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Abstract  

 
 

 Advanced gap-filling techniques in satellite-based PM2.5 exposure models and their 
applications in air pollution epidemiology 

By Jessica Hartmann Belle  
 
 

 
 
 
Satellite-based models relating the satellite-derived parameter aerosol optical depth (AOD) 
to ground-level PM2.5 have a number of advantages over more traditional approaches to 
exposure characterization. Namely, observations are available, via satellite, at a daily level 
over areas that lack traditional ground monitors. However, satellite-based models are also 
subject to cloud and snow-driven missingness which may bias results in unpredictable ways, 
particularly when satellite-derived PM2.5 estimates are further used in human health studies. 
This dissertation focuses on the problem of missing observations in satellite retrievals. In 
chapter 1 we characterize the scope of the missing data problem in the daily Moderate 
resolution imaging spectroradiometer (MODIS) Aqua AOD product, finding that 
observations were only present in the United States on an average of 30% of possible days 
with the remaining 70% missing as a result of cloud-cover and surface brightness. In chapter 
2 we strive to understand drivers, in terms of cloud cover properties and correlated 
meteorological conditions, behind differences between cloudy and non-cloudy PM2.5 

observations. We found that changes in temperature, wind speed, relative humidity, 
planetary boundary layer height, convective available potential energy, precipitation, cloud 
effective radius, cloud optical depth, and cloud emissivity were all associated with changes in 
PM2.5 concentrations and composition at two sites, one in Atlanta, and one in San Francisco. 
A case study at the San Francisco site confirmed that accounting for cloud-cover and 
associated meteorological conditions could alter average concentrations and the predicted 
spatial distribution of daily PM2.5 concentrations. In chapter 3, we aim to develop and 
compare the ability of different gap-filling methods to eliminate bias resulting from missing 
AOD observations in human health studies. We find that different gap-filling models 
produce comparable odds ratios in a study on the relationship between emergency 
department visits for asthma or wheeze, otitis media, and upper respiratory infection. 
However, when gap-filling was not used, odds ratios were attenuated towards the null for 
two of the three possible outcomes. This dissertation highlights the importance of 
understanding and correcting for missing observations in satellite retrievals when estimating 
PM2.5 concentrations.  
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Introduction 

The first part of the 20th century was marked by two world wars, baby booms, economic 

booms, and economic busts. It was also a period of significant scientific and technological 

advancement. Between 1900 and 1950, Einstein proposed his theory of relativity, Niels Bohr 

his model of the atom, and, in 1953, Crick and Watson the structure of DNA. It became 

increasingly possible to measure, and thus, to understand, the world around us in more ways 

and with greater precision than ever before. The modern mass spectrometer was developed 

in 1918. The electron microscope in 1926. The spectrophotometer and the radiosonde also 

hail from this era, enabling an understanding of the physics and chemistry of the 

atmosphere, and, scientific weather predictions. Nations began or expanded information 

collection, routinely collecting and preserving information on their populations and 

environments. It was also during this period, and using these same tools, that we began to 

experience and understand the drawbacks of industrialization. Smog, a combination of 

smoke and fog, became a regularly occurring public nuisance, accompanied by watery eyes, 

poor visibility, sickness, and death.  

Some of the earliest concrete scientific evidence for the detrimental impact of smog on 

human health and wellbeing was presented to the Royal Academy of Medicine in Belgium in 

1931. A panel of experts had been appointed by the Royal Prosecutor of Liege to determine 

the cause of the deadly smog which had settled on the narrow Meuse valley and, over a 

period of 3 days, killed at least 60 and caused severe respiratory illness in many more. 

Evidence from necropsy of the victims showed damage to the respiratory tract, and within 

the lungs, the researchers noted that, “Pure carbon dust particles of 0.5-1.35 µm diameter 

were seen free within the alveoli or engulfed in polynuclear leucocytes.” Meteorological 
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analyses described a temperature inversion over the valley, a meteorological phenomenon 

where warm air settles over the top of cooler air, effectively acting as a blanket and trapping 

any emitted smoke from the factories and homes within. Chemical analyses of emissions 

from industrial plants within the valley, measured after the episode, determined that Sulphur 

from coal burning was the most prominent substance and the panel concluded that this had 

likely been responsible for the deaths. [1] The combined evidence proved convincing for 

many and the report was widely read.  

A similar incident occurred seventeen years later in Donora Pennsylvania, southeast of 

Pittsburgh. Patients, stricken with difficulty breathing, chest pain, nausea and vomiting, 

flooded local hospitals, exhausting supplies. Twenty died. Again, a panel was convened to 

determine the cause, with the conclusion that the deadly smog had been the result of the 

combination of another temperature inversion and emissions from local industrial plants. 

