earnings announcement misses lead to a larger decline in stock price than the rise 

from beating expectations.  To test whether the ventral striatal response to company 

earnings misses has a larger effect on market price, we divided the average ventral striatal 

BOLD signal into beat, meet, and miss regressors, took their absolute value, and regress 

them against raw return.  In both the meet and beat conditions, the BOLD response 

significantly relates to the market return (table 4-3).  The BOLD response to meeting 

expectations did not significantly correlate with market return.  The absolute value of the 

beta coefficients for beat vs.  miss were similar in size (β = 0.272 vs.  β = -0.243 for beat 

and miss, respectively). 

 

Discussion 

 Company earnings announcements have a large effect on shareholder wealth.  

When companies beat analyst expectations, the stock price generally rises, and when they 
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miss analyst expectations, the stock price generally falls.  Little is known about how 

individual investors process earnings information.  It is not feasible to measure every 

investor’s expectation of earnings in the market.  A large body of literature within the 

field of neuroeconomics has demonstrated that certain brain structures signal expectations 

of future reward, namely the ventral striatum (Hollerman and Schultz, 1998; McClure et 

al., 2003; O’Doherty et al., 2004).  Here we utilize fMRI as a means to measure brain 

activity in this structure while a sample of proxy-investors complete a task where they 

view earnings announcements for companies they have a stake in.  Their compensation 

for the task was tied to the performance of the company’s stock post-announcement.  

This allows us to answer several questions – is earnings surprise tracked in the ventral 

striatum of investors? Are both positive and negative earnings surprises, which have 

differential effects in the magnitude of price change in the market, reflected in the ventral 

striatum? Finally, can the ventral striatum activity of a subset of investors be correlated 

with overall market activity? 

 We found that the BOLD response in the anatomically-defined ventral striatum to 

company earnings surprise versus a baseline screen was significant, but only for negative 

surprise when participants were long, and positive surprise when participants were short 

– both conditions in which participants would lose money due to market price change.  

Many neuroimaging studies find a significant activation to monetary gain in the ventral 

striatum, but not monetary loss (Knutson et al., 2001a; Yacubian et al., 2006).  This is 

possibly attributed to the lack salience of monetary losses in experiments, because of the 

fact that participants have to be compensated for their time, and thus always leave with 

more money than when they started.  However, in this case we find that a cue signaling 
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monetary loss results in significant less ventral striatal activity than a baseline 

information screen.  In the market, earnings misses tend to result in more drastic market 

changes, which could be reflected in our sample by the larger absolute value for the loss-

conditions.  Other groups have found similar results regarding steeper responses to 

monetary loss-predicting stimuli than monetary-gain predicting ones (Tom et al., 2007). 

 Most surprisingly, we find that the ventral striatal response to company earnings 

surprise correlates with subsequent changes in stock price.  Earnings surprise, as defined 

by the difference in actual earnings per share and analyst consensus forecasts, is 

positively correlated with the change in stock price.  Investor expectations and 

subsequent trading behavior is likely to be partially responsible for this change.  We find 

that ventral striatal activity, which has been shown to signal expectations of reward 

(Schultz, 1997; Kable and Glimcher, 2007), correlates with changes in stock price around 

the announcement period in a group of proxy investors.  This suggests that the ventral 

striatal response might be capturing individual expectations, which could potentially help 

explain some market variation in terms of raw return around the announcement period. 

We find that the BOLD response adds additional explanatory power above and beyond 

earnings surprise itself, increasing the adjusted R2 of the regression model.   

 We show that fMRI can potentially be a useful tool in helping explain investor 

expectations, and subsequent market reaction.  In our sample, the ventral striatum 

captures information from individual proxy-investors that is above and beyond the 

earnings surprise numbers themselves.  Determining what information the ventral 

striatum is actually conveying beyond the reaction to the earnings surprise could be done 

in future experiments. Neuroimaging can help explain the relationship between the 
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market, accounting numbers, and investor expectations through carefully controlled 

experiments.  Here we take a first step in this direction. Whether our results are 

applicable to the market as a whole can only be determined by future experiments.  
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Figures and Tables 

 

 

Figure 4-1: Experimental design.  Each trial consisted to two components.  The first 

component shown in panel A, took place outside of the MRI scanner.  Participants were 

asked to enter a forecast of the EPS for the current period based on given historical 

information.  This historical information included the past three years of actual earnings 

numbers, as well as analyst consensus numbers.  They then had to take either a long or 

short position in the firm’s stock.  The second component (panel B), which was 

completed inside the MRI scanner, consisted of three screens – the first was a review of 

the participant’s position, historical information, and the entered earnings estimate.  The 

