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Abstract

Understanding brain activity dynamics through the investigation of quasi-periodic patterns

by

Anzar Abbas

This  dissertation  explores  large-scale  brain  activity  through  the  investigation  of  repeating 
spatiotemporal patterns in the brain. A pattern-finding algorithm applied to brain activity data 
collected  through  functional  magnetic  resonance  imaging  reveals  a  reliably  recurring  quasi-
periodic pattern (QPP). The QPP involves propagation of activity in the default mode and task 
positive  networks  of  the  brain.  The  two networks  have  been  shown to  be  relevant  for  task 
performance and development of neuropsychiatric disorders. Searching for QPPs in resting-state 
and  task-performing  individuals  reveals  that  task-performance  influences  the  spatiotemporal 
pattern of the QPP and the strength and frequency with which it occurs. Differentiating QPPs 
between healthy individuals and individuals with ADHD, a neuropsychiatric disorder involving 
disruptions  in  the  default  mode  and  task  positive  networks,  reveals  that  the  spatiotemporal 
pattern of the QPP is affected in the disrupted regions. Through removal of the QPP from the 
brain signal,  we find that QPPs contribute to functional connectivity within and between the 
default mode and task positive networks. These findings suggest that QPPs are important for 
healthy brain function as they contribute to the typical functional architecture of the brain. To 
understand a neural mechanism behind QPPs, we investigated the role of neuromodulation by 
deep brain nuclei on the presence of QPPs in brain activity. Pharmacological manipulation of the 
noradrenergic locus coeruleus in rats led to a disruption in QPP activity compared to healthy 
controls.  This finding advocates for a neural mechanism behind the occurrence of QPPs and 
subsequently a biological machinery for the maintenance of functional connectivity in the brain. 
The  dissertation  provides  evidence  that  studying  large-scale  brain  activity  in  the  form  of 
repeating patterns can assist with understanding healthy brain function and how it is disrupted 
during disease.  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1.1 – Brain activity is connected across scales

The  brain  is  a  collaborative  effort  of  molecular  interactions,  neural  activity,  and  network 

connectivity –– all occurring at their own pace. It is only through integration of knowledge at 

every level of brain activity that there is any chance of arriving at a complete understanding of 

consciousness. Indeed, to understand the brain is to understand it across scale and across time.

On the scale of molecules, intricacies of protein interactions give a neuron its identity. Molecular 

interactions allow neurons to create neurotransmitters and package them for transmission. They 

build  the  neuron’s  electrochemically  excitable  membrane,  enabling  action  potentials.  The 

distribution  of  proteins  within  a  cell  is  a  reflection  of  its  state  and  its  relationship  with  its 

surroundings.  Molecular  neuroscience  has  shown  the  importance  of  a  perfectly  regulated 

population of proteins to carry out the functions of a neuron (Bickle, 2006; Eyckmans et al., 

2011).

On the scale of the neuron, the collaborative actions of billions of proteins come together to form 

a single unit. A nerve cell consequently has the ability to conduct an action potential to transit 

information  to  its  surroundings  and  concurrently  receive  and  react  to  information  from  its 

surroundings  (Hodgkin  &  Huxley,  1952).  Its  ability  to  do  this  is  inextricably  linked to  its 

molecular  makeup.  Molecular  interactions  influence  neuronal  activity,  and  neuronal  activity 

influences molecular interactions. Cellular neuroscience has shown how neurons behave as a 

unit, giving them the capacity to carry information in a network (Ramon, 1976).
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On the scale of the network, connectivity between two neurons creates a circuit. Networks of 

neurons have the capacity to hold and conduct more complex information (Hebb, 1963). As the 

number of neurons in a network grows to millions, the complexity of the information it can carry 

grows concurrently. As is the case with molecular and neural activity, the relationship between 

neural activity and network activity is bidirectional. Network activity is dependent on neuronal 

activity and neuronal activity is influenced by network activity. Network neuroscience has shown 

how complex neural circuits can be arranged to perform sophisticated tasks, introducing theories 

for how organisms with complex neural architectures intelligently respond to their surroundings 

(Bassett & Sporns, 2017).

Brain  activity  is  connected  across  scales.  Molecular  activity,  by  influencing  neural  activity, 

affects network activity. To understand brain dysfunction during neurological and neuropsychiatric 

disorders, it is important to note that activity at every level of the brain is being disrupted. Hence, 

to  fully  understand  the  etiology  of  a  brain  disorder,  neuroscientists  must  establish  an 

understanding of how brain activity is affected at the molecular, neural, and network scale.

However, there is a larger scale of brain activity that remains more elusive than the rest. Large-

scale  fluctuations  in  brain  activity  ––  much  bigger  than  individual  networks  ––  have  been 

reliably  observed  by  the  neuroscientific  community  for  years  (Buzsáki,  2006).  It  has  been 

postulated that large-scale activity is also connected to brain behavior at other spatial levels. The 

the exact nature of this relationship is not understood (Varela et al., 2001; Buzsáki, 2006). But, to 

study large-scale events in brain activity, researchers first needed an imaging technique with the 

capacity to observe brain activity at this level. The ability to do this came with advancements in 

functional magnetic resonance imaging technology.  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1.2 – Development of fMRI to study brain activity

The  development  of  magnetic  resonance  imaging  (MRI)  scanners  from  nuclear  magnetic 

resonance technology allowed scientists  to study the human body non-invasively (Mansfield, 

1977).  With  early  work  by  Peter  Mansfield,  Paul  Lauterbur,  and  Raymond Damadian,  MRI 

became a popular technique for human imaging (Lauterbur, 1973; Damadian, 1971). The first 

MRI scans solely served a clinical purpose, allowing physicians to study patient anatomy to 

assist with diagnosis of diseases such as cancer (Damadian et al., 1973; Damadian et al., 1974). 

MRI technology grew rapidly in the latter half  of the 20th  century and its  applications grew 

alongside it.

The use of MRI scanners to observe the brain added to existing brain imaging technologies such 

as computerized tomography (Natterer, 1986). MRI distinguished itself given it did not require 

introduction of radioactive material into the patient’s body. The first brain scans were purely 

anatomical (Doyle et al., 1981). They continued to assist researchers in studying human anatomy 

through observation of brain structure. After all, observing the inside of a living person’s head in 

a harmless and painless way had previously been impossible. However, use of MRI in brain 

imaging exploded with the realization that MRI scanners could not only study brain anatomy, but 

brain function.

Functional brain imaging had been a subject matter of interest due to the ability of researchers to 

study  blood  flow  in  the  brain  through  introduction  of  radioactive  water  into  patients’ 

bloodstreams  (Radon,  1986).  It  was  assumed  that  active  regions  in  the  brain  will  recruit 

oxygenated blood flow, which has since been confirmed through multi-modal studies (Pan et al, 
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2013). Hence, researchers were able to map areas of high activity in the brain using CT. It was 

soon established  that  MRI could  be  used  to  do  the  same without  the  exposure  to  radiation 

required by CT (Ogawa et  al.,  1990a;  Ogawa et  al.,  1990b).  With  the  ability  to  distinguish 

between oxygenated and deoxygenated blood flow, functional MRI (fMRI) became an exciting 

new technique to study brain activity.

Initial studies using fMRI mirrored earlier work done using CT and related positron emission 

topography (PET).  Individuals  were asked to perform certain tasks while laying in the MRI 

scanner. Consequently, the brain recruited heavy blood flow to regions that were activated in 

response to  the provided task.  The resulting blood flow was recorded in  the acquired fMRI 

images. This allowed scientists to reach conclusions on areas in the brain that were associated 

with unique tasks (Frahm et al.,  1993).  Functional MRI continues to provide a window into 

neural activity through the understanding that oxygenated blood flow to regions –– termed the 

hemodynamic response –– is a result of neural activation (Friston et al., 1994). The knowledge 

acquired  from  such  studies  provided  greater  spatiotemporal  accuracy  compared  to  older 

techniques  of  brain  function  localization  ranging  from  neurosurgery  to  PET.  However,  the 

general conclusions did not deviate from existing theories of the brain’s functional organization.

Task activation studies using fMRI still overlooked the real-time large-scale events in the brain. 

Brain activity data collected from individuals performing tasks in the MRI scanner was averaged 

over the course of entire fMRI scans, which last several minutes. The measured signal is an 

overall representation of how one brain region may behave differently from other brain regions 

during  sustained  activity  in  a  task.  Functional  MRI  studies  that  depended  on  participants 
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performing a task in the MRI scanner were still a far ways off from studying large-scale events in 

the brain in real time.  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1.3 – Resting-state fMRI and functional connectivity

In the laboratory of James Hyde in the 1990s, Bharat Biswal studied low-frequency spontaneous 

brain activity using fMRI in the absence of any specified task (Biswal et al., 1995). The group 

noticed that the signal originating from the brain’s motor regions was highly correlated. This was 

the first observation that spontaneous activity recorded through fMRI from brain regions that are 

related in function tend to activate and deactivate simultaneously over time. The finding ushered 

in the question of why brain regions would exhibit such behavior in the absence of a task and the 

mechanism behind what was being observed.

Studies in which participants were asked to lay in the scanner in the absence of any particular 

task –– termed resting-state fMRI –– exploded after the observation from Hyde’s group (Van 

Den Heuvel & Pol, 2010). Researchers became more interested in the spontaneous behavior of 

brain regions over time. An inference was made between correlation between timecourses of 

anatomically  distinct  brain  regions  and  their  functional  connectivity.  Indeed,  functional 

connectivity  was  observed  between  brain  regions  that  were  already  known to  be  related  in 

function,  such  as  regions  in  the  motor  or  visual  cortices  (Power  et  al.,  2011).  Functional 

connectivity was also observed between brain regions that had previously not been associated as 

strongly, such as regions in entirely separate areas of the brain (Raichle, 2015). Soon, mapping of  

these functional networks began to take place across the brain.

Functional connectivity being observed between brain regions was conserved across participants 

and  independent  studies.  This  allowed  researchers  to  define  reliably  observable  functional 

networks, making way for new theories on the functional organization of the brain (Gratton et 
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al., 2018). It also led to novel topics of study such as the default mode network, a collection of 

brain regions active during the absence of task (Raichle, 2015), which was a strong shift from 

task-activation  studies.  Quickly  enough,  functional  network  atlases  computed  through  data-

driven  approaches  to  resting-state  fMRI  (rs-fMRI)  studies  started  appeared  in  publications 

(Glasser et al., 2016).

Typical functional connectivity and the resulting organization of functional networks in the brain 

became  a  representation  of  healthy  brain  function.  Studies  began  to  show  that  functional 

connectivity  ––  and  consequently  organization  of  functional  networks  ––  was  disrupted  in 

individuals  with  neurological  and  neuropsychiatric  disorders  (Greicius,  2008).  This  led  to  a 

plethora of rs-fMRI studies specifically focusing on the disruption of functional connectivity in 

brain disorders, with the aim of leading to a more complete understanding of the etiology of 

those  disorders  (Konrad  &  Eickhoff,  2010;  Buckner  et  al.,  2010;  Cherkassky  et  al.,  2006; 

Greicius et al., 2007). It turns out, these studies were focusing on large-scale brain activity to 

understand human brain function and dysfunction.

However,  functional  connectivity  was  still  a  static  observation  of  brain  activity  through  a 

measure of the overall relationship between individual brain regions over time. Brain activity 

data from several  minutes of rs-fRMI scans had to be averaged together to acquire a single 

number:  Pearson correlation between the timecourses of brain regions.  Static analyses of rs-

fMRI  scans  still  failed  to  describe  large-scale  events  in  the  brain  as  they  occur  in  time, 

observable  by  the  eye  in  the  spontaneous  fluctuations  seen  in  brain  activity  through  fMRI 

studies. A study of the dynamics of large-scale brain activity measured through fMRI remained 

untapped.  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1.4 – Dynamics of functional connectivity

A simple visual observation of the output of an fMRI scan is enough evidence that the brain 

shows rich, dynamic activity over time. Static functional connectivity analysis consolidates this 

activity into a number that can be easily understood. However, much more difficult to understand 

is the time-varying relationship between brain regions (Chang et al., 2018). Researchers needed 

to progress from traditional static approaches in fMRI to studying the dynamics of large-scale 

brain activity.

Initial work on the dynamics of fMRI using time-frequency through using wavelet transform 

coherence (Chang & Glover, 2010; Müller et al., 2004) as well as sliding window correlation 

methods (Allen et al., 2014) allowed studying dynamics of fMRI signal in the initial stages of 

exploration.  These  methods  reveal  that  brain  regions  indeed  have  measurable  time-varying 

relationships.  The  statistical  robustness  of  these  techniques  are  weak,  not  to  mention  their 

reliance on arbitrarily  defined window lengths.  However,  they paved the way towards  more 

sophisticated methods for studying brain activity dynamics.

Studying co-activation patterns (CAPs) allows investigation of brain activity dynamics through 

consideration of individual moments within fMRI scans rather than brain region timecourses 

(Liu et al., 2018). Analysis of CAPs addresses the issue of fMRI scans having significantly more 

voxels than they do timepoints. CAPs allow a dissection of functional networks, allowing their 

dynamics to be better understood (Liu & Duyn, 2013). However, analysis of CAPs is highly 

dependent on data quality and signal to noise ratio, which makes its applications more difficult 

(Liu et al., 2018).
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A dynamic  graph  theory  approach  provides  a  clear  visualization  how  how  the  functional 

connectivity strength between brain regions changes over time (Khambhati et al., 2018; Yuan et 

al., 2017). It is able to reveal that the structure of functional networks –– through seemingly 

robust  through static fMRI analyses –– is  highly flexible.  Distinct  functional networks show 

transient  moments  of  inter-connectivity  when  observed  in  real  time.  Dynamic  graph  theory 

allows  researchers  to  reconsider  the  hard  spatial  boundaries  between  established  functional 

networks.

The view of the brain as a time-varying network begs the application of modeling approaches to 

understand large-scale brain activity dynamics. Change point theory has allowed researchers to 

model state-related fMRI dynamics (Lindquist et al., 2007). Hidden Markov Models have been 

useful in understanding network activity dynamics (Quinn et al., 2018). Neural Mass Models 

have allowed researchers to encapsulate the brain’s scale free activity (David & Friston, 2003) 

and its synchronization of activity across scales (Daffertshofer et al., 2018a; Daffertshofer et al., 

2018b).  Such advances are allowing researchers to learn the true dynamics of brain activity, 

crucial in understanding large-scale brain activity.

In this dissertation, a unique approach to understanding the dynamics of large-scale brain activity 

is  presented:  Searching for  patterns.  A pattern-finding algorithm is  used to  look for  reliably 

recurring spatiotemporal sequences of brain activity. The brain regions encapsulated within these 

patterns and the strength and frequency with which they occur are outlined. Consequently, the 

functional  significance  of  such  a  pattern  is  investigated  along  with  its  relationship  to  brain 

function and dysfunction. Studying repeating patterns within brain activity is  a way to learn 
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about the dynamics of large-scale activity in the brain and also helps understand how it is related 

to brain activity in other scales.  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1.5 – Quasi-periodic patterns in the brain

Indeed,  one  of  the  first  papers  tackling  the  dynamics  of  large-scale  brain  activity  involved 

searching for patterns: In 2009, Waqas Majeed observed a distinguishable sequence of large-

scale events in brain activity recorded from anesthetized rats (Majeed et al., 2009). In 2011, he 

confirmed that the sequence of events –– or spatiotemporal pattern –– could be reliably observed 

through the application of an unbiased pattern-finding algorithm. The spatiotemporal pattern was 

observed in  anesthetized rats  but  also  in  awake,  resting-state  humans (Majeed et  al.,  2011). 

Subsequent  experiments  using electrophysiology demonstrated  that  the  pattern  was  indeed a 

representation of neural activity (Pan et al., 2011; Pan et al., 2013; Thompson et al., 2014). Given 

its  distinct  spatiotemporal  nature  and  its  reliable  recurrence  at  non-periodic  intervals,  the 

observable  sequence  was  dubbed  a  Quasi-Periodic  Pattern  (QPP).  This  dissertation  is  an 

exploration of QPPs.

I argue that searching for inherent patterns is a useful method to understand the dynamics of 

large-scale activity in the brain. I hypothesize that the QPP, observed upon the application of a 

pattern-finding algorithm to brain activity data, is a functional component of large-scale brain 

activity. It contributes to static functional connectivity within and between the default mode and 

task positive networks, and is disrupted in neuropsychiatric disorders involving those two brain 

networks. Furthermore, I suggest that QPPs may be the result of neuromodulation originating 

from the locus coeruleus. I propose that QPPs are a relevant aspect of large-scale brain activity. 

They can assist in understanding healthy brain function and how it is disrupted during disease. 
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In Chapter 2, I will be describing the exact nature of QPPs. This includes an illustration of the 

spatiotemporal pattern itself, the strength and frequency of its occurrence, and the brain regions 

involved. It describes the involvement of the default mode network (DMN) and task positive 

network  (TPN).  It  also  shows how the  spatiotemporal  pattern  of  the  QPP changes  between 

resting-state and task-performing individuals. Chapter 2 argues that QPPs are a contributor to 

functional connectivity in the brain, specifically in the DMN and TPN.

Chapter  3  describes  QPPs’  contribution  to  functional  connectivity  in  individuals  with 

neuropsychiatric disorders. Chapter 3 has two sections. The first investigates QPPs in individuals 

with attention-deficit/hyperactivity disorder, which involves disruption of functional connectivity 

in the DMN and TPN. The second investigates QPPs in individuals with stroke, which is not 

linked to  functional  connectivity  disruptions  in  either  of  the  functional  networks.  Chapter  3 

shows that  QPPs contribute  to  functional  connectivity  in  DMN and TPN regions  that  show 

disrupted functional connectivity during neuropsychiatric disorders. Chapter 2 argues for a role 

of QPPs in the maintenance of healthy brain function.

Chapter 4 describes an experiment in rodents, which probes the locus coeruleus as a possible 

driver of the brain activity captured in QPPs. In doing so, it investigates the ability of deep brain 

nuclei to influence QPPs and large-scale brain activity dynamics through neuromodulation. The 

experiment reveals that QPPs are disrupted when locus coeruleus activity is pharmacologically 

manipulated. Chapter 4 argues for a neural driver of QPPs.

Finally,  Chapter  5  closes  the  argument  from  all  chapters,  presenting  and  discussing  the 

conclusions from all experimental observations in the dissertation.  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2.1 – Introduction

Functional  connectivity  (FC)  is  a  defining  feature  of  rs-fMRI.  Correlation  of  the  blood 

oxygenation  level  dependent  (BOLD) signal  fluctuations  across  brain  regions  is  assumed to 

indicate functional relevance between them (Biswal et al. 1995). FC has proven to be a useful 

tool in studying the brain, particularly when brain organization is disrupted during neurological 

disorders (Gillebert & Mantini 2013; Mohan et al. 2016; Pievani et al. 2014).

Despite the wide use of rs-fMRI and its clinical potential, the mechanisms that give rise to FC 

are not fully understood. In other words: We do not know what drives the coordination of neural 

activity in large-scale networks. It  has been postulated that the functional architecture of the 

brain  derives  from large-scale,  low-frequency  fluctuations  of  neural  activity  (Buzsáki  2006; 

Canolty & Knight 2010; He et al.  2008; Nir et al.  2008). Infra-slow activity (< 1 Hz) has a 

similar frequency to BOLD fluctuations and appears highly relevant to FC between distant brain 

regions (Grooms et al. 2017; Hiltunen et al. 2014; Palva & Palva 2012; Pan et al. 2013). Phase-

amplitude  coupling  between  different  frequencies  of  brain  activity  demonstrates  the  strong 

relationship  between the  large-scale  infra-slow brain  activity  observable  through BOLD and 

activity in higher frequency bands (Monto et  al.  2008; Raichle et  al.  2011; Thompson et  al. 

2014a).  This  suggests  that  large-scale  brain  activity  in  lower  frequencies  could  provide  a 

framework for the organization of functional systems (Foster et al. 2016).

Studies on FC typically focus on the average correlation between areas over the course of the 

scan. Several studies have shown that this approach ignores complex spatiotemporal patterns of 

activity such as global signal changes to propagating waves or time-lagged patterns of activation 
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(Cole et al. 2016; Matsui et al. 2016; Mitra et al. 2016). Techniques for analysis of the dynamics 

of the BOLD signal allow for a more insightful understanding of real-time brain activity in rs-

fMRI (Chang & Glover, 2010; Hutchison et al. 2013).

Quasi-periodic patterns (QPP) are large-scale network activity that dominate BOLD fluctuations 

(Belloy et  al.  2018;  Majeed et  al.  2011;  Thompson et  al.  2014b;  Yousefi et  al.  2018).  They 

involve propagation of  activity across several  cortical  and subcortical  regions.  Brain regions 

initially involved in the QPP are those within the default mode network. Activity then follows in 

regions pertaining to executive control, or the task positive network, alongside deactivation in 

the DMN. QPPs appear to reflect spatial patterns of infra-slow electrical activity (Pan et al. 2013; 

Thompson et al. 2014b; Grooms et al. 2017). The wide spatial extent of the coordinated changes 

in the QPP is likely to contribute strongly to the BOLD correlation observed in the involved 

brain networks.

Task performance drastically alters the functional architecture of the brain, shifting focus towards 

task-positive regions (Elton et al. 2015; Goparaju et al. 2014; Thompson et al. 2013). So far, a 

detailed analysis  of  QPPs has only been conducted in anesthetized animals and resting-state 

humans (Belloy et al. 2018; Majeed et al. 2009; Majeed et al. 2011; Thompson et al. 2014b; 

Yousefi et al. 2018). Task performance tends to increase anti-correlation between the DMN and 

TPN (Thompson et  al.  2013),  suggesting that  QPP strength or  frequency may be increased, 

altering measured FC as a result. The involvement of specific brain areas in any given task could 

also influence the spatiotemporal pattern of the observed QPPs.
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In  this  Chapter,  we  identify  QPPs  in  humans  during  rest  and  while  performing  a  working 

memory task. We look for differences in the spatiotemporal pattern, strength, and frequency of 

the QPPs acquired from each group. We then minimize the QPP’s contribution to the BOLD 

signal through a linear regression of the QPP from the functional scans. By doing so, we measure 

the impact of the QPP on FC by calculating FC before and after the regression. We look at FC 

changes  throughout  the  brain  and  specifically  within  and  between  the  DMN and  TPN.  We 

hypothesize that removal of the QPPs from the functional scans through linear regression leads 

to a reduction in FC strength within the DMN as well as a decrease in anti-correlation between 

the DMN and TPN. Our findings suggest that QPPs play an important role in maintaining the 

normal functional architecture of the two functional networks and that low-frequency activity in 

the form of QPPs contribute substantially to the organization of FC in the brain.  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2.2 – Methods

2.2.1 – Data acquisition and preprocessing

MRI  data  from  100  randomly-selected  unrelated  individuals  (ages  22-36,  54  female)  was 

downloaded from the Human Connectome Project (Van Essen et al. 2012). One anatomical scan 

was  used  for  each  individual  (T1-weighted  three-dimensional  magnetization-prepared  rapid 

gradient echo (T1w 3D MPRAGE) sequence; TR = 2400 ms, TE = 2.14 ms, TI = 1000 ms, FA = 

8˚, FOV = 224 mm x 224 mm, voxel size 0.7 mm isotropic) (Milchenko & Marcus 2012). 

Two resting-state (RS) functional scans approximately 15 minutes in length were used (Gradient-

echo Echo Planar Imaging; TR = 720 ms, TE = 33.1 ms, FA = 52˚, FOV = 208 mm x 180 mm 

(RO x PE), matrix = 104 x 90 (RO x PE), slice thickness = 2.0 mm; 72 slices; 2.0 mm isotropic 

voxels,  multi-band  factor  =  8,  echo  spacing  0.58  ms)  with  right-to-left  (RL)  phase  encode 

direction in one scan and left-to-right (LR) phase encode direction in the other (Chen et al. 2015; 

Feinberg et al. 2010; Setsompop et al. 2011). Two working memory task functional scans (TP) 

were also used (RL and LR phase encode direction) with the same scan parameters as RS scans, 

except  that  the  duration  was  approximately  5  minutes  in  length.  Though  any  cognitively 

demanding task could have been chosen for this study, working memory was chosen for its high 

demand for controlled processing and its relatively long duration compared to other HCP task 

fMRI scans. To adjust for the difference in the lengths of RS and TP scans, the RS scans were 

truncated to the same length as the TP scans. The task, described in Barch et al. (2013), involved 

a version of the N-back task assessing working memory and cognitive control in block format. In 

each functional scan, there are 8 task blocks, each lasting 25 seconds, and 4 fixation blocks, each 



�  of �19 202

lasting 15 seconds. Half the alternating task blocks use a 2-back working memory task whereas 

the other half use a 0-back memory task (Owen et al., 2005). The blocks were divided into four 

categories: Faces, places, tools, and body parts. For all preprocessing steps, the preprocessing 

pipeline outlined in Appendix A of this dissertation was applied.

2.2.2 – Pattern acquisition

A spatiotemporal pattern-finding algorithm was used to search for repeating patterns of BOLD 

activation in the functional scans from RS and TP individuals separately. A detailed description 

of the algorithm used and the parameters inputted are outlined in Majeed et  al.  (2011).  The 

pattern-finding algorithm selects a user-defined starting segment from within a functional scan 

and conducts a sliding correlation of the segment with the same functional scan. If the activity in 

the segment repeats at other instances in the functional scan, the resulting sliding correlation 

vector contains peaks indicating those occurrences. Additional segments are extracted at each of 

these instances and averaged together into an updated segment. Subsequent sliding correlations 

are  then  conducted  between  the  continually  updated  segment  and  the  functional  scan.  This 

process is repeated until the updated segment no longer shows variation and represents a reliably 

repeating pattern of activity within the functional scan. The result of the algorithm is a repeating 

spatiotemporal pattern from within the functional scan and a sliding correlation vector of the 

pattern with the functional scan itself.

There are two user-defined parameters that can influence the output of the algorithm: The length 

and location of  the  starting segment.  Previous  work in  resting-state  fMRI has  shown that  a 

reliably observable QPP lasts approximately 20 seconds. Based on previous literature (Majeed et 
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al., 2011; Yousefi et al., 2018) and preliminary analysis (Supplementary Figure 1; Supplementary 

Figure 2), a length of 20 seconds was used when selecting a starting segment for the pattern-

finding algorithm. The location of the starting segment can affect the spatiotemporal pattern that 

is outputted by the algorithm. According to initial observations, QPPs involve an initial increase 

in BOLD signal in regions within the DMN and a decrease in BOLD signal in regions within the 

TPN. The activity propagates along the cortex to a decrease in BOLD signal in the DMN and an 

increase in BOLD signal in the TPN. Simply put, the QPP consists of a propagation of BOLD 

activity between the DMN, or a DMN/TPN switch (Majeed et al. 2011; Yousefi et al. 2018). 

Though the pattern-finding algorithm has been shown to reliably output this pattern, the DMN/

TPN switch can occur  in  varying phases  depending on the  location of  the  starting segment 

(Yousefi et al. 2018). To ensure the DMN/TPN switch occurs in the same phase in both groups, 

the algorithm is run multiple times for each group with starting segments selected at random 

locations in the functional scan.

