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Abstract

Recommender Systems and Information Fusion in Spatial Crowdsourcing
By Daniel Alejandro Garcia Ulloa

Spatial Crowdsourcing (SC) refers to a series of data collection mechanisms
where a set of users with a sensing or computing device are asked to perform
a set of tasks at di↵erent locations and times. In this work, we explore some
of the challenges that arise with SC and propose some solutions. These
challenges concern a proper recommendation of tasks to users in such a way
that they maximize their expected utility while at the same time maximizing
the probability that all the tasks are performed. The utility for the users can
be based on the tasks the expected reward they are planning to obtain, and
the distance to the assignments. These aspects can be predicted through
tensor-factorization techniques. A high-paying assignment might be far from
a user, while a low paying assignment is nearby. Depending on the users’
preference, we seek to recommend a set of tasks that maximize the user’s
utility. On the other hand, we also want to maximize the sum of probabilities
that the tasks are performed, considering the interdependencies between
users. We define the system utility as a convex linear combination of the
user and the task utility and suggest approximation methods to recommend
the tasks that yield the highest system utility.

We also deal with the problem of truth inference, which focuses on inte-
grating the responses from a mobile crowdsourcing scenario and determin-
ing the true value. Many times, the answers from a mobile crowdsourcing
scenario are noisy, contradicting, or have missing values. We developed a
recursive Bayesian system that updates the reputation model of the users,
the probability that the users were in the correct time and location, and the
probability that the events are true. We further enhanced this algorithm
using a Kalman filter that predicts the true state of the event at each time-
stamp using a hidden event model and which is updated with the reports
from the users. Our method was compared against the naive majority vot-
ing method as well as other state-of-the-art truth inference algorithms and
our method shows a considerable improvement.
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Chapter 1

Introduction

1.1 Motivation

Spatial Crowdsourcing (SC) refers to a series of data collection mechanisms

where a set of users with a sensing or computing device (e.g. a smartphone)

are asked to perform a set of tasks at di↵erent locations and times. It is

an emerging field due to the omnipresence of mobile phones and the wide

variety of problems that can be solved [32, 67], and the incentives that users

have for performing the tasks.

We identify the following three entities in spatial crowdsourcing:

1. Users or participants are entities that use a sensing or mobile device

to obtain or measure the required data about a subject of interest.

2. Requesters are the entities that request data through tasks and then

utilize the information acquired by users.

3. Task server or tasking entities are responsible for the distribution of

tasks to the users and in some applications are also responsible for

fusing the data and deliver a unified answer. There are also other

applications and models in which the requesters act as a tasking entity.
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Figure 1.1: General structure of a centralized spatial crowdsourcing scenario.

The task server maps users and tasks (a) and integrates the data (b) before

sending it back to the requester

Examples of SC include monitoring the price of gas at di↵erent gas stations

throughout several weeks [77], reporting the tra�c at di↵erent locations [60,

66], or the availability of parking spots on a street throughout the day [40, 11].

In this work, we focus on event based, spatial tasks, mapped with a

centralized distribution model. Event based tasks are triggered when a

particular situation occurs. This includes special circumstances such as the

presence of a user at a specific location or an ad hoc incident [33]. Spatial

tasks require the user to be at a specific place in order to fulfill a task.

With the increasing use of smart phones with integrated GPS, the number of

applications in which tasks are assigned based on the location of participants

has also grown [13]. In a centralized task distribution model, a task server

provides the users with di↵erent tasks to perform [41].

Figure 1.1 shows a general structure of SC. A requester sends a SC request

to the task server or tasking entity. The tasking entity has then two jobs:

(a) Find an e�cient mapping between tasks and users. The mapping is

done based on certain criteria which usually relates to the location of
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the tasks and the users at a specific time. The users are then able to

perform the SC tasks and report back to the tasking entity. For some

applications, it is desirable to be able to predict the location of the

users or the tasks at a future time point before mapping them.

(b) Once the tasking entity receives the answers or reports from the users,

in some applications the tasking entity needs to fuse the information

and determine which reports are correct, incorrect, or missing, and

establish a reliability model for the users. This process is known as

truth inference. The tasking entity then sends a unified answer to the

requester.

We focus on some of the problems presented in both (a) and (b). For

(a), some of the challenges that arise in mapping the tasks and the users

include finding an objective function that benefits both the users and the

tasks. Several state-of-the-art works focus only on maximizing a utility from

the users’ point of view so that the users travel the shortest distance or

perform tasks that are “on the way” [35, 8, 36] while other focus on fulfilling

the maximum number of tasks under budget or time constraints [47, 74]. In

most of these cases, the tasks are assigned to users to optimize an objective

function, and they do not give any freedom to the user to choose a di↵erent

task.

For (b), one major challenge that arises in integrating the data from the

di↵erent users is that the data is incomplete or inconsistent. This is partic-

ularly di�cult in spatial crowdsourcing since the events can be constantly

changing, leading to seemingly inconsistent reports. Another source for in-

consistent reports is the users’ reliability, since some users can be untrustwor-

thy and report incorrectly. On the other hand, the data could show missing

reports because few users where at the specified time and location, or because

users might show a lack of participation towards reporting an event. Some
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state-of-the-art works do not consider events that can be changing over time

[16, 64] or model the users’ reliability as a single-dimensioned value [46, 53],

which does not capture the complexity of their reliability.

In this work, we propose 1) an e↵ective task recommendation system that

optimizes both the user and the task utility, and 2) an accurate truth infer-

ence system that incorporates user reliability and spatio-temporal character-

istics for spatial crowdsourcing.

1.2 Recommender Systems in Spatial Crowd-

sourcing

As the proliferation of spatial crowdsourcing increases, so does the need to

e�ciently map the users and the tasks. This is particularly di�cult in a

spatial scenario since the tasks can be time-sensitive and the location of the

users is changing. The major challenges in the mapping depend on the task

distribution methodology and the type of tasks.

1.2.1 Current Challenges

Centralized distribution models can also have a push or pull methodology

for mapping the tasks and users. In a pull methodology, the task server

stores the tasks and allows the users to choose a task according to their skills

and their preferences, which can change from time to time. The users have

certain independence and can try di↵erent tasks on a first-come-first-serve

basis [72, 60]. However, research has found that in pull methods, about 33%

of the users have di�culties finding an appropriate task [70], and the amount

of time spent choosing a task is comparable to that of performing it [84].

On the other hand, push methods consist on directly assigning a task to

a user, and they have the advantage of eliminating the time spent choosing.
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Tasks are usually assigned so as to optimize the mapping between users and

tasks according to some criteria, which usually benefits the completion of the

tasks [47, 74]. However, this mapping is usually hidden to the user and it

gives them no liberty to choose from a variety of tasks that they would be

capable of performing.

Recommender systems in spatial crowdsourcing balances the advantages

from both methods, by pushing a set of optimized tasks, and allowing the

user to pull a task from this reduced set.

In some applications where the tasks are time-sensitive, it is desirable to

predict ahead of time some features about the tasks, like their location and

the benefit they provide to the users. Predicting the location and benefit

of upcoming tasks will allow users to decide ahead of time if they want to

perform these tasks, increasing their overall expected utility.

1.2.2 Existing Solutions and Limitations

In terms of mapping tasks and users in spatial crowdsourcing, several works

([18, 56, 8, 47]) assign a path for users under several restrictions (e.g. budget

or time restrictions, completing the highest number of tasks). However, they

leave no actual options for the users and simply assign tasks to users in such

a way that some objective function is maximized. Other works ([28, 35])

consider preferences and skills, but they assume that the users will choose

the task that maximizes their utility. In the first case, the utility function

that is being maximized is from the tasks’ point of view, and in the second

case, it is from the users’ point of view.

In terms of prediction, the works presented in [3, 57, 38] use Markov mod-

els and Bayesian inference to predict the location of the users. In the case

of Markov models, raw GPS measurements are used to infer the destination

and means of transportation of the users. Historical data is used to model
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the activities and predict their behaviour. These models could be transferred

to moving task prediction, and in the case of events that change their state,

Markov models can also be trained with historical data to obtain the prob-

ability of a next state given the current one. In our crowdsourcing scenarios

we do not assume that the tasks are mobile.

1.2.3 Framework of proposed solution

In a spatial crowdsourcing scenario, the utility for a user is a function on

the distance that the user needs to travel to perform a task (the lower the

distance, the higher the utility) and the benefit that the user will receive

for performing such task (the higher the benefit, the higher the utility). In

our crowdsourcing scenarios, we assume that tasks can only be performed

once and that any user in the system can perform it. For example, such a

crowdsourcing scenario could be taxi or uber1 drivers (users) looking to pick

passengers up (tasks), or freelance workers looking to perform a simple task,

as in taskrabbit2 or gigwalk.3 On the other hand, the utility for the task

is the probability that a task is performed, given their current location, the

benefit they provide to the users, and the available users at the time.

In our system, we do not assume that a user will simply choose the task that

provides the highest benefit, but instead model the likelihood of choosing a

task with a probability distribution that considers the possibility that the

user will not perform any task at all. This system more closely reflects real-

world situations that are not considered by other models, or that require

users to provide private information about themselves [35].

We propose a recommender system that maximizes the expected utility

from the users’ point of view while at the same time maximizing the sum of

1http://uber.com
2http://www.taskrabit.com
3http://www.gigwalk.com
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probabilities that the tasks are performed. These objectives are usually in

contention since maximizing the expected utility for the users could mean

that low-paying or faraway tasks would not be performed, and maximizing

the probability that all tasks are performed might sacrifice the expected

utility for the users.

We also propose a method using low-rank tensor approximation as a way to

analyze and predict features of the tasks. In particular, we use non-negative

CP factorization since it is a helpful method to not just for prediction but

also for analysis. Furthermore, tensor factorization techniques have been

shown to be very e↵ective for temporal data with varying periodic patterns

[24]. In chapter 3 we designed and performed a case study that uses a

real-world dataset from a crowdsourcing scenario and uses non-negative CP

factorization to analyze and predict the tasks.

1.3 Truth Inference in Spatial Crowdsourcing

In a centralized task distribution system, the task assignment can also be

done autonomously. An autonomous task distribution model is an allo-

cation method in which the participants have access to a set of tasks and they

autonomously choose one or more tasks to perform. The participants do not

necessarily need to inform the task distributing entity of their decision. This

allows the users to perform the tasks they prefer, but it also leads to missing

data if the user decides not to report back. In contrast, coordinated task

assignment aims at improving the quality of the data by optimizing the

set of participants recruited to perform tasks. This optimization is based on

varied criteria including coverage, quality, sensing costs, and credibility of

the reported data [68]. We focus on autonomous task distribution because of

the wide variety of applications and because the users do not need to provide

sensitive data to the task server.
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1.3.1 Current Challenges

Determining the accuracy of reports in spatial crowdsourcing is particularly

di�cult if the reports correspond to events that might change over time.

Sources often present uncertain or even contradicting reports which can re-

sult in considerable loss of accuracy [4]. In general, crowdsourcing users may

not visit all target locations, and even if they do, they might not necessar-

ily report the state of an event. Simply ignoring the missing reports has

repercussions for the accuracy of any truth-discovery method [22, 30].

Truth discovery or fact-finding [79, 54] seeks to integrate data from di↵erent

sources and determine the true values of target events. It has gained atten-

tion due to the wide variety of possible implementations and the increasing

interest in crowdsourcing applications.

1.3.2 Existing Solutions and Limitations

While there have been many recent studies on truth discovery in various

crowdsourcing applications (e.g. crowdsourced labeling of online websites

[17]), most of them do not consider the sources of data to be mobile, or

do not consider that the events could change their state over time [87, 30].

Few methods consider spatial events but do not handle streaming data, and

would need to re-run the algorithm each time new data arrives [63, 11]. Other

methods (e.g. [55, 86]) handle streaming data and changing truth, as in the

case of weather and stock prices, but do not consider the location of the

sources and their mobility.

1.3.3 Framework of proposed solution

We consider a set of spatio-temporal events which can be constantly changing

from a true state to false state and vice versa, while a set of users report the
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state of these events at di↵erent times. Our goal is to determine or estimate

the true state of the event at each time point based on the users’ reports.

Consider a running example shown in Figure 1.2. Users could be asked to

report if the gas price at specific gas stations is below $2.50 a gallon. The

reports of the users will depend on whether they visit the specific location

at the specific time of the event as well as their reliability. A passive user

could be at the specific location but decides not to send a report, while

a malicious user could send a report about a location di↵erent from their

own. Additionally, seemingly inconsistent reports for a single event could be

correct if they were made at di↵erent times. The price of gas at a gas station

could be below $2.50 one day and above $2.50 the next. Figure 1.2(a) shows

this example for location 1 between Day 2 and Day 3. Another motivating

example is reporting whether there is high tra�c at di↵erent locations, the

way it is done through the app Waze4. In this scenario, the tra�c in one

location could be correlated to tra�c in another location. In sections 4.1

and 5.3 we discuss other applications under the scenario described above,

and how this analysis can be extended to include more states.

1.4 Contributions

In this section, we briefly discuss the contributions of our work. The con-

tributions in spatial crowdsourcing are both in the mapping between users

and tasks and the truth inference problem. We summarize the contributions

below.

1. We propose a recommender system in spatial crowdsourcing that aims

at maximizing the utility of both the users’ and the tasks’ point of

view. To do this, we:

4http://www.waze.com
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(a) Users moving around locations

and sending reports

(b) Reports from users (observable).

(c) True labels of the events and true loca-

tions of the users (not observable).

Figure 1.2: Example of spatio-temporal crowdsourced task. Users send true

reports (‘1’) if the price at di↵erent locations is less than $2.50. Based on

the reports, our goal is to determine the true labels of the events.
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• Formalize the system’s utility maximization problem of recom-

mender systems in spatial crowdsourcing by taking into consider-

ation both the users’ and the tasks’ point of view, and prove it is

an NP-hard problem.

• Implement solutions to the problem by proposing algorithms that

show the trade-o↵ between utility and speed.

• Evaluate the proposed algorithms both on simulated data and on

a real-world case study.

• Propose and implement a method to predict the location and the

benefit of tasks in the near-future using tensor factorization tech-

niques and historical data.

2. We propose a solution to the truth inference problem in spatial crowd-

sourcing to determine the true label of an event from missing or incon-

sistent data. To do this, we:

• Present a dynamic graphical model that describes the dependen-

cies of the hidden (true labels of the events, reliability of the users)

and observed variables (reports from moving users) in a spatio-

temporal setting.

• Present a recursive Bayesian estimation (BE) method for training

the parameters for inferring the true state of the events. Our

method incorporates a reliability model for users, which improves

as more reports arrive while increasing the accuracy of the model

in labeling the state of the event.

• Further enhance the graphical model with an event model that

explicitly describes the spatio-temporal correlations between the

events and present a Kalman Filter based approach (BE+KE) for

improved inference of the true states.
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• Perform experimental validation of the model and algorithms us-

ing simulated and real-world data. The experimental results show

that our methods are adaptable to the available data, can incor-

porate previous beliefs, and outperform existing truth discovery

methods of spatio-temporal events from crowd sourced data.
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Chapter 2

Related Work

In this chapter, we describe previous works in spatial crowdsourcing. The

first section is dedicated to SC in general, describing the di↵erent types of

tasks and distribution models. In the second section, we describe previous

works on recommender systems in SC. The last section is a summary of

previous works on truth inference in SC.