The likely chemical complicit in the deaths being Sulphur dioxide, specifically that carried on 

particulate matter (PM). [2]  

These episodes, however, merely presaged the horror to come. In December of 1952, a 

heavy fog covered London for 4 days. 4,000 died. Concentrations of smoke and Sulphur 

dioxide were 3-10 times their normal values. [3] In a report, published in the Lancet in 1953, 

it was stated that, “death-rates attained a level that has been exceeded only rarely during the 

past hundred years – for example, at the height of the cholera epidemic of 1854 and the 

influenza epidemic of 1918-19.” [4] Later reports noted that mortality had remained elevated 

for months after the episode, during which period an estimated 8,000 additional persons 

died. [3]  
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A smog problem of a different nature was brewing simultaneously in sunny Los Angeles, 

from the same ingredients that went into the deadly fogs; industrial pollution and 

meteorological conditions. Damage, in the form of silvering and bleaching of vegetation, 

particularly leafy vegetables, was first noted in the Los Angeles area in 1944. With each 

passing year, it got worse. At the behest of the Los Angeles Chamber of Commerce 

Agricultural committee and the Los Angeles County Air Pollution Control District, a 

research program was begun to determine the cause. After measuring trace gases and organic 

compounds in the air and running experiments on the effect each had on plants, they 

attributed the damage to oxidants, specifically peroxides formed from a reaction between 

ozone and hydrocarbon, also noting that photo-oxidation of hydrocarbons with NO2 

produced a similar effect. [5] Later work would confirm the ozone was the true culprit, and 

that it could be formed from the photo-oxidation of hydrocarbons with NO2. The authors 

additionally confirmed that the Sulphur dioxides and particulates thought to be behind 

deadly smogs were not responsible for this type of damage to the vegetation. Interest grew 

in understanding air pollution in its various forms and, in the U.S., funds were allocated for 

its study in 1955. 

Worried about smog events on the scale of what had happened in London, the county of 

Los Angeles began a monitoring program for warning purposes, appointing planning 

committees in 1954. [6] The result was an automated monitoring system, similar in concept 

to the stations in use today, with individual monitors placed throughout the city for 

meteorological information, carbon monoxide, sulfur dioxide, nitrogen dioxide, oxidants or 

ozone, and what we now know as black carbon. Two distinct patterns emerged from the 

resulting data, termed Type I and Type II contaminants. Concentrations of Type I 

contaminants, carbon monoxide, nitrogen dioxide, black carbon, and Sulphur dioxide, now 
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known as primary air pollutants, peaked twice daily, during the morning and evening rush 

hours when emissions were highest. Concentrations of Type II contaminants, oxidants and 

plant damage from oxidants, peaked once daily in the afternoon and were typically highest 

during the fall months. Type II contaminants, now known as secondary air pollutants, are 

the products of chemical reactions in the atmosphere involving sunlight and primary air 

pollutants. [7] Thus, by 1960 it was known that there were two distinct air pollution 

problems of similar origins.  

As the human health and economic impacts of air pollution became increasingly obvious, 

governments began to introduce legislation to mitigate the problem, although efforts were 

primarily focused on contaminants known to directly impact human health and wellbeing. In 

1963 the Clean Air Act (CAA) was passed in the U.S., allocating funds for research into the 

measurement and control of ambient air pollution concentrations. In 1967 the Air Pollution 

Control Act was passed to begin regulating concentrations of the air pollutants found in the 

two types of smog, based on the fact that they were damaging to human health, agriculture, 

and well-being. In 1970, the CAA was amended and revised to provide for the 

establishment, and enforcement, of state and federal standards for ozone, nitrogen dioxide, 

sulphur dioxide, particulate matter, and carbon monoxide. Standards were to be achieved 

through the regulation, by states, of emissions from a variety of sources, and compliance was 

measured using the network of ground-based monitors that had expanded from Los Angeles 

since the 1950’s with the help of funds from the 1955, 1963, and 1967 air pollution control 

acts. In 1977, the CAA was again amended, this time to increase enforcement in areas unable 

or unwilling to achieve the 1970 standards. By 1980, the network of air pollution monitors 

used to measure compliance had been nationally standardized, and comparisons could be 

made between different areas in the United States. In 1990, the final set of amendments to 
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the clean air act were passed, expanding the enforcement authority of the federal 

government, and adding acid rain, depletion of the ozone layer by ChloroFluoroCarbons 

(CFCs), and hazardous air pollutants, including heavy metals, to the list of regulated air 

pollutants.  

Research on the human health effects of air pollution continued over the time period 

corresponding to the regulatory ramp-up that started in 1955 and went through 1990. 