For  the  RS  and  TP groups  separately,  25  randomly-selected  functional  scans  from  unique 

individuals were concatenated. DMN and TPN maps for each group were acquired by selecting 

10% of brain voxels most correlated and most anti-correlated with the posterior cingulate cortex 

respectively.  This  was  primarily  based  on  the  observation  by  Fox  et  al.  (2005),  which 

demonstrated that the DMN and TPN are reliably observable anti-correlated functional networks 

in the brain and a review on the DMN by Raichle (2015), which describes the PCC as a central 

node of the DMN. For each group, the pattern-finding algorithm was applied to the concatenated 

functional scans 100 times with unique randomly-selected starting segments. All 100 patterns 

acquired for each group from the pattern-finding algorithm were analyzed for a DMN-to-TPN 
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switch.  The  pattern  most  closely  matching  a  DMN-to-TPN  transition  was  selected  and 

designated as a representative QPP for that group. By doing so, one representative QPP was 

chosen for the RS group and another for the TP group. The spatiotemporal pattern of the two 

QPPs was later compared. 

Next, sliding correlation vectors were calculated between the two observed QPPs and functional 

scans from both RS and TP groups. Peaks, or local maxima, in the sliding correlation vectors 

signify occurrences of the QPP during the functional scan. This helps quantify the strength and 

frequency of QPP occurrence over time. The strength refers to correlation strength of the QPP 

with the functional scan, measured by the height of the peaks in the sliding correlation vectors. 

Frequency refers to how often these peaks occur. The sliding correlation vectors from all scans in 

each group were concatenated for the RS and TP QPPs separately. First,  the mean height of 

peaks greater than 0.1 was calculated for the RS and TP QPPs in both the RS and TP scans. 

Second, the mean time interval between the peaks was also calculated for both QPPs in both 

groups.  Third,  the sliding correlation vectors were represented as histograms for comparison 

across groups without the need of the arbitrary 0.1 correlation threshold.

2.2.3 – Blocks in the task-performing scans

As described earlier, the working memory task involved four 15-second fixation blocks, four 25-

second  0-back  memory  task  blocks,  and  four  25-second  2-back  memory  task  blocks.  To 

investigate the effects of the individual blocks on the QPPs, the sliding correlation vectors of the 

RS and TP QPPs were  separated  by  block.  The  mean peak height  for  all  peaks  >  0.1  was 

calculated and the sliding correlation vectors were represented as histograms to be compared.
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2.2.4 – QPP regression

The  RS  and  TP QPPs  were  regressed  separately  from the  RS  and  TP scans  to  study  their 

contributions to FC. For each functional scan, a unique regressor was calculated per brain voxel. 

This was done by convolving the QPP’s sliding correlation vector with the timecourse of each 

brain voxel during the QPP. The obtained regressor was z-scored to match the signal in the 

functional scan. Then, linear regression was carried out using standardized/beta coefficients and 

the regressors calculated for each brain voxel.  This method produced a functional scan with 

attenuated presence of the QPP in the BOLD signal. The RS QPP was regressed from both RS 

and TP scans and the TP QPP was regressed from both RS and TP scans.

The efficacy of this regression method was demonstrated by conducting a subsequent sliding 

correlation  of  the  QPPs  with  the  QPP-regressed  functional  scans.  Like  the  analysis  of  the 

concatenated sliding correlation vectors before QPP regression, the mean peak height and time 

interval between QPPs was calculated and the sliding correlation vectors were represented as 

histograms. The mean values and the histograms were compared to the ones created before QPP 

regression quantify the efficacy of the QPP regression in removing the presence of the QPPs in 

the functional scans. 

2.2.5 – Analysis of functional connectivity

A region of interest  (ROI) atlas was used to summarize FC between all  brain regions.  Each 

functional scan was parceled into 273 ROIs from the Brainnetome Atlas (Fan et al. 2016). The 

mean signal over time, or timecourse, of each ROI was calculated. The ROI timecourses were 
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used  to  acquire  the  strength  of  FC  between  brain  regions  through  Pearson  correlation.  FC 

strengths between all  ROIs over the course of a functional scan were compiled into one FC 

matrix per scan. All FC matrices from each group underwent a Fischer’s z-transformation and 

were averaged into a mean FC matrix for that group. FC matrices were also calculated for the 

functional scans after the QPPs had been regressed. Two-sample t-tests were performed for each 

ROI connection to check for significant differences in FC between groups. Multiple comparisons 

correction was performed by means of false discovery rate correction using the Benjamini and 

Yekutieli method (2001).  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2.3 – Results

2.3.1 – Default mode and task positive networks

Maps  for  the  DMN  and  TPN  were  acquired  by  locating  areas  strongly  correlated  or  anti-

correlated with the posterior  cingulate cortex respectively (Figure 2.1a,  Figure 2.1b,  bottom-

right). The mean anti-correlation between the DMN and TPN in RS individuals was –0.78 with a 

standard  deviation  of  0.11.  The  mean  anti-correlation  between  the  DMN  and  TPN  in  TP 

individuals  was  –0.84  with  a  standard  deviation  of  0.10.  The  anti-correlation  strength  was 

significantly stronger in TP individuals with a p value of 4.78 × 10-10 calculated using a two-

sample t-test.

The DMN map contained similar regions in both RS and TP individuals. For both the RS and TP 

groups,  the  DMN  included  parts  of  the  superior  and  middle  frontal  gyri,  orbital  gyrus, 

paracentral  lobule,  middle  and  inferior  temporal  gyri,  inferior  parietal  lobule,  precuneus, 

cingulate gyrus, and cuneus. In the RS group, the DMN included parts of the cerebellum, which 

was not seen in the TP group. In the TP group, the DMN included parts of the precentral and 

postcentral gyri, superior temporal gyrus, superior parietal lobule, and striatum, which was not 

seen in the RS group.

The TPN map also contained some variabilities between the RS and TP groups. For both groups, 

the TPN included parts of the superior and inferior frontal gyri, precentral and postcentral gyri, 

inferior temporal gyrus, fusiform gyrus, superior and inferior parietal lobules, insula, cuneus, 
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occipital gyrus, and cerebellum. Unique to the RS group, the TPN included areas in the superior 

temporal gyrus. Unique to the TP group, the TPN included areas in the middle frontal gyrus.

2.3.2 – Quasi-periodic patterns

2.3.2.1 – Comparison of spatiotemporal pattern 

Application  of  the  spatiotemporal  pattern-finding  algorithm resulted  in  the  observation  of  a 

quasi-periodic pattern spanning 20 seconds in both RS and TP individuals (Figure 2.1a, Figure 

2.1b; Supplementary Figure 1; Supplementary Figure 2). For both groups, the QPP involved an 

initial increase in BOLD signal in the DMN with decrease in BOLD signal in the TPN. This was 

followed by decrease in BOLD signal in the DMN and increase in BOLD signal in the TPN. 

Though DMN and TPN behavior  was  similar  in  both  groups,  there  were  differences  in  the 

specific brain regions involved. 

A comparison of the spatiotemporal pattern between the two QPPs was conducted by comparing 

the mean activity of all ROIs during the course of the 20-second QPP. For each of the 273 ROIs, 

a Pearson correlation was conducted between its timecourse in the RS QPP and its timecourse in 

the TP QPP. Strong correlation signifies that the ROI behaved similarly in both groups, whereas a 

strong anti-correlation signifies the ROI behaved in the opposite manner. All ROIs within the 

DMN and TPN that were either strongly correlated (> 0.6 Pearson correlation) or strongly anti-

correlated (< -0.6 Pearson correlation) are shown in Figure 2.1c. For the most part, DMN and 

TPN ROI timecourses were similar between the two groups, with differences dominated by task-

relevant areas. Correlation strength of all 273 ROIs between the two groups’ QPPs can be found 
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in Abbas et al. (2019a). Timecourses of example ROIs that were significantly different between 

the RS and TP QPPs are plotted in Supplementary Figure 3.

2.3.2.2 – Comparison of strength and frequency

Sliding  correlation  of  both  the  RS  and  TP QPPs  with  all  functional  scans  showed  reliably 

recurring  quasi-periodic  peaks  (Figure  2.2a,  Figure  2.2b),  though  at  varying  strengths  and 

frequencies. By concatenating all sliding correlation vectors for each group, three comparisons of 

the temporal aspect of the QPPs were made:

First, the mean correlation strengths at all peaks > 0.1 in the sliding correlation vectors were 

calculated  and  compared  for  the  RS  and  TP QPPs  in  both  groups  (Fig  2.1c).  The  mean 

correlation strength of the RS QPP in RS scans was significantly higher than the TP QPP (p = 

1.14 x 10-8). The mean correlation strength of the TP QPP in TP scans was significantly higher 

than the RS QPP (p = 1.7 x10-110). Also, the mean correlation strength of the TP QPP in TP scans 

was significantly higher than the RS QPP in RS scans (p = 5 x 10-46). 

Second, the mean time intervals between all peaks > 0.1 in the sliding correlation vectors was 

calculated and compared for the RS and TP QPPs in both the RS and TP scans (Fig 2.1d). The 

mean time interval between RS QPP occurrences in the RS scans was significantly shorter than 

the TP QPP (p = 2.9 x 10-9). The mean time interval between TP QPP occurrences in the TP scans 

was shorter than the RS QPP, though with a relatively smaller significance (p = 0.0237). The 

mean time interval between TP QPP occurrences in the TP scans was significantly longer than 

the mean time interval between RS QPP occurrences in the RS scans (p = 9.8 x 10-17). 
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Third, the sliding correlation vectors of the RS and TP QPPs with all scans were represented as 

histograms  for  comparison  between  groups  without  the  use  of  an  arbitrary  0.1  correlation 

threshold (Fig 2.2e,  2.2f).  A wide,  short  histogram indicates  higher  frequency of  correlation 

values in the sliding correlation vector that are far from zero. This suggests a stronger presence 

of  the  QPP in  the  functional  scan.  A narrow,  tall  histogram  indicates  higher  frequency  of 

correlation values in the sliding correlation vector that are closer to zero. This suggests a weaker 

presence of the QPP in the functional scan. The histograms were compared using a Kolmogorov-

Smirnov (KS) test and only significant differences with an alpha value of 1 x 10-6 are discussed. 

The RS QPP showed a stronger presence in the RS group compared to the TP group. Similarly, 

the TP QPP showed a stronger presence in the TP group compared to the RS group. Finally, the 

TP QPP showed a stronger presence in the TP group than the RS QPP showed in the RS group.

Additionally,  the sliding correlation vectors  of  the RS and TP QPPs were compared for  the 

fixation, 0-back, and 2-back task blocks in the working memory task scans. Comparison showed 

that the blocks did not have a significant effect on the strength and/or frequency of the QPPs 

(Supplementary Figure 4).
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Figure 2.1: Spatiotemporal pattern of QPPs in RS an TP groups 

(a) Top: Spatiotemporal pattern seen in the RS QPP. Only BOLD signal changes 1.5x 

the standard deviation from the mean are shown. Bottom-left: DMN and TPN 

timecourse during the RS QPP. Bottom-right: Maps of DMN and TPN acquired from RS 

individuals. (b) Top: Spatiotemporal pattern seen in the TP QPP. Only BOLD signal 

changes 1.5x the standard deviation from the mean are shown. Bottom-left: DMN and 

TPN timecourses during the TP QPP. Bottom-right: Maps of DMN and TPN acquired 
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from TP individuals. (c) Top: Spatiotemporal differences between the RS and TP QPPs. 

Bottom: Regions in the DMN and TPN that showed strong similarity between groups (> 

0.6 Pearson correlation, shown in red/yellow) and strong dissimilarity between groups (< 

-0.6 Pearson correlation, shown in blue/turquoise). A full list of these regions can be 

found in Abbas et al., (2019a). 

2.3.3 – QPP regression 

Linear regression was effective in attenuating the presence of QPPs in the functional scans. The 

sliding  correlation  vectors  of  the  QPPs  with  QPP-regressed  functional  scans  showed  a 

diminished presence of the QPPs in the functional scans (Figure 2.2). For peaks in the sliding 

correlation vectors  > 0.1,  the  mean correlation strength of  the RS and TP QPPs with  QPP-

regressed RS and TP scans was significantly reduced (p = 1.3 x 10-88, p = 1.2 x 10-58, p = 1.2 x 

10-48, p = 2.6 x 10-92 respectively). The mean time interval between occurrences of the RS and TP 

QPPs with QPP-regressed RS and TP scans significantly increased (p = 1 x 10-33, p = 3 x 10-21, p 

= 5.2 x 10-26, p = 1.4 x 10-7 respectively). The histograms representing the sliding correlation of 

the RS and TP QPPs with QPP-regressed RS and TP scans also showed a significantly weaker 

presence of the QPPs. 
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Figure 2.2: Strength and frequency of QPPs in RS and TP groups 

(a) Example sliding correlation of the RS QPP with three concatenated scans from 

unique individuals during rest (left) and the same scans during task (right) before QPP 
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regression (blue) and after QPP regression (red). (b) Example sliding correlation of the 

TP QPP with three concatenated scans from unique individuals during rest (left) and the 

same scans during task (right) before QPP regression (blue) and after QPP regression 

(red). (c) Mean correlation strength of peaks > 0.1 in the cumulative sliding correlation 

of the RS and TP QPPs with all RS scans (left) and all TP scans (right) before QPP 

regression (blue) and after QPP regression (red). (d) Mean time interval between peaks 

with correlation strength > 0.1 in the cumulative sliding correlation of the RS and TP 

QPPs with all RS scans (left) and all TP scans (right) before QPP regression (blue) and 

after QPP regression (red). (e) Histogram of the cumulative sliding correlation of the RS 

QPP with all RS scans (left) and all TP scans (right) before QPP regression (blue) and 

after QPP regression (red). (f) Histogram of the cumulative sliding correlation of the TP 

QPP with all RS scans (left) and all TP scans (right) before QPP regression (blue) and 

after QPP regression (red). 

2.3.4 – Overall functional connectivity differences 

The FC matrices display the strength of FC in all 37,128 connections between the 273 ROIs in 

one image representing the static functional architecture of the brain. Data points closer to the 

central diagonal show FC strength in local connections while data points further away from the 

central diagonal show FC strength in long-range connections between brain regions.

An average FC matrix was calculated for RS and working memory TP individuals (Figure 2.3a). 

Significant  FC  differences  between  RS  and  TP individuals  were  widespread  (Figure  2.3b, 

bottom-left), with 17,156 connections seeing a difference in FC strength. Native QPPs are those 
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acquired from the same group; for example, the RS QPP is native to RS functional scans. Once 

native  QPPs  were  regressed  from  all  functional  scans  in  each  group,  the  number  of  FC 

differences between RS and TP individuals decreased by 40% to 10,259 (Figure 2.3b, top-right; 

Table 2.1).

Regression of the RS QPP from RS functional scans led to 8,662 significant changes in FC 

(Figure  2.3c,  bottom-left).  When  the  TP QPP was  regressed  from  the  RS  scans,  only  188 

connections were significantly altered (Figure 2.3c, top-right; Table 2.2). Regression of the TP 

QPP from TP functional scans led to 5,756 significant changes in FC (Figure 2.3d, top right). 

When the RS QPP was regressed from the TP scans, the number of significant changes decreased 

to 1,062 (Figure 2.3d, bottom-left; Table 2.2).  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Figure 2.3: FC in all ROIs in RS and TP groups before/after QPP regression 

Functional connectivity in 273 regions of interest. (a) Bottom-left: Mean FC in the RS 

group. Top-right: Mean FC in the TP group. (b) Bottom-left: Significant differences in FC 

between the RS and TP group (n = 17,156). Top-right: Significant differences in FC 

between the RS and TP group after regression of their native QPPs (n = 10,259). (c) 
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Bottom-left: Significant differences in FC in the RS group after regression of the RS 

QPP (n = 8,662). Top-right: Significant differences in FC in the RS group after 

regression of the TP QPP (n = 188). (d) Bottom-left: Significant differences in FC in the 

TP group after regression of the RS QPP (n = 1,062). Top-right: Significant differences 

in FC in the TP group after regression of the TP QPP (n = 5,756). 

Table 2.1: FC differences between RS and TP group before/after QPP regression 

When comparing significant FC differences between the original functional scans and 

after the QPPs had been regressed, the first column shows the percent distribution of 

the different directions the FC changes occurred in, the second column shows the mean 

magnitude shift in strength of Pearson correlation for each of the directions, and the 

third column shows the total number of ROI connections with a significant change in FC 

between groups. The total number of significant changes in FC decreased by 40% after 

regression of native QPPs. 

FC changes Original functional scans After regression of native QPPs

RS 
vs. 
TP

– → + 44% ⬆ 0.24

9,133

34% ⬆ 0.17

5,138+ → + 27% ⬆ 0.19 28% ⬆ 0.17

– → – 29% ⬆ 0.17 38% ⬆ 0.14

+ → – 33% ⬇ 0.23

8,023

31% ⬇ 0.17

5,121– → – 42% ⬇ 0.20 41% ⬇ 0.15

+ → + 25% ⬇ 0.18 28% ⬇ 0.16
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2.3.5 – Functional connectivity changes in the DMN and TPN

QPP regression particularly affected connections within the DMN and TPN as well as between 

the two networks. After regression of the RS QPP from RS scans, there was a strong decrease in 

local FC in the anterior regions of the DMN, namely the superior frontal, middle frontal, and 

orbital gyri. There was also a sharp decrease in connectivity between the anterior and posterior 

regions of the DMN. Additionally, the anti-correlation between the DMN and TPN diminished 

significantly. The TPN itself showed a decrease in FC, both locally and across regions (Figure 

2.4a, bottom-left). Alternatively, regression of the TP QPP from RS scans did not result in as 

widespread changes in the DMN and TPN (Figure 2.4a, top-right).

Regression of the TP QPP from TP scans also affected areas in the DMN and TPN (Figure 2.4b, 

top-right). Similar to the RS group, there was a decrease in FC between anterior and posterior 

regions of the DMN. However, the local decreases in FC were seen in the posterior regions, 

namely the precuneus and cingulate gyrus.  There were both decreases and increases in anti-

correlation between the DMN and TPN, and a mixture of decreases and increases in FC between 

regions within the TPN. The FC changes when the RS QPP was regressed from the TP group 

showed similarity with RS individuals, though were significantly smaller in number.
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Figure 2.4: FC in DMN and TPN ROIs in RS and TP before/after QPP regression 

(a) Bottom-left: Significant differences in FC in the RS group after regression of the RS 

QPP. Top-right: Significant differences in FC in the RS group after regression of the TP 

QPP. (b) Bottom-left: Significant differences in FC in the TP group after regression of 

the RS QPP. Top-right: Significant differences in FC in the TP group after regression of 

the TP QPP. 
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Table 2.2: FC differences between RS and TP group before/after QPP regression 

For the RS and TP groups separately, when comparing significant changes in FC after 

regression of the RS QPP and after regression of the TP QPP, the 1st column shows the 

percent distribution of the different directions the FC changes occurred in, the 2nd 

column shows the mean magnitude shift in strength of Pearson correlation for each of 

the directions, and the 3rd column shows the total number of ROI connections with a 

significant change in FC between groups. Regression of the TP QPP from the RS scans 

showed a 98% decrease in significant FC changes when compared to regression of the 

RS QPP form RS scans. Regression of the RS QPP from the TP scans showed a 82% 

decrease in significant FC changes when compared to regression of the TP QPP from 

TP scans. 

FC changes Regression of RS QPP Regression of TP QPP

RS

– → + 22% ⬆ 0.18

4,271

60% ⬆ 0.15

139+ → + 7% ⬆ 0.14 27% ⬆ 0.15

– → – 71% ⬆ 0.16 13% ⬆ 0.13

+ → – 35% ⬇ 0.18

4,391

26% ⬇ 0.14

49– → – 21% ⬇ 0.15 33% ⬇ 0.14

+ → + 44% ⬇ 0.16 41% ⬇ 0.16

TP

– → + 26% ⬆ 0.16

553

8% ⬆ 0.15

2,481+ → + 27% ⬆ 0.16 2% ⬆ 0.13

– → – 47% ⬆ 0.14 90% ⬆ 0.19

+ → – 18% ⬇ 0.15

508

29% ⬇ 0.16

3,275– → – 61% ⬇ 0.15 6% ⬇ 0.13

+ → + 21% ⬇ 0.15 65% ⬇ 0.17
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2.4 – Discussion

This  experiment  adds  to  similar  reports  on  the  presence  of  reliably  recurring  quasi-periodic 

patterns in the brain (Belloy et al. 2018; Majeed et al. 2011; Thompson et al. 2014; Yousefi et al. 

2018). This was the first time QPPs were examined in whole-brain data from TP individuals. 

Comparison of the QPPs acquired from RS and TP individuals show distinct  spatiotemporal 

differences. These differences are specific to brain regions involved in the working memory task, 

suggesting that variability in the QPPs may be task-specific. Regression of the QPPs from the 

functional scans showed that QPPs have a strong effect on connectivity strength between brain 

regions. This effect is concentrated towards DMN and TPN FC, two networks central to the 

pattern.

2.4.1 – DMN and TPN differences across groups 

Details on the working memory task used in this study can be found in Barch et al. (2013), along 

with the brain regions activated and deactivated during the 0-back and 2-back tasks respectively. 

Overall, presence of a task led to strong activations in TPN regions and deactivations in DMN 

regions. Since the DMN and TPN maps for RS and TP scans were created using all time points 

irrespective of task blocks, the differences in brain regions that were involved in either task block 

are not considered when comparing DMN and TPN maps between the groups.

Regions mapped as DMN areas in this study largely agreed with previous findings (Fox et al. 

2005). However, there were some differences in DMN maps created from the RS group and the 

TP group. The inclusion of certain cerebellar regions in the DMN was unique to the RS group. 
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These same regions were activated during task (Barch et al. 2013), reducing their co-activation 

with other DMN regions in the TP group. Inclusion of parts of the precentral and postcentral 

gyri, superior temporal gyrus, superior parietal lobule, and striatum in the DMN was unique to 

the TP group. The precentral and postcentral gyri as well as the superior temporal gyrus were 

deactivated during task. This increase in anti-correlation with TPN areas is  likely why these 

regions  were  included  in  the  DMN map in  the  TP group.  The  superior  parietal  lobule  and 

striatum did not follow this pattern as they were activated during task.

The TPN map also  agreed with  previous  findings  (Fox et  al.  2005)  and was  similar  across 

groups, with exceptions. A small area in the middle frontal gyrus was included in the TPN map 

for TP individuals. The middle frontal gyrus is one of the regions strongly activated during task, 

when the DMN is being deactivated. Its categorization as a TPN area unique to TP individuals is 

likely due to this  anti-correlation with the DMN during the task.  Similarly,  inclusion of  the 

superior temporal gyrus in the TPN was unique to the RS group. This region showed a strong 

deactivation  during  task.  This  lack  of  anti-correlation  with  DMN regions  is  likely  why  the 

superior temporal gyrus was not part of the TPN in the TP group.

2.4.2 – Spatiotemporal pattern of QPPs 

A spatiotemporal  comparison  of  the  DMN portion  of  the  QPPs  acquired  from both  groups 

demonstrates differences similar to those noted in the DMN maps. Both groups’ QPPs show a 

strong increase in BOLD signal in the DMN in the first half of the pattern followed by a decrease 

in  BOLD signal  in  DMN regions  in  the  second half.  As  a  result,  DMN regions  are  highly 

correlated between the two groups’ QPPs. However, there are exceptions. This includes regions 
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in the superior and middle frontal gyri, the cingulate gyrus, precuneus, inferior parietal lobule, 

paracentral  lobule,  precentral  gyrus,  and  superior  parietal  lobule.  These  regions  follow  the 

opposite  trend  in  the  TP QPP when  compared  to  the  RS  QPP.  This  is  consistent  with  the 

observation that some of these regions are only seen in the DMN map from the TP group, and 

not the RS group. Both groups’ QPPs also show a strong decrease in BOLD signal in the TPN in 

the first half of the pattern followed by an increase in BOLD signal in TPN regions in the second 

half. As was seen with the DMN, there are exceptions. This includes regions in the superior and 

middle  frontal  gyri,  the  superior  and  middle  temporal  gyri,  the  pre-  and  post-central  gyri, 

superior  and  inferior  parietal  lobule,  fusiform  gyrus,  insula,  and  cerebellum.  These  regions 

follow the opposite trend in the TP QPP when compared to the RS QPP. Interestingly, Barch et 

al. (2013) shows that many of the regions that behave differently across the two QPPs are also 

relevant to the task being performed. 

The robust spatiotemporal differences in the QPPs during task performance compared to RS are 

intriguing and suggest that the QPP is not a fixed pattern of coordinated activity but rather a 

flexible  framework  that  organizes  the  brain  into  large-scale  networks  to  optimize  task 

performance. Thus, variabilities in the QPP’s spatial pattern may be task-specific, and other tasks 

involving different brain regions may alter the spatial pattern of the QPP in a different way.

Since application of the pattern-finding algorithm requires a few minutes of continuous data at 

the very least, spatiotemporal comparison of the QPPs across the fixation, 0-back, and 2-back 

blocks during the TP scan is not feasible. Given that all time points in the scans were used to 

acquire QPPs, the differences highlighted between the RS and TP QPPs are meant to reflect 
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changes as an overall product of task performance rather than changes specifically due to 0-back 

or 2-back tasks. 

2.4.3 – Strength and frequency of QPPs 

The QPPs acquired from both the RS and TP groups showed quasi-periodic peaks in their sliding 

correlation  vectors  with  all  functional  scans.  Unsurprisingly,  the  RS  and  TP QPPs  showed 

stronger presence in their native scans compared to the opposing scans. Additionally, the TP QPP 

showed greater correlation strength in the TP scans than the RS QPP did in RS scans, which may 

account  for  the significantly stronger  anti-correlation between the DMN and TPN in the TP 

group observed here and in prior studies (Hampson et al. 2010; Kelly et al. 2008). 

Though a spatiotemporal comparison of the QPPs between fixation, 0-back, and 2-back blocks 

was not possible, a comparison of the strength and frequency of the QPPs in each task block was 

conducted. The sliding correlation vectors of both RS and TP QPPs did not show any differences 

across the three blocks in the TP scans. Hence, the differences in the strength and frequency of 

QPPs highlighted between RS and TP individuals are meant to highlight changes as an overall 

result of task performance, rather than an effect of 0-back or 2-back tasks specifically. 

A cognitively demanding task such as the one used in this study leads to an inherently higher 

state  of  vigilance  compared  to  rest.  Given  the  QPP’s  involvement  of  both  DMN and  TPN 

activity, its possible origin in neuromodulatory input, and the relationship between infra-slow 

electrical activity and vigilance levels, it seems plausible that the greater strength of the QPP in 

the  TP  group  might  arise  from  the  increased  alertness  needed  for  task  performance.  A 
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preliminary analysis  conducted in data  from rhesus macaques showed that  QPPs occur with 

greater strength and frequency in awake macaques compared to anesthetized macaques (Abbas et 

al.  2016),  suggesting that vigilance may be playing a role.  Another study showed that when 

performing a psychomotor vigilance task, greater anti-correlation between the DMN and TPN 

was tied to faster performance on the task (Thompson et al. 2013), which may be tied to the 

strength of the QPP. The effect of neuromodulatory inputs on QPPs is further investigated in 

Chapter 4.