2.1 Spatial Crowdsourcing

Spatial Crowdsourcing is an emerging topic with a wide variety of possible

applications. Tasks can be classified as event-based vs continuous and spatial

vs non-spatial, while the distribution models can be classified as centralized

vs decentralized vs hybrid, push vs pull, and autonomous vs coordinated.

In this section, we emphasize event-based, spatial tasks with a centralized

distribution model since this is the type of crowdsourcing scenario of interest

in this work.

2.1.1 Classification of Tasks

We classify the types of tasks according to whether there is a special situation

that prompts the user to send data back to the tasking entity or not, and

whether the task requires the users to be at a particular location and time
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to perform it or not. The di↵erent types of classifications are independent of

each other, and any combination can occur.

Event-based vs Continuous

Event based tasks are triggered when a particular situation occurs, and are

initiated when the tasking entity requests information about a specific event

or circumstance. For example, the requester or tasking entity might need

to know if there are potholes or gra�ti at a particular location [64, 33]. In

this case, these are events that are only reported if the event is true, and the

default state is false. Other event-based tasks that are also spatial do not

have a default state. For example, the tasking entity could ask participants to

act as citizen journalists and submit images or other information from a scene

of interest when an event occurs [15]. Other event-based tasks that are not

spatial include works on sentiment analysis and classification of documents

and images [87]. The submitted data can be of several kinds. In our first

examples, the reports were just the label of an event, while on the other

examples the users could submit images, video, text, and numerical data.

Event-based methods might pose a privacy threat to the users on certain

scenarios. Consider for example task-tracing attacks, linking several tasks

that the user performed can reveal sensitive data. Sending an image can

reveal time, location, type of device, and events in which the user is inter-

ested. This information by itself might not be enough to reveal the identity

of the user, but linking multiple tasking actions might allow an adversary to

trace the selected tasks by the participant and consequently reveal the user’s

identity or other sensitive attributes [72].

Continuous tasks receive information from the users periodically or fre-

quently. For example, data could be requested every few minutes to monitor

the speed of cars on a specific highway [41] or vital signs of a patient can be

frequently requested to track the development of an illness [5]. Continuous
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tasks can pose a privacy threat to users, since sensitive data like their lo-

cation can be constantly requested, revealing home or work address and life

routines.

Spatial vs Non-Spatial

Spatial tasks require the user to be at a specific location in order to perform

the task. Examples of spatial tasks include those in which sensors such as

GPS and accelerometers are positioned in vehicles to detect road conditions.

Some of these tasks run in the background with little or no involvement from

the user, and they could be used to detect tra�c speed, bumps, inclination,

and elevation of the road [25, 60, 41].

Under certain circumstances, time is also an important factor, since the

tasks change over time. Consider for example if the task is to report a tra�c

accident, or if a gas station remains functional after a natural disaster [77].

Some tasks could ask the users to search for the best prices located at di↵erent

stores and report them to provide other users with the best prices around

[19, 6]. In all of these cases, seemingly inconsistent reports might be correct

when the time dimension is considered.

Examples of spatial tasks that are not time-dependent include reporting

whether a restaurant is pet-friendly, or taking pictures of a landmark from

di↵erent angles [53]. In these cases, inconsistent data might be the product

of malicious users, mistakes, or misperceptions. It is therefore important to

consider the reliability of the users for truth inference.

Spatial tasks can pose a risk in privacy. Location-based attacks can lead

to the disclosure of sensitive locations such as home or work addresses and

eventually to the user identification [51]. For example, a location could be

considered as a home if it is visited frequently by the same user at night [7].

The trajectory data can be also used to infer the individuals’ life patterns (i.e.

schedules or lifestyles) [82, 31]. One way to ameliorate the privacy risks is to
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only send data when performing the task (i.e. event-based tasks as opposed to

continuous tasks), not send the user’s specific location (i.e. spatial-cloaking

[48]) or send the data with k-anonymity [37, 43]. In our truth inference

scenario, we allow users to send reports from a di↵erent location (i.e. noisy

data).

Non-spatial tasks do not require the user to be at a specific location to

send a report. This includes the tasks related to crowdsourcing platforms

such as the Amazon Mechanical Turk1 and Crowdflower2 [69, 27]. For ex-

ample, in [80], users are asked to report whether two descriptions of product

match (e.g. iPad 2 vs iPad second generation).

2.1.2 Classification of Distribution Models

Task distribution models refer to the way in which the tasks and the users

are mapped. Similarly to the task classification, the dimensions here are also

independent and any combination can occur.

Centralized vs Decentralized vs Hybrid

In a centralized task distribution system, the tasking entity is a central

server. For example, in a party thermometer application, a central server

could choose a set of participants attending an event or party, and request

that they rate it. These ratings could serve other users who are considering

attending this event [15].

The CarTel model [41] is a classic example in which opportunistic sensors

were placed in vehicles in the cities of Boston and Seattle for over a year,

and they reported to a central server diverse parameters such as location

and speed. The central server is provided with a database and an interface

1https://www.mturk.com
2https://www.crowdflower.com
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that allows users to modify certain parameters about the way the data is

collected, as well as to visualize the data from the sensors. Further data

processing can be achieved once the data has been gathered, enabling for

example, tra�c monitoring in di↵erent locations at di↵erent times of the

day, as well as performing diagnostics on driving patterns.

A network infrastructure can also be used as a central entity as opposed to

having a single server. This could be used for speeding up computations or

to avoid having a single point of failure [44].

In a decentralized model, each participant can become a tasking entity

and decide either to perform a task or pass it forward to other participants

who might be better-suited to fulfill the task. This decision would be based on

certain attributes of other participants such as location, abilities, or the avail-

able hardware in her device. A decentralized recruitment model is proposed

in [76] which notifies qualified participants of a forthcoming crowdsourcing

activity.

A hybrid model includes parts of the centralized and the decentralized

models. In this scheme, a central server and a set of participants who act

as tasking entities build the task management core. A bubble scheme [59]

requires a central server to maintain control of the sensing tasks, which are

allocated mostly in a decentralized way. In this model, a task is defined and

broadcasted in a particular location of interest by a participant. The task is

registered in the server and other participants who move into the location of

interest are signaled by the central server and become bubble carriers. These

carriers can broadcast the task and can also fulfill them and report the sensed

data to the server.

Push vs Pull

Push model based tasks are initiated by a tasking entity via pushing the

tasks on the users’ devices. The tasks are assigned by the tasking entity in
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such a way that a certain criteria is optimized and could depend on other

factors such as the location of the participants or the time of the day. The

optimization function is usually hidden from the users and it mostly corre-

sponds to the e�cient fulfilment of the tasks. For example, in the model

proposed in [74], tasks are pushed to the user’s device given their location so

that they can report hyperlocally (e.g. the amount of rain in their area).

One of the disadvantages of push models is that the users are not given

the liberty to choose between di↵erent tasks. The tasking entity usually

does the assignment to maximize the fulfilment of the tasks with little or no

consideration to the user’s preferences.

Pull models based tasks are queried and downloaded by the users at an

arbitrary time or location. A pull based task model can be found in [72],

where a set of tasks are stored in a central tasking entity and the users

pull this information and decide which tasks to perform. The decision could

be based on di↵erent criteria such as preferences, location, or the sensors’

capabilities. Nericell [60] represents another pull model example, in which

the task of opportunistically detecting the road conditions such as potholes,

tra�c, and noise, depend on the participant’s driving route and their smart

phone’s sensors.

An advantage of pull models is that the users can choose the task they pre-

fer, and maximize their utility based on their own criteria. As a disadvantage,

the users need to spend time browsing through several tasks before deciding

which one to perform. Furthermore, some tasks are more attractive than

others, and will be more likely performed, leaving others tasks unfulfilled.

Autonomous vs Coordinated

Autonomous task selection is an allocation method in which the users

have access to a set of tasks and they autonomously choose one or more tasks

to perform. The users do not necessarily need to inform the task distributing
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entity of their decision. The lack of coordination and global optimization for

distributing the tasks can decrease the e�ciency with respect to sensing cost

or global utility.

Another major drawback of autonomous task selection is that it can gen-

erate bias in the obtained information. For example, people in urban areas

might be more inclined to participate in a sensing task due to the greater

presence of mobile devices [1].

Coordinated task assignment aims at improving the quality of the

sensed data by optimizing the set of participants recruited to perform tasks.

This optimization is based on varied criteria including coverage, quality, sens-

ing costs, and credibility of the sensed data [68].

2.2 Recommender Systems in Spatial Crowd-

sourcing

Given the rising popularity of crowdsourcing in recent years, there has been

an increasing need for having recommender systems in crowdsourcing [34].

Schnitzer et. al. [71] did a study on on the demand for task recommendations

in crowdsourcing to avoid assigning the incorrect tasks to users, which would

leave both the requester and the users dissatisfied. A recommender system

for crowdsourcing based on collaborative filtering is proposed in [58], where

the authors use implicit feedback (e.g. tasks shown and tasks performed)

to predict the preferences of the users. Other works also predict the user’s

preferences, either using explicit and implicit feedback from tasks performed

[2], or through analysis of their social networks to match their preferences to

the characteristics of tasks [20].
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2.2.1 Task recommendations

Previous works have addressed the problem of recommending or assigning

tasks that are along the path of a moving user. In [8], the authors predict

the trajectory of the users, and their objective is to recommend the tasks that

are likely to lie along their routine commute. The problem of Maximum Task

Assignment is addressed in [47]: given time slices, assign tasks to users so

that the sum of tasks assigned throughout all the time slices is maximized.

Other works consider tasks that have an expiration time and have as an

objective to assign a path for a user that maximizes the number of tasks

performed along the way [18, 56]. Several of these problems can be solved

through costly but exact algorithms, or through approximating heuristics,

that are faster but are not guaranteed to provide the global optimum [29].

Other works in spatial crowdsourcing recommend the closest task without

considering the users’ preferences. In [10], the authors created a crowd-

sourcing platform to answer local questions, while in [74], the objective is

to maximize the number of tasks performed under budget constraints and

dynamic arrivals of users and tasks.

From the users’ point of view, the model presented in [35] and [36] considers

a context for the users and their objective is to find a set of tasks that

maximize the expected commission while maintaining di↵erential privacy for

the users. Fonteles et.al.[28] proposed a framework that considers an area of

interest for the user, a reward, and similarity between the current tasks and

the tasks the user has previously performed.

From the tasks’ point of view, the work presented in [45] considers a model

that assigns tasks to workers in such a way that it minimizes the number of

task assignments while achieving a target reliability. Their work uses low-

rank matrix approximations as a powerful predicting tool both to assign tasks

to users and to infer the correct answers.
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2.2.2 Task prediction

Task prediction in event-based, spatial crowdsourcing depends on the type

of event of interest. For example, in the case of events that have a changing

state (e.g. the number of available seats at a co↵ee shop), a Markov model

could be used [62]. In other cases, when the event depends on the time and

not just on the previous state of the event, time series prediction methods

like Holt-Winters or ARIMA have been used [65].

Tensor factorization has been successfully applied in several di↵erent works

due to its flexibility and ability to incorporate di↵erent contexts. In partic-

ular, non-negative factorization such as CP or CP-APR [12] can be used to

extract meaningful concepts which are concise and easily understood [39].

In this work, we use the CP tensor factorization to predict and analyze

features of the tasks. Previous works have used tensor factorization as a

recommender system [84], while other works have used this technique to

extract meaningful information and predict future behaviours. In [24], the

authors use non-negative CP factorization to analyze author-conferences re-

lationships throughout the years and predict what author will publish on a

conference in the forthcoming year(s). Other works ([9, 61]) have also used

tensor factorization to extract and predict the relationship between di↵erent

entities in text data with a highly scalable approach.

In recommender systems, Yuen et. al. [84] proposed a framework that uses

the search history and the previously performed tasks, together with a 5-point

integer scale to recommend tasks via matrix factorization. In general, tensor

or matrix factorization has been used as a prediction tool and in particular

for recommender systems due to its e�ciency, and in the case of non-negative

factorizations, its interpretability.
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2.3 Truth Inference Algorithms

The process of inferring the correct answer from a set of data obtained

through crowdsourcing is known as truth inference. Most algorithms in

crowdsourcing include also a method to determine the reliability of the users,

which can be helpful for future tasks.

2.3.1 General Classification of Truth Inference Algo-

rithms

Truth discovery methods in spatial crowdsourcing can be classified into itera-

tive, optimization-based, and probabilistic graphical models, although over-

laps are possible [54]. In the case of iterative methods, Dong et. al. [22]

present a novel method that consider a possible relation between the sources

where the value provided by one source is copied by other sources. They use

an iterative Bayesian approach to determine these dependencies and infer

the true value. Truthfinder [83] presents an approach to use the relationship

between di↵erent facts and the reliability of the sources of information to

determine the true facts from a large amount of conflicting data. An op-

timization method is provided in [55] where they develop an optimization

problem to infer both source reliability and trustworthiness of the informa-

tion. A probabilistic graphical model can be found in Zhao et.al [85], where

the authors proposed an unsupervised Bayesian method that takes advan-

tage of the generation process of false positives and false negatives to infer

the true records and the source quality from di↵erent databases.

2.3.2 Truth Inference in Spatio-temporal Scenarios

With respect to methods on spatio-temporal crowdsourcing, Wang et.al. [77]

proposed an expectation-maximization algorithm that is specifically inter-
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ested in short-lived crowdsourcing campaigns, where there is no time to

build a reputation for the users. Their applications on social sensing deal

with events that usually do not vary much over time (e.g. open gas sta-

tions after a disaster). Wang et.al [79] have developed an algorithm based

on expectation maximization to determine which observations were correct

and which ones were not, with no prior knowledge of the source reliability

nor about the correctness of prior individual observations. A posterior work

[78] includes a sensitivity analysis of the optimal expectation - maximization

estimator to understand the accuracy trade-o↵s in source and claim credibil-

ity in social sensing applications. Another approach for dealing with spatial

data is the Truth for Spatial Events algorithm (TSE) [64], where not only the

truthfulness and reliability of the sources is determined, but also the prob-

ability that the users visited locations to improve the accuracy. Since there

are some similarities between this work and ours (although our work di↵ers

from TSE since we also consider that the state of the events are changing as

a function of time), TSE is one of the methods we use to compare with our

own.

Most methods of truth inference in spatial crowdsourcing do not consider

that the events have a probability model that determines the label of an

event. For that reason, we introduce a method that uses the Kalman filter to

use the event model and get a higher accuracy by predicting the label of the

event using an event model, and combining that data with the information

obtained through crowdsourcing.

The Kalman Filter The Kalman filter is a recursive algorithm that uses

the available, noisy observations and produces an estimate for the current,

hidden state [75, 42]. It can run in real time and consists of two phases:

prediction and correction. In the prediction phase, it uses the observations

from previous time-steps as input for a system model to predict the state of
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the system. In the correction phase, the filter trains and uses a parameter

(called Kalman gain) to combine the prediction from the previous phase,

and the current observations. The Kalman filter has been successfully imple-

mented in applications such as simultaneous localization and mapping, and

monitoring web browsing behavior [14, 26].
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Chapter 3

Recommender Systems in

Spatial Crowdsourcing

In this chapter, we present our recommender system as a task distribution

system that combines the benefits of push and pull methods. We formulate

the problem and present the details of the model before introducing our

proposed solutions. We then present our simulation results and the real-

world case study.

3.1 Problem Formulation

The formulation of our problem is done through both the user and the task

point of view, and the objective of the recommender system will be to max-

imize the utility of both.