Follow-up work in Donora 10 years after the incident demonstrated that those sickened by 

the smog, particularly those with pre-existing chronic conditions such as asthma and cardio-

pulmonary disease, had higher rates of morbidity and mortality from a range of conditions 

over the 10 years following the deadly smog. [8] A study on asthmatics in Los Angeles in 

1961 demonstrated that asthma attacks were more likely on days with oxidant levels high 

enough to cause watery eyes or plant damage.  [9] By the 1970’s concentrations of particulate 

matter and sulfur dioxide had declined from the extremely high concentrations experienced 

during the 1950’s and 1960’s that led to the deadly smogs. [10] However, research on human 

health impacts continued, now often focused on more sensitive indicators, such as lung 

function and respiratory disorders or on vulnerable populations such as the elderly, 

asthmatics, and children. However, studies of daily fluctuations in mortality over long time 

series, conducted with the aid of ground-based monitors, dominated the literature, with the 

majority of work concentrated in New York City and London. [10] 

Over this time-period, from 1955 through 1990, there was also a ramping up of statistical 

methods and the volume of data that could be handled as computers became more widely 

available. The earliest studies calculated simple correlations between air pollutant 

concentration and deviations from a moving average of mortality counts, used to remove 
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seasonal effects. [11] By the late 1970’s, sophisticated time series models were common, 

particularly regression analyses, including more advanced models such as ridge regression 

and constrained least squares. [12] By the 1990’s multi-stage log-linear and Poisson models 

were in use, and in the 2000’s you start to see generalized additive models (GAM), and 

Bayesian statistics. Both pollution and mortality are correlated with season, climate, 

demographic characteristics, availability of physician care, smoking status, and home heating 

and cooking methods, confounding results, particularly at lower concentrations. [13] There 

was also substantial debate over collinearity between different pollutant effects, and the exact 

nature of the exposure-response relationship, which would continue until the present day. 

Specifically, debate on the exposure response relationship centered on whether or not there 

was a threshold below which negative impacts were not observed, and which could be used 

for regulatory purposes. [14] [12]  

A majority of studies were population-based, or ecological in nature, with all of the 

population under study typically exposed to some extent, contributing to issues with 

understanding the nature of the exposure response curve. Although, the widespread 

exposure misclassification and the fact that a minority of studies relied on any consistent 

definition of particulate matter and Sulphur oxide measurement [10] didn’t help either. Thus, 

while studies published up to 1980 were sufficient to demonstrate that sulfate-based smog 

was broadly damaging to respiratory health at high concentrations, the precise definition of a 

‘high concentration,’ and how best to go about measuring it, proved elusive. [13,15] The next 

leap forward in air pollution research came in the early 1990’s, with the publication of the 

Harvard Six Cities and American Cancer Society (ACS) cohort studies, conducted in the 

1970’s and 80’s.  These studies established that fine particulate matter was associated with a 
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small, but significant, increased risk of death, specifically that from cardiovascular disease 

and respiratory illness.  

 

Particulate matter and human mortality 

The Harvard Six Cities (HSC) study came first. Begun in 1974, the authors deployed 

monitors for a variety of pollutant measures at centralized locations in the study areas both 

prior to enrolling cohorts of participants and throughout the duration of the cohort study. 

[16] Separate, comparable, cohorts consisting of a few thousand children and adults were 

enrolled and followed for over 12 years in 6 U.S. cities: Watertown, MA; Kingston and 

Harriman, TN; Steubenville, OH; St. Louis, MO; Portage, WI; and Topeka, KS. [17] While 

the study began as an investigation into the respiratory health of children and adults exposed 

to air pollutants, as measured using tests of lung function and vital status, the design 

mitigated many of the issues associated with previous studies and by the end, a number of 

other causes had jumped on the bandwagon.  Dozens of studies have been published on the 

Harvard Six Cities cohort, including multiple landmark studies that remain relevant to this 

day. A feat of study design in and of itself.  

More to the point, the HSC study was instrumental in providing a more nuanced 

understanding of what air pollution was, as well as how and at what concentrations it was 

relevant to human health. Much of the development focused on particulate matter (PM). 

Sticky balls of molecules that roll around in the air, picking up other molecules of whatever 

they collide with: water, soot, dust, pollen, smoke, heavy metals, and condensable products 

of chemical reactions between gases in the atmosphere. Particulates range in size from a few 
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nanometers to several hundred micrometers (µm) across, or from the size of a single 

molecule of sugar to that of an amoeba.  

At the beginning of the HSC study, measurement and regulation of particulate 

concentrations was typically done via the Total Suspended Particulates (TSP) method. Most 

monitors for particulate matter work by drawing air in through an inlet at a prespecified rate, 

catching any particulate mass on a filter, and then using the change in the weight of the filter 

and the rate of air flow to it to determine the concentration in the air over a period of time. 

TSP samplers have the largest inlets, allowing particles up to 100 µm in diameter through to 

the filter. The issue with this, as it relates to human health, is that our respiratory tracts are 

quite effective at filtering out these larger particles, which also tend to be heavier than 

smaller particles. TSP sampler-based concentrations, therefore, include a large, but highly 

variable proportion of mass in the concentration that is not relevant to human health. This 

reduces the signal-to-noise ratio in any health studies based off of the TSP metric, and for 

regulatory purposes, unfairly penalizes areas that tend to have more soil, dust, and sand in 

the air as a result of natural causes. To handle this problem, monitors were developed with 

smaller inlets that would allow only particles below a certain size to accumulate on the filters.  