The observation of the RS QPP in TP scans and the TP QPP in RS scans is likely due to the 

similarity  in  the  spatial  patterns  of  the  QPPs.  As described above,  though there  are  distinct 

differences in the QPPs acquired from both groups, there are strong similarities as well. When a 

sliding correlation is being calculated, any similarities between the RS and TP QPPs may lead to 

higher correlation values than if the spatial pattern of the QPPs had been entirely different. If this 

is true, then the sliding correlation vectors of the RS and TP QPPs should align for the same 

scan. To investigate this, a cross-correlation of the sliding correlation vectors of the RS QPP and 

TP QPP in both groups was conducted. At the lag showing maximum correlation strength, the 

correlation between the two QPPs’ sliding correlation vectors was 0.55. This suggests that the 

sliding correlation vectors of the two QPPs could indeed be aligned, which would explain the 

‘presence’ of the RS QPP in TP scans and vice versa.

2.4.4 – Functional connectivity changes

With regression of the RS QPP from RS scans,  there were strong local FC decreases in the 

anterior regions of the DMN and in the longer-range connections between anterior and posterior 
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DMN nodes. A general decrease in connectivity within the TPN also occurred. As would be 

expected, there was an attenuation of anti-correlation between the DMN and TPN. Loss of FC in 

these regions is  significant in that  many neurological  and psychiatric patients exhibit  similar 

connectivity disruptions during RS scans. Previous studies have shown that local connectivity 

changes in the anterior regions of the DMN are associated with schizophrenia (Holt et al. 2011), 

while reduced FC between anterior and posterior regions of the DMN in associated with ADHD 

(Choi et al. 2013), Alzheimer’s Disease (Sheline et al. 2010a; Zhang et al. 2009), as well as aging 

(Andrews-Hanna et al. 2007). The relationship between DMN and TPN activity and the strength 

of their anti-correlation is important for normal brain function and task performance (Fox et al. 

2005; Thompson et al. 2013). Decreased anti-correlation between the DMN and TPN is even 

seen in individuals with ADHD (Hoekzema et al. 2013; Posner et al. 2014) and is restored after 

treatment with atomoxetine and methylphenidate (Liddle et al. 2010; Lin et al. 2015). The next 

chapter will show that QPPs are disrupted in individuals with ADHD (Abbas et al. 2018a). Given 

that regression of the QPP leads to altered FC in those same connections, a disruption of the QPP 

may be one of the factors in the development of such disorders.

Regression of the TP QPP from RS scans did not result in many significant changes in FC. This 

suggests that the TP QPP may be particular to the task or TP states in general, and may occur 

only rarely while the individual is at rest.

In TP scans, FC differences were seen after regression of both the RS and TP QPPs. Once more, 

the differences seen pertained to DMN and TPN regions and their interconnectivity. Similar to 

regression of the RS QPP from RS scans, regression of the TP QPP from TP scans led to an 

overall decrease in FC strength between anterior and posterior regions of the DMN. Unlike the 
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RS group, the major short-range FC decreases in the DMN were seen in its  posterior node. 

Additionally, regression of the TP QPP in TP scans led to a decrease in FC between DMN and 

TPN areas.  Since the DMN and TPN are already anti-correlated,  this meant a stronger anti-

correlation between the two networks. This suggests that though the RS QPP may be playing a 

constructive role in distinguishing DMN and TPN regions from each other, the TP QPP in TP 

scans is doing the opposite. Hyper-connectivity between anterior and posterior regions of the 

DMN  is  seen  during  Major  Depressive  Disorder  particularly  during  task  performance  as  a 

potential result of the inability to shut off DMN activity during tasks (Grimm et al. 2008; Sheline 

et al. 2009; Sheline et al. 2010b). There were two regions that showed the similar changes to FC 

as the RS group, namely the superior parietal lobule and the cuneus. However, even for these 

regions, the middle frontal gyrus showed an increase in anti-correlation rather than a decrease.

Regression of the RS QPP from TP scans did result in some significant differences in FC. These 

changes followed the same trend as when the RS QPP was regressed from RS scans, albeit at a 

much smaller scale. These findings suggest that the RS QPP may still be occurring at a weaker 

frequency in the TP state. If so, it would be serving a similar purpose in maintaining strong FC 

within the DMN and TPN whilst contributing towards their overall anti-correlation.

There were wide-ranging significant differences in FC between RS and TP individuals. This was 

expected due to the significantly altered functional architecture of the brain during TP states 

compared  to  RSs  (Elton  et  al.  2015;  Goparaju  et  al.  2014;  Thompson  et  al.  2013).  The 

significance of these FC differences is beyond the scope of this study. However, they confirm 

work done by previous  studies  highlighting FC differences  between RS and TP individuals. 

Noteworthy for this paper is the decrease in the number of FC differences between RS and TP 
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scans  after  regression  of  the  QPP.  Many  of  the  FC  differences  seen  between  RS  and  TP 

individuals were diminished significantly once the QPP was regressed. This suggests that the 

different brain states could partially be a result of QPP activity.

2.4.5 – Implications for fMRI

Resting-state fMRI is popular for patient groups as it does not require the performance of a task, 

reducing  the  need  for  active  patient  cooperation.  Alterations  in  FC  have  been  observed  in 

numerous neurological and psychiatric disorders, especially in the DMN. The differences in FC 

tend to be interpreted in terms of network interactions (i.e., a brain region is hypo-connected, or 

modularity  is  decreased  (Mohan  et  al.  2016)).  However,  the  presence  of  QPPs  suggests  a 

complementary interpretation where activity within and between networks is coordinated by a 

non-localized mechanism that simultaneously modulates activity in large swaths of the brain. 

Thus, the disruption of FC could at least in part reflect dysfunction of the process that produces 

QPPs. A recent paper shows that different brainstem nuclei are linked to activity in the DMN and 

TPN (Bär et al. 2016). The QPP could arise from coordinated input from these neuromodulatory 

regions, a hypothesis supported by findings reported in Chapter 4 that QPPs are weaker in rats 

with diminished locus coeruleus activity (Abbas et al. 2018b). Several neurological disorders 

such  as  Alzheimer’s  disease  and  Parkinson’s  disease  exhibit  early  degeneration  of 

neuromodulatory nuclei, which could then account for the disrupted FC that is observed in those 

individuals.

Besides implications for clinical FC studies, the strong contribution of QPPs to FC also affects 

the interpretation of more basic neuroscience studies. If QPPs are related to neuromodulatory 



�  of �46 202

input and arousal, changes in FC observed during task performance may be tied to increased 

arousal  during  difficult  tasks  and  lower  levels  of  arousal  during  less  difficult  tasks.  This 

complicates  the  use  of  FC  to  understand  how  the  large-scale  networks  of  the  brain  are 

reorganized for optimal task performance.

2.4.6 – Limitations 

While the pattern-finding algorithm depends on a few parameters that must be chosen by a user, 

a substantial body of work has shown that QPPs can be reliably detected in multiple species, 

under different physiological conditions, and by using several variations of the basic pattern-

finding algorithm. Hence, QPP detection appears quite robust. This study builds upon previous 

work to examine the contribution of the QPPs to FC using regression. 

The use of regression to minimize the contribution of QPPs fundamentally assumes that QPPs 

are additive to the remaining BOLD signal.  Multi-modal experiments in rodents support this 

assumption: QPPs are more closely linked to infra-slow activity while dynamic measures of 

BOLD correlation are more reflective of higher frequency activity (Thompson et al. 2014a), and 

no  phase-amplitude  coupling  was  consistently  observed  between  the  infra-slow activity  and 

higher frequencies (Thompson et al. 2014b). The lack of phase-amplitude coupling does not rule 

out other types of interactions such as phase-phase coupling or amplification, but it suggests that 

treating  QPPs  as  an  additive  signal  is  a  reasonable  first  approximation.  Further  work  using 

animal models is needed where neural recordings can provide a ‘ground truth’ comparison.
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Furthermore, while the QPP can be generally described as involving the DMN and TPN, it is 

clear from this study that the precise brain areas involved can vary across cognitive conditions. 

The spatiotemporal differences seen between the QPPs during rest and task performance in this 

study may be specifically reflective of a working memory task, or they may reflect a general shift 

between task performance and rest. Participants were requested to keep their eyes fixated and 

stay awake for both rest and task conditions, so the differences in QPPs should not be related to 

state differences associated with eye closure. However, it is well-established that participants do 

tend to fall asleep during RS scans. In our study, only the first 5 minutes of 15-minute RS scans 

were used, which hopefully reduces the effect sleepiness or drowsiness could have had on our 

results and conclusions. Further work will be necessary to determine if different tasks involving 

different brain regions may affect the QPP in a unique way.

Finally, it  is important to mention our decision to implement global signal regression during 

preprocessing. Yousefi et al. (2018) demonstrated that global signal regression reduces variability 

in QPPs acquired from different subjects. In the study, subjects were divided into two groups; 

those with low levels of global signal fluctuation and those with high levels of global signal 

fluctuation. Subjects with low levels of global signal fluctuation showed a QPP demonstrating 

anti-correlated network activity, as has been described in this paper. Subjects with high levels of 

global signal fluctuation showed that the global signal had an additive effect on the QPP: Though 

the observed spatial distribution of the pattern and its frequency of occurrence was relatively 

unchanged, the whole-brain global changes in BOLD signal obscured the underlying pattern. 

When global signal regression was conducted on individuals with high levels of global signal 
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fluctuation, their QPPs aligned with the QPPs of individuals with low levels of global signal 

fluctuation.

For this paper, the aim was to understand the effects of QPP regression on FC in the brain. If 

global  signal  had  not  been  regressed  from  the  functional  scans,  it  could  have  served  as  a 

confounding  factor  in  the  subsequent  analysis.  Depending  on  the  levels  of  global  signal 

fluctuation in each subject, the spatiotemporal pattern observed in QPPs would have varied and 

their regression would have affected static FC differently across subjects. Hence, for a study 

investigating the effect  of  QPP regression on FC,  we believe global  signal  regression in  all 

functional scans was the appropriate decision, especially given that there are existing studies that 

demonstrate the effects of global signal regression on FC (Murphy & Fox 2017).  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2.5 – Conclusions

Quasi-periodic patterns can be detected in both RS and TP individuals, with the task influencing 

the spatiotemporal  pattern seen within the QPP as well  as  the strength and frequency of  its 

occurrence. Removal of QPPs from functional scans through linear regression leads to significant 

changes in FC, especially within the DMN and TPN. This suggests that QPPs are relevant to 

healthy brain function and may account for changes in connectivity in certain patient groups. The 

findings also suggest that infra-slow electrical activity reflected by QPPs may play a role in the 

organization of network activity within the brain.  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Introduction

Chapter 2 demonstrated that quasi-periodic patterns contribute to FC in the default mode and 

task positive networks. FC in the DMN and TPN has been shown to be disrupted during several 

neuropsychiatric disorders (Whitfield-Gabrieli  & Ford,  2012).  This raises the question of the 

relationship between QPPs and the disruption of FC seen during disease.

If  QPPs  are  disrupted  in  individuals  with  neuropsychiatric  disorders,  it  further  supports  the 

hypothesis that QPPs play a role in maintaining healthy brain function. The hypothesis would 

predict  that  QPPs  are  disrupted  in  individuals  with  neuropsychiatric  disorders  that  show 

disruption of FC within brain regions that are involved in the QPPs; i.e., the DMN and TPN. The 

hypothesis would then also predict that this should not  be the case in brain diseases that are 

unrelated to the DMN and TPN.

The  first  section  of  Chapter  3  investigates  QPPs  in  individuals  with  attention-deficit/

hyperactivity disorder (ADHD). Previous literature demonstrating static FC differences between 

healthy individuals and those diagnosed with ADHD has clearly shown the involvement of the 

DMN and TPN (Konrad & Eickhoff, 2010): FC within the DMN and TPN and the strength of 

their  anti-correlation  is  decreased.  In  the  first  section,  I  hypothesize  that  the  spatiotemporal 

pattern of QPPs in individuals with ADHD will be disrupted in a way that will lead them not 

contribute to FC as strongly as they do in healthy individuals.

The second section of Chapter 3 investigates QPPs in individuals with stroke affecting motor 

ability.  Though  previous  literature  has  demonstrated  that  cortical  reorganization  post-stroke 
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affects  FC  measures,  these  are  not  expected  to  overlap  with  the  DMN  in  the  individuals 

participating in this study. For this section, I hypothesize that the QPPs in individuals with stroke  

will be unchanged and will contribute to FC to the same extent as they do in healthy individuals.

The two experiments described in Chapter 3 provide further evidence that QPPs contribute to FC 

in  the  DMN and TPN.  They further  suggest  that  the  ability  of  QPPs to  maintain  a  healthy 

architecture of the brain is relevant in the development of neurological disorders. Lastly, they 

show how large-scale brain activity can be disrupted following disease and how such disruption 

is related to brain activity at smaller scales.  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3.1 – Attention-deficit/hyperactivity disorder

3.1.1 – Introduction

Attention-deficit/hyperactivity  disorder  (ADHD)  is  the  most  commonly  diagnosed 

neurodevelopmental  disorder  among  children  and  adolescents  in  the  United  States 

(Subcommittee on Attention-Deficit/Hyperactivity Disorder, 2011). Changing attitudes towards 

the diagnosis of ADHD are leading to a further increase in its prevalence worldwide (Davidovich 

et  al.,  2017).  ADHD  is  characterized  by  pervasive  levels  of  inattention,  hyperactivity,  and 

impulsivity (American Psychiatric Association, 2013). It can lead to difficulties in personal and 

academic endeavors (Bagwell et al., 2001; Barkley et al., 1991) and cause significant burden on 

families and society (Matza et al., 2005). Understanding the pathophysiology behind ADHD is 

crucial for the development of effective treatments. 

Etiological models of brain disorders such as ADHD are shifting from focusing on individual 

brain regions to prioritizing the investigation of large-scale network interactions across the brain 

(Raj  et  al.,  2018;  Konrad  &  Eickhoff,  2010).  As  a  consequence,  non-invasive  whole-brain 

imaging methods are playing an important role in understanding the etiology of brain disorders 

(Wintermark et  al.,  2018; Weyandt et  al.  2013).  Notably,  fMRI has been critical  in studying 

network interactions in the brain and how they can be disrupted (Stam et al., 2014). Individuals 

with brain disorders, such as ADHD, often show altered FC in the brain (Konrad & Eickhoff et 

al., 2010; Cortese et al., 2012; Hart et al., 2012). 
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Such disruptions in FC have been a central focus of a number of studies on brain disorders (Du et 

al.,  2018),  including  ADHD (Konrad  &  Eickhoff,  2010).  Findings  from these  studies  have 

assisted  in  identifying  brain  regions  and  functional  networks  relevant  to  understanding  the 

etiology of  brain  disorders.  However,  most  of  these  studies  have  relied  on  traditional  static 

analyses of FC (Chang & Glover, 2010; Du et al., 2018). Hence, more recent fMRI studies have 

focused on dynamic analysis of the BOLD signal to better understand network interactions over 

time. This can help uncover the cause of FC disruptions seen in individuals with brain disorders 

(Hutchinson et al., 2013). 

ADHD is associated with dysfunction in the DMN (Castellanos et al., 2008; Uddin et al., 2008) 

and its relationship with the TPN (Tian et al., 2006; Wang et al., 2008; Wolf et al., 2009; Rubia et 

al.,  2009a;  Konrad & Eickhoff,  2010; Cortese et  al.,  2012;  Hart  et  al.,  2012).  Though there 

remains  uncertainty  on  the  directionality  of  some  observed  differences,  evidence  has 

predominantly  converged  on  the  relevance  of  the  DMN  and  TPN  when  studying  FC  in 

individuals  with  ADHD.  This  also  aligns  with  the  prevailing  understanding  that  DMN-TPN 

interactions are relevant for attentional control and vigilance (Fox et al., 2005; Raichle, 2015; 

Thompson et al., 2013). An investigation of the dynamics of these functional networks may help 

further the understanding of FC differences seen in individuals with ADHD. 

Chapter  2  demonstrated  that  QPPs  contribute  to  FC in  the  brain.  It  may  be  that  QPPs  are 

contributing  to  FC differences  in  the  connections  typically  disrupted  during ADHD. Such a 

conclusion would further the understanding of the dynamic processes involved in the etiology of 

the disorder. In this experiment, we first create masks of the DMN and TPN in healthy controls 

and  adolescents  with  ADHD.  Next,  we  search  for  FC differences  between  the  Control  and 
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ADHD groups. We then apply a pattern-finding algorithm to search for QPPs in both groups, and 

differentiate between the spatiotemporal patterns that are observed. Finally, we use regression to 

remove the QPPs from the functional scans in each group and measure their contribution to FC 

in the DMN and TPN. Our findings confirm FC differences previously observed in individuals 

with ADHD. Notably, we show that QPPs contribute to FC in the brain in regions relevant to 

ADHD. This  is  the  first  investigation of  QPPs in  any individuals  with  a  brain disorder  and 

suggest a role of QPPs in maintaining a healthy functional architecture of the brain.  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3.1.2 – Methods

3.1.2.1 –Data acquisition and preprocessing 

All resting-state data was downloaded from the ADHD-200 Sample, accessible through the 1000 

Functional Connectomes Project (ADHD-200 Consortium, 2012; Biswal et al. 2010). Within the 

ADHD-200 Sample, the New York University, Peking University, and NeuroImage datasets were 

used.  These  datasets  were  selected  based  on  the  similarity  of  their  scan  parameters  and 

availability of diagnostic information and data quality control assessments. An overview of scan 

acquisition parameters for each dataset is provided in Table 3.1.1.

 

Scan Parameter NeuroImage New York University Peking University

Anatomical
(MPRAGE)

TR (ms) 2730 2530 2530

TE (ms) 2.95 3.25 3.39

TI (ms) 1000 1100 1100

FA (deg) 7˚ 7˚ 7˚

FOV (mm) 256 256 256

Slice (mm) 1.00 1.33 1.33

Functional
(EPI)

TR (ms) 1960 2000 2000

TE (ms) 40 15 30

FA (deg) 80˚ 90˚ 90˚

FOV (mm) 224 240 200

No. Slices 37 33 33

Slice (mm) 3.0 4.0 3.5

Voxel (mm) 3.5 x 3.5 x 3.0 3.0 x 3.0 x 4.0 3.1 x 3.1 x 3.5
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Table 3.1.1: MRI parameters for ADHD200 Sample datasets 

Anatomical and functional scan parameters for the ADHD 200 Sample datasets used in 

the study. In all cases, the anatomical scans were acquired through a T1-weighted 3D 

magnetization-prepared rapid gradient echo (MPRAGE) sequence and the functional 

scans were acquired through a gradient echo-planar imaging (EPI) sequence. 

Each dataset  contained  MRI scans  from healthy  children,  adolescents,  and  some adults  and 

individuals  diagnosed  with  ADHD.  Of  the  three  main  sub-types  of  ADHD  (Inattentive, 

Hyperactive-Impulsive, and Combined), only individuals diagnosed with the Combined ADHD 

sub-type were used in this study. The selection of one sub-type was intended to reduce variability 

in the results and the Combined sub-type provided the largest dataset among the three. Though 

the ADHD group had a combination of treated and medically naive individuals, all participants 

had been removed from any psycho-stimulant  medication 24-48 hours  prior  to  collection of 

functional data. For all individuals, only scans that had passed the ADHD 200 Sample quality 

control assessment were used. For individuals that had more than one functional scan, only the 

first scan was used in the study. In the end, the Control group contained 106 healthy individuals 

(age  range  7–26,  µ  =  14.6  years  ±  3.8;  56  females)  and  the  ADHD  group  contained  106 

individuals with the Combined sub-type of ADHD (age range 7–21, µ = 12.6 ± 3.3; 10 females). 

Of the 106 individuals in each group, 22 were from the NeuroImage Sample, 57 were from the 

New York University dataset, and 33 were from the Peking University dataset. 

For all preprocessing steps, the preprocessing pipeline outlined in Appendix A of this dissertation 

was applied.



�  of �59 202

3.1.2.2 – Acquisition of default mode and task positive networks

A data-driven method was used to acquire masks of the DMN and TPN from the Control and 

ADHD groups. For each group, 30 functional scans were concatenated in time. The 30 scans 

selected had 10 scans each from the three datasets  (NeuroImage,  New York University,  and 

Peking University) to ensure results were not biased by any one dataset. The average BOLD 

timecourse of the posterior cingulate cortex (PCC) was calculated from the concatenated scans. 

Pearson correlations were then conducted between the mean timecourse of the PCC and the 

timecourse of every voxel in the brain. The 10% of voxels that were most correlated with the 

PCC were labeled as the DMN. The 10% of voxels that were most anti-correlated with the PCC 

were labeled as the TPN (Fox et al., 2005).

The functional scans were segmented into 273 regions of interest (ROIs) from the Brainnetome 

ROI atlas (Fan et al., 2016). For each ROI, the binary mask of the ROI was multiplied by the 

binary masks of the DMN and TPN to check for any spatial overlap between the ROI and either 

network. If the ROI contained voxels that were also part of either the DMN or TPN, the number 

of such voxels were counted and their mean correlation with the PCC was recorded. By doing so, 

a list of ROIs in the DMN and TPN was constructed, which contained information on how much 

the ROI overlapped with the DMN or TPN and how strongly it was correlated or anti-correlated 

with the PCC (Supplementary Table 1 for the DMN and Supplementary Table 2 for the TPN). 

The list was used to compare the ROIs included in the DMN and TPN masks acquired from the 

Control and ADHD groups. It was also used to compare the correlation strength of the ROIs with 

the PCC across the Control and ADHD groups. Finally, the DMN and TPN masks were used to 

acquire mean timecourses of the DMN and TPN from every scan in each group. The overall anti-
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correlation between the mean timecourse of the DMN and the mean timecourse of the TPN 

across all scans was compared between the Control and ADHD groups using a Mann–Whitney U 

test.

3.1.2.3 – Acquisition of quasi-periodic patterns

The spatiotemporal pattern-finding algorithm, described in Majeed et al.  (2011), was used to 

search for repeating patterns in the functional scans. The method through which the algorithm 

was applied and all parameters used are outlined in Chapter 2.

For the Control and ADHD groups separately, 30 functional scans were again concatenated (10 

scans  from  each  dataset).  The  pattern-finding  algorithm  was  applied  to  the  concatenated 

timeseries  100  times  with  unique,  randomly-selected  starting  segments.  The  resulting  100 

patterns outputted by the algorithm for each group were analyzed for a DMN-to-TPN transition 

in BOLD activation. The pattern most closely matching a DMN-to-TPN switch was selected and 

designated as a representative QPP for its respective group. By doing so, one representative QPP 

was established for the Control group and another representative QPP was established for the 

ADHD group. It is unlikely that the 30 scans concatenated before application of the algorithm 

biased the spatiotemporal pattern captured in the QPP. Chapter 2 showed that 25 concatenated 

scans (of similar length) were sufficient in removing variability in the pattern outputted by the 

algorithm. It has also been shown that QPPs acquired from concatenated data are the same as 

averaged QPPs from individual scans (Yousefi et al., 2018).
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The spatiotemporal pattern captured in the QPP was compared between the Control and ADHD 

groups. The QPPs were segmented into the 273 ROIs in the Brainnetome ROI atlas. The mean 

timecourse of each ROI was calculated for both QPPs. For each ROI, a Pearson correlation was 

conducted between its  mean timecourse in  the Control  QPP and its  mean timecourse in  the 

ADHD QPP. The resulting values for all 273 ROIs were compiled into Supplementary Table 3. 

Strong correlation of  an ROI’s  timecourse  in  the  two QPPs indicates  that  the  ROI behaved 

similarly  in  both  groups’ QPPs.  Anti-correlation  of  an  ROI’s  timecourse  in  the  two  QPPs 

indicates that the ROI behaved differently in the QPP acquired from individuals with ADHD.

Next,  the  strength  and  frequency  of  the  QPPs  was  compared  between  groups.  Sliding 

correlations of the Control and ADHD QPPs were conducted with all functional scans in their 

respective groups. The resulting sliding correlation vectors contained local maxima, or peaks, in 

correlation, which signified the occurrence of QPPs at those instances in the functional scans. 

The strength of the QPP was defined as the mean height of those peaks. The frequency of the 

QPP was defined as the rate of occurrence of those peaks over time. In this study, frequency was 

measured  in  peaks  per  minute.  To  compare  the  strength  and  frequency  of  the  QPPs  across 

groups, an arbitrary peak height threshold of 0.1 was chosen. First, the mean height of all peaks 

greater than the threshold was compared between the Control and ADHD groups. Second, the 

overall frequency of all peaks greater than the threshold was compared between the Control and 

ADHD groups.  Finally,  the arbitrary 0.1 threshold was discarded and the cumulative sliding 

correlations of the Control and ADHD QPPs with their respective functional scans were plotted 

as histograms. The distribution of values observed in these histograms were compared between 

the Control and ADHD groups using a Kolmogorov-Smirnov test.
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3.1.2.4 – Removal of QPPs from functional scans

To study the contributions of the Control and ADHD QPPs to FC in the DMN and TPN, they 

were removed from the BOLD signal using the regression method described in Chapter 2. The 

native QPP from all functional scans from each group was regressed from the BOLD signal. 

Native QPPs are defined as the QPPs acquired from that group. For example, the Control QPP is 

native  to  all  the  functional  scans  in  the  Control  group.  For  each  functional  scan,  a  unique 

regressor was calculated for every brain voxel: The sliding correlation of the QPP was convolved 

with the timecourse of each brain voxel during the QPP. The obtained regressor was z-scored to 

match  the  signal  in  the  functional  scan.  Next,  linear  regression  was  carried  out  using 

standardized/beta coefficients and the regressors calculated for each brain voxel. By doing so, a 

functional scan with attenuated presence of the QPP in the BOLD signal was produced. The 

efficacy  of  this  regression  method  was  demonstrated  by  conducting  subsequent  sliding 

correlations  of  the  QPPs  with  all  QPP-regressed  functional  scans.  The  same comparison  of 

strength and frequency of QPPs described in the last paragraph of Section 3.1.2.3 was conducted 

in the QPP-removed functional scans. Differences in the strength and frequency of QPPs after 

their removal were compared.

3.1.2.5 – Analysis of functional connectivity

Before analysis of FC, a new set of ROIs focused only on regions in the DMN and TPN were 

created. First, the 273 ROIs from the Brainnetome atlas were consolidated into 26 ROIs based on 

the structural hierarchy of the atlas. For example, the 14 ROIs within the superior frontal gyrus 

were consolidated into a single ROI depicting the entire superior frontal gyrus. Next, the binary 
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mask of each consolidated ROI was multiplied by the binary masks of the DMN and TPN to 

check for any spatial overlap between the consolidated ROI and either network. Only ROIs that 

had spatial overlap with either network were included in the new atlas. Within these ROIs, only 

the voxels that  overlapped with the DMN or TPN were included. For example,  the superior 

frontal gyrus has a total of 11341 voxels. Of these, 3093 voxels overlapped with the DMN mask. 

Only those 3093 voxels were included in the DMN’s superior frontal gyrus ROI. However, 1253 

separate voxels in the superior frontal gyrus overlapped with the TPN mask. Those 1253 voxels 

were included in the TPN’s superior frontal gyrus ROI. In the end, the new set of ROIs contained 

a total of 36 ROIs, half of which were DMN ROIs and half of which were TPN ROIs. Since 

there  were  differences  in  the  DMN and TPN masks  acquired  from the  Control  and  ADHD 

groups,  a  union  of  the  DMN  and  TPN  masks  from  the  two  groups  was  used  during  the 

construction of the new set of ROIs.

FC matrices were created to visualize the strength of connectivity within and across the DMN 

and TPN in both groups.  For  each functional  scan,  one FC matrix  was created before  QPP 

regression, and one FC matrix was created after its native QPP had been regressed. To create 

each of these matrices, the Pearson correlation between the mean timecourse of each ROI in the 

functional scan and the mean timecourse of all other ROIs in the functional scan was calculated. 

