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Abstract 

 

 

Anticipating Challenges to Norovirus Vaccines: Modeling Analyses to Understand How 

Norovirus Transmission and Genetic Diversity Could Affect Vaccine Development and 

Implementation  

 

By Molly Katherine Steele 

 

 

Noroviruses are among the leading causes of diarrheal disease worldwide. Norovirus vaccines are 

currently in development; however there are several characteristics of norovirus that are not well 

understood and could hamper vaccine development and implementation. 

In Aim 1, we estimated how norovirus transmission varies between age groups and how this 

variability could affect vaccine implementation. Using a deterministic, age-structured model of 

transmission and vaccination, we found that children under 5 years old contributed the most to 

transmission (age-specific basic reproduction number (R0) of 4.3). Thus pediatric vaccination was 

predicted to avert 18-21 times more cases and twice as many deaths per vaccinee compared to 

elderly vaccination.  

The size and severity of norovirus outbreaks varies across different settings, times of year and for 

different genotypes, suggesting that norovirus transmission is variable at the scale of outbreaks. In 

Aim 2, we estimated the basic (R0) and effective (Re) reproduction numbers for norovirus 

outbreaks in the US and used regression models to assess whether factors such as setting and 

season were associated with transmissibility. We found that norovirus outbreaks in the US have 

modest values of R0 and Re (2.75 [IQR: 2.38, 3.65] and 1.29 [IQR: 1.12, 1.74], respectively) and 

that outbreaks had higher transmission within long-term care/assisted living facilities, during 

winter, and when norovirus was the confirmed etiology. 

GII.4 noroviruses evolve rapidly, and the extent of cross-immunity between strains is poorly 

understood. In Aim 3, we quantified the level of cross-immunity between multiple GII.4 strains. 

We developed a set of coupled single-strain models to estimate changes in population-level 

susceptibility and calculate the level of cross-immunity between strains. We estimated that the 

level of cross-immunity between Farmington Hill to Hunter and Hunter to Den Haag was high 

(0.84 - 0.91 and 0.91 - 0.94, respectively) and low between New Orleans to Sydney (0.34 – 0.73). 

The variability of transmission both at the population-level and at the level of outbreaks provides 

key insights into which populations to target for vaccination. Certain GII.4 strains are associated 

with high cross-immunity, indicating vaccine formulations containing these strains may provide 

cross-protection against future strains of GII.4 norovirus. 
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1 Introduction 
 

 

1.1 Global mortality and the burden of norovirus 

 

The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) estimated that the global 

number of early deaths in 2017 was 56 million, where early deaths are defined as deaths that occur 

prior to the estimated life expectancy. Diarrheal diseases are the fifth leading cause of excess 

mortality, responsible for approximately 1.57 million deaths. Most diarrheal related deaths 

occurred in children under the age of five (534,000 deaths) and the elderly ≥ 70 years old (624,000 

deaths).1 In addition to a high burden of mortality, acute gastroenteritis (AGE) has the second 

highest morbidity burden of all infectious diseases, causing an annual estimated loss of 81 million 

disability-adjusted life years (DALYs).2 While diarrheal related DALYs and mortality have 

declined by approximately 28% and 30%, respectively, since 2007, disease and death due to 

diarrhea still represent a substantial health burden globally.1–3  

  

Noroviruses are among the leading causes of endemic diarrheal disease worldwide, associated with 

approximately 18% (95% CI: 17-20%) of AGE cases.4 Estimates from the GBD study in 2016 and 

two systematic reviews indicate that noroviruses cause between 140 million to 677 million AGE 

episodes and between 71,000 to 212,000 deaths annually.5–7 Historically, rotavirus gastroenteritis 

was the leading cause of diarrheal disease globally. However, with the establishment of routine 

rotavirus vaccination in many countries, the rotavirus burden has declined substantially and 

norovirus is now becoming the predominant cause of diarrheal diseases.8,9  
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1.2 Burden of norovirus in the United States 

 

In the United States, noroviruses are the leading cause of AGE,10–12 responsible for an average 

570–800 deaths, 56,000–71,000 hospitalizations, 400,000 emergency department admissions, 1.7–

1.9 million outpatient admissions, and 19–21 million illnesses annually.11,13,14 Norovirus can infect 

people of all ages, however, certain populations and age groups are more vulnerable to chronic 

disease or severe outcomes. Approximately 90% of norovirus-associated deaths in the US occur 

among the elderly (~20 per 1,000,000 persons per year).15 Children under five years of age 

experience the highest incidence of AGE (~20 per 100 persons per year)16 and have the highest 

rates of outpatient, emergency department, and inpatient visits (233, 38, and 9.4 per 10,000 persons 

per year, respectively).13,14  

 

1.3 Norovirus seasonality 

 

The incidence of norovirus disease is variable within a given year. Norovirus is colloquially known 

as the “winter vomiting disease” due to its documented winter seasonality in temperate climates.17 

In the US, the majority of norovirus cases and outbreaks occur during the cool months, from 

October through March, with peaks in cases and outbreaks occurring from November through 

January. While the exact cause of norovirus seasonality is not well known, several studies have 

indicated that weather factors (i.e., temperature and humidity) may have an impact on the 

seasonality of norovirus infections.17–19 Norovirus case and outbreak reports are inversely 

correlated with temperature,17,19 and norovirus surrogate virus (e.g., murine norovirus, feline 

calicivirus) survival declines with increasing temperatures.20,21 
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1.4 Viral characterization 

 

Noroviruses are non-enveloped, icosahedral viruses of the family Caliciviridae. The viral genome 

contains positive-sense single-stranded RNA with three open reading frames (ORFs). ORF1 

encodes for nonstructural proteins used for viral replication, ORF2 encodes for viral protein 1 

(VP1), and ORF3 encodes a minor structural protein (VP2).22 The viral capsid is predominately 

composed of VP1 and has two distinct domains: the shell (S) domain, which forms the core of the 

virus, and protruding (P) domain. The P domain is further divided into two sub-domains, P1 and 

P2. P2 is a hypervariable region that extends the furthest from the capsid shell and facilitates 

binding to host receptors.22–24 Noroviruses are categorized into six established norovirus 

genogroups (GI – GVI). Within each genogroup, noroviruses are further subdivided into genotypes 

based on amino acid sequence similarity of the VP1 capsid protein and the RNA polymerase region 

of ORF1.25,26 There are three genogroups (GI, GII and GIV) with up to 33 genotypes can infect 

humans.26 A single genotype, genogroup II genotype 4 (GII.4), is estimated to be the cause of 60% 

to 80% of all norovirus infections.27,28 

 

1.5 Evolution of Noroviruses 

 

Norovirus evolution is driven by the accumulation of point mutations and recombination. Most 

norovirus genotypes do not evolve rapidly, however GII.4 noroviruses have been rapidly evolving 

since the mid-1990s.29 GII.4 noroviruses undergo punctuated antigenic evolution, leading to new 

strains emerging in populations every two to five years.26,30–32 These antigenic changes are thought 

to be the result of selection pressures from population immunity. Mutations in the VP1 gene lead 
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to changes in structural capsid proteins that change antigenicity, particularly the P2 domain of the 

capsid, which allow noroviruses to evade host immunity.28,30,33–39 Phylogenetic analyses and 

immunological characterization have indicated that 14 different strains of GII.4 noroviruses have 

emerged since the mid-1990s, seven of which circulated globally.31,40–44 The first GII.4 strain that 

circulated globally was US 95/96.28 Following that first pandemic strain, new pandemic GII.4 

strains emerged in 2002 (GII.4 Farmington Hills), 2004 (GII.4 Hunter), 2006 (GII.4 Den Haag), 

2009 (GII.4 New Orleans) and 2012 (GII.4 Sydney).26,36,40 Recently, changes in the RNA 

polymerase of GII.4 strains, which may increase transmission, have been suggested as a driver of 

GII.4 evolution as well.45 As such, a new strain of norovirus, Sydney 2015, emerged in late 2014 

and has circulated globally. This new strain shares a highly similar viral capsid with Sydney 2012, 

however Sydney 2015 has a GII.P16 polymerase (GII.P16-GII.4 Sydney) while the Sydney 2012 

strain had a GII.P4 polymerase (GII.P4-GII.4 Sydney).45,46 

 

1.6 Natural history and transmission of norovirus 

 

Noroviruses spread via the fecal-oral or vomitus-oral route. Noroviruses are hardy viruses that can 

persist on surfaces for up to two weeks, are infectious from 0-60°C and resistant to many common 

household chemical cleaners.20,21,47,48 These viruses are highly infectious. Two studies have 

estimated the infectious dose sufficient to cause infection in 50% of those exposed (ID50) to the 

prototype strain of norovirus, Norwalk virus (genogroup I genotype1, GI.1). These estimates range 

from 18 to 1,320-2,800 gene equivalent copies,49,50 Individuals will shed copious amounts of virus 

in their stool and vomitus. Infected individuals can shed up to 105-1011 viral copies per gram of 

feces51–53 and on average will shed 8.0  105 and 3.9  104 viral copies per mL in vomitus for GI 
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and GII viruses, respectively.54 The viral shedding period is highly variable between individuals 

and has been documented to begin as early as 18 hours after exposure and extend as long as eight 

weeks post exposure among immunocompetent hosts.52,53,55 As such, transmission of norovirus 

can occur prior to an individual developing symptoms and well after they have recovered. 

 

The duration of viral shedding has also been documented to vary depending on the genogroup 

causing infection. One recent challenge study found that among participants challenged with 

Norwalk (GI.1) virus, the median duration of shedding was 17 days (range: 5-27 days) with peak 

viral shedding occurring between 3 and 15 days post infection. Participants challenged with Snow 

Mountain (GII.2) virus tended to have a shorter duration of shedding, with a median of 5 days 

(range 2-25 days) and peak viral shedding occurring 2-6 days post infection.52  

 

The low infectious dose, high viral shedding, and environmental persistence of noroviruses mean 

they can be easily transmitted through several routes, including through person-to-person, 

foodborne, waterborne, and environmental pathways.50,56–59 Transmission of norovirus, as 

characterized by the basic reproduction number (R0, the average number of secondary cases that 

arise from a primary case in fully susceptible population), has been estimated from several 

transmission modeling studies; however there is large variation in these estimates (range of 

estimated R0: 1.1 to 7.2).60 Importantly, young children may be important drivers of norovirus 

transmission. Observational studies have identified contact with a young child with norovirus 

gastroenteritis as a risk factor for diarrhea for older children and adults.16,61 
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Following exposure to noroviruses, individuals will enter a relatively short incubation period.62,63 

A recent meta-analysis of data on 1,022 norovirus outbreaks found the average incubation period 

to be 32.8 hours (95% CI: 30.9-34.6).63 Symptoms of norovirus infection include a sudden onset 

of vomiting, watery, non-bloody diarrhea, abdominal cramps, fever and malaise.64–67 The average 

duration of symptoms, also estimated by meta-analysis, is 44.2 hours (95% CI: 38.9-50.7).63 

Children less than one year old are more likely to experience diarrhea given infection with 

norovirus, while vomiting and diarrhea are the predominant symptoms of norovirus in individuals 

who are older than one year.68,69 Persons infected with norovirus are more likely to experience 

vomiting, and less likely to have bloody diarrhea and long-term sequelae compared to other causes 

of gastroenteritis, especially bacterial pathogens such as Salmonella and Campylobacter.68–75 

Among immunocompetent individuals, noroviruses typically cause acute, self-limiting infections; 

however, immunocompromised individuals experience more severe disease and, sometimes, 

chronic norovirus infections.70,76–79 

 

1.7 Host susceptibility and immunity 

 

Susceptibility to norovirus depends, in part, on an individual’s genetics.66,80–85 Secretor positive 

individuals have a functional fucosyltransferase-2 (FUT2) gene, which encodes for 

α(1,2)fucosyltransferases that produce H type-1 antigens, which serve as precursors to A and B 

antigens.86 Secretor negative individuals have non-functional FUT2 genes and do not produce H 

type-1, resulting in an absence of histo-blood group antigens (HBGAs) antigens in saliva and 

mucosa.86 Certain norovirus genotypes are strongly associated with HBGAs; secretors (i.e., those 
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who express HGBAs in mucosa) are susceptible to GI.1 and GII.4 norovirus infections, however 

non-secretors are almost completely resistant to GI.1 and GII.4 norovirus infection.80,82,83,87,88  

 

The duration of immunity to norovirus is not well understood. Challenge studies have reported 

that the duration of immunity is short term, typically six months to two years;66,84,89,90 however the 

challenge doses administered in these studies were several thousand-fold greater than the amount 

of virus capable of causing infections. Immunity may be more robust to lower challenge doses. A 

mathematical modeling study suggests the duration of immunity to norovirus is longer term, 

around four to six years; however this model did not account for multiple strains of norovirus.91 

Therefore the duration of immunity to norovirus may be shorter than what was estimated from this 

model. 

 

Currently, we have little understanding of whether cross-immunity exists between different 

genogroups or genotypes of norovirus. One challenge study conducted in 1974 explored 

heterotypic versus homotypic immunity to three norovirus genotypes: GI.1 (Norwalk virus), GII.1 

(Hawaii virus) and GI.5 (Montgomery County virus). In this study, participants were challenged 

twice, either with the same virus or a virus of a different genotype. Participants challenged with 

the same genotype, or a genotype within the same genogroup did not become ill, but those 

challenged with a genotype from a different genogroup became ill.66 This suggests there may be 

heterotypic immunity between genotypes within the same genogroup. Though there have been no 

further published challenge studies with multiple norovirus genotypes, in vitro studies (i.e., those 

employing enzyme immunoassays (EIAs) or antibody blocking assays) have indicated that 

immune responses are stronger between genotypes within the same genogroup than genotypes 
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from different genogroups.36,43,92–97 Further, we have limited understanding of whether there is 

cross-immunity between different strains of GII.4 norovirus. When new GII.4 strains emerge, they 

may lead to pandemics (e.g., Farmington Hills 2002 and Den Haag 2006 strains) or simply replace 

previous strains without disturbing the endemic pattern (e.g., New Orleans 2009 and Sydney 2012 

strains), which suggests differences in the level of cross-protection between strains.28,33,40,98–100 

 

1.8 Norovirus in outbreak settings 

 

Norovirus is the most common cause of acute gastroenteritis outbreaks in the US. The Centers for 

Disease Control and Prevention (CDC) monitors acute gastroenteritis outbreaks through a passive 

surveillance database known as the National Outbreak Reporting System (NORS). State, local and 

territorial health departments submit web-based forms for enteric disease outbreaks for all modes 

of transmission.101 Between 2009 and 2017, 17,822 norovirus outbreaks were reported to NORS, 

the vast majority of which (78%) were spread by person-to-person transmission. Outbreaks that 

spread by person-to-person transmission can occur in many different settings; in the US the top 

settings where outbreaks occurred were long term care facilities (61%), schools (9%), hospitals 

(3%), and child care facilities (3%).102 The size and severity of outbreaks can vary across different 

settings, times of year and for different genotypes, suggesting that the transmissibility of norovirus 

may be variable across different outbreak contexts.103  

 

1.9 Norovirus vaccines 
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In response to the substantial health burden posed by noroviruses, there have been recent efforts 

to develop norovirus vaccines.34,104–112 While an in vitro culturing system has recently developed 

this system is not widely available.113 Given this limitation vaccine development has typically 

employed the use of virus like particles (VLPs). When recombinant norovirus VP1 capsid proteins 

are expressed, these capsid proteins will self-assemble VLPs, which are non-replicating, but 

morphologically and antigenically indistinguishable from native virus.109,112,114,115 Initial human 

challenge studies have demonstrated that norovirus VLP vaccines produce immunogenic 

responses in humans that are comparable to what the virus itself causes.108,109,111,112,114 As a result, 

one bivalent intramuscular product has undergone Phase IIb field efficacy trials.108,109,112 This 

bivalent norovirus vaccine contains VLPs derived from GI.1 virus and a GII.4 consensus sequence 

containing epitopes from three GII.4 strains: Houston 2002, Yerseke 2006 and Den Haag 2006.116 

Data from efficacy studies and surrogate neutralization analyses show that this vaccine is well 

tolerated, elicits a strong immune response and may provide immunity against genotypes and 

strains not represented in the vaccine formula.111,117,118 Initial data from a GII.4 challenge study 

showed the vaccine did not significantly reduce infection relative to placebo dosed controls; 

however the vaccine did reduce the severity of disease.108 

 

1.10 Challenges that norovirus poses to vaccine development and implementation 

 

Several characteristics of norovirus along with limitations in our current understanding of 

norovirus immunity have hampered vaccine development. First, noroviruses are error-prone 

single-stranded RNA viruses, resulting in great genetic and antigenic diversity and rapid viral 

evolution, particularly within the GII.4 genotype.30,36 Given the rapid evolution of GII.4 norovirus, 
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norovirus vaccine development may face challenges similar to those seen with influenza 

vaccines.119 As described above, human immunity to norovirus is complex and incompletely 

understood, though current knowledge suggests strain- or genotype-specific protection is of 

limited duration.66,84,89,90 Given the diversity of noroviruses, a vaccine would ideally provide 

immunity against genogroups and genotypes not represented in the vaccine as well as new 

genotypes of norovirus (notably GII.4 noroviruses) that evolve over time. The extent of cross-

protection provided between genogroups and genotypes, particularly GII.4 norovirus strains, has 

important implications for the design of vaccines. If the level of cross-protection between current 

and future strains of norovirus is high, then norovirus vaccines may not need to be reformulated 

regularly. If, however, the level of cross-protection between current and future strains is low, then 

norovirus vaccines may need to be reformulated frequently to keep pace with GII.4 evolution.  

 

Second, observational studies and outbreak data suggest that norovirus transmission may be 

variable by age and across different settings. As such, there is an array of possible vaccine 

strategies ranging from untargeted mass vaccination (like the current influenza vaccine guidance) 

to age-targeted (e.g. young children or elderly) or targeting of groups important in transmission 

(e.g. food handlers). When considering age-targeted vaccine strategies, children under the age of 

five experience the highest incidence of disease and have the highest rates of healthcare 

utilization.13,14,16 Further, data from observational studies and a mathematical modeling study 

suggest that young children may be important drivers of norovirus transmission.16,61,91 Targeting 

young children for vaccination could be an important strategy to reduce the burden of disease in 

this age group, but also to provide population-level benefits. If young children are important 

drivers of norovirus transmission, then targeting this age group could lower overall transmission 
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of norovirus resulting in indirect benefits to the population (via herd protection). The elderly are 

another age group to consider for vaccination, as they experience the vast majority of norovirus 

related deaths.15 Vaccination of this group may be considered if the public health goal is to reduce 

norovirus-associated mortality. Additionally, in the US the majority of norovirus outbreaks occur 

in long-term care and assisted living facilities.102 A vaccination strategy targeting elderly 

populations in long-term care facilities could be considered to mitigate and/or prevent outbreaks 

in these settings.  

 

In addition to targeting specific age groups, groups with high risk of transmission and disease can 

be considered for vaccination. Known sub-populations at risk for norovirus transmission and 

disease include: food service workers, healthcare workers, immunocompromised individuals, 

military personnel and travelers. Current evidence suggests that food service workers and 

healthcare workers may serve important roles in transmission and act as sources for foodborne 

disease and outbreaks in healthcare settings.120,121 Thus these groups could be considered for 

vaccination to reduce the burden of norovirus outbreaks in these settings. Travelers and military 

personnel could also be targeted for vaccination as they experience high burdens of norovirus 

AGE. 3-17% of AGE episodes during or after travel to low-income regions (i.e., travelers’ 

diarrhea) are associated norovirus122 and norovirus outbreaks are common in the military given 

confined environments that can promote transmission (e.g., Navy ships and training camps).123,124 

Vaccination could also target immunocompromised individuals as they have a high risk for chronic 

infections and death, and experience prolonged viral shedding, which may promote 

transmission.70,76–79  
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With the wide variety of potential vaccine strategies, it will be challenging to determine which 

strategies to focus on for vaccine development and implementation. It will likely be many years 

still before field studies are conducted to determine the efficacy of different vaccine 

implementation strategies. Further, field efficacy studies will be time-consuming and expensive, 

which may limit which vaccine strategies can be tested. Mathematical models of norovirus offer a 

unique opportunity to simulate the efficacy and impact of any number of vaccination strategies to 

help guide vaccine development and implementation, as detailed in the section below. 

 

1.11 The value of dynamic models for studying infectious disease epidemiology 

 

Infectious diseases are driven by a series of “dependent happenings,” meaning that the frequency 

with which an event occurs depends on some other quantity, resulting in dynamical feedback.125,126 

For example, the incidence of infectious diseases depends on the prevalence of disease in a given 

population. Thus, in many cases, when public health interventions reduce the prevalence of 

disease, the incidence of disease also declines. Unlike traditional statistical models used for many 

classical epidemiological studies, mathematical models incorporate these dynamical feedbacks to 

characterize the dynamic nature of infectious disease systems and predict how these systems may 

respond to public health interventions.127,128 Mathematical models have been used extensively to 

predict the dynamics of many infectious diseases in a range of contexts and with a diversity of 

analytical goals. For example, mathematical models have been used to describe the transmission 

dynamics of influenza viruses,129,130 to predict the probability of international spread of emerging 

influenza strains,131 and to evaluate the potential impact of different intervention strategies, such 

as vaccination and school closures.132–135  
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Mathematical models offer a unique opportunity to address questions about norovirus 

epidemiology that are challenging to address through laboratory, field and observational studies.  

 Transmission of norovirus is difficult, if not impossible, to observe and quantify in the field. As 

such many studies have employed variations of dynamic models to quantify norovirus 

transmission and predict dynamics of disease at the population-level and across a range of 

settings.91,136–138 As reviewed by Gaythorpe et al., norovirus transmission models have provided a 

range of estimates for R0 (i.e., the average number of infections that arise from a primary infection 

in a completely susceptible population) between 1.1 to 7.2.60 An important direction for these 

models is to harness this understanding of transmission to estimate the ability of different types of 

public health interventions, such as vaccination strategies, to interrupt transmission and maximize 

population-level benefits.  

 

Mathematical models can also be used to better understand norovirus immunity and cross-

protection between evolving GII.4 strains. Until very recently, attempts to culture norovirus in 

vitro using an array of cell systems have been unsuccessful.139–141 Recently, human noroviruses 

have been successfully cultured in stem cell–derived, human intestinal enteroids (HIEs),113 though 

this system is not yet widely available in research labs. In the absence of a widely available 

culturing method, much of our knowledge of norovirus immunity and cross-protection has been 

inferred from challenge studies, studies of VLPs and surrogate neutralization assays.36,43,92–97 

Mathematical models can be used to supplement the findings from challenge and in vitro studies 

and translate this understanding of norovirus immunity and cross-protection to the population-

level. All existing norovirus transmission models assume a single strain of norovirus, or that 

exposure to a single strain provides immunity to all subsequent strains to which individuals are 
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exposed.91,121,136,138,142 While these models have provided important insights into the epidemiology 

of noroviruses, these results may not be generalizable given the vast genetic and antigenic diversity 

of noroviruses. There is a growing body of research into modeling the dynamics of pathogens with 

multiple strains, particularly influenza virus.143–146 Similar to GII.4 noroviruses, influenza A 

viruses undergo antigenic drift resulting in the emergence of new strains that evade population 

immunity.119,147 Thus, multi-strain transmission modeling studies have been used to predict the 

dynamics and evolution of influenza A viruses.145,148 One such study combined a genetic-antigenic 

model with a transmission model to measure how changes in cross-immunity can drive the 

evolution of interpandemic influenza A over time.119 Given the patterns of evolution between GII.4 

noroviruses and influenza A viruses, the multi-strain models that have been developed to describe 

and predict cross-immunity and evolution influenza A can be adapted and applied to GII.4 

norovirus. 
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2 Significance 

 

Noroviruses pose a substantial burden disease across the age range. Norovirus vaccines are 

currently in development; however there are several characteristics about norovirus (i.e., 

transmission and immunity) that are not well understood and could hamper vaccine development 

and implementation. While it is essential to assess the efficacy of these vaccines, to ensure the 

success of norovirus vaccination programs, it is equally important to understand how aspects of 

norovirus biology and epidemiology, such as transmission and genetic diversity, could affect 

vaccine efforts. 

 

The overall goal of this dissertation is to provide insight into key aspects of norovirus 

epidemiology that could pose challenges to vaccine development and implementation. In this 

dissertation, I examined how norovirus transmission varies between age groups and how this 

variability could affect vaccine strategies with implications for implementation (Aim1), 

characterized norovirus transmission across different settings of outbreaks (Aim 2); and quantified 

the level of immune escape between multiple GII.4 norovirus strains (Aim 3). 

 

2.1 Aim 1 Rationale and Overview 

 

Current norovirus vaccine evaluations have been trialed among adults; however, as noroviruses 

affect all ages and are transmitted through multiple routes, an array of vaccination strategies 

warrants consideration. Few studies have sought to quantitatively assess the population-level 

impact of vaccines on norovirus illness. One study used a Markov model to assess the impact of 

norovirus vaccines and associated economic benefits of vaccination.149 This model however does 
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not consider the dynamics of disease transmission, and thus cannot account for the potential 

indirect benefits of vaccination (i.e., herd immunity and reductions in transmission).149 Therefore 

the estimated impacts of vaccination from this study may be a substantial underestimate.149 

Further, observational studies suggest that young children are important in norovirus transmission; 

contact with a young child with norovirus gastroenteritis has been identified as a significant risk 

factor for diarrhea for older children and adults.16,61 If young children are indeed important in 

transmission, then targeting this age-group could lead to wider population benefits by reducing 

overall disease transmission. The elderly suffer the vast majority of deaths due to norovirus,15 thus 

targeting the elderly for vaccination could reduce the incidence of the norovirus deaths 

substantially. A better understanding of population-level, age-specific variation in norovirus 

transmission is required so that we can determine which age groups to target for vaccination to 

maximize population-level benefits. 

 

 AIM 1: Identify how norovirus transmission varies between age groups and assess how this 

variability could affect vaccine impact. 

 

Aim 1A: Understand norovirus transmission by estimating age-specific transmission 

parameters. 