This led to the development of the modern concepts of PM10 and PM2.5, or coarse particulate 

matter (PM) below 10 µm in diameter (PM10) and fine particulate matter below 2.5 µm in 

diameter (PM2.5). These designations roughly correspond to the particle sizes that, in 

humans, are able to penetrate into the upper respiratory tract (PM10) and into the lungs 

(PM2.5). The HSC study, as part of its experimentation with the measurement of particulate 

matter, was an early adopter of the newer, size-selective samplers. While the original study 

design had called for the use of TSP when sampling for particulate matter, additional 
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sampling for PM2.5 and PM15 (PM less than 15 µm in diameter) began in the 6 cities in the 

late 1970’s, and for PM10 in 1984. [18] As a result of the early adoption of newer 

measurement techniques, many of which were developed at Harvard, researchers with the 

HSC were able to examine health associations with TSP, PM10, and PM2.5 over the course of 

more than a decade. Of the methods available to measure peoples’ exposure to particulate 

matter, PM2.5 showed the strongest associations with human mortality. [19] A reanalysis of 

the same data in 1996 and again in 2000, additionally demonstrated that there was little to no 

additional information relevant to human mortality in the PM10 metric that could not be 

explained by PM2.5 concentrations. [20,21] Following this research, in 1987 the US EPA 

updated the particulate standards to be based off of PM10 standard, and in 1997, added an 

additional PM2.5 standard for human health.  [22] [23]  

The HSC study also examined the more relevant exposure in terms of the composition, as 

well as the size of the particulates. Particulate matter tends to have average compositions 

that reflect local emissions and the typical size of the molecules and other particles that have 

been added to them. For instance, larger particles are more likely to be primarily composed 

of soil or sand, while smaller particles are more likely to be composed of condensed gases. 

Hundreds of different compounds can be found in PM. However, at the time of the HSC 

study, the acidity of the particulates was a matter of great concern, as PM provided a 

mechanism where strong acids could be delivered straight to tissues in the respiratory tract, 

including the lungs. What makes a particle acidic though? The short answer is sulfate and 

nitrate, both products of fossil fuel combustion. The long answer is more complicated and is 

something we’re still fleshing out. [24] Monitoring for aerosol acidity as part of the HSC 

study began in 1985 and continued through 1987. They estimated that, after accounting for 

ventilation rates, time activity patterns, and deposition rates in the various parts of the 



10 
 

 

respiratory tract, children were receiving a dose of acid to their lungs of between 1,240 and 

3,240 nanomoles every 12 hours. [25] This was within the range that, in controlled studies in 

adults, caused respiratory symptoms. Health studies found that aerosol acidity was associated 

with increased symptoms in asthmatics, and with increased rates of bronchitis in children. 

[26,27] Contemporary studies had found that aerosol acidity beat out black smoke at 

predicting adult mortality in London. [28] HSC, however, found that total PM2.5 was more 

strongly associated with human mortality than aerosol acidity [19] Specifically, mortality 

resulting from cardiopulmonary diseases, and lung cancer. This set the stage for the 

publication of the American Cancer Society study.  

The American Cancer Society (ACS) study was very different in both design and purpose. 

The ACS Cancer Prevention Study II (CPS-II) is a (still) ongoing mortality study of 1.2 

million volunteers, enrolled in the fall of 1982 during a national campaign in the United 

States, and followed until death. Pope et al. relied on the network of EPA monitors to 

measure participants’ exposure to PM2.5 and sulfate in and around 1980, then compared 

mortality rates, adjusted for age, sex, race, smoking status, exposure to passive smoke, 

occupational exposure, education, BMI, and alcohol use, from the most polluted cities to 

those from the least polluted cities. They found that increased rates of death from all causes 

together and cardiopulmonary disease specifically were associated with living in an area with 

high concentrations of sulfate and PM2.5. Living in an area with high concentrations of 

sulfate was also associated with increased rates of death from lung cancer. [29] These results, 

along with others, eventually confirmed the causal association between chronic exposures to 

air pollution and human mortality, particularly that from cardiopulmonary disease and lung 

cancer.  
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 The reanalyses and extensions 

However, voices outside of, and within, the Harvard cohort responsible for most of the 

mortality research noted problems with the studies. Academic debates raged for decades, 

some continue to this day, over key issues; the harvesting effect, the shape of the exposure 

response curve, confounders, effect modifiers, co-pollutants, and the ecological fallacy. In 

response, the HSC and ASC studies, in particular, were replicated, audited, extended and 

reanalyzed to within an inch of their lives.  