The values from each of the correlations were Fischer z-transformed and arranged into a 36 ROI 

x 36 ROI matrix. The FC matrices from all scans were averaged to obtain the mean FC for that 

group. In the end, each group had a mean FC matrix both before and after regression of its native 

QPP.
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The newly created FC matrices were used to compare the strength of FC between ROIs in the 

DMN and TPN. First, FC strength was compared between the Control and ADHD groups. This 

was done once before regression of any QPPs, and again after regression of native QPPs from 

the functional  scans.  The FC differences  observed between the  two groups before  and after 

regression of native QPPs were compared. Second, FC strength was compared within the Control 

and ADHD groups after removal of their native QPP. The effect of the regression of the native 

QPPs on FC strength was then compared between the Control and ADHD groups. To conduct all 

comparisons,  a  two-sample  t-test  was  performed  for  each  ROI  connection  to  check  for  a 

significant change in FC strength. Given that there were 648 connections to compare, multiple 

comparisons correction was performed using the false detection rate correction method presented 

in Benjamini and Hochberg (1995). For all connections that were significantly different in FC 

strength, the mean difference in connectivity was displayed in the same style as the FC matrices.  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3.1.3 – Results

3.1.3.1 – Differences in DMN and TPN masks between groups

Masks of the DMN and TPN acquired from the Control and ADHD groups were largely similar 

(Figure 3.1.1a; Figure 3.1.1b). A full list of ROIs in the Brainnetome atlas that overlapped with 

either the DMN or TPN is shown in Supplementary Table 1 and Supplementary Table 2. The 

tables also list the number of voxels in each ROI that overlapped with the DMN or TPN, and the 

mean correlation strength between the overlapping voxels in each ROI and the PCC.

!  
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Figure 3.1.1: DMN and TPN maps in the Control and ADHD QPPs 

Correlation between the mean timecourse of the PCC and every voxel in the brain was 

calculated. The 10% of voxels most and least correlated with the PCC were defined as 

the DMN and TPN respectively. (a) Left: The DMN and TPN in the Control group. The 

DMN comprises all voxels that had correlation with the PCC > 0.27. The TPN comprises 

all voxels that had correlation with the PCC < -0.24. Right: Names of regions in the 

DMN and TPN in the Control group. (b) Left: The DMN and TPN in the ADHD group. 

The DMN comprises all voxels that had correlation with the PCC > 0.22. The TPN 

comprises all voxels that had correlation with the PCC < -0.20. Right: Names of regions 

in the DMN and TPN in the ADHD group. A full list of ROIs in the DMN and TPN, 

including subdivisions, number of voxels, and strength of correlation with PCC is 

provided in Supplementary Table 1 and Supplementary Table 2. Compared to the 

Control group, areas in the DMN had overall lower correlation with the PCC, while areas 

in the TPN had overall weaker anti-correlation with the PCC. (c) Distributions of anti-

correlation strength between DMN and TPN timecourses in all Control (left) and ADHD 

(right) scans. Given the non-parametric distributions, a Mann-Whitney U-test was 

performed to compare the strength of anti-correlation, which showed weaker anti-

correlation in the ADHD group compared to the Control group (p = 0.0036).

For both the Control and ADHD groups, the DMN included regions in the superior and middle 

frontal gyri, orbital gyrus, paracentral lobule, middle and inferior temporal gyri, inferior parietal 

lobule, precuneus, cingulate, cuneus, superior occipital gyrus, hippocampus, and cerebellum. In 

the  ADHD group,  the  DMN also  included  regions  in  the  superior  temporal  gyrus,  superior 

parietal  lobule,  striatum, and thalamus.  Though DMN ROIs unique to the ADHD group are 
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considered in all analyses, the number of voxels in those ROIs that overlapped with the DMN 

mask was relatively low (< 10 voxels for each ROI, as opposed to a mean of 1461 ± 1464 voxels 

for the other ROIs in the ADHD DMN), with possible exception of the thalamus (33 voxels in 

the  ADHD  DMN  as  opposed  to  0  voxels  in  the  Control  DMN).  Additionally,  though  the 

hippocampus and part of the cerebellum were in the DMN mask from both groups, the number 

of voxels in those ROIs that overlapped with the DMN were also relatively low (< 10 voxels).

For both the Control and ADHD groups, the TPN included regions in the superior, middle, and 

inferior frontal gyri, orbital gyrus, precentral gyrus, superior temporal gyrus, inferior temporal 

gyrus, fusiform gyrus, superior and inferior parietal lobules, postcentral gyrus, insula, cuneus, 

occipital  gyrus,  striatum,  and  cerebellum.  In  the  Control  group,  the  TPN also  included  the 

cingulate. In the ADHD group, the TPN also included the middle temporal gyrus. Though TPN 

ROIs unique to either the Control or ADHD groups are considered in all analyses, the number of 

voxels in those ROIs that overlapped with the TPN mask was relatively low (< 25 for each ROI, 

as opposed to a mean of 1238 ± 750 voxels and 1163 ± 787 voxels for the other ROIs in the 

Control and ADHD TPNs respectively). Additionally, the middle frontal and middle temporal 

gyri had far greater overlap with the ADHD TPN mask (361 and 393 voxels respectively) than 

they did with the Control TPN mask (24 voxels each). 

As described in the Methods, ROIs in the DMN and TPN masks were selected based off their 

correlation with the PCC. The strength of correlation of the DMN ROIs and the strength of anti-

correlation of  the  TPN ROIs with  the  PCC was compared between the  Control  and ADHD 

groups. For ROIs in the DMN, the mean correlation with the PCC was greater in the Control 

group (µ = 0.37 ± 0.11) than the ADHD group (µ = 0.31 ± 0.12; p = 0.0066). For ROIs in the 
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TPN, the mean anti-correlation with the PCC was greater in the Control group (µ = -0.28 ± 0.02) 

than the ADHD group (µ = -0.23 ± 0.02; p = 4.6995e-33). 

The strength of anti-correlation between the DMN and TPN timecourses for all scans were also 

compared between the Control and ADHD groups (Figure 3.1.1c). Given anti-correlation values 

had a skewed distribution, a Mann–Whitney U-test was used to compare the strength of DMN 

and  TPN  anti-correlation  across  groups.  The  ADHD  group  had  significantly  weaker  anti-

correlation between the DMN and TPN (µ = -0.77 ± 0.12, median = -0.79) compared to the 

Control group (µ = -0.81 ± 0.13, median = -0.83; p = 0.0036).

3.1.3.2 – Differences in QPPs between groups

Application  of  the  pattern-finding  algorithm  resulted  in  the  observation  of  a  quasi-periodic 

pattern lasting approximately 20 seconds in both the Control and ADHD groups (Figure 3.1.2a; 

Figure 3.1.2b). The spatiotemporal pattern involved an initial increase in BOLD signal in the 

DMN accompanied by a decrease in BOLD signal in the DMN. This was followed by a decrease 

in BOLD signal in the DMN accompanied by an increase in BOLD signal in the TPN. The 

spatiotemporal pattern and its strength and frequency in functional scans was compared between 

the Control and ADHD groups.
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Figure 3.1.2: Spatiotemporal differences between the Control and ADHD QPPs 

(a) Areas with large increases or decrease in the BOLD signal during the Control (left) 

and ADHD (right) QPPs. Only top and bottom 10% values are shown. (b) Left: 

Timecourse of the DMN and TPN during the Control (left) and ADHD (right) QPPs. 

Right: The square of the difference between the Control and DMN timecourse at each 

timepoint in the Control and ADHD QPPs. (c) Left: Map of similarities and differences 

between the Control and ADHD QPPs. Areas of positive correlation are shown in red/
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yellow. Areas of negative correlation are shown in blue/turquoise. All anti-correlated 

regions that were also in the DMN and TPN masks in either the Control or ADHD groups 

are listed. Right: Distribution of correlation values for all 273 ROIs shows that most ROI 

timecourses had > 0.9 correlation between the the two QPPs.  

3.1.3.2.1 – Differences in the spatiotemporal pattern

For each of the 273 ROIs in the Brainnetome ROI atlas, a correlation was performed between the 

timecourse of the ROI in the Control QPP and its timecourse in the ADHD QPP. The results of 

all 273 correlations are listed in Supplementary Table 3 and displayed using a colormap in Figure 

3.1.2c on the left. Overall, the spatiotemporal pattern captured in both QPPs was similar. The 

distribution of correlation values, shown on the right in Figure 3.1.2c, demonstrates that most 

ROI timecourses were strongly correlated between the Control and ADHD QPPs. A few ROIs 

had anti-correlated timecourses between the two QPPs. Among them, the ROIs that overlapped 

with either the DMN or TPN are listed in Table 3.1.2 and further explored in the discussion.
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Table 3.1.2: DMN and TPN regions anti-correlated across group QPPs 

List of regions of interest in the DMN and TPN which showed anti-correlated 

timecourses when comparing quasi-periodic patterns from the Control and ADHD 

groups. Blue tick marks indicate the overlap of the ROI with the DMN or TPN from the 

Control group. Red tick marks indicate the overlap of the ROI with the DMN or TPN from 

the ADHD group. The correlation column shows the strength of anti-correlation between 

the timecourse of the ROI in the Control and ADHD QPPs. 

3.1.3.2.2 – Difference in the DMN and TPN timecourses 

Both groups’ QPPs clearly showed a DMN/TPN switch in the spatiotemporal pattern. However, 

calculating the square of the difference between the DMN and TPN timecourses in each of the 

Region DMN TPN Correlation

Middle frontal gyrus, part 4 (ventral area 9/46 ), right ✓ -0.27

Inferior frontal gyrus, part 2 (inferior frontal sulcus), right ✓ -0.52

Inferior frontal gyrus, part 4 (rostral area 45), left ✓ ✓ -0.18

Orbital gyrus, part 6 (lateral area 12/47), left ✓ ✓ -0.59

Superior temporal gyrus, part 5 (lateral area 38), left ✓ ✓ -0.21

Inferior temporal gyrus, part 5 (ventrolateral area 37), right ✓ ✓ -0.96

Superior parietal lobule, part 2 (caudal area 7), left ✓ ✓ -0.35

Superior parietal lobule, part 2 (caudal area 7), right ✓ -0.13

Inferior parietal lobule, part 4 (caudal area 40), right ✓ -0.81

Precuneus, part 2 (medial area 5), right ✓ ✓ -0.29

Cingulate gyrus, part 3 (pregenual area 32), right ✓ ✓ -0.95

Cingulate gyrus, part 6 (caudal area 24), right ✓ ✓ -0.68

Cerebellar lobule VIIb, left ✓ -0.20
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QPPs revealed a clear difference in the magnitude of that difference (Figure 3.1.2b, right). At the 

two points where DMN and TPN signal was most separated, the mean square difference was 1.4 

in the Control group and 0.9 for the ADHD group.

3.1.3.2.3 – Differences in the strength and frequency

Sliding correlations of the Control and ADHD QPPs were conducted with all functional scans in 

their respective groups. Examples of the sliding correlation vectors are shown in Figure 3.1.3a. 

The strength of a QPP in a functional scan is defined by the height of the peaks in the sliding 

correlation vectors. The frequency of a QPP in a functional scan is defined by how often the 

peaks occur over time. For the purposes of this study, the frequency of a QPP is measured in 

peaks per minute.

!  
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Figure 3.1.3: Strength and frequency of QPPs in Control and ADHD groups 

(a) Example of sliding correlation vector acquired through sliding correlation of the 

Control (left) and ADHD (right) QPPs with three (randomly selected) concatenated 

functional scans from their respective groups before (blue) and after (red) native QPP 

regression (b) Strength and frequency of of the Control (left) and ADHD (right) QPPs 

compared by setting an arbitrary 0.1 correlation threshold for identifying peaks in the 

correlation vectors. Top axis shows the strength in correlation and bottom axis shows 

frequency in peaks per minute before (blue) and after (red) native QPP regression. (c) 

Strength and frequency of the Control (left) and ADHD (right) QPPs compared by 

representing all correlation values in a histogram before (blue) and after (red) native 

QPP regression. 

For  all  peaks  >  0.1  in  correlation,  the  strength  and  frequency  of  the  Control  QPP in  its 

cumulative sliding correlation with the Control scans (strength µ = 0.24 ± 0.04; frequency µ = 

1.87 ± 0.31 peaks/minute) was similar to the ADHD QPP in its cumulative sliding correlation  

with the ADHD scans (strength µ = 0.23 ± 0.04; frequency µ = 1.84 ± 0.32 peaks/minute). The 

cumulative sliding correlation vectors of the QPPs with each group was also compared without 

the  use  of  an  arbitrary  0.1  threshold  by  plotting  them as  histograms  (Figure  3.1.3e;  Figure 

3.1.3f). Wide, short histograms indicate higher strength and frequency of the QPP, while narrow, 

tall histograms indicate lower strength and frequency of the QPP. Kolmogorov-Smirnov (KS) 

tests confirmed that the strength and frequency of the Control and ADHD QPPs in their native 

scans did not differ. Comparison of the strength of frequency of the QPPs in their non-native 

scans also did not show  any differences (Supplementary Figure 5).
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3.1.3.3 – Functional connectivity differences

An FC matrix displays the strength of FC in all 648 connections between the 36 brain regions 

compared in one image, which represents the functional architecture of the DMN and TPN. The 

matrix has been arranged so that data points closer to the central diagonal show FC in local 

connections. Data points further from the central diagonal show FC in long-range connections. 

The top-left and bottom-right quadrants show the local FC in the DMN and TPN respectively. 

The strength of these connections was expected to be positive as they are depicting functional 

networks. Alternatively, the top-right and bottom-left quadrants show the FC between the DMN 

and  TPN.  The  strength  of  these  connections  was  expected  to  be  negative,  given  they  are 

depicting connectivity between anti-correlated networks.

Figure 3.1.4a shows the mean FC in the DMN and TPN in the Control (bottom-left) and ADHD 

(top-right) groups. Individuals with ADHD showed weaker overall connectivity with the DMN 

and TPN and weaker anti-correlation across the DMN and TPN. FC within DMN ROIs in the 

ADHD group (µ = 0.23 ± 0.40) was weaker than the Control  group (µ = 0.25 ± 0.45;  p  = 

3.72e-39). FC within TPN ROIs in the ADHD group (µ = 0.26 ± 0.45) was weaker than the 

Control group (µ = 0.31 ± 0.42; p = 6.41e-53). Anti-correlation between the DMN and TPN was 

also weaker in individuals with ADHD (µ = -0.21 ± 0.32) compared to the Control group (µ = 

-0.26 ± 0.30; p = 3.80e-73).
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Figure 3.1.4: FC differences between Control and ADHD groups 

(a) Bottom-left: Mean FC in the Control group. Top-right: Mean FC in the ADHD group. 

(b) Bottom-left: Significant differences in FC between the Control and ADHD groups (n = 

11). Top-right: Significant differences in FC between the Control and ADHD group after 

regression of their native QPPs (n = 24). (c) Significant differences in FC in the Control 

group after removal of its native QPP (n = 494). (d) Significant differences in FC in the 

ADHD group after removal of its native QPP (n = 280).  

Figure 3.1.4b shows significant differences in FC between the Control and ADHD groups. The 

bottom-left part of the matrix shows differences in FC before the QPPs were regressed from the 

functional scans (n = 11). Individuals with ADHD showed decreased local FC in the DMN and 

decreased anti-correlation between DMN and TPN ROIs. The top-right part of the matrix shows 

differences  in  FC  after  native  QPPs  had  been  regressed  from  both  groups  (n  =  24).  The 

differences were more widespread in this case, but largely comprised on increases in local FC in 

the DMN and TPN and increased anti-correlation between the DMN and TPN in individuals with 

ADHD. These differences are further explored in the discussion.

Figure 3.1.4c and Figure 3.1.4d show significant differences in FC in the Control and ADHD 

groups after regression of their native QPPs. In both groups, QPP regression led to an overall 

decrease in local connectivity in the DMN and TPN and a decrease in anti-correlation between 

the DMN and TPN. However, regression of the Control QPP from Control scans led a greater 

number of FC differences (n = 494; 76% of all connections within and across the DMN and 

TPN) than regression of the ADHD QPP from ADHD scans (n = 280; 43% of all connections 

within and across the DMN and TPN). Though the overall direction of FC differences was the 
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same, removal of the ADHD QPP from ADHD scans resulted in far fewer significant changes in 

FC  compared  to  removal  of  the  Control  QPP  from  Control  scans.  A comparison  of  FC 

differences that includes the regression of the ADHD QPP from Control scans and regression of 

the Control QPP from ADHD scans is shown in Supplementary Figure 6.  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3.1.4 – Discussion

We  studied  the  dynamics  of  BOLD  fluctuations  in  individuals  with  ADHD  through  the 

investigation of quasi-periodic patterns in the brain. As Chapter 2 demonstrated, QPPs contribute 

to FC in key functional networks and their activity could be relevant for healthy brain function. 

However, until this study, there had not been an investigation of QPPs in individuals with a brain 

disorder.  ADHD  is  associated  with  atypical  FC  in  the  DMN  and  TPN.  Given  the  strong 

involvement  of  the  two  networks  in  the  spatiotemporal  pattern  captured  within  QPPs,  we 

hypothesized a relationship between QPPs and the atypical FC associated with ADHD. We find 

that QPPs contribute to FC in the very connections that are disrupted during ADHD. Individuals 

with ADHD showed differences in the spatiotemporal pattern captured within the QPP, which 

resulted in the QPP contributing less to FC in the DMN and TPN. Our observations provide 

insight into the possible mechanisms behind FC differences seen in individuals with ADHD, 

allowing a better understanding of the etiology of the disorder.

3.1.4.1 – Default mode and task positive networks

The brain regions in the DMN and TPN that were common to both the Control and ADHD 

groups largely agreed with previous literature (Raichle, 2015; Fox et al., 2005). The ROIs unique 

to the DMN or TPN masks acquired from the ADHD group were difficult to interpret as only a 

relatively small number of their voxels overlapped with the DMN or TPN masks. The differences 

observed  could  be  within  the  margins  of  error  associated  with  functional  MRI  or  the  ROI 

boundaries in a brain atlas such as the one used in this study. One exception to this was the 

inclusion of the thalamus in DMN mask from individuals with ADHD. Areas in the thalamus 
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have previously been shown to have increased connectivity with DMN regions in individuals 

with ADHD (Tian et al., 2006; Tian et al., 2008), which would explain their inclusion in the 

ADHD DMN.

There was a consistent difference between the two groups in the strength of correlation of all 

DMN and TPN ROIs with the PCC, the seed used to create the masks. DMN ROIs in the ADHD 

group had a weaker correlation with the PCC and TPN ROIs in the ADHD group had a weaker 

anti-correlation with the PCC. This is likely a reflection of the observation that overall DMN/

TPN  anti-correlation  was  also  weaker  in  individuals  with  ADHD.  Strong  anti-correlation 

between the DMN and TPN is a sign of healthy brain function (Fox et al., 2005) and is related to 

performance on vigilance tasks (Thompson et al., 2013). Indeed, it has been previously shown 

that individuals with ADHD show decreased anti-correlation between DMN and TPN activity 

(Sripada  et  al.,  2014).  This  disruption  has  been  shown  to  affect  task  performance  and 

pharmaceutical  solutions  have  been  suggested  to  alleviate  the  atypical  FC between  the  two 

networks (Querne et al., 2014; Rubia et al., 2009b). Our observations confirm a decreased anti-

correlation in individuals with ADHD. Reproducing previous findings was a critical first step in 

analyzing the dynamics of the BOLD signal and investigating how QPPs may be contributing to 

differences observed through traditional static analyses of fMRI.

3.1.4.2 – Quasi-periodic patterns

Quasi-periodic patterns were observed in both the Control and ADHD groups. In each case, the 

spatiotemporal pattern captured in the QPP showed the DMN-to-TPN transition reported in  the 

previous chapter and previous studies (Majeed et al., 2011; Yousefi et al., 2018; Abbas et al., 
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2018a).  The  pattern  lasted  approximately  20  seconds  and  occurred  quasi-periodically  in  the 

functional scans from both groups.

This was the first investigation of QPPs in individuals with a brain disorder. FC disruptions in the 

DMN and TPN have been widely reported in individuals with ADHD (Konrad & EIckhoff, 2010; 

Cortese et al., 2012; Hart et al., 2012). Given the involvement of the two networks in QPPs, it 

was pertinent to compare the spatiotemporal pattern of the QPPs between the Control and ADHD 

groups. A similar spatial comparison was carried out in the previous chapter., which assisted in 

explaining the FC changes that occur in task-performing individuals. Here, we hypothesize that 

any  differences  in  the  Control  and  ADHD QPPs may help  explain  the  FC differences  seen 

between the two groups.

Figure  3.1.2c  and  Supplementary  Figure  4  demonstrate  that  the  spatiotemporal  pattern  was 

largely similar in the Control and ADHD QPPs. However, the few observed differences were 

telling. Table 3.1.2 lists DMN or TPN ROIs that had anti-correlated timecourses between the 

Control and ADHD QPPs. Among the DMN ROIs, the cingulate gyrus and precuneus were also 

the regions that showed decreased FC within the DMN when FC was compared in Figure 4b. 

Among the TPN ROIs, the the middle and inferior frontal gyri showed decreased anti-correlation 

with DMN regions when FC was compared. Though the differences in the spatiotemporal pattern 

between the Control and ADHD QPPs were small, they aligned well with the region-to-region 

FC differences observed between the two groups. Hence, spatiotemporal differences in the QPPs 

between the two groups were able to predict FC differences in individuals with ADHD.
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A key difference between the two QPPs was the magnitude of the difference between the DMN 

and TPN timecourses,  as  is  demonstrated in  Figure 3.1.2b on the right.  The anti-correlation 

between the DMN and TPN was stronger in the Control QPP compared to the ADHD QPP. The 

pattern-finding algorithm used to acquire the QPPs averages occurrence of the spatiotemporal 

pattern over the course of the functional timeseries. Hence, the difference in magnitude of DMN/

TPN anti-correlation between the two groups’ QPPs is a reflection of a general trend in the data, 

rather than a consequence of the randomly-selected starting segment used to initiate the pattern-

finding algorithm. This is a key difference in the QPPs acquired from the Control and ADHD 

groups, as it can have a strong effect on the overall contribution of QPPs to FC in the brain, 

discussed in the next section.

Comparison of the strength and frequency of the Control and ADHD QPPs in their respective 

functional scans showed no differences between the two groups (Figure 3.1.3). This is also an 

important observation as the different effects the two QPPs had on FC can be attributed only to 

the spatiotemporal differences outlined above, rather than any difference in the level of presence 

of QPPs in the functional scans. Figure 3.1.3 also demonstrated that the regression method used 

in this study was effective in significantly attenuating the presence of the QPPs in the scans. The 

efficacy of the regression was critical as it allowed the investigation of the contribution of QPPs 

to FC by essentially removing them from the BOLD signal.

3.1.4.3 – Functional connectivity

The region-to-region FC comparisons shown in Figure 3.1.4 required strict multiple comparisons 

correction  due  to  the  number  of  hypotheses  being  tested.  However,  comparison  of  the 
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distribution of FC strength within the DMN, within the TPN, and between the DMN and TPN 

only required testing one hypothesis each. This allowed us to conclude with confidence that the 

local  FC  within  the  DMN  and  TPN  was  significantly  lower  in  individuals  with  ADHD. 

Additionally, FC analysis further demonstrated that the strength of anti-correlation between the 

DMN and TPN was weaker in the ADHD group. Observations of the overall differences in DMN 

and  TPN  FC  between  the  two  groups  continue  to  align  with  previous  reports  (Konrad  & 

Eickhoff, 2010; Weyandt et al., 2010; Sripada et al., 2014; Uddin et al., 2008).

Figure 3.1.4c and Figure 3.1.4d show that regression of the QPP from functional scans resulted 

in FC differences following a similar trend in both groups. Local connectivity in the DMN and 

TPN  was  reduced  and  anti-correlation  between  the  DMN  and  TPN  was  weakened.  This 

demonstrates that QPPs play a role in maintaining the FC within and across the DMN and TPN. 

Earlier,  we  saw that  FC differences  in  individuals  with  ADHD follow the  same trend.  Our 

observations suggest that QPPs help maintain typical FC in the same regions that tend to develop 

atypical connectivity in ADHD. Hence, it may be that the FC differences in individuals with 

ADHD  are  the  result  of  a  failure  of  QPPs  to  maintain  healthy  FC  as  they  do  in  healthy 

individuals. 

Figure 3.1.4c and Figure 3.1.4d also show that the Control QPP contributes to FC within and 

across  the  DMN  and  TPN  with  far  greater  effect  than  the  ADHD  QPP.  The  number  of 

connections that were significantly affected by regression of the Control QPP was 76% greater 

than the number of connections significantly affected by regression of the ADHD QPP. We know 

that the strength and frequency of both QPPs was similar in their respective functional scans. 

Hence this  difference  is  likely  a  result  of  the  spatiotemporal  differences  in  the  Control  and 
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ADHD QPPs. The difference in magnitude of anti-correlation between the DMN and TPN within 

the spatiotemporal pattern of the QPP (Figure 3.1.2b, right) suggests that QPPs are contributing 

to an overall smaller percentage of the spontaneous BOLD signal fluctuations in individuals with 

ADHD. This would reduce their contribution to FC.

Figure 3.1.4b shows the difference in FC between the Control and ADHD groups. Notably, it 

distinguishes between the FC differences observed between the two groups before and after 

regression of native QPPs from the functional scans. Both the nature and the number of FC 

differences are different  between these two comparisons.  When the original  functional  scans 

were compared, the FC differences showed partial decrease in local connectivity in the DMN and 

reduced anti-correlation between DMN and TPN regions. These differences follow the trend  of 

previous  reports  on  FC  disruptions  in  individuals  with  ADHD.  However,  when  the  QPP-

regressed functional scans were compared, the trend of the differences was reversed and the 

number of FC differences increased: When comparing QPP-regressed Control scans to QPP-

regressed ADHD scans, local connectivity in the DMN and TPN and anti-correlation between 

regions in the DMN and TPN increased. This is most likely due to the varying effects of the 

Control and ADHD QPPs on FC in the DMN and TPN. When the Control QPP was regressed 

from Control scans, it led to a large number of FC differences, as is visible in Figure 3.1.4c. 

When the ADHD QPP was regressed from ADHD scans, it led to a relatively smaller number of 

FC differences. Hence, the difference between the two comparisons in Figure 3.1.4b is a result of 

the ADHD QPP failing to contribute as strongly to FC in the DMN and TPN. Interestingly, 

comparison  of  FC  between  the  Control  and  ADHD  groups  after  native  QPP  regression 

demonstrates how QPPs are contributing to FC differently in individuals with ADHD. In fact, the 
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greater the increase in FC differences observed between the two groups after QPP regression, the 

more the QPP in individuals with ADHD is failing to contribute to FC. This further demonstrates 

the relevance of QPPs in understanding the mechanisms behind FC differences in individuals 

with ADHD.

3.1.4.4 – Implications for ADHD

The  static  FC  differences  in  the  ADHD  group  observed  in  our  analysis  have  largely  been 

reported in previous literature. FC in the DMN has been shown to be decreased in individuals 

with ADHD (Rubia et al., 2007; Uddin et al., 2008; Liddle et al., 2010; Wilson et al., 2011; Yu-

Feng et al., 2007). Reviews of several fMRI studies on ADHD (Cortese et al., 2012; Hart et al., 

2012) have revealed a consistent decrease in BOLD activation in attentional networks, loosely 

similar to the TPN investigated in this study. Studies have also shown decreased activation in 

attentional networks similar to the TPN during task-based fMRI scans (Schneider et al., 2010; 

Rubia et al., 2009b). Increase in FC between brain regions in the DMN and TPN, which we refer 

to instead as a decreases in DMN/TPN anti-correlation, has also been reported (Hoekzema et al., 

2013; Konrad & Eickhoff, 2010).