 

A dynamic model of norovirus transmission and immunity in the US was developed to estimate 

age-specific transmission parameters and determine how different age groups contribute to 

transmission. 

 



17 
 

Aim 1B: Characterize age-specific and population level impacts of different vaccination 

strategies on the epidemiology and disease burden of norovirus. 

 

The model from Aim 1A was modified to include vaccination compartments to simulate the effects 

of pediatric and elderly vaccination strategies on the incidence of five clinical outcomes: outpatient 

(OP) admission, emergency department (ED) admission, hospitalization (IP), and death due to 

norovirus.  

 

2.2 Aim 2 Rationale and Overview 

 

In addition to understanding population-level variations in transmission, it is also important to 

consider the variability of transmission at the scale of outbreaks. Outbreaks generally affect sub-

populations (e.g., food handlers, immunocompromised, healthcare workers) whose risk for 

transmission and disease may be substantially different from what is observed at a population-

level. Thus public health interventions (such as vaccination strategies) required to mitigate or 

prevent outbreaks may differ substantially from population-level interventions.150 Analyses of 

norovirus outbreak data have shown that the size and severity of outbreaks varies from different 

settings, times of year and for different genotypes. The duration and amount of shedding during 

norovirus infection is variable between individuals and with different genogroups, and contact 

patterns change for different settings (i.e., higher number of contacts made at home vs school or 

work).151 Thus we can expect norovirus transmission is highly variable across different outbreak 

contexts.35  
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One method to better understand transmission during outbreaks is to calculate the basic and 

effective reproduction numbers (R0 and Re). R0 represents the average number of secondary cases 

that arise from a primary case in a completely susceptible population. Re represents the average 

number of secondary cases that arise from a primary case in a population that is not necessarily 

fully susceptible.152,153 Importantly, when R0>1 an epidemic will likely occur. The value of R0 is 

often used to determine the type and level of control methods required to mitigate outbreaks (i.e., 

reduce R0 to less than 1).153,154 A more comprehensive estimation of norovirus transmission is 

required to better understand whether transmission varies in different times and settings. 

 

AIM 2: Characterize how the basic (R0) and effective (Re) reproduction number of norovirus 

outbreaks in the US varies across different settings, seasons and genotypes. 

 

The basic (R0) and effective (Re) reproduction numbers were estimated for norovirus outbreaks 

reported to NORS in the US between 2009 and 2017. Then regression models were used to assess 

whether norovirus transmission is associated with outbreak setting, census region, season, year, 

whether norovirus was suspected or confirmed, and norovirus genotype (categorized as either 

GII.4 or non-GII.4).  

 

2.3 Aim 3 Rationale and Overview 

 

A gap in our current knowledge of norovirus immunity is the extent of cross-protection provided 

when individuals are exposed to different strains of norovirus. As detailed above, data from in 

vitro EIAs, antibody blocking assays, and challenge studies suggest immunity tends to be strain- 

or genotype-specific,66,84,89,90 although there may be limited cross-immunity between strains 
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within the same genogroup.36,43,155 All existing models of norovirus transmission assume there is 

a single strain of norovirus, or that exposure to a single strain provides immunity to all subsequent 

strains to which individuals are exposed.91,121,136,138,142 These existing models provide important 

insight into the epidemiology of norovirus, however fail to capture the observed inter-annual 

variability that can result from emerging GII.4 strains. Additionally, while these models capture 

certain outbreak patterns, they may not accurately reflect the underlying epidemiological processes 

driving these patterns. Thus, these models could make incorrect predictions of the impact of 

different types of interventions, such as vaccination.  

 

AIM 3: Estimate changes in population level susceptibility to GII.4 noroviruses and the 

extent of immune escape and cross-protection between GII.4 strains. 

 

To address this aim, a set of coupled single-strain models approach was used to estimate the change 

in population-level immunity during GII.4 strain transitions. This estimated change in 

susceptibility was used to quantify the level of immune escape and infer the level of cross-

protection between GII.4 strains. 
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Targeting pediatric versus elderly populations for norovirus vaccines: a model-based 

analysis of mass vaccination options 

 

Molly K. Steele, Justin V. Remais, Manoj Gambhir, John W. Glasser, Andreas Handel, Umesh D. 

Parashar, Benjamin A. Lopman  

 

Abstract 

 

Background: Noroviruses are the leading cause of acute gastroenteritis and foodborne diarrheal 

disease in the United States. Norovirus vaccine development has progressed in recent years, but 

critical questions remain regarding which age groups should be vaccinated to maximize population 

impact.  

 

Methods: We developed a deterministic, age-structured compartmental model of norovirus 

transmission and immunity in the US population. The model was fit to age-specific monthly US 

hospitalizations between 1996 and 2007. We simulated mass immunization of both pediatric and 

elderly populations assuming realistic coverages of 90% and 65%, respectively. We considered 
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two mechanism of vaccine action, resulting in lower vaccine efficacy (lVE) between 22% and 43% 

and higher VE (hVE) of 50%. 

 

Results: Pediatric vaccination was predicted to avert 33% (95% CI: 27%, 40%) and 60% (95% 

CI: 49%, 71%) of norovirus episodes among children under five years for lVE and hVE, 

respectively. Vaccinating the elderly averted 17% (95% CI: 12%, 20%) and 38% (95% CI: 34%, 

42%) of cases in 65+ year olds for lVE and hVE, respectively. At a population level, pediatric 

vaccination was predicted to avert 18-21 times more cases and twice as many deaths per vaccinee 

compared to elderly vaccination. 

 

Conclusions: The potential benefits are likely greater for a pediatric program, both via direct 

protection of vaccinated children and indirect protection of unvaccinated individuals, including 

adults and the elderly. These findings argue for a clinical development plan that will deliver a 

vaccine with a safety and efficacy profile suitable for use in children. 
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INTRODUCTION 

 

 

Noroviruses are the leading cause of acute gastroenteritis in the United States,10–12 responsible for 

an average 570–800 deaths, 56,000–71,000 hospitalizations, 400,000 emergency department 

admissions, 1.7–1.9 million outpatient admissions, and 19–21 million illnesses annually.11 Severe 

norovirus outcomes occur among pediatric and elderly populations, with 90% of norovirus-

associated deaths in the US occurring among the elderly.15 Children under five years of age 

experience the highest incidence (five times the general population)16 and have the highest rates 

of outpatient, emergency department, and inpatient visits (233, 38, and 9.4 per 10,000 persons per 

year, respectively).13,14 Given this substantial burden and limited options for prevention and 

treatment,156 vaccines are considered an important means of providing protection from norovirus 

illness.12 

 

Safety, immunogenicity, and efficacy studies on norovirus vaccines have been encouraging, with 

at least one bivalent intramuscular product likely to progress to Phase III field efficacy trials.12 

Current vaccine evaluations have been conducted among adults. However, as noroviruses affect 

all ages and are transmitted through multiple routes, an array of vaccination strategies warrants 

consideration. At the current stage of vaccine development, the time is ideal for examining the 

population impact that various norovirus vaccination programs could have on the dynamics of 

disease to guide vaccine development and inform policymakers on potential impacts.  

 

Here, we present an age-structured dynamic transmission model to project the effects of different 

vaccination strategies on the epidemiology and disease burden of norovirus in the US, including 

the incidence of five clinical outcomes (cases, outpatient visits, emergency department visits, 
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inpatient visits, and deaths) for each of four age classes (0-4, 5-17, 18-64, and 65+ years). The 

model was used to compare vaccination strategies targeting pediatric versus elderly populations, 

both in terms of impact on disease burden and relative efficiency under various assumptions about 

vaccine efficacy. 

 

METHODS 

 

We adapted a previously-published, deterministic, age-structured compartmental model that 

simulates norovirus transmission and estimates disease incidence in the US.91 The model follows 

a Susceptible-Exposed-Infected-Recovered (SEIR-like) framework (Figure 3-1, Text S1). We 

consider four age classes: 0-4, 5-17, 18-64, and 65+ years old, and applied realistic, age-specific 

population sizes, aging and death rates, and a heterogeneous contact structure (Table 3-1, Text S1, 

Table 3-S1). Lacking detailed mixing data specific to the US, we used average contact patterns 

from representative samples of eight European countries in the POLYMOD study.151  

 

We estimated age-specific susceptibilities (qi) to allow the four age classes (i; 0-4, 5-17, 18-64, 

and 65+ year olds) to exhibit heterogeneous probabilities of infection given exposure to an 

infectious contact. We also considered models with different numbers of estimated age-specific 

susceptibilities (qi) and where transmission was dependent on susceptible or infectious individuals 

(Text S1, Table 3-S2); the results of this paper focuses on the best-fit model, where the 

probabilities of infection on contact for 5-17 and 18-64 year olds were equal (q2 = q3). 
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We assume maternal immunity is short-lived and negligible.157 Therefore, absent vaccination, 

children are born into the susceptible class (S). Susceptible individuals are subjected to a force of 

infection (λi(t)), and progress through pre-symptomatic (E), symptomatic (I) and post-symptomatic 

(A) stages at rates inversely proportional to the duration of incubation (µ), symptomatic illness 

(φ), and asymptomatic shedding (ρ), respectively, before entering the recovered compartment (R). 

In this framework, individuals acquire natural immunity that protects against disease, but not 

against infection, until immunity wanes.16,83 From the recovered compartment, persons can 

become asymptomatically infected (A) or susceptible to disease as natural immunity wanes (θ). 

To simulate seasonality, we applied a seasonal forcing parameter (β1) that governs the peak-to-

mean amplitude in transmissibility. To estimate clinical outcomes, we multiplied the projected 

disease incidence by age-specific probabilities (given norovirus illness) of outpatient (OP) 

admission, emergency department (ED) admission, hospitalization (IP), and death due to 

norovirus. These probabilities were determined from US population estimates and described in 

more detail in previous work.149 

 

Model simulation, fitting, and analysis were conducted in R version 3.1.1.158 Specific R packages 

used for these analyses are detailed in the supplement. We fit the model to age-specific monthly 

counts of norovirus-associated hospitalizations by maximum likelihood to estimate the 

susceptibility (q1…4) and seasonality (β1,ω) parameters.14 We assumed the monthly numbers of 

hospitalizations in each age group were Poisson distributed with mean equal to the model-

predicted age-specific incidence multiplied by the probability of hospitalization.159 Age-specific 

R0 values were calculated following procedures detailed in the supplement and Simmons et. al., 

2013 (Text S1).91  
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Vaccine Scenarios 

 

We assumed vaccine response was “take-type:” either protection against disease was complete or 

vaccinated individuals remained fully susceptible.160 We assumed vaccines confer protection in 

the same manner as we conceptualize natural immunity: providing protection against disease, but 

not infection. Thus, vaccinated individuals can become asymptomatically infected or susceptible 

to disease as vaccine-induced immunity wanes (τ) (Figure 3-1).  

 

Figure 3-1. Model schematic of the movement between six states of norovirus infection. In the absence 

of vaccination, persons are born directly into the susceptible pool (S), become exposed at the force of 

infection (λ(t)), and then progress through the exposed (E), symptomatic (I) and asymptomatic (A) stages 

at rates inversely proportional to the duration of these states (µ, φ, ρ) before entering the recovered 

compartment (R). From the recovered compartment, persons can become asymptomatically infected at the 

force of infection or can become susceptible to disease through the waning of natural immunity (θ). In the 

presence of a pediatric vaccination (panel A), a proportion of births entering the system will receive 

protection from vaccines (v) and enter the vaccinated compartment (V). In the presence of elderly 

vaccination (panel B), a proportion of the elderly will receive protection from vaccines (v) and enter the 

vaccinated compartment (V). Only children under five and the elderly can flow into vaccinated 

compartments. Under both pediatric and elderly vaccine scenarios, vaccinated individuals can become 

asymptomatically infected at the force of infection or can become susceptible to disease through the waning 

of vaccine immunity (α).  
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After model fitting, we simulated routine, age-targeted vaccination of infants around the time of 

birth with vaccine coverage of 90% (i.e. Pediatric immunization) and individuals turning age 65 

and every five years thereafter with vaccine coverage of 65% (i.e. Elderly immunization). Vaccine 

coverage for these scenarios was based on recent age-specific uptake of measles and influenza 

vaccines, respectively.161,162 No vaccine efficacy (VE) estimates from field trails exist for 

norovirus vaccines, so we considered two different values, based on different interpretations of 

vaccine-challenge studies. These studies suggest monovalent or bivalent norovirus vaccination 

followed by a homotypic challenge reduces disease by approximately 50% among vaccinated 

individuals.108,109 In low-efficacy vaccine scenarios (lVE Pediatric and Elderly) we assume only 

those immunologically susceptible to norovirus at the time of vaccine administration gain 

additional protection from disease. About 44% and 55% of 0-4 year olds are susceptible and 
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recovered, respectively, prior to vaccination, resulting in a VE around 25% for 0-4 year olds. In 

the elderly population, 85% are susceptible and 14% are recovered prior to vaccination, thus VE 

is approximately 43% for the elderly. Under a more optimistic high VE (hVE) scenario, we assume 

vaccination confers a 50% reduction in disease incidence over one year among vaccinated 

individuals.  

 

For these four vaccine scenarios—and for a scenario without vaccination—we estimated age-

specific incidence of disease and clinical outcomes. Analyses of long-term impacts of vaccination 

were conducted after the system had reached equilibrium, approximately 40 years after vaccine 

introduction. We simulated a well-established vaccination program with coverage similar to other 

vaccines. More detailed analysis are required to model the scale-up of vaccine coverage in the first 

few years after implementation and the associated epidemiological impacts. We calculated 

population direct and indirect effects of vaccination by comparing vaccine to no-vaccine 

simulations. We also assessed the efficiency of vaccine simulations, defined as the number of 

clinical outcomes averted per vaccinee (Text S1). 

 

Parameters and Simulations 

 

Parameter values (and ranges) for natural history, and clinical outcome probabilities were set to 

values identified in observational/challenge studies, and previous modeling studies (Table 3-1). 
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Table 3-1. Parameter input values, ranges tested in uncertainty analyses, and sources.  

Parameter Symbol Input value 

Range (+/- 

standard 

deviation) 

Distribution Source 

Duration of incubation 

period 
µ 32.8 hours (30.9 – 34.6) Uniform Devasia et al 2014 63 

Duration of symptomatic 

infectiousness 
φ 48 hours  (38.9 – 50.7) Uniform Devasia et al 2014 63 

Duration of 

asymptomatic 

infectiousness 

ρ 10 days (1-20) Uniform Atmar et. al 2008 53 

Duration of natural 

immunity 
θ 5.1 years (4.0–6.7) Uniform Simmons et. al 2013 91 

Relative infectiousness 

during incubation and 

asymptomatic period 

ε 0.05 (0.045, 0.055) Uniform Simmons et. al 2013 91 

Duration of vaccine 

asymptomatic 

infectiousness 

α 10 days (1-20) Uniform 
Assumed equal to duration 

of natural infection  

Duration of vaccine 

immunity 
τ 5.1 years (4.0–6.7) Uniform 

 Assumed equal to duration 

of natural immunity 

OP admission 

probability 
     

0-4 years  0.168 (0.100–0.235) Uniform Bartsch et al 2012 149 

5-17 years  0.168 (0.111–0.226) Uniform Bartsch et al 2012 149 

18-64 years  0.06 (0.019–0.106) Uniform Bartsch et al 2012 149 

65+ years  0.103 (0.063–0.143) Uniform Bartsch et al 2012 149 

IP admission probability      

0-4 years  0.00428 +/- 0.000178 Normal Bartsch et al 2012 149 

5-17 years  0.00182 +/- 0.000074 Normal Bartsch et al 2012 149 

18-64 years  0.00228 +/- 0.000092 Normal Bartsch et al 2012 149 

65+ years  0.01733 +/- 0.000709 Normal Bartsch et al 2012 149 

Death probability      

0-4 years  0.00000625 +/- 2.57x10-7 Normal Bartsch et al 2012 149 

5-17 years  0.00000466 +/- 1.81x10-7 Normal Bartsch et al 2012 149 

18-64 years  0.00000466 +/- 1.81x10-7 Normal Bartsch et al 2012 149 

65+ years  0.000435 +/- 0.000018 Normal Bartsch et al 2012 149 

ED visit probability      

0-4 years  0.0179 (0.0112-0.0246) Uniform Bartsch et al 2012 149 

5-17 years  0.0199 (0.0114-0.0280) Uniform Bartsch et al 2012 149 

18-64 years  0.026 (0.0153-0.0368) Uniform Bartsch et al 2012 149 

65+ years  0.0325 (0.0199-0.0452) Uniform Bartsch et al 2012 149 

Fitted Parameters      

Susceptibility of 0-

4 year olds 
q1 0.208 (0.141, 0.402)a  Estimated 
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Susceptibility of 5-

17 and 18-64 year 

olds 

q2,3 0.032 (0.023, 0.057) a  Estimated 

Susceptibility of 

65+ year olds 
q4 0.020 (0.014, 0.035) a  Estimated 

Seasonal amplitude  β1 0.034 (0.008, 0.089) a - Estimated 

Seasonal offset ω 2.147 (1.961, 2.266) a - Estimated 

a. Range in the fitted value based on 1,000 random samples of the fixed parameter 

 

We used Latin hypercube sampling to generate 1,100 random samples of parameter sets and then 

re-fit the transmission probabilities and seasonality parameters, in the absence of vaccination, for 

each parameter set. We report the median and ranges of values for the fitted parameters based on 

the randomly sampled parameter sets (Table 3-1). We then ranked the 1,100 sampled and fitted 

parameter sets by their negative log likelihood (NLL) value. The 100 parameter sets with the 

highest NLL values were discarded, and we ran each vaccine scenario with the remaining 1,000 

parameter sets. For summary statistics, we report medians and 2.5/97.5 percentiles of the annual 

clinical outcomes averted. These annual data are four year averages. In order to quantify the 

sensitivity of model projections to uncertainty in each parameter’s value, we calculated partial rank 

correlation coefficients (PRCC) for natural history and vaccine parameters. PRCC values were 

calculated between model parameters and the percentage of cases averted in the total population 

and the age group targeted for vaccination in a given vaccination scenario. 

 

RESULTS 

 

Model Fitting  
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The best fit model based on the minimum Akaike information criterion (Table 3-S2) included three 

age-specific probabilities of infection on contact. The observed and predicted average annual 

norovirus hospitalizations were 71,461 and 71,906, respectively (Figure 3-2). A seasonal forcing 

of 3.4% (95% CI: 1.1%, 8.1%) of peak-to-mean amplitude provided the best fit to observed 

seasonal variation in monthly hospitalizations (Table 3-1, Figure 3-S2, Table 3-S2). In the best-fit 

model, 0-4 year olds contributed the most to transmission, with an age-specific basic reproduction 

number (R0) of 4.3 compared to 1.4, 1.2, and 0.4 from 5-17, 18-64, and 65+ years, respectively 

(Text S1). 

 

Figure 3-2. Age-specific observed and predicted in best fitting model of hospitalizations per 

year in the United States. The error bars in the observed data represent the range in annual 

hospitalizations over the 11 year data set. The error bars on the model data represent the range in 

annual hospitalizations based on the range in estimated and natural history parameter values 

identified in Table 3-1. 
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Vaccine Impact 

 

The Pediatric programs rapidly reduced disease incidence in 0-4 year olds. Disease incidence 

exhibited inter-annual variability for the first several years before reaching lower equilibria (Figure 

3-3A). In the first five years of the lVE Pediatric program, incidence among 0-4 year olds was 

reduced by 24%, 41%, 22%, 37%, and 30%. In the first five years of the hVE Pediatric program, 

incidence among 0-4 year olds was reduced by 42%, 78%, 59%, 46%, and 68%. 

 

Elderly vaccination led to gradual reductions in disease incidence, achieving a new equilibrium of 

lower incidence in approximately 15 years (Figure 3-3B). In the first five years of the lVE Elderly 

program, incidence among the elderly was reduced by 3%, 6%, 9%, 11%, and 12%. In the first 

five years of the hVE Elderly program, incidence among the elderly was reduced by 5%, 13%, 

19%, 23%, and 26%. 
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Figure 3-3. Predicted incidence of disease within the age-group targeted for vaccination 

over time. (A) Impact of the Pediatric vaccine programs on incidence of disease in 0-4 year olds. 

(B) Impact of the Elderly vaccine programs on incidence of disease in 65 year olds and older. 

 
 

The lVE Pediatric program at equilibrium was predicted to avert 33% (95% CI: 27%, 40%) of all 

clinical outcomes in 0-4 year olds annually (Table 3-2, Figure 3-4A, Figure 3-5A). Approximately 

71% of the averted outcomes were achieved through direct effects and 29% through indirect effects 

(Figure 3-4A). In older age classes, 14-16% of cases were averted primarily through indirect 

effects (Figure 3-4A, Figure 3-5A, Table 3-2).  
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Table 3-2. Outcomes averted (95% Confidence Interval) annually with a pediatric vaccine 

program with vaccine coverage of 90% and vaccine efficacy of 22% (lVE Pediatric). 

Age Group Cases Averted  
Outpatients 

Averted 

ED Visits 

Averted 

Hospitalizations 

Averted 

Deaths 

Averted 

0-4 years  
1,430,000 237,000 25,700 6,200 9 

(1,185,000, 1,724,000) (141,000, 356,000) (15,700, 37,500) (5,100, 7,400) (7, 11) 

5-17 years  
419,000 69,000 8,100 800 2 

(219,000, 705,000) (32,000, 132,000) (3,500, 16,400) (400, 1,300) (1, 3) 

18-64 years 
1,157,000 70,000 30,000 2,600 5 

(701,000, 1,876,000) (22,000, 160,000) (14,900, 58,400) (1,600, 4,300) (3, 9) 

65+ years 
266,000 27,000 8,500 4,600 115 

(173,000, 410,000) (14,000, 49,000) (4,600, 15,500) (3,000, 7,000) (75, 180) 

Total (#) 
3,282,000 407,000 72,400 14,200 132 

(2,295,000, 4,720,000) (259,000, 614,000) (45,900, 115,700) (10,100, 20,100) (87, 202) 

Total (%) 
19% 22% 18% 20% 16% 

(13%, 27%) (15%, 30%) (12%, 26%) (14%, 28%) (11%, 25%) 

 

 

The hVE Pediatric program at equilibrium was predicted to avert 60% (95% CI: 49%, 71%) of all 

clinical outcomes in the 0-4 year olds annually (75% through direct and 25% indirect protection; 

Table 3-S3, Figure 3-4C, Figure 3-5C). In older age classes, 29-33% of cases were averted 

primarily through indirect protection (Table 3-S3, Figure 3-4C, Figure 3-5C). 

 

A lVE Elderly program at equilibrium would avert approximately 17% (95% CI: 12%, 20%) of all 

clinical outcomes almost exclusively through direct effects in the elderly (Table 3-3, Figure 3-4B, 

Figure 3-5B). Minimal impacts were conferred on other age groups as less than 1% of outcomes 

in 0-64 year olds were averted through indirect effects (Table 3-3, Figure 3-4B, Figure 3-5B).  
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Table 3-3. Outcomes averted (95% CI) with routine elderly immunization with vaccine 

coverage of 65% and vaccine efficacy of 43% (lVE Elderly).  

 

Age Group Cases Averted  
Outpatients 

Averted 

ED Visits 

Averted 

Hospitalizations 

Averted 
Deaths Averted 

0-4 years  
8,500 1,400 150 36 0.05 

(4,700, 14,800) (630, 2,800) (70, 290) (19, 65) (0.03, 0.09) 

5-17 years  
9,200 1,500 180 17 0.04 

(5,400, 15,400) (760, 2,900) (80, 370) (10, 28) (0.03, 0.07) 

18-64 years 
42,300 2,500 1,100 100 0.20 

(25,700, 65,900) (810, 5,600) (530, 2,100) (60, 150) (0.12, 0.31) 

65+ years 
276,900 28,100 8,800 4,800 120 

(204,700, 344,400) (16,100, 43,400) (5,100, 13,700) (3,600, 5,800) (88, 151) 

Total (#) 
336,900 33,800 10,200 4,900 120 

(240,300, 436,500) (20,100, 50,900) (6,100, 15,600) (3,700, 6,000) (88, 151) 

Total (%) 
1.9% 1.8% 2.5% 6.9% 15% 

(1.4%, 2.5%) (1.1%, 2.9%) (1.6%, 3.7%) (5.1%, 8.5%) (11%, 18%) 
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Figure 3-4. Direct (blue) and indirect effects (yellow) of each vaccine scenario. (A) Low 

vaccine efficacy (lVE) Pediatric program (B) Low vaccine efficacy (lVE) Elderly program (C) 

High vaccine efficacy (hVE) Pediatric program (D) High vaccine efficacy (hVE) Elderly 

program.  

 
 

 

The hVE Elderly program at equilibrium was predicted to avert 38% (95% CI: 34%, 42%) of all 

clinical outcomes almost exclusively through direct effects (Table 3-S4, Figure 3-4D, Figure 3-

5D). Minimal impacts were conferred on younger age groups, with approximately 1% or less of 

outcomes averted through indirect effects (Table 3-S4, Figure 3-4D, Figure 3-5D). 
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Figure 3-5. Boxplots representing the range of uncertainty in the percent of cases averted 

over a one year time period, given uncertainty in parameter input values. (A) Low vaccine 

efficacy (lVE) Pediatric program (B) Low vaccine efficacy (lVE) Elderly program (C) High 

vaccine efficacy (hVE) Pediatric program (D) High vaccine efficacy (hVE) Elderly program. 

 
 

 

 

Pediatric programs were more efficient than Elderly programs. Per 100,000 vaccinees assuming 

lVE, the Pediatric program averted 21 times more cases; 26 times more OP visits; 15 times mores 

ED visits; 6 times more IP admissions; and twice as many deaths (Table 3-4) as Elderly programs. 

For hVE, the Pediatric programs averted 18 times more cases; 21 times more OP visits; 13 times 

more ED visits; 5 times more IP admissions; and twice as many deaths (Table 3-4) as Elderly 
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programs. For every one case averted through direct effects, 3 and 5 cases in the total population 

were averted through indirect effects with lVE and hVE Pediatric programs, respectively. For 

every one case averted through direct effects, 0.5 and 1 cases in the total population were averted 

through indirect effects with lVE and hVE Elderly programs, respectively. 