First came the replication, performed by the independent Health Effects Institute (HEI) in 

2000, accompanied by an extensive sensitivity analysis. [30] The HEI investigators found 

that the original HSC and ACS study results were robust to changes in the confounders that 

were included, the model used, or the population subgroup studied, with one exception. The 

exception had to do with educational level, which HEI found modified the effect of air 

pollution on mortality, effectively showing that the effect was stronger among the less 

educated. This was important because they also investigated the impact of spatial correlation 

on the results, finding both that they were unable to completely control for it and that it 

impacted the results, decreasing the magnitude of the effect found. The shape of the 

exposure-response relationship was investigated as well. They found that it was linear over 

most of the exposure distribution, but there were indications of non-linearity at the 

extremes. They additionally examined co-pollutants and the impact of considering them on 

the results, finding that sulfate had an impact on mortality that was independent of PM. 

They additionally considered the impact of changes in air pollution levels over time on the 

relationship between PM and mortality. HEI found that the risk of death associated with PM 
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was lessened when concentrations decreased. [30] The authors of the HEI report followed 

up on this with a separate publication in 2002, concluding that decreases in concentrations 

were associated with a decreased risk of death, and that the timing of the exposure relative to 

the timing of death was irrelevant. [31] 

A second validation, replication and sensitivity analysis effort was published in 2004 and 

2005, also by the HEI authors. This involved an audit of the medical records, which found 

that around 1% of the records were inaccurate, but the results were robust to this type of 

error. [32] [33] This sensitivity analysis was more extensive than the last, including 

examination of previously unconsidered confounders, changes in confounders over time, 

and occupational exposures. [34] They again found that the results were robust to everything 

except effect modification by educational level.  

 Follow-up on the HSC cohort by the original authors at Harvard was eventually extended 

through to 2009. Two studies were published on the extended follow-up. One in 2006, and a 

second in 2012. Both found comparable results to those in the original study, an increase in 

all-cause, cardiovascular, and respiratory mortality of 14%, 26%, and 37%, respectively in the 

2012 follow-up study. They additionally concluded that reductions in PM2.5 concentrations 

were associated with reductions in mortality. Of particular interest in these later studies was 

the relevant time period of exposure to that of death and the shape of the exposure-response 

function.   

 Cohorts galore 

While the reanalyses of the HSC and ACS studies were being conducted, more cohorts were 

assembled to look at the problem. The first published was the California Seventh-day 

Adventists study, in 1999 and 2000. They found that, in males, PM10 and PM2.5 



13 
 

 

concentrations were associated with increased all-cause, respiratory, and lung cancer 

mortality, with increases in the individual risk of mortality of 22%, 64%, and 123%, 

respectively, for a 24.3 µg/m3 increase in PM2.5 concentrations in the non-smoking Seventh-

day Adventist population. The author’s additionally concluded that chronic exposures were 

more relevant than exposure within the past month, and that PM2.5 was responsible for most 

of the associations with PM10. [35]  

Next, in 2007 from the University of Washington, came the Women’s health initiative study 

results. A cohort of ~66,000 post-menopausal women in 36 U.S. cities, all of whom with no 

preexisting cardiovascular disease, was assembled. It was a huge study involving multiple 

arms, of which the air pollution study was simply a small part. They found that the risk of a 

cardiovascular event increased by 24% for each 10 µg/m3 increase in annual average 

pollutant concentrations from the nearest regulatory monitor and that the risk of death from 

cardiovascular disease was increased by 76% for the same change in pollutant 

concentrations. [36] Associations specific to stroke were slightly higher, 35% increase in risk 

of a stroke and an 83% increase in the risk of death from a stroke. This demonstrated that 

air pollution concentrations were associated with both the development of cardiovascular 

disease and with increased rates of death from cardiovascular disease, specifically disease 

assumed to be atherosclerotic. The study additionally looked at the contribution of within 

and between-city variability in air pollution concentrations, finding that within-city contrasts 

were often greater than between-city contrasts in air pollution concentration and, thus, 

cardiovascular risk. This same issue of within versus between city contrasts in air pollution 

and their relevance to public health was studied in a Dutch cohort in 2008. The Netherlands 

Cohort Study on Diet and Cancer (NLCS), begun in 1986, was co-opted for the purposes of 

studying the impact air pollution on human health, specifically at levels below current 
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standards, estimated using land use models and traffic intensity data. Their results were not 

statistically significant, but were slightly positive, and were comparable in magnitude to those 

found in the ACS cohort in the U.S., although, in the Dutch cohort they additionally found 

associations between respiratory mortality and traffic intensity, supporting the importance of 

within-city variability.  [37] 

The nurses’ health study was also co-opted to respond to the women’s health initiative 

results. By this point, 2009, within-city models of air pollution concentrations had gotten far 

more sophisticated than the simple across-monitor averages used in HSC and ACS studies, 

and the nearest monitor averages used in the WHI study. The Nurse’s Health study used a 

GAMM model to interpolate monitor observations within cities, with the help of 

meteorological data, road networks, and land use, to get estimates of pollutant 

concentrations at residential addresses.  They found increased risks of all-cause and coronary 

heart disease-related mortality, of, respectively, 26% and 102% for each 10 µg/m3 increase in 

annual average PM2.5 concentrations at the patient’s residence, comparable to results from 

the HEI study. [38] This was followed by the Health professionals’ follow-up study in 2011, 

a male-only cohort. They used the same methods as the nurses’ health study, but found no 

significant associations with air pollution in their population of affluent males. [39] This lent 

credence to the idea that not all populations were equally affected by air pollutant 

concentrations, with effects concentrated among the less educated or less affluent members 

of a population.  