Analysis  of  the  dynamics  of  the  BOLD  signal  have  allowed  researchers  to  understand  the 

mechanisms behind FC differences seen in individuals with other brain disorders (Sakoglu et al., 

2010; Damaraju et al., 2012; Damaraju et al., 2014; Jones et al., 2012; Holtzheimer & Mayberg, 

2011). For example, Sakoglu et al. (2010) and Damaraju et al. (2012; 2014) demonstrated real-

time inter-network interactions being disrupted during an auditory oddball task in individuals 

with Schizophrenia and the relative rigidity of time-varying network FC compared to healthy 
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controls. Jones et al. (2012) showed that static FC differences observable in individuals with 

Alzheimer’s Disease may exist due to certain dominant sub-network configurations of the brain’s 

DMN, only observable through dynamic analysis. Similarly, Holtzheimer and Mayberg (2011) 

argue  that  FC differences  seen  in  individuals  with  Major  Depressive  Disorder  are  due  to  a 

tendency  of  network  activity  to  linger  in  ‘down states’ longer  compared  relative  to  healthy 

controls, indiscernible through a static analysis of FC. However, analyses of the dynamics of 

BOLD signal in individuals with ADHD has been limited (Durston et al., 2003).

Studies sensitive to the time-varying changes in BOLD in individuals with ADHD have mostly 

focused on task-based BOLD activation in relevant brain regions (Schneider et al., 2010; Rubia 

et al., 2009b; Liddle et al., 2011; Yang et al., 2011; Siqueira et al., 2014). Sonuga-Barke and 

Castellanos (2007) showed that in the context of pathological conditions, the dynamics of the 

DMN can affect attentional control in individuals. Outside the context of ADHD, Thompson et 

al. (2013) demonstrated that the dynamics of DMN and TPN activity can predict vigilance in 

performance  on  a  psychomotor  vigilance  task.  Given  that  QPPs  can  be  used  to  study  the 

dynamics of DMN activity in both resting-state and task-performing individuals, they have the 

potential to provide insight into the static FC differences observed in individuals with ADHD. 

We find that this is indeed the case. Since analyses focused on QPPs consider the time-varying 

component  of  BOLD  signal,  they  can  provide  a  more  sensitive  analysis  of  differences  in 

individuals with ADHD. For example, the number of region-to-region FC differences observed 

between the Control and ADHD groups was small. However, when the same comparison was 

done after regression of the QPP, the number of FC differences between the two groups was 

appreciably larger.
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It has been demonstrated that using static FC differences as a biomarker in individuals with 

ADHD is not yet the most accurate way to differentiate them from healthy controls: Brown et al. 

(2012) showed that  personal  characteristic data –– such as age,  gender,  and performance on 

different IQ tests –– was more accurate in predicting ADHD diagnosis than static FC differences. 

Analysis techniques that focus on the dynamics of the BOLD signal, such as the one shown in 

this study, may provide greater sensitivity to differences in individuals with ADHD. The FC 

analysis  presented  in  Figure  3.1.4  shows  a  greater  number  of  differences  between  groups 

compared  to  traditional  methods,  which  may provide  a  more  sensitive  prediction  of  ADHD 

diagnosis. This introduces the possibility of using disruptions in QPPs as a potential biomarker 

of disease. 

It is important to note that the results from this study do not address a critical question: Is the 

disruption in the QPPs causing the FC differences seen in ADHD, or is  ADHD causing the 

disruption  seen  in  the  QPPs?  However,  the  next  chapter  suggests  that  QPPs  may  have  a 

neurophysiological driver in deep brain nuclei. If this is indeed the case, a hypothesized pathway 

of the etiology of ADHD would link initial disruptions in deep brain nuclei with abnormalities in 

the spatiotemporal  pattern of  QPPs,  resulting in  the FC differences seen in  individuals  with 

ADHD. 

Local  field  potential  (LFP)  electrophysiological  recordings  in  anesthetized  rats  conducted 

simultaneously  with  fMRI  have  shown  that  QPPs  are  correlated  with  infra-slow  electrical 

activity (Pan et al., 2013). Infra-slow electrical activity is disrupted in individuals with ADHD: 

Helps et al. (2010) showed reduced attenuation of electroencephalography (EEG) power at infra-

slow frequency bands (0.02–0.2Hz) in individuals with ADHD, which was associated with poor 
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performance  on  attentional  tasks.  Monto  et  al.  (2008)  also  showed  that  psychophysical 

performance is related to infra-slow fluctuations in electrical activity measured through EEG. 

Future investigations of the relationship between QPPs, and FC, and electrical activity could 

enhance the understanding of the etiology of ADHD.

3.1.4.5 – Limitations

First,  the  dataset  used  in  our  analysis  included  scans  collected  at  different  facilities  using 

different  scanners  and  slightly  different  scan  parameters.  This  has  the  potential  to  increase 

variability in the functional data, reducing the likelihood of observation of subtle differences 

between groups. However,  the heterogeneity in the data also speaks to the robustness of the 

differences that were observed in individuals with ADHD. Second, though the Control group had 

an even distribution of males and females, the ADHD group was dominated (91%) by males. 

This is a reflection of the relatively higher clinical referral of boys when symptoms for ADHD 

are present, the existing bias in the ADHD literature towards male participants, and the tendency 

for females to be diagnosed with the Inattentive sub-type of ADHD, which was not used this 

study (Biederman et al., 2002; Arnold, 1996; Gaub & Carlson, 1997; Sharp et al., 1999). Third, 

the selection of only the Combined sub-type of ADHD may have helped reduce variability in the 

results  and  made  analysis  more  straightforward,  but  it  may  have  also  resulted  in  certain 

differences in individuals with other types of ADHD being ignored. However, given the dramatic 

effect of QPPs on FC in most regions in the DMN and TPN, we believe that separate analysis of 

different sub-types of ADHD may not have resulted in conclusions dramatically different than 

the ones presented in this study, as the overall trend of DMN/TPN FC differences would have 

been the same.
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The regression method used to ‘remove’ the QPPs from the functional data inherently assumes 

that QPPs are an additive component to the remaining BOLD signal. This was also addressed in 

the  previous  chapter.  The  assumption  is  based  on  multi-modal  experiments  in  rodents  that 

support the notion that QPPs are additive to the BOLD signal (Thompson et al., 2014). Though 

further  work  with  neural  recordings  in  animal  models  is  required  to  provide  ‘ground  truth’ 

comparisons, treating QPPs as an additive signal is a reasonable first approximation.

There were multiple justifications for consolidating the 273 ROIs from the Brainnetome atlas 

into the 36 ROIs that were used to construct the FC matrices. Most importantly, QPPs have been 

shown to mainly contribute to FC in the DMN and TPN (as shown in the previous chapter), 

which is  also where most  FC disruptions relevant  to ADHD have been reported (Konrad & 

Eickhoff, 2010). Hence, a focus on DMN and TPN connectivity was appropriate when studying 

the relationship between QPPs and ADHD. Notably, only voxels in the ROIs that overlapped 

with the DMN or TPN masks were used, allowing the FC analysis to be specific to the two 

networks.  Additionally,  consolidation  of  ROIs  into  larger  brain  regions  helped  alleviate 

variability in the ROI timecourses, providing more reliable results. Finally, consolidation of the 

ROIs  meant  that  the  number  of  comparisons  being  performed  to  determine  the  statistical 

significance of a change in connectivity was reduced from 37264 to 648; a 98% decrease.

Finally,  it  is  important  to  comment  on  the  use  of  global  signal  regression  during  the 

preprocessing of all functional scans. It has been shown that global signal regression reduces 

variability in QPPs acquired from different individuals. In Yousefi et al. (2018), individuals were 

divided into two groups; those with low levels of global signal fluctuation and those with high 

levels of global signal fluctuation. Individuals with low levels of global signal fluctuation showed 
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the same anti-correlated behavior of the DMN and TPN reported in this study. Individuals with 

high levels of global signal fluctuation showed that the global signal had an additive effect on the 

QPP: Though the observed spatiotemporal pattern and its frequency of occurrence was relatively 

unchanged, the whole-brain global changes in BOLD obscured the underlying pattern. When 

global  signal  regression  was  conducted  in  the  individuals  with  high  levels  of  global  signal 

fluctuation,  their  QPPs  aligned  with  those  of  individuals  with  low  levels  of  global  signal 

fluctuation. A primary aim of this study was to understand the effects of QPP regression on FC in 

the brain. If global signal had not been regressed from the functional scans, it could have served 

as a confounding factor in the subsequent analysis. Depending on the levels of global signal 

fluctuation in each individual, the spatiotemporal pattern observed in QPPs would have varied 

and their regression would have affected static FC differently across individuals. Hence, for a 

study investigating the effect of QPP regression on FC, global signal regression in all functional 

scans was appropriate, especially given that there are several studies already demonstrating the 

effects of global signal regression on FC (Murphy & Fox, 2007).  



�  of �90 202

3.1.5 – Conclusions

We confirm that FC within and across the DMN and TPN is disrupted in individuals with ADHD. 

Investigation of quasi-periodic patterns is an effective way to understand the dynamics of the 

BOLD signal underlying those FC differences. We find that QPPs help maintain connectivity in 

the same brain regions affected during ADHD. Disruptions in the spatiotemporal pattern of the 

QPPs may be leading to an inability of the QPPs to maintain healthy FC in those regions. This 

could potentially underlie the FC differences seen in individuals with ADHD and provide a more 

accurate understanding of the etiology of the neurodevelopmental disorder.  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3.2 – Stroke

3.2.1 – Introduction

Stroke  is  a  leading  cause  of  adult  disability,  with  paretic  arm dysfunction  being  a  primary 

contributor (Langhorne et al., 2009). Following stroke, brain regions both close and distant to the 

infarct undergo a reorganization of neural connections (Grefkes & Fink, 2014; Carrera & Tononi, 

2014).  Though the exact  nature of  this  cortical  reorganization is  not  fully understood,  fMRI 

studies have shown that individuals with stroke have altered FC in affected areas of the brain 

(Van Meer et al., 2010; Carter et al., 2010). For individuals with motor impairment following 

stroke, FC disruptions will often be found within the sensorimotor network (SMN) (Schaechter, 

2004).

As discussed in Chapter 1, static fMRI measures do not provide a complete picture on how large-

scale brain activity is affected during a neurological disorder. An understanding of the dynamics 

of FC can be more informative on how stroke affects large-scale brain activity. For example, 

Jones et al. (2012) used dynamic graphical representations of brain connectivity to demonstrate 

that  changes  in  FC  observable  in  individuals  with  Alzheimer’s  Disease  could  partially  be 

explained by differences in dwell time in the DMN’s sub-network configurations. Damaraju et al. 

(2012) used dynamic analysis techniques in individuals with schizophrenia to show that there 

was a difference in the ‘rigidity’ of FC between brain regions in patients compared to controls –– 

a conclusion that was not apparent with traditional fMRI analysis techniques. However, little is 

known about changes in the dynamics of FC in individuals with motor impairment due to stroke. 
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The previous section in this chapter showed that quasi-periodic patterns are a viable method to 

capture  the  dynamics  of  relevant  large-scale  brain  activity  in  individuals  with  ADHD.  It  is 

possible that QPPs can serve a similar purpose in individuals with stroke. However, there is a 

key difference between using QPPs to study ADHD and motor impairment due to stroke. ADHD 

is associated with FC disruptions in the DMN and TPN (Konrad & Eickhoff, 2010). Individuals 

with motor impairment due to stroke have disruptions in FC within the SMN (Van Meer et al., 

2010; Wang et al., 2010; Calautti & Baron, 2003). Though QPPs have been shown to contribute 

to FC in the DMN and TPN, their relationship with SMN FC is weak at best. Under the current 

hypothesis, QPPs should not be the underlying mechanism behind FC disruptions in individuals 

with motor impairment during stroke.

In this study, we investigate just that –– with the objective to better understand how QPPs can 

assist in studying the dynamics of brain activity and when they cannot. QPPs are extracted from 

healthy individuals and individuals with stroke. Their spatiotemporal pattern and their strength 

and frequency in the functional scans are compared between the two groups. FC is compared 

between the Control and Stroke groups. The QPPs are then regressed from the BOLD signal and 

the FC comparison is conducted again. Finally, the effects of QPP regression on FC is measured 

to  test  the  contributions  of  QPPs  to  FC  in  the  brain.  We  find  that  given  the  QPPs’ weak 

relationship  with  FC in  the  SMN, they are  not  a  viable  method to  study FC disruptions  in 

individuals with motor impairment due to stroke. In doing so, the results validate the methods 

used in the ADHD study from earlier in this chapter and demonstrate that QPPs are only relevant 

to neuropsychiatric disorders that show FC disruptions in the DMN and TPN.  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3.2.2 – Methods

3.2.2.1 – Participants

The Control group consisted of 14 healthy individuals (aged 52 ± 15 years, 6 males). The Stroke 

group consisted of 14 individuals (aged 66 ± 10 years, 8 males) with a subcortical ischemic 

stroke in the right (n = 7) or left (n = 7) hemisphere of the brain. They were in the chronic stage 

(>  6  months,  52  ±  29  months  after  stroke)  of  recovery.  Exclusion  criteria  included  (1) 

hemorrhagic stroke, (2) history of multiple strokes, (3) neurodegenerative disorder or psychiatric 

diagnosis, (4) outside the age range of 18–85 years, and (5) contraindications to TMS. Written 

informed  consent  was  obtained  from all  participants  in  accordance  with  the  Declaration  of 

Helsinki and all study procedures were approved by the Emory University Institutional Review 

Board.

3.2.2.2 – Data acquisition

All data was acquired using a 3T Siemens Scanner (Magnetom Trio, Siemens, Germany). For 

each individual, one anatomical scan and three resting-state functional scans were acquired. The 

anatomical scan was acquired through a T1-weighted three-dimensional magnetization-prepared 

rapid gradient echo (T1w 3D MPRAGE) sequence with TR 2300 ms, TE 2.89 ms, TI 800 ms, 

FOV 256 mm x 256 mm, and 1 mm isotropic voxels. The functional scans were acquired in 3 

discontinuous 4-minute sessions using a Gradient-echo echo-planar imaging (EPI) sequence with 

TR 2000 ms, TE 28 ms, FOV 1152 mm x 1152 mm, matrix dimensions 64 x 64 x 64, slice 
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thickness 3 mm, and 3 mm isotropic voxels. Each of the three scans were concatenated for a 

combined 11 minutes (660 seconds) of usable functional data per participant.

All  preprocessing  steps  carried  out  on  the  data  are  outlined  in  the  preprocessing  pipeline 

described in Appendix A.

3.2.2.3 – Functional connectivity

All functional scans were segmented using the Brainnetome region of interest atlas (Fan et al. 

2016). Of the 273 regions of interest in the Brainnetome ROI atlas, only 253 were applicable to 

the functional data in this study as all cerebellar regions fell outside the field of view of the 

functional  scans.  The  253  remaining  ROIs  were  consolidated  into  55  ROIs  based  on  their 

structural hierarchy, as specified by the Brainnetome atlas. For all analyses in this study, only the 

8  regions  of  interest  (ROIs)  that  comprised  of  the  sensorimotor  network  were  used.  The 

timecourses  of  all  ROIs  in  the  SMN  were  calculated.  Pearson  correlations  between  the 

timecourses  of  all  ROIs  were  conducted  to  represent  the  strength  of  FC  between  all  ROI 

connections  in  the  SMN.  The  correlation  values  were  compiled  into  a  FC  matrix  for  each 

individual. FC between the Control and Stroke groups was then compared.

3.2.2.4 – Standardization of lesioned hemispheres

Of the 14 individuals in the Stroke group, 7 individuals had lesions in the right hemisphere, 

while 7 had lesions in the left hemisphere. To better assess the effect of motor impairment across 

individuals  with stroke,  the effect  of  lesion location had to be reduced by standardizing the 

lesioned hemisphere to the right hemisphere. Thus, for all individuals with lesions in the left 
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hemisphere. the timecourses for all regions in the right hemisphere were switched with the left 

hemisphere. This step was performed after calculating all ROI timecourses and before generating 

the FC matrices.

3.2.2.5 – Quasi-periodic patterns

Quasi-periodic patterns were acquired using the same methods as described in Chapter 2.1.2 and  

Chapter 3.1.2. For the Control and Stroke groups separately, all functional scans from unique 

individuals  were  concatenated  and  the  pattern-finding  algorithm  was  then  applied.  One 

representative QPP was chosen for the Control group and another for the Stroke group. The 

spatiotemporal  pattern  of  the  QPP and  the  strength  and  frequency  of  its  occurrence  in  the 

functional cans was then compared. Finally, the Control and Stroke QPPs were regressed from 

the Control and Stroke scans respectively to study their contributions to FC. Strength of FC 

between all SMN ROIs before and after regression of the QPPs was compared for the Control 

and Stroke groups.
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3.2.3 – Results

3.2.3.1 – Functional connectivity

Mean FC within the SMN in both the Control and Stroke groups was arranged into FC matrices 

and compared (Figure 3.2.1a). As was expected, all ROI timecourses in the SMN were positively 

correlated. In the Control group, intra-hemisphere SMN FC in the dominant hemisphere was 

positive (mean r ± SD = 0.70 ± 0.079). In the Stroke group, intra-hemisphere SMN FC in the 

corresponding contralesional hemisphere was also positive (mean r ± SD = 0.64 ± 0.12). Intra-

hemisphere SMN FC for both groups was weaker and more varied in the non-dominant (µ = 0.43 

± 0.20) and ipsilesional (µ = 0.38 ± 0.15) hemispheres. Interhemispheric connectivity for both 

Control (µ = 0.43 ± 0.25) and Stroke (µ = 0.43 ± 0.24) is more varied than each’s respective 

intrahemispheric  connectivity.  Interhemispheric  connections  include  strong  and  very  weak 

connections (correlation ~ 0)  as  can be seen qualitatively.  Significant  differences (p < 0.05) 

between SMN FC in Control and Stroke groups (n = 14) were found and compared (Figure 

3.2.1b). There were 6 significant differences found: three interhemispheric differences (p < 0.05), 

three intrahemispheric differences in the non-dominant/ipsilesional hemispheres (p < 0.01), and 

no differences in the dominant/contralesional hemispheres.  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Figure 3.2.1: FC Differences between Control and Stroke groups 

(a) Mean functional connectivity between eight ROIs associated with the sensorimotor 

network across individuals in the Control group (bottom-left) and Stroke (top-right) 

group. The color bar corresponds to the range of correlation values. (b) Significant 

differences (α < 0.05) in sensorimotor functional connectivity between Control and 

Stroke groups. 

3.2.3.2 – Quasi-periodic patterns

As observed in Chapter 2 and earlier in Chapter 3, the QPP observed in both the Control and 

Stroke groups involved a transition between DMN and TPN activity spanning 20 seconds. The 

spatiotemporal pattern of the QPP did not differ between the Control and Stroke groups (Figure 

3.2.2). The strength and frequency of the occurrence of QPPs was also similar (Figure 3.2.3). 

Overall, there were no significant differences between the QPPs observed in both groups.
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Regression of QPPs from the functional scans was effective in removing the presence of the 

QPPs  in  the  BOLD  signal  from  both  groups.  When  FC  in  the  sensorimotor  network  was 

compared in the Control and Stroke groups before versus after regression of QPPs, no significant 

differences in FC could be seen. Removal of QPPs through regression did not affect FC in the 

same regions that showed FC differences when comparing FC between the Control and Stroke 

groups.

!

Figure 3.2.2: Spatiotemporal pattern of Control and Stroke QPPs 

(a) Top: Spatiotemporal pattern of QPPs in the Control group. Bottom: Timecourse of 

the DMN and TPN in the Control QPP. (b) Top: Spatiotemporal pattern of QPPs in the 

Stroke group. Bottom: Timecourse of the DMN and TPN in the Stroke QPP. The quasi-

periodic patterns did not show any observable spatiotemporal differences between the 

Control and Stroke groups. 
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Figure 3.2.3: Strength and frequency of Control and Stroke QPPs 

(a) Top: Sliding correlation vector of the Control QPP with all 14 scans in the Control 

group. Bottom: Histogram of the sliding correlation vector of the Control QPP with all 14 

scans in the Control group. (b) Top: Sliding correlation vector of the Stroke QPP with all 

14 scans in the Stroke group. Bottom: Histogram of the sliding correlation vector of the 

Stroke QPP with all 14 scans in the Stroke group. 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3.2.4 – Discussion

Comparison of  static  functional  connectivity led to observation of  significant  FC differences 

between the Stroke and Control groups in the sensorimotor network. This shows that lesions 

from stroke affecting motor behavior in individuals indeed disrupts the functional architecture of 

the  SMN.  Similar  FC  differences  have  been  observed  in  previous  studies  and  were  hence 

expected in this analysis (Schaechter, 2004). QPPs were observable in both healthy individuals 

and individuals with motor impairment due to stroke. When the QPPs from the two groups were 

compared,  no significant  differences were observable.  The spatiotemporal  pattern involved a 

transition from the DMN to TPN in both groups and the strength and frequency of the QPPs was 

similar as well. 

Studying large-scale brain activity dynamics in stroke through investigation of QPPs was useful 

in that it tells us how large-scale activity is not disrupted due to lesions from stroke. The lesions 

in this  study resulted in motor impairments in the participants.  Such effects  are not  directly 

related to the primary areas involved in the large-scale brain activity captured in QPPs, i.e., the 

DMN and TPN. Hence, the hypothesis was that the QPPs will be unaffected in the Stroke group. 

This  is  helpful  in  understanding  the  large-scale  brain  activity  disruptions  behind  motor 

impairment from stroke as it rules out atypical activity in brain regions not directly in the infarct. 

Particularly relevant to this dissertation, the observations are also helpful in understanding the 

role that QPPs play in maintaining healthy brain function. Chapter 2 shows that QPPs contribute 

to functional connectivity in the DMN and TPN. The previous section in this chapter shows that 

contribution of QPPs to FC deems them relevant to brain disorders involving the DMN and TPN. 
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This section shows that the contribution of QPPs to FC does not deem them relevant to brain 

disorders not involving the DMN and TPN. 

It is important to note that the sample size in this experiment was drastically smaller than the 

previous experiments described in this dissertation. Compared to approximately 100 subjects per 

group in Chapter 2 and Chapter 3.1, the 14 subjects per group used in this experiment certainly 

provides weaker statistical robustness. However, the QPP acquisition in previous chapters was 

conducted using no more than 30 subjects per group; all 100 subjects were not needed when 

comparing  the  spatiotemporal  pattern  of  the  QPPs.  More  importantly,  the  stability  of  the 

spatiotemporal  pattern  in  the  observed  QPP increases  with  the  number  of  subjects  used.  If 

anything, using fewer individuals in this experiment should lead to greater variability between 

groups. Given that no variability was seen is a demonstration that the QPPs are indeed unaffected 

in the presence of motor impairment from stroke.  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3.2.5 – Conclusions

We observe through static analysis of fMRI data that SMN FC is disrupted in individuals with 

motor impairment  due to stroke.  Investigation of  quasi-periodic patterns in these individuals 

reveals that QPPs indeed do not influence FC in the SMN. This demonstrates that stroke may not 

be influencing large-scale brain activity dynamics in regions not directly associated with the 

infarct. These results also help narrow the focus of the role QPPs play in brain function by tying 

them closer to FC in the DMN and TPN and distancing them from FC in regions whose activity 

is not directly captured in the spatiotemporal pattern of the QPPs.  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4.1 – Introduction

The importance of studying large-scale brain activity has been extensively argued for in this 

dissertation. Human behavior and disease are represented in the dynamics of large-scale brain 

activity, which can be studied through the investigation of QPPs. Evidence shows that QPPs 

contribute  to  typical  functional  connectivity  ––  a  sign  of  healthy  brain  activity  ––  and  that 

disruption in QPPs may be a mechanism behind the altered FC seen in individuals with brain 

disorders. However, the mechanism behind the occurrence of QPPs remains to be investigated. 

In  this  chapter,  I  explore  a  working  model  hypothesizing  that  QPPs  are  the  result  of 

neuromodulatory input from subcortical nuclei, specifically from the locus coeruleus.

Deep brain nuclei have the capacity to influence large cortical regions through spatially patterned 

projections. The distribution of the receptors they target allow them to influence the activity of 

regions  across  the  cortex  through  neuromodulation.  The  locus  coeruleus,  with  its  wide 

noradrenergic projections, is not unique in this ability. In fact, large-scale brain organization is 

affected by the manipulation of any major neuromodulator (Williams et al., 2002; Wiggins et al., 

2012; Kelly et al., 2009). Hence, when it comes to investigating possible neural drivers of QPP 

activity, several subcortical nuclei are possible contenders. Indeed, it is arguably the case that 

activity  from more  than  one  subcortical  nucleus  is  responsible  for  QPP activity.  For  purely 

experimental reasons, it is ideal to start investigation of a subcortical role on QPP activity with 

one nucleus. For the locus coeruleus to be chosen first, adequate justification was needed.

Evidence suggests that QPPs are related to arousal and vigilance, which are highly relevant to 

locus coeruleus activity (Aston-Jones et al., 1991; Aston-Jones et al., 1994). The locus coeruleus 
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is know to be a driver of attentional control in the brain (Aston-Jones et al., 1999). Work from 

our group provides an argument for a potential relationship between QPPs and attention and 

vigilance. Chapter 1 shows that QPPs occur with greater strength and frequency in individuals 

when they are performing a cognitively demanding task compared to when the same individuals 

are at rest. Chapter 2 shows that the spatiotemporal pattern of QPPs is disrupted in individuals 

with ADHD, a neuropsychiatric disorder highly relevant to attention and vigilance. Preliminary 

experiments not presented in this dissertation showed that QPPs in awake, resting-state rhesus 

macaques occur with greater strength and frequency compared to anesthetized macaques (Abbas 

et al., 2016). 