3.1.1 Users’ point of view

Consider the following spatial crowdsourcing scenario, where a set of nu users

or workers are asked to perform ns tasks at a particular time. Let U =

{u1, u2, · · · , unu} be the set of users and S = {s1, s2, · · · , sns} be the set of

tasks. Each user ui can only choose and perform one task in the next time-

stamp, and each task can only be performed by one user. Each task provides
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the user with a di↵erent utility, which depends on di↵erent factors, such as

the distance between the user and the task, denoted by dist(ui, si), and a

certain payment or “benefit” for performing the task. In many applications,

a task will yield the same benefit regardless of the user that performs it,

but for the general case, we denote the benefit for user ui for performing

task sj as b(ui, sj). The exact benefit might not be known ahead of time,

and users might have di↵erent preferences. Some users might prefer doing

tasks that are nearby, while others would rather perform a faraway task that

yields a higher utility. One of our objectives is to maximize the utility for

each user given the distance to the tasks, the expected benefit, and the user’s

preferences between distance and benefit. If we denote the probability that

user ui performs task sj as P (ui ! sj) and its utility as Y (ui, sj), then the

expected utility for user ui for performing task sj is

E(ui, sj) = P (ui ! sj)Y (ui, sj) (3.1)

3.1.2 Tasks’ point of view

We are also interested in maximizing the probabilities that the tasks are

performed. On the one hand, the more users we recommend a task, the

higher the probability that some user will choose and perform this task. On

the other hand, if we recommend a task to too many users, other tasks will

not be recommended, and will have a lower probability of being performed.

Furthermore, the users’ and tasks’ point of views are opposing since tasks

can only be performed once, and recommending a task to several users in-

creases its chance of being chosen, but it also decreases the probability for

each individual user to perform the task, e↵ectively decreasing the value of

E(ui, sj). The probability that a task is performed will be simply denoted

as P (sj) and is equal to the sum of probabilities that a user ui performs it.
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In other words,

P (sj) =
X

ui2U

P (ui ! sj) (3.2)

3.1.3 System’s point of view

From the system’s point of view, our objective is to maximize both the

user and the task points of view by recommending the appropriate tasks

to the users. For each user ui we want to obtain a set of tasks Ri =

{s(1), s(2), · · · , s(nr)} with nr < ns such that the sum of expected utility for

the users and the sum of probabilities that the tasks are performed, is maxi-

mized. Additionally, the system might have di↵erent priorities for each user

(e.g. “premium users”). We denote the user’s priority as �i for i = 1, ..., nu

and
P

i �i = 1. The system might also have di↵erent priorities for each task,

and we denote these as �j for j = 1, ..., ns and
P

j �j = 1. Using the previous

notation, our goal is to find R = {R1, · · · , Rnu} such that

f(R) := ↵

nuX

i=1

X

sj2Ri

�iE(ui, sj) + (1� ↵)
X

j2J(R)

�jP (sj) (3.3)

is maximized, where J(R) = {j|sj 2
Snu

i=1
Ri} and ↵ 2 [0, 1] is a parameter

that denotes the importance given to the users’ point of view and can vary

from application to application.

Figure 3.1 shows an example1 where nu = 4 users are asked to perform

ns = 3 tasks at di↵erent locations. The distance between the users and the

tasks, and the benefit for each user for performing a task is represented in

parenthesis. Assuming we give two recommendations to each user (nr = 2),

a possible solution would be the sets of recommendations R1 = {s1, s2},

R2 = {s1, s2}, R3 = {s1, s3}, and R4 = {s1, s2}, represented with solid lines

in the figure. Assume that R = {R1, R2, R3, R4} is the optimal solution, and

1Not to scale
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Figure 3.1: Spatial Crowdsourcing scenario with 4 users and 3 tasks. The

weights on the edges represent the distance and benefit, respectively.

notice that in this example user u2 is not recommended task s3, even though

it is closer. This could be because task s1 and s2 provide a higher benefit, and

the user values the benefit more than the distance. On the other hand, tasks

s1 and s2 are recommended to user u1, instead of task s3, which provides the

highest benefit. This could be because user u1 values distance over benefit.

Theorem 3.1. Let U = {u1, u2, ..., unu}, S = {s1, ..., sns},⇤ = {�1, ...�nu},

� = {�1, ..., �ns}, nr < ns, ↵ 2 [0, 1], Y : U ⇥ S ! R and P : P(U) ⇥ S !

[0, 1] with P(U) the power set of U . Let Cns
nr
, be the set of all combinations

of ns choose nr. The problem of finding R = {R1, · · · , Rnu} with Ri 2 C
ns
nr

such that equation 3.3 is maximized, is NP-hard.

Proof. To proof NP-hardness, we show a reduction from the generalized

assignment problem (GAP), which is known to be NP-hard. The prob-

lem is stated as follows: Given a bipartite graph G = (V,E) with par-

tition V = (A,B), |A| = |B| = 1/2|V |, and profit and weight function

p, w : E ! [0,1) and budget c : A ! [0,1), find the perfect matching

M that maximizes p(M) =
P

e2M p(e) subject to 1) w(e)  c(a) for all

a 2 A, e 2M , and 2) 8b 2 B 9a 2 A s.t. e(a, b) 2M
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Given a weighted bipartite graph G, find values for nu, ns, and nr such that

nr < ns and n := max(2nu � 1, |Cns
nr
|) � 1

2
|V |, where C

ns
nr

is the set of combi-

nations of {1, 2, ..., ns} choose nr. Complete graph G to G
0, with 1

2
|V

0
| = n

by adding nodes in A, B with weight 0. Solving the problem for G0 is equiv-

alent to solving for graph G. Let U = {u1, u2, ..., unu}, S = {s1, ..., sns} and

label the nodes in A
0 with the elements in P(U) \ ; with max(w) = w(U),

and the nodes in B
0 with the elements in C

ns
nr
. Label any remaining nodes

with ;. Let A = {a 2 A
0
| [u2a u = U,\u2au = ;} (i.e. a partition of U),

and normalize the weights so that
P

a2A w(a, b) = w(U). For each p(a, b),

find the values �ui , �sj ,↵, Puisj , Yuisj such that p(a, b) = ↵
P

ui2a

P
sj2b

�uiPuisj , Yuisj +

(1 � ↵)
P

ui2a

P
sj2b

�sjPuisj . Since the system is over-determined, there is always a

solution. Let R = {A}
2
nu�1

+1

1
and define f(R) =

P
a2R

P
b2B

p(a, b). Finding the

maximum value for f(R) is equivalent to solving the GAP problem. There-

fore, this problem in NP-hard.

3.2 Model

In this section we present the di↵erent elements that comprise our model and

in the next section we present our proposed solutions.

3.2.1 Individual Utility Function

Given the distance between the users and the tasks, and the benefit of per-

forming each task, we can build a utility function for each user and task,

which represents also their preferences. As mentioned in the previous sec-

tion, a user might prefer to perform a nearby task, while another user might

prefer a faraway task that yields a higher benefit. Our utility function should

have a higher value if 1) a user is near a task; 2) the benefit for performing
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it is higher; and 3) it represent the users’ preference. To reflect the notion in

1), consider for example the function

D(ui, sj) =
maxdist� dist(ui, sj)

maxdist
(3.4)

where dist(ui, sj) is some distance measure between the user and the task,

and maxdist is the maximum possible distances between ui and sj. Function

D is a value between 0 and 1, and the closer ui and sj are, the higher the

value of D. For 2), since each task provides a di↵erent benefit (which could

be dependent or independent of the user), we denote the benefit for user

ui for performing task sj as B(ui, sj). We normalize the values of B to

be between 0 and 1 to avoid a bias due to larger numbers on the benefits

with respect to the distances. We can now model the user’s preference as a

linear combination of D and B using a scalar !, which represents the user’s

preference between the distance and the benefit.

Formally, given functions D and B, D,B : U ⇥S ! R and a set of weights

⌦ = {!1, ...,!nu} with !i 2 [0, 1] 8i, we define the individual utility function

Y : U ⇥ S ! R as

Y (ui, sj) = !iD(ui, sj) + (1� !i)B(ui, sj) (3.5)

3.2.2 Independent probability of performing a task

Even if a task provides a higher utility than others, we do not assume that

the user will choose that task, and might in fact not choose any task at all.

For each user ui, assume we sort the tasks in a non-decreasing way according

to the utility they provide to the user, and let Ri = {s(1), s(2), · · · , s(nr)}

be the set of ordered nr recommendations of tasks for user ui. Let R
+

i =

Ri [ {s(nr+1)} be the set of recommendations and the next best task, which
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was not recommended. Define

qij :=
Y (ui, sj)P

sk2R
+
i

Y (ui, sk)
(3.6)

The value qij represents a “ceteris paribus” probability that user ui will

choose task sj for all sj in Ri, and qi(nr+1) is the probability for the “cost

of opportunity” for not choosing any task in the set of recommendations Ri.

With this definition, given user ui, qij  qi(j+1) for all sj 2 Ri since they are

proportional to their utility, and
P

sj2Ri
qij < 1, to represent the probability

that a user might not choose a task in Ri, while
P

sj2R
+
i
qij = 1, so qij is a

probability distribution over R+

i .

3.2.3 Dependent probability of performing a task

The probability that a user performs a task depends also on the decisions

that other users take and who gets to choose first. For example, if we only

have two users, WLOG we can assume that half the times user u1 chooses

first and half the times user u2 chooses first. Then the probability that user

u1 performs task sj would be defined as P (u1 ! sj) =
1

2
q1j +

1

2
(1� q2j)q1j =

q1j(1�
1

2
q2j). With three users, we can assume that u1 chooses first 1

3
of the

times, chooses second 1

3
of the times and chooses third 1

3
of the times, so

P (u1 ! sj) =
2

6
q1j +

1

6
(1 � q2j)q1j +

1

6
(1 � q3j)q1j +

2

6
(1 � q3j)(1 � q2j)q1j =

q1j(1�
1

2
(q2j+q3j)+

1

3
q2jq3j). The probabilities for P (u2 ! sj) and P (u3 ! sj)

are analogous. In general, for nu users, we write

P (ui ! sj) = qij

0

B@
nuX

z=1

(�1)z�1

z

X

c2C
(�i)
z�1

Y

k2c

qkj

1

CA (3.7)

where C
(�i)
z�1

is the combinations of the set {1, 2, ..., nu} \ {i} choose z � 1.

Continuing with the examples, for four users, P (u1 ! sj) = q1j(1 �
1

2
(q2j +
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q3j+q4j)+
1

3
(q2jq3j+q2jq4j+q3jq4j)�

1

4
q2jq3jq4j). This probability reflects the

notion that the more users we recommend task sj, the lower the probability

that each individual user will have of performing it.

3.2.4 Probability that a task is performed

As defined in section 3.1, the probability that a task is performed is the sum

of probabilities that each user performs it (equation 3.2). Combined with

equation 3.7, we obtain the following formulation:

P (sj) =
nuX

z=1

(�1)z�1
X

c2Cz�1

Y

k2c

qkj (3.8)

where Cz�1 is the combinations of the set {1, 2, ..., nu} (without removing

any i) choose z � 1. Continuing with the example for three users, P (sj) =P
3

i=1
P (ui ! sj) = q1j + q2j + q3j � (q1jq2j + q1jq3j + q2jq3j) + q1jq2jq3j

3.3 Methods

In this section, we describe our proposed solutions for finding the best rec-

ommendations.

3.3.1 Depth First Search Algorithm

This method goes through all the possible combinations of recommendations

to users to find the maximum value for f(R). Figure 3.2 shows a tree struc-

ture where each level of the tree corresponds to the possible recommendations

for a user, based on the recommendations for a previous user. Since we are

checking for all combinations, the order of the users is not relevant. The leafs

of the tree are all the possible solutions, and this tree structure shows that

the solution space is of size
�
ns

nr

�nu . Since we are checking all solutions, the
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order of this algorithm is O(
�
ns

nr

�nu) We can actually calculate the current

value for f(R) at each of the nodes in the tree. However, in the next level of

the tree, the value of f(R) can increase, decrease, or remain the same. We

state that in the following proposition:

Proposition 3.2. Let R = {R1, · · · , Rn} for some n < nu, and let f(R)

be the system utility function defined in equation 3.3. Then, the value of

f(R)� f(R [ {Rn+1}) is either positive, negative, or zero.

Proof. WLOG, assume the system only has two users U = {u0, u1} and

R0 = {(sj)} and R1 = {(sk)} for some sj, sk 2 S. The following analysis

can easily be extended to nr > 1. Assume for simplicity that all users and

tasks have the same priority (i.e. �i = 1, �j = 18i, j). For u0, f(R =

{R0}) = ↵q0jY0j + (1 � ↵)q0j. Assume sj 6= sk. Then f(R = {R0, R1}) =

↵q0jY0j +(1�↵)q0j +↵q1kY1k+(1�↵)q1k = f(R0)+f(R1). Since f(R1) � 0

then f(R = {R0})  f(R = {R0, R1}).

On the other hand, if sj = sk, then f(R = {R0, R1}) = ↵(q0j(1�
1

2
q1j)Y0j+

q1j(1 �
1

2
q0j)Y1j) + (1 � ↵)(q0j + q1j � q0jq1j). If q0j = 1 and Y1j = 0, then

f(R = {R0}) = ↵Y0j+(1�↵) and f(R = {R0, R1}) = ↵(1� 1

2
q1j)Y0j+(1�↵).

Since q1j 2 [0, 1], then (1� 1

2
q1j)  1 and f(R = {R0, R1})  f(R = {R0}).

Therefore, adding more users to the system can increase, decrease, or keep

the same value for the system utility.

Proposition 3.2 makes it harder to devise a method such as branch and

bound that could trim some of the branches in the tree and reduce the search

space in a significative way.

3.3.2 Greedy Algorithm

Although the exact solution is hard to find e�ciently, we consider a greedy

algorithm that quickly approximates the solution. The idea of the algorithm
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Figure 3.2: Depth-First search of the solution. Here, f(R(1)) is the system

utility if we recommend (s1, s2) to all four users. Since we have 3 tasks,

2 recommendations per user and 4 users, we have a total of 81 possible

combinations.

is to recommend to each user the tasks that yield the highest utility with-

out considering dependencies among users. The highest values for the user’s

utility should also provide a relatively high value for the probability of the

tasks being performed. However, it does not guarantee that the maximum

value for the system will be found, since it is not considering the dependen-

cies among users. We consider this our baseline approach, and describe the

procedure in algorithm 1.

It is easy to see that the order of algorithm 1 is O(nuns logns)

3.3.3 Progressive Algorithm

The greedy algorithm does not consider the interaction between all users,

and only relies on the fact that a high utility for the user means a high prob-

ability of performing the task and a high overall probability that the task will

be performed. In this next approach, we consider the users sequentially, and

recommend the best available tasks given the previous users. This approach

only considers the dependencies with previous users, and once we have op-

timized the tasks for a particular user, we do not “look back” and change
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Algorithm 1 Greedy Approach
1: R ;

2: for ui in U do

3: for sj in S do

4: Obtain Y (ui, sj) using equation 3.5

5: end for

6: Sort Y (ui, sj) so that

Y (ui, s(1))  Y (ui, s(2))  ...  Y (ui, s(ns))

7: Ri  {s(1), s(2), ..., s(nr)}

8: R R [ {Ri}

9: end for

10: return R

previous users. The procedure is described in algorithm 2, which is of order

O(nuns

�
ns

nr

�
).