 

The multi-city studies 
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Following the HSC and ACS studies were a number of other large, multi-city mortality 

studies that were important in the literature and bear mentioning before we move on from 

mortality studies, which only give us some insight into how air pollution impacts people 

through inducing an early death, to morbidity and mechanisms of action. The first was the 

Air Pollution and Health: a European Approach (APHEA) project, published in 1997. [40] 

In 15 European cities spread out over 10 countries, the researchers compared concentrations 

of Sulphur dioxide, black smoke, and PM10 concentrations from regulatory monitors to 

mortality rates across cities using city-specific auto-regressive Poisson time-series models, 

and pooling effects across cities by means of a weighted average. They found overall 

increases in daily mortality associated with a 50 µg/m3 increase in sulfur dioxide, black 

smoke, and PM10, respectively, of 2%. 1%, and 2%.  

The second was the John’s Hopkins 20 city study, published in 2000. Similar in concept to 

the APHEA study, the 20 city study looked at associations between concentrations of ozone, 

PM10, nitrogen dioxide, sulfur dioxide, and carbon monoxide, measured using regulatory 

ground-monitors, and mortality in 20 of the most populous US cities. They used a slightly 

more sophisticated two-stage log-linear regression model, where the first stage was fit to 

each city, and the second stage combined estimates across cities. After adjusting for 

concentrations of co-pollutants, ozone, nitrogen dioxide, sulfur dioxide, and carbon 

monoxide, a 10 µg/m3 increase in PM10 concentrations was associated with a 0.3-0.6% 

increase in daily mortality. Like in the Harvard 6 cities study, they found slightly higher 

mortality increases associated with respiratory and cardiovascular than all-cause 

mortality.[41] NMMAPS, a 90 city extension of the John Hopkin’s 20 city study by the same 

authors, but funded by the HEI institute, found similar results, about a 5% increase in daily 

mortality for each 10 µg/m3 increase in PM10. 
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The last was a combined study, called APHENA, published in 2007, that included the 

APHEA cities, NMMAPS cities, and a set of Canadian cities that had also been studied 

previously. Using a common protocol to analyze data from all 124 cities included in the 

study, APHENA pooled results. They found that cardiovascular mortality was elevated 

among the elderly (>75 years of age) by 1.3% in the Canadian cities, 0.5% in the European 

cities, and 0.5% in the U.S. cities for each 10 µg/m3 increase in PM10 concentrations on the 

day preceding the death. 

Estimates for the impact of PM on mortality differed between the multi-city studies 

highlighted here and the HSC study and its reanalyses. The HSC extensions found increases 

in the risk of mortality of 14% for all-cause, 26% for cardiovascular, and 37% for lung 

cancer between the most and least polluted cities. APHENA found increases of ~0.5% for 

cardiovascular mortality for the same increase in pollutant concentrations, 10 µg/m3. Apart 

from the differences in study design, the HSC and APHENA studies were very different in 

terms of the time frames over which they looked for these effects. HSC looked at chronic 

exposures, or concentrations experienced over long time-periods, and relied on annual 

averages when calculating their effects. APHENA and the studies that composed it, looked 

at acute exposures, or concentrations experienced in the day or so preceding the mortality 

event. The two are related, areas that tend to have high annual average concentrations also 

tend to have high daily concentrations, but are not the same, and differ in terms of the 

effects they have on the human body. Thus, the multi-city studies are only capturing deaths 

that occur as a result of short-term, acute exposures to high concentrations of PM, and 

ignoring deaths that may have occurred as a result of chronic exposure to lower levels of 

PM.  
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Taken together, the multi-city studies along with the HSC and ACS cohorts, conducted 

largely at Harvard, University of Athens, and John’s Hopkins University, established that 

short-term and long-term increases in PM concentrations were associated with a small, but 

significant, increased risk of death, specifically that from cardiovascular disease and 

respiratory illness. They also established that this effect was consistent across different 

populations of people. 

 

 PM and hospitalizations  

While mortality is useful as a health endpoint, it often represents the tip of the iceberg. The 

latter half of the 1990’s saw an increasing number of studies focused on the link between air 

pollution and hospitalizations for various causes, particularly since by this time medical 

billing for Medicaid made hospital billing records both a standardized and widely available 

indicator of morbidity in the elderly, a particularly vulnerable population. [42] There was 

existing evidence for this link, mass hospitalizations had contributed to the extreme incidents 

in Meuse valley and Donora. By August of 2000, 12 studies on the topic had been published. 