 

Table 3-4. Clinical outcomes averted per 100,000 vaccinees (95% CI) over 1 year.  

Vaccine 

strategy 

Cases averted 

per 100,000 

doses 

Outpatient visits 

averted per 

100,000 doses 

ED visits 

averted per 

100,000 doses 

Hospitalizations 

averted per 

100,000 doses 

Deaths 

averted 

per 

100,000 

doses 

lVE Pediatric           

0-4 years 
39,500 6,600 710 170 0 

(32,700, 47,600) (3,900, 9,800) (430, 1,040) (140, 200) (0, 0) 

Total 
90,600 11,200 2,000 390 4 

(63,400, 130,300) (7,100, 16,900) (1,270, 3,200) (280, 560) (2, 6) 

lVE Elderly      

65+ years 
3,500 360 110 61 2 

(2,600, 4,400) (210, 560) (66, 170) (46, 74) (1, 2) 

Total 
4,300 430 130 63 2 

(3,100, 5,600) (260, 650) (80, 200) (50, 80) (1, 2) 

hVE Pediatric      

0-4 years 
72,400 11,900 1,280 310 0 

(58,800, 87,000) (7,100, 18,000) (790, 1,920) (250, 370) (0, 1) 

Total 
178,000 21,400 3,940 760 7 

(119,400, 256,200) (13,000, 33,400) (2,450, 6,340) (530, 1,070) (5, 11) 

hVE Elderly      

65+ years 
8,100 840 270 141 4 

(7,100, 9,400) (510, 1,200) (160, 380) (120, 160) (3, 4) 

Total 
9,900 1,010 310 145 4 

(8,400, 12,000) (600, 1,400) (200, 430) (130, 160) (3, 4) 
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Sensitivity Analysis  

 

For the Pediatric vaccine programs, the duration of natural immunity (θ), duration of vaccine 

induced immunity (α), and the probability of infection on contact for 5-64 year olds (q2,3) had the 

most influence on the percent of cases averted in the total population (Table 3-5). The most 

influential parameters on the percent of cases averted in the total population for the Elderly vaccine 

programs were the duration of natural immunity (θ), duration of vaccine induced immunity (α), 

and 65+ year olds (q4) (Table 3-5).  

 

When other parameters were fixed, the percentage of cases averted in the total population ranged 

from 15% (95% CI: 12%, 20%) to 23% (95% CI: 18%, 30%) and 28% (95% CI: 22%, 39%) to 

45% (95% CI: 34%, 60%) across the tested range in duration of vaccine immunity (Table 3-1) for 

lVE and hVE Pediatric programs, respectively. The percentage of cases averted in the total 

population ranged from 1% (95% CI: 1%, 2%) to 2% (95% CI: 2%, 3%) and 4% (95% CI: 3%, 

5%) to 5% (95% CI: 4%, 6%) across the tested range in duration of vaccine immunity for lVE and 

hVE Elderly programs, respectively. 

 

Table 3-5. Partial rank correlation coefficients (PRCC) between selected model parameters 

and the percent of cases averted in the total population for each of four vaccination 

strategies.  

  Symbol lVE Pediatric lVE Elderly hVE Pediatric hVE Elderly 

Natural History Parameters 

Duration of 

Incubation 
µ 0.04 0.06 0.03 0.07 

Duration of 

Symptomatic 

Infection 

φ -0.19 0.11 -0.15 0.21 
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Duration of 

Asymptomatic 

Infectiousness 

ρ 0.19 0.11 0.19 0.14 

Duration of 

Natural Immunity 
θ -0.84 (2) a -0.66 (3) a -0.81 (2) a -0.57 (3) a 

Pre/Post 

Symptomatic 

Infectiousness 

ε -0.09 -0.02 -0.06 0.03 

Transmissibility 

of 0-4 year olds 
q1 0.04 -0.35 0.10 -0.37 

Transmissibility 

of 5-17 and 18-64 

year olds 

q2,3 -0.41 (3) a -0.41 -0.37 (3) a -0.44 

Transmissibility 

of 65+ year olds 
q4 0.35 0.82 (2) a 0.31 0.87 (2) a 

Vaccine Parameters 

Duration of 

Vaccine Immunity 
α 0.94 (1) a 0.97 (1) a 0.94 (1) a 0.90 (1) a 

Duration of 

Vaccine 

Asymptomatic 

Infectiousness 

τ -0.27 -0.11 -0.25 -0.11 

 

a The top 3 most influential parameters for each vaccine program are indicated by ranks in parentheses 

 

 

DISCUSSION 

 

Results from this transmission modeling study suggest the overall population impact of norovirus 

vaccination can vary substantially depending on the age group targeted. Pediatric programs offered 

the greatest reductions in all clinical outcomes, with 33% to 60% decreases among 0-4 year olds, 

and 14% to 33% reductions in older age groups achieved primarily through indirect protection. 

Pediatric programs were 18-21 times more efficient at preventing cases and 5-6 and two times 

more efficient at preventing IP admissions, and deaths, respectively, when compared to Elderly 

programs. Elderly programs averted between 17% and 38% of cases in the elderly, and provided 
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protection almost exclusively through direct effects. This is a result of the minimal contribution 

that the elderly make to disease transmission. In fact, Pediatric programs were predicted to confer 

similar benefits to the elderly as Elderly programs. Taken together, these results indicate targeting 

pediatric populations for vaccination leads to greater direct and indirect benefits for the total 

population than vaccine programs that target the elderly. Children under five have higher disease, 

OP, and ED admission rates; thus vaccines can directly prevent these outcomes. The indirect 

benefits of Pediatric programs are a result of reductions in disease transmission, owing to the 

importance of young children in transmission. This finding is consistent with observational studies 

that identified contact with a young child with norovirus gastroenteritis as a risk factor for diarrhea 

for older children and adults.16,61 Large indirect benefits have been observed with the introduction 

of pediatric rotavirus and pneumococcal vaccines in the US, with unvaccinated populations 

protected through reductions in the overall force of infection.163,164 

 

A second important finding was the identification of key parameters that influence the impact of 

vaccine strategies. For both Pediatric and Elderly vaccination programs, the duration of vaccine-

induced immunity, and age-specific transmission parameters (q2,3 and q4 for Pediatric and Elderly 

programs, respectively) strongly determined the outcome of the analysis. These are parameters for 

which we have limited empirical data because transmission is largely unobservable,121 and no 

vaccine studies have included long-term follow-up for clinical outcomes.111 In order to better 

predict the impacts of norovirus vaccines in future work, this analysis highlights the high value of 

collecting information on transmission from observational studies and conducting clinical trials 

that can estimate the duration of protection for both children under five and the elderly. 
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The predicted impacts of lVE scenarios were modest due to technical reasons related to our model 

construction. First, we assume vaccination only provides additional protection for those who are 

susceptible to disease (in the S class) at the time of immunization. Individuals who have acquired 

natural immunity will receive no added protection. This assumption strongly limits the impact of 

vaccination for adults as many will have acquired immunity, whereas we assume all children are 

susceptible at the time of infant immunization. A second explanation is that we assume exponential 

waning of both natural and vaccine immunity, so while the average duration of protection 5.1 

years, most individuals have a shorter-duration immunity while a few have longer-term protection. 

Compartmental models can be modified to assume other distributions for waning immunity; 

however no data are available to inform the functional form of waning immunity to norovirus. The 

hVE scenarios which were based on a 50% vaccine efficacy108,109 resulted in more optimistic 

impacts. The values and concepts of vaccine action that are most appropriate can be informed by 

future clinical trial data. 

 

There are several limitations to this study. First, there is uncertainty in the robustness of the 

epidemiological data used to fit the model. We used US hospitalization data, which are model 

estimates, and community incidence rates were informed by a UK study. In that study, incidence 

in older age groups was low and may have been biased downwards.16 Fitting to such low incidence 

limited the potential impact of elderly immunization in our model and limited the role of elderly 

people in transmission. Second, there is considerable uncertainty in model parameters due to our 

limited understanding of natural history of norovirus disease and transmission, particularly the 

relative roles of pre- and post-symptomatic transmission. Third, our model construction assumes 

a single strain of norovirus; thus infection from, or vaccination against, one strain of norovirus 
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provides protection against all other infections. This is a major simplification, as noroviruses are 

highly genetically diverse and natural immunity provides only limited cross-protection within 

genogroups.66 However, this simplification may be partially accounted for by the duration of 

immunity parameter, particularly in the low vaccine efficacy scenario. In addition, novel 

genogroup 2 type 4 (GII.4) strains emerge every two to four years, that may evade host population 

immunity. Current data are insufficient to establish the degree of cross-protection to norovirus, or 

to parameterize a multi-strain model as has been accomplished for influenza.165 For a more 

complete understanding of norovirus transmission and vaccination, these are important areas for 

further empirical studies and, subsequently, model development. Additionally, we did not consider 

a model that incorporated a class of individuals that are genetically resistant to norovirus infection. 

As more data become available on the effect of vaccination among genetically resistant 

individuals, future modeling studies should consider such a class. Another important limitation is 

that we assumed that VE was the same for all clinical outcomes and disease severity. This may not 

be the case. For rotavirus, VE is greater for severe outcomes.164 Finally, while we developed a 

model to predict the impact of infant and elderly vaccination, there have been no studies of VE in 

pediatric populations and only one immunogenicity study in the elderly.111 Human safety, 

immunogenicity and efficacy studies have all involved experimental challenge of adults (typically 

18-49 years old).108,109,112 While these results are promising, clinical trials will be pivotal in 

determining VE among infants and the elderly. Though our study made several simplifying 

assumptions—as all models do—the dynamic transmission framework presented here offers a 

more comprehensive understanding of total population benefits of vaccination than previous 

studies that included only direct effects.149  
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In summary, our results quantitatively demonstrate that the potential public health value of a 

norovirus vaccine is likely greatest with pediatric immunization. This finding argues for a clinical 

development plan for a vaccine with a safety and efficacy profile suitable for use in children. To 

improve models for future analyses, better data are needed on the duration of natural and vaccine 

immunity, the extent of cross-protection and process of norovirus infection. Future modeling 

studies should incorporate norovirus strain diversity to examine the implications of multiple, 

evolving strains for vaccination. As more data become available on the extent of cross-protection 

and the duration of vaccine immunity, this modeling framework can be adapted to more precisely 

estimate population-level impacts of norovirus vaccination. Models should also be adapted to 

developing world settings where the force of infection is higher 166 and disease burden is greater.4  
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Supplemental 

 

Text S1. 

Detailed Model Description: The ordinary differential equations that support the model 

structure as shown in Fig 1 are as follows: 

Where k =1 represents 0-4 year olds 

𝑑𝑆𝑘

𝑑𝑡
 =𝐵(1 − 𝑣) + 𝜃𝑅𝑘 + 𝛼𝑉𝑘 − (λ𝑖(𝑡) + 𝑎𝑘 + 𝐷𝑘)𝑆𝑘  

𝑑𝐸𝑘

𝑑𝑡
 = λ𝑖(𝑡)𝑆𝑘 − (𝜇 + 𝑎𝑘 + 𝐷𝑘)𝐸𝑘   

𝑑𝐼𝑘

𝑑𝑡
 = 𝜇𝐸𝑘 − (𝜑 + 𝑎𝑘 + 𝐷𝑘)𝐼𝑘 

𝑑𝐴𝑘

𝑑𝑡
 = 𝜑𝐼𝑘  + λ𝑖(𝑡)𝑅𝑘  − (𝜌 + 𝑎𝑘 +𝐷𝑘)𝐴𝑘 

𝑑𝑅𝑘

𝑑𝑡
 = 𝜌𝐴𝑘  − (λ𝑖(𝑡) + 𝜃 + 𝑎𝑘 + 𝐷𝑘)𝑅𝑘 

𝑑𝑉𝑘

𝑑𝑡
 = 𝐵𝑣 + 𝜏𝑉𝑎𝑘  − ( λ𝑖(𝑡) +  𝛼 + 𝑎𝑘  + 𝐷𝑘)𝑉𝑘 

𝑑𝑉𝑎𝑘

𝑑𝑡
 = λ𝑖(𝑡)𝑉𝑘 − (𝜏 + 𝑎𝑘  + 𝐷𝑘)𝑉𝑎𝑘 

 

Where k = 2, 3 represent 5-17 and 18-64 year olds, respectively 

𝑑𝑆𝑘

𝑑𝑡
 = 𝑎𝑘−1𝑆𝑘−1 + 𝜃𝑅𝑘 + 𝛼𝑉𝑘 − (λ𝑖(𝑡) + 𝑎𝑘 + 𝐷𝑘)𝑆𝑘   

𝑑𝐸𝑘

𝑑𝑡
 = 𝑎𝑘−1𝐸𝑘−1 + λ𝑖(𝑡)𝑆𝑘 − (𝜇 + 𝑎𝑘  + 𝐷𝑘)𝐸𝑘  

𝑑𝐼𝑘

𝑑𝑡
 = 𝑎𝑘−1𝐼𝑘−1 +  𝜇𝐸𝑘 − (𝜑 + 𝑎𝑘 + 𝐷𝑘)𝐼𝑘 

𝑑𝐴𝑘

𝑑𝑡
 =𝑎𝑘−1𝐴𝑘−1 +  𝜑𝐼𝑘 + λ𝑖(𝑡)𝑅𝑘 − (𝜌 + 𝑎𝑘 + 𝐷𝑘)𝐴𝑘 

𝑑𝑅𝑘

𝑑𝑡
 = 𝑎𝑘−1𝑅𝑘−1 +  𝜌𝐴𝑘  − (λ𝑖(𝑡) + 𝜃 + 𝑎𝑘 + 𝐷𝑘)𝑅𝑘 
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𝑑𝑉𝑘

𝑑𝑡
 = 𝑎𝑘−1𝑉𝑘−1 + 𝜏𝑉𝑎𝑘 − (λ𝑖(𝑡) +  𝛼 + 𝑎𝑘 + 𝐷𝑘)𝑉𝑘 

𝑑𝑉𝑎𝑘

𝑑𝑡
 = 𝑎𝑘−1𝑉𝑎𝑘−1 + λ𝑖(𝑡)𝑉𝑘 − (𝜏 + 𝑎𝑘 + 𝐷𝑘)𝑉𝑎𝑘 

 

Where k = 4…8 represent 65-69, 70-74, 75-79, 80-84 and 85+ year olds, respectively 

𝑑𝑆𝑘

𝑑𝑡
 = 𝑎𝑘−1𝑆𝑘−1(1 − 𝑣) + 𝜃𝑅𝑘 + 𝛼𝑉𝑘 − (λ𝑖(𝑡) + 𝑎𝑘 + 𝐷𝑘)𝑆𝑘  

𝑑𝐸𝑘

𝑑𝑡
 = 𝑎𝑘−1𝐸𝑘−1(1 − 𝑣) + λ𝑖(𝑡)𝑆𝑘 − (𝜇 + 𝑎𝑘  + 𝐷𝑘)𝐸𝑘   

𝑑𝐼𝑘

𝑑𝑡
 = 𝑎𝑘−1𝐼𝑘−1(1 − 𝑣) + 𝜇𝐸𝑘 − (𝜑 + 𝑎𝑘 + 𝐷𝑘)𝐼𝑘 

𝑑𝐴𝑘

𝑑𝑡
 = 𝑎𝑘−1𝐴𝑘−1(1 − 𝑣) +  𝜑𝐼𝑘  +  λ𝑖(𝑡)𝑅𝑘  − (𝜌 + 𝑎𝑘  + 𝐷𝑘)𝐴𝑘 

𝑑𝑅𝑘

𝑑𝑡
 = 𝑎𝑘−1𝑅𝑘−1(1 − 𝑣) +  𝜌𝐴𝑘  − (λ𝑖(𝑡) + 𝑎𝑘 + 𝜃 + 𝐷𝑘)𝑅𝑘 

𝑑𝑉𝑘

𝑑𝑡
 = 𝑎𝑘−1𝑉𝑘−1(1 − 𝑣) + 𝑣(𝑎𝑘−1(𝑆𝑘−1 + 𝐸𝑘−1 + 𝐼𝑘−1 + 𝐴𝑘−1 + 𝑅𝑘−1 + 𝑉𝑘−1 + 𝑉𝑎𝑘−1) + 𝜏𝑉𝑎𝑘 − (λ𝑖(𝑡) + 𝑎𝑘 +

𝛼 + 𝐷𝑘)𝑉𝑘 

𝑑𝑉𝑎𝑘

𝑑𝑡
 = 𝑎𝑘−1𝑉𝑎𝑘−1(1 − 𝑣) + λ𝑖(𝑡)𝑉𝑘 − (𝜏 + 𝑎𝑘 + 𝐷𝑘)𝑉𝑎𝑘 

 

Where 

Sk= Susceptible to infection 

Ek = Exposed to infection 

Ik = Infected with symptoms 

Ak = Infected, asymptomatic 

Rk = Recovered, immune to disease but not infection 

Vk = Vaccinated, immune to disease but not infection 

Vak = Vaccinated, asymptomatic 
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B = births entering the system 

ak = rate of individuals aging out the group; where k = 8, 𝑎𝑘= 0 

Dk = proportion deaths from age group k exiting the system 

θ = rate of waning natural immunity 

α = rate of waning vaccine immunity 

v = proportion of individuals protected by vaccination represented as the vaccine coverage 

multiplied by the vaccine efficacy. 

λ(t) = the force of infection 

µ = rate of moving out of exposed 

φ = rate of symptomatic infection 

ρ = rate of asymptomatic infectious period 

τ = rate of vaccinated asymptomatic infectious period 

  

The force of infection was modeled as: 

λ𝑖(𝑡) = 𝑏𝑖𝑞𝑖𝜎(𝑡)∑𝑐𝑖𝑗

4

𝑗=1

(𝜀𝐸𝑗 + 𝐼𝑗 + 𝜀𝐴𝑗)

𝑁𝑗
 

where bi is the total number of contacts an individual of age group i makes in a day, qi represents 

the age-specific transmissibility of norovirus, cij is the proportion of contacts that members of age 

group i make with age group j, Nj is the population size of age group j, and ε represents how 

infectious exposed and asymptomatic individuals are relative to symptomatically infected 

individuals. When j=4, values for E, I, A and N are summed across the 5 elderly age groups (65-

69, 70-74, 75-79, 80-84 and 85+ year olds). As norovirus exhibits a strong seasonal pattern in the 

United States, the model incorporates the effect of seasonality (σ(t)): 
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𝜎(𝑡) = 1 + 𝛽1  × cos(2𝜋𝑡 + 𝜔) 

where β1 is the amplitude of the seasonal fluctuation and ω is the seasonal offset parameter.  

 

R Packages: Model simulation and fitting were conducted in R version 3.1.1 using the nloptr and 

deSolve packages.158,167,168 We used the lhs package in R to conduct Latin hypercube sampling to 

generate random samples of parameters given the ranges and distributions specified for each.169 

For our sensitivity analysis (described in more detail below) we calculated partial rank correlation 

coefficients (PRCC) using the sensitivity package in R.170 

 

Alternative Model Structures: Other model structures were considered (Table 3-S1) that 

implement a different number and representation of the age-specific probability of infection given 

contact (qi or qj). In the model structure selected for analysis (see model 4 in Table 3-S1), qi 

represents the probability of transmission and is dependent on the age group (i) of the susceptible 

individual. Alternatively, qj may also be written to represent the probability of transmission 

dependent on the age group (j) of the infected person (see models 2 and 3 in Table 3-S1). Each 

alternative model structure produced different estimates for qi and qj. Particularly, the two 

alternative models that represented qj as the probability of transmission dependent on the age group 

of the infected person, predicted that 0-4 year olds were highly infectious to older age groups (q1 

≈ 0.3); however, all older age groups were minimally infectious (see models 2 and 3 in Table 3-

S1). As it is highly unlikely that only 0-4 year olds contribute to the transmission of norovirus,91 

these alternative model structures were rejected as implausible. Of the two models that represent 

𝑞𝑖 as the probability of transmission is dependent on the age group i of the susceptible individual, 
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the model that used four transmission probabilities (q1, q2,3, q4), where the probabilities of infection 

on contact for 5-17 and 18-64 year olds were equal (q2 = q3), exhibited a better fit to the observed 

data than the model with two transmission probabilities (q1, q2) (see models 1 and 4 in Table 3-

S1). Thus the model with three different age-specific transmission probabilities (q1, q2,3, q4) (see 

model 4 in Table 3-S1), represented as the susceptibility of age group i to infections from all other 

age groups, was selected for further analysis. 

 

Table 3-S1. Alternative models exploring different numbers and interpretations of age 

specific transmission probabilities (qi). 

Model 

No. 
Model Description Force of infection  

No. 

estimated 

parameters 

Estimated 

values 

Negative 

Log(L) 
AIC 

1 

The force of infection is 
dependent on age specific 

transmissibility parameters (𝑞1= 

0-4 years and 𝑞2=5+ years). 

These q parameters determine 

what proportion of infectious 

contacts from the community an 
individual is susceptible to  

λ𝑖(𝑡) = 𝑏𝑖𝑞𝑖∑𝑐𝑖𝑗

4

𝑗=1

𝜎(𝑡)
(𝜀𝐸𝑗 + 𝐼𝑗 + 𝜀𝐴𝑗)

𝑁𝑗
 4 

𝛽1=0.060 

ω =2.169 

𝑞1 =0.262  

𝑞2 =0.032  

289835.0 579679.9 

2 

The force of infection is 

dependent on age specific 

transmissibility parameters (𝑞1= 

0-4 years and 𝑞2=5+ years). 

These q parameters determine 

what proportion of infectious 
contacts from the community are 
successful  

λ𝑖(𝑡) = 𝑏𝑖∑𝑞𝑗𝑐𝑖𝑗

4

𝑗=1

𝜎(𝑡)
(𝜀𝐸𝑗 + 𝐼𝑗 + 𝜀𝐴𝑗)

𝑁𝑗
 4 

𝛽1= 0.049        

ω = 2.361 

𝑞1= 0.287       

𝑞2= 1.71x10-8  

298886.9 597781.9 

3 

The force of infection is 

dependent on age specific 

transmissibility parameters (𝑞1= 

0-4 years, 𝑞2,3=5-64 years, 

𝑞4=65+ years). These q 

parameters determine what 

proportion of infectious contacts 

from the community are 

successful   

λ𝑖(𝑡) = 𝑏𝑖∑𝑞𝑗𝑐𝑖𝑗

4

𝑗=1

𝜎(𝑡)
(𝜀𝐸𝑗 + 𝐼𝑗 + 𝜀𝐴𝑗)

𝑁𝑗
 5 

𝛽1=0.046 

ω =2.246 

𝑞1=0.282 

𝑞2,3=8.694 x10-4 

𝑞4=2.888x10-9 

299138.1 598286.3 

4 

The force of infection is 

dependent on age specific 

transmissibility parameters (𝑞1= 

0-4 years, 𝑞2,3=5-64 years, 

𝑞4=65+ years). These q 

λ𝑖(𝑡) = 𝑏𝑖𝑞𝑖∑𝑐𝑖𝑗

4

𝑗=1

𝜎(𝑡)
(𝜀𝐸𝑗 + 𝐼𝑗 + 𝜀𝐴𝑗)

𝑁𝑗
 5 

𝛽1 =0.034 

ω = 2.146          

𝑞1= 0.208 

239847.7 479705.6 



49 
 

 

 

Contact Structure: Lacking detailed mixing data specific to the US, we used POLYMOD data151 

describing epidemiologically relevant contact patterns from representative samples of eight 

European countries. From these data we determined the average total number of all reported 

contacts (both physical and non-physical) made by individuals in each age group, and created a 

contact matrix with age-specific proportions of contacts (Table 3-S2). Several steps were taken to 

obtain the proportion of contacts made by age group i with age group j (cij). Raw numbers of the 

age-specific daily number of contacts from eight European countries (Belgium, Germany, Finland, 

Great Britain, Italy, Luxembourg, The Netherlands, and Poland) were collected from the 

POLYMOD study.151 Next, these contact data were summed into the four defined age groups of 

this study (0-4 years, 5-17 years, 18-64 years, and 65+ years). To obtain rates of contact (Rij), the 

counts of contacts (Cij) were divided by the number of participants in each contact group (Ni): 

(1)   𝑅𝑖𝑗 = 𝐶𝑖𝑗/𝑁𝑖 

As the raw data for contacts made between age groups i and j are unlikely to be symmetric due to 

reporting errors (meaning each contact between an individual in age group i and an individual in 

age group j is recorded by both the individual in age group i and the individual in age group j), the 

contact rates were corrected for differences in reporting by different age groups with the following 

equation described by Eames et. al.:171 

(2)   𝐵𝑖𝑗 = (𝑁𝑖 ∗ 𝑅𝑖𝑗 + 𝑁𝑗 ∗ 𝑅𝑗𝑖)/2𝑁𝑖  

parameters determine what 
proportion of infectious contacts 

from the community an 
individual is susceptible to  

𝑞2,3= 0.032 

𝑞4= 0.020 
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Where Ni is the number of individuals in age group i, Nj is the number of individuals in age group 

j, and Rij is the contact rate of age group age group i with age group j. 2Nj assumes that contacts of 

individuals within the sample (Ni) made contacts with individuals outside of the sampled 

population. Finally, the following equation was used to obtain the proportion of contacts made by 

age group i with age group j (cij): 

(3)   𝑐𝑖𝑗 = 𝐵𝑖𝑗/𝑎𝑖  

Where Bij represents the corrected contact rates (see equation 2) and ai represents the sum over all 

age groups (Table 3-S2). The total number of contacts each age group makes in one day are as 

follows: 

0-4 years (a1) = 8.12 

5-17 years (a2) = 15.52 

18-64 years (a3) = 13.94 

65+ years (a4) = 8.53 

 

Table 3-S2. Proportion of contacts made by age group i (rows) with age group j (columns).  