Recalculate Progressive

One modification to the progressive approach consists in recalculating the

values of P (ui ! sj) for all the previous users (without modifying their

recommendations), and then calculate P (ui ! sj) for the current user with

these updated values. We can now obtain E(ui, sj) and P (sj) for all the

tasks and recommend the nr tasks that yield the highest values for f(R).

The only modification in algorithm 2 would be adding a step between step 7

and 8, and recalculate P (ui ! sj) for all i < i and for all sj 2 R. The order

is therefore O(n2

unsnr

�
ns

nr

�
).

Ordered-Progressive Algorithm

An improvement to the progressive algorithm consists in ordering the users

by finding the values of Yij 8ui, sj and sorting the users based on the indi-
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Algorithm 2 Progressive Algorithm
1: R ;

2: for ui in U do

3: for sj in S do

4: Obtain the value of Yij using equation 3.5

5: end for

6: maxval  0, r⇤  ;

7: for r in C
nr
ns

do

8: R̂ R [ {r}

9: if f(R̂) � maxval then

10: maxval  f(R̂)

11: r
⇤
 r

12: end if

13: end for

14: R R [ {r
⇤
}

15: end for

16: return R
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vidual utility. The idea behind this approach is that if we optimize first the

users with the highest utility for a task, then if that task is in a candidate

recommendation set for another user, it would not provide the highest utility,

and the algorithm would look for another solution.

To see how the order in which users are optimized a↵ects the utility, and

why ordering the users according to their utility is a reasonable heuristic, con-

sider the following example with two users: u1 and u2. For ease of notation,

let Yij := Y (ui, sj), and let R(i1,i2) be the set of recommendations obtained

by first optimizing ui1 and then ui2 . Assume, WLOG, that Y1j � Y2j for

some sj 2 R1\R2 and that both users have the same priority. If we first run

the progressive algorithm with u1 and then u2, then

f(R(1,2)) =↵P (u1 ! sj)Yij + (1� ↵)P (ui ! sj)+

↵P (u2 ! sj)Y2j + (1� ↵)
2X

i=1

P (ui ! sj)

Because of the order of evaluation, P (u1 ! sj) = q1j, P (u2 ! sj) = q2j(1�
1

2
q1j) (equation 3.7), and

P
2

i=1
P (ui ! sj) = q2j(1� q1j) (equation 3.8). The

previous equation can be then written as:

f(R(1,2)) =↵q1jY1j + (1� ↵)q1j+

↵q2j(1�
1

2
q1j)Y2j + (1� ↵)(q2j � q1jq2j)

Similarly, if we evaluate first user u2, then:

f(R(2,1)) =↵q2jY2j + (1� ↵)q2j+

↵q1j(1�
1

2
q2j)Y1j + (1� ↵)(q1j � q2jq1j)

Now, consider

f(R(1,2))� f(R(2,1)) =
↵

2
q1jY1jq2j �

↵

2
q2jY2jq1j

=
↵

2
q1jq2j(Y1j � Y2j) � 0,
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since we are assuming Y1j � Y2j. With this result, we conclude that the

order in which the users are evaluated in the progressive algorithm can yield

di↵erent results, and that ordering the users according to their individual

utility represents an advantage over the simple progressive approach.

On the other hand, to order the users according to their individual utility,

we need to consider the nr tasks that yield the highest individual utility. A

possible ordering for the users could be done by adding the nr highest values

of Yij for each user ui and comparing that value to other users’. In other

words, let

vi :=
nrX

i=1

nrmax
sj2S

Yij (3.9)

where nrmax is the nr maximum values, and sort U so that v(1) � ... � v(nu).

Algorithm 3 summarizes the procedure, which is of order O(nuns(ns log ns+�
ns

nr

�
)).

3.3.4 Hybrid Approaches

In these approaches, we group the users according to some heuristic and then

optimize.

User Batches

Following a similar line of reasoning as with the progressive algorithm, we

can group users in small batches and optimize concurrently. If the batches

are small enough, we can use an exact algorithm, or an expensive but accu-

rate algorithm. If we use the exact algorithm and the size of the batch is nu,

then the algorithm is DFS. If the size of the batch is 1, then this approach

is progressive. Once we have determined the size of the batch, choosing the

users for each batch can be done in di↵erent ways such as randomly, or or-

dered according to their utility, as in ordered-progressive.
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Algorithm 3 Ordered-Progressive Algorithm
1: R ;

2: for ui in U do

3: for sj in S do

4: Obtain the value of Yij using equation 3.5

5: Obtain vi using equation 3.9

6: end for

7: end for

8: V  sort(U) according to vi

9: for ui in V do

10: for sj in S do

11: maxval  0, r⇤  ;

12: for r in C
nr
ns

do

13: R̂ R [ {r}

14: if f(R̂) � maxval then

15: maxval  f(R̂)

16: r
⇤
 r

17: end if

18: end for

19: R R [ {r
⇤
}

20: end for

21: end for

22: return R
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Instead of choosing the size of the batch first, we can choose how many

batches to have, and then cluster the users. We present the following ap-

proach:

Clusters

In this approach, we perform any clustering technique, such as k-means, DB-

SCAN, or hierarchical clustering, based on the position of the users. The

clustering technique to use depends on previous knowledge about the distri-

bution of the positions of the users. In real-world scenarios, the users are

generally not uniformly distributed, since there are areas of high density and

other areas with low population density, so k-means could be a reasonable

approach. Once we have clustered the users, we calculate the distance be-

tween each task and the center of the clusters. If the distance is less than a

threshold ⌧ , then we “assign” the task to the cluster. This way, a task could

actually belong to several clusters, or to no clusters if the task is too far. Now

we independently optimize each cluster, either using an exact algorithm, or

with a faster approximation.

On the other hand, we can also optimize each cluster progressively. In other

words, we consider the previous clusters when looking for a solution for the

current cluster. The time complexity remains the same, and the only tasks

a↵ected are the ones that belong to several clusters. Having dependent clus-

ters does not guarantee finding a better solution than independent clusters,

since we could be incorrectly recommending a task to user based on previous

clusters, but recommending another task might have yielded a better result.

Algorithm 4 summarizes this approach. The order of the hybrid algorithms

depend on the clustering or batching technique that was used, as well as on

the algorithm used to obtain the recommendations.
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Algorithm 4 Hybrid Approach
1: R ;

2: Partition U into set P = {U1, ...UK} using a grouping heuristic such as

batch or clustering

3: for Ul in P do

4: for ui in Ul do

5: Find Ri using an exact or a progressive algorithm (2 or 3)

6: R R [ {Ri}

7: end for

8: end for

9: return R

3.4 Experiments

In this section, we describe the evaluation metrics that were used to evaluate

the di↵erent methods, as well as the simulation experiments and the real-

world implementation.

3.4.1 Evaluation Metrics

To evaluate the performance of our algorithms, we compare the utility of the

di↵erent methods. We divide the utility into three separate measures:

1. User utility, defined as

fU(R) :=
nuP
i=1

P
sj2Ri

�iP (ui ! sj)Y (ui, sj)

2. Task utility, defined as

fS(R) :=
P

{j|sj2
nuS
i=1

Ri}

�jP (sj), and

3. System utility, which is the linear combination of fU(R) and fS(R)

defined in equation 3.3 with ↵ = 1

2
.
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All the utilities are values between 0 and 1, where the closer to 1, the

better. However, even the exact algorithm cannot reach such values, since

the utility depends on the distance between the users and the tasks, and the

benefits each task provides. Even if all the tasks provided the same benefit

and the users did not need to travel to perform the task (or equivalently

!i = 0 for all users in equation 3.5), the utility would still not reach 1 if

there is competition among the users, which reduces the probability that a

user performs a task (equation 3.7) and therefore also the probability that a

task is performed is a↵ected (equation 3.2). The task utility cannot reach 1

either, because even if there are few tasks and many users, there is always a

chance that the users decide not to perform the task (section 3.2.2). In fact,

we can determine tighter bounds for the utility depending on the data, and

have deferred such analysis to the appendix.

Another important performance measure is the computational speed. The

reason to use approximation methods as opposed to the exact algorithm

is that the exact algorithm does not scale very well, and neither do some

approximation algorithms. Therefore, we observe a trade-o↵ between utility

and speed. All of our experiments are run in an 8 CPU desktop running

Ubuntu 16.04 LTS with Intel(R) Core(TM) i7-6700K CPU at 4GHz and 64

GB in memory.

3.4.2 Simulation experiments

Comparisons against the exact algorithm

On a small scale, we compare the results obtained with the exact algorithm

(DFS) to the baseline method (greedy) and our ordered-progressive method.

To avoid a bias that would unfairly benefit our method, we assume that all

users and all tasks have the same priority. In other words, we set �i = 1/nu
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and �j = 1/ns for all i and for all j. On this scale, hybrid approaches perform

as well as the ordered-progressive algorithm, so we obviate them from this

analysis. We performed 10 simulations and obtained the average utilities

(user, task, and system) and the runtime as we vary the number of users,

tasks, and recommendations per user.

Comparisons among approximation methods

To evaluate the performance of the approximation algorithms at a larger

scale, and to observe the performance of the hybrid approaches, we also ran

simulations at a larger scale and observe the performance as we vary the

number of users, tasks, and recommendations. Similarly to the comparisons

against the exact algorithm, we performed 10 simulations and obtained the

average utility and runtime.

3.4.3 Case study

As an application for our spatial task recommender system, consider the case

of taxi drivers in a city. In this case, the users are the taxi drivers, and and

the tasks consist in picking up people at di↵erent locations. The objective

of the recommender system is to suggest a small set of pick-ups based on a

predicted distance to the task and benefit for providing the service.

Data Set

We conduct our experimental results on yellow taxi trip data of New York

City, which is a publicly available dataset2 and includes pick-up location,

pick-up datetime, drop-o↵ location, drop-o↵ datetime, trip distance, fare

amount and tip amount. We extracted the data from 01/01/2015 to 06/30/2016

and removed those entries with excessive fare or tip amount which were most

2
http://www.nyc.gov/html/tlc/html/about/trip record data.shtml
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likely caused by an error in measurement (above 4 standard deviations) as

well as those trips that included far-away drop-o↵s. After cleaning the data,

we had 209,506,086 trip records between the latitudes and longitudes ap-

proximately between (40.5,-74.3) and (41.1,-73.5). We divided this area into

a grid of 250 by 250 squares. Each grid is approximately 250m2. Figure

3.3 shows a heatmap of the drop-o↵s (3.3(a)) and pick-ups (3.3(b)) in New

York City during this time period. Using the datetimes between drop-o↵s

and pick-ups, and the fare and tip, we calculate the benefit of performing

each task as (fare+tip)/(dropo↵ datetime - pickup datetime), which is an

estimate of dollars per minute for performing the task.

(a) Drop-o↵s (b) Pick-ups

Figure 3.3: Heatmaps of the distribution of taxi drop-o↵s and pick-ups in

New York City between 01/2015 and 06/2016



45

Approximating the data using low-rank tensor approximations

In many real-world applications, the location and benefit of performing a task

is not known ahead of time. For this reason, we propose tensor factorization

as a technique to predict both the location of the next tasks and the benefit

of performing them. Before describing how tensors can be used to predict

these features from the tasks, we start with a few definitions:

Definition 3.3. The outer product of two vectors u
(1) and u

(2), denoted

as u(1)
⌦ u

(2), is a matrix U such that the coordinates satisfy Uij = u
(1)

i u
(2)

j .

Definition 3.4. The outer product of M vectors u(1)
⌦u

(2)
⌦ · · ·⌦u

(M) pro-

duces an rank-one, Mth order tensor X where each element Xi1,i2,...,iM =

u
(1)

i1 u
(2)

i2 · · · u
(M)

iM
. The vectors u

(j) are called the modes of X

Since matrices are a particular case of tensors, tensor decomposition is thus

a generalization of matrix factorization [50, 73]. The CANDECOMP/PARAFAC

(CP) decomposition can be considered a generalization of the singular value

decomposition (with certain caveats) [50] and it approximates the tensor X

as the sum of R rank-one tensors or components:

X ⇡

RX

c=1

�cu
(1)

c ⌦ u
(2)

c ⌦ · · ·⌦ u
(N)

c (3.10)

The non-negative CP decomposition imposes the restriction that the en-

tries in the components should be non-negative, which increases the inter-

pretability of the decomposition. Additionally, the decomposition reduces

the dimensionality of the data, can help filter out the noise, and can be used

to predict the missing data [52, 81].

To appropriately recommend tasks to users, it is desirable to accurately

predict ahead of time the demand of tasks and the benefit of performing

such tasks. Notice that the predictions are made for all locations at a single

datetime point, and in this particular application, the users require some
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time to perform the task and will very likely end in a di↵erent location. At

that point, the users would need to ask for a new recommendation. We

divided every 24 hour day into 10 minute timeslots (144 timeslots per day)

and extracted the day of the week from the pickup datetimes. To make the

predictions, we used the historical data between 01/01/2015 and 03/30/2016

to train the model and predict six objective datetimes which were all after

03/30/2016.

We built two tensors using the 4 modes (grid x, grid y, DoW, timeslot).

The first tensor, called the demand tensor (dT ) has at each entry the aver-

age number of tasks requested, while the second tensor, called the benefit

tensor (bT ), has the average benefit of performing a task. To avoid a bias

due to the di↵erences in measurements between demand and benefit, we

standardized the values to a normal 0,1 distribution. We use non-negative

CP decomposition as a factorization technique due to its interpretability and

conciseness [24, 39]. Figure 3.4 shows the structure of the tensors with four

Figure 3.4: CP decomposition of the demand and benefit tensor with R

components

modes and its approximation through the non-negative CP decomposition.

The tensor is decomposed into the sum of R components. Each component is
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a rank-1 tensor comprised of the outer product of four vectors. Each vector

represent one of the modes. In our case, the vectors corresponding to Grid

X and Grid Y are of size 250, the vector for timeslot is of size 144, and the

vector for DoW is of size 7. These vectors can also be used to analyze the

structure of the data, and can reveal interesting information that is easy to

interpret.

To determine the number of components to factorize the tensors, we graphed

the approximation error, defined as ||T � T̂c||2/||T ||2, where T is the original

tensor and T̂c is the reconstructed tensor using c components. We chose the

minimum number of components after which there was not a significant de-

crease in the approximation error. Figure 3.5 shows the approximation error

as a function of the number of components. We chose 60 components for the

benefit tensor (approximation error = 0.3817) and 100 components for the

demand tensor (approximation error = 0.3581).

Figure 3.5: Reconstruction error ||T�T̂c||2/||T ||2 as a function of the number

of components c
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Data analysis using non-negative tensor factorization

In this section, we analyze the data obtained from the vectors after the

non-negative parafac decomposition. The basic idea is to plot the first few

components of the decomposition (figure 3.6) to obtain insights about the

original data.

Figure 3.6(a) shows the first three components of the DoW mode in the

demand tensor. The non-negative CP factorization has classified the demand

into di↵erent types. The first component shows the demand on the weekdays,

and corresponds to the people who regularly need the taxi service to commute

probably to their job and back home. The second component correspond to

the people that need the service mostly on Friday, Saturday and Sunday

mostly at night. The third component also corresponds to a higher activity

on the weekends, but in this case is for cultural or social activities during the

day. This classification is further corroborated by the timeslot mode (figure

3.6(b)), where the first component starts increasing from 6 a.m. to 10 a.m.,

then it remains somewhat constant and increases again after 5 p.m., obtaining

a maximum between 7 p.m. and 10 p.m., and finally decreasing again at

night. Component 2 and 3 reflect the people who use the service on the

weekends, and in the case of component 2, especially at night. Component

2 starts increasing steadily after 6 p.m. and reaches its maximum value

between 12 a.m. and 2 a.m. The third component shows a higher activity

between 10 a.m. and 7 p.m.