[43] Admissions for congestive heart failure and ischemic heart disease were associated with 

PM10 exposure, increasing around 0.7% for each 10 µg/m3 increase in PM10, comparable to 

the increased mortality estimates seen in the multi-city studies.  

A 2006 analysis of 11.5 million medicare enrollees in the 204 most populous U.S. counties 

found increased hospitalization rates associated with same-day, previous day, or two days 

previous concentrations of PM2.5 for all health outcomes excepting injuries. They found a 

1.28% increase in the hospitalization rates for heart failure, and noticed heterogeneity in 

effect estimates across the United States, with higher estimates in the East.  
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 PM mechanisms of action 

The thick stew of studies on air pollution and human health was, combined with 

toxicological studies done in animals and people, sufficient by 2010 to flesh out a number of 

mechanisms through which PM could act on the human body to adversely affect 

cardiovascular health. Namely by inducing pulmonary and systemic inflammation and 

oxidative stress, increasing thrombosis and coagulation, increasing systemic and pulmonary 

arterial BP, altering vascular function, worsening atherosclerosis, reducing heart rate 

variability, inducing cardiac ischemia and repolarization abnormalities, inducing epigenetic 

changes, and worsening insulin resistance. [44] Similarly, mechanisms were fleshed out 

whereby PM had direct impacts on respiratory health; by increasing symptoms and 

medication use in children with asthma, reducing pulmonary function, inducing pulmonary 

inflammation and oxidative stress, inducing pulmonary injury and allergic responses, 

activating host defenses, and inducing lung cancer mortality. [45] This, rather horrifying, list 

bolstered the evidence base for both chronic and acute impacts of PM exposure on human 

cardiac and respiratory health, although some of the details are still being fleshed out. 

The body’s response to particulate matter starts with a breath of less than fresh air. Whether 

or not a particle ends up in the lungs depends on the size of the particle. A large fraction of 

particles between around 1 and 0.1 µm, and a smaller fraction of larger and smaller particles, 

are never deposited in the respiratory tract, but leave the body during expiration. [45] During 

inspiration, the air enters through the nose and larynx, within which particle deposition 

varies in efficiency between 10 and 0.5 µm, nearly all particles 10-15 µm in size or larger and 

few to none of particles 0.5 µm or less are deposited. In mouth breathers, few to no particles 
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are deposited of a diameter 2 µm or less and deposition efficiencies increase to 90% for 

particles 10 µm in diameter. [46] [47] The aerosols not filtered out by  the nose and larynx 

continue down through the trachea to the bronchi, which filter out a small number of 

particles between 0.5 and 15 µm in diameter and an increasingly large proportion of particles 

less than 0.5 µm, such that around 30% of particles of 0.01 µm across are deposited in the 

bronchi. [47] The remaining particulates, which tend to be smaller in size on average, make it 

into the alveoli. The alveoli, in contrast to the bronchi, trachea, larynx, nose, and mouth, lack 

an efficient way to remove particles from the body before they can cause harm, a process 

called clearance. [45] 

Once the particles have deposited in the alveoli they interact with lung and immune cells, as 

well as their protective secretions. [44] The exact response by the body’s cells is determined 

by a number of factors, including anti-oxidant levels in the host and the size, charge, 

potential ability to produce reactive oxygen species (ROS), and solubility of the particles. [44]  

Some particles are eventually cleared from the lung, some stay, or are engulfed within 

immune cells and digested, some of the smallest particles pass directly into the circulatory or 

lymphatic systems. [48] Some will activate nerve cells, designed to detect irritant particles and 

gases, and activate the autonomic nervous system. If the ROS potential of the particulates, 

such as those containing metals, organic compounds, Polycyclic Aromatic Hydrocarbons 

(PAHs), and semi-quinones, which tend to have the greatest ROS potential, is greater than 

the antioxidant potential in the cells and protective secretions of the lungs, a state of 

oxidative stress ensues. This state triggers a local inflammatory response, releasing cytokines 

and other chemicals to recruit immune cells to the site. [49] These same types of particles are 

also capable of directly facilitating an inflammatory response. This inflammatory response 

can trigger a worsening of the original oxidative stress which can trigger additional 
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inflammation, and so on. This cycle, involving oxidative stress and inflammation, combined 

with activation by particulates of the automatic nervous system (ANS), is central to the 

body’s response to particulates, and ultimately begets many of the bodily responses to PM.  