 0-4 years 5-17 years 18-64 years 65+ years 

0-4 years 0.276 0.180 0.506 0.039 

5-17 years 0.034 0.633 0.313 0.019 

18-64 years 0.046 0.151 0.753 0.050 

65 + years 0.044 0.116 0.616 0.225 

 

 



51 
 

 

Age-Specific R0 Calculation: A detailed description of how R0 was calculated can be found in the 

technical appendix from Simmons et. al., 2013.91 Briefly we constructed a Next Generation Matrix 

(NGM) for our model system and calculated the eigenvalues of this matrix. R0 is then equal to the 

largest eigenvalue, or spectral radius, of the matrix. The age-specific R0 values are the row sums 

of the NGM, and represent the number of cases in any age group generated by an individual in 

age-group i in one generation at the beginning of the epidemic. 

Population Direct and Indirect Effect Calculation: Total effects of vaccination were calculated 

by dividing the number of clinical outcomes averted under a given vaccine scenario by the number 

of clinical outcomes that occurred without vaccination. The population direct effects of vaccination 

were calculated using a formula described by Pitzer et. al.:172  

𝐷𝐸𝑖,𝑘 = 
∑ 𝑣𝑖𝑘𝑥𝑖,𝑑𝑝𝑣
365
𝑑=1

∑ 𝑥𝑖,𝑑𝑝𝑣
365
𝑑=1

 

where vi,k is the average proportion of individuals with vaccine immunity (from time period d=1 

to d=365) in age group i under vaccine scenario k, and xi,dpv is the number of norovirus cases in 

age group i during a pre-vaccination day dpv. Our model results indicate there are population direct 

effects among older age groups under pediatric immunization programs. There are two 

explanations for this result. First, the structure of the model allows an exponential flow of aging; 

thus a small number of individuals with vaccine protection will flow into older age groups more 

quickly. Second, cycling between vaccine asymptomatic and vaccine protected states can extend 

the duration which individuals remain protected by vaccines. Indirect effects of vaccination were 

calculated by subtracting population direct effects from overall effects.  
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Sensitivity Analysis: To quantify the sensitivity of model projections to uncertainty in each 

parameter’s value, we calculated partial rank correlation coefficients (PRCC) for natural history 

and vaccine parameters using the sensitivity package in R.170 We used scatterplots to determine the 

relationships between the model results and parameter values were monotonic, thus confirming 

PRCC would provide meaningful results (Figure 3-S2). PRCC values were calculated between 

model parameters and the percentage of cases averted in the (a) total population and (b) the age 

group targeted for vaccination in a given vaccination scenario. 

 

Figure 3-S1. Scatterplots, with LOWESS regression lines, of the correlation of percent 

cases averted in targeted age group and the durations of natural and vaccine immunity (θ, 

α). (A) lVE Pediatric program (B) lVE Pediatric program (C) lVE Elderly program (D) lVE 

Elderly program. 
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For the Pediatric vaccine programs, the duration of natural immunity (θ), duration of vaccine 

induced immunity (α), and probability of infection on contact for 0-4 year olds (q1) affected the 

percent of cases averted in 0-4 year olds the most (Table 3-S5). For the Elderly vaccine programs, 

the most influential parameters on the percent of cases averted in 65 years and older the duration 

of natural immunity (θ), duration of vaccine induced immunity (α), and probability of infection on 

contact for 65+ year olds (q4) (Table 3-S5).  
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Figure 3-S2. Predicted vs. observed seasonal variation in total hospitalizations per month. 

The grey band represents the range in the monthly number of hospitalizations from 1996-2007. 

The red line is the model estimated monthly number of hospitalizations. The dashed lines are 

hospitalization data from years (2002 and 2006) where GII.4 strains emerged, resulting in 

largescale epidemics. The considerable variability in the timing and magnitude of the norovirus 

season from year to year makes it challenging for a simple model to capture. 
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Table 3-S3. Clinical outcomes averted annually (95% CI) with a hVE Pediatric program.  

Age Group Cases Averted  Outpatients Averted 
ED Visits 

Averted 

Hospitalizations 

Averted 

Deaths 

Averted 

0-4 years  
2,621,000 429,000 46,400 11,200 16 

(2,128,000, 3,149,000) (259,000, 654,000) (28,800, 69,400) (9,200, 13,300) (13, 20) 

5-17 years  
850,000 139,000 15,900 1,500 4 

(420,000, 1,414,000) (61,000, 268,000) (6,600, 33,300) (800, 2,600) (2, 7) 

18-64 years 
2,433,000 144,000 61,300 5,600 11 

(1,398,000, 3,948,000) (42,000, 330,000) (29,300, 120,100) (3,100, 9,100) (6, 19) 

65+ years 
536,000 54,000 16,900 9,400 233 

(331,000, 831,000) (27,000, 100,000) (8,700, 31,200) (5,800, 14,200) (144, 366) 

Total (#) 
6,444,000 775,000 142,600 27,700 264 

(4,323,000, 9,277,000) (471,000, 1,211,000) (88,600, 229,500) (19,100, 38,900) (166, 410) 

Total (%) 
37% 42% 36% 39% 33% 

(25%, 53%) (28%, 58%) (23%, 52%) (26%, 54%) (21%, 50%) 
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Table 3-S4. Clinical outcomes averted annually (95% CI) with a hVE Elderly program. 

Age Group Cases Averted  
Outpatients 

Averted 

ED Visits 

Averted 

Hospitalizations 

Averted 

Deaths 

Averted 

0-4 years  
19,600 3,300 350 85 0.12 

(12,200, 32,100) (1,640, 6,200) (170, 650) (50, 142) (0.08, 0.20 

5-17 years  
21,400 3,500 410 39 0.10 

(14,200, 33,300) (1,910, 6,400) (210, 810) (25, 62) (0.07, 0.16) 

18-64 years 
97,300 6,100 2,500 220 0.45 

(68,100, 141,900) (1,890, 12,500) (1,340, 4,600) (150, 330) (0.32, 0.68) 

65+ years 
636,200 65,500 20,700 11,000 276 

(551,000, 731,500) (39,500, 94,600) (12,600, 29,700) (9,800, 12,200) (235, 324) 

Total (#) 
775,900 78,800 24,000 11,400 277 

(652,400, 924,200) (49,700, 112,700) (15,600, 33,900) (10,000, 12,700) (236, 325) 

Total (%) 
4.5% 4.2% 5.9% 6.9% 35% 

(3.7%, 5.4%) (2.7%, 6.4%) (3.8%, 8.7%) (13.9%, 17.7%) (30%, 38%) 
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Table 3-S56. Partial rank correlation coefficients (PRCC) between selected model 

parameters and the percent of cases averted in the age group targeted for vaccination for 

each of four vaccination strategies. 

  Symbol 
lVE 

Pediatric 

lVE 

Elderly 

hVE 

Pediatric 

hVE 

Elderly 

Natural History Parameters 

Duration of Incubation µ 0.02 0.03 -0.003 0.03 

Duration of 

Symptomatic Infection 
φ -0.10 -0.05 -0.07 -0.02 

Duration of 

Asymptomatic 

Infectiousness 

ρ 0.14 -0.03 0.18 -0.01 

Duration of Natural 

Immunity 
θ -0.72 (2) a -0.86 (2) a -0.70 (2) a -0.80 (2) a 

Pre/Post Symptomatic 

Infectiousness 
ε -0.13 -0.10 -0.09 -0.10 

Transmissibility of 0-4 

year olds 
q1 -0.55 (3) a -0.11 -0.40 (3) a -0.11 

Transmissibility of 5-

17 and 18-64 year olds 
q2,3 -0.07 -0.18 -0.10 -0.22 

Transmissibility of 

65+ year olds 
q4 0.33 0.24 (3) a 0.29 0.35 (3) a 

Vaccine Parameters 

Duration of Vaccine 

Immunity 
α 0.97 (1) a 0.99 (1) a 0.97 (1) a 0.99 (1) a 

Duration of Vaccine 

Asymptomatic 

Infectiousness 

τ -0.24 -0.05 -0.27 -0.06 

aThe top 4 most influential parameters for each vaccine program are indicated by ranks in parentheses
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Characterizing Norovirus Transmission from Outbreak Data in the United States 

 

Molly K. Steele, Mary E. Wikswo, Aron J. Hall, Katia Koelle, Andreas Handel, Karen Levy, 

Lance Waller, Ben A. Lopman 

 

ABSTRACT 

 

Norovirus is the most common cause of outbreaks of acute gastroenteritis (AGE) in the US. The 

size and severity of outbreaks varies across different settings, times of year and for different 

genotypes, suggesting that the transmissibility of norovirus may be variable across different 

outbreak contexts. We estimated the basic (R0) and effective (Re) reproduction numbers for 7,094 

norovirus outbreaks reported to the National Outbreak Reporting System (NORS) in the United 

States between 2009 and 2017 and used regression models to assess whether transmission varied 

by outbreak setting. We estimated the median R0 and Re to be 2.75 (IQR: 2.38, 3.65) and 1.29 

(IQR: 1.12, 1.74), respectively. Compared to our referent (outbreaks with confirmed norovirus 

etiology in long-term care/assisted living facilities in the south, during winter of the July 2016 – 

June 2017 norovirus season; R0=3.35; 95% confidence interval [CI]: 3.26, 3.45), outbreaks in 

schools and universities had a lower average predicted R0 (2.92; 95% CI: 2.81, 3.03) and outbreaks 

in hospitals and other healthcare facilities had a marginally lower average predicted R0 (3.13; 95% 

CI: 2.97, 3.30). Outbreaks in summer had lower average predicted R0 (3.11; 95% CI: 2.95, 3.27) 
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than the referent group. These results suggest that elderly populations in long-term care/assisted 

living facilities could be targeted for vaccination to reduce the disease burden in these settings. 

 

INTRODUCTION 

 

Norovirus is the most common cause of outbreaks of acute gastroenteritis (AGE) in the US. The 

Centers for Disease Control and Prevention (CDC) collects data on AGE outbreaks through the 

National Outbreak Reporting System (NORS).101,173 From 2009 to 2017, norovirus was reported 

as the suspected or confirmed etiology of 47% of AGE outbreaks reported to NORS.102 The size 

and severity of outbreaks varies across different settings, times of year and for different genotypes, 

suggesting that the transmissibility of norovirus may be variable across different outbreak contexts. 

103 Generally, the transmission potential of infectious diseases is influenced by the infectiousness 

of the pathogen, the duration of infectiousness and the number of susceptible contacts exposed 

during the infectious period.174  

 

The reproduction number is a metric to quantify transmissibility of a pathogen. The basic 

reproduction number (R0) is defined as the average number of secondary cases that arise from a 

primary case in a completely susceptible population. The effective reproduction number (Re) 

quantifies the average number of secondary cases that arise from a primary case in a population 

that is not necessarily completely susceptible. The effective reproduction number changes through 

the course of an outbreak as the proportion of the population that is susceptible changes.152,153 The 

basic and effective reproduction numbers of norovirus have been estimated from several 

transmission modeling studies; however there is large variation in these estimates (range of 
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estimated R0: 1.1 to 7.2).60 As reviewed by Gaythorpe et al., 2018, much of the variation in these 

estimates of R0 across studies is due to differences in the structures, assumptions and data between 

transmission models.60 Across these studies, transmission models were either deterministic, 

population-level models or models of norovirus outbreaks. Generally, the population-level models 

produced R0 estimates of about 2, while the estimates from outbreak-level models tended to be 

higher and more variable. The variability of estimates from outbreak-level models is likely driven 

by the context specific nature of the data informing these models; outbreaks may occur in 

populations that are not representative of the population as a whole.103 Gaythorpe et al., 2018 also 

reported that differences in assumptions regarding the contribution of asymptomatic shedding to 

transmission, duration of shedding and duration of immunity were drivers of the variation in 

estimates of R0 across studies. These factors are challenging to parameterize as transmission, both 

from symptomatic and asymptomatic individuals, is largely unobservable, the duration of shedding 

is highly variable and there are conflicting estimates of the duration of immunity (short vs. long-

term).52,53,55,84,89,91,121  

 

In this study we investigated whether transmission of norovirus varies across different outbreak 

contexts. However, given the challenges of parameterizing key aspect of the natural history of 

norovirus for transmission models, which is the method that has most often been used to estimate 

R0 and Re of norovirus, we estimated R0 and Re of norovirus using an alternative method: the final 

epidemic size equation.175,176 This method does not require information on the transmission chain 

(i.e., who infects whom) nor does it require assumptions about the duration of incubation, 

infection, shedding or immunity. To this end, we estimated R0 and Re using the final size method 

for thousands of norovirus outbreaks in the United States and then evaluated whether reproduction 
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numbers were associated with setting, season, year, geographic region and whether norovirus was 

suspected or confirmed (defined as two or more laboratory confirmed cases) as the cause of the 

outbreak.  

 

METHODS 

 

Data 

 

We obtained data from NORS and CaliciNet on all norovirus outbreaks (defined as two or more 

cases of suspected or laboratory confirmed norovirus that are epidemiologically linked) that 

occurred between 2009 and 2017. NORS data consist of web-based reports of all foodborne, 

waterborne, and enteric disease outbreaks transmitted by contact with environmental sources, 

infected persons or animals, or unknown modes of transmission reported by state, local and 

territorial public health agencies. This web-based reporting system collects epidemiological 

information including the dates, setting (e.g., long-term care facility, child daycare, hospital, 

schools), and geographic location of the outbreak, as well as the estimated total number of cases 

and exposed population.173 CaliciNet data consist of sequence-derived genotypes and 

epidemiological data from norovirus outbreaks submitted from local, state and federal public 

health laboratories. We obtained CaliciNet genotypes that were linked to outbreak data we 

acquired from NORS.  

 

The total number of laboratory-confirmed and suspected primary cases, which excludes cases 

associated with secondary spread of illness (e.g., person-to-person transmission of norovirus in 
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households after a restaurant-based outbreak), is collected for all outbreaks reported to NORS. 

However, data for calculating attack rates, specifically the number of exposed persons and the 

subset of the exposed persons who became ill, are only collected for outbreaks with person-to-

person, environmental, or unknown transmission modes. Between 2009 and 2017 there were 

17,822 suspected and confirmed norovirus outbreaks reported to NORS. We excluded 10,728 

outbreaks based on the following criteria (imposed hierarchically): transmission was not person-

to-person (n = 3,866), the outbreak exposure occurred in multiple states (n = 8) or Puerto Rico (n 

= 3), the total exposed population size or major setting were not reported (n = 5,573), the total 

estimated primary cases and the total ill among the exposed population were not equal (n = 1,231), 

or the total estimated primary cases or the total ill among the exposed population were reported to 

be greater than the total exposed population size (n = 47) (Figure 4-S1). We therefore used 7,094 

norovirus outbreaks meeting our inclusion criteria in subsequent analyses. 

 

Estimating basic and effective reproduction numbers 

 

We calculated the basic and effective reproductive numbers, and their associated standard errors 

(SE), for each outbreak using equations proposed by Becker that use the final epidemic size:176 

 

𝑅0 = 
𝑁 − 1

𝐶
 ∑

1

𝑖

𝑆

𝑖=𝑆−𝐶+1

 

𝑆𝐸(𝑅0) =  
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where N is the total population size, C is the total number of cases in the outbreak, and S is the 

number of susceptible individuals at the start of the outbreak. Re is calculated by replacing N with 

S in the first equation above. SE(Re) is calculated by replacing N with S and R0 with Re in the 

second equation shown above. The final size method assumes a susceptible-infected-recovered 

(SIR) type infection with a closed, homogenously mixing population.176 C and N from the 

equations above were informed by NORS outbreak data on the estimated total number ill and 

exposed population, respectively. The number of susceptible individuals at the start of an outbreak 

(S) is a variable that is not observed nor can it be informed by NORS data; therefore we used 

norovirus challenge study data on the percent of individuals that become infected and develop 

AGE after challenge with virus to estimate S. The weighted average percent of participants that 

developed gastroenteritis after challenge across published studies is 47% (range: 27%-80%) (Table 

4-S1).53,90,97,108,177–179 We assumed S is the number of individuals susceptible to disease, as opposed 

to infection. To calculate S we multiplied 47% by N and rounded to the nearest integer. For some 

outbreaks the total number of cases (C) was greater than our estimated S; for these outbreaks we 

set S equal to C, corresponding to a 100% attack rate. We also calculated S assuming the percent 

susceptible was 27% and 80% of N to assess the sensitivity of our model results to this parameter.  

 

Regression Analysis 

 

After estimating R0, Re and associated SEs for each norovirus outbreak, we fit a generalized linear 

regression model to the log transformed estimated reproduction numbers (as R0 and Re values are 

not normally distributed) to assess whether outbreak setting, census region, season, year, whether 

norovirus was suspected or confirmed and norovirus genotype (categorized as either GII.4 or non-
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GII.4) were associated with transmissibility. All variables were categorical, where the reference 

was assigned as the group with the most outbreaks reported. We used the iteratively reweighted 

least squares method to find the maximum likelihood estimates of a linear regression of log 

transformed reproduction numbers by outbreak setting. To determine which variables to include 

in our models we used a forward selection process with a linear regression of log transformed R0 

values. We considered the following variables to include in our models: outbreak setting, census 

region, season, year, whether norovirus was suspected or confirmed and norovirus genotype 

(categorized as either GII.4 or non-GII.4). Only 1,571 outbreaks (22%) for which we calculated 

basic and effective reproduction numbers had data on norovirus genotype. Given this small sample 

size, we did not include norovirus genotype in our models and performed model selection on the 

remaining variables. To determine which variables to include we selected the model with the 

lowest Akaike information criterion (AIC) value. All analyses were conducted in R version 

3.4.2.158 

 

Sensitivity Analysis 

 

We tested the sensitivity of our regression model results to different modeling approaches and 

different assumptions of the percent susceptible at the start of an outbreak. We fit a logistic 

regression model of binary transmission and a negative binomial regression of the final outbreak 

size, using the log transformed exposed population size as an offset (i.e., a measure of the attack 

rate of an outbreak). Thus, we could make comparisons between the results of these models to see 

if the results from modeling continuous transmission were consistent with the results of modeling 

binary transmission and attack rates. Additionally, we re-ran all the regression models assuming 
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that the percent susceptible at the start of an outbreak were 27% and 80%, corresponding to the 

minimum and maximum values of the percent susceptible to AGE from published challenge 

studies (Table 4-S1).  

 

RESULTS 

 

Between January 2009 to December 2017, 7,094 norovirus outbreaks meeting the inclusion criteria 

with data on both the number ill and the number exposed were reported to NORS. The majority of 

these outbreaks occurred in long-term care/assisted living facilities (n = 5,335; 75%) and occurred 

in winter (defined as December 1 to February 28; n = 4,016; 57%). The median outbreak size was 

28 cases (IQR: 16, 47) and the median attack rate was 22% (IQR: 11%, 36%) (Table 4-1, Figure 

4-1). The median R0 was 2.75 (IQR: 2.38, 3.65), and the median Re was 1.29 (IQR: 1.12, 1.74).  

 

Table 4-1. Norovirus outbreaks with exposed population size reported to the National 

Outbreak Reporting System (NORS), 2009–2017. 

 N (%) 
Median Attack Rate 

(IQR) 

Median Final 

Size (IQR) 

Median R0 

(IQR) 

All Outbreaks 7,094 (100) 22% (11%, 36%) 28 (16, 47) 2.75 (2.38, 3.65) 

Major Setting     

Child day care 272 (4) 21% (13%, 36%) 18 (11, 29) 2.67 (2.39, 3.60) 

Hospital/healthcare facility 271 (4) 22% (11%, 38%) 19 (11, 34) 2.70 (2.33, 3.59) 

Long-term care/assisted living 

facility 5,335 (75) 23% (13%, 36%) 30 (17, 47) 2.81 (2.42, 3.76) 

Other 350 (5) 20% (10%, 36%) 24 (15, 40) 2.66 (2.35, 3.60) 

Private home/residence 42 (1) 66% (50%, 91%) 9 (6, 16) 3.80 (2.26, 4.92) 

Restaurant 77 (1) 50% (27%, 64%) 10 (6, 16) 3.12 (2.53, 4.31) 

School/college/university 747 (11) 12% (6%, 24%) 42 (19, 80) 2.41 (2.24, 2.92) 

Season      

Winter 4,016 (57) 22% (12%, 36%) 30 (17, 51) 2.80 (2.40, 3.77) 

Fall 808 (11) 21% (11%, 37%) 26 (15, 47) 2.72 (2.36, 3.63) 
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Spring 1,964 (28) 20% (11%, 35%) 27 (15, 44) 2.69 (2.37, 3.57) 

Summer 306 (4) 17% (9%, 33%) 19 (11, 32) 2.57 (2.29, 3.33) 

Outbreak Status     

Confirmed outbreak 3,114 (44) 26% (15%, 40%) 35 (20, 55) 2.99 (2.51, 4.22) 

Suspected outbreak 3,980 (56) 18% (9%, 31%) 24 (14, 40) 2.59 (2.32, 3.27) 

Census Region     

Region 1 1,898 (27) 17% (9%, 29%) 31 (17, 53) 2.58 (2.30, 3.23) 

Region 2 2,205 (31) 25% (13%, 39%) 26 (15, 44) 2.87 (2.44, 3.98) 

Region 3 2,224 (31) 23% (12%, 38%) 29 (17, 47) 2.81 (2.39, 3.93) 

Region 4 767 (11) 21% (13%, 34%) 28 (16, 44) 2.75 (2.42, 3.57) 

Year     

Jan 2009 - Jun 2009 243 (3) 28% (15%, 42%) 35 (20, 55) 3.09 (2.50, 4.56) 

Jul 2009 - Jun 2010 275 (4) 29% (15%, 45%) 35 (19, 57) 3.17 (2.51, 4.77) 

Jul 2010 - Jun 2011 592 (8) 29% (16%, 44%) 32 (19, 54) 3.12 (2.54, 4.58) 

Jul 2011 - Jun 2012 679 (10) 27% (15%, 40%) 35 (19, 59) 3.01 (2.52, 4.29) 

Jul 2012 - Jun 2013 967 (14) 21% (12%, 36%) 28 (16, 46) 2.73 (2.38, 3.61) 

Jul 2013 - Jun 2014 913 (13) 20% (11%, 33%) 29 (18, 51) 2.68 (2.38, 3.45) 

Jul 2014 - Jun 2015 941 (13) 21% (11%, 35%) 28 (16, 46) 2.74 (2.36, 3.61) 

Jul 2015 - Jun 2016 1,007 (14) 17% (9%, 32%) 25 (14, 42) 2.57 (2.31, 3.29) 

Jul 2016 - Jun 2017 1,070 (15) 19% (10%, 31%) 26 (14, 42) 2.63 (2.33, 3.24) 

Jul 2017 - Dec 2017 407 (6) 20% (10%, 34%) 22 (14, 38) 2.66 (2.33, 3.55) 
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Figure 4-1. Cumulative proportion of outbreaks across major outbreak settings for (A) R0 

and (B) Re assuming the intitial proportion susceptible is 47%. From our generalized linear 

regressions, outbreaks in school/college/universities (green) and hospitals/healthcare facilites (red) 

lower transmission than outbreaks in long-term care/assisted living facilities (black). Outbreaks in 

private home/residences and restaurants had higher transmission, however confidence intervals 

were wide due to small sample sizes. 

 

 

Model Selection 

 

The model we selected included the following variables: major setting, census region, season, year, 

and whether norovirus was suspected or confirmed (AIC=5803) (Table 4-S2).  

 

Regression Analysis 
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The reference group for our linear regression model was outbreaks with confirmed norovirus 

etiology that occurred in long-term care/assisted living facilities in the south census region, during 

winter of the July 2016 – June 2017 norovirus season. Assuming the percent of the population 

susceptible to norovirus AGE at the start of an outbreak was 47%, we found that outbreaks in our 

referent group had an average predicted R0 of 3.35 (95% CI: 3.26, 3.45). Compared to the reference 

group, outbreaks in schools/colleges/universities had a lower average predicted R0 (2.92; 95% CI: 

2.81, 3.03) and hospitals/other healthcare facilities had marginally lower average predicted R0 

(3.13; 95% CI: 2.97, 3.30). The average predicted R0 for outbreaks in child day cares (R0 = 3.31; 

95% CI: 3.13, 3.49), private homes/residences (R0 = 3.31; 95% CI: 2.95, 3.72), restaurants (R0 = 

3.37; 95% CI: 3.10, 3.68), and other settings (R0 = 3.26; 95% CI: 3.11, 3.42) were not substantially 

different from the average predicted R0 of outbreaks in the reference group (Table 4-2, Figure 4-

1). Outbreaks in the summer, outbreaks with suspected norovirus etiology, and outbreaks in the 

northeast had lower average predicted R0 (3.11, 95% CI: 2.95, 3.27; 3.02, 95% CI: 2.94, 3.11; and 

3.00, 95% CI: 2.91, 3.09, respectively) than the reference group. Outbreaks that were reported 

from January 2009 - June 2012 all had higher average predicted R0 (range of predicted R0 for 

individual seasonal years from January 2009 - June 2012: 3.77 – 3.93) than the reference group 

(Table 4-2, Figure 4-1). 
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Table 4-2. Regression Model Results. Estimated log-linear change in R0 (95% confidence 

interval) from the intercept estimate of R0 from linear regression of log transformed R0. 

 Estimated log-linear change in R0 

Intercept 3.35 (3.26, 3.45) 

Major Setting  

Long-term care/assisted living facility Ref 

Child Day Care 0.99 (0.94, 1.03)  

Hospital/healthcare facility 0.93 (0.89, 0.98) 

Other 0.97 (0.93, 1.01)  

Private home/residence 0.99 (0.88, 1.10)  

Restaurant 1.01 (0.93, 1.09)  

School/college/university 0.87 (0.85, 0.90) 

Season   

Winter Ref 

Fall 1.00 (0.98, 1.03)  

Spring 0.98 (0.96, 1.00)  

Summer 0.93 (0.89, 0.97) 

Outbreak Status  

Confirmed outbreak Ref 

Suspected outbreak 0.90 (0.89, 0.92) 

Census Region  

South Ref 

Northeast 0.89 (0.87, 0.91) 

Midwest 1.00 (0.97, 1.02)  

West 0.98 (0.95, 1.01)  

Year  

Jan 2009 - Jun 2009 1.16 (1.10, 1.22) 

Jul 2009 - Jun 2010 1.17 (1.12, 1.23) 

Jul 2010 - Jun 2011 1.16 (1.12, 1.21) 

Jul 2011 - Jun 2012 1.12 (1.08, 1.16) 

Jul 2012 - Jun 2013 1.04 (1.01, 1.07) 

Jul 2013 - Jun 2014 1.02 (0.99, 1.06)  

Jul 2014 - Jun 2015 1.05 (1.02, 1.08) 

Jul 2015 - Jun 2016 1.02 (0.99, 1.05)  

Jul 2016 - Jun 2017 Ref 

Jul 2017 - Dec 2017 1.04 (1.00, 1.09) 
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Our findings were generally robust to assumptions about the proportion susceptible at the start of 

the outbreak and whether we modeled the outcome of R0, Re, final outbreak size (Text S1, Table 

4-S4, Table 4-S5, Table 4-S6, Figure 4-S2). 