Panel A: Outside fMRI Scanner Panel B: Inside fMRI Scanner 
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second screen revealed the actual earnings per share of the current period, as well as the 

difference between actual and analyst consensus, and actual and participant forecast 

numbers.  The third screen displayed the stock price change during the three-day period 

centered on the earnings announcement, and whether the participant won or lost money 

based on their position. 
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Figure 4-2: Anatomical ventral striatum ROI.  Our a priori hypothesis was that the 

ventral striatum would process earnings surprise information.  We therefore limited our 

analysis to this region (shaded in red). 
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 Beat Meet Miss 

Long M = 0.03 

SD = 1.20 

t = 0.68 

M = -0.15 

SD = 1.11 

t = -1.92 

M = -0.40 

SD = 1.20 

t = -7.60** 

Short M = -0.44 

SD = 1.13 

t = -6.46** 

M = -0.41 

SD = 1.61 

t = -2.67* 

M = 0.08 

SD = 1.26 

t = 1.07 

 

Table 4-1: Average BOLD response in the anatomical ventral striatum to earnings 

surprise.  ** = p < 0.001, * = p < 0.05. 
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Panel A.             

CRR = β0 + β1*VS_BOLD + ε 

Coefficient SE t P>t [95% Conf. Interval] 

VS_BOLD 0.210 0.042 5.050 0.000 0.127 0.293 

Constant 0.006 0.013 0.500 0.620 -0.019 0.031 

R2 = 0.306 

Adj. R2 = 0.294 

Panel B.             

CRR = β0 + β1*Surprise + ε 

Coefficient SE t P>t [95% Conf. Interval] 

Surprise 0.110 0.031 3.510 0.001 0.047 0.173 

Constant -0.002 0.014 -0.130 0.893 -0.029 0.025 

R2 = 0.175 

Adj. R2 = 0.161 

Panel C.             

CRR = β0 + β1*Surprise + β2*VS_BOLD + ε 

Coefficient SE t P>t [95% Conf. Interval] 

Surprise 0.093 0.027 3.490 0.001 0.040 0.146 

VS_BOLD 0.193 0.038 5.020 0.000 0.116 0.269 

Constant 0.005 0.011 0.450 0.653 -0.018 0.028 

R2 = 0.428 

Adj. R2 = 0.408 
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Table 4-2: Results of market regressions.  To test whether the BOLD response in the 

ventral striatum relates to the change in market price, we regress surprise and the BOLD 

response (VS) separately onto the cumulative raw return (CRR).  VS_BOLD alone 

significantly correlates with CRR (panel A); however earnings surprise has already been 

shown to correlate strongly with market return.  We test to see whether the ventral striatal 

response provides additional information on top of surprise alone by comparing a model 

with only surprise (panel B) with a model containing both surprise and VS_BOLD (panel 

C).  The adjusted R2 increases with the addition of VS_BOLD, suggesting an increase in 

explanatory power over surprise with the ventral striatal BOLD response. 
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Chapter 5 

Summary of Findings 

The ventral striatum is thought to signal reward prediction error (RPE) that 

theoretically should account for both financial gain and loss.  A cue predicting a 

monetary gain should elicit a positive RPE, and a cue predicting a monetary loss might be 

expected to elicit a negative RPE.  Cues signaling monetary gain consistently activate the 

ventral striatum.  However, the case for ventral striatum signaling of RPE for financial 

losses is less clear.  Some research studies show an increase in BOLD response to 

financial gains, and a decrease to financial losses (Tom et al., 2007), while others 

demonstrate that separate regions respond to gains and losses (Yacubian et al., 2006).  To 

advance our knowledge of both ventral striatum loss processing, as well as help explain 

real-world phenomenon as they relate to financial loss using neuroimaging, we carried 

out a series of three experiments described in chapters 2, 3, and 4.  We summarize the 

results and conclusions of these experiments below. 

From Bad to Worse: Striatal Coding of the Relative Value of Painful Decisions 

 

1. When participants made decisions over gambles consisting of electric shocks, 

they behaved in a risk-seeking manner.  This is consistent with the view that 

participants treated the lotteries in a similar manner as financial losses. 