Work by other groups furthers the case for a relationship between locus coeruleus activity and 

the role of QPPs. Pupil diameter, which has been shown to reflect LC activity (Gilzenrat et al., 

2010; Joshi et al., 2016), is correlated with changes in FC (Murphy et al., 2010; Chang. et al., 

2016). Locus coeruleus activity also influences trial-to-trial variability in task fMRI, which is 

tied  to  activity  in  the  DMN  (Kelly  et  al.,  2008).  The  power  of  cortical  delta  band 

synchronization, which leads to stronger FC, is increased by locus coeruleus activity (Lu et al., 

2007; Pan et al., 2011; Safaai et al., 2015). When noradrenergic neurons are stimulated using 

DREADDs (designer receptors exclusively activated by designer drugs),  they exhibit  distinct 

activation timecourses, the spatial distribution of which resemble resting-state network and QPPs 

(Das et al., 2017). There is compelling evidence for a relationship between the locus coeruleus 

and QPP activity. Hence, the locus coeruleus is a strong contender for a driver of the large-scale 

brain activity dynamics captured within QPPs.
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In this experiment, we search for QPPs in three groups of rats. The first is a group of Control 

rats, with which we expect to replicate the observations from previous studies observing QPPs in 

rodents (Majeed et al., 2009; Majeed et al., 2011). The second group is rats that have been treated 

with  DSP4  (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine),  a  selective  locus  coeruleus 

neurotoxin. DSP4 decreases noradrenergic innervation of the cortex to 10-20% of its normal 

value and reduces the LC basal firing rate by 50% (Jonsson et al., 1981). The third group is rats 

that  have  been  treated  with  Atomoxetine,  a  norepinephrine  re-uptake  inhibitor.  Atomoxetine 

drastically increases extracellular norepinephrine levels and signaling in the cortex (Bymaster et 

al., 2002). We compare the results of the pattern-finding algorithm on all three groups, with the 

hypothesis that previous findings on the spatiotemporal pattern of QPPs will only be replicated in 

the Control group. If QPP activity is indeed affected by disruption of neuromodulation by locus 

coeruleus activity, it will be compelling evidence that QPPs are tied to neuromodulatory input 

from deep brain nuclei.
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4.2 – Methods

4.2.1 - Animal preparation

A total of 24 adult male Sprague-Dawley rats weighing between 200 g and 250 g were used for 

this  study.  The  24  rats  were  divided  evenly  into  three  groups  of  8:  Control,  DSP4,  and 

Atomoxetine. The DSP4 group was given a subcutaneous injection of 50 mg/kg DSP4 10 days 

prior to MRI data acquisition, which is known to reduce norepinephrine levels in the brain by up 

to 90% in that time period (Jaim-Etcheverry & Mari, 1980). The Atomoxetine group was given a 

subcutaneous  injection  of  1  mg/kg  Atomoxetine  30  minutes  prior  to  MRI  data  acquisition 

(Bymaster et al., 2002). All experimental procedures were carried out following approval by the 

Institutional Animal Care and Use Committee of Emory University.

4.2.2 – Acquisition of fMRI data

Prior  to  MRI  data  acquisition,  all  rats  were  placed  in  a  5% isoflurane  chamber  until  fully 

anesthetized, after which they were placed onto a cradle. Anesthesia was maintained through a 

supply of 2% isoflurane in the cradle. A respiratory pressure transducer was placed under the 

chest for respiratory monitoring. A pulse oximeter was attached to the hind paw for oxygen and 

heart rate monitoring. A rectal thermometer probe was used for temperature monitoring. Body 

temperature was maintained using a heated water circulator. A subcutaneous injection providing 

a  continuous  supply  of  0.05  mg/kg  dexmedetomidine  was  inserted  into  the  thigh.  After  the 

anatomical  scan,  isoflurane  was  slowly  decreased  to  0.5%,  relying  solely  on  the 
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dexmedetomidine supply to  keep the rat  sedated.  The physiological  state  of  the  animal  was 

recorded every 15 minutes.

For MRI data acquisition, a 9.4 Tesla Bruker BioSpecⓇ scanner with a 20-cm horizontal bore 

running ParaVision 5.1 was used. Each rat underwent one anatomical scan (FLASH3D sequence; 

TR 70ms, TE 4ms, FOV 3.2cm, matrix size 128x128x128) and 1-n functional scans (GE-EPI 

sequence; TR 1000ms, TE 14.5ms, FOV 3.2cm, matrix size 64x64x30), with n determined by the 

physiological state of the animal in the scanner and the quality of the data being acquired. All 

scans  with  motion  greater  than  0.5  mm or  0.025  radians  were  discarded.  Only  scans  with 

isoflurane levels less than 0.5% were used. This appreciably decreased the number of scans used 

in the study compared to the number of scans collected. A total of 15 functional scans from 8 rats 

were acquired for the Control group, 10 functional scans from 8 rats for the DSP4 group, and 9 

functional scans from 8 rats for the Atomoxetine group. All data was preprocessed according to 

the preprocessing pipeline detailed in Appendix A.

4.2.3 – Acquisition of quasi-periodic patterns

The acquisition of QPPs follows what has been described in previous chapters. Since the rat 

fMRI data was not registered to a standard space in order to maintain data quality, the pattern-

finding  algorithm  was  applied  to  each  scan  separately.  For  every  scan,  the  pattern-finding 

algorithm was applied 100 times using unique, randomly-selected starting timepoints. From the 

results,  the  output  with  the  greatest  average  correlation  in  all  peaks  in  the  QPP’s  sliding 

correlation  vector  was  chosen  as  the  representative  QPP  from  that  functional  scan.  The 

spatiotemporal pattern of the resulting QPP and its strength and frequency of occurrence in the 
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functional scans in the Control group was compared to previously observed results in Majeed et 

al. (2011) and the QPPs acquired from the DSP4 and Atomoxetine groups.

After scanning, the brains of the Control and DSP4 group rats were collected through rapid 

decapitation  after  deep  anesthetization  with  isoflurane.  High  Performance  Liquid 

Chromatography (HPLC) was used to test for both norepinephrine and dopamine levels in the 

brain. The hippocampus and prefrontal cortex of each hemisphere were rapidly dissected and 

snap-frozen in isopentane cooled on dry ice. The samples were stored at -80°C until processing. 

For tissue processing, samples were thawed on ice and sonicated at 4°C in 0.1 N perchloric acid 

(10 l/mg tissue) for 12 sec of 0.5 sec pulses. Sonicated samples were centrifuged (16100 rcf) for 

30 min at 4°C. The supernatant was centrifuged through 0.45 µm filters at 4000 rcf for 10 min at 

4°C. Norepinephrine and metabolites were measured by electrochemical detection using an ESA 

5600A CoulArray detection system (Chalermpalanupap et al., 2018). Analytes were identified by 

matching  criteria  of  retention  time  and  sensor  ratio  measures  to  known  standards  (Sigma-

Aldrich).  Compounds were quantified by comparing peak areas to those of standards on the 

dominant  sensor.  If  the  DSP4  treatment  was  successful,  the  rats  in  the  DSP4  group  were 

predicted to show significantly lower levels of norepinephrine when compared to the Control 

group while showing the same level of dopamine.  



�  of �110 202

4.3 – Results

4.3.1 – Efficacy of DSP4 treatment

HPLC results showed that norepinephrine levels in the DSP4 group were significantly decreased 

in the prefrontal cortex and hippocampus when compared to the Control group (Figure 4.1a; 

Figure 4.1b). Dopamine levels in the prefrontal cortex and hippocampus were similar in both 

groups (Figure 4.1c; Figure 4.1d). This demonstrated that the DSP4 treatment was successful in 

inhibiting  the  effect  of  the  locus  coeruleus  on  cortical  activity  through  a  depletion  of 

norepinephrine levels in the brain. 

4.3.2 – Spatiotemporal pattern of QPPs 

Application of the pattern-finding algorithm to the Control group resulted in the observation of a 

distinct spatiotemporal pattern spanning approximately 5 seconds. The observed spatiotemporal 

pattern showed activity similar to the QPPs observed in Majeed et al. (2009) and Majeed et al. 

(2011),  which  were  reports  of  the  first  observations  of  QPPs  in  rodents.  A representative 

visualization of the QPPs observed in the Control group is provided in Figure 4.2b, which can be 

compared to the QPP reported in Majeed et al. (2011) in Figure 4.2a. 

A similar spatiotemporal pattern was not observable in either the DSP4 group or the Atomoxetine 

group. There was significant variability between the spatiotemporal patterns acquired through the 

application of the pattern-finding algorithm. The pattern shown in Figure 4.2c  for  the DSP4 

group and Figure 4.2d for the Atomoxetine group are examples of the results observed. In both 

cases, no reliably recurring sequence of events was distinguishable. The spatiotemporal patterns 
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observed were not consistent across subjects in the groups. Lastly, they were not similar to the 

sequence of events reliably captured in the rats from the Control group. 

!  

Figure 4.1: HPLC results in rats from the Control and DSP4 groups 

(a) Administration of DSP4 resulted in a significant decrease in levels of norepinephrine 

in the prefrontal cortex in the DSP4 group compared to the Control group. (b) 

Administration of DSP4 resulted in a significant decrease in levels of norepinephrine in 

the hippocampus in the DSP4 group compared to the Control group. (c) Administration 

of DSP4 did not affect dopamine levels in the prefrontal cortex in the DSP4 group 

compared to the Control group. (d) Administration of DSP4 did not affect dopamine 

levels in the hippocampus in the DSP4 group compared to the Control group. 
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Figure 4.2: Spatiotemporal comparison of QPPs in rats 

(a) Previously reported spatiotemporal pattern of QPPs reported in Majeed et al. (2011). 

Arrows indicate regions of the brain that dominate QPP activity. (b) Representative 

spatiotemporal pattern observed in the Control group’s QPPs from this experiment. 

Similar to (a), the arrows point to brain regions whose activity dominates the QPP. (c) 

Spatiotemporal pattern resulting from application of the pattern-finding algorithm to a 

functional scan from one rat in the DSP4 group. (d) Spatiotemporal pattern resulting 

from application of the pattern-finding algorithm to a functional scan from one rat in the 

Atomoxetine group. 
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4.3.3 – Strength and frequency of QPPs

Example sliding correlations of the QPPs acquired from the Control, Atomoxetine, and DSP4 

groups are plotted in Figure 4.3. The sliding correlation vector demonstrates the strength and 

frequency of the occurrence of QPPs in the functional scans. The figure shows that the strength 

and frequency of the QPP observed in the Control rats (Figure 4.3a) is significantly higher in the 

Control group compared to the Atomoxetine group (Figure 4.3b) and the DSP4 group (Figure 

4.3c). Histograms of the cumulative sliding correlation vectors acquired from each group are 

plotted in Figure 4.4.  Similar to previous chapters,  short,  wide histograms indicate a greater 

strength  and  frequency  of  the  QPPs  in  the  functional  scans,  while  tall,  narrow  histograms 

indicate weaker strength and frequency of the QPPs in the functional scans. The figure shows 

that, overall, the strength and frequency of the QPPs observed in the Control group (Figure 4.4a) 

was greater than the Atomoxetine group (Figure 4.4b) and the DSP4 (Figure 4.4c). Both Figure 

4.3 and Figure 4.4 show that QPP activity is drastically diminished in the Atomoxetine and DSP4 

groups compared to the Control group.
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Figure 4.3: Examples of QPP sliding correlation vectors in rats 

(a) Examples of sliding correlation of the Control QPP in the functional scans of the 

Control rats they were acquired from. (b) Examples of sliding correlation of the 

Atomoxetine spatiotemporal pattern in the functional scans of the Atomoxetine-

administered rats it was acquired from. (c) Examples of sliding correlation of the DSP4 

spatiotemporal pattern in the functional scans of the DSP4-administered rats it was 

acquired from. 
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Figure 4.4: Histograms of cumulative sliding correlation vectors in rats 

(a) Cumulative sliding correlation of all QPPs acquired from the Control group with the 

functional scans they were acquired from. (b) Cumulative sliding correlation of all 

spatiotemporal patterns acquired from the Atomoxetine group with the functional scans 

they were acquired from. (c) Cumulative sliding correlation of all spatiotemporal patterns 

acquired from the DSP4 group with the functional scans they were acquired from. 

Overall, the distribution of values in (a) show further deviation from zero in the sliding 

correlation vectors. This indicates a stronger presence of the QPPs in the functional 

scans in the Control group compared to the Atomoxetine or DSP4 groups. 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4.4 – Discussion

The results from this experiment demonstrate that the spatiotemporal pattern captured in QPPs 

and the strength and frequency of its occurrence in large-scale brain activity dynamics is tied to 

neuromodulation  by  deep  brain  nuclei,  specifically  noradrenergic  projections  from the  locus 

coeruleus. Here, we show that both inhibition of locus coeruleus activity through administration 

of a selective locus coeruleus neurotoxin and augmentation of locus coeruleus activity through 

administration  of  a  norepinephrine  re-uptake  inhibitor  disrupts  the  spatiotemporal  pattern 

observed in the QPPs. The results  are a step forward in determining the neural  mechanisms 

behind the occurrence of QPPs in large-scale brain activity dynamics. 

4.4.1 – A neural mechanism for QPPs

Three main hypotheses can be proposed regarding the neural mechanisms behind QPP activity. 

The first suggests that quasi-periodic patterns are a direct result of neuromodulatory input from 

deep brain nuclei with the capacity to cause large-scale fluctuations in brain activity through 

patterned projections to the cortex. This hypothesis is supported by the results observed in this 

study. The second hypothesis suggests that quasi-periodic patterns could solely be a result of 

organization  of  brain  activity  within  the  cortex.  Such  organization  would  be  an  emergent 

phenomenon from ongoing brain function. This is marginally supported by the observation that 

QPPs become a unilateral pattern rather than a bilateral pattern following callosotomy in rats 

(Magnuson  et  al.,  2014),  suggesting  that  QPPs  rely  on  circuitry  within  the  cortex  for  the 

spatiotemporal pattern observed. The third –– and most likely –– hypothesis is that QPPs are the 
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result of a combination of patterned projections of neuromodulatory input from deep brain nuclei 

and innate cortical circuitry to create the distinct spatiotemporal pattern observed in the brain.

4.4.2 – Controlled input from the locus coeruleus

The locus coeruleus is known to have specific modes of activity: Phasic firing of locus coeruleus 

neurons is tied to instances of high vigilance or task performance, while tonic firing of locus 

coeruleus neurons is related to the absence of a specific task –– which in this context can be 

referred to as resting-state behavior (Aston-Jones & Cohen, 2005). Given the overall hypothesis 

that  QPP activity  is  regulated  through  controlled  input  form  the  locus  coeruleus,  we  can 

speculate that shifts in the nature with which locus coeruleus neurons are firing can have drastic 

effects on QPPs. DSP4 and Atomoxetine have opposite effects on the noradrenergic circuitry in 

the  brain.  DSP4  drastically  decreases  the  influence  of  norepinephrine  in  the  brain.  If 

norepinephrine projections are indeed necessary to affect neuronal excitability and create the 

spatiotemporal pattern observed in QPPs, then administration of DSP4 should inhibit any such 

effect, and the presence of QPPs in the functional scan should be diminished. This was evident in 

the observations from the experiment. On the other hand, Atomoxetine drastically increases the 

influence  of  norepinephrine  in  the  brain.  If  QPPs  rely  on  noradrenergic  input  for  their 

propagation in the BOLD signal, it is possible that increasing norepinephrine levels would lead 

to an increase in the strength and frequency of QPPs. However, administration of Atomoxetine 

had the same effect on QPPs as DSP4 administration. This suggests that a balanced output from 

the locus coeruleus may be what is necessary in creating the spatiotemporal pattern observed in 

the QPPs: Regardless of whether synapses are being flooded with norepinephrine or if they are 

being deprived of it, QPPs disruption would be observed in either scenario.
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4.4.3 – Limitations and future directions

The results from the experiment outlined in this chapter are not meant to be conclusive on the 

relationship between subcortical neuromodulation and QPP activity. Rather, the observations are 

the first step in providing evidence for the argument that QPPs could have a neural driver in deep 

brain regions. Administration of a locus coeruleus neurotoxin such as DSP4 or a norepinephrine 

re-uptake inhibitor such as Atomoxetine is a drastic and coarse modulation of the norepinephrine 

system of the rat brain. It only suggests that there is a relationship between large-scale BOLD 

activity and neuromodulation from the locus coeruleus. However, the nature of this relationship 

is not discernible from such an experiment. The use of locus coeruleus-specific optogenetic and 

DREADD chemogenetic viruses would allow a more controlled manipulation of locus coeruleus 

activity, enabling researchers to measure the effect of its activity on QPPs in real time. The use of 

dopamine beta hydroxylase knockout mice is another avenue through which the effect of the 

norepinephrine  system  on  QPP  activity  and  large-scale  brain  activity  dynamics  can  be 

investigated.  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4.5 – Conclusions

Here  we  showed  that  pharmacological  disruption  of  the  norepinephrine  system  through 

modulation of locus coeruleus activity in the rat brain affects the spatiotemporal pattern of QPPs 

in the BOLD signal and the strength and frequency with which they occur in the functional scan. 

This suggests a possible neural driver of QPP activity. In doing so, it ties neural activity at the 

scale  of  individual  brain  regions  (such  as  the  locus  coeruleus)  to  large-scale  brain  activity 

dynamics (such as the spatiotemporal pattern captured within QPPs).  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Chapter 5  
Conclusions on Quasi-periodic patterns  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To arrive at a complete theory of any phenomenon, its mechanisms must be understood across 

scale and time. The unique complexity of understanding the brain stems from the plethora of 

scales at which its activity occurs, and the breadth of sophistication present at each of those 

scales. To address this challenge, neuroscientists have in turn developed a plethora of methods to 

investigate  brain  activity,  each  unraveling  complexity  at  a  specific  scale.  From  there, 

neuroscientists’ responsibilities become two-fold: First, they must understand brain activity at 

every scale. Second, they must integrate knowledge from all scales. By doing so, they will then 

be able to present a unified theory of the brain.

This  dissertation  focuses  on  large-scale  brain  activity  involving  functionally  diverse  cortical 

regions from across the brain. Such large-scale activity was not a primary focus of classical 

neuroscience, mainly due to the lack of existing techniques to investigate brain activity at this 

scale.  With  the  development  of  non-invasive whole-brain  imaging modalities  such as  fMRI, 

large-scale brain activity became a topic of interest. If understanding the brain indeed requires 

that it  be understood at every scale, then investigation of large-scale brain activity would be 

highly relevant.

The methods used to analyze large-scale brain activity in data collected through fMRI have been 

developing over  the  last  few decades.  Static  fMRI analyses  allow researchers  to  understand 

overall  relationships  between  brain  regions  and  to  form  an  understanding  of  the  brain’s 

functional architecture, including how it is disrupted during disease. However, static analyses of 

fMRI are not able to fully capture the time-varying nature of large-scale brain activity. Dynamic 

analysis of fMRI allows researchers to study large-scale brain activity in real time and learn how 

the structure of functional networks varies in the brain, including how it changes during disease. 
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But given the complexity in the dynamics of large-scale brain activity, a dynamic analysis of 

fMRI comes with its challenges.

Delving into the spatiotemporal dynamics of large-scale brain activity requires consideration of 

an entirely new dimension: Time. An overview of recently developed methods to tackle this is 

provided in Chapter 1. These methods are helping tackle the complexity of time-varying brain 

activity. This dissertation focuses on one of those techniques; i.e., searching for patterns. If there 

are sequences of events in the dynamics of large-scale brain activity that tend to reliably recur in 

the BOLD signal, it is possible they may be serving a purpose in healthy brain function. Upon 

the application of an automated pattern-finding algorithm, our group demonstrated that such a 

spatiotemporal pattern indeed exists. This quasi-periodic pattern became a topic of interest. The 

next step was understanding its purpose.

Chapter 2 of this dissertation describes in detail the spatiotemporal pattern of large-scale brain 

activity dynamics captured in QPPs. Figure 2.1 outlines the brain regions dominating the pattern 

and the order in which they are involved. It shows how closely QPPs are tied to two central 

functional  networks in the brain;  the DMN and TPN. Figure 2.2 illustrates  the strength and 

frequency with which QPPs occur in fMRI data. Together, Figure 2.1 and Figure 2.2 further 

demonstrate how QPPs change in varying brain states by outlining differences in the QPPs when 

individuals are performing a cognitively demanding task as opposed to resting. This was the first 

investigation of how QPPs may differ across brain states. Chapter 2 also discusses the purpose of 

QPPs in the BOLD signal by exploring their  relationship with static functional connectivity. 

Figure 2.3 and Figure 2.4 show that QPPs contribute to typical functional connectivity in the 

brain, specifically within and between the DMN and TPN. At the conclusion of Chapter 2, we 
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have an understanding of the large-scale brain activity dynamics captured in QPPs along with 

evidence that  they assist  in  maintaining healthy brain  function by contributing to  functional 

connectivity in two important brain networks.

These  findings  open  several  avenues  for  further  research.  The  spatiotemporal  differences 

observed in the QPPs between resting-state and task-performing individuals were specific to the 

memory task being performed, i.e., the differences corresponded to the changes in brain activity 

expected during the altered brain state. The observation and description of the spatiotemporal 

differences in QPPs in further brain states will reveal more about their purpose and how they 

may be working towards it. This includes searching for QPPs in individuals conducting a wide 

variety of tasks; a straightforward analysis given that the Human Connectome Project data used 

for the study in Chapter 2 extends to include several other cognitive tasks (Barch et al., 2013). 

Furthermore, fMRI data collected from individuals who are either asleep or anesthetized would 

help in obtaining a better grasp on how QPPs may be relevant to arousal and vigilance, which 

could lead to a more solidified understanding of the role QPPs play in brain function.

Chapter 3 further delves into the role of QPPs play in maintaining healthy brain activity. By 

investigating  how  QPPs  are  affected  in  individuals  with  brain  disorders,  a  more  precise 

understanding of their  function can be obtained.  Chapter 2 had just  demonstrated that  QPPs 

contribute to functional connectivity primarily in the DMN and TPN. Chapter 3 hypothesizes 

that  the  large-scale  brain  activity  dynamics  captured in  QPPs are  only  relevant  to  disorders 

involving the two functional networks, such as ADHD. Consequently, this would predict that 

QPPs are not directly relevant to disorders that do not involve the DMN and TPN, such as a 

stroke affecting motor control.
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The first section of Chapter 3 investigates QPPs in individuals with ADHD and compares them 

to QPPs acquired from healthy controls. This was the first investigation of how QPPs may be 

altered  in  individuals  with  a  brain  disorder.  Figure  3.1.1  outlines  how  static  functional 

connectivity  strength  within  regions  in  the  DMN and TPN is  decreased  in  individuals  with 

ADHD and how the strength of anti-correlation between the two networks becomes weaker.  

These  findings  followed  the  trend  of  existing  knowledge  on  static  functional  connectivity 

differences between individuals with ADHD and healthy controls. Figure 3.1.2 shows how the 

large-scale brain activity dynamics captured in QPPs differ between the Control group and the 

ADHD group. Though the spatiotemporal pattern of the QPPs is mostly similar, some distinct 

differences were apparent.  Figure 3.1.4 shows how those differences could be leading to the 

observed static functional connectivity differences between the Control and ADHD groups. It 

also shows that QPPs contribute to functional connectivity strength within regions in the DMN 

and TPN and to the strength of anti-correlation between the two networks. The first section of 

Chapter 3 provides a clearer understanding of the role QPPs play in maintaining healthy brain 

function through an investigation of how they relate to a neuropsychiatric disorder involving the 

DMN and TPN.

The second section of Chapter 3 investigates QPPs in individuals with motor impairment due to 

stroke. Figure 3.2.1 shows how functional connectivity strength within the sensorimotor network 

is disrupted in individuals with stroke. The individuals with stroke who participated in this study 

did  not  have differences  in  functional  connectivity  within  and between the  DMN and TPN, 

which  is  where  QPP  activity  is  relevant  to  functional  connectivity  strength.  Figure  3.2.2 

illustrates  that  the spatiotemporal  pattern of  the QPP is  unchanged between the Control  and 
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Stroke groups. Figure 3.2.3 shows that the strength and frequency with which QPPs occur is 

unchanged between the Control and Stroke groups. Findings from the second section of Chapter 

3 help focus the understanding of the role QPPs serve in healthy brain function by demonstrating 

where their activity is not relevant through an investigation of how they relate to a brain disorder 

not involving the DMN and TPN.

Chapter 3 provides further evidence that QPPs are relevant specifically to functional connectivity 

in  the  DMN  and  TPN  through  the  observation  that  the  spatiotemporal  pattern  of  QPPs  is 

disrupted in individuals with ADHD, but not in individuals with stroke. This line of evidence can 

be built upon through investigation of QPPs in individuals with neuropsychiatric disorders such 

as  Alzheimer’s  Disease  or  Major  Depressive  Disorder,  which  also  show  altered  functional 

connectivity in the DMN and TPN. Given that datasets for both Alzheimer’s and Depression are 

freely available, this would require a simple repetition of the analyses carried out in Chapter 3 

onto new fMRI datasets.  The same could then be done with an fMRI dataset comprising of 

individuals  with  neuropsychiatric  disorders  such  as  Schizophrenia,  which  does  not  show 

disruptions in DMN and TPN connectivity. If differences in the QPPs are seen in the case of 

Alzheimer’s and Depression, but not in individuals with Schizophrenia, it would further confirm 

the observations reported in Chapter  3.  A commendable next  step would then be to try and 

investigate  the  BOLD  spatiotemporal  dynamics  that  lead  to  the  functional  connectivity 

differences seen in individuals with neuropsychiatric disorders unrelated to the DMN and TPN. 

Part  of  our  overall  hypothesis  states  that  QPPs  contribute  to  static  functional  connectivity 

observed  within  and  between the  DMN and TPN.  Of  course,  functional  connectivity  is  not 

exclusive to those two networks. If there is a dynamic process contributing to connectivity in one 
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network, there may be other dynamic processes contributing to functional connectivity in other 

parts of the brain. Discovery of novel recurring spatiotemporal events –– separate from the QPPs 

described here –– which contribute to functional connectivity in areas unrelated to the DMN and 

TPN would greatly augment the claims presented in this dissertation.

Chapter 4 ties the spatiotemporal dynamics captured in QPPs to brain activity at smaller scales. 

By disrupting the  activity  at  the  level  of  the  locus  coeruleus,  its  effect  on large-scale  brain 

activity  captured  in  QPP is  investigated.  We  see  that  pharmacological  manipulation  of  the 

noradrenergic  system  of  the  brain  ––  driven  by  the  locus  coeruleus  ––  either  through 

administration of a selective locus coeruleus neurotoxin or a norepinephrine re-uptake inhibitor 

leads to a disruption in QPP activity.  Figure 4.1 shows how results  from the pattern-finding 

algorithm change in the treatment groups in terms of the spatiotemporal pattern that is outputted. 

Figure  4.2  shows how the  strength  and frequency of  the  observed spatiotemporal  pattern  is 

reduced  in  the  treatment  groups  compared  to  the  control  group.  Chapter  4  helps  form  an 

understanding of  the relationship between locus coeruleus activity and QPPs.  This assists  in 

further  uncovering  the  nature  of  QPPs  and  the  role  they  play  in  maintaining  healthy  brain 

function. It also serves as insight into how neuromodulatory input from deep brain nuclei may be 

affecting large-scale brain activity dynamics in general. This contributes to the overall aim of this 

dissertation, which is to investigate large-scale brain activity and how it is connected to other 

scales of brain activity. Chapters 2 and 3 explore large-scale brain activity dynamics and what 

purpose they might be serving in the brain. They do not delve into the relationship of large-scale 

brain activity with brain activity at  other scales.  Chapter 4,  by investigating the relationship 

between large-scale brain activity and brain activity at the scale of individual deep brain nuclei, 
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begins to explain the mechanisms of connection between large-scale and medium-scale brain 

activity.

Through investigation of the dynamics of large-scale brain activity in healthy individuals, the 

dissertation concludes that quasi-periodic patterns are a reliably observable phenomenon in the 

brain, contributing to functional connectivity in the default mode and task positive networks. 