 

DISCUSSION 

 

Using a large national outbreak dataset, we investigated transmission patterns of norovirus 

outbreaks. Our analysis led to several key findings. First, norovirus outbreaks in the US have 

modest values of R0 and Re (2.75 [IQR: 2.38, 3.65] and 1.29 [IQR: 1.12, 1.74], respectively). 

Second, we found outbreaks in long-term care/assisted living facilities had higher transmission 

compared to other common settings. In addition, we found higher transmission in laboratory 

confirmed outbreaks relative to suspected outbreaks and higher transmission for outbreaks 

occurring in the winter months relative to summer months.  

 

In their recent review of norovirus modelling studies, Gaythorpe et al. found that estimates of basic 

reproduction numbers for norovirus ranged from 1.1 to 7.2.60 Our estimates are similar to those 

reproduction numbers estimated using transmission models of norovirus at the outbreak-

level;136,180 however our estimates are higher than several studies that estimated reproduction 

numbers using population-level transmission models,91,181–183 suggesting that transmission of 

norovirus in outbreak settings is higher than sporadic transmission in the community. 
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From our main analysis, we found that outbreaks in hospitals/other healthcare facilities, 

schools/colleges/universities and other settings had lower estimated transmission, while private 

homes/residences had higher estimated reproduction numbers relative to outbreaks in long-term 

care/assisted living facilities. Relative to outbreaks in long-term care/assisted living facilities, 

outbreaks that occurred in private homes/residences and restaurants had higher final sizes and 

schools/colleges/universities had lower estimated attack rates. Our finding that outbreaks in the 

winter had higher estimated transmissibility than outbreaks that occurred in summer is likely 

driven by the strong winter time seasonality of noroviruses in the US.17,19 Consistent with this 

finding are the observations that norovirus case and outbreak reports are inversely correlated with 

temperature,17,19 and norovirus surrogate virus (e.g., murine norovirus, feline calicivirus) survival 

declines with increasing temperatures.20,21  

 

 Several differences we found are likely driven by administrative or programmatic factors related 

to reporting, rather than differences in norovirus transmission. Suspected norovirus outbreaks 

without a laboratory-confirmed outbreak etiology had lower transmission than laboratory-

confirmed norovirus outbreaks, perhaps because suspected norovirus outbreaks are less well 

investigated than confirmed outbreaks, with lower rates of case ascertainment. Outbreaks reported 

in the south had higher transmissibility relative to outbreaks in the northeast. This may be related 

to differences in the quality of reporting between these regions. There is tremendous variability in 

outbreak reporting between states, approximately 100-fold difference between the highest and 

lowest reporting states, which likely impacts the observed outbreak characteristics included 

herein.120 Similarly, while NORS has been collecting outbreak reports since January 2009, in 

August 2012 the CDC began a concerted effort to improve norovirus outbreak reporting to NORS 
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and CaliciNet with the introduction of NoroSTAT.184,185 Thus our finding that norovirus outbreaks 

reported prior to August 2012 were larger with higher estimated R0 and Re values may be due to 

the CDC’s efforts to capture outbreaks that previously would have not been reported (i.e., smaller 

scale outbreaks).  

 

There are a number of additional limitations to this study. First, our process of data selection may 

have introduced bias into our analyses. We excluded outbreaks that occurred in multiple states, 

which are likely to have higher transmissibility given the larger geographic range of these 

outbreaks. This exclusion could bias our estimates of transmission downwards; however, there 

were only 8 multi-state outbreaks, thus the bias is likely negligible. Additionally, we excluded 

outbreaks for which the exposed population size was not reported. Excluding these outbreaks could 

introduce bias if there are certain settings where the exposed population size is more likely to be 

reported. For example, the majority of outbreak reports in long-term care/assisted living facilities 

had information on the exposed population size. We only selected outbreaks where the mode of 

transmission was person-to-person, thus our estimates of transmissibility of norovirus are not 

generalizable to outbreaks where transmission occurs via other modes (e.g., foodborne, 

waterborne, environmental). Further, as the mode of transmission for norovirus outbreaks can be 

difficult to identify, there may have been outbreaks included in our analysis where the mode of 

transmission was misclassified as person-to-person.  

 

A second limitation is that the final size method assumes a susceptible-infected-recovered (SIR) 

type infection with a homogenously mixing population.176 This is a simplification that does not 

reflect true mixing patterns in many settings. Second, the exposed population size is difficult to 
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quantify and is not consistently reported to NORS. Thus, it is difficult to disentangle whether the 

differences we found in estimated attack rates across different settings arose due to true variability 

in the exposed population size across settings, or variability in the reliable reporting of the exposed 

population size. However, our analysis restricted to outbreaks in long-term care/assisted living 

facilities found the same trends among the variables for outbreak status, census region, season, and 

year as our analysis of all outbreaks, which suggests these results are reasonably robust. 

 

Another limitation to our study is that the final size method may underestimate reproduction 

numbers for outbreaks in small populations with high attack rates. For example, in private homes, 

where attack rates may be high, if everyone in the household is infected, then no additional 

infections can occur. Thus the final size method cannot capture any additional transmission that 

could have happened if the exposed population size is larger (i.e., number of individuals in the 

household). Becker termed this limitation the “wasted infection potential.”186 The effects of this 

limitation are demonstrated in the sensitivity analysis of our assumption of the percent susceptible 

at the start of an outbreak. When we assumed the percent susceptible was between 47% and 80% 

(i.e., the effective population size for the outbreak is higher), the estimated transmissibility of 

norovirus in private homes/residences and restaurants was higher than transmissibility in long-

term care/assisted living facilities. However, when the percent susceptible at the start of an 

outbreak was assumed to be 27%, the association between private homes/residences and 

restaurants reversed, such that these settings had lower estimated transmission relative to outbreaks 

in long-term care/assisted living facilities. This is because the population size that can be infected 

is much lower when we assume 27% susceptibility, thus more outbreaks would result in all 

individuals becoming infected (i.e., 100% attack rate) leading to the “wasted infection potential” 
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issue. For example, if a household had 15 individuals the maximum possible R0 assuming 27% 

susceptibility is 7.3, which is lower than the average predicted R0 for outbreaks in the reference 

group. Therefore, the results for private homes/residences and restaurants, where exposed 

populations sizes are low, should be interpreted with caution as these transmission values in these 

settings may be underestimated. 

 

A further limitation of this analysis is that the final size method does not account for the effect of 

control measures. For some of the outbreaks represented in our data set, control measures were 

most likely implemented (e.g., isolation of ill persons, cleaning of contamination, etc.). These 

interventions would likely reduce the number ill such that the estimated R0 would be lower than 

the true R0 (i.e., R0 in the absence of control measures). 

 

Additionally, the final size method assumes that the proportion of susceptibles is known at the start 

of an outbreak; however, the level of susceptibility to norovirus in not well known. Certain host 

genetic factors are associated with the ability of norovirus to establish an infection within a human 

host,80–83 leading to variable susceptibility to norovirus infection.66,84,85 Secretor negative 

individuals have non-functional fucosyltransferase-2 (FUT2) genes thus certain norovirus 

genogroups (i.e., genogroup I and genogroup II type 4) cannot bind and therefore fail to cause 

infection.80,82,83,87,88 Our estimates of the basic and effective reproduction numbers assume that the 

percent of the population susceptible at the start of all outbreaks in our dataset is 47%. In reality, 

the proportion susceptible varies from outbreak to outbreak, and potentially over time and age as 

the distribution of circulating norovirus genotypes changes. We also assumed that only 

symptomatic individuals contribute to transmission in our calculations. However, it is recognized 
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that individuals with asymptomatic norovirus infections may contribute to transmission, but they 

are likely not as infectious as individuals with symptomatic infections.121,187 

 

Finally, our main analysis does not account for norovirus genotype. Due to the limited data 

available on norovirus genotype we were not adequately able to assess for associations with 

transmission. As more genotyping data become available future studies should assess whether 

norovirus genotype influences transmission. 

 

We estimated reproduction numbers using the final size method for thousands of outbreaks from 

a national outbreak reporting system, then used these estimates to examine factors associated with 

norovirus transmission. Our analyses showed that norovirus transmission rates are modest. Such 

modest rates of effective reproduction suggest there are opportunities for effective control 

measures to curtail onward transmission of norovirus. However, challenges remain. Asymptomatic 

transmission, which we did account for in this analysis and generally goes undetected in 

surveillance, can limit the effectiveness of traditional control methods focused on ill individuals, 

even for pathogens with modest transmission.132  

 

Our results provide evidence that transmission among elderly populations during outbreaks in 

long-term care/assisted living facilities pose an important public health burden. As such, 

vaccination of the elderly may be considered to reduce norovirus associated mortality and/or 

mitigate the burden of outbreaks in long-term care/assisted living facilities. Additionally, our 

finding that transmission of norovirus is higher for outbreaks that occur in winter suggests that 

seasonal vaccine policies could be considered to reduce the burden of disease seasonally.  
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SUPPLEMENT 

 

Table 4-S1. Challenge Study Data. Data from published norovirus challenge studies on the 

number of participants challenged with norovirus and the number of challenged participants that 

subsequently developed acute gastroenteritis (AGE). We assumed that the average proportion that 

develop AGE across all studies, weighted by the total number of participants in each study, is the 

proportion that are susceptible to norovirus in our calculations of R0 and Re. 

 

Study (citation) 
Number 

Challenged 

Number 

AGE* 

Proportion 

with AGE  

Dolin 1970 188 12 9 0.75 

Wyatt 1974 66 23 16 0.70 

Parrino 1977 84 12 6 0.50 

Treanor 1988 97 10 8 0.80 

Johnson 1990 89 42 25 0.60 

Graham 1994 85 50 34 0.68 

Lindesmith 2003 83 77 21 0.27 

Lindesmith 2005 90 15 7 0.47 

Atmar 2008 53 21 11 0.52 

Leon 2011 179 15 5 0.33 

Atmar 2011 109 41 29 0.71 

Seitz 2011 189 13 10 0.77 

Frenck 2012 178 40 12 0.30 

Bernstein 2015 108 98 29 0.30 

Overall 469 222 0.47† 

* Acute gastroenteritis 

†Average proportion susceptible weighted by number of participants 
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Table 4-S2. Model Selection. Estimated log linear change in R0 (95% CI) from the estimated R0 

for the intercept for each model in a forward selection process for a linear regression model of log 

transformed R0 values. The Akaike information criterion (AIC) for each model was as follows: 

model 1, 6,237; model 2, 6,050; model 3, 5,935; model 4, 5,920; and model 5, 5,803. 

 Model 1 Model 2 Model 3 Model 4 Model 5 

Intercept 3.22 (3.19, 3.25) 3.44 (3.39, 3.49) 3.57 (3.51, 3.64) 3.61 (3.54, 3.68) 3.35 (3.26, 3.45) 

Child Day Care 0.95 (0.91, 0.99) 0.99 (0.94, 1.03) 0.98 (0.93, 1.02) 0.98 (0.93, 1.03) 0.99 (0.94, 1.03) 

Hospital/healthcare facility 0.94 (0.90, 0.98) 0.93 (0.89, 0.97) 0.94 (0.90, 0.98) 0.94 (0.90, 0.98) 0.93 (0.89, 0.98) 

Other 0.96 (0.92, 1.00) 0.96 (0.93, 1.00) 0.95 (0.92, 0.99) 0.97 (0.93, 1.01) 0.97 (0.93, 1.01) 

Private home/residence 1.00 (0.89, 1.12) 0.99 (0.88, 1.11) 0.98 (0.87, 1.09) 0.99 (0.88, 1.11) 0.99 (0.88, 1.1) 

Restaurant 1.02 (0.94, 1.11) 1.01 (0.93, 1.10) 1.00 (0.92, 1.08) 1.00 (0.92, 1.09) 1.01 (0.93, 1.09) 

School/college/university 0.84 (0.82, 0.87) 0.88 (0.85, 0.90) 0.86 (0.84, 0.89) 0.86 (0.83, 0.89) 0.87 (0.85, 0.9) 

Probable outbreak -- 0.88 (0.87, 0.90) 0.88 (0.87, 0.90) 0.89 (0.87, 0.9) 0.90 (0.89, 0.92) 

Region 1 -- -- 0.89 (0.87, 0.91) 0.89 (0.87, 0.91) 0.89 (0.87, 0.91) 

Region 2 -- -- 0.99 (0.97, 1.02) 0.99 (0.97, 1.02) 1.00 (0.97, 1.02) 

Region 4 -- -- 0.96 (0.93, 0.99) 0.96 (0.93, 0.99) 0.98 (0.95, 1.01) 

Fall -- -- -- 1.00 (0.97, 1.03) 1.00 (0.98, 1.03) 

Spring -- -- -- 0.97 (0.95, 0.99) 0.98 (0.96, 1.00) 

Summer -- -- -- 0.92 (0.88, 0.96) 0.93 (0.89, 0.97) 

Jan 2009 - Jun 2009 -- -- -- -- 1.16 (1.10, 1.22) 

Jul 2009 - Jun 2010 -- -- -- -- 1.17 (1.12, 1.23) 

Jul 2010 - Jun 2011 -- -- -- -- 1.16 (1.12, 1.21) 

Jul 2011 - Jun 2012 -- -- -- -- 1.12 (1.08, 1.16) 

Jul 2012 - Jun 2013 -- -- -- -- 1.04 (1.01, 1.07) 

Jul 2013 - Jun 2014 -- -- -- -- 1.02 (0.99, 1.06) 

Jul 2014 - Jun 2015 -- -- -- -- 1.05 (1.02, 1.08) 

Jul 2015 - Jun 2016 -- -- -- -- 1.02 (0.99, 1.05) 

Jul 2017 - Dec 2017 -- -- -- -- 1.04 (1.00, 1.09) 
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Alternative Models 

 

We assessed two alternative approaches for modeling norovirus transmission: a logistic regression 

to model a binary transmission outcome (i.e., high versus low transmission) and a negative 

binomial regression to model the final size of outbreaks, adjusting for exposed population size 

(i.e., modeling attack rates). For our logistic regression, we used the first and third tertiles of 

estimated values of R0 and Re, assuming the percent susceptible was 47%, to determine the cutoffs 

for our outcome of interest: low versus high transmission. We excluded outbreaks with 

transmission values within the second tertile and focus our logistic regression comparison between 

the lowest and highest tertiles of transmission. The third tertile of R0 and Re values were 3.23 and 

1.52, respectively.  

 

The trends of transmissibility across our variables of interest (outbreak setting, census region, 

season, year, whether norovirus was suspected or confirmed and norovirus genotype) from our 

main regression analysis of a continuous transmission outcome were consistent across the logistic 

regressions of high R0 (R0>3.23) and Re (Re>1.52) and linear regression of Re values. (Table 4-S3) 

The trends of transmissibility were consistent for most of our variables of interest in the negative 

binomial model of final outbreak sizes; however, private homes/residences and restaurants had a 

much more pronounced effect on the attack rate of outbreaks, relative to long-term care/assisted 

living facilities (RR=2.35 (95% CI: 1.85, 3.01) and RR=1.67 (95% CI: 1.40, 2.01), respectively). 

As the exposed population size is difficult to quantify, and thus may not be reported reliably, we 

analyzed the subset of outbreaks that occurred within long-term care/assisted living facilities with 

our regression models. The patterns found among the variables for outbreak status, census region, 

season and year were consistent with what was found analyzing the full data set. (Table 4-S4) 
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Table 4-S3. Regression Model Results. Risk ratios of attach rates, estimated log-linear change in 

R0 and Re (95% confidence interval) relative to the intercept from linear regression of the log 

transformed reproduction numbers and odds ratios (95% confidence interval) of an outbreak with 

high transmission from logistic regression, assuming the percent susceptible at the start of an 

outbreak is 47%. 

 

RR of Attack 

Rates 
OR of R0>3.23 

Estimated log-

linear change in 

Re 

OR of Re>1.52* 

Intercept 0.27 (0.26, 0.29) 1.75 (1.41, 2.18) 1.63 (1.57, 1.68) 1.72 (1.39, 2.13) 

Major Setting     

Long-term care/assisted living facility Ref Ref Ref Ref 

Child Day Care 1.08 (0.98, 1.19)  1.03 (0.74, 1.42)  1.00 (0.95, 1.05)  1.11 (0.80, 1.53)  

Hospital/healthcare facility 0.94 (0.86, 1.03)  0.62 (0.45, 0.85) 0.94 (0.89, 0.99) 0.65 (0.48, 0.89) 

Other 0.98 (0.90, 1.06)  0.73 (0.55, 0.96) 0.98 (0.93, 1.02)  0.74 (0.56, 0.98) 

Private home/residence 2.35 (1.85, 3.01) 1.80 (0.88, 3.87)  1.31 (1.15, 1.49) 8.47 (3.22, 29.27) 

Restaurant 1.67 (1.40, 2.01) 1.41 (0.78, 2.62)  1.10 (1.00, 1.21)  1.96 (1.09, 3.67) 

School/college/university 0.67 (0.63, 0.71) 0.29 (0.23, 0.36) 0.86 (0.83, 0.89) 0.30 (0.24, 0.38) 

Season      

Winter Ref Ref Ref Ref 

Fall 0.99 (0.94, 1.05)  1.00 (0.81, 1.23)  1.01 (0.97, 1.04)  0.97 (0.79, 1.19)  

Spring 0.97 (0.93, 1.01)  0.90 (0.78, 1.04)  0.98 (0.95, 1.00) 0.89 (0.77, 1.04)  

Summer 0.86 (0.79, 0.95) 0.65 (0.47, 0.88) 0.92 (0.88, 0.97) 0.62 (0.45, 0.85) 

Outbreak Status     

Confirmed outbreak Ref Ref Ref Ref 

Suspected outbreak 0.82 (0.79, 0.85) 0.43 (0.37, 0.49) 0.89 (0.87, 0.91) 0.42 (0.37, 0.47) 

Census Region     

South Ref Ref Ref Ref 

Northeast 0.77 (0.74, 0.81) 0.44 (0.37, 0.52) 0.88 (0.85, 0.9) 0.45 (0.38, 0.53) 

Midwest 1.07 (1.02, 1.11) 1.02 (0.87, 1.20)  1.00 (0.98, 1.03)  1.03 (0.88, 1.20)  

West 0.99 (0.93, 1.05)  0.95 (0.76, 1.19)  0.97 (0.93, 1.00)  0.94 (0.75, 1.17)  

Year     

Jan 2009 - Jun 2009 1.34 (1.21, 1.48) 2.49 (1.73, 3.62) 1.20 (1.13, 1.27) 2.50 (1.73, 3.63) 

Jul 2009 - Jun 2010 1.37 (1.25, 1.52) 2.59 (1.82, 3.73) 1.22 (1.16, 1.29) 2.55 (1.79, 3.65) 

Jul 2010 - Jun 2011 1.34 (1.25, 1.45) 2.64 (2.01, 3.49) 1.20 (1.15, 1.25) 2.58 (1.97, 3.39) 

Jul 2011 - Jun 2012 1.24 (1.15, 1.33) 2.12 (1.63, 2.77) 1.14 (1.09, 1.19) 2.16 (1.66, 2.81) 

Jul 2012 - Jun 2013 1.08 (1.01, 1.15) 1.26 (0.99, 1.59)  1.05 (1.01, 1.09) 1.29 (1.02, 1.63) 

Jul 2013 - Jun 2014 1.04 (0.97, 1.11)  1.19 (0.93, 1.52)  1.04 (1.00, 1.08)  1.18 (0.93, 1.51)  

Jul 2014 - Jun 2015 1.08 (1.01, 1.15) 1.33 (1.05, 1.68) 1.06 (1.02, 1.1) 1.32 (1.04, 1.66) 

Jul 2015 - Jun 2016 1.05 (0.98, 1.12)  1.14 (0.91, 1.44)  1.03 (1.00, 1.07)  1.15 (0.91, 1.44)  

Jul 2016 - Jun 2017 Ref Ref Ref Ref 

Jul 2017 - Dec 2017 1.05 (0.96, 1.14)  1.40 (1.03, 1.90) 1.04 (0.99, 1.09)  1.33 (0.98, 1.80)  

* logistic regression compares outbreaks with transmission in the third tertile (Re>1.52) to outbreaks in the first 

tertile (Re<1.17) and does not include Re values in second tertile. Linear and negative binomial regressions use full 

dataset 
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Table 4-S4. Estimated log-linear change in R0 and Re (95% confidence interval) relative to 

the intercept from linear regression, odds ratios of outbreaks with R0>3.23 and Re>1.52, final 

size adjusting for exposed population size among long-term care/assisted care facilities, 

assuming the percent susceptible at the start of the outbreak is 47%. 

 
RR of Attack 

Rates 

Basic Reproduction Number Effective Reproduction Number 

 

Estimated log-

linear change in 

R0 

OR of R0>3.23* 
Estimated log-

linear change in Re 
OR of Re>1.52* 

Intercept 0.28 (0.26, 0.30) 3.39 (3.28, 3.51) 2.01 (1.56, 2.60) 1.63 (1.57, 1.70) 2.00 (1.55, 2.57) 

Season    
  

Winter Ref Ref Ref Ref Ref 

Fall 0.99 (0.92, 1.06)  1.00 (0.96, 1.03)  0.92 (0.71, 1.20)  1.00 (0.96, 1.04)  0.90 (0.69, 1.16)  

Spring 0.96 (0.92, 1.00) 0.97 (0.95, 1.00) 0.87 (0.73, 1.03)  0.97 (0.94, 1.00) 0.87 (0.73, 1.03)  

Summer 0.83 (0.73, 0.93) 0.90 (0.85, 0.96) 0.55 (0.36, 0.85) 0.90 (0.83, 0.96) 0.54 (0.35, 0.84) 

      

Outbreak Status    
  

Confirmed outbreak Ref Ref Ref Ref Ref 

Suspected outbreak 0.81 (0.78, 0.84) 0.89 (0.87, 0.91) 0.39 (0.34, 0.45) 0.89 (0.86, 0.91) 0.39 (0.34, 0.45) 

Census Region    
  

South Ref Ref Ref Ref Ref 

Northeast 0.69 (0.66, 0.73) 0.86 (0.84, 0.88) 0.31 (0.25, 0.37) 0.84 (0.81, 0.86) 0.31 (0.26, 0.38) 

Midwest 1.00 (0.95, 1.05)  0.98 (0.95, 1.00)  0.83 (0.69, 0.99) 0.99 (0.96, 1.02)  0.81 (0.67, 0.97) 

West 0.96 (0.90, 1.03)  0.96 (0.93, 1.00)  0.89 (0.67, 1.18)  0.96 (0.92, 1.00)  0.89 (0.67, 1.17)  

Year    
  

Jan 2009 - Jun 2009 1.47 (1.32, 1.63) 1.20 (1.14, 1.28) 3.39 (2.22, 5.23) 1.26 (1.18, 1.34) 3.41 (2.24, 5.25) 

Jul 2009 - Jun 2010 1.46 (1.31, 1.63) 1.21 (1.14, 1.28) 3.04 (1.98, 4.74) 1.28 (1.20, 1.37) 2.92 (1.91, 4.51) 

Jul 2010 - Jun 2011 1.43 (1.32, 1.55) 1.20 (1.15, 1.25) 3.27 (2.39, 4.50) 1.25 (1.19, 1.31) 3.13 (2.30, 4.29) 

Jul 2011 - Jun 2012 1.28 (1.19, 1.38) 1.14 (1.10, 1.19) 2.39 (1.76, 3.25) 1.17 (1.12, 1.23) 2.35 (1.74, 3.19) 

Jul 2012 - Jun 2013 1.10 (1.03, 1.18) 1.05 (1.02, 1.09) 1.35 (1.03, 1.78) 1.07 (1.02, 1.11) 1.35 (1.03, 1.78) 

Jul 2013 - Jun 2014 1.08 (1.01, 1.17) 1.04 (1.00, 1.08)  1.29 (0.97, 1.74)  1.05 (1.01, 1.10) 1.28 (0.95, 1.71)  

Jul 2014 - Jun 2015 1.16 (1.08, 1.24) 1.07 (1.04, 1.12) 1.59 (1.21, 2.08) 1.09 (1.05, 1.14) 1.56 (1.19, 2.04) 

Jul 2015 - Jun 2016 1.08 (1.01, 1.16) 1.02 (0.99, 1.07)  1.19 (0.9, 1.58)  1.05 (1.00, 1.09)  1.19 (0.90, 1.57)  

Jul 2016 - Dec 2016 Ref Ref Ref Ref Ref 

Jul 2017 - Dec 2017 1.09 (0.99, 1.20)  1.06 (1.01, 1.12) 1.56 (1.08, 2.27) 1.06 (1.00, 1.13) 1.50 (1.04, 2.16) 

* logistic regression compares outbreaks with transmission in the third tertile (R0>3.23, Re>1.52) to outbreaks in the 

first tertile (R0<2.48, Re<1.17), and does not include Re values in second tertile. Linear and negative binomial 

regressions use full dataset. 
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Percent Susceptible 

 

We tested the sensitivity of our results to the assumption of the percent susceptible start of an 

outbreak by running all the regression models assuming the percent susceptible at the start was 

27% and 80%, which represent the minimum and maximum estimates of the percent susceptible 

to AGE from published challenge studies, respectively (Table 4-S1). By adjusting our assumption 

of the percent susceptible at the start of the outbreak to 27% and 80%, the median R0 was 6.04 

(IQR: 4.53, 9.38) and 1.43 (IQR: 1.33, 1.61), respectively, while the median Re was 1.82 (IQR: 

1.24, 3.83) and 1.14 (IQR: 1.07, 1.29), respectively. Assuming the proportion susceptible was 27% 

we found that outbreaks in long-term care/assisted living facilities were more likely to have R0 

>8.06 and Re>3.24 relative to all other settings. (Table 4-S5, Table 4-S6, Figure 4-S1) When the 

percent susceptible was 80% we found that outbreaks in long-term care/assisted living facilities 

had increased odds of having R0 >1.54 and Re>1.23 compared to hospitals/other healthcare 

facilities, schools/colleges/universities, and other settings. Outbreaks in private homes/residences 

and restaurants had higher odds of having R0 >1.54 and Re>1.23 relative to long-term care/assisted 

living facilities, however the confidence intervals are wide due to small sample sizes. (Table 4-S5, 

Table 4-S6, Figure 4-S1) Trends in the variables for census region, season, year, and whether 

norovirus was suspected or confirmed for the models assuming 27% and 80% susceptibility were 

consistent with the models assuming 47% susceptibility. (Table 4-2, Table 4-S5, Table 4-S6) 
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Figure 4-S1. Cumulative proportion of outbreaks by R0 and Re across major setting 

assuming the percent of the population susceptible at the start of an outbreak is 27% (Panels 

A and B) and 80% (Panels C and D). 
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Table 4-S5. Estimated log-linear change in R0 (95% CI) relative to the intercept from linear 

regression and odds ratios of outbreaks with high R0 assuming the percent susceptible as the 

start of the outbreak is 27% and 80%. 