 

2. Even in this loss realm with entirely aversive outcomes, we find that cues 

predicting better potential outcomes elicited a BOLD response in the ventral 

striatum. 
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3. The magnitude of the BOLD response in the ventral striatum correlated with 

the overall expected value of the lotteries. 

 

4. The BOLD response correlated with each component of the lotteries – 

positively with the potential shocks less than a status quo amount, and 

negatively with the potential shocks less. 

 
Neural Insensitivity to Upticks in Value is Associated with the Disposition Effect 

 
5. In an asset-trading task where price followed a random walk and there was no 

optimal trading behavior, participants held onto losing assets much longer 

than gaining assets. This behavior is known as the disposition effect. 

 

6. Risk-preference measured outside of the scanner did not correlate with the 

magnitude of the disposition effect.  This suggests that whatever governs risk-

seeking behavior over losses and risk-averseness over gains is not likely the 

same mechanism governing the disposition effect. 

 
 

7. Heterogeneity in the disposition effect was driven by behavior when the asset 

was at a loss, but not when the asset was at a gain. 
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8. The slope of the BOLD response to an uptick in asset value when participants 

were below the purchase price was negatively correlated with the disposition 

effect.  In other words, participants who had a larger disposition effect had a 

blunted response in the ventral striatum to upticks in value when at a loss.  

Under an RPE interpretation of the ventral striatum response, the blunted 

response in participants who had a larger disposition effect might signify that 

their expectation that the losing asset would begin to return to the mean was 

met.  This is consistent with a mean reversion hypothesis. 

 

The Neuroscience Behind the Stock Market’s Reaction to Corporate Earnings 

News 

 

9. Participant forecasts for the current period earnings per share was significantly 

correlated with analyst consensus. 

 

10. The BOLD response in the ventral striatum decreases for company earnings 

announcements which lead to monetary loss, but surprisingly did not increase 

for announcements that lead to monetary gain. 

 

11. The overall BOLD response did not correlate with earnings surprise (the 

difference between the actual earnings and the analyst consensus). 

 
12. The BOLD response in the ventral striatum to earnings announcements 

significantly correlated with the cumulative market return. 
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13. The BOLD response added significant explanatory power, demonstrated by an 

increase in the adjusted R2, when moving from a model with only earnings 

surprise to a model with both earnings surprise and the BOLD response in the 

ventral striatum. 

 

Significance 

Basic Knowledge 

 The overarching conclusion that can be drawn from the above three studies is that 

the ventral striatum does indeed encode predictions of financial loss through decreases in 

activity.  We find that the BOLD response in the ventral striatum correlates with the 

expected value of entirely aversive stimuli that participants treat as losses (chapter 2).  

We also find that loss-chasing behavior in the disposition effect is correlated with a 

striatal response while participants are at a loss (chapter 3).  Finally, company earnings 

announcements which lead to stock price changes that result in participant financial loss 

are coded within the ventral striatum (chapter 4).  From a basic research perspective, this 

is important for understanding the range of stimuli with which the ventral striatum signals 

RPE.  Modern theories of decision-making are tied to concepts of reward, utility, and 

RPE, all of which neuroimaging finds is represented within the mesolimbic dopamine 

system (Hollerman and Schultz, 1998; Pagnoni et al., 2002; Kable and Glimcher, 2007; 

Berridge and Kringelbach, 2008).  Models of decision-making associated with these 

concepts can account for both sides of the financial gain-loss coin, and might help 

explain what happens when decision making goes wrong (Montague et al., 2004, 2012; 
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Sharp et al., 2012).  Whether they actually provide benefit to human health hinges on 

whether the brain behaves in a manner that these models prescribe, and having an 

understanding of how the parameters of these models are represented (O’Doherty et al., 

2007; Daw et al., 2011).  My dissertation adds to the emerging literature on the brain’s 

representation of reinforcement learning models by showing that negative RPE can be 

represented in the ventral striatum. 

Clinical Relevance 

From a health-oriented standpoint, understanding the brain’s neuroanatomy and 

mechanism of dealing with financial loss is important for developing methods of 

treatment for mental disorders characterized by aberrant financial decision-making.  

Pathological gamblers incur large financial losses, yet continue to gamble despite this.  