Through  investigation  of  QPPs  in  individuals  with  neurological  disorders,  the  dissertation 

concludes that the contribution of QPPs to functional connectivity assists in maintaining healthy 

brain function, which is disrupted during disease. Through investigation of the relationship of 

QPPs to locus coeruleus activity, the dissertation concludes that QPP activity is dependent on 

healthy function in a subcortical nucleus. In doing so, it establishes a relationship between large-

scale  brain  activity  and  brain  activity  occurring  at  smaller  scales.  Overall,  the  dissertation 

provides compelling evidence that studying large-scale brain activity in the form of repeating 

patterns can assist  with understanding healthy brain function and how it  is  disrupted during 

disease.  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Appendix A: 
fMRI Preprocessing Pipeline 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An automated preprocessing pipeline was created to manage preprocessing for all fMRI data 

analyzed in this dissertation. The code for the pipeline was published online, which has helped 

other research groups work with fMRI datasets for the first time. The preprocessing pipeline as it 

applies to rodent data was also published in a methods paper by the lab (Pan et al., 2017). An 

overview of  the  steps  in  the  preprocessing  pipeline  are  also  provided  in  this  appendix.  All 

preprocessing was conducted using FSL 5.0 (Jenkinson et al., 2012) and Matlab (Mathworks, 

Natick, MA).

In the case of the human data analyzed in Chapters 2 and 3, all anatomical scans were registered 

to the 2 mm Montreal Neurological Institute (MNI) brain atlas using FSL’s registration tool, 

FLIRT (Jenkinson & Smith, 2001; Jenkinson et al., 2002). Then, they were skull-stripped using 

FSL’s  brain  extraction  tool,  BET.  Next,  they  were  tissue  segmented  into  white  matter,  gray 

matter, and cerebrospinal fluid using FSL’s segmentation tool, FAST (Zhang et al., 2001). In the 

case of  the rat  data analyzed in Chapter  4,  all  anatomical  scans were skull-stripped using a 

manually drawn brain mask. They were not registered to a standard space or segmented into 

individual tissue types.

If the functional data was collected using a sequence that scanned one brain slice at a time, the 

functional scans were first slice time corrected using FSL’s slicetimer tool. This was applicable to 

the ADHD and Stroke datasets used in Chapter 3.  Second, all  functional scans were motion 

corrected using FSL’s motion correction tool, MCFLIRT (Jenkinson et al., 2002). In the case of 

rats,  motion  regression  was  also  carried  out  using  the  motion  parameters  outputted  from 

MCFLIRT.  Third,  all  functional  scans  were  registered  to  the  same  physical  space  as  the 

anatomical data using FLIRT. This was not applicable to the rat data in Chapter 4. Fourth, they 
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were spatially smoothed with a 6 mm Gaussian kernel in the case of the human data in Chapters 

2 and 3 and a 0.5 mm Gaussian kernel in the case of the rat data in Chapter 4 using FSLMATHS. 

This significantly increases the signal to noise ratio of the BOLD signal. Fifth, Matlab was used 

to apply a Fast Fourier Transform bandpass temporal filter between 0.01 and 0.08 Hz in the case 

of the human data in Chapters 2 and 3 and 0.01 to 0.25 Hz in the case of the rat data in Chapter 

4. Sixth, global, white matter, and cerebrospinal signals were regressed. Only global signal was 

regressed for rats as the white matter and cerebrospinal fluid form a significantly smaller portion 

of the image. Finally, all voxel timecourses were z-scored.  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Appendix B: 
Supplementary Figures  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Supplementary Figure 1: Length of QPPs in RS individuals 

In resting-state individuals, the effect of inputting different window lengths when 

searching for QPPs using the spatiotemporal pattern-finding algorithm, with the purpose 

of determining an apt QPP length to use for this study. (a) Spatiotemporal pattern of four 

QPPs with lengths 16s, 20s, 24s, and 28s (top to bottom). (b) Timecourses of the DMN 

and TPN during each of the QPPs. As can be observed, 16s is too short of a length to 

capture a complete transition between DMN and TPN dominance, hence this length can 

be discarded in our search for an apt QPP length. (c) Histogram of the cumulative 

sliding correlation of the QPP with the 25 concatenated scans it was acquired from. Of 

the three QPP lengths remaining, the strongest correlation (as determined by the widest 

distribution) is shown by the 20s QPP. With increasing QPP length, the strength of the 

sliding correlation decreases. (d) Top: Timecourse of the DMN and TPN at an instance 

in the functional data where a DMN to TPN transition is occurring. Bottom: Sliding 

correlation of the QPP with the functional scan at the same instance where a DMN to 

TPN transition is occurring. For an ideal QPP length, peaks in the sliding correlation 

vector should occur in the center of the QPP, which is the exact instance at which the 

DMN/TPN switch occurs. The 20s and 24s QPPs both pass this test with similar 

performance. Given the tests carried out in (b), (c), and (d), the 20s QPP stands out as 

an ideal length of a QPP in resting-state individuals. 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Supplementary Figure 2: Length of QPPs in TP individuals 

In task-performing individuals, the effect of inputting different window lengths when 

searching for QPPs using the spatiotemporal pattern-finding algorithm, with the purpose 

of determining an apt QPP length to use for this study. (a) Spatiotemporal pattern of four 

QPPs with lengths 16s, 20s, 24s, and 28s (top to bottom). (b) Timecourses of the DMN 

and TPN during each of the QPPs. As can be observed, 16s is too short of a length to 

capture a complete transition between DMN and TPN dominance, hence this length can 

be discarded in our search for an apt QPP length. (c) Histogram of the cumulative 

sliding correlation of the QPP with the 25 concatenated scans it was acquired from. Of 

the three QPP lengths remaining, the strongest correlation (as determined by the widest 

distribution) is shown by the 20s QPP. With increasing QPP length, the strength of the 

sliding correlation decreases. (d) Top: Timecourse of the DMN and TPN at an instance 

in the functional data where a DMN to TPN transition is occurring. Bottom: Sliding 

correlation of the QPP with the functional scan at the same instance where a DMN to 

TPN transition is occurring. For an ideal QPP length, peaks in the sliding correlation 

vector should occur in the center of the QPP, which is the exact instance at which the 

DMN/TPN switch occurs. The 20s QPP passes this test with the best performance. 

Given the tests carried out in (b), (c), and (d), the 20s QPP stands out as an ideal length 

of a QPP in task-performing individuals. 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Supplementary Figure 3: Timecourses of ROIs anti-correlated across QPPs 

Timecourses of example ROIs that were identified as behaving differently in the resting-

state QPP versus the task-performing QPP. Blue lines show how the ROI behaved 

during the resting-state QPP while red lines show how the ROI behaved during the task-

performing QPP. 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Supplementary Figure 4: Effect of task blocks on QPP strength and frequency 

Effects of fixation, 0-back, and 2-back blocks on the occurrence of resting-state and 

task-performing QPPs in task-performing scans. The sliding correlation vectors of each 

of the QPPs were separated into areas that corresponded with the 15s fixation blocks 

and 25s 0-back and 2-back blocks in each scan. (a) Top: Histograms of the cumulative 

sliding correlation of the resting-state QPP with instances in all the task-performing 

scans that corresponded with fixation (left), the 0-back working memory task (middle), 

and the 2-back working memory task (right). There was no significant difference in the 

distribution of the sliding correlation vector of the resting-state QPP in each of the 

blocks. Bottom: Histograms of the cumulative sliding correlation of the task-performing 

QPP with instances in all the task-performing scans that corresponded with fixation 

(left), the 0-back working memory task (middle), and the 2-back working memory task 

(right). There was no significant difference in the distribution of the sliding correlation 
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vector of the task-performing QPP in each of the blocks. As previously shown in Figure 

2, the presence of the task-performing QPP was stronger in the task-performing scans 

compared to the resting-state QPP. (b) Mean correlation strength for all peaks > 0.1 in 

the sliding correlation vectors of the resting-state and task-performing QPPs in each of 

the blocks during all the task-performing scans. There was no significant difference in 

the mean peak height of either the resting-state or task-performing QPPs across the 

blocks in the task-performing scans. As previously shown in Figure 2, the mean peak 

heights of the task-performing QPP in task-performing scans is greater than those of the 

resting-state QPP. 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Supplementary Figure 5: Strength and frequency of QPPs in Control and ADHD. 

Comparison of the strength and frequency of QPPs between the Control and ADHD 

groups before and after removal of QPPs. This is a partial repetition of Figure 3 in the 
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main text. However, here we compare the strength and frequency of QPPs in their non-

native scans. (a) Example sliding correlation vectors of the Control QPP with three 

randomly-selected concatenated functional scans from the Control group (left) and the 

ADHD group (right) before (blue) and after (red) regression of the Control QPP. (b) 

Example sliding correlation vectors of the ADHD QPP with three randomly-selected 

concatenated functional scans from the Control group (left) and the ADHD group (right) 

before (blue) and after (red) regression of the Control QPP. (c) Mean correlation 

strength of peaks > 0.1 in the cumulative sliding correlation of the Control and ADHD 

QPPs with all Control scans (left) and all ADHD scans (right) before QPP removal (blue) 

and after QPP removal (red). (d) Mean frequency (peaks per minute) of peaks with 

correlation strength > 0.1 in the cumulative sliding correlation of the Control and ADHD 

QPPs with all Control scans (left) and all ADHD scans (right) before QPP removal (blue) 

and after QPP removal (red). (e) Histogram of the cumulative sliding correlation of the 

Control QPP with all Control scans (left) and all ADHD scans (right) before QPP removal 

(blue) and after QPP removal (red). (f) Histogram of the cumulative sliding correlation of 

the ADHD QPP with all Control scans (left) and all ADHD scans (right) before QPP 

removal (blue) and after QPP removal (red). There were no significant differences in 

strength and frequency of either QPPs in each of the groups. 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Supplementary Figure 6: FC changes in Control and ADHD after QPP regression 

FC in 36 ROIs within the DMN and TPN after regression of QPPs. Parts of these 

matrices have also been shown in Figure 4 in the main text. However, here we show the 

effects of regressing non-native QPPs from the functional scans in each group. (a) 

Differences in FC in the Control scans after regression of the Control (bottom-left) and 

ADHD (top-right) QPPs. (b) Differences in FC in the ADHD scans after regression of the 

Control (bottom-left) and ADHD (top-right) QPPs. When the Control QPP was removed 

from the Control data, there were 494 significant changes in FC within and across the 

DMN and TPN. When the ADHD QPP was removed from the Control data, there were 



�  of �142 202

362 significant changes in FC. When the Control QPP was removed from the ADHD 

group, there were 361 significant changes in FC. Lastly, when the ADHD QPP was 

removed from the ADHD scans, there were only 280 significant changes in FC. 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Supplementary Table 1: DMN ROIs in the Control and ADHD groups 

Regions of interest from the 273 ROI Brainnetome atlas from Fan et al. (2016) that were 

in the DMN in Control individuals and individuals with ADHD. The table shows the 

number of voxels in each ROI that overlapped with the DMN mask as well as how many 

voxels ended up in the brain regions that made up the consolidated DMN atlas. 

Additionally, the table shows the mean correlation with the PCC with each ROI as well 

as the brain regions that made up the consolidated DMN atlas. 

Region of Interest
Control Group ADHD Group

Voxels Correlation Voxels Correlation

superior frontal gyrus, part 2 
(dorsolateral area 8), left 402

2912

0.33

0.31

215

1514

0.25

0.25

superior frontal gyrus, part 2 
(dorsolateral area 8), right 456 0.33 127 0.24

superior frontal gyrus, part 3 
(lateral area 9), left 105 0.29 22 0.23

superior frontal gyrus, part 3 
(lateral area 9), right 363 0.29 0 N/A

superior frontal gyrus, part 6 
(medial area 9), left 8 0.27 23 0.23

superior frontal gyrus, part 6 
(medial area 9), right 152 0.28 25 0.23

superior frontal gyrus, part 7 
(medial area 10), left 655 0.33 666 0.27

superior frontal gyrus, part 7 
(medial area 10), right 771 0.35 436 0.27

middle frontal gyrus, part 1 
(dorsal area 9/46), left 58

1201

0.30

0.31

71

580

0.24

0.24

middle frontal gyrus, part 1 
(dorsal area 9/46), right 215 0.32 39 0.23

middle frontal gyrus, part 3 
(area 46), left 3 0.28 4 0.23

middle frontal gyrus, part 3 
(area 46), right 27 0.29 0 N/A

middle frontal gyrus, part 5 
(ventrolateral area 8), left 234 0.31 149 0.25

middle frontal gyrus, part 5 
(ventrolateral area 8), right 24 0.28 0 N/A



�  of �145 202

middle frontal gyrus, part 6 
(ventrolateral area 6), right 28 0.30 0 N/A

middle frontal gyrus, part 7 
(lateral area 10), left 211 0.31 187 0.26

middle frontal gyrus, part 7 
(lateral area 10), right 401 0.35 130 0.25

orbital gyrus, part 1 
(medial area 14), left 509

2022

0.38

0.34

509

1764

0.33

0.28

orbital gyrus, part 1 
(medial area 14), right 670 0.40 670 0.33

orbital gyrus, part 4 
(medial area 11), left 269 0.33 137 0.26

orbital gyrus, part 4 
(medial area 11), right 499 0.36 344 0.28

orbital gyrus, part 5 
(area 13), left 62 0.30 68 0.25

orbital gyrus, part 5 
(area 13), right 13 0.28 36 0.23

paracentral lobule, part 1 
(area1/2/3 lower limb), left 25

149

0.34

0.34

80

319

0.30

0.30

paracentral lobule, part 1 
(area1/2/3 lower limb), right 85 0.35 154 0.31

paracentral lobule, part 2 
(area 4 lower limb), left 26 0.34 53 0.31

paracentral lobule, part 2 
(area 4 lower limb), right 13 0.32 32 0.29

superior temporal gyrus, part 4 
(caudal area 22), left 0 0 N/A N/A 1 1 0.23 0.23

middle temporal gyrus, part 1 
(caudal area 21), left 69

478

0.29

0.30

75

195

0.24

0.23

middle temporal gyrus, part 1 
(caudal area 21), right 235 0.32 7 0.22

middle temporal gyrus, part 2 
(rostral area 21), left 92 0.29 97 0.24

middle temporal gyrus, part 2 
(rostral area 21), right 61 0.29 8 0.22

middle temporal gyrus, part 3 
(dorsolateral area 37), left 0 N/A 8 0.24

middle temporal gyrus, part 4 
(anterior superior temporal sulcus), right 21 0.30 0 N/A

inferior temporal gyrus, part 4 
(intermediate lateral area 20), left 91 0.29 106 0.24

inferior temporal gyrus, part 4 
(intermediate lateral area 20), right 73 0.30 6 0.22

Region of Interest
Control Group ADHD Group

Voxels Correlation Voxels Correlation
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inferior temporal gyrus, part 6 
(caudolateral of area 20), right 56 221 0.30 0.29 0 128 N/A 0.23

inferior temporal gyrus, part 7 
(caudoventral of area 20), left 0 N/A 5 0.23

inferior temporal gyrus, part 7 
(caudoventral of area 20), right 1 0.28 11 0.24

superior parietal lobule, part 2 
(caudal area 7), left 0 0 N/A N/A 4 4 0.23 0.23

inferior parietal lobule, part 1 
(caudal area 39), right 486

2770

0.39

0.36

443

3033

0.32

0.31

inferior parietal lobule, part 2 
(rostrodorsal area 39), left 145 0.34 171 0.30

inferior parietal lobule, part 2 
(rostrodorsal area 39), right 628 0.39 597 0.33

inferior parietal lobule, part 4 
(caudal area 40), left 222 0.33 341 0.29

inferior parietal lobule, part 5 
(rostroventral area 39), left 824 0.37 994 0.33

inferior parietal lobule, part 5 
(rostroventral area 39), right 465 0.36 487 0.29

precuneus, part 1 
(medial area 7), left 237

3560

0.38

0.47

244

3926

0.34

0.43

precuneus, part 1 
(medial area 7), right 187 0.37 160 0.32

precuneus, part 2 
(medial area 5), left 91 0.40 158 0.36

precuneus, part 2 
(medial area 5), right 150 0.43 213 0.39

precuneus, part 3 
(dorsomeidal parietooccipital sulcus), 609 0.43 707 0.41

precuneus, part 3 (dorsomeidal 
parietooccipital sulcus), right 584 0.48 742 0.44

precuneus, part 4 
(area 31), left 755 0.62 755 0.60

precuneus, part 4 
(area 31), right 947 0.62 947 0.59

cingulate gyrus, part 1 
(dorsal area 23), left 477 0.82 477 0.81

cingulate gyrus, part 1 
(dorsal area 23), right 412 0.80 412 0.80

cingulate gyrus, part 2 
(rostroventral area 24), left 40 0.49 63 0.43

cingulate gyrus, part 2 
(rostroventral area 24), right 47 0.30 92 0.27

Region of Interest
Control Group ADHD Group

Voxels Correlation Voxels Correlation
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cingulate gyrus, part 3 
(pregenual area 32), left 76

3190

0.30

0.49

234

3720

0.27

0.46

cingulate gyrus, part 3 
(pregenual area 32), right 1 0.28 53 0.24

cingulate gyrus, part 4 
(ventral area 23), left 232 0.58 253 0.55

cingulate gyrus, part 4 
(ventral area 23), right 262 0.60 263 0.58

cingulate gyrus, part 6 
(caudal area 24), left 409 0.51 489 0.49

cingulate gyrus, part 6
(caudal area 24), right 357 0.53 416 0.51

cingulate gyrus, part 7 
(subgenual area 32), left 535 0.36 555 0.32

cingulate gyrus, part 7 
(subgenual area 32), right 342 0.34 413 0.30

cuneus, part 2 
(rostral cuneus gyrus), left 9

512

0.34

0.37

12

725

0.31

0.33

cuneus, part 2 
(rostral cuneus gyrus), right 92 0.38 115 0.34

cuneus, part 5 (ventomedial 
parietooccipital sulcus), left 79 0.33 163 0.29

cuneus, part 5 (ventomedial 
parietooccipital sulcus), right 332 0.41 435 0.38

superior occipital gyrus, part 1 
(medial superior occipital gyrus), left 4

189

0.28

0.29

9

167

0.25

0.26

superior occipital gyrus, part 1 
(medial superior occipital gyrus), right 0 N/A 1 0.23

superior occipital gyrus, part 2 
(lateral superior occipital gyrus), left 1 0.28 21 0.26

superior occipital gyrus, part 2 
(lateral superior occipital gyrus), right 184 0.33 136 0.29

hippocampus, part 2 
(caudal hipp), left 2 2 0.30 0.30 7 7 0.27 0.27

striatum, part 3 
(nucleus accumbens), right 0 0 N/A N/A 3 3 0.22 0.22

thalamus, part 4 
(rostral temporal thalamus), left 0

0

N/A

N/A

11

33

0.25

0.24

thalamus, part 4 
(rostral temporal thalamus), right 0 N/A 9 0.25

thalamus, part 6 
(occipital thalamus), left 0 N/A 2 0.23

thalamus, part 7 
(caudal temporal thalamus), left 0 N/A 7 0.24

Region of Interest
Control Group ADHD Group

Voxels Correlation Voxels Correlation
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Supplementary Table 2: TPN ROIs in individuals with ADHD 

Regions of interest from the 273 ROI Brainnetome atlas from Fan et al. (2016) that were 

in the TPN in Control individuals and individuals with ADHD. The table shows the 

number of voxels in each ROI that overlapped with the TPN mask as well as how many 

voxels ended up in the brain regions that made up the consolidated TPN atlas. 

Additionally, the table shows the mean correlation with the PCC with each ROI as well 

as the brain regions that made up the consolidated TPN atlas. 

thalamus, part 7 
(caudal temporal thalamus), right 0 N/A 4 0.24

Cerebellar lobule I-IV, left 1
2

0.27
0.28

1
1

0.22
0.22

Cerebellar lobule I-IV, right 1 0.28 0 N/A

Region of Interest
Control Group ADHD Group

Voxels Correlation Voxels Correlation

Region of Interest
Control Group ADHD Group

Voxels Correlation Voxels Correlation

superior frontal gyrus, part 1 
(medial area 8), left 112

927

-0.27

-0.27

45

778

-0.21

-0.21

superior frontal gyrus, part 1 
(medial area 8), right 97 -0.27 41 -0.21

superior frontal gyrus, part 4 
(dorsolateral area 6), left 190 -0.26 267 -0.21

superior frontal gyrus, part 4 
(dorsolateral area 6), right 6 -0.26 126 -0.21

superior frontal gyrus, part 5 
(medial area 6), left 256 -0.28 142 -0.22

superior frontal gyrus, part 5 
(medial area 6), right 266 -0.28 157 -0.21

middle frontal gyrus, part 2 
(inferior frontal junction), left 1 -0.26 0 N/A

middle frontal gyrus, part 2 
(inferior frontal junction), right 0 N/A 2 -0.21
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middle frontal gyrus, part 4 
(ventral area 9/46 ), right 0 24 N/A -0.25 233 361 -0.22 -0.21

middle frontal gyrus, part 5 
(ventrolateral area 8), right 0 N/A 3 -0.21

middle frontal gyrus, part 6 
(ventrolateral area 6), left 23 -0.25 123 -0.22

inferior frontal gyrus, part 1 
(dorsal area 44), left 152

1367

-0.32

-0.29

171

2003

-0.28

-0.24

inferior frontal gyrus, part 1 
(dorsal area 44), right 5 -0.26 62 -0.25

inferior frontal gyrus, part 2 
(inferior frontal sulcus), left 0 N/A 1 -0.22

inferior frontal gyrus, part 2 
(inferior frontal sulcus), right 0 N/A 175 -0.22

inferior frontal gyrus, part 3 
(caudal area 45), left 69 -0.27 160 -0.24

inferior frontal gyrus, part 3 
(caudal area 45), right 4 -0.26 55 -0.22

inferior frontal gyrus, part 4 
(rostral area 45), left 3 -0.26 22 -0.21

inferior frontal gyrus, part 4 
(rostral area 45), right 0 N/A 102 -0.21

inferior frontal gyrus, part 5 
(opercular area 44), left 388 -0.29 243 -0.23

inferior frontal gyrus, part 5
(opercular area 44), right 314 -0.29 448 -0.25

inferior frontal gyrus, part 6 
(ventral area 44), left 297 -0.34 297 -0.31

inferior frontal gyrus, part 6 
(ventral area 44), right 135 -0.31 267 -0.28

orbital gyrus, part 6 
(lateral area 12/47), left 52

67
-0.26

-0.26
9

50
-0.21

-0.22orbital gyrus, part 6 
(lateral area 12/47), right 15 -0.26 41 -0.23

precentral gyrus, part 1 
(area 4 head and face), left 420

2582

-0.29

-0.30

145

2281

-0.26

-0.26

precentral gyrus, part 1 
(area 4 head and face), right 223 -0.27 212 -0.23

precentral gyrus, part 2 
(caudal dorsolateral area 6), left 266 -0.27 210 -0.22

precentral gyrus, part 2 
(caudal dorsolateral area 6), right 45 -0.26 53 -0.21

precentral gyrus, part 3 
(area 4 upper limb), right 53 -0.26 0 N/A

Region of Interest
Control Group ADHD Group

Voxels Correlation Voxels Correlation
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precentral gyrus, part 5 
(area 4 tongue and larynx), left 437 -0.33 410 -0.26

precentral gyrus, part 5 
(area 4 tongue and larynx), right 367 -0.35 367 -0.31

precentral gyrus, part 6 
(caudal ventrolateral area 6), left 566 -0.33 453 -0.29

precentral gyrus, part 6 
(caudal ventrolateral area 6), right 205 -0.29 431 -0.27

superior temporal gyrus, part 2 
(area 41/42), left 111

1618

-0.26 -0.27 1

852

-0.20

-0.23

superior temporal gyrus, part 2 
(area 41/42), right 266 -0.27 11 -0.21

superior temporal gyrus, part 3 
(area TE), left 386 -0.28 251 -0.24

superior temporal gyrus, part 3 
(area TE), right 552 -0.32 392 -0.26

superior temporal gyrus, part 4 
(caudal area 22), left 1 -0.25 59 -0.23

superior temporal gyrus, part 4 
(caudal area 22), right 187 -0.28 0 N/A

superior temporal gyrus, part 5 
(lateral area 38), left 28 -0.27 44 -0.23

superior temporal gyrus, part 5 
(lateral area 38), right 19 -0.27 14 -0.22

superior temporal gyrus, part 6 
(rostral area 22), left 30 -0.27 58 -0.23

superior temporal gyrus, part 6 
(rostral area 22), right 38 -0.28 22 -0.22

middle temporal gyrus, part 3 
(dorsolateral area 37), left 0

0
N/A

N/A
12

15
-0.21

-0.21middle temporal gyrus, part 3 
(dorsolateral area 37), right 0 N/A 3 -0.21

inferior temporal gyrus, part 2 
(extreme lateroventral area 37), left 99

253

-0.27

-0.26

105

386

-0.24

-0.23inferior temporal gyrus, part 5 
(ventrolateral area 37), left 153 -0.26 246 -0.23

inferior temporal gyrus, part 5 
(ventrolateral area 37), right 1 -0.25 35 -0.21

fusiform gyrus, part 1 
(rostroventral area 20), left 0

1771

N/A

-0.29

3

1857

-0.20

-0.23

fusiform gyrus, part 2 
(medioventral area 37), left 695 -0.30 653 -0.24

fusiform gyrus, part 2 
(medioventral area 37), right 515 -0.30 577 -0.25

Region of Interest
Control Group ADHD Group

Voxels Correlation Voxels Correlation
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fusiform gyrus, part 3 
(ventrolatral area 37), left 400 -0.29 401 -0.23

fusiform gyrus, part 3 
(ventrolatral area 37), right 161 -0.27 223 -0.24

superior parietal lobule, part 1 
(rostral area 7), left 0

24

N/A

-0.25

117

393

-0.22

-0.21

superior parietal lobule, part 1 
(rostral area 7), right 0 N/A 41 -0.21

superior parietal lobule, part 2 
(caudal area 7), left 0 N/A 6 -0.21

superior parietal lobule, part 2 
(caudal area 7), right 0 N/A 23 -0.21

superior parietal lobule, part 3 
(lateral area 5), left 18 -0.25 26 -0.21

superior parietal lobule, part 4 
(postcentral area 7), left 0 N/A 38 -0.21

superior parietal lobule, part 5 
(intraparietal area 7), left 6 -0.24 132 -0.22

inferior parietal lobule, part 3 
(rostrodorsal area 40), left 241

1303

-0.28

-0.27

10

2262

-0.21

-0.24

inferior parietal lobule, part 3 
(rostrodorsal area 40), left 0 N/A 567 -0.25

inferior parietal lobule, part 3 
(rostrodorsal area 40), right 29 -0.25 530 -0.24

inferior parietal lobule, part 4
(caudal area 40), right 0 N/A 197 -0.24

inferior parietal lobule, part 6 
(rostroventral area 40), left 381 -0.28 217 -0.22

inferior parietal lobule, part 6 
(rostroventral area 40), right 652 -0.27 751 -0.24

postcentral gyrus, part 1 
(area 1/2/3 upper limb), left 235

1575

-0.26

-0.27

168

1146

-0.23

-0.23

postcentral gyrus, part 1 
(area 1/2/3 upper limb), right 125 -0.26 5 -0.21

postcentral gyrus, part 2 
(area 1/2/3 tongue and larynx), left 540 -0.28 143 -0.22

postcentral gyrus, part 2 
(area 1/2/3 tongue and larynx), right 511 -0.29 247 -0.24

postcentral gyrus, part 3 
(area 2), left 148 -0.27 556 -0.24

postcentral gyrus, part 3 
(area 2), right 16 -0.25 27 -0.21

insular, part 1 
(hypergranular insula), left 69 -0.27 11 -0.21

Region of Interest
Control Group ADHD Group

Voxels Correlation Voxels Correlation
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insular, part 1 
(hypergranular insula), right 110