  S=27%(N) S=80%(N) 

  

Estimated log-

linear change in 

R0 

OR of R0>8.06* 

Estimated log-

linear change in 

R0 

OR of R0>1.54* 

Intercept 7.42 (7.17, 7.68) 2.03 (1.64, 2.52) 1.57 (1.54, 1.60) 1.78 (1.43, 2.22) 

Major Setting     
Long-term care/assisted living 

facility Ref Ref Ref Ref 

Child Day Care 0.92 (0.87, 0.97) 0.64 (0.46, 0.90) 1.02 (0.99, 1.04)  1.11 (0.80, 1.55)  

Hospital/healthcare facility 0.85 (0.81, 0.90) 0.46 (0.33, 0.64) 0.99 (0.96, 1.02)  0.66 (0.48, 0.91) 

Other 0.91 (0.86, 0.95) 0.54 (0.41, 0.73) 0.99 (0.96, 1.01)  0.77 (0.58, 1.01)  

Private home/residence 0.53 (0.47, 0.60) 0.02 (0.00, 0.12) 1.17 (1.10, 1.26) 5.17 (2.22, 14.21) 

Restaurant 0.69 (0.62, 0.75) 0.17 (0.09, 0.33) 1.08 (1.03, 1.14) 1.78 (0.99, 3.31)  

School/college/university 0.85 (0.82, 0.88) 0.32 (0.26, 0.39) 0.93 (0.91, 0.94) 0.30 (0.24, 0.38) 

Season     

Winter Ref Ref Ref Ref 

Fall 0.97 (0.94, 1.01)  0.91 (0.74, 1.12)  1.00 (0.98, 1.01)  0.94 (0.77, 1.16)  

Spring 0.97 (0.94, 0.99) 0.80 (0.69, 0.93) 0.99 (0.98, 1.00)  0.88 (0.76, 1.02)  

Summer 0.90 (0.86, 0.95) 0.54 (0.39, 0.75) 0.97 (0.94, 1.00) 0.62 (0.45, 0.85) 

Outbreak Status     

Confirmed outbreak Ref Ref Ref Ref 

Probable outbreak 0.87 (0.85, 0.89) 0.45 (0.39, 0.51) 0.95 (0.94, 0.96) 0.42 (0.37, 0.48) 

Census Region     

South Ref Ref Ref Ref 

Northwest 0.93 (0.91, 0.96) 0.56 (0.47, 0.65) 0.93 (0.92, 0.95) 0.44 (0.37, 0.52) 

Midwest 0.99 (0.97, 1.02)  0.93 (0.80, 1.09)  1.01 (1.00, 1.03)  1.03 (0.88, 1.21)  

West 1.03 (0.99, 1.06)  1.10 (0.88, 1.38)  0.98 (0.96, 1.00) 0.95 (0.76, 1.19)  

Year     

Jan 2009 - Jun 2009 1.12 (1.06, 1.19) 2.07 (1.43, 3.02) 1.10 (1.06, 1.13) 2.62 (1.80, 3.83) 

Jul 2009 - Jun 2010 1.11 (1.05, 1.18) 1.87 (1.31, 2.68) 1.12 (1.08, 1.15) 2.64 (1.85, 3.82) 

Jul 2010 - Jun 2011 1.11 (1.07, 1.16) 1.96 (1.50, 2.58) 1.09 (1.07, 1.12) 2.59 (1.97, 3.43) 

Jul 2011 - Jun 2012 1.13 (1.08, 1.18) 2.09 (1.62, 2.71) 1.06 (1.04, 1.08) 2.15 (1.65, 2.81) 

Jul 2012 - Jun 2013 1.02 (0.99, 1.06)  1.13 (0.90, 1.42)  1.02 (1.00, 1.04) 1.33 (1.05, 1.69) 

Jul 2013 - Jun 2014 1.01 (0.97, 1.05)  1.13 (0.89, 1.43)  1.02 (1.00, 1.04)  1.20 (0.94, 1.54)  

Jul 2014 - Jun 2015 1.03 (0.99, 1.07)  1.27 (1.01, 1.60) 1.03 (1.01, 1.05) 1.37 (1.08, 1.73) 

Jul 2015 - Jun 2016 1.00 (0.96, 1.03)  1.01 (0.80, 1.27)  1.03 (1.01, 1.05) 1.12 (0.88, 1.41)  

Jul 2016 - Jun 2017 Ref Ref Ref Ref 

Jul 2017 - Dec 2017 1.04 (0.99, 1.09)  1.23 (0.91, 1.66)  1.01 (0.98, 1.04)  1.31 (0.97, 1.78)  

* logistic regression compares outbreaks with transmission in the third tertile (S=27%(N): R0>8.06; S=80%(N): 

R0>1.54) to outbreaks in the first tertile (S=27%(N): R0<4.96; S=80%(N): R0<1.36) and does not include R0/Re 

values in second tertile. Linear and negative binomial regressions use full dataset. 



84 
 

 

Table 4-S6. Estimated log-liner change in Re (95% CI) relative to the intercept from linear 

regression and odds ratios of outbreaks with high Re assuming the percent susceptible at the 

start of the outbreak is 27% and 80%. 

  S=27%(N) S=80%(N) 

  

Estimated log 

linear change in 

Re 

OR of Re>3.24* 

Estimated log-

linear change in 

Re 

OR of Re>1.23* 

Intercept 2.41 (2.31, 2.52) 1.88 (1.51, 2.33) 1.25 (1.23, 1.28) 1.67 (1.34, 2.07) 

Major Setting       

Long-term care/assisted living 

facility Ref Ref Ref Ref 

Child Day Care 0.95 (0.89, 1.02)  0.79 (0.56, 1.11)  1.01 (0.98, 1.04)  1.05 (0.75, 1.45)  

Hospital/healthcare facility 0.85 (0.80, 0.91) 0.41 (0.29, 0.58) 0.99 (0.96, 1.02)  0.63 (0.46, 0.86) 

Other 0.91 (0.86, 0.97) 0.65 (0.48, 0.86) 0.99 (0.96, 1.01)  0.76 (0.58, 1.00)  

Private home/residence 0.98 (0.84, 1.15)  0.86 (0.24, 3.04)  1.24 (1.15, 1.33) 8.47 (3.22, 29.28) 

Restaurant 0.90 (0.80, 1.01)  0.35 (0.16, 0.74) 1.08 (1.03, 1.14) 1.53 (0.86, 2.78)  

School/college/university 0.79 (0.76, 0.82) 0.27 (0.21, 0.34) 0.93 (0.91, 0.94) 0.31 (0.25, 0.39) 

Season       

Winter Ref Ref Ref Ref 

Fall 0.98 (0.94, 1.02)  0.89 (0.72, 1.1)  1.00 (0.98, 1.01)  0.97 (0.79, 1.19)  

Spring 0.96 (0.93, 0.99) 0.82 (0.71, 0.95) 0.99 (0.97, 1.00) 0.90 (0.77, 1.04)  

Summer 0.87 (0.82, 0.93) 0.53 (0.37, 0.73) 0.97 (0.94, 1.00) 0.63 (0.46, 0.86) 

Outbreak Status       

Confirmed outbreak Ref Ref Ref Ref 

Suspected outbreak 0.82 (0.8, 0.84) 0.41 (0.36, 0.47) 0.95 (0.94, 0.96) 0.42 (0.37, 0.48) 

Census Region       

South Ref Ref Ref Ref 

Northwest 0.86 (0.83, 0.89) 0.47 (0.40, 0.56) 0.93 (0.92, 0.95) 0.45 (0.38, 0.53) 

Midwest 1.01 (0.98, 1.04)  0.95 (0.81, 1.12)  1.02 (1.00, 1.03) 1.01 (0.86, 1.18)  

West 0.99 (0.95, 1.04)  0.98 (0.78, 1.23)  0.98 (0.96, 1.00) 0.92 (0.74, 1.15)  

Year       

Jan 2009 - Jun 2009 1.25 (1.16, 1.35) 2.64 (1.83, 3.85) 1.10 (1.07, 1.14) 2.66 (1.84, 3.88) 

Jul 2009 - Jun 2010 1.27 (1.18, 1.36) 2.57 (1.8, 3.69) 1.12 (1.08, 1.15) 2.64 (1.86, 3.78) 

Jul 2010 - Jun 2011 1.24 (1.17, 1.31) 2.61 (1.99, 3.43) 1.09 (1.07, 1.12) 2.56 (1.95, 3.36) 

Jul 2011 - Jun 2012 1.20 (1.14, 1.26) 2.21 (1.7, 2.87) 1.06 (1.04, 1.09) 2.22 (1.71, 2.89) 

Jul 2012 - Jun 2013 1.05 (1.01, 1.11) 1.31 (1.03, 1.65) 1.02 (1.00, 1.04) 1.30 (1.03, 1.65) 

Jul 2013 - Jun 2014 1.03 (0.99, 1.08)  1.29 (1.01, 1.65) 1.02 (1.00, 1.04)  1.25 (0.98, 1.59)  

Jul 2014 - Jun 2015 1.07 (1.02, 1.12) 1.33 (1.06, 1.69) 1.03 (1.01, 1.05) 1.34 (1.06, 1.69) 

Jul 2015 - Jun 2016 1.02 (0.98, 1.07)  1.12 (0.88, 1.41)  1.03 (1.01, 1.05) 1.15 (0.91, 1.45)  

Jul 2016 - Jun 2016 Ref Ref Ref Ref 

Jul 2017 - Dec 2017 1.05 (0.99, 1.12)  1.41 (1.04, 1.91) 1.01 (0.98, 1.04)  1.37 (1.01, 1.86) 

* logistic regression compares outbreaks with transmission in the third tertile (S=27%(N): Re>3.24, S=80%(N): 

Re>1.23) to outbreaks in the first tertile (S=27%(N): R0<1.37, S=80%(N): Re<1.09) and does not include R0/Re 

values in second tertile. Linear and negative binomial regressions use full dataset. 
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Estimating the levels of immune-escape and cross-protection for rapidly evolving norovirus 

strains 
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ABSTRACT 

 

Noroviruses are a leading cause of acute gastroenteritis worldwide, and approximately 60% to 

80% of norovirus infections are caused by a single genotype, genogroup II genotype 4 (GII.4). 

GII.4 noroviruses evolve rapidly, with new strains emerging every two to five years. Currently, 

we have little understanding of how population-level susceptibility to GII.4 norovirus changes 

over time and whether there is cross-immunity between different strains. We developed a model 

of within-cluster GII.4 norovirus transmission. We fit this model to monthly counts of GII.4 

outbreaks by strain in Alberta, Canada from 2002 - 2018 to estimate changes in population-level 

susceptibility during strain transitions and calculate the level of cross-immunity between strains. 

Our model estimated that the percent susceptible to GII.4 norovirus strains ranged between 17.5% 

- 20.0%. We estimated that the range of cross-immunity between Farmington Hill and Hunter was 

0.84 - 0.91, Hunter and Den Haag was 0.91 - 0.94, and New Orleans and Sydney was 0.34 – 0.73. 

These data reveal that small changes in population susceptibility are sufficient to allow new GII.4 
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strains to emerge, and that the level of cross-immunity is high for most strain transitions. These 

results suggest that norovirus vaccines containing certain GII.4 strains may provide some level of 

cross-protection to future strains.  

 

INTRODUCTION 

 

Noroviruses are highly genetically diverse, single stranded RNA viruses categorized into five 

genogroups (GI-GV); 33 genotypes across three genogroups (GI, GII and GIV) can infect 

humans.26 Though there are many genotypes capable of infecting humans, approximately 60% to 

80% of infections are caused by a single genotype, genogroup II genotype 4 (GII.4).27,28 GII.4 

noroviruses undergo punctuated antigenic change, leading to new strains emerging in populations 

every two to five years.26,30–32 These antigenic changes are thought to be the result of selection 

pressures from population immunity; mutations lead to changes in key antigenic sites in the capsid, 

particularly the outermost protruding (P) domain of the capsid, which allow noroviruses to evade 

host immunity.28,30,33–39 Recently, changes in the RNA polymerase, which could lead to increased 

transmission, of GII.4 noroviruses have been suggested as a mechanism of GII.4 evolution as 

well.45,46 When new GII.4 strains emerge, they may lead to pandemics (e.g., Farmington Hills 2002 

and Den Haag 2006 strains) or simply replace previous strains without disturbing the endemic 

pattern (e.g., New Orleans 2009 and Sydney 2012 strains), which suggests differences in the level 

of immune escape between strains.28,33,40,98–100  

 

Currently, we have little understanding of how population-level susceptibility to GII.4 norovirus 

changes over time. Norovirus challenge studies have provided some insight into population level 
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susceptibility. Across norovirus challenge studies, the percent of participants that developed acute 

gastroenteritis (AGE) after challenge ranged between 27% and 80%.53,66,83–

85,89,90,97,108,109,178,179,188,189 Given that not all individuals who were challenged developed AGE, this 

indicates that a proportion of those challenged either were genetically resistant to infection or had 

acquired immunity. Secretor negative individuals are genetically resistant to infection from the 

certain genotypes (GI.1 and GII.4). These individuals have non-functional fucosyltransferase-2 

(FUT2) genes and lack ABH antigens in saliva and mucosa,86 thus the virus cannot bind and 

subsequently fails to cause infection.80,82,83,87,88 Across challenge studies that distinguished 

between participants with secretor and non-secretor phenotypes, the percent of secretors who 

developed AGE after challenge ranged between 33% and 77%, indicating that some level of 

immunity to norovirus existed in these challenge populations. The majority of these studies 

challenged participants with GI.1 norovirus (Norwalk virus) which, unlike GII.4 norovirus, does 

not evolve rapidly over time.29 Further, we have little understanding of the degree to which one 

GII.4 strain confers immune protection to future strains (i.e., cross-immunity). Data from in vitro 

surrogate neutralizing/blocking assays suggest immunity tends to be strain-specific, however there 

may be limited cross-immunity between GII.4 strains.190–192 

 

Mathematical transmission models have been used to address a range of questions about norovirus 

such as the duration of immunity to norovirus91 and the potential impact of age-targeted 

vaccination strategies.181,193 However, all existing models of norovirus transmission assume a 

single strain of norovirus, or that exposure to a single strain provides immunity to all subsequent 

strains to which individuals are exposed.91,121,136,138,142 These models provide important insight into 

the epidemiology of norovirus, however fail to capture the observed inter-annual variability that 
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can result from emerging GII.4 strains. Further, the estimates from these models, such as the 

duration of immunity and impact of vaccination, may be inaccurate in light of genetic diversity 

and evolution. For example, estimates of the impacts of vaccination from models that do not 

consider rapid evolution and emergence of new strains may be overestimated.  

 

In this study, we sought to quantify the degree of immune escape during strain transitions and infer 

the level of cross-protection between five strains of GII.4 norovirus using a multi-strain modeling 

approach. We briefly discuss three existing GII.4 norovirus time series datasets and three multi-

strain modeling approaches to explore multi-strain dynamics. Ultimately, we selected the set of 

coupled single-strain models to estimate population-level susceptibility to, and estimate the 

dynamics of five strains GII.4 norovirus in Alberta, Canada over time. 

 

 

METHODS 

Data 

Long-term surveillance data are required to estimate changes in population-level susceptibility to 

and cross-immunity between GII.4 noroviruses. The ideal dataset to examine population-level 

changes in susceptibility would contain counts of norovirus cases or outbreaks by strain from a 

national surveillance system, with minimal changes in reporting over time, and cover the time from 

when pandemic GII.4 strains first emerged (mid-1990s) through contemporary GII.4 strains 

(2018/2019). Norovirus is not a notifiable disease in many countries; due to under-reporting and 

particularly the inconsistency of norovirus reporting over time, there are few datasets of long time 
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series of norovirus, and fewer still long time series of GII.4 strains of norovirus. Here, we review 

currently available datasets of time series of GII.4 strains. 

 

The Centers for Disease Control and Prevention’s CaliciNet GII.4 norovirus outbreak data 

The Centers for Disease Control and Prevention’s (CDC) CaliciNet was established in 2009 and 

is a national surveillance network the collects laboratory data, including genetic sequences of 

norovirus strains, and epidemiology data from norovirus outbreaks in the United States.194 We 

obtained monthly counts of norovirus outbreaks by GII.4 strain from CDC’s CaliciNet database. 

These data span 2009 to 2018 and include a total of 3,353 outbreaks from three GII.4 norovirus 

strains: New Orleans 2009, Sydney 2012, and Sydney 2015. This data set includes both strain 

transitions that occurred via changes in the viral capsid (i.e., New Orleans 2009 to Sydney 2012) 

and changes in the polymerase (i.e., Sydney 2012 to Sydney 2015). (Table 5-1, Figure 5-S1)  

 

Public Health England GII.4 norovirus laboratory reports 

Public Health England (PHE) collects laboratory reports of sporadic cases or outbreaks of 

norovirus; a subset lab report samples are genotyped to track viral diversity over time. 195 We 

obtained monthly counts of total GII.4 norovirus lab reports and monthly counts of reports where 

samples were sequenced by PHE. These reports come from England and Wales between January 

2005 and November 2018. A total of 5,761 lab reports across five strains of GII.4 norovirus are 

represented in this dataset: Hunter 2004, Yerseke 2006, Den Haag 2006, New Orleans 2009, and 

Sydney 2012. The number of typed samples are quite sparse prior to 2011. (Figure 5-S2A) In order 

to fit a model to these data, we calculated the proportion of typed samples for each strain and 
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multiplied these proportions by total number of GII.4 reports over time and used a moving average 

to interpolate over missing data. (Figure 5-S2B)  

 

Alberta, Canada GII.4 norovirus outbreak data 

We also obtained GII.4 norovirus outbreak data from a literature review of norovirus genotypes. 

From these literature review data, we identified three studies from Alberta, Canada with monthly 

counts of GII.4 norovirus outbreaks.196–198 These data span from October 2002 to December 2015 

and include a total of 1,175 outbreaks from five GII.4 strains: Farmington Hills 2002, Hunter 2004, 

Den Haag 2006, New Orleans 2009 and Sydney 2012. Over this time series, the epidemiological 

pattern of norovirus shifted from biennial prior to 2011 to annual approximately one year after the 

emergence of GII.4 New Orleans (i.e., 2010/2011 norovirus season). (Figure 5-1A) Biennial 

patterns of norovirus are uncommon; however have been reported in Sweden.199  

 

Models 

There are several modeling approaches that can be used to simulate the dynamics of multi-strain 

pathogens. Here we discuss three multi-strain modeling approaches and identify which models 

best capture GII.4 strain dynamics. 

 

History-based transmission models 

History-based models track the individual infection histories within a population over time, with 

model compartments for each possible set of strains that individuals have been exposed to.143 The 
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level of partial cross-immunity acquired by individuals is dependent on their infection history. 

There are two assumptions for how cross-immunity acts: exposure to a previous strain reduces an 

individual’s susceptibility to infection from a subsequent strain (reduced susceptibility) and 

exposure to a previous strain reduces an individual’s ability transmit a subsequent strain given 

infection (reduced transmission). Using notation described in Kucharski et al., 2016, a two strain 

history-based strain model has the following equations:200  

𝑑𝑆0
𝑑𝑡
 =  𝜇𝑁 – 𝛽1(𝐼1 +  𝜎𝐽1)𝑆0  – 𝛽2(𝐼2 +  𝜎𝐽2 ) 𝑆0 –  𝜇 𝑆0 

𝑑𝐼1
𝑑𝑡
=  𝛽1(𝐼1 +  𝜎𝐽1)𝑆0 − (𝑣 +  𝜇)𝐼1  

𝑑𝐼2
𝑑𝑡
=  𝛽2(𝐼2 +  𝜎𝐽2)𝑆0 − (𝑣 +  𝜇)𝐼2  

𝑑𝑆2
𝑑𝑡

=  𝑣𝐼2  −  𝛽2(𝐼1 +  𝜎𝐽1 )𝜏𝑆2 −  𝜇𝑆2  

𝑑𝑆1
𝑑𝑡

=  𝑣𝐼1  −  𝛽1(𝐼2 +  𝜎𝐽2 )𝜏𝑆1 −  𝜇𝑆1  

𝑑𝐽1
𝑑𝑡
=  𝛽2(𝐼1 +  𝜎𝐽1 )𝜏𝑆2 − (𝑣 +  𝜇)𝐽1  

𝑑𝐽2
𝑑𝑡
=  𝛽2(𝐼2 +  𝜎𝐽2)𝜏𝑆1 − (𝑣 +  𝜇)𝐽2  

𝑑𝑆1,2
𝑑𝑡

=  𝑣(𝐽1 + 𝐽2) −  𝜇𝑆12  

 

Where S0 represents the number of individuals who have no infection history, Ii is the number 

whose first infection is with strain i (where i=1,2), Si is the number recovered from strain i and 

susceptible to the next strain, Ji is the number of individuals whose second infection is with strain 

i, S1,2 is the number recovered from both strains, N is the total population size, μ is the birth and 
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death rate, βi is the effective contact rate for strain i, ν is the rate at which infected individuals 

recover from infection, and σ and τ represent the relative infectiousness and susceptibility to a 

second infection, respectively.  

 

History-based models have predominantly been used to explore the dynamics of few strains as 

these models soon become intractable with the number of strains considered.143 Additionally, 

results from a multi-strain model comparison study showed that a history-based model could not 

capture sequential strain replacement dynamics well. Rather, sequential strain replacement could 

only be replicated under a very limited set of model structure and assumptions.148   

 

Status-based transmission models 

Status-based transmission models track the immune status of individuals, rather than their infection 

history.144 If it is assumed that cross-immunity acts to reduce transmission and immunity is 

polarizing (i.e., upon infection individuals will become completely immune or remain fully 

susceptible), status-based models can be reduced, such that the number of equations grows linearly 

with each strain considered. This framework can therefore be used to simulate many more strains 

than history-based models. The system of equations for a status-based model assuming reduced 

transmission is as follows:145 

𝑑𝑆𝑖
𝑑𝑡
=  𝜇𝑁 −∑𝛽𝑗𝑆𝑖𝜎𝑖𝑗𝐼𝑗

𝑗

−  𝜇𝑆𝑖 

𝑑𝐼𝑖
𝑑𝑡
= 𝛽𝑖𝑆𝑖𝐼𝑖 − 𝜈𝐼𝑖 −  𝜇𝐼𝑖 
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Where N is the total population size, μ is the birth and death rate, βi is the effective contact rate for 

strain i, ν is the rate at which infected individuals recover from infection, σij is the level of cross 

immunity between strains i and j, and Si and Ii represent the number susceptible and infected with 

strain i, respectively. Status-based models are capable of producing strain replacement dynamics 

that resemble the observed dynamics of rapidly evolving pathogens such as influenza.145,146,148  

 

While the assumption that cross-immunity acts to reduces transmissibility produces a more 

tractable model system, this assumption may not be biologically plausible. For this assumption, 

cross-immunity does not prevent infection but prevents infected individuals from transmitting the 

pathogen to others. Additionally, individuals who have cross-immunity can gain additional 

immunity with continued exposure to infection. Ballesteros et al., 2009 demonstrated that this 

feature of the reduced transmission assumption may lead to overestimates of population-level 

immunity.148 An additional complexity of status-based, as well as history-based approaches, is 

how to model the accumulation of cross-immunity to a strain i given previous exposure to multiple 

strains that provide cross-immunity to strain i. As reviewed by Wikramaratna et al., 2015, two 

common assumptions about the accumulation of cross-immunity are that it accumulates 

geometrically such that all strain exposures contribute to immunity (i.e., “product” cross-

immunity), or only the strain that provides the strongest immunity contributes (i.e., “minimum” 

cross-immunity).201 It is currently unclear which assumption is more appropriate as we have little 

understand of how immunity accumulates for noroviruses. 

 

Quantifying the level of immune escape via within-cluster transmission models 



94 
 

 

In an attempt to better capture the observed variability of GII.4 strain dynamics we developed a 

set of coupled single-strain models to estimate the level of susceptibility to GII.4 strains over time. 

This set of coupled single-strain models is a simple Susceptible, Infected, Recovered (SIR) model 

that tracks the proportion susceptible to a given GII.4 strain over time (Figure 5-1A). We assume 

maternal immunity is negligible, therefore births enter directly into the susceptible class. 

Susceptible individuals (S) become exposed at a rate given by the force of infection (λi) and 

progress to the infected state (I). Infected individuals recover (R) from infection at a rate inversely 

proportional to the duration of illness (ν). We assume that strain specific immunity does not wane. 