Compare the first component in this graph to the demand for tasks pre-

sented in figure 3.7. The left axis of this figure is the amount of tasks and

users on December 1, 2015 (a Tuesday). We observe a similar trend as the

interpretation for the first component in the timeslot mode, with steep in-

creases during rush hours.

Figure 3.6(c) and 3.6(d) show the graphs for the first three components in

the Grid X and Grid Y modes. We observe the highest values for the three
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components approximately in grids 92 to 105 for Grid X and 90 to 120 for

Grid Y. Compare this to the heatmap for pick-ups presented in figure 3.3(b),

which shows the highest activity in Manhattan, and it corresponds to those

grid numbers. We can use this information together with the data from the

other modes to determine the location, day of the week, and time of the

highest demand, and incorporate it to the clustering methods on the hybrid

approaches.

An analogous analysis could be done for the benefit tensor, and determine

what tasks provide a higher utility. In our prediction model, we focus on

those tasks to jointly optimize the prediction and the recommendation and

therefore optimize the overall system utility.

Figure 3.7 shows the benefit (y-axis on the right) throughout the day using

the real data from the dataset. We observe the opposite trend as the demand.

The higher the demand, the lower the average benefit for performing a task.

Predicting the location and benefit of tasks

After factorizing bT̂ and dT̂ , for each grid x and grid y, we predicted the de-

mand and benefit for the DoW and timeslot corresponding to the objective

datetimes. In the case of the demand, we rounded the predicted result to

the nearest integer.

From the original dataset, we extracted the drop-o↵ locations for current

datetime, and assumed that these were the position of the users looking for

recommendations to perform a task within the next 10 minutes.

We ran the greedy algorithm on both the predicted data and the real data

from the original dataset from the objective datetime and obtained rec-

ommendation for all users. To run the ordered-progressive algorithm, we

used a hybrid approach and considered a moving window of 5 by 5 squares.

It is reasonable to assume that users will not be able to travel too far away

within the next 10 minutes.
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(a) Day of Week Mode (b) Timeslot Mode

(c) Grid x Mode (d) Grid y Mode

Figure 3.6: Visualization of the first components of each mode in the demand

tensor
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Figure 3.7: Demand and benefit of tasks throughout a day

Likewise, we also ran the algorithms both on the real data and the data

predicted by the tensors on other days as well. The objective datetimes

that were considered are as follows:

1. April 1, 2016 (Friday) at 7:00 p.m.

2. April 28, 2016 (Thursday) at 4:10 a.m.

3. May 11, 2016 (Wednesday) at 11:20 a.m.

4. May 28, 2016 (Saturday) at 2:10 p.m.

5. June 7, 2016 (Tuesday) at 8:30 p.m.

6. June 26, 2016 (Sunday) at 9:00 a.m.

The dates and times were chosen from the test set (between 04/01/2016 and

06/30/2016) in such a way that there would be a variety in the day of the

week, time of the day, and from relatively distant days.
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3.5 Results

3.5.1 Simulation Results

In figures 3.8, 3.9 and 3.10, we observe the change in utility as we vary

the users, tasks, and number of recommendations. We perform 10 di↵erent

simulations and present the median result. In figure 3.9(a) we observe that

the user utility decreases as we increase the number of users with a fixed

number of tasks. Figure 3.9, show the variation in user, task, and system

utility, respectively, as the number of users is increased. In general, the

user utility decreases, and the task and system utility increases. We observe

the opposite behaviour in figure 3.8 as we increase the number of tasks.

In the case of varying the number of recommendations (figure 3.10), there

is a slight increase in the utility when using 4 recommendations. In all

cases, the ordered-progressive algorithm showed a better performance as an

approximation algorithm than the greedy approach. Figure 3.11 shows the

log-scale runtime of the algorithms in seconds. The exponential nature of the

exact method shows the need to use approximation algorithms for practical

solutions.

At a first glance, it was surprising that recalculate progressive performed

worse than other algorithms. After a careful look, recalculating previous

values for P (ui ! sj) without modifying the recommendations gives an

unfair advantage to that tasks that have already been recommended, making

the algorithm recommend those tasks again.

Ordered progressives runs slightly slower than progressive because it needs

to order the users according to the tasks (step 5 and 8 in algorithm 3). With

respect to the hybrid approaches, cluster runs slightly slower than batch

because it needs to run a clustering algorithm, as opposed to batch that

simply takes a few users at a time in any order. It is faster to run these

algorithms and then run order progressive inside the batches or clusters,
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(a) User Utility (b) Task Utility

(c) System Utility

Figure 3.8: Utility measures as a function of the tasks.

which increases the speed of the ordered-progressive algorithm for real-world

applications.

3.5.2 Case Study Results

For the case study, figure 3.16 shows the box plots for the greedy and hy-

brid/ordered progressive algorithm for the user and task utility. Figure

3.16(a) shows the distribution of E(ui, sj) for each user (i.e. the user utility),

and figure 3.16(b) shows the distribution of P (sj) for each task (i.e. the

task utility). The tensor factorization had a low error predicting the demand
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(a) User Utility (b) Task Utility

(c) System Utility

Figure 3.9: Utility measures as a function of the users.
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(a) User Utility (b) Task Utility

(c) System Utility

Figure 3.10: Utility measures as a function of the recommendations.

(Mean Squared Error = 0.521 , Relative Error = 0.477) and benefit (Mean

Squared Error = 0.274, Relative Error = 0.346). As a result, the recommen-

dations obtained by both methods were similar to the results obtained using

the real data. On the other hand, the hybrid/ordered-progressive algorithm

outperformed the greedy algorithm both for the user and the task utility.

Figure 3.16(b) shows that the greedy approach had a higher standard devi-

ation than hybrid/ordered-progressive. This could be because the algorithm

would sometimes recommend the same task to several users, making some

task probabilities of being performed close to 1, while neglecting other tasks

and making their probability of being performed 0 or close to 0. This is also
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(a) As a function of users (b) As a function of tasks

(c) As a function of number of recommenda-

tions

Figure 3.11: Comparison of the running time for the di↵erent methods

reflected in a lower user utility in the greedy algorithm (lower P (ui ! sj)).

Hybrid/ordered-progressive e↵ectively recommends other tasks to users be-

cause it considers the dependent probability of performing a task. This is

reflected not only in a higher user and task utility, but also in a lower stan-

dard deviation for the task utility. Table 3.1 shows a summary of the data

from the box plots.

For performing the analysis with the six di↵erent datetimes, we considered

the utility in all of the dates. Some datetimes had less users and tasks (e.g.

Thursday at 4:10 a.m. had 388 users and 392 tasks) while others had more
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(a) User Utility (b) Task Utility

(c) System Utility

Figure 3.12: Comparison of the results of the simulations as a function of

the number of users

(e.g. Monday at 7:00 p.m. had 3584 users and 2937 tasks). We added

the user utility of all the users and divided over the total number of users

(13,278). We likewise obtained the task utility of all the tasks (the total

number of tasks was 11,353). We obtained a weighted standard deviation,

which was proportional to the users and tasks in each datetime (e.g. the

weight for the standard deviation in the user utility for Monday at 7:00 p.m.

was 3584/13278). Table 3.2 shows the results for the five datetimes, and

figure 3.17 shows the corresponding box plot.



58

Data Method F(R) Utility n mean std Q1 Q3

R
ea
l

Greedy 0.382
User 3151 0.279 0.093 0.211 0.338

Task 2983 0.485 0.226 0.306 0.666

Ord-Prog 0.487
User 3151 0.369 0.122 0.278 0.453

Task 2983 0.606 0.083 0.548 0.663

P
re
d
ic
te
d Greedy 0.347

User 3151 0.256 0.089 0.194 0.315

Task 2685 0.439 0.235 0.25 0.624

Ord-Prog 0.454
User 3151 0.359 0.109 0.273 0.432

Task 2685 0.549 0.075 0.543 0.644

Table 3.1: Summary of the data from the box plots

Data Method F(R) Utility n mean std Q1 Q3

R
ea
l

Greedy 0.393
User 15968 0.348 0.114 0.258 0.418

Task 13981 0.437 0.279 0.268 0.684

Ord-Prog 0.6175
User 15968 0.491 0.124 0.404 0.577

Task 13981 0.692 0.089 0.555 0.684

P
re
d
ic
te
d Greedy 0.402

User 15968 0.352 0.089 0.267 0.422

Task 12418 0.478 0.266 0.268 0.684

Ord-Prog 0.53
User 15968 0.509 0.144 0.407 0.61

Task 12418 0.737 0.103 0.578 0.717

Table 3.2: Summary of the data from the box plots
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(a) User Utility (b) Task Utility

(c) System Utility

Figure 3.13: Comparison of the results of the simulations as a function of

the number of tasks
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(a) User Utility (b) Task Utility

(c) System Utility

Figure 3.14: Comparison of the results of the simulations as a function of

the number of recommendations
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(a) Running time as a function of users (b) Running time as a function of tasks

(c) Running time as a function of number of

recommendations

Figure 3.15: Running time of simulations
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(a) User Utility (b) Task Utility

Figure 3.16: Comparison of the models run with real world data and with

the data predicted from the tensor factorization

(a) User Utility (b) Task Utility

Figure 3.17: Comparison of the models run with real world data and with

the data predicted from the tensor factorization. Data from 5 di↵erent data

points



63

Chapter 4

Location and Time-aware

Truth-Inference with Bayesian

Filtering

4.1 Problem Formulation

Consider the spatial crowdsourcing scenario, in which a set of nusers di↵erent

users join the task of reporting specific events at nlocs di↵erent locations and

at ntimes di↵erent and consecutive time slices. We denote the set of these

users as U = {ui|i = 1, ..., nusers}, the set of locations of interest as L =

{lj|j = 1, ..., nlocs} and the set of relevant times as T = {tk|k = 1, ..., ntimes}.

At any time tk 2 T , an event in location lj 2 L could be true (denoted by

‘1’) or false (denoted by ‘0’). Let Z be the set of events, where each element

zjk = 1 i↵ the event at time tk and location lj is true. We present our problem

and solutions for events with a binary state here, but we note that they can

be extended to events with multiple states.

For example, a set of nusers = 5 users could be asked to report if there is

high tra�c at nlocs = 10 di↵erent street intersections during the ntimes = 24

hours of a certain day, or they could be asked to report if gas is lower than
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$2.50 at nlocs = 3 di↵erent gas stations for ntimes = 3 days. The price at

location 1 for the three days could be $2.40, $2.45, and $2.58 respectively

(Figure 1.2(a)), so the true states of the event are z11 = 1, z12 = 1, and

z13 = 0 for location 1.

The users would simply report ‘1’ if the event is true. We assume there

is a default state (e.g. gas price is $2.50 or more, light tra�c) and consider

therefore that the reports could be of two kinds: 1) Positive report, where

the user reports the event as true (denoted as ‘1’); and 2) Missing report

where the user did not send a report (denoted as ‘0’). Missing reports could

occur in a variety of circumstances, such as the user not being at the spe-

cific place and time, lack of participation from the user, or the event being

false. In other words, a missing report could mean both absence of report or

report of a negative state. To distinguish between these scenarios, we take

into consideration both the probability that a user was at the specific time

and place of the event and the reliability traits of the user, although these

parameters are not known beforehand. Our main goal is to determine the

label of zjk as true or false for all of the relevant locations and times.

Figure 1.2 shows an example of a spatio-temporal crowdsourced task. Users

are moving and report if an event is true at di↵erent locations of interest.

The event could be gas price below $2.50. Figure 1.2(b) shows an example

of received reports throughout three di↵erent days. Based on these reports

and without knowledge of the users’ true locations, the goal is to infer the

true label of the events over time (figure 1.2(c)). We consider di↵erent types

of users: 1) trustworthy users (e.g. user 1 and 3) who report the events true

when they are true; 2) passive users (e.g. user 2) who never send reports

despite being in the correct location and time; 3) untrustworthy users (e.g.

user 4) who send the wrong reports; and 4) malicious users (e.g. user 5) that

send reports about events they are not observing.

Our assumption of a default state is motivated by a variety of applications
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Figure 4.1: Graphical Model showing the dependency of the variables. U , L,

and T are the set of Users, Locations, and Time steps, respectively

where users normally do not report a negative state. For example, users do

not normally send a report when there is no tra�c, since that is the default

state. Other examples with a default state include sending a report when

there is gra�ti on a wall, reporting potholes or trash on the street, locations

with free Wi-Fi, and accidents on a road.

Our model can be extended to include multiple states (e.g. report on low,

medium, or high tra�c), discretize continuous variables (e.g. the price of

gas is either below $1.50, between $1.50 and $3, or higher than $3), or have

a “negative” report (e.g. there is no accident at this location). We further

discuss these scenarios in section 5.3.

4.1.1 Proposed Model

In this section we present our proposed graphical model that specifies the

dependence at a given time point between the report of a user, the true state

of the event at a given location, and other factors. Figure 4.1 shows our

graphical model and Table 4.1 summarizes its notations. The model consists

of the following elements:
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Table 4.1: Notation for the Graphical Model

Symbol Meaning

nusers, nlocs, Number of users, event locations, and

ntimes time slices, respectively

U , L Set of Users, Locations,

T and Time slices, respectively

M Event model for the events Z

zjk Binary variable with the state of the

event at location lj and time tk

xijk Binary variable with the report of user

ui at location lj at time tk

hijk Binary variable that indicates

if user ui was at location lj at time tk

gjk Popularity of location lj at time tk

✓i Reliability model for user ui
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Reports from the users.

The reports from the users are collected in the form of a three dimensional

binary variable X = {xijk}, where xijk = 1 i↵ user ui reported the event at

location lj and time tk as true. Since a user ui cannot be in two locations at

a same time tk, xijk = 1 for some j 2 {1, ..., nlocs}) xijk = 0 8j 6= j.

On the other hand, xijk = 0 could be because the user ui was not at

location lj at time tk, the event zjk was not true, or because the user decided

not to participate. Our method establishes a probability model to explain

the di↵erent possibilities, which are detailed in Section 4.1.1.

Label of the event.

The label of the event at location lj and time tk is denoted as zjk and it

is a latent binary variable and one we ultimately seek to estimate based

on the reports from the users. We assume that there is an event model

M that models the spatio-temporal correlations between the event states at

consecutive time slices and determines the value of zjk. In Section 4.2.1, we

will assume that M is not known and present a method based on Bayesian

Estimation, and then we present an enhanced method that explicitly specifies

and estimates M in Section 4.2.2.

Popularity of the locations.

One of the factors that influences the reports from the users is if the user is

actually at the specified location. Establishing the popularity of each place

will be important to establish the probability that a user was actually at a

determined location at a certain time. The popularity of a place is defined

as the probability that a user chosen at random will be at that place at

any time. The popularity usually follows a power law distribution, so that

roughly 20% of the places have 80% of the popularity [64]. Let gjk be the
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popularity of location lj at time tk. For certain applications, and depending

on the time periods, it is reasonable to assume the popularity of a location is

independent of time. In such cases, we can drop the time index and gjk = gj.