2113

-0.28

-0.29

0

1426

N/A

-0.24

insular, part 2 
(ventral agranular insula), left 1 -0.25 0 N/A

insular, part 2 
(ventral agranular insula), right 0 N/A 9 -0.22

insular, part 3 
(dorsal agranular insula), left 231 -0.29 95 -0.21

insular, part 3 
(dorsal agranular insula), right 215 -0.29 213 -0.25

insular, part 4 
(ventral granular insula), left 158 -0.28 76 -0.23

insular, part 4 
(ventral granular insula), right 163 -0.28 53 -0.22

insular, part 5 
(dorsal granular insula), left 231 -0.30 102 -0.24

insular, part 5 
(dorsal granular insula), right 260 -0.32 204 -0.25

insular, part 6 
(dorsal dysgranular insula), left 362 -0.33 350 -0.25

insular, part 6 
(dorsal dysgranular insula), right 313 -0.34 313 -0.28

cingulate gyrus, part 5 
(caudodorsal area 24), left 5

24
-0.25

-0.26
0

0
N/A

N/Acingulate gyrus, part 5 
(caudodorsal area 24), right 19 -0.26 0 N/A

cuneus, part 1 
(caudal lingual gyrus), left 152

1157

-0.27

-0.27

72

1112

-0.22

-0.22

cuneus, part 1 
(caudal lingual gyrus), right 142 -0.28 72 -0.22

cuneus, part 2 
(rostral cuneus gyrus), left 2 -0.26 0 N/A

cuneus, part 2 
(rostral cuneus gyrus), right 36 -0.25 2 -0.21

cuneus, part 3 
(caudal cuneus gyrus), right 29 -0.25 0 N/A

cuneus, part 4 
(rostral lingual gyrus), left 390 -0.29 452 -0.25

cuneus, part 4 
(rostral lingual gyrus), right 406 -0.29 480 -0.24

cuneus, part 5 
(ventomedial parietooccipital sulcus), left

0 N/A 33 -0.21

cuneus, part 5 
(ventomedial parietooccipital sulcus), right

0 N/A 1 -0.20

Region of Interest
Control Group ADHD Group

Voxels Correlation Voxels Correlation
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occipital gyrus, part 1 
(middle occipital gyrus), left 68

1259

-0.25

-0.26

71

1175

-0.21

-0.22

occipital gyrus, part 1
(middle occipital gyrus), right 52 -0.25 0 N/A

occipital gyrus, part 2 
(area V5/MT), left 317 -0.27 204 -0.22

occipital gyrus, part 2 
(area V5/MT), right 269 -0.27 590 -0.25

occipital gyrus, part 3 
(occipital polar cortex), right 12 -0.25 0 N/A

occipital gyrus, part 4 
(inferior occipital gyrus), left 189 -0.27 11 -0.21

occipital gyrus, part 4 
(inferior occipital gyrus), right 352 -0.27 299 -0.23

striatum, part 2 
(globus pallidus), left 4

413

-0.25

-0.26

0

206

N/A

-0.22

striatum, part 2 
(globus pallidus), right 67 -0.27 58 -0.22

striatum, part 4 
(ventromedial putamen), left 3 -0.25 0 N/A

striatum, part 4 
(ventromedial putamen), right 8 -0.26 2 -0.21

striatum, part 6 
(dorsolateral putamen), left 134 -0.26 0 N/A

striatum, part 6 
(dorsolateral putamen), right 197 -0.28 146 -0.23

Cerebellar lobule I-IV, right

2073 -0.27

1

2326

-0.20

-0.22

Cerebellar lobule V, left 1 -0.25 40 -0.21

Cerebellar lobule V, right 62 -0.26 147 -0.23

Cerebellar lobule VI, left 657 -0.29 889 -0.24

Cerebellar lobule VI, vermis 9 -0.25 33 -0.21

Cerebellar lobule VI, right 739 -0.30 656 -0.25

Cerebellar Crus I, left 80 -0.27 151 -0.22

Cerebellar Crus I, right 525 -0.29 292 -0.24

Cerebellar lobule VIIb, left 0 N/A 31 -0.21

Region of Interest
Control Group ADHD Group

Voxels Correlation Voxels Correlation
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Supplementary Table 3: ROIs in DMN and TPN and their correlation across QPPs 

A list of regions of interest in the Brainnetome ROI atlas, whether they were included in 

the Control or ADHD DMN or TPN, and their correlation between the Control and ADHD 

quasi-periodic patterns. Among the four sub-columns for Correlation, the first shows the 

correlation value for each ROI, the second shows the mean correlation for all ROIs that 

were in the collective DMN from both groups, the third shows the mean correlation for 

all ROIs that were in the collective TPN from both groups, and the fourth shows the 

mean correlation for all ROIS in the respective anatomical region of the brain. 

Cerebellar lobule VIIIa, left 0 N/A 9 -0.21

Cerebellar lobule VIIIa, right 0 N/A 77 -0.21

Region of Interest
Control Group ADHD Group

Voxels Correlation Voxels Correlation

Region of Interest
Control ADHD

Correlation
DMN TPN DMN TPN

superior frontal gyrus, part 1 
(medial area 8), left ✓ ✓ 0.46

superior frontal gyrus, part 1 
(medial area 8), right ✓ ✓ 0.08

superior frontal gyrus, part 2 
(dorsolateral area 8), left ✓ ✓ 0.98

superior frontal gyrus, part 2 
(dorsolateral area 8), right ✓ ✓ 0.99

superior frontal gyrus, part 3 
(lateral area 9), left ✓ ✓ 1.00

superior frontal gyrus, part 3 
(lateral area 9), right ✓ 1.00
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superior frontal gyrus, part 4 
(dorsolateral area 6), left ✓ ✓ 0.99

superior frontal gyrus, part 4 
(dorsolateral area 6), right ✓ ✓ 0.75

superior frontal gyrus, part 5 
(medial area 6), left ✓ ✓ 1.00

superior frontal gyrus, part 5 
(medial area 6), right ✓ ✓ 0.99

superior frontal gyrus, part 6 
(medial area 9), left ✓ ✓ 0.97

superior frontal gyrus, part 6 
(medial area 9), right ✓ ✓ 1.00

superior frontal gyrus, part 7 
(medial area 10), left ✓ ✓ 1.00

superior frontal gyrus, part 7 
(medial area 10), right ✓ ✓ 1.00

middle frontal gyrus, part 1 
(dorsal area 9/46), left ✓ ✓ 0.96

middle frontal gyrus, part 1 
(dorsal area 9/46), right ✓ ✓ 0.96

middle frontal gyrus, part 2 
(inferior frontal junction), left ✓ 0.95

middle frontal gyrus, part 2 
(inferior frontal junction), right ✓ 1.00

middle frontal gyrus, part 3 
(area 46), left ✓ ✓ 1.00

middle frontal gyrus, part 3 
(area 46), right ✓ 0.99

middle frontal gyrus, part 4 
(ventral area 9/46 ), left 0.08

middle frontal gyrus, part 4 
(ventral area 9/46 ), right ✓ -0.27

middle frontal gyrus, part 5 
(ventrolateral area 8), left ✓ ✓ 0.99

Region of Interest
Control ADHD

Correlation
DMN TPN DMN TPN
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middle frontal gyrus, part 5 
(ventrolateral area 8), right ✓ ✓ 0.99

middle frontal gyrus, part 6 
(ventrolateral area 6), left ✓ ✓ 0.12

middle frontal gyrus, part 6 
(ventrolateral area 6), right ✓ 0.97

middle frontal gyrus, part 7 
(lateral area 10), left ✓ ✓ 1.00

middle frontal gyrus, part 7 
(lateral area 10), right ✓ ✓ 1.00

inferior frontal gyrus, part 1 
(dorsal area 44), left ✓ ✓ 1.00

inferior frontal gyrus, part 1 
(dorsal area 44), right ✓ ✓ 0.99

inferior frontal gyrus, part 2 
(inferior frontal sulcus), left ✓ 0.83

inferior frontal gyrus, part 2 
(inferior frontal sulcus), right ✓ -0.52

inferior frontal gyrus, part 3 
(caudal area 45), left ✓ ✓ 0.77

inferior frontal gyrus, part 3 
(caudal area 45), right ✓ ✓ 0.94

inferior frontal gyrus, part 4 
(rostral area 45), left ✓ ✓ -0.18

inferior frontal gyrus, part 4 
(rostral area 45), right ✓ 0.83

inferior frontal gyrus, part 5 
(opercular area 44), left ✓ ✓ 0.97

inferior frontal gyrus, part 5 
(opercular area 44), right ✓ ✓ 0.95

inferior frontal gyrus, part 6 
(ventral area 44), left ✓ ✓ 1.00

inferior frontal gyrus, part 6 
(ventral area 44), right ✓ ✓ 0.78

Region of Interest
Control ADHD

Correlation
DMN TPN DMN TPN
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orbital gyrus, part 1 
(medial area 14), left ✓ ✓ 1.00

orbital gyrus, part 1 
(medial area 14), right ✓ ✓ 1.00

orbital gyrus, part 2 
(orbital area 12/47), left 0.99

orbital gyrus, part 2 
(orbital area 12/47), right 0.99

orbital gyrus, part 3
(lateral area 11), left 0.97

orbital gyrus, part 3 
(lateral area 11), right 0.99

orbital gyrus, part 4 
(medial area 11), left ✓ ✓ 1.00

orbital gyrus, part 4 
(medial area 11), right ✓ ✓ 1.00

orbital gyrus, part 5 
(area 13), left ✓ ✓ 0.99

orbital gyrus, part 5 
(area 13), right ✓ ✓ 0.99

orbital gyrus, part 6 
(lateral area 12/47), left ✓ ✓ -0.59

orbital gyrus, part 6 
(lateral area 12/47), right ✓ ✓ 0.78

precentral gyrus, part 1 
(area 4 head and face), left ✓ ✓ 0.99

precentral gyrus, part 1 
(area 4 head and face), right ✓ ✓ 0.98

precentral gyrus, part 2 
(caudal dorsolateral area 6), left ✓ ✓ 0.99

precentral gyrus, part 2 
(caudal dorsolateral area 6), right ✓ ✓ 0.97

precentral gyrus, part 3 
(area 4 upper limb), left 0.86

Region of Interest
Control ADHD

Correlation
DMN TPN DMN TPN
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precentral gyrus, part 3 
(area 4 upper limb), right ✓ 0.99

precentral gyrus, part 4 
(area 4 trunk), left 0.94

precentral gyrus, part 4 
(area 4 trunk), right 0.96

precentral gyrus, part 5 
(area 4 tongue and larynx), left ✓ ✓ 1.00

precentral gyrus, part 5 
(area 4 tongue and larynx), right ✓ ✓ 0.99

precentral gyrus, part 6 
(caudal ventrolateral area 6), left ✓ ✓ 0.99

precentral gyrus, part 6 
(caudal ventrolateral area 6), right ✓ ✓ 0.95

paracentral lobule, part 1 
(area1/2/3 lower limb), left ✓ ✓ 0.87

paracentral lobule, part 1 
(area1/2/3 lower limb), right ✓ ✓ 0.77

paracentral lobule, part 2 
(area 4 lower limb), left ✓ ✓ 0.91

paracentral lobule, part 2 
(area 4 lower limb), right ✓ ✓ 0.99

superior temporal gyrus, part 1 
(medial area 38), left 1.00

superior temporal gyrus, part 1 
(medial area 38), right 0.98

superior temporal gyrus, part 2 
(area 41/42), left ✓ ✓ 0.99

superior temporal gyrus, part 2 
(area 41/42), right ✓ ✓ 1.00

superior temporal gyrus, part 3 
(area TE), left ✓ ✓ 0.99

superior temporal gyrus, part 3 
(area TE), right ✓ ✓ 1.00

Region of Interest
Control ADHD

Correlation
DMN TPN DMN TPN
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superior temporal gyrus, part 4 
(caudal area 22), left ✓ ✓ 0.89

superior temporal gyrus, part 4 
(caudal area 22), right ✓ ✓ 0.99

superior temporal gyrus, part 5 
(lateral area 38), left ✓ ✓ -0.21

superior temporal gyrus, part 5 
(lateral area 38), right ✓ ✓ 0.83

superior temporal gyrus, part 6 
(rostral area 22), left ✓ ✓ 0.86

superior temporal gyrus, part 6 
(rostral area 22), right ✓ ✓ 0.86

middle temporal gyrus, part 1 
(caudal area 21), left ✓ ✓ 1.00

middle temporal gyrus, part 1 
(caudal area 21), right ✓ ✓ 1.00

middle temporal gyrus, part 2 
(rostral area 21), left ✓ ✓ 1.00

middle temporal gyrus, part 2 
(rostral area 21), right ✓ ✓ 1.00

middle temporal gyrus, part 3 
(dorsolateral area 37), left ✓ ✓ 0.75

middle temporal gyrus, part 3 
(dorsolateral area 37), right ✓ 0.83

middle temporal gyrus, part 4 
(anterior superior temporal sulcus), left 0.97

middle temporal gyrus, part 4 
(anterior superior temporal sulcus), right ✓ 0.82

inferior temporal gyrus, part 1
intermediate ventral area 20), left 0.98

inferior temporal gyrus, part 1 
(intermediate ventral area 20), right 0.99

inferior temporal gyrus, part 2 
(extreme lateroventral area 37), left ✓ ✓ 0.98

Region of Interest
Control ADHD

Correlation
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inferior temporal gyrus, part 2 
(extreme lateroventral area 37), right 0.58

inferior temporal gyrus, part 3 
(rostral area 20), left 0.99

inferior temporal gyrus, part 3 
(rostral area 20), right 0.99

inferior temporal gyrus, part 4 
(intermediate lateral area 20), left ✓ ✓ 1.00

inferior temporal gyrus, part 4 
(intermediate lateral area 20), right ✓ ✓ 1.00

inferior temporal gyrus, part 5 
(ventrolateral area 37), left ✓ ✓ 0.99

inferior temporal gyrus, part 5 
(ventrolateral area 37), right ✓ ✓ -0.96

inferior temporal gyrus, part 6 
(caudolateral of area 20), left 0.99

inferior temporal gyrus, part 6 
(caudolateral of area 20), right ✓ 0.99

inferior temporal gyrus, part 7 
(caudoventral of area 20), left ✓ 1.00

inferior temporal gyrus, part 7 
(caudoventral of area 20), right ✓ 0.97

fusiform gyrus, part 1 
(rostroventral area 20), left ✓ 0.83

fusiform gyrus, part 1 
(rostroventral area 20), right 0.90

fusiform gyrus, part 2 
(medioventral area 37), left ✓ ✓ 0.96

fusiform gyrus, part 2 
(medioventral area 37), right ✓ ✓ 0.96

fusiform gyrus, part 3 
(ventrolatral area 37), left ✓ ✓ 0.98

fusiform gyrus, part 3 
(ventrolatral area 37), right ✓ ✓ 0.90

Region of Interest
Control ADHD

Correlation
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parahippocampal gyrus, part 1 
(rostral area 35/36), left 0.90

parahippocampal gyrus, part 1 
(rostral area 35/36), right 0.81

parahippocampal gyrus, part 2 
(caudal area 35/36), left 0.80

parahippocampal gyrus, part 2 
(caudal area 35/36), right 0.92

parahippocampal gyrus, part 3 
(area TL), left -0.05

parahippocampal gyrus, part 3 
(area TL), right 0.83

parahippocampal gyrus, part 4 
(area 28/34), left 0.73

parahippocampal gyrus, part 4 
(area 28/34), right 0.94

parahippocampal gyrus, part 5 
(area TI), left 0.38

parahippocampal gyrus, part 5 
(area TI), right 0.81

parahippocampal gyrus, part 6 
(area TH), left 0.64

parahippocampal gyrus, part 6 
(area TH), right -0.07

posterior superior temporal sulcus, part 1 
(rostroposterior superior temporal sulcus), left 0.42

posterior superior temporal sulcus, part 1 
(rostroposterior superior temporal sulcus), right 0.05

posterior superior temporal sulcus, part 2 
(caudoposterior superior temporal sulcus), left ✓ 0.97

posterior superior temporal sulcus, part 2 
(caudoposterior superior temporal sulcus), right 0.98

superior parietal lobule, part 1 
(rostral area 7), left ✓ 0.96

Region of Interest
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superior parietal lobule, part 1 
(rostral area 7), right ✓ 0.98

superior parietal lobule, part 2 
(caudal area 7), left ✓ ✓ -0.35

superior parietal lobule, part 2 
(caudal area 7), right ✓ -0.13

superior parietal lobule, part 3 
(lateral area 5), left ✓ ✓ 0.90

superior parietal lobule, part 3 
(lateral area 5), right 1.00

superior parietal lobule, part 4 
(postcentral area 7), left ✓ 0.96

superior parietal lobule, part 4 
(postcentral area 7), right 0.94

superior parietal lobule, part 5 
(intraparietal area 7), left ✓ ✓ 0.93

superior parietal lobule, part 5 
(intraparietal area 7), right ✓ 0.99

inferior parietal lobule, part 1 
(caudal area 39), left 0.95

inferior parietal lobule, part 1 
(caudal area 39), right ✓ ✓ 0.96

inferior parietal lobule, part 2 
(rostrodorsal area 39), left ✓ ✓ 0.95

inferior parietal lobule, part 2 
(rostrodorsal area 39), right ✓ ✓ 0.99

inferior parietal lobule, part 3 
(rostrodorsal area 40), left ✓ ✓ 0.99

inferior parietal lobule, part 3 
(rostrodorsal area 40), right ✓ ✓ 0.97

inferior parietal lobule, part 4 
(caudal area 40), left ✓ ✓ 1.00

inferior parietal lobule, part 4 
(caudal area 40), right ✓ -0.81

Region of Interest
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inferior parietal lobule, part 5 
(rostroventral area 39), left ✓ ✓ 0.99

inferior parietal lobule, part 5 
(rostroventral area 39), right ✓ ✓ 1.00

inferior parietal lobule, part 6 
(rostroventral area 40), left ✓ ✓ 0.99

inferior parietal lobule, part 6 
(rostroventral area 40), right ✓ ✓ 0.99

precuneus, part 1 
(medial area 7), left ✓ ✓ 0.92

precuneus, part 1 
(medial area 7), right ✓ ✓ 0.97

precuneus, part 2 
(medial area 5), left ✓ ✓ 0.42

precuneus, part 2 
(medial area 5), right ✓ ✓ -0.29

precuneus, part 3 
(dorsomeidal parietooccipital sulcus), left ✓ ✓ 0.52

precuneus, part 3 
(dorsomeidal parietooccipital sulcus), right ✓ ✓ 0.75

precuneus, part 4 
(area 31), left ✓ ✓ 0.97

precuneus, part 4 
(area 31), right ✓ ✓ 0.99

postcentral gyrus, part 1 
(area 1/2/3 upper limb), left ✓ ✓ 1.00

postcentral gyrus, part 1 
(area 1/2/3 upper limb), right ✓ ✓ 0.99

postcentral gyrus, part 2 
(area 1/2/3 tongue and larynx), left ✓ ✓ 0.99

postcentral gyrus, part 2 
(area 1/2/3 tongue and larynx), right ✓ ✓ 0.99

postcentral gyrus, part 3 
(area 2), left ✓ ✓ 1.00

Region of Interest
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postcentral gyrus, part 3 
(area 2), right ✓ ✓ 1.00

postcentral gyrus, part 4 
(area1/2/3 trunk), left 0.93

postcentral gyrus, part 4 
(area1/2/3 trunk), right 0.91

insular, part 1 
(hypergranular insula), left ✓ 1.00

insular, part 1 
(hypergranular insula), right ✓ ✓ 0.99

insular, part 2 
(ventral agranular insula), left ✓ 0.15

insular, part 2 
ventral agranular insula), right ✓ 0.15

insular, part 3 
(dorsal agranular insula), left ✓ ✓ 0.99

insular, part 3 
(dorsal agranular insula), right ✓ ✓ 1.00

insular, part 4
(ventral granular insula), left ✓ ✓ 0.99

insular, part 4 
(ventral granular insula), right ✓ ✓ 0.99

insular, part 5 
(dorsal granular insula), left ✓ ✓ 1.00

insular, part 5
(dorsal granular insula), right ✓ ✓ 1.00

insular, part 6 
(dorsal dysgranular insula), left ✓ ✓ 1.00

insular, part 6
(dorsal dysgranular insula), right ✓ ✓ 1.00

cingulate gyrus, part 1
(dorsal area 23), left ✓ ✓ 0.98

cingulate gyrus, part 1 
(dorsal area 23), right ✓ ✓ 0.98

Region of Interest
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cingulate gyrus, part 2 
(rostroventral area 24), left ✓ ✓ 0.45

cingulate gyrus, part 2 
(rostroventral area 24), right ✓ ✓ 0.93

cingulate gyrus, part 3 
(pregenual area 32), left ✓ ✓ 0.98

cingulate gyrus, part 3 
(pregenual area 32), right ✓ ✓ -0.95

cingulate gyrus, part 4 
(ventral area 23), left ✓ ✓ 0.89

cingulate gyrus, part 4 
(ventral area 23), right ✓ ✓ 0.96

cingulate gyrus, part 5 
(caudodorsal area 24), left ✓ 0.98

cingulate gyrus, part 5 
(caudodorsal area 24), right ✓ 0.98

cingulate gyrus, part 6 
(caudal area 24), left ✓ ✓ 0.02

cingulate gyrus, part 6 
(caudal area 24), right ✓ ✓ -0.68

cingulate gyrus, part 7 
(subgenual area 32), left ✓ ✓ 1.00

cingulate gyrus, part 7 
(subgenual area 32), right ✓ ✓ 1.00

cuneus, part 1 
(caudal lingual gyrus), left ✓ ✓ 0.91

cuneus, part 1 
(caudal lingual gyrus), right ✓ ✓ 0.94

cuneus, part 2 
(rostral cuneus gyrus), left ✓ ✓ ✓ 0.99

cuneus, part 2 
(rostral cuneus gyrus), right ✓ ✓ ✓ ✓ 0.98

cuneus, part 3 
(caudal cuneus gyrus), left 0.95

Region of Interest
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cuneus, part 3 
(caudal cuneus gyrus), right ✓ 0.99

cuneus, part 4 
(rostral lingual gyrus), left ✓ ✓ 0.99

cuneus, part 4 
(rostral lingual gyrus), right ✓ ✓ 0.95

cuneus, part 5 
(ventomedial parietooccipital sulcus), left ✓ ✓ ✓ 0.96

cuneus, part 5 
(ventomedial parietooccipital sulcus), right ✓ ✓ ✓ 0.23

occipital gyrus, part 1 
(middle occipital gyrus), left ✓ 0.96

occipital gyrus, part 1 
(middle occipital gyrus), right ✓ ✓ 0.97

occipital gyrus, part 2 
(area V5/MT), left ✓ ✓ 0.98

occipital gyrus, part 2 
(area V5/MT), right ✓ ✓ 1.00

occipital gyrus, part 3 
(occipital polar cortex), left 0.97

occipital gyrus, part 3 
(occipital polar cortex), right ✓ 0.95

occipital gyrus, part 4 
(inferior occipital gyrus), left ✓ ✓ 0.89

occipital gyrus, part 4 
(inferior occipital gyrus), right ✓ ✓ 0.93

superior occipital gyrus, part 1 
(medial superior occipital gyrus), left ✓ ✓ 0.97

superior occipital gyrus, part 1 
(medial superior occipital gyrus), right ✓ 0.98

superior occipital gyrus, part 2 
(lateral superior occipital gyrus), left ✓ ✓ 1.00

superior occipital gyrus, part 2 
(lateral superior occipital gyrus), right ✓ ✓ 0.80
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amygdala, part 1 
(medial amyg), left 0.61

amygdala, part 1 
(medial amyg), right 0.78

amygdala, part 2 
(lateral amyg), left -0.01

amygdala, part 2 
(lateral amyg), right 0.34

hippocampus, part 1 
(rostral hipp), left 0.97

hippocampus, part 1 
(rostral hipp), right 0.91

hippocampus, part 2 
(caudal hipp), left ✓ ✓ 0.14

hippocampus, part 2 
(caudal hipp), right 0.07

striatum, part 1 
(ventral caudate), left 0.76

striatum, part 1 
(ventral caudate), right 0.46

striatum, part 2 
(globus pallidus), left ✓ 0.87

striatum, part 2 
(globus pallidus), right ✓ ✓ 0.97

striatum, part 3 
(nucleus accumbens), left 0.08

striatum, part 3 
(nucleus accumbens), right ✓ 0.71

striatum, part 4 
(ventromedial putamen), left ✓ 0.44

striatum, part 4 
(ventromedial putamen), right ✓ ✓ 0.33

striatum, part 5 
(dorsal caudate), left -0.23
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striatum, part 5 
(dorsal caudate), right 0.30

striatum, part 6 
(dorsolateral putamen), left ✓ 0.97

striatum, part 6 
(dorsolateral putamen), right ✓ ✓ 0.99

thalamus, part 1 
(medial prefrontal thalamus), left -0.56

thalamus, part 1 
(medial prefrontal thalamus), right 0.20

thalamus, part 2 
(medial premotor thalamus), left 0.25

thalamus, part 2 
(medial premotor thalamus), right -0.49

thalamus, part 3 
(sensory thalamus), left 0.85

thalamus, part 3 
(sensory thalamus), right 0.89

thalamus, part 4 
(rostral temporal thalamus), left ✓ 0.86

thalamus, part 4 
(rostral temporal thalamus), right ✓ 0.83

thalamus, part 5 
(posterior parietal thalamus), left 0.88

thalamus, part 5 
(posterior parietal thalamus), right 0.50

thalamus, part 6 
(occipital thalamus), left ✓ 0.54

thalamus, part 6 
(occipital thalamus), right 0.98

thalamus, part 7 
(caudal temporal thalamus), left ✓ 0.77

thalamus, part 7 
(caudal temporal thalamus), right ✓ 0.57
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thalamus, part 8 
(lateral prefrontal thalamus), left -0.59

thalamus, part 8 
(lateral prefrontal thalamus), right -0.80

Cerebellar lobule I-IV, left ✓ 0.85

Cerebellar lobule I-IV, right ✓ ✓ ✓ 0.60

Cerebellar lobule V, left ✓ ✓ 0.96

Cerebellar lobule V, right ✓ ✓ 0.91

Cerebellar lobule VI, left ✓ ✓ 0.97

Cerebellar lobule VI, vermis ✓ ✓ 0.94

Cerebellar lobule VI, right ✓ ✓ 0.98

Cerebellar Crus I, left ✓ ✓ 0.92

Cerebellar Crus I, right ✓ ✓ 0.73

Cerebellar Crus II, left 0.99

Cerebellar Crus II, vermis 0.52

Cerebellar Crus II, right 0.98

Cerebellar lobule VIIb, left ✓ -0.20

Cerebellar lobule VIIb, vermis 0.92

Cerebellar lobule VIIb, right 0.51

Cerebellar lobule VIIIa, left ✓ 0.59

Cerebellar lobule VIIIa, vermis 0.45

Cerebellar lobule VIIIa, right ✓ 0.99

Cerebellar lobule VIIIb, left 0.09

Cerebellar lobule VIIIb, vermis -0.65

Cerebellar lobule VIIIb, right 0.82

Cerebellar lobule IX, left 0.97

Cerebellar lobule IX, vermis 0.94
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Cerebellar lobule IX, right 0.95

Cerebellar lobule X, left 0.52

Cerebellar lobule X, vermis 0.40

Cerebellar lobule X, right 0.72
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