We model the force of infection as: 

𝜆𝑖 = 𝜃𝑡𝛽𝐼𝑖 

Where β is the effective contact rate for all strains and Ii is the number infected with strain i. We 

incorporated a seasonal forcing parameter (θt) as follows: 

𝜃𝑡 = 1 +  𝛼 (𝑐𝑜𝑠 ∗ 𝑡 + ω) 

where α represents seasonal amplitude, ω is the seasonal offset and t represents time in years. This 

method allows for the consideration of many strains without being computationally intensive and 

assumes that all dynamics prior to the emerging strain only affect the proportion of the host 

population that is susceptible to the emerging strain, thus eliminating complications associated 

with assumptions of cross-immunity. This method however can only be applied when there is 

minimal or no co-circulation of strains. We therefore selected the Alberta dataset for this analysis 

as there is little to no co-circulation of GII.4 strains.  
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To estimate the number of GII.4 outbreaks by strain, we multiplied the model estimated incidence 

by a reporting rate that increases linearly to account for improvements in diagnostics and reporting 

over time: 

𝜌 = 𝑚𝑡𝑥 + 𝑏 

Where b is the baseline reporting rate in the first month of the dataset and m is the increase the 

reporting rate with each month (tx). To fit this model, we separated the full time series of monthly 

counts of GII.4 norovirus outbreaks into five datasets, one for each strain (Farmington Hills, 

Hunter, Den Haag, New Orleans and Sydney) while it circulated. For each strain-specific dataset 

we truncated the data to the day before the subsequent strain emerged. This resulted in the 

exclusion of 2 outbreaks of Farmington Hills, 3 outbreaks of Hunter, and 30 outbreaks of Den 

Haag and 16 outbreaks of New Orleans (Figure 5-S3). Using maximum likelihood, we fit this 

model to each strain specific dataset to estimate an effective contact rate (β), seasonality 

parameters (α, ω), a reporting rate (𝑚𝑡𝑥 + 𝑏) as well as the initial proportion of the population 

susceptible to a given strain at the time it emerges (Sj,t0). We assumed the monthly counts of strain 

specific GII.4 outbreaks were Poisson distributed with a mean equal to the model estimated strain 

specific incidence multiplied by the reporting rate. We calculated the negative log likelihood for 

each strain-specific model as follows: 

 

ln 𝐿𝑗 (𝑦1 …𝑦𝑛𝑗|𝜃) = −𝑛𝑗(𝜃) −∑ln (𝑦𝑥!)

𝑛𝑗

𝑥=1

+  ln (𝜃)∑𝑦𝑥!

𝑛𝑗

𝑥=1

 

Where j = 1,…,5 strains, and nj is the number of observations for each strain-specific dataset, x is 

time in months, and y is the observed data and θ is the model estimated number of outbreaks. We 
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optimized an overall negative log likelihood which was the sum of the strain-specific negative log 

likelihoods. 

  

Estimating cross-immunity 

To estimate a lower bound of cross-immunity between two strains we assumed that the dynamics 

of a currently circulating strain only affect the proportion of the host population that is initially 

susceptible to the subsequent strain at the time it emerges (Sj,t0). As such, the lower bound of cross-

immunity between GII.4 strains can be interpreted as the proportion of the population that would 

need to gain immunity to a future strain (strain j) given exposure to a currently circulating strain 

(strain i) to result in the proportion initially susceptible to the future strain (strain j) when it emerges 

(i.e., the value of Sj,t0 estimated through model fitting). For example, if there is perfect cross-

immunity between a currently circulating strain and a future strain (σ = 1) then the proportion 

susceptible to the future strain and the currently circulating strain would be the same at the time 

the future strain emerges (Sj,t0 = Si,tf ). If, however, the level of cross-immunity is low, we would 

expect that the proportion initially susceptible to a future strain would be higher than the proportion 

susceptible to a currently circulating strain at the time the future strain emerges (Sj,t0 > Si,tf ). The 

model used to infer the lower bound of cross-immunity is as follows: 

𝑑𝑆𝑖
𝑑𝑡
=  𝜇𝑁 − 𝜃𝑡𝛽𝐼𝑖

𝑆𝑖
𝑁
−  𝜇𝑆𝑖 

𝑑𝑆𝑗

𝑑𝑡
=  𝜇𝑁 − 𝜎𝑖𝑗𝜃𝑡𝛽𝐼𝑖

𝑆𝑗

𝑁
−  𝜇𝑆𝑗 

𝑑𝐼𝑖
𝑑𝑡
=  𝜃𝑡𝛽𝐼𝑖

𝑆𝑖
𝑁
−  𝜈𝐼𝑖 −  𝜇𝐼𝑖 
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Where Si and Ii are the number susceptible to or infected with the currently circulating strain, Sj is 

the number susceptible to the future strain, N is the total population size, μ is the birth and death 

rate, θt is the seasonal forcing parameter (as described above), β is the effective contact rate, ν is 

the rate at which infected individuals recover and σij is the level of cross immunity between strains 

i and j. We simulated from the time strain i emerges until the time strain j emerges and assumed 

that the initial proportion susceptible to both strains was equal to the estimated initial proportion 

susceptible to strain i (Si,t0) at the time strain i emerges. We then simulated over the range of 

possible values for σij (0, 1) and selected the values that resulted in the initial proportion susceptible 

to strain j (Sj,t0) that was previously estimated. 

 

To estimate an upper bound of cross-immunity, we assumed that if strain i provides immunity to 

strain j, then strain j also provides immunity to strain i. We further assumed that the extinction of 

a historic strain (strain i) is driven by cross-immunity from a currently circulating strain (strain j) 

and that extinction occurs when the reproduction number of the historic strain is less than 1 (Rt,i < 

1). Therefore the upper bound of cross-immunity was calculated as the value of σij that drives the 

reproduction number (Rt) of the historic strain (strain i) below 1 after strain j emerged. We used 

the following model to track the proportion susceptible to a historic strain (strain i) given the 

dynamics of a currently circulating strain (strain j):  

𝑑𝑆𝑖
𝑑𝑡
=  𝜇𝑁 − 𝜎𝑖𝑗𝜃𝑡𝛽𝐼𝑗

𝑆𝑖
𝑁
−  𝜇𝑆𝑖 

𝑑𝑆𝑗

𝑑𝑡
=  𝜇𝑁 − 𝜃𝑡𝛽𝐼𝑗

𝑆𝑗

𝑁
−  𝜇𝑆𝑗 

𝑑𝐼𝑗

𝑑𝑡
=  𝜃𝑡𝛽𝐼𝑗

𝑆𝑗

𝑁
−  𝜈𝐼𝑗 − 𝜇𝐼𝑗  
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Where Ij is the number infected with strain j and all other parameters are as previously described. 

Based on the output from the model above we calculated the reproduction number for the historic 

strain over time as: 

𝑅𝑖,𝑡 = 
𝛽
𝑆𝑖,𝑡
𝑁

𝜈 + 𝜇
 

We then simulated values of σij from the estimated lower bound of cross-immunity to 1 (the 

maximum possible value of σij) and selected the value of σij that drove Ri,t below 1.  

Model simulation, fitting, and analysis were conducted in R version 3.5.2 using the nloptr and 

deSolve packages.158,167,168 

 

RESULTS 

Comparison of GII.4 strain datasets 

As mentioned previously, to quantify the level of immune escape and cross-immunity between 

GII.4 norovirus strains, a long time series of incidence or outbreaks, ideally collected from a large 

population (e.g., national level surveillance), is required. The CDC’s CaliciNet data and the PHE 

data are both collected from national surveillance. However, the CaliciNet data cover a relatively 

short time span, and contain data on only three strains and two strain transitions. Pandemic strains 

of norovirus have been rapidly evolving and circulating since the mid-1990s;36,40 these CaliciNet 

data would only provide insight into population-level susceptibility for the most recent GII.4 
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strains. A longer time series that captures data of historic as well as contemporary GII.4 strains is 

necessary to understand changes in population-level susceptibility and cross-immunity over time.  

 

The PHE data are a longer time series and represent a larger number of strains than the CaliciNet 

data. However, the proportion of typed GII.4 strain samples is quite sparse prior to 2011 (Figure 

5-S2A). Based on our method to scale counts of typed samples to counts of lab reports, the 

resulting dataset had three strains co-circulating between 2006 and 2007: Hunter, Yerseke and Den 

Haag (Figure 5-S2B). Published surveillance data from several countries support the co-circulation 

of Yerseke and Den Haag; however Hunter showed little co-circulation with Yerseke and Den 

Haag.40 As the GII.4 strain data were sparse in this dataset prior to 2011, and our method of 

interpolation produce patterns that contradict observed GII.4 strain trends, we did not use this 

dataset in our primary analyses (Text S1). Further, in our preliminary analysis of these data we 

found that a status based-model (detailed below) did not capture the inter-annual variability in the 

observed data (Text S1, Figure 5-S5).  

 

Unlike the CaliciNet and PHE datasets, the data from Alberta, Canada are collected at the smaller, 

provincial scale. Additionally, these data show a biennial pattern of norovirus outbreaks, which is 

uncommon. While these factors may reduce the generalizability of results from analyses of this 

data, of all the available datasets, it is the longest, most complete time series; five GII.4 strains and 

four strain transitions are captured in these data (more than the CaliciNet data) and the 

reporting/observation of strains is more consistent over time than the PHE data. For these reasons, 

(in addition to our selection of model approach as detailed below) we selected the Alberta data for 

our primary modeling analysis. 
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Table 5-1. Description of time series data for GII.4 norovirus strains. 

Data Source 
Level of 

Surveillance 
Time span Data Type 

GII.4 Strains 

represented 
Nb Benefits Limitations 

CDC’s CaliciNet  
National  

(US) 

September 2011-

August 2018 

Monthly 

outbreaks 

New Orleans 2009, 

Sydney 2012, 

Sydney 2015 

3,353 
National level 

surveillance 

Shorter time 

series with fewer 

strains 

represented 

Public Health 

England  

National  

(England and 

Wales) 

January 2005 – 

November 2018 

Monthly lab 

reportsa 

Hunter 2004, 

Den Haag 2006,  

Yerseke 2006, 

New Orleans 2009, 

Sydney 2010 

5,761 

National level 

surveillance and 

long time series 

with many strains 

represented 

Data prior to 

2011 sparse and 

requires scaling 

from typed 

strains to total 

lab reports 

Published 

Studies196,198,202 

Provincial 

(Alberta, 

Canada) 

October 2002 – 

December 2015 

Monthly 

outbreaks 

Farmington Hills 2002, 

Hunter 2004, 

Den Haag 2006, 

New Orleans 2009, 

Sydney 2012 

1,175 

Long time series 

with many strains 

represented 

Data are 

collected at a 

provincial level 

and show 

unusual biennial 

to annual pattern 

of disease 

a. Monthly counts of strain specific lab reports were estimated by multiplying the proportion of typed GII.4 strain samples by the total 

number of GII.4 lab reports. 

b. N represents either total number of outbreaks (CaliciNet, Published Alberta studies) or total number of lab reports (PHE data)
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Based on preliminary analyses we found that the history-based model could not capture the 

dynamics of CDC’s CaliciNet data and the status-based model was unable to capture the inter-

annual variability of GII.4 strains of the PHE dataset (Figure 5-S4, Figure 5-S5, Text S1, Table 5-

S1). As such, we selected the set of coupled single-strain models and the Alberta dataset for further 

analysis.  

 

Figure 5-1. Coupled single-strain model structure. Births enter directly into the susceptible 

compartment, and susceptibles become infected by the force of infection (λi). Infected individuals 

gain immunity at rate ν; we assume immunity to a strain does not wane.  

 

 

The best fit for the set of coupled single-strain models captured the GII.4 strain outbreak dynamics 

reasonably well (Figure 5-1B). A seasonal forcing of 6.3% of peak-to-mean amplitude provided 

the best fit to observed seasonal variation in monthly outbreaks across all strains (Table 5-2). The 

reporting rate was estimated to increase by 9.66x10-8 with each month, such that the initial 

reporting rate in October 2002 was 0.0012 and the final reporting rate in December 2015 was 

0.0017. The estimated initial and final percent susceptible to each strain ranged from 17.5% to 

20.0% and 17.5% to 18.4%, respectively (Table 5-3).  
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Population-level susceptibility increased slightly during the strain transitions for Farmington Hills 

to Hunter and Hunter to Den Haag (3% and 1% relative increase, respectively) while the transition 

from New Orleans to Sydney corresponded to a larger increase in susceptibility (9% relative 

increase). This model estimated a small decrease in susceptibility during the Den Haag to Sydney 

strain transition (0.13% decrease). The estimated effective reproduction numbers (Re) for each 

strain ranged from 0.97 to 1.10 (Table 5-2, Figure 5-2) and the overall estimate for R0 (assuming 

an entirely susceptible population) was 5.53. There were several norovirus seasons that the set of 

coupled single-strain models did not capture well. These models overestimated the monthly 

number of outbreaks for the first seasons of the Farmington Hills and Sydney strain, and 

underestimated the first and third seasons of the Den Haag and New Orleans strains. 

 

Table 5-2. Fixed and estimated parameter values of the model 

Parameter Description Symbol Value Source 

Duration of illness 1/ν 2 days 
Devasia et al 

201463 

Birth and mortality ratea μ 3.56e-05/day 
Alberta 

Government203 

Transmission parameter β 2.76 Estimated 

Reporting ratea ρ 9.66e-8 × tx + 0.0012 Estimated 

Seasonal amplitude α 0.063 Estimated 

Seasonal Offset ω 1.51 Estimated 

a. The mortality rate is assumed to be equal to the birth rate in Alberta 

b. The reporting rate is assumed to increase linearly by month (tx) 
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Figure 5-2. Model fit and change in reproduction number over time (Rt). A) Comparison of 

model predicted GII.4 strain dynamics (lines) with reported GII.4 strain dynamics (triangles). B) 

Estimates of the reproduction number for each strain (Ri,t) over time. The top border of the shaded 

regions represents the estimated Rt based on the lower bound of cross-immunity (σ), while the 

bottom border of the shaded region represents the estimated Rt based on perfect cross-immunity 

(σ = 1) between the historic strain and the currently circulating strain (ranges of σ for each strain 

is presented in Table 5-1). The estimated Rt for Den Haag after the emergence of New Orleans 

(green dashed line) is based on the assumption of perfect cross-immunity between these strains (σ 

= 1). As detailed in the text, the initial proportion susceptible to GII.4 New Orleans at the time this 

strain emerges (SNO,t0 = 0.1751) is lower than the existing proportion susceptible to GII.4 Den 

Haag (SDH,tf = 0.1754), thus even assuming Den Haag provides perfect cross-immunity to New 

Orleans (σ = 1) cannot account for the population level susceptibility at the time New Orleans 

emerges.  

 



104 
 

 

We estimated the range of cross-immunity between Farmington Hills and Hunter (σFH,H) to be 0.84 

to 0.91. This upper bound of cross-immunity leads to Rt < 1 for Farmington Hills 5 months after 

Hunter emerged. In the observed data, 3 months after the emergence of Hunter, Farmington Hills 

was no longer circulating. We estimated cross-immunity between Hunter and Den Haag (σH,DH) 

ranged from 0.91 to 0.94. An upper bound of 0.94 results in Rt < 1 for Hunter approximately 10 

months after Den Haag emerges; the observed data show that Hunter was no longer circulating 2 

months after Den Haag emerged. For a brief period in 2008, Rt of Hunter climbs above 1, however, 

Hunter was no longer circulating by this time (Figure 5-2). Cross-immunity between New Orleans 

and Sydney (σNO,S) was estimated to be low (σNO,S = 0.34, 0.73) (Table 5-3). The upper bound of 

cross-immunity between New Orleans (0.73) resulted in Rt < 1 for New Orleans approximately 3 

months after Sydney emerges (Figure 5-2). In the data from Alberta, Canada, there were no 

reported outbreaks of New Orleans after Sydney emerged. 

 

Table 5-3. Estimates of initial proportion susceptible, final proportion susceptible and 

range of cross-immunity for each strain. The initial susceptible to each strain at the time the 

strain emerges (Si,t0) was estimated through model fitting. The final susceptible to each strain at 

the time step prior to a subsequent strain emerging (Si,tf) was simulated based on the best fit 

model parameters. 

GII.4 Strain Initial Susceptible Final Susceptible 
Range of Cross-

immunity 

Farmington Hills 0.200 0.184 (0.84, 0.91) 

Hunter 0.189 0.183 (0.91, 0.94) 

Den Haag 0.185 0.1754 > 1a 

New Orleans 0.1751 0.182 (0.34, 0.73) 

Sydney 0.199 0.182 NAb 
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a. The initial proportion susceptible to GII.4 New Orleans at the time this strain emerges (SNO,t0 = 

0.175) is lower than the existing proportion susceptible to GII.4 Den Haag (SDH,tf = 0.177), thus 

even assuming Den Haag provides perfect cross-immunity to New Orleans (σ = 1) cannot account 

for the population level susceptibility at the time New Orleans emerges. 

b. Cross-immunity could not be estimated as there was no data for strains after GII.4 Sydney 

 

This model estimated that there was very little change in the proportion susceptible in the 

population during the transition from Den Haag to New Orleans (SDH,tf = 0.1754; SNO,t0 = 0.1751). 

If Den Haag conferred partial immunity to New Orleans (i.e., σDH,NO < 1) we would expect that 

the proportion susceptible would increase during this strain transition (i.e., the percent susceptible 

to New Orleans at the time it emerges would be greater than the final percent susceptible to Den 

Haag; SDH,tf < SNO,t0). With perfect cross-immunity (i.e., σDH,NO = 1) we would expect that 

susceptibility would not change during this strain transition (SDH,tf = SNO,t0). However, the initial 

susceptible to New Orleans is slightly lower than the final susceptible to Den Haag. Thus even 

assuming Den Haag provides perfect cross-immunity to New Orleans (σDH,NO = 1) cannot account 

for a decrease in population-susceptibility when Sydney emerges. This suggests that cross-

immunity from Den Haag alone cannot account for the initial proportion susceptible to GII.4 New 

Orleans at the time it emerges.  

 

DISCUSSION 

 

The results from this analysis provide insight into the degree of immune escape that have driven 

GII.4 strain dynamics over time. Our models estimated that population-level susceptibility to GII.4 
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strains as they emerged ranged between 17.5% - 20.0%, and that small changes in the fraction of 

the population susceptible are sufficient to allow new strains to emerge and, though cross-

immunity, drive previous strain extinct. Based on the estimated changes in population-level 

susceptibility, we estimated that the level of cross-immunity between Farmington Hills and Hunter 

and Hunter and Den Haag was high, and low between New Orleans and Sydney. Interestingly, we 

found that population-level susceptibility decreased slightly during the transition from Den Haag 

to Sydney, suggesting factors other than cross-immunity that we did not account for in our model, 

may be affecting population-level susceptibility during this strain transition.  

 

There are few studies that provide insight into population susceptibility to GII.4 norovirus. In two 

challenge studies of GII.4 norovirus, 43% and 58% of participants were susceptible to infection 

while 30% in both studies developed acute gastroenteritis given infection.108,178 Data from a 

surrogate neutralization assay of human sera collected between 1979 and 2010 that 57.5%, 36%, 

and 28.2% of the population would be susceptible to the 1987 (MD145), 1995 (Grimsby), and 

2001 (Houston) strains of GII.4.191 Our estimates of population-level susceptibility to GII.4 

norovirus strains are substantially lower. One potential explanation for this is that we did not 

account for individuals who may be genetically resistant to infection from GII.4 norovirus. 

Individuals who have non-functional FUT2 genes (i.e., non-secretors) do not express HBGA 

antigens in saliva and mucosa.86 As such, non-secretors are almost completely resistant to GI.1 

and GII.4 norovirus infection.82,83,87,138,178 Approximately 20% of populations of European descent 

are non-secretors. Therefore, our values of susceptibility, among the genetically susceptible, may 

be underestimated.  
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Studies of antigenic variation, molecular epidemiology and evolution of GII.4 strains provide 

context for our estimates of cross-immunity between GII.4 norovirus strains. Four studies have 

reported that earlier GII.4 strains are cross-reactive with contemporary strains, suggesting that 

cross-immunity may persist through time.118,191,204,205 Data from two studies using enzyme 

immunoassays show that monoclonal antibodies derived from GII.4 Farmington Hills and GII.4 

Den Haag were cross-reactive with GII.4 Hunter.94,205 This suggests that there may be cross-

immunity between these strains and supports our finding of high cross-immunity for the 

Farmington Hills to Hunter and Hunter to Den Haag strain transitions. As mentioned above, even 

assuming perfect cross immunity between GII.4 Den Haag and GII.4 Sydney does not fully explain 

the decrease in population susceptibility to Sydney at the time it emerges. However, the genetic 

sequences of key antigenic regions of Den Haag and Sydney have been reported to be highly 

similar, which suggests there may be high levels of cross-protection between these strains.206 Data 

from antibody binding and blockade assays show that recognition of key binding regions of GII.4 

New Orleans and GII.4 Sydney are very different, which suggests that there may be little cross-

immunity between these strains.23 These data support our finding that cross-immunity between 

New Orleans and Sydney is low. However, our estimate for cross-immunity between New Orleans 

and Sydney must be interpreted with caution, as our model did not capture this strain transition 

well. 

 

There are a number of limitations to this study. First, while our model provides reasonably good 

fits to the observed GII.4 strain dynamics, there are several norovirus seasons where the 

predictions overestimate (Farmington Hills in 2002; Sydney in 2013 and 2015) or underestimate 

the data (Den Haag in 2007). Our estimates of cross-immunity entirely depend on the estimated 
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change in the level of susceptibility at the time a strain emerges. As our model overestimated the 

number of outbreaks during the first season of Sydney (suggesting that population-level 

susceptibility was higher than observed), the corresponding value of cross-immunity for this strain 

transition (σNO,S) may be underestimated. Similarly, our model underestimated the first season of 

Den Haag (i.e., lower predicted susceptibility than observed) thus cross-immunity between Hunter 

and Den Haag (σNO,S) may be overestimated.  

 

Second, we assumed that cross-immunity only occurs between two strains that are consecutive 

(e.g., Farmington Hills provides cross-immunity to Hunter but does not provide cross-immunity 

to Den Haag). Evidence from in vitro studies utilizing surrogate neutralization assays and enzyme 

immunoassays have indicated that some GII.4 strains, such as US 95/96 and Farmington Hills, are 

broadly cross-reactive with other GII.4 strains,204,205 suggesting that cross-immunity between 

strains that are not adjacent in time. Further, we assumed that cross-immunity was symmetrical 

(i.e., if Farmington Hills provides a certain level of immunity to Hunter, then Hunter provides that 

same level of immunity to Farmington Hills), however this may not be true. In a recent study, 

Tamminen et al. demonstrated that sera from mice immunized with GII.4 1999 VLPs blocked 

binding of GII.4 2012 VLPs, while sera from mice immunized with GII.4 2012 VLPs did not block 

binding of GII.4 1999 VLPs.105 However, VLPs are non-infectious particles, therefore immune 

responses elicited through natural infection may be different. Our assumptions of cross-immunity 

are certainly simplifications, yet a fundamental understanding of norovirus cross-immunity is 

lacking, thus we currently cannot determine which assumptions are more biologically relevant for 

noroviruses. 
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A final limitation is that the data from Alberta exhibit a biennial epidemic pattern that shifts to 

annual shortly after New Orleans emerges. Biennial patterns of norovirus are uncommon, though 

they have been documented in Sweden as well.199 Thus our findings of population-level 

susceptibility and cross-immunity may not be generalizable to regions that have annual patterns of 

norovirus. Further, we did not attempt to explain the source of these biennial patterns as it was 

beyond the scope of this analysis. However, biennial patterns of disease may be driven by 

demographic factors such as lower birth rates and net migration rates (i.e., low influx or reduction 

of susceptible individuals in the population)207 or factors associated with the virus (e.g., increased 

virulence). Ideally, we would analyze a dataset that shows a more characteristic, annual epidemic 

pattern of disease to make our results more generalizable; however, the other existing datasets of 

GII.4 strain dynamics with annual patterns of outbreaks have critical limitations as well (Text S1).  

 

The extent of immune-escape and cross-immunity between GII.4 norovirus strains has important 

implications for the design of vaccines. If the level of cross-immunity between current and future 

strains of norovirus is high, then norovirus vaccines may not need to be reformulated regularly. If, 

however, the level of cross-immunity between current and future strains is low, then norovirus 

vaccines may need to be reformulated frequently to keep pace with GII.4 evolution. We found that 

certain strain transitions (e.g., Farmington Hills to Hunter, Hunter to Den Haag) are associated 

with high levels of cross-immunity. Our results add to the growing body of evidence that vaccine 

formulations containing carefully selected strains may provide protection against future strains 

GII.4 norovirus.118,191,204 However, our results cannot provide insight into whether norovirus 

vaccines will need to be re-formulated to keep pace with GII.4 evolution. Future studies are 

required to further estimate cross-immunity between a broad range of GII.4 strains. 
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SUPPLEMENTAL 

 

Text S1 

Figure 5-S1. CDC’s CaliciNet data of monthly counts of outbreaks by GII.4 strain in the 

US. 
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Figure 5-S2. Monthly counts of GII.4 reports to Public Health England. (A) Raw data of 

counts of sequenced samples of GII.4 norovirus. (B) Approximated monthly counts of GII.4 

norovirus. 
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Figure 5-S3. Monthly counts of GII.4 outbreaks reported in Alberta, Canada. 
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Alternative multi-strain model approaches 

 

For the first step of this analysis, we compared the ability of a history-based model and a status-

based model to capture the dynamics of a single strain transition: GII.4 New Orleans to GII.4 

Sydney in the US (CaliciNet data). For both models, we assumed that the two strains have the 

same natural history parameters and transmission parameter. The system of equations for this two 

strain history-based model follow those presented in the main text, however we included tracking 

of asymptomatic infection (Ai and Bi are the number of individuals with their first and second, 

respectively, infections with strain i) and assumed that asymptomatic infections contribute to 

transmission and are 5% as infectious as symptomatic infection. To simulate seasonality, we 

applied a seasonal forcing parameter (θ(t)) that governs the peak-to-mean amplitude in 

transmissibility: 

𝜃𝑡 = 1 +  𝛼 (𝑐𝑜𝑠 ∗ 𝑡 + ω) 

where α represents seasonal amplitude, ω is the seasonal offset and t represents time in years. 