Cognitive distortions like the gambler’s fallacy are known to be present in pathological 

gamblers (Toneatto, 1999; Raylu and Oei, 2002).  The gambler’s fallacy is a belief that 

every segment of a sequence of random events must reflect the true proportion – that is, 

the belief that if a coin flip results in heads twice in a row, on the third flip the coin will 

be more likely to land tails to keep the 50/50 true proportion (Tversky and Kahneman, 

1971).  In cases of gambling or investment, a belief in the gambler’s fallacy would lead to 

the chasing of loses due to the belief that multiple losses in a row would increase the 

likelihood of a win.  In chapter 3, I show that the disposition effect is likely driven by an 

irrational belief in mean reversion.  Mean reversion is similar to the gambler’s fallacy in 

that they both represent a belief in a random variable returning to its mean in short 

segments of time.  We showed that a healthy sample of MBA students exhibited the 

disposition effect, which mirrors the literature showing that the effect is present in a 
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variety of populations, including undergraduates and professional investors (Odean, 

1998; Weber and Camerer, 1998).  Thus one aspect of pathological gambling, the chasing 

of losses, could be a general human trait that is exacerbated in pathological cases.  

Interestingly, dopamine agonists used to treat Parkinson’s disease symptoms have been 

shown to increase the likelihood of pathological gambling behavior, of which loss-

chasing is a large component (Driver-Dunckley et al., 2003; Dodd et al., 2005).  It is 

possible that their influence on dopaminergic transmission within the ventral striatum 

might drive the increase in loss-chasing behavior.   

Applications 

 Beyond models of decision-making and health-related significance, some of my 

research has suggested that neuroimaging of sub-samples of a population can help 

provide additional information about population behavior than behavioral metrics alone.  

In chapter 4, the BOLD response to company earnings announcements in the ventral 

striatum correlated with the subsequent change in market price.  I show that this ventral 

striatum response, which can be interpreted as the difference between actual earnings and 

the proxy-investor expectations, helps explain additional variance in market return above 

and beyond numerical earnings surprise.  As with most scientific literature, caution must 

be taken with extrapolating these results.  The firms in chapter 4 were chosen based a 

clear pattern of positive-surprise  increased market return, negative surprise  

decreased market return.  In the actual market, these patterns are not always met.  The R2 

for a model with many more firms not meeting these criteria will unquestionably be 

lower.  Despite this, fMRI holds some potential in capturing expectations that otherwise 

couldn’t be elicited from self-report. 
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fMRI is expensive relative to surveys and questionnaires.  However, if it can 

allow one to use sub- sample of a population to add additional explanatory power over 

surveys and questionnaires, then in the long-term it could be a useful tool for both 

marketing purposes and understanding some market phenomena.  Indeed, the field of 

neuromarketing is already burgeoning (Plassmann et al., 2008; Ariely and Berns, 2010).  

My research adds to the field by showing that even extremely complex market behavior 

can be partially explained using neuroimaging responses in a sub-sample. 

Cellular Speculation 

The technique of fMRI takes a coarse spatial and temporal look at brain activity 

compared to cellular-level techniques such as electrophysiology.  As with any rapidly 

adopted technique, there has been some caution leveled in the interpretation of fMRI 

results in terms of the underlying brain processes governing the signal (Attwell and 

Iadecola, 2002; Logothetis, 2008).  Research published in the last decade combining 

electrophysiology with fMRI has demonstrated that the BOLD signal reflects local field 

potential more so than action potentials (Logothetis et al., 2001; Logothetis, 2002).  The 

local field potential principally consists of all synaptic activity on the dendrites of 

neurons within a region, not necessarily the action potentials generated by neurons in that 

region.  The interpretation of a BOLD signal in a region thus has to be tempered by the 

fact that it could be reflecting excitatory or inhibitory input from outside regions, or intra-

regional processing.  Ultimately the conclusions drawn about the mesolimbic dopamine 

system signaling both financial gain and loss from fMRI studies remain the same; and a 

substantial amount of literature at the cellular-level reflects these results. 
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The neuronal architecture to support the mesolimbic dopamine systems 

involvement in signaling financial gain and loss is there.  GABAergic neurons within the 

ventral striatum increase in their firing rate prior to delivery of a reward (Schultz et al., 

1992).  Dopaminergic neurons in the VTA signal expectations of reward in a RPE-

manner (Hollerman and Schultz, 1998).  Dopaminergic neurons in the substantia nigra of 

humans have been shown to increase in firing rate to unexpected gains, and decrease to 

unexpected losses (Zaghloul et al., 2009).  Some populations of midbrain dopamine 

neurons increase in firing rate to both appetitive and aversive stimuli, potentially 

signaling saliency.  Other populations are excited by appetitive stimuli and inhibited by 

aversive stimuli (Matsumoto and Hikosaka, 2009).  And yet others only fire for positive 

RPEs (Bayer and Glimcher, 2005).  Further downstream, neurons in the lateral habenula 

signal negative reward which is thought to drive dopaminergic prediction error signals 

(Matsumoto and Hikosaka, 2007).  Financial loss could be regarded as an aversive 

stimulus, or it could be regarded as less of an appetitive stimulus.  In either case, the type 

of neuron required to carry these signals are indeed there. 