User’s location indicator. We use a binary variableH = {hijk} to indicate

if user ui was at location lj at time tk. This variable is determined by the

popularity of the locations gjk. Since we assume that we are not tracking the

users at all times, this variable is hidden from us, but our method is capable

of determining a probabilistic approximation of H that will ultimately be

useful to establish the reliability model for the users. Similarly to the reports,

hijk = 1 for some j) hijk = 0 8j 6= j, since a user cannot be in two locations

at a same time. On the other hand, hijk = 0 directly implies that the user

ui was not at location lj at time tk. This is di↵erent from the reports, where

xijk = 0 could be for a series of reasons. Although some mobile apps send

GPS location together with the report, we are assuming that this data is

not specifically sent. On the other hand, if GPS data is available, we could

incorporate this information.

User’s reliability model.

An important factor that determines the reports from the users is their relia-

bility traits. We assume that a user is going to report an event with the same

probability regardless of the location they are in or the time slice. Therefore,

the reliability model does not vary as a function of the locations L or the

time slices T . We model the user’s reliability in the following way. For each

user ui 2 U , for all lj 2 L, and tk 2 T ,

↵i = P (xijk = 1|hijk = 1, zjk = 1) (4.1)

�i = P (xijk = 1|hijk = 1, zjk = 0) (4.2)

�i = P (xijk = 1|hijk = 0) (4.3)
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The probability that a user ui will report an event as true given that the

user is in the correct location and time and that the event is actually true

is represented by ↵i. The probability that user ui will report an event as

true given that ui is in the correct location and time, but the event is false is

represented by �i. Finally, �i is the probability that a user reports an event

as true, given that the user was not at the specified time and location and

regardless of whether the event was true or not.

We discuss several kinds of typical users which can be modeled based on

di↵erent values for ↵, �, and �. A user with �i close to 1 would be a malicious

user, since the user is reporting an event that is not being observed. In

general, we expect that the users have no incentive to be malicious and that

�i is close to zero. Assuming �i close to zero, a trustworthy user ui would

have ↵i close to one and a low �i, and would send reports i↵ ui observes the

event as true. An aggressive user would have both ↵i and �i close to one,

and would send reports if the event is true and sometimes also when it is

false. This could be due to a misinterpretation of the event. A passive user

would have low ↵i and �i, and would not send reports often, regardless of

the label of the event. Finally, an untrustworthy user would have low ↵i and

high �i, and would report events as true when they are false, and not report

events when they are true.

For ease of notation, let ✓i = (↵i, �i, �i) and ⇥ = {✓i|i = 1, ..., nusers}.

Variable⇥ completely determines the reliability traits of the users, and is able

to describe their trustworthiness, willingness to cooperate, and maliciousness.

Table 4.2 is a summary of the probabilities of X given Z, H, and ⇥ under

all circumstances.

The model presented here allows a probabilistic explanation for miss-

ing reports in the following way. A report could be missing (xijk = 0) if

the user was not at the correct time and place, if the state of the event was

the default (i.e. not true), or if the user preferred not to participate. Now
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Table 4.2: Probabilities of reports given H, Z, and ✓. For example, P (xijk =

1|hijk = 1, zjk = 1) = ↵i

h = 1 xijk

0 1

zjk

0 (1� �i) �i

1 (1� ↵i) ↵i

h = 0 xijk

0 1

zjk

0 (1� �i) �i

1 (1� �i) �i

that we have defined our model, we calculate the probability of each of these

cases, and determine that:

P (xijk = 0) =P (hijk = 0)(1� �i)+

P (hijk = 1)(1� P (zjk = 1))(1� �i)+

P (hijk = 1)P (zjk = 1)(1� ↵i)

=(1� ĥijk)(1� �i)+

ĥijk(1� ẑjk)(1� �i)+

ĥijkẑjk(1� ↵i)

Where ẑjk is an estimation of the true value of zjk and is defined as ẑjk =

P (zij = 1). Analogously, ĥijk = P (hijk = 1). The above equation clearly

separates the reasons why a report might be missing into three di↵erent

terms. A similar analysis could be used to determine the reasons for a positive

report.

4.2 Truth-Inference Algorithm

We first discuss the Bayesian Estimation part of the Truth Inference algo-

rithm, which infers the labels of the events without using the event model,

and then we improve upon it with the Kalman Estimation, which explicitly

models the event with a state-space model M.
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Figure 4.2: Bayesian Estimation and Kalman Estimation

4.2.1 Bayesian Estimation

We discuss how to obtain the latent variables Z, H, and ⇥ through a contin-

uous approximation in a recursive way based on the reports X of the users.

Setting the initial values.

We start the algorithm by setting initial values for the latent variable ⇥. In

general, any random number would work, but we can make some assumptions

that will speed up the convergence of the method. We assume that the users

do not have any incentives to report an event as true when they are not in the

location and time of interest, so we set �̂i close to zero.1 On the other hand,

a value of �i close to 1 would indicate that the user tends to misinterpret

the label of the event. In the case of clear-cut events (e.g. the price of gas

1
we use the conventional “hat” notation to mean an estimated value
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less than $2.50) there is not much room for misinterpretation, so we could

assign a value of �̂i close to zero. A value of ↵i close to 1 could be used

for applications where there is an incentive for cooperating. The application

to report tra�c in Waze, for example, has the incentive of helping others

avoid tra�c jams and a sense of community. Depending on the application

at hand, we could assign values of ↵̂i close to 1, where ↵̂i = 1 implies perfect

participation and trustworthiness.

Since we are assuming that there is no incentive to report from a far-away

location, we set ĥijk = 1 whenever xijk = 1. In such case, we also set

ĥijk = 0 8j 6= j since a user can only be at one location at one time. The

rest of the values of Ĥ, where there were no reports at location lj at time tk

are estimated as follows. Since ĥijk is interpreted as the continuous variable

that determines the probability that user ui was at location lj at time tk,

and gj is the probability that a randomly chosen participant will visit the

location at least once in t = 1, ..., ntimes, it follows that for a particular user

ui and location lj,
ntimesQ
k=1

(1 � hijk) is the probability that user ui will not visit

lj in any time period, which is equal to (1� gj). If we assume that all time

periods are equally popular for the same location, then hijk = hij1 for all k,

and
ntimesQ
k=1

(1 � hijk) =

ntimesQ
k=1

(1 � hij1) = (1 � hij1)
ntimes = (1 � gj).We then find that the

value of hijk = 1� (1� gj)1/ntimes for all k where xijk = 0.

For the initial values of Ẑ, we set ẑjk = P (zjk = 1) = (1/
P

ui2U xijk)
P

ui2U xijkĥijk. This

first approximation to Ẑ is a “weighted majority voting” approach where the

weights are determined by the probability of the users being there. How-

ever, it does not consider all of the reasons previously discussed for missing

reports.

Updating the variables

Once we have initial values for the latent variables, we continue to update

their values with the available reports by using equations of total probabil-
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ity and Bayes’ theorem recursively given our dependency graph in Figure 4.1.

Updating Ĥ. In the case of H, for each time tk, location lj and user ui, we

update the value of ĥijk using the available reports X and the equation for

total probability:

P (hijk = 1|X) =P (hijk = 1|X, zjk = 1)P (zjk = 1)+ (4.4)

P (hijk = 1|X, zjk = 0)P (zjk = 0)

Taking the first term when the true label of the event is 1 (zjk = 1), and

assuming that the reported value is 1 (xijk = 1), we can use Bayes’ theorem

and obtain that:

P (hijk = 1|xijk = 1, zjk = 1) (4.5)

=
P (xijk = 1, zjk = 1|hijk = 1)⇥ P (hijk = 1)

P (xijk = 1, zjk = 1)

=
P (xijk = 1|hijk = 1, zjk = 1)P (zjk = 1|hijk = 1)P (hijk = 1)

P (xijk = 1|zjk = 1)P (zjk = 1)

=
↵̂i ⇥ P (zjk = 1)⇥ ĥijk

(↵̂i ⇥ ĥijk + �i(1� ĥijk))⇥ P (zjk = 1)
=

↵̂iĥijk

↵̂iĥijk + �̂i(1� ĥijk)

Likewise, if we now assume that xijk = 0, we analogously determine that:

P (hijk = 1|xijk = 0, zjk = 1) =
(1� ↵̂i)ĥijk

(1� ↵̂i)ĥijk + (1� �̂i)(1� ĥijk)
(4.6)

For the second term, where we have zjk = 0, and assuming xijk = 1:

P (hijk = 1|xijk = 1, zjk = 0) =
�̂iĥijk

�̂iĥijk + �̂i(1� ĥijk)
(4.7)

Finally, when zjk = 0 and assuming xijk = 0, then

P (hijk = 1|xijk = 0, zjk = 0) =
(1� �̂i)ĥijk

(1� �̂i)ĥijk + (1� �̂i)(1� ĥijk)
(4.8)
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Therefore, if a report xijk = 1, then we use equations (4.4),(4.5), and (4.7) to

update H, and equations (4.4), (4.6), and (4.8) if xijk = 0. They are shown

respectively as follows:

P (hijk = 1|xijk = 1) =
↵̂iĥijkẑjk

↵̂iĥijk + �̂i(1� ĥijk)
+ (4.9)

�̂iĥijk(1� ẑjk)

�̂iĥijk + �̂i(1� ĥijk)

P (hijk = 1|xijk = 0) =
(1� ↵̂i)ĥijkẑjk

(1� ↵̂i)ĥijk + �̂i(1� ĥijk)
+ (4.10)

(1� �̂i)ĥijk(1� ẑjk)

(1� �̂i)ĥijk + (1� �̂i)(1� ĥijk)

Updating Ẑ. Updating the values of Ẑ follows a very similar procedure,

where we will be updating its values using the values of the recently calculated

Ĥ and our observations of X. We follow an analogous reasoning as for

equation (4.4):

P (zjk = 1|X) =P (zjk = 1|X, hijk = 1)P (hijk = 1)+

P (zjk = 1|X, hijk = 0)P (hijk = 0)

Analogously to equations (4.5-4.8), we construct the equations depending on

the observed reports:

P (zjk = 1|xijk = 1) =
↵̂iẑjkĥijk

↵̂iẑjk + �̂i(1� ẑjk)
+ (4.11)

�̂iẑjk(1� ĥijk)

�̂iẑjk + (1� �̂i)(1� ẑjk)

P (zjk = 1|xijk = 0) =
(1� ↵̂i)ẑjkĥijk

(1� ↵̂i)ẑjk + �̂i(1� ẑjk)
+ (4.12)

(1� �̂i)ẑjk(1� ĥjk)

(1� �̂i)ẑjk + �̂i(1� ẑjk)
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The final estimation for zjk is an aggregation over all the reports from the

users.

Updating ⇥̂. Finally, for updating ⇥̂, we follow the definitions of ↵i, �i,

and �i from section 4.1.1 and applying Bayes theorem, arrive at the following

update equations:

↵̂i =
ẑjkĥijk

ẑjkĥijk + (1� ẑjk)(1� ĥijk)
(4.13)

�̂i =
(1� ẑjk)ĥijk

(1� ẑjk)ĥijk + ẑjk(1� ĥijk)
(4.14)

�̂i =
ẑjk(1� ĥijk)

ẑjk(1� ĥijk) + (1� ẑjk)ĥijk

+ (4.15)

(1� ẑjk)(1� ĥijk)

(1� ẑjk)(1� ĥijk) + (1� ẑjk)ĥijk

This is essentially an expectation maximization algorithm, since we are up-

dating the variables in the expectation phase and maximizing the value of

P (X|Ĥ, ⇥̂, Ẑ).

Convergence.

We iteratively continue updating the variables Ĥ, Ẑ, and ⇥̂ until conver-

gence, which is determined by the relative change of the variables Ẑ between

one iteration and the next. In other words, we stop if at some iteration r,

||Ẑ
(r�1)

� Ẑ
(r)
||/||Ẑ

(r�1)
||  ✏ for some tolerance ✏. The convergence of Ẑ

considers all the locations and all the times. The resulting Ẑ has values in

the interval [0, 1], which are interpreted as the probability of an event to be

true. If we need to decide a True/False label for the event, we set a threshold

⌧ (say ⌧ = 1

2
) and label the event at location lj at time tk as true i↵ ẑjk � ⌧ .

Algorithm 5 summarizes the method.
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Algorithm 5 Truth Inference from Spatio-Temporal reports using Bayesian

Estimation (BE)
Input: Spatio-temporal reports from the users: X

Output: 1) Labels of the events: Ẑ;

2) Reliability Model ⇥̂

1: Initialize ⇥̂ with random numbers. It is useful to incorporate beliefs to

speed up convergence.

2: Initialize Ĥ in the following way:

- For all i,j,k such that xijk = 1, set ĥijk = 1 and ĥijk = 0 8j 6= j

- For all i,j,k such that xijk = 0, set ĥijk according to the popularity

of lj at time tk

3: Initialize Ẑ by setting ẑjk =
1

|U |

P
ui2U

xijk for each lj 2 L, tk 2 T

4: Set r = 1, Ĥ = Ĥ
(0), Ẑ = Ẑ

(0), ⇥̂ = ⇥̂(0)

5: while has not converged do

6: Update Ĥ
(r) with equations (4.9-4.10)

7: Update Ẑ
(r) with equations (4.11-4.12)

8: Update ⇥̂(r) with equations (4.13, 4.14, 4.15)

9: Check for convergence using Ẑ
(r) and Ẑ

(r�1)

10: r = r + 1

11: end while

12: For all lj 2 L, tk 2 T , if ẑjk � ⌧ for some threshold ⌧ , label event at

location lj, time tk as true. Otherwise, label it as false.
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4.2.2 Kalman Estimation

The recursive Bayesian method obtains the probability that an event is true

given the reports from the crowdsourced data. When we consider the mathe-

matical or probabilistic model for the behaviour of the events (event model),

we can obtain a better approximation to Z. We use the Kalman filter, which

is a recursive algorithm that uses data from the previous state of the vari-

ables (i.e. the previous time-step, or tk�1) together with observations from

the current state (at tk) and makes a prediction based on the underlying

model to estimate the unknown or latent variables [42].

Event Model. The event model is used in the Prediction phase of the

Kalman Estimation. We assume that there exists an event model M that

determines the values of the labels of the events zjk. For example, the value

of zjk could be determined by a Markov model if its value depended only on

the value of zj(k�1):

zjk = Mzj(k�1) (4.16)

It could also be determined by time series models if the value of zjk de-

pended on zj(k�1), zj(k�2), ..., zj1. The value of zjk could also be determined

by the values of zjk, j 6= j if there is a correlation among the locations. For

example, the tra�c at location lj could be determined by the surrounding

locations since the tra�c could start spreading to nearby areas. In general,

the event model M for the values of Z is not known.

In such cases, we can use the observed data from the previous time-steps

to train the model M. To continue our example with gas prices, assume we

do not have previous data for the prices, and we only have our estimation

based on observations at t1. A prediction for t2 could be made by assuming

M = I, so that the gas prices at t2 would be the same as in t1. If we observe

any changes at t2 after making an estimation and a correction, then we start
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adjusting the model. Since the gas prices could be modeled as a time series,

we can use an autoregressive moving average to make our next prediction at

t3 [65]. The model would be adjusted accordingly as more observations are

made.

Initialization of the recursive implementation. In our recursive im-

plementation, for each location j, and at t1, the approximation obtained

from the Bayesian estimation ẑj1 is used to predict the value of ẑj2 using the

underlying model M (prediction phase). Let z
�

j2 be the prior or predicted

value.2 On the other hand, at time t2 we have our Bayesian estimation ẑj2.