This pulmonary inflammation and oxidative stress, and the resulting immune response, can 

injure delicate lung tissues, activating additional host defenses and intensifying the cycle of 

oxidative stress and immune escalation. Pulmonary injury can also induce airway 

hyperresponsiveness, a key marker of asthma patients and contributor to findings of 

decreased lung function following PM exposure. Injury or irritation increases the 

permeability of the tissues lining the airway and capillaries within the alveoli, allowing 

passage of PM components, oxidative compounds, and inflammatory mediators into the 

general circulation. This can then set off or worsen an existing systemic cycle of 

inflammation and oxidative stress, a fact supported by epidemiological evidence showing 

elevated levels of inflammatory biomarkers, most consistently C-reactive protein, following 

PM exposure. If the host has been sensitized by repeated exposures, allergic responses can 

be activated both systemically and within the pulmonary system. Rogue oxidative 

compounds of the right size have been shown to enter the nuclei of cells and damage DNA, 

ultimately resulting in possible lung cancer. [45] 

Systemically, the combination of spillover of inflammatory mediators and oxidative 

compounds from the lungs into the circulatory system, passage of the smallest particles and 

soluble compounds into the circulatory system, and ANS activation by particulates, are 

largely responsible for the cardiovascular effects of PM. Systemic oxidative stress and 

inflammation leads to increased coagulation and thrombosis of the blood, while ANS 

activation and PM in the circulatory system can both lead to platelet aggregation. Meanwhile, 
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PM, ANS activation, and systemic inflammation all led to vasoconstriction, endothelial 

dysfunction, and increases in an individual’s reactive oxygen species (ROS) potential. ANS 

activation, along with indirect effects from vasoconstriction, has been shown to lead to 

increased blood pressure and heart rate. Systemic inflammation and oxidative stress is 

associated with atherosclerosis and metabolic changes that induce dyslipidemia and insulin 

resistance.  

These cellular and, ultimately, systemic effects on the human body ultimately explain 

increased acute mortality from cardiovascular and respiratory causes, as well as increased 

rates of emergency room use, particularly by asthmatics and others with pre-existing disease. 

Chronic impacts are derived from these acute insults, but additionally involve the body’s 

response to repetitive injury. As such, chronic impacts on the cardiopulmonary system 

include: atherosclerosis, blood coagulation, systemic inflammation and oxidative stress, 

venous thromboembolism, metabolic syndromes, changes in cardiac mass and output, 

coronary heart disease, stroke, pulmonary injury, pulmonary inflammation, allergic responses 

and increased mortality.  Much of the epidemiologic research has focused on elderly or 

pediatric populations, as these populations are particularly vulnerable to the effects of air 

pollution.  

Pregnant women, are another population of concern. The basic cellular mechanisms through 

which harm may be caused to the fetus are thought to be the same, however, with the 

inflammation/oxidative stress cycle at the center. Epidemiological associations have been 

found with a variety of birth outcomes, including restricted growth, pre-term birth, low birth 

weight, birth defects, and infant mortality. [45] Of these, low birth weight, restricted growth, 
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and pre-term birth are interrelated in that low birth weight can result from either restricted 

growth or pre-term birth.  

  

Remote sensing of aerosols 

Remote sensing entered the field of PM2.5 research in 2003, when Jun Wang and Sundar 

Christopher at the University of Alabama published an “Intercomparison between satellite-

derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies.” [50] 

This paper focused on large positive correlations between MODIS aerosol optical depth 

(AOD), and PM2.5 measurements at seven locations in Jefferson County, AL, demonstrating 

that MODIS AOD was correlated with PM2.5 mass at ground-level stations with R=0.7.   In 

2004, Jill Engel-Cox et al published a national-scale paper looking at correlations between 

AOD and PM2.5 concentrations at ground monitors throughout the United States, relating 

PM2.5 concentrations to AOD with a simple linear model to get the equation: PM2.5(daily) = 

7.54 + 18.66*AOD. [51]. By the summer of 2004, EPA scientists, working with scientists at 

NASA and NOAA, were able to build a satellite-based forecasting program for operational 

use through the AIRNow website. [52]  

Over the next few years, a number of other studies published on correlations between 

various satellite’s AOD products, and there was a ramping up of statistical methods. [53] [54] 

Models moved from the linear scale to the log-linear scale. [55] The addition of various 

meteorological parameters, such as relative humidity and planetary boundary layer height 

improved model fits. By 2009, complex two-stage GAM models were in use. [56] In 2011, a 

linear mixed effects model was proposed with random intercepts for each day in the year 
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and random slopes for AOD. [57]. Finally, in 2017 you start to see machine learning models. 

[58]. 

 

Works Cited 

1. Nemery, B.; Hoet, P.H.; Nemmar, A. The meuse valley fog of 1930: An air pollution 

disaster. The Lancet 2001, 357, 704-708. 

2. Schrenk, H.H.; Heimann, H.; Clayton, G.D.; Gafafer, W.M.; Wexler, H. Air pollution 

in donora, pa. Epidemiology of the unusual smog episode of october 1948. Preliminary report. 

Wash: 1949; p ix+173 pp. 