The characteristics of dopamine neurons place a limit on the range of RPE that 

can be signaled.  The baseline action potential frequency of midbrain dopaminergic 

neurons is roughly 5 Hz (Schultz, 1997).  Dopaminergic neurons can be excited up to 100 

Hz for a brief period of time, but can only be suppressed down to 0 Hz (Hyland et al., 

2002; Pan et al., 2005).  Thus if the baseline firing rate is an RPE of 0, the positive RPE 

could be orders of magnitude larger than negative RPEs.  Financial gains and losses are 

reference dependent, as demonstrated behaviorally by Kahneman & Tversky (1979), and 

evidence suggests that signals from the ventral striatum are relative to the person’s 
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reference point (De Martino et al., 2009).  Thus the baseline firing rate of dopaminergic 

neurons might be re-set to represent a different reference point in order to accommodate 

largely negative RPEs.  Alternatively, aversive RPEs that are positive for worse-than-

expected outcomes might carry the financial loss side of the coin.  In the above three 

experiments described in my dissertation, increasing potential loss always resulted in a 

lessened BOLD response in the ventral striatum, so the former explanation is more likely. 

Future Directions 

 The debate on whether a single system processes financial gains and losses, or 

whether positive and negative valence are separated spatially or temporally will likely 

continue.  I provide evidence for the former argument by showing that the ventral 

striatum is involved in loss-related processes in three separate experiments.  However the 

problem of having participant experience ecologically-valid financial loss in an 

experimental setting can’t be ignored.  Future research might compare incentive 

structures and brain activation to financial loss to determine whether conflicting results in 

the financial loss literature are driven by differences in incentive structure.  This could 

have wide-reaching impact on the future study of financial loss in neuroeconomic studies. 

 Future research might also focus on loss-holding behavior in mental health 

behaviors and in aging.  In chapter 3, I use a simple paradigm to study the disposition 

effect, where participants choose to keep or sell an asset whose price follows a random 

walk.  In a healthy population, we show that the disposition effect is clearly present, and 

that based on activation within the ventral striatum, is likely driven by an irrational belief 

in mean reversion.  One could hypothesize that pathological gamblers would be more 

likely to show a large disposition effect compared to a healthy population.  Using 
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neuroimaging, we might be able to determine whether this exacerbated loss-chasing is 

due to a stronger belief in mean reversion (or the gambler’s fallacy) based on striatal 

activation or whether some other belief is driving it.  Follow-up studies could then be 

able to test training routines tailored to the findings in order to decrease loss-chasing 

behavior. 

 Future research might utilize higher field strength MRI with localizers on the 

ventral striatum to increase both the spatial and temporal resolution of the signal.  By 

imaging a smaller region of the brain, both spatial and temporal signal can be increased 

(D’Ardenne et al., 2008; Salas et al., 2010).  Furthermore, the restriction of MRI data-

capture to pre-defined regions would increase the likelihood of finding significant small-

cluster activations because extent thresholds for multiple comparison correction would be 

not be as stringent over a smaller volume.  Given the electrophysiological evidence that 

there are separate sub-populations of dopaminergic neurons that are excited by and 

inhibited by aversive stimuli, we might expect to see these distinct appetitive and 

aversive RPEs spatially separated in the ventral striatum for monetary gains and losses 

(Seymour et al., 2005). 
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Final Words 

 In closing, the findings presented here help tackle several aspects of human 

decision-making.  We have framed the above experiments primarily in terms of the 

neural coding of financial loss, but they each contribute to a host of other areas of 

research that span from psychology, to economics, to behavioral finance.  Our findings 

have focused primarily on the ventral striatum as a substrate of valuation, but other brain 

regions both within and outside the mesolimbic dopamine system have been shown to 

contribute to human decision-making.  From the large amount of neuroimaging research 

that is ongoing, we are hopeful that a complete picture of where and how the brain makes 

decisions can emerge.    
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