 

Following the notation developed by Gog and Grenfell, 2009, our system of equations for the 

status-based model is as follows: 

 

𝑑𝑆𝑖
𝑑𝑡
=  𝜇𝑁 −∑𝜎𝑖𝑗𝜃𝑡𝛽

𝐼𝑗 + 𝜀𝐴𝑗

𝑁
𝑆𝑖

𝑗

− 𝜇𝑆𝑖 

𝑑𝐼𝑖
𝑑𝑡
=  𝜃𝑡𝛽

𝐼𝑖 + 𝜀𝐴𝑖
𝑁

𝑆𝑖 − (𝜇 + 𝜈)𝐼𝑖  

𝑑𝐴𝑖
𝑑𝑡

= 𝜈𝐼𝑖  − (𝜇 + 𝜂)𝐴𝑖  
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Where i=1,2, Si are the number of people susceptible to strain i, Ii and Ai are the number 

symptomatically and asymptomatically infected with strain i, N is the total population size, μ is 

the birth and death rate, β is the effective contact rate for both strain, ν is the rate at which infected 

individuals recover from symptomatic infection, ν is the rate at which infected individuals recover 

from symptomatic infection, η is the rate at which infected individuals recover from asymptomatic 

infection, and σ is the level of cross-immunity (i.e., reduced infectivity). 

 

To estimate the reported number of strain-specific outbreaks for each model, we multiplied the 

projected disease incidence by the probability a reported outbreak would occur given a case of 

norovirus (ρ). We fit the model to data from CDC’s CaliciNet on monthly counts outbreaks in the 

US from GII.4 New Orleans and GII.4 Sydney using maximum likelihood to estimate the 

transmission (β), seasonality (θ(t)), reporting rate (ρ), and cross-immunity (σ) parameters. We 

assumed the monthly numbers of outbreaks were Poisson distributed with mean equal to the model 

estimated strain specific incidence multiplied by the reporting rate.  

 

The status-based model provided a better fit and was better able to capture the shift from GII.4 

New Orleans and GII.4 Sydney from the observed Calicinet data (Figure 5-S3A, 5-S3B). The level 

of cross-protection (σ) was estimated to be high, such that 91% of those exposed to New Orleans 

do not contribute to transmission when infected with Sydney (Table 5-S1).  
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Figure 5-S4. Comparison of estimated GII.4 outbreaks (lines) from two strain history-based 

(A) and status-based (B) models. Triangles represent the observed monthly counts of GII.4 

outbreaks reported to CDC’s CaliciNet. 

 

 

As the status-based model captured this strain transition best, we expanded this model from two 

strains to five strains. Following the notation from Gog and Swinton, the system of equations for 

this 5 strain status-based model are: 

 

𝑑𝑆𝐽

𝑑𝑡
=  𝜇𝛿𝐽,∅𝑁 −∑𝐶(𝐾, 𝐽, 𝑖)𝜃𝑡𝛽

𝐼𝑖
𝑁
𝑆𝐾

𝑖,𝐾

− ∑𝜃𝑡𝛽
𝐼𝑖
𝑁
𝑆𝐽

𝑖∉𝐽

− 𝜇𝑆𝐽 

𝑑𝐼𝑖
𝑑𝑡
=  𝜃𝑡𝛽

𝐼𝑖
𝑁
𝑆𝐽 − (𝜇 + 𝜈)𝐼𝑖  
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Where i= 1,…,5 strains, J represents all possible sets of strains that individuals have immunity to, 

SJ is the number of individuals immune to the set of strains J and susceptible to all other strains, Ii 

is the number of individuals infected with strain i, and N, μ, β, θ(t) and ν are as defined for the two-

strain history- and status-based models. Individuals are born susceptible to all strains, thus the birth 

rate (𝜇𝛿𝐽,∅) is: 

𝜇𝛿𝐽,∅ = { 
1 if 𝐽 = ∅ 
0 else

 

 

 C(K,J,i) represents the number of individuals who become immune to strains in set J after 

infection with strain i and had immunity to strains in set K: 

 

𝐶(𝐾, 𝐽, 𝑖) = { 
 ∏ 𝑀𝑖,𝑗
𝑗∈𝐽\𝐾

∏(1−𝑀𝑖,𝑗)

𝑗∉𝐽

if 𝑖 ∉ 𝐾 and K ⊂ J 

0                                 else

 

 

Where M is the matrix of cross-immunity (Mi,j) (i.e., infection with strain i provides cross-

immunity to strain j): 

 

𝑀 =

(

  
 

1 𝜎1,2 𝜎1,3 𝜎1,4 𝜎1,5
𝜎2,1 1 𝜎2,3 𝜎2,4 𝜎2,5
𝜎3,1 𝜎3,2 1 𝜎3,4 𝜎3,5
𝜎4,1 𝜎4,2 𝜎4,3 1 𝜎4,5
𝜎5,1 𝜎5,2 𝜎5,2 𝜎5,4 1 )

  
 

 

  

Cross-immunity was assumed to be symmetrical, such that σij = σji. We fit this model to data from 

PHE’s data on monthly counts of GII.4 laboratory reports using maximum likelihood to estimate 
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the transmission (β), seasonality (θ(t)), reporting rate (ρ), and cross-immunity (σij) parameters. We 

assumed the monthly number of lab reports were Poisson distributed with mean equal to the model 

estimated strain specific incidence multiplied by the reporting rate (ρ).  

 

The best fit for this model did not capture the inter-annual variability of the data (Figure 5-S4B). 

Further, the estimated value for the effective contact rate (β) results in an estimated R0 = 57.3, 

which is much higher than R0 values estimated from other published norovirus transmission 

models (range of 1.1 – 7.2).60 Generally, the estimates of cross-immunity were quite high, and 

cross-immunity was estimated to decline as the amount of time increased between the strains 

considered (e.g., cross-immunity for Hunter to Sydney and Yerseke to Sydney were 0.683 and 

0.579, respectively).  
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Figure 5-S5. A) Observed monthly counts of GII.4 laboratory reports submitted to Public 

Health England. B) Estimates of monthly counts of GII.4 reports from status-based model. 

 

 

 

Comparison of cross-immunity estimates from all multi-strain models 

 

Despite having different assumptions of cross-immunity, different datasets and different model 

structures, the five strain status-based model and the set of coupled single-strain models provided 

similar estimates of cross-immunity for the Hunter to Den Haag (0.972 vs. 0.91-0.94, respectively) 

and Den Haag to New Orleans (0.999 vs. >1) strain transitions. The set of coupled single-strain 

models however, estimated a much lower level cross-immunity for the New Orleans to Sydney 
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strain transition (range: 0.34, 0.73) relative to both the two and five strain status-based model 

(0.916 and 0.995, respectively). The discrepancy between these estimates of cross-immunity may 

indicate that there were true differences in the New Orleans to Sydney strain transition in Alberta, 

Canada relative to the same strain transition in England and Wales (PHE data). However, given 

the differences between these models we cannot determine whether this discrepancy reflects true 

differences between countries or if it is the result in differences in assumptions, goodness of fit 

and/or model structure. 

 

Table 5-S1. Comparison of data, strains, parameters, assumptions and estimates from all 

multi-strain modeling approaches. 

 

2 Strain 

History-Based 

Model 

2 Strain 

Status-Based 

Model 

5 Strain 

Status-Based 

Model 

5 Strain 

Coupled 

Single-Strain 

Models 

Data CaliciNet CaliciNet PHE Alberta 

Strains modeled 
New Orleans, 

Sydney 

New Orleans, 

Sydney 

Hunter, 

Yerseke, 

Den Haag, 

New Orleans, 

Sydney 

Farmington 

Hills, 

Hunter, 

Den Haag, 

New Orleans, 

Sydney 

Fixed parameters 

Daily birth/death rate 3.39x10-5 3.39x10-5 3.18x10-5 3.56x10-5 

Duration of symptomatic 

infection 
2 days 2 days 2 days 2 days 

Duration of asymptomatic 

infection 
10 days 10 days NA NA 

Relative infectiousness of 

asymptomatics 
0.05 0.05 NA NA 

Estimated parameters 

Effective contact rate (β) 1.46 17.13 28.65 2.76 

Basic Reproduction Number 

(R0) 
2.91 34.26 57.30 5.53 
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Seasonal amplitude 0.117 0.018 0.045 0.063 

Seasonal offset 4.04 3.65 4.24 1.51 

Reporting rate 5.74X10-7 1.64x10-4 2.18x10-7 
9.66e-8 × tm + 

0.0012 

Cross-Immunity Assumption 
Reduces 

susceptibility 

Reduces 

infectivity 

Reduces 

infectivity 

Reduces 

susceptibility 

Farmington Hills, Hunter NA NA NA (0.84, 0.91) 

Hunter, Yerseke NA NA 0.982 NA 

Hunter, Den Haag NA NA 0.972 (0.91, 0.94) 

Hunter, New Orleans NA NA 0.843 NA 

Hunter, Sydney NA NA 0.683 NA 

Yerseke, Den Haag NA NA 0.995 NA 

Yerseke, New Orleans NA NA 0.985 NA 

Yerseke, Sydney NA NA 0.579 NA 

Den Haag, New Orleans NA NA 0.999 > 1a 

Den Haag, Sydney NA NA 0.984 NA 

New Orleans, Sydney 0.221 0.916 0.995 (0.34, 0.73) 

a. The initial proportion susceptible to GII.4 New Orleans at the time this strain emerges 

(SNO,t0 = 0.175) is lower than the existing proportion susceptible to GII.4 Den Haag (SDH,tf 

= 0.177), thus even assuming Den Haag provides perfect cross-immunity to New Orleans 

(σ = 1) cannot account for the population level susceptibility at the time New Orleans 

emerges. 

  



121 
 

 

6 Conclusion 
 

 

Noroviruses are becoming the primary cause of acute gastroenteritis globally, associated with an 

estimated 140 million to 677 million AGE cases and 71,000 to 212,000 deaths annually.5–7 

Norovirus vaccines are currently in development; however, key biological and epidemiological 

factors of norovirus could present challenges to vaccine development and implementation. The 

overall goal of this dissertation was to provide insight into key aspects of norovirus epidemiology 

that could pose challenges to vaccine development and implementation. Specifically, this research 

examined how norovirus transmission varies between age groups and how this variability could 

affect vaccine strategies with implications for implementation (Aim1); characterized norovirus 

transmission across different settings for norovirus outbreaks (Aim 2); and quantified that level of 

immune escape and cross-immunity between multiple GII.4 norovirus strains (Aim 3). This 

research provided insight into the variability of norovirus transmission and changes in population-

level susceptibility and cross-immunity as new GII.4 strains emerged, and highlighted areas for 

further research. 

 

6.1 Contribution of Aim 1 

 

Norovirus vaccine evaluations have predominantly been trialed among adults; however, 

noroviruses affect all ages and young children and the elderly disproportionately suffer the more 

severe outcomes of norovirus infections. Further, observational studies suggest that young children 

may be an important driver of norovirus transmission.16,61 Through Aim 1, we provide evidence 

for the benefits of age-targeted vaccination strategies by employing a better understanding of how 

transmission of norovirus varies by age. Ultimately, these results can be used to guide norovirus 
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vaccine development in private industry, inform policy makers on the potential impacts of 

alternative norovirus vaccine programs, and provide insight into the impact that vaccination 

programs could have on the population-level dynamics of norovirus transmission in the US. 

  

In Aim 1, we had the unique opportunity to influence the direction of vaccine development by 

estimating the potential impact of different, age-targeted vaccination strategies with a dynamic 

transmission model of norovirus. At the time that we were conducting analyses for Aim 1, a 

bivalent, intramuscular VLP vaccine developed by Takeda Pharmaceuticals, was on track to enter 

Phase IIb/III efficacy studies among adults.12 Through this work, we provided evidence that 

targeting pediatric populations for vaccination can maximize population-level impacts due to 

reductions in disease transmission. These findings are in line with impacts observed from other 

pediatric vaccines. The introduction of pediatric rotavirus and pneumococcal vaccines in the US 

led to large indirect benefits among unvaccinated populations through reductions in the overall 

force of infection.163,164  

 

Further, a recently published second model of norovirus transmission and vaccination in Germany 

also found targeting the pediatric age group for vaccination provides population-level benefits; 

however, these impacts were not as great as those we estimated. This discrepancy is due to 

differences in assumptions of vaccine action. We assumed that vaccination does not prevent 

infection but disease, while Gaythorpe et al. examined many assumptions of vaccine action (e.g., 

reduction in susceptibility, prevention of symptoms).193 Despite different assumptions of vaccine 

action, the findings from our study and Gaythorpe et al.’s study clearly argue for refocusing on a 
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clinical development plan that will deliver a vaccine with a safety and efficacy profile suitable for 

use in children. Future studies modeling studies should focus on estimating which vaccine 

schedules among young children will lead to the greatest reductions of disease.  

 

From our analyses we found that the elderly contribute little to norovirus transmission, and 

subsequently, vaccinating this age group provided minimal population-level benefits. However, 

the epidemiological data we used for model fitting are estimates of US hospitalization rates 

informed by community incidence rates from a UK study (as norovirus surveillance in the US only 

captures outbreaks). The incidence estimates among older age groups from this UK study were 

low and may have been biased downwards.16 As such, an important avenue for future research will 

be to improve the surveillance of norovirus among the elderly. Improving surveillance in this age 

group we will lead to better estimates of the burden of disease and subsequently we will be better 

able to determine the population-level value of vaccination within this group. 

 

Our finding that the model estimated impact of both pediatric and elderly vaccine strategies are 

strongly sensitive to the assumed duration of vaccine immunity and age-specific contribution to 

transmission highlights the need for future studies that better estimate these parameters. Currently, 

we have limited empirical data to inform these parameters because norovirus transmission is 

largely unobservable,121 and thus far there are published no vaccine studies have included long-

term follow-up for clinical outcomes.111 Observational studies of transmission (such as secondary 

household transmission studies) and clinical trials that can estimate the duration of vaccine 

protection, particularly among children <5 and the elderly, will be vital to improving our estimates 

of vaccine impact. 
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Our work in Aim 1 provides an example of the value of using mathematical models to estimate 

vaccine impacts prior to the licensing and distribution of vaccines, and further encourages open 

communication and collaboration with industry partners to best achieve public health goals. The 

results from our model challenged the direction of norovirus vaccine development, which at the 

time was directed towards adults. Since presenting and subsequently publishing our Aim 1 study 

findings, Takeda has conducted at least two safety and immunogenicity studies among young 

children (<5 years old) and older adults (60+).208,209 Continued interactions with vaccine 

developers and public health decision makers will be crucial to maximizing the success of 

norovirus vaccines. 

 

6.2 Contribution of Aim 2 

  

 As demonstrated through Aim 1, harnessing a better understanding of how norovirus transmission 

varies by age allowed us to better understand which vaccination strategies will maximize 

population-level benefits. However, public health interventions (such as vaccination strategies) 

required to mitigate or prevent outbreaks may differ substantially from population-level 

interventions, as outbreaks generally affect sub-populations (e.g., food handlers, 

immunocompromised, healthcare workers) whose risk for transmission and disease may be 

different from what is observed at a population-level.150 The findings from Aim 2 provide insight 

into which factors (e.g., setting, season and geographic region) are associated with increased 

transmissibility of norovirus at the outbreak-level.  
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In contrast to our finding that the elderly contribute little to transmission from Aim 1 (and thus 

targeting them for vaccination would provide minimal population-level benefits), our analysis of 

norovirus transmission at the outbreak-level indicates that transmission in long-term care/assisted 

living facilities (where the majority of individuals are elderly) is higher than other common settings 

(e.g., schools/colleges/universities, hospitals). These results provide evidence that while the 

elderly may not be important drivers of transmission at the population-level, transmission among 

elderly populations during outbreaks in long-term care/assisted living facilities pose an important 

public health burden. Further, the elderly suffer the vast majority of norovirus related deaths,15 

therefore vaccination of the elderly may be considered if to reduce norovirus associated mortality 

and/or mitigate the burden of outbreaks in long-term care/assisted living facilities. Additionally, 

our finding that transmission of norovirus is higher for outbreaks that occur in winter suggests that 

one possible vaccine strategy could be a seasonal vaccine policy that provides prophylactic 

vaccination within outbreak settings prior to winter as is done with other pathogens with strong 

seasonality, such as influenza.210 However more research is required to determine which seasonal 

vaccine policies would be most effective. 

 

This analysis highlights that uncertainties surrounding norovirus transmission in outbreak settings 

are driven both by a lack of understanding of biological factors of norovirus as well as 

programmatic factors related to surveillance and reporting. First considering biological factors, 

there is a large amount of asymptomatic transmission of norovirus, yet we have very limited 

understanding of the relative roles that symptomatic and asymptomatic infections in 

transmission.121,187 Further, asymptomatic transmission, which we did account for in this analysis, 

generally goes undetected in surveillance and can limit the effectiveness of traditional control 
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methods focused on ill individuals. Additionally, we have little understanding of the level of 

acquired immunity and susceptibility in populations prior to outbreaks, which influence the extent 

of transmission and subsequently the severity of outbreaks. A better understanding of the role of 

asymptomatic transmission and levels of acquired immunity and susceptibility in populations will 

help guide our understanding of which interventions, and the level of control measures, are 

required to mitigate/prevent outbreaks. 

 

Among programmatic and surveillance factors, the exposed population size, which is important 

for estimating transmission and evaluating the extent of outbreaks, is difficult to quantify and is 

not consistently reported to NORS. Further, there is tremendous variability in outbreak reporting 

between states (approximately 100-fold difference between the highest and lowest reporting states) 

120 and variability in the quality of reporting between outbreaks (i.e., smaller, probable norovirus 

outbreaks may be less well investigated than confirmed outbreaks, with lower rates of case 

ascertainment). These uncertainties, both from biological and programmatic factors, emphasize 

the need for improvements in norovirus surveillance and reporting, in concert with studies that 

better characterize the role and prevalence of asymptomatic transmission and population-level 

susceptibility to norovirus. 

 

6.3 Contribution of Aim 3 

 

The rapid evolution of GII.4 noroviruses poses a potentially significant challenge for vaccine 

development and implementation, yet we have little understanding of how susceptibility changes 

over time and whether cross-immunity exists between different strains. In Aim 3 we compared 

three existing GII.4 norovirus time series datasets and three multi-strain modeling approaches to 
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determine which dataset and method were best suited to describe GII.4 strain dynamics, estimate 

changes in population-level susceptibility over time, and estimate the level of cross-immunity 

between different GII.4 strains. Ours is the first norovirus transmission modeling study to 

incorporate GII.4 strain evolution. 

 

6.3.1 Comparison of GII.4 norovirus datasets 

 

Our review of GII.4 norovirus time series data highlights a critical need for better surveillance of 

norovirus, particularly of the distribution of GII.4 norovirus over time. We were only able to 

identify, and subsequently obtain, three datasets of GII.4 norovirus strain distributions over time 

and each of the three datasets had critical limitations. The CaliciNet data represent a relatively 

short time span and only capture the most recent strains, thus would only provide insight of 

susceptibility and cross-immunity for contemporary strains. In the PHE data there were large 

inconsistencies in reporting over time. As such, we used a method to scale these data to overall 

GII.4 reports and interpolated over missing data. Uncertainty surrounding the number and 

distribution of GII.4 strain reports in these early years subsequently led to uncertainties in the 

estimates of cross-immunity from these early strains. Finally, the Alberta data contained few 

observations (due to collection in a small population) and exhibited an uncharacteristic biennial-

to-annual epidemic pattern of norovirus, thus limiting generalizability of analysis from these data 

to regions where norovirus has an annual epidemic pattern. Moving forward, norovirus 

surveillance systems should focus on improving reporting rates of norovirus and incorporate 

consistent sequencing of noroviruses at the genogroup-, genotype- and strain-level. Further, if 

there are existing case and/ outbreak samples from historic surveillance data, retrospective 

sequence analyses should be conducted to determine norovirus genotype- and strain-distributions.  
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6.3.2 Comparison of multi-strain models 

 

This work also contributes to the growing body of research into methods for modeling multi-strain 

pathogens. In our preliminary analyses, we found that a history-based model could not capture 

norovirus strain transmission dynamics. This finding is consistent with a previous modeling study 

that found a history-based model failed to capture influenza strain transmission dynamics.148 

Further, we showed that while a status-based approach was able to capture the average trend of 

strain dynamics over time, it failed to capture observed inter-annual variability associated with the 

emergence of new strains. An important consideration for multi-strain models is striking the 

balance between biological realism and computational tractability. History-based models employ 

assumptions of cross-immunity that are more biologically relevant, however are computationally 

intractable when considering many strains. On the other hand, status-based models are tractable 

for considering many strains, however this computationally efficiency is gained through 

assumptions of cross-immunity that may be biologically unreasonable (i.e., exposure to a previous 

strain reduces an individual’s ability transmit a subsequent strain given infection, reduced 

infectivity).200,201 To overcome these issues, we developed a set of coupled single-strain models to 

capture the dynamics of GII.4 strain transitions and estimate changes in population-level 

susceptibility over time. This approach is tractable when modeling many strains and does not 

require assumptions that lack biological realism. A limitation of this approach however is that it 

can only be used when there is little to no co-circulation of strains, as was observed in the Alberta 

dataset. 
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6.3.3 Estimates of susceptibility to and cross-immunity between GII.4 norovirus strains 

 

The results from our set of coupled single-strain models provide insight into the degree of immune 

escape that has driven GII.4 strain dynamics over time. Our models estimated that population-level 

susceptibility to GII.4 strains ranged between 17.5% - 20.0%, and that small changes in the fraction 

of the population susceptible are sufficient to allow new strains to emerge and, though cross-

immunity, drive previous strains extinct. There are very few existing studies that provide context 

for our findings of population-level susceptibility, though data from challenge studies and a 

surrogate neutralization study suggest that population-level susceptibility may be higher than our 

estimates.108,178,191 However, our model does not account for genetic resistance (i.e., 20% of 

Caucasian populations are genetically resistant to GI.1 and GII.4 infections) which may explain 

why our estimates of susceptibility are lower than challenge and surrogate neutralization studies. 

To better determine changes in population-level susceptibility to GII.4 norovirus over time, 

serological studies should be conducted, particularly focusing on times when new GII.4 strains 

have emerged. 

 

Using our set of coupled single-strain models, we estimated that the level of cross-immunity 

between Farmington Hills to Hunter and Hunter to Den Haag was high, and low between New 

Orleans and Sydney. Our analysis indicated that population-level susceptibility decreased slightly 

during the transition from Den Haag to Sydney, suggesting factors other than cross-immunity that 

we did not account for in our model, may be affecting population-level susceptibility during this 

strain transition. Despite having different assumptions of cross-immunity, different datasets and 

different model structures, our five-strain status-based model and set of coupled single-strain 

models similarly predicted high cross-immunity between the Hunter to Den Haag (0.972 vs. 0.91-
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0.94, respectively) and Den Haag to New Orleans (0.999 vs. >1) strain transitions. Further, data 

from existing studies utilizing enzyme immunoassays and surrogate neutralization assays have 

suggested the existence of cross-immunity between the Farmington Hills to Hunter, Hunter to Den 

Haag, and Den Haag to Sydney strain transitions.94,205,206 The high-levels of cross-immunity for 

these strains suggest that vaccines that contain these strains may be broadly protective. However, 

further research of cross-immunity between these strains should be conducted, as these in vitro 

studies relied on non-infectious VLPs, therefore immune responses elicited through natural 

infection may be different. Importantly, future vaccine efficacy studies should test heterotypic 

challenge with GII.4 norovirus to determine the level of protection against GII.4 strains that are 

not part of the vaccine formulation. 

 

The results from our set of coupled single-strain models and five strain status-based model were 

contradictory on the level of cross-immunity between New Orleans and Sydney. The linked single-

strain model estimated a much lower level cross-immunity for the New Orleans to Sydney strain 

transition (range: 0.34, 0.73) relative to both the status-based model (0.916 and 0.995, 

respectively); however given the differences in data, model structures, and goodness of fit we 

cannot determine what drives the difference between these estimates. Notably the linked single-

strain model overestimated population-level susceptibility during the first season of Sydney, thus 

cross-immunity is likely underestimated. Data from in vitro antibody binding and blockade assays 

demonstrate that recognition of key binding regions of GII.4 New Orleans and GII.4 Sydney are 

very different, which suggests that there may be little cross-immunity between these strains.23 

However, in many countries the emergence of GII.4 Sydney did not coincide with increases in 

outbreak activity, which suggests that the level of cross-immunity was higher than what was 
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estimated from in vitro studies. If the level of cross-immunity between these strains is low, this 

raises concerns that norovirus vaccines my need to be reformulated. However, evidence from in 

vitro studies utilizing surrogate neutralization assays and enzyme immunoassays have indicated 

that some GII.4 strains, such as US 95/96 and Farmington Hills, are broadly cross-reactive with 

other GII.4 strains,204,205 suggesting that cross-immunity between strains that are not consecutive. 

Again, these findings provide further support that future vaccine efficacy studies should quantify 

vaccine protection against heterotypic exposure with GII.4 noroviruses. Further, long-term global 

surveillance will be required to track the emergence of GII.4 strains and characterize changes in 

GII.4 strain distributions over time to better understand how GII.4 evolution may influence vaccine 

impact. 

 

6.4 Summary 

 

The results of this dissertation contribute a better understanding of the variability in norovirus 

transmission and susceptibility and cross-immunity to rapidly evolving GII.4 noroviruses. With a 

better understanding of how norovirus transmission varies across the age range we can leverage 

that knowledge to target specific age groups for vaccination to maximize population-level benefits 

and reduce the burden of severe norovirus disease outcomes. Further, estimates of how norovirus 

transmission varies by outbreak settings and season can help us identify where and when norovirus 

outbreaks could be more severe, and perhaps consider whether the level and type of control 

measures should differ by outbreak context. Finally, a better understanding of GII.4 norovirus 

strain dynamics and the extent of cross-protection between strains provides insight into whether 

norovirus vaccines will need to be reformulated to keep pace with viral evolution. 
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