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Abstract

Generalized Quantile Random Forest with Smoothed Estimating Equations
By Jiayu Sui

Quantile regression establishes the relationship between one or more independent
variable(s) and specific quantiles or percentiles of a dependent variable. It has been a
handy supplement to the Least Squares Regression in the analysis of real-life applica-
tions. There are two random forest based implementation of the quantile regression,
the quantile regression forest (quantregForest) by Meinshausen [9] and the quantile
regression in the Generalized Random Forest (GRF) framework by Athey et al. [1].
The latter achieves a better performance by the redesign of the splitting rule using the
quantile regression moment condition. However, the moment condition used contains
an indicator function, which makes it non-smooth and non-differentiable.

By applying Kaplan and Sun [6]’s smoothed estimating equation (SEE) to the quan-
tile regression moment condition, we managed to approximate the original moment
condition with a smoothed moment condition with flexible bandwidth to adjust for
the bias-variance tradeoff. Using self-constructed Python implementation of the GRF
framework, we were able to insert the smoothed new moment condition and observe
how such modification affect the performance of quantile estimation.

It was observed that on the random forest level, testing of the quantile GRF with
SEE on the simulated data did not receive positive effect on the estimation accuracy.
However, further inspection on the decision tree level quantile estimation reveals that
with increased training sample, the quantile estimation should be able to approach
satisfactory accuracy. Hence, we plan to further improve the program’s run-time and
produce better approach for hyperparameter tuning, such that the program can be
executed with increased training sample and larger tree number in reasonable run-
time. This would allow us to develop more understanding of the performance on the
random forest level given sufficiently large training samples and tree numbers.
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Chapter 1

Introduction

In statistical modeling, the most conventional and widely applied regression approach

is the least squares regression. With its moment condition minimizing the sum of

residual squared, the least squares regression estimates the conditional mean of a de-

pendent variable given one or more independent variables. Although not as commonly

used as the least squares regression, quantile regression can be a great supplement

to many practical situations, where they may not only require the conditional mean,

but also need the conditional median or other conditional percentile to contribute

to the process of decision making and resource allocation. This is especially essen-

tial for studying problems regarding inequality. Least squares regression assumes

homoscedasticity to make many inferences. In cases where the conditional distri-

bution of the dependent variable changes across different values of the independent

variables, least squares regression only allows analysis of the changes in the mean due

to independent variables but misses the bigger picture of changes in conditional vari-

ance. Quantile regression is capable of completing the missing picture by examining

how various quantiles or percentiles changes due to the independent variable. Hence,

quantile regression is proved to be significant for many social science research includ-

ing studys in educational inequality, income inequality, income-related inequality in
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health, etc.

To obtain the quantile estimation, the quantile regression forest by Meinshausen [9]

adopts an approach very similar to Breiman [2]’s random forest for mean estima-

tion. The major modification is instead of computing the mean of terminal node

observations, it is the desired quantile of terminal node observations that is returned.

However, the splitting rule of the decision trees remains to be maximizing the vari-

ance reduction from the parent node to child nodes. Hence, it would be expected

that a splitting rule tailored for quantile regression would improve the performance

of the estimation.

The generalized random forest (GRF) of Athey et al. [1] generalizes random forest

of Breiman [2] such that it can be broadly applied to estimation problems that are

defined through the moment conditions. While still inheriting the stability and ease

of use of random forest, GRF is able to extend the use-case from the conditional mean

estimation to various problems. This is possible because GRF adopts the adaptive

neighborhood weight through random forest but otherwise still solves the moment

condition locally using these weights. When obtaining these weights, GRF uses a

splitting rule which directly takes into account of the parameters of interest and the

moment conditions which identifies those. This splitting rule is better suited to es-

timate the heterogeneity in the parameter estimates which a researcher is interested

in when performing the local estimation. In addition, through the sample splitting,

a researcher can perform hypothesis test in addition to prediction.

The conditional quantile regression (QR) of Koenker and Bassett [8] minimizes a

quantile loss function which leads to well-defined moment condition for quantile re-

gression

E
[
xi

(
τ − 1

[
x′iβ̂τ − yi > 0

])∣∣∣xi = c
]
= 0.
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where τ is the quantile value ranging from 0 to 1, and β̂τ is the estimated coefficient.

The indicator function 1
[
x′iβ̂τ − yi > 0

]
is a step function, which makes the moment

condition discontinuous. By this moment condition, quantile regression is also incor-

porated into the GRF framework and hence can be estimated using the GRF.

In the current implementation of quantile regression in GRF, the quantile loss function

and the moment function are not smooth and nondifferentiable due to the indicator

function. Using Kaplan and Sun [6]’s method, however, either the loss function or

the moment condition can be smoothed by replacing the indicator function with a

smoothed estimating equation (SEE).

Since the GRF provides a generalized framework which allows users to apply their

own tailored moment conditions when fitting the forest, it would be the interest of

this paper to find out how the performance changes when the smoothed moment

conditions is applied to GRF to obtain quantile estimation.
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Chapter 2

Background and Related Work

2.1 Quantile Regression Forest

The quantile regression forest of Meinshausen [9] is implemented in the R package

quantregForest. It is similar to the random forest of Breiman [2] in terms of the

decision tree splitting rule. Hence, decision trees are grown in a manner similar to

the random forest implementation for mean estimation. However, in the prediction

stage, instead of obtaining the mean of each terminal node, all observations in the

terminal node is retained for estimation.

For a given X = x, the observation is passed down through all decision trees b =

1, ..., B to find its corresponding terminal nodes. The neighborhood weights wi(x, θt)

are computed for each tree by assigning positive weight to x’s corresponding terminal

node entries, and zero weight to entries contained in other terminal nodes. Then the

aggregated weight wi(x) is computed by averaging over all neighborhood weights for

all decision trees. The procedure could be summarized as the equation

wi(x) =
1

B

B∑
b=1

1[xi ∈ N b
x]

#N b
x

. (2.1)



5

where N b
x denotes the terminal node of bth tree where x belong to and #N b

x is the

total number of observations in the this node.

Instead of taking the weighted mean for conditional mean estimation at X = x,

Meinshausen [9] utilizes the conditional distribution function of Y for X = x,

F (y|X = x) = Pr(Y ≤ y|X = x) = E(1 [Y ≤ y] |X = x). (2.2)

Then, to obtain the τ -quantile of Y would be to find the y such that Pr(Y ≤ y|X =

x) = τ .

Then analogous to how the conditional mean E(Y |X = x) is approximated by a

weighted mean of Y , E(1 [Y ≤ y] |X = x) is defined to be approximated by a weighted

mean of 1[Yi ≤ y]. Hence, the approximated distribution would be expressed in the

following way:

F̂ [y|X = x] =
n∑

i=1

wi(x)1[Yi ≤ y] (2.3)

Therefore, the approximation of τ -quantile of Y would be obtained by

Q̂Y |X(τ) = min{y : F̂ [y|X = x] ≥ τ} = min{y :
n∑

i=1

wi(x)1[Yi ≤ y] ≥ τ}. (2.4)

This would then give the quantile estimation for the quantile regression forest method.

2.2 Generalized Quantile Random Forest

The GRF of Athey et al. [1] is implemented in the R package grf. It also uses random

forest to obtain the neighborhood weight when estimating the moment condition

locally but with a modified splitting rule. The splitting rule of the GRF seeks to

maximize the heterogeneity in parameter estimates. For the τ -quantile estimation,
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the GRF obtains the neighborhood weight through random forest with a splitting rule

that involves quantile regression’s moment condition to maximize the heterogeneity

in the τ -quantile of the two child nodes. In quantile regression, the relevant moment

conditions would be

E
[
τ − 1

[
θ̂τ − yi > 0

]∣∣∣xi = c
]
= 0. (2.5)

However, it would be computationally expensive to solve the above moment condition

for the two child nodes for every possible way of splitting the parent node. As a

result, the parameter estimate of the child node would be approximated using the

parameter estimate and the gradient of its parent node for computational efficiency.

This approximation leads to the splitting based on the pseudo-outcomes.

First, the parameter estimate θ̃C of the child node is approximated with

θ̃C = θ̂p −
1

|{i : Xi ∈ C}|
∑

{i:Xi∈C}

ξ′A−1
p ψθ̂p

(Oi) (2.6)

where θ̂p is the parameter estimate of its parent node through solving the moment

condition at the parent node, Ap =
1

|{i:Xi∈P}|
∑

{i:Xi∈P}∇ψθ̂p
(Oi) is the gradient of the

parent node, and ψθ̂p
(Oi) is the scoring function within the moment condition.

To maximize the heterogeneity of θ̃C in the two child nodes, we want to maximize

the criterion

∆̃(C1, C2) =
2∑

j=1

1

nj

 ∑
i:xi∈Cj

(
−ξ′A−1

p ψθ̂p
(Oi)

)2

(2.7)

Thus, the pseudo-outcome is defined as

ρi = −ξ′A−1
p ψθ̂p

(Oi) (2.8)
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so that after calculating the pseudo-outcome, we can calculate the ∆̃(C1, C2) criterion

for splitting without the need of estimating child node parameter explicitly.

Based on the splitting rule defined, the GRF would be able to grow decision trees and

obtain neighborhood weights for each X = c in the same way as Meinshausen [9]’s

quantile regression forest. The neighborhood weight w(xi; c) defines the local area of

c where the parameter of interest should be estimated. This weight would be larger

when xi lies closer to c. If more trees define xi to be neighborhood of c, then the

weight would be larger.

Once the weight is obtained, the problem would boil down to solving the following

weighted moment condition:

1

n

T∑
t=1

w(xi; c) (τ − 1 [θτ − yi > 0]) = 0. (2.9)

Additionally, the GRF applied the honesty technique which separates the training

set into splitting and estimation sets. The splitting set would be used to split the

trees, and the estimation set would be used to populate the terminal nodes once the

splitting process is fully complete. As a result, only the estimation set will be used

to obtain the weights of the neighbors within each tree. By separating the splitting

and estimation sets, the estimates obtained from GRF have asymptotic normality

and hence statistical significance can be obtained.
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Chapter 3

Method

3.1 Smoothed Moment Condition

In the GRF implementation of the quantile regression forest, the relevant moment

conditions is

n∑
i=1

xi

(
τ − 1[x

′

iβ̂τ − yi > 0]
)
= 0

Due to the nondifferentiable indicator function, in the splitting process, the pseudo-

outcome can not be obtained with (2.8) since computing Ap requires a differentiable

moment condition scoring function. Hence, to obtain the parameter estimate β̂τ , we

apply Kaplan and Sun [6]’s smoothed estimating equation to smoothes out the mo-

ment condition by replacing the indicator function 1[x
′
iβ̂τ − yi > 0] with G

(
x′
iβ̂τ−yi

h

)
.

The G() function is defined as

G(ν) =


0 ν ≤ −1

0.5 + 105
64

(
ν − 5

3
ν3 + 7

5
ν5 − 3

7
ν7
)

ν ∈ [−1, 1]

1 ν ≥ 1
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which is plotted below. By its definition, it is not difficult to find that G() is not only

continuous, but also differentiable on the first order. How smooth would be defined

by the bandwidth h. The larger bandwidth h would lead to smoother function which

would in turn lead to larger bias and smaller variance.

0.00

0.25

0.50

0.75

1.00

−2 −1 0 1 2

x

y

indicator

smoothed

Figure 3.1: G
(
x
h

)
function when bandwidth h = 1

After replacing the indicator function with the SEE, we are able to follow the GRF

procedure in computing the pseudo-outcome. The new moment condition is

n∑
i=1

xi

(
τ −G

(
x

′
iβ̂τ − yi
h

))
= 0 (3.1)

3.2 Splitting Rule Modification

For a given X = x, we are still following (2.1) in obtaining the weights for each

terminal node entry. Therefore, within each decision tree, within the terminal node

where x belong to, we assign equal weights to the each entry. This suggests that

locally in the area defined through the terminal node entries, we are estimating the

τ -quantile through direct computation of the τ -quantile of Y value, and the X values

of the terminal nodes do not participate in the computation. As a result, we can
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simplify the moment condition (3.1) to

n∑
i=1

τ −G

(
θ̂τ − yi
h

)
= 0 (3.2)

From this moment condition, we identify that

ψθ̂p
(yi) = τ −G

(
θ − yi
h

)
(3.3)

Since this scoring function is differentiable, following (2.8), we were able to find the

gradient of the parent node through differentiating on θ

∇θψ(yi) = −G′
(
θ − yi
h

)
1

h
(3.4)

Ap = −1

h
· 1

np

∑
i∈P

G′
(
θ − yi
h

)
(3.5)

Finally, the pseudo-outcome can be computed with

ρi = −A−1
p ψθ̂p

(yi) =

(
1

h

1

np

∑
j∈P

G′
(
θ − yj
h

))−1(
τ −G

(
θ − yi
h

))
(3.6)

Following the pseudo-outcome ρi, we would only need to find ∆̃(C1, C2) by equation

(2.7) to replace the original splitting criteria.

The newly defined splitting criteria would allow each parent node to split into two

child nodes using the optimal splitting feature and feature value. To enable child

nodes to recursively perform the splitting, it is required to “relabel” those child nodes

by calculating their θ estimate explicitly. This is performed by solving (3.2) via nu-

merical estimation functions.

The same standard CART regression split procedure is used on the newly defined

splitting criteria, to grow decision trees using the splitting set of the training data.

After the tree splitting process is complete, the estimation set is used to populate the
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terminal nodes. This completes the fitting step of the random forest.

3.3 Estimation Stage

In the estimation stage, for each X = c we obtain neighborhood weights by pass-

ing c through decision trees grown with modified splitting criterion. Then in the

same manner as Meinshausen [9]’s quantile regression forest, we are able to aggregate

neighborhood weights of each decision tree into a final weight for the random forest

w(xi; c). With the smoothed moment condition, the new weighted moment condition

would be

1

n

T∑
t=1

w(xi; c)

(
τ −G

(
θτ − yi
h

))
= 0. (3.7)

Therefore, the τ -quantile of Y given X = c can be expressed as

θ̂τ ∈ argmin
θτ

1

n

T∑
t=1

w(xi; c)

(
τ −G

(
θτ − yi
h

))
= 0. (3.8)

which can be solved through numerical estimation functions.
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Chapter 4

Result

The design described in the Method section is implemented in Python. The following

simulated data is generated to test the performance of the implemented GRF quantile

forest with SEE:

Mean shift simulation data: Contains n = 1000 independent and identically dis-

tributed observations. There are 5 independent variables Xi. Each independent

variable is set to be uniformly distributed over [−1, 1]. The dependent variable Yi is

only dependent on X1. The other 4 dependent variables are noise. When X1 < 0, Yi

is distributed normally with mean of 0 and standard deviation of 1. When X1 > 0,

Yi is distributed normally with mean of 0.8 and standard deviation of 1.

Scale shift simulation data: Contains n = 1000 independent and identically dis-

tributed observations. There are 5 independent variables Xi. Each independent

variable is set to be uniformly distributed over [−1, 1]. The dependent variable Yi is

only dependent on X1. The other 4 dependent variables are noise. When X1 < 0, Yi

is distributed normally with mean of 0 and standard deviation of 1. When X1 > 0,

Yi is distributed normally with mean of 0 and standard deviation of 2.

For the two sets of simulated data, we want to estimate the quantiles at τ = 0.1, 0.5,

0.9. The result is illustrated in the following figures:
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Figure 4.1: Quantile estimation over the mean shift data with setting: number of trees nest
= 300, maximum depth of trees maxDepth = 10, minimum number of samples in terminal
node minLeafSample = 5, The number of features to consider when looking for the best
split maxFeat = 5. The bandwidth of the SEE h is adjusted to equal to 0.01, 0.1, 1, 10.

From the definition of the G() function, we would expect that with smaller bandwidth

h, the function is going to approximate the step function. As h increases, the function

is smoother, incurring larger biases for the estimation. It can be observed that for

h = 10, the 0.1 and 0.9 quantile estimations are indeed severely biased from the truth

value. However, even for smaller h values, the quantile estimations do not meet the

expected performance. It can be observed that the method is able to detect a shift

of mean at X1 = 0. However, the method is consistently overestimating at X1 < 0

and underestimating at X1 > 0.

Similar performance is found for the scale shift simulation data. It is more doubtful

about whether the method is able to detect the shift of standard deviation at X1 = 0.
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Figure 4.2: Quantile estimation over the scale shift data with setting: number of trees nest
= 300, maximum depth of trees maxDepth = 10, minimum number of samples in terminal
node minLeafSample = 5, The number of features to consider when looking for the best
split maxFeat = 5. The bandwidth of the SEE h is adjusted to equal to 0.1, 1, 5, 10.

Since no positive impact is observed on the random forest level estimation, we would

like to further inspect the mechanism with estimations from a single decision tree.

This can be easily achieved by limiting the number of trees in the random forest

nest = 1.

However, we need to be cautious that a single decision tree is subject to considerably

larger variance as compared to the random forest. As a result, we need sufficiently

large training and testing set to ensure that the simulated data is asymptotically

following the designed distribution. With a much smaller tree number, the program

is able to be executed with expanded training and testing sample within reasonable

run-time.
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Figure 4.3: Single tree quantile estimation over the mean shift data with setting: number
of trees nest = 1, maximum depth of trees maxDepth = 10, minimum number of samples
in terminal node minLeafSample = 5, The number of features to consider when looking for
the best split maxFeat = 5, bandwidth if the SEE h = 1. The size of the training data is
adjusted to equal to 1000, 10000.

The settings described in Figure 4.3 are applied multiple times on simulated mean

shift data to ensure that randomness involved in the data generation process does

not produce exceptionally well-performed or ill-performed estimations by chance. It

is evident from Figure 4.3 that increasing the training set size by 10 times effectively

causes the estimation to conform better with the ground-truth quantile values in sim-

ulation design. However, certain deviations from the ground-truth values still exist,

including the overall over-estimation of the 0.1 quantile that occurred constantly in

all trials under such setting.
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Similar improvement of performance by increasing size of training set also presents

for the scale shift simulation data.

Figure 4.4: Single tree quantile estimation over the scale shift data with setting: number
of trees nest = 1, maximum depth of trees maxDepth = 10, minimum number of samples
in terminal node minLeafSample = 5, The number of features to consider when looking for
the best split maxFeat = 5, bandwidth if the SEE h = 1. The size of the training data is
adjusted to equal to 1000, 10000.

Since the bandwidth h can be adjusted to control the bias-variance tradeoff, a smaller

training set would require h to be relatively large to restrict the variance of the es-

timations. Therefore, as we increase the training set, it is expected that by further

adjusting the bandwidth h via hyperparameter tuning, the optimal bandwidth h

should decrease, and the program should be able to yield more accurate estimations.
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Chapter 5

Discussion and Future Works

By testing on simulated data, we were able to observe the variation in estimation per-

formance when adjusting for various hyperparameters and training data. It is notable

that increasing training sample size could significantly improve the estimation accu-

racy on the decision tree level, since larger sample size effectively reduces the variance

in the estimation outcome. Meanwhile, it is worth mentioning that the estimation

performance also differs across different quantiles. With the 0.5 quantile (median)

having more accurate results, the 0.1 and 0.9 quantile estimations constantly pro-

duce more deviations from the truth value. Since the desired quantile τ is part of

the smoothed moment condition, it is likely that the optimal bandwidth h differs for

different input of the desired quantile. As a result, we would attempt to adjust for

the optimal bandwidth h for quantile = 0.1, 0.5, and 0.9 separately instead of using

the uniform bandwidth for three different quantiles.

Another essential aspect for future improvement is the runtime efficiency. With the

current implementation of the GRF framework in Python, it is beyond the ability of

our computer hardware to test our method on decision tree with even larger sample

size of 50,000 or above. The computation requirement for aggregating hundreds of

such decision trees’ outcome into the random forest estimation would be more de-
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manding. Therefore, a necessary future step to take is to improve the runtime of

the current implementation. One direction is to find heuristics to speed up the tree

splitting process. Another approach is to implement numerical estimation method

specifically suited for solving our particular quantile moment condition. Since recur-

sive tree split and numerical estimation are the two most time-consuming steps in our

current implementation, improvement on either aspect should speed up the program

execution substanially.

With a more efficiently implemented program, we would also attempt to continue

examining in the following aspects:

First, our quantile estimation is still implemented based on the framework of random

forest, which allows us to adjust various hyperparameters including not only the SEE

bandwidth h, but also the maximum tree depth, minimum number of sample within

terminal node, number of features considered in the best split search, and the number

of trees. It would be expected that increasing the maximum tree depth would result

in a smaller bias. Meanwhile, it might be necessary to increase the tree number si-

multaneously to avoid the resulting rise in variance due to the bias-variance tradeoff.

The optimal approach would be adjusting all hyperparameters at the same time using

grid search.

In addition, in the current research we use one realization of the simulated data

to test the performance, so the resulting estimation also depends on how well this

realization represent the ground-truth data distribution. As a response to this con-

cern, we increased the number of observations to make the simulated data approach

the ground-truth data distribution asymptotically. In the future step, we can also

apply multiple realizations of the simulated data and obtain the averaged quantile

estimations to reduce the estimation variance to a greater extent.
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Chapter 6

Conclusion

The original quantile regression implemented in GRF by Athey et al. [1] requires spe-

cial care in deriving pseudo-outcome for the tree splitting task, because of containing

an indicator function which is non-smooth and non-differentiable. Using Kaplan and

Sun [6]’s smoothed estimating equation, we were able to replace the indicator function

with a smoothed G() function with adjustable bandwidth to approximate the original

moment condition. We took advantage of the generalized framework of the GRF to

derive the pseudo-outcome for the smoothed new moment condition, with no need

to alter the pseudo-outcome calculation process to accommodate non-differentiable

moment condition.

Through a self-constructed Python implementation of the quantile GRF with SEE, we

experimented on simulated data how a smoothed moment condition would affect the

performance of quantile regression. It was observed that on the random forest level,

the quantile GRF with SEE produces no positive effect on the estimation accuracy us-

ing the simulated data. Adjusting the bandwidth h receives only small improvement

on the estimation performance. Therefore, we focus on a single decision tree in the

implemented random forest to examine the mechanism more deeply. Inspection on
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the decision tree level quantile estimation reveals that with increased training sample,

the quantile estimation is able to approach satisfactory accuracy, implying that by

increasing training sample size and tree number, the quantile GRF with SEE should

also be able to yield much more accurate estimations.

Hence, we plan to further improve the program’s run-time and produce better ap-

proach for hyperparameter tuning, such that the program can be executed with in-

creased training samples and larger tree numbers in reasonable run-time. This would

allow us to develop more understanding of the performance of our quantile GRF on

the random forest level given sufficiently large training samples and tree numbers.



21

Bibliography

[1] Susan Athey, Julie Tibshirani, and Stefan Wager. Generalized random forests.

The Annals of Statistics, 47(2):1148 – 1178, 2019.

[2] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[3] Victor Chernozhukov and Christian Hansen. Instrumental quantile regression

inference for structural and treatment effect models. Journal of Econometrics,

132(2):491–525, 2006.

[4] Victor Chernozhukov and Christian Hansen. Instrumental variable quantile re-

gression: A robust inference approach. Journal of Econometrics, 142(1):379–398,

2008.

[5] Antonella Costanzo and Marta Desimoni. Beyond the mean estimate: a quantile

regression analysis of inequalities in educational outcomes using invalsi survey

data. Large-scale Assessments in Education, 5(14), 2017.

[6] David M. Kaplan and Yixiao Sun. Smoothed estimating equations for instru-

mental variables quantile regression. Econometric Theory, 33(1):105–157, 2017.

[7] Roselinde Kessels, Anne Hoornweg, Thi Kim Thanh Bui, and Guido Erreygers.

A distributional regression approach to income-related inequality of health in

australia. International Journal for Equity in Health, 19(102), 2020.



22

[8] Roger Koenker and Gilbert Bassett. Regression quantiles. Econometrica, 46(1):

33–50, 1978.

[9] Nicolai Meinshausen. Quantile regression forests. J. Mach. Learn. Res., 7:983—

-999, 2006.

[10] Tse-Chuan Yang, Vivian Yi-Ju Chen, Carla Shoff, and Stephen A. Matthews.

Using quantile regression to examine the effects of inequality across the mortality

distribution in the u.s. counties. Social Science Medicine, 74(12):1900 – 1910,

2012.


	Introduction
	Background and Related Work
	Quantile Regression Forest
	Generalized Quantile Random Forest

	Method
	Smoothed Moment Condition
	Splitting Rule Modification
	Estimation Stage

	Result
	Discussion and Future Works
	Conclusion
	Bibliography