Using these two values z�j2 and ẑj2, we use the Kalman estimation to obtain

a corrected estimation of zj2 (correction phase). The next subsection details

the prediction and correction phase. Let z
+

j2 be the posterior 3 or the value

approximated by the Kalman estimation. We can now apply the underlying

mathematical model to the posterior value to obtain a prior for the next

time step. With this initialization, this recursive algorithm can be applied

at t2, ..., tntimes . We now explain in more detail the two phases of the Kalman

Estimation part of the algorithm.

Prediction Phase. In the prediction phase at time tk, we use the underlying

event model M to make a prediction for time tk+1.

In general, if we consider T to be the training data, either obtained o✏ine,

online, or both, and z
+

j(k�1)
the corrected approximation for the label at a

previous time-step, then the a priori prediction for time tk is

z
�

jk = M(T, z+j(k�1)
) (4.17)

Correction Phase. In this phase, we use the prediction from the previous

phase together with the estimated variable from the observed reports at the

current time-step to update the approximation to the true label of the event.

2
We use the conventional

�
notation to denote the a priori prediction

3
Likewise, the

+
notation denotes the posterior estimation
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If z�jk is the a priori prediction, and ẑjk is the approximation obtained from

the observations at location lj and time tk, then

z
+

jk = z
�

jk +Kk ⇥ (ẑjk � z
�

jk) (4.18)

is the posterior or corrected approximation to zjk, where Kk is the Kalman

gain at time tk. Details on the derivation of the Kalman gain can be found

in the seminal work by R.E. Kalman [42]. In the unidimensional case, the

posterior is a convex linear combination of the prior and the estimated values.

If Kk = 0 then z
+

jk = z
�

jk and Kk = 1 implies z+jk = ẑjk, so the Kalman gain

is a term that “corrects” the prediction using the estimated value from the

observed data. We also consider the multidimensional case when there is a

temporal-spatial correlation of the events. Such cases occur, for example, if

high tra�c in one location correlates with high tra�c in another location.

Algorithm 6 Truth Inference from Spatio-Temporal reports using Bayesian

Estimation and Kalman Estimation (BE+KE)
Input: Spatio-temporal reports from the users X; Event model M
Output: Labels of the events: Z+;

1: Apply algorithm 5 (BE) to xij1 to obtain ẑj1 for all j

2: z+j1 = ẑj1

3: for k = 2, ..., ntimes do

4: Apply algorithm 5 (BE) to xijk to obtain ẑjk

5: z
�

jk = M(z+j(k�1)
) (Prediction)

6: z
+

jk = ẑjk +K ⇥ (z�jk � ẑjk) (Correction)

7: Retrain M
8: end for

Figure 4.2 shows the algorithm at a location j and at time tk. The hidden

variables include our objective variable zjk, the observed variable is the data

obtained from all the users at location j and time k, and the Bayesian esti-

mation (BE) obtains an approximation to ✓, H, and ẑjk. This last variable
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is used together with the prior prediction from the previous step (z�j(k�1)
) in

the Kalman estimation (KE) to obtain the posterior estimation (z+jk). The

posterior is used together with the underlying model M to obtain a prior

estimation for time tk+1. The additional estimated variables from Bayesian

Estimation (ĥ⇤jk and ⇥̂⇤) are used to improve the estimations of the Bayesian

Estimation at the next time step. Algorithm 6 summarizes the whole process.

4.3 Experimental Results

In this section we describe the experiments performed. First, we describe a

baseline method against which our methods were compared, and then present

both a real-world case study and extensive simulations evaluating the impact

of parameters and settings.

4.3.1 Compared Methods

Voting. For our baseline method, we consider the classic approach of Voting,

where for each location and time, we simply count the number of reports

and divide over all users. Since the number of users is in general much

larger than the number of reports at a specific location and time, this ratio

provides a very low number. We then need to set a threshold above which the

method considers the label as true. In the simulation study, we optimized the

threshold to have as many true positives as possible while for our real-world

example, we set the threshold to 0, so that any positive report would make

the method consider the event as true.

Truth Finder for Spatial Events (TSE). Truth Finder for Spatial Events

[64] is a recent method that incorporates the probability of a user to be at a

certain location, as well as the user’s reliability. This method can e↵ectively

handle positive and missing reports to infer the truth through crowdsourced
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Table 4.3: Precision, Recall, and F1 measure for the real-world data corre-

sponding to figure 4.4(a)
Voting TSE BE BE+KE BE+KE Pre

Time Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Day 1

RH1 0.55 0.50 0.53 0.62 0.52 0.57 0.57 0.56 0.56 0.70 0.55 0.62 0.66 0.60 0.63

RH2 0.43 0.33 0.38 0.49 0.36 0.41 0.46 0.37 0.41 0.62 0.56 0.59 0.67 0.64 0.66

Day 2

RH1 0.49 0.36 0.41 0.54 0.53 0.53 0.60 0.47 0.52 0.77 0.61 0.68 0.76 0.68 0.72

RH2 0.39 0.36 0.37 0.47 0.41 0.44 0.52 0.37 0.43 0.67 0.67 0.67 0.77 0.72 0.74

Day 3

RH1 0.45 0.33 0.38 0.54 0.51 0.52 0.55 0.48 0.51 0.83 0.67 0.75 0.84 0.77 0.80

RH2 0.48 0.34 0.40 0.60 0.43 0.50 0.50 0.47 0.49 0.79 0.72 0.75 0.82 0.82 0.82

Day 4

RH1 0.37 0.29 0.33 0.46 0.40 0.43 0.44 0.38 0.41 0.79 0.70 0.74 0.89 0.81 0.85

RH2 0.34 0.31 0.33 0.44 0.38 0.41 0.40 0.39 0.40 0.80 0.72 0.75 0.89 0.81 0.85

Day 5

RH1 0.34 0.22 0.26 0.41 0.34 0.37 0.39 0.33 0.36 0.79 0.71 0.75 0.89 0.81 0.85

RH2 0.32 0.24 0.28 0.49 0.36 0.42 0.42 0.38 0.40 0.83 0.70 0.76 0.89 0.81 0.85

data of spatial events. However, TSE does not consider a time dimension so

it does not consider a time-dependent model for the changes in the events. To

compare with our work, the whole TSE algorithm was run at each time-step

with only the data available at that time step.

Bayesian Estimation (BE). In both the real-world case study and the

simulation experiments, the Bayesian estimation method uses the graphical

model presented in figure 4.1 and the algorithm described in Section 4.2.1. It

does not assume knowledge of an event model and it is purely based on the

reports from the users, but it takes into consideration the reports of previous

time-steps.

Bayesian Estimation and Kalman Estimation (BE+KE).

This method is described in Section 4.2.1 and 4.2.2, and can train the event

model M in real-time (BE+KE), or it can use existing historical data to train

M (BE+KE pretrained). In the case of the simulation experiment, we also

included a multidimensional model that considers the correlation between

the locations as part of the event model M (BE+MD KE pretrained).
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4.3.2 Real-World Case Study

Waze Reports. Waze is a navigation app where users can send reports

from a predefined set of spatio-temporal events. The set of events includes

potholes, accidents, and high tra�c, and the reports are typically done while

the users are driving, so in many occasions, users prefer not to send a report.

For our real-world case study, we took a dataset of alert reports sent to the

Waze application in the city of Boston, from 2/23/2015 to 3/1/2015. The

dataset is publicly available4 and includes date, time, latitude, longitude,

anonymized user id, and type of report. This dataset provides a real-world

application of spatio-temporal events with reports from users of varying and

unknown reputation and undisclosed locations.

City Pothole data. For our ground truth, we took a dataset of closed

pothole cases, which is publicly available in the city government website of

Boston5. The dataset includes the date and time when the case was opened,

the latitude, longitude, and the date and time when the case was closed.

This dataset is updated every day since 2014, but we were only interested in

those cases that intersected with the Waze reports. This includes cases that

were opened before 2/23/2015 and closed on or after 3/1/2015, as well as

those cases that were opened or closed during that time.

Figure 4.3(a) shows a time series of the potholes and the reports from the

users in this period. The time series of the potholes was obtained from the

Boston government website and the time series of the reports is from the

Waze dataset. Each time slice represents a 4 hour period and we can see

that the reports have peaks during the rush hours, and go down at night and

on the weekends. The time series representing the potholes did not show such

variation. The potholes that were not fixed during working hours remained

open during the night.

4
https://data.cityofboston.gov/Transportation/Waze-Alert-Data

5
https://data.cityofboston.gov/city-services/closed-pothole-cases
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Matching the reports with potholes on map. Taking the two potholes

that were furthest away as corners of a square, we drew an n⇥n grid on the

city of Boston. The number of grid cells was adjusted so that the cells were

small enough to have most non-empty grid cells containing only one pothole,

but big enough so that most non-empty grid cells had several reports in

it. Figure 4.3(b) shows the distribution of potholes and reports on a 40

by 40 grid. The horizontal axis shows how many potholes and reports per

individual cells there are, and the vertical axis is the count of such cells. The

figure shows that there are several grid cells with only one pothole (bar plot

on the left) and several grid cells with a large amount of reports (bar plot on

the right). All of the non-empty grid cells were considered as locations and

the rest were discarded from the analysis. Figure 4.3(c) shows a 10⇥10 close-

up of the map of Boston with the o�cially reported potholes and the reports

from the Waze users on a 4 hour period6. The 284 grid cells containing

potholes or reports were considered as the locations (nlocs = 284) and the

rest were discarded from the analysis. The dataset considered 2,396 di↵erent

users (nusers) and 8,492 reports.

Compared Methods. We implemented the Bayesian and the Kalman Es-

timation model. For the event model in the Kalman Filter, we trained the

method both in real time, and using previous data from the city government

website of Boston. For the real-time training, we modeled the opening and

closing of potholes as a time series and used an autoregressive moving av-

erage model (ARMA) to predict the next time-step [65]. This model has

the advantage that it gives higher weight to the latest observations and less

weight to older observations, and the number of observations to consider can

be adjusted to the observations that are available at the time. On the other

hand, the historical data provided by the city government showed that pot-

6
Due to slight imprecision in the juxtaposition of images, there is a misalignment between the map

and the points
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holes are usually open for a few days, and that they are only fixed during

working hours. With this data, we built a Markov model that showed that if

a pothole was open, then with a very high probability it would remain open

within the next 4 hours. If a pothole was closed, then with a very high prob-

ability it would remain closed. This gave a very accurate a priori prediction

for each of the next time steps.

4.3.3 Evaluation metrics.

To evaluate the performance of the methods, we used precision, recall, and

the F1 measure, which takes into account both precision and recall since

F1 = 2precision⇥recall
precision+recall . These metrics are commonly used to evaluate the

performance of truth inference algorithms [54, 87, 23, 21].

4.3.4 Results

Table 4.3 shows the precision, recall, and F1 measure for the di↵erent meth-

ods at rush hours (RH). The table shows that precision tends to be higher,

presumably because the missing data increases the number of false nega-

tives, while false positives are less common. Figure 4.4(a) is a graph of the

F1 measure, and we observe that the BE and TSE methods outperform in

all cases the Voting method, but it is still very dependent on the data pro-

vided by the users. The seemingly low values for the performance, and the

higher precision than recall is due to the missing values (e.g. fewer reports

at night or low transited locations with few reports overall), which increases

the number of false negatives, while false positives are less common. The

Bayesian Estimation and Kalman Filter (BE+KE) method trained in real

time has a performance very similar to the Bayesian Estimation in the first

days, but once the time series has more data to perform the predictions and

corrections, it performs better than Voting, TSE, and the BE method. If we
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use the historical data to train the model o✏ine (BE+KE pre-trained) then

the method starts similarly to the other three, but then it tends to give more

weight to the a priori prediction over the observed and incomplete data.

Figure 4.4(b) shows a comparison of the methods throughout the process

and it shows how the methods are dependent on the reports. In the case of

Voting, there is a clear similarity with the reports of figure 4.3(a). Although

the Bayesian Estimation and TSE outperform the Voting method, they are

still very dependent on the available reports. The drops in the performance

of Voting, BE, and TSE can be explained by the lack of reports during

night time and the weekend. Both BE+KE and BE+KE pre-trained are

more robust to this lack of reports due to the a priori estimate based on

prediction.

Finally, a ROC curve in figure 4.4(c) shows a comparison of the di↵erent

methods as we vary the threshold to determine true or false events. The area

under the curve (AUC) is shown in parenthesis in the legend of the graph.

We observe that the AUC of the BE+KE pre-trained method is 0.861, which

makes this a very reliable method under these conditions. The graph shows

how BE+KE retrained outperforms BE+KE, which in turn outperforms BE

and TSE. Although BE is still dependent on the reports from the users, it

outperforms the Voting method.

4.3.5 Simulation Experiment

To evaluate the impact on our methods caused by the di↵erent parameters,

we also performed simulation experiments by generating synthetic data. We

observed the e↵ects in performance caused by changes in 1) number of users,

2) number of locations, 3) number of time slices, and 4) reliability traits of

users.
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Simulation Setup

We tried di↵erent parameters for the nusers and nlocs. We fixed ntimes = 24 to

represent a scenario where each time period represents an hour of the day. For

each user ui, we generate their reliability traits ✓i = (↵i, �i, �i) where each of

these parameters is a value between 0 and 1. We simulate the reliability traits

of the users with a Beta distribution (the conjugate prior of the Bernoulli

distribution) as was done in [64]. Then we simulated the popularity of the

locations (gj with j = 1, ..., nlocs) by drawing from a power law distribution

[64] and generated variable H using this data and the definition of popularity

of a location (section 4.2.1). Any user had a gj chance of visiting location lj

at some point in time, and once a user was at a certain location, then the

same user could not be at any other location at the same time.

To model the true label of the events, we used two models. Under the

first model, we assume that the locations are independent of each other and

we use a di↵erent Markov model for each location, where the states of the

model are True or False and we simulate with di↵erent transition probabil-

ities. In general, these probabilities can be learned in real time (BE+KE)

as well as using historical data (BE+KE pre-trained). The second model

corresponded to the case in which the events at the locations are correlated.

Such a scenario could be for example modelling tra�c, where high tra�c on

one location could be correlated with high tra�c on a nearby location. The

correlation matrix is learned o✏ine and the true label of the events is sim-

ulated accordingly. We refer to this multidimensional method as BE+MD

KE pretrained. Finally, to compare the e↵ect that the Kalman estimation

method has on our BE method, we replaced the BE with another method for

truth inference (the previously mentioned TSE) together with the Kalman

estimation and used it with the simulated data (TSE+KE)

Once we have simulated H and Z, we use ⇥i to simulate the reports from

the users, according to equations 4.1, 4.2, and 4.3. For each user ui at
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location lj and time tk, the probability that xijk = 1 is drawn from a Bernoulli

distribution with parameter ↵i, �i, or �i, depending on the values of hijk and

zjk. Algorithm 7 summarizes the simulation procedure.

Impact of user reliability

Figure 4.5 shows the results of the simulations as we varied di↵erent values

of ⇥. We tried di↵erent values for ↵, �, and �, which test di↵erent degrees

of reliability (passiveness, trustworthiness, maliciousness), and the figures

in 4.5 are representative of all the di↵erent scenarios. In figure 4.5(a), we

fixed the value of � to 0.25 and � to 0.05 (i.e. low values) and observed the

performance of the di↵erent values as a function of ↵. A low value of both �

and ↵ represents the situation in which the users are not very participative,

and they do not often report the event regardless of it being true or false. In

this case, we have several missing values. As ↵ increases with a fixed and low

�, the users become more trustworthy, and only report events when the event

is true, increasing the number of true positive values without increasing the

false positives or false negatives, and therefore increasing the F1 score.

In figure 4.5(b), we fixed the values for ↵ to 0.85, left � as before, and

observe the performance of the methods as we vary �. In this scenario, there

is a slight decrease in the performance of the methods as � increases. A

high value of ↵ and � corresponds to the scenario of aggressive users who

report events as true even if they are ambiguous or flat out false. There is an

increase of true positives, but also of false positives, which makes the value

of F1 to decrease slightly. For figure 4.5(c), we kept the values of ↵ at 0.85

and � at 0.25, and modified the values of �. For low values of �, we observe a

scenario with trustworthy users, but as � increases, so do their reports when

the users are not at the specific location and time. This corresponds to the

scenario of malicious users, which increases the values of the false positives

and false negatives, decreasing the overall performance of the methods.
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(b) Using a 40x40 grid, most non-

empty grid cells have only 1 pothole

(blue bar on the left-hand side of the

graph) while several grid cells have a

considerable amount of reports (red

bar on the right)

(c) Map of Boston with o�cially reported

potholes and reports by Waze users. The new

and closed potholes relate only to this time

period, while the open potholes were reported

before and closed after this 4 hour period.

Figure 4.3: Analysis of the datasets used in the real-world application
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Figure 4.4: Comparison of the methods using real-world data of potholes and

Waze reports
In general, we can see that BE and BE+MD KE outperforms the other

methods in all scenarios because it models the spatio-temporal correlations

of the events explicitly. TSE+KE also outperforms TSE, which highlights

the benefit of using the event model and the Kalman Estimation.

Impact of number of users, locations and time periods.

Next, we tried our methods using di↵erent number of users, locations, and

time periods. We tried di↵erent values for each, and Figure 4.6(a) shows the

performance of the methods as a time series with ntimes = 24. For the first few

time periods, we observe that the BE and TSE method outperform the rest.

However, as we get more reports and are able to train the Kalman Estimation,

the four methods that use the Kalman Estimation started performing better.

In particular, we see that TSE+KE performs better in time (and better than

TSE) since the Kalman estimation corrects the estimated values. TSE is

not dependent on time and performs equally good at each time-step, while

BE performs better in time since it uses previous reports to improve the

estimation parameters at each time-step.
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Figure 4.5: Results of simulations as a function of the reliability model for

the users
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versus F1

Figure 4.6: Results of simulations
In figures 4.6(b) and 4.6(c), we again fixed the value of ntimes to 24, and

observed the performance of the methods as we varied the number of users

and locations, respectively. Voting, BE, and TSE are the most sensitive to

the reported data, while the methods that use the Kalman Estimation can

depend more on the Prediction and Correction phases and hence outperform

the classic and BE methods. Figure 4.6(b) shows that the more users we

include, the methods will show an increase in performance. Figure 4.6 shows

that if we keep all the other variables constant, and increase the number of
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(c) Number of runtime as
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Figure 4.7: Runtime of the simulations
locations, the performance will decrease.

Runtime analysis

Figure 4.7 shows logarithmic plots of the runtime of the methods as a function

of number of time slices, users, and locations. The experiments were run in a

machine with Intel Core i7 CPU at 4.00GHz and 64 Gb of memory. In figure

4.7(a), we observe that Voting and TSE are the least a↵ected by adding more

time slices, since each time slice is evaluated independently and the increase

in runtime is due to the increase of evaluation slices. BE performs faster

than TSE since it considers all the time slices at the same time, but it is

a↵ected more by the increase of time slices since it requires convergence of

more values. Similarly, the methods based on the Kalman estimation require

evaluation of more time slices and convergence of the BE model at each time

step. Figure 4.7(b) shows how the methods are a↵ected by increasing the

number of users and in general we see an increase in the runtime on all the

methods. A similar situation occurs when increasing the number of locations

(figure 4.7(c)). In all cases we observe that it is better to have a pre-trained

model to use with the Kalman filter.
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Algorithm 7 Algorithm to generate the simulation variables
1: Determine the values of nusers, nlocs, and ntimes

2: For each user ui, determine ✓i either by fixing the values or with a Beta

distribution.

3: For each location lj, determine its popularity gj from a power-law distri-

bution

4: Determine a transition model M and an initial probability for the true

label of the events. The model can be unidimensional or multidimensional

if there is a correlation between the events.

5: for j = 1, ..., nlocs do

6: Set zj1 using the initial probabilities

7: for k = 1, ..., ntimes do

8: Use the location popularity to determine H

9: zj(k+1) = M(zjk, ..., zj1)

10: if zjk = 1 and hijk = 1 then

11: Xijk ⇠ Ber(↵i)

12: end if

13: if zjk = 0 and hijk = 1 then

14: Xijk ⇠ Ber(�i)

15: end if

16: if hijk = 0 then

17: Xijk ⇠ Ber(�i)

18: end if

19: end for

20: end for
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Chapter 5

Conclusion

In this chapter, we summarize our results and contributions, and outline

areas of possible future research.

5.1 Summary

In this work, we have proposed a task distribution model in spatial crowd-

sourcing that consists in a recommender system that balances the user and

the task point of view. Mapping each user to a set of tasks so that the ex-

pected utility for the users, and the sum of probabilities that all the tasks

are performed is maximized, is an NP-hard problem. We have proposed sev-

eral algorithms to approximate the exact solution, which is intractable, and

have tested our solutions with both simulated data and real-world data. In

the latter case, we also predicted the location and benefit of the tasks using

non-negative tensor factorization.

We have also proposed a solution to the truth-inference problem that de-

termines the true label of an event from missing or inconsistent data. The

solution uses recursive Bayesian estimation and it is later enhanced by using

the Kalman filter and the event model. We ran our method both in simulated

data and real-world data and presented the results.
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5.2 Recommender Systems in Spatial Crowd-

sourcing

We have proposed a general framework for recommendations in spatial crowd-

sourcing by defining the system utility as a balance between the expected

utility for the users and the sum of probabilities of completion for the tasks.

These utilities are usually in contention since the more users are recom-

mended a same task, the higher the probability of the task being completed,

but the lower expected utility for the users. We proved that this problem is

NP-hard combinatorial optimization problem and that obtaining the exact

solution can be intractable for real-world applications. We suggested several

algorithms that obtain an approximated solution in less time, and observe

the trade-o↵ between utility and running time.

The greedy algorithm had the lowest running time, and obtains a relatively

good user utility. However, it does not consider the interactions between

users, and can suggest the same task to several users. This increases the

probability that that task is performed, but decreases the probability that

several other tasks would be performed. This is also reflected in the user

utility, since each user has a lower probability of performing that task. If the

application is mostly interested in the user utility (i.e. ↵ = 1) and speed,

then this could be a viable solution.

On the other hand, the ordered-progressive method, which is a slight modi-

fication of the progressive method, had both the highest user and task utility

(and therefore system utility). The progressive method optimizes one user

at a time, and once a user is optimized, it does not go back and change

any recommendation, even though it might yield a higher utility. Ordered-

progressive first orders the users according to their individual utility, and

as we proved in Chapter 3, the utility yielded by this method is not lower

than the utility from the progressive method. Ordered-progressive, however,



95

cannot guarantee optimality, but can be used if the application is interested

in obtaining a high user and task utility.

Hybrid methods are well-suited for larger problems, where the running

time for ordered-progressive is still unacceptable. These methods group the

users and the tasks into smaller sets and then perform (ordered) progressive

method. The utility is slightly lower than with ordered-progressive, since not

all users and tasks are considered at the same time, but their running time

make them a viable solution for real-world problems.

Non-negative tensor factorization proved to be a viable tool for prediction

and analysis. In terms of analysis, plotting the first few components of each

mode allows us to learn more about the data. For this work, we used two

modes for location (grid x and grid y). We could have also used only one

mode for the locations, described for example with a Hilbert curve to capture

as most as possible the interactions of nearby locations. However, using two

modes for location not only allows us to capture the interactions between the

nearby locations, but it is also useful in terms of analysis to determine the

locations with the highest demand and benefit for performing the tasks.

For future work, this general framework can be extended to include di↵erent

aspects from both the users’ and the tasks’ point of view. For example, from

the users’ point of view, the users could choose between di↵erent types of

tasks according to their preference or their skills. This would require some

changes in the individual utility function. From the tasks’ point of view, we

could include a penalty for not recommending a task to also maximize the

number of tasks that are recommended and not just the probability of being

chosen.
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5.3 Truth Inference in Spatial Crowdsourcing

We have proposed a probabilistic graphical model for truth-inference in a

spatio-temporal scenario that incorporates the user’s reliability model and

does not need to constantly track their location. The method also combines

space-state model based prediction of a next time period and fusion with

currently available reports. One of the advantages of this approach is that

the estimations can be done in real time. If an observation has not arrived

yet, we can use the a priori prediction as our estimation, making it suitable

for streaming data, and once the information arrives we can update to get

a better estimation. The method is versatile to the available data and can

easily incorporate di↵erent prediction models. Experimental results on both

real world data and simulated data show F1 scores that increase as more

time periods are accessible and better prediction models are used, making it

less dependable on the observations like the classic methods. The algorithm

with a pre-trained model from historical data has a better performance, and

it is preferable to use when the data is available.

The applicability of the model can be extended by considering the following:

Events could have more than two labels. For example, users could

report if there is medium or high tra�c. In such a case, users would need

to be able to report on each of the di↵erent states and the model would

need to be extended to include the probability for each state. If ns is the

number of states, then table 4.2 requires the computation of ns ⇥ (ns �

1) + ns � 1 = n
2

s � 1, since when hijk = 1, for each of the ns states we

require ns � 1 probabilities (since the last one can be inferred from the rest)

and for hijk = 0 we require ns � 1 probabilities. The reliability model for

the users would also require more parameters to capture how a user would

react under di↵erent circumstances. Depending on the application and the

assumptions, the number of parameters can go from 2ns � 1 (assuming e.g.
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P (xijk = s1|zjk = s3) = P (xijk = s2|zjk = s3) with s1, s2, s3 non-default

states) to n
2

s � 1 (if no such assumptions are made).

Continuous variables could be discretized into ranges. For example,

the users could report that price of gas is either below $1.50, between $1.50

and $2.50, or higher than $2.50. By having a default state (e.g. higher than

$2.50), this scenario would be reduced to the previous one.

Users could report a “negative” state. For example, users could report

that there is no accident at a certain location. This scenario eliminates the

default state and changes the interpretability of the missing reports, since

they would only be the result of lack of participation or because the user

was not at the specified time and location. A negative report could be either

because an event was incorrectly reported or because it is no longer true.

5.4 Future Work

The current state of spatial crowdsourcing has still several areas of oppor-

tunities that should be addressed in the near future. In terms of user-task

mapping, several task assignment problems have been studied where di↵erent

restrictions are involved (e.g. budget constraints, unknown user reliability or

skills, required minimum accuracy). The problem is more complicated when

crowdsourcing is spatial, since there could be other additional restrictions

such as expiration time for the tasks, nearby users are not qualified, tasks

are also moving, or the users only have certain available time.

In terms of task prediction, tensor factorization o↵ers dimensionality re-

duction, scalability, and in the case of non-negative tensor factorization, also

interpretability of the data. However, there are still several open questions

about tensor analysis and factorization. Although tensors are a generaliza-

tion of matrices, not all of the algorithms and well-established concepts in

matrix analysis are easily extendible to tensors. For example, there is still
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not an optimal way to determine the rank of a tensor, nor a way to determine

what the best rank-n approximation to a tensor [49]. Tensor analysis is an

area of increasing interest due to its wide variety of possible applications and

the number of open research questions.

Truth inference algorithms have been widely studied, but mostly for non-

spatial tasks. Zheng et. al. [87] did a comparison of 17 di↵erent non-spatial

truth inference algorithms and determined that no algorithm dominates over

all others, but give suggestions given the type of data and the amount of

available answers.

A recent line of research in truth inference refers to attacks from malicious

entities, who might want to maximize the number of changes from one label

to another while at the same time maximizing the malicious users’ reliability.

This could be done through a ”poison attack”, where the attacker, disguised

as a regular user, injects data in such a way that its reliability is increased

by correctly performing uncontroversial tasks, and maliciously sends an in-

correct label on contentious tasks. Another possibility for an attack is to

simulate several users that provide a wrong or random answer, making the

truth inference algorithm return a noisy response. An open area of research

consists in building robust truth inference algorithms that can be immune to

these type of attacks.

Spatial tasks have a higher complexity because they can be changing lo-

cation, their value, or have an expiration time. Furthermore, users are also

moving, which makes the task assignment problem much more complex. One

of the biggest challenges in truth inference in spatial crowdsourcing is design-

ing the system in such a way that the privacy of the users is guaranteed. Due

to the nature of spatial crowdsourcing, location attacks can occur, and an

attacker might discover the user’s home or work address or some patterns

in its lifestyle. Privacy preserving techniques such as spatial cloaking [48]

require that the user’s location is general enough to protect its privacy, but
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specific enough to assign the right task. Since the functionality of truth in-

ference algorithms depend on the participation of users, its performance will

decrease if the privacy of the users cannot be guaranteed.
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Appendix

6.1 Tighter Bounds for User and

Task Utilities

Users’ utility: The user’s utility can be obtained from equation 3.3 by

setting ↵ = 1. In that case, we obtain fu(R) =
Pnu

i=1

P
sj2Ri

�iP (ui ! sj)Yij.

To set a bound for fu(R), notice that 0 
P

sj2Ri
P (ui ! sj)  1 for all ui 2

U . Let Y +

i = maxj Yij for each ui 2 U . Then 0 
P

sj2Ri
�iP (ui ! sj)Yij 

�i

P
sj2Ri

P (ui ! sj)Y
+

i  �iY
+

i

P
sj2Ri

P (ui ! sj)  �iY
+

i . Therefore, 0 

fu(R) =
Pnu

i=1

P
sj2Ri

�iP (ui ! sj)Yij 
Pnu

i=1
�iY

+

i . This bound could only

be reached if the cost of opportunity is 0 (i.e.
P

sj2Ri
P (ui ! sj) = 1) for all

users, which is never the case, unless all users assign no value to the distance

needed to travel to the task (!i = 0) and the benefit for performing the next

best task that was not recommended is 0 (i.e. B(ui, s(nr+1)) = 0 for all ui).

Only in this extreme case would we have that Yi(nr+1) = 0 and we could reach

the upper bound. Define Bu :=
Pnu

i=1
�iY

+

i , so that 0  fu(R)  Bu.

Tasks’ utility: Similarly to the definition of the users’ utility, setting

↵ = 0 in equation 3.3 yields fs(R) :=
P

sj2SR
�jP (sj), where SR = {sj 2

R|sj 2 Ri for some Ri 2 R} ✓ S. Since 0  P (sj)  1 for all sj 2 S, then

0  �jP (sj)  �j and 0  fs(R) =
P

sj2SR
�jP (sj) 

P
sj2SR

�j. Since the

tasks’ priorities are normalized,
P

sj2SR
�j = 1 i↵ SR = S (i.e. all tasks were

recommended). Similarly, the upper bound could only be achieved if all the

tasks had a probability one of being chosen. This again requires the cost of

opportunity to be 0, and that we only have one recommendation per user
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(i.e. an assignment and not a recommendation). Define Bs =
P

sj2SR
�j, so

that 0  fs(R)  Bs.
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[28] André Sales Fonteles, Sylvain Bouveret, and Jérôme Gensel. Towards
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[29] André Sales Fonteles, Sylvain Bouveret, and Jérôme Gensel. Heuristics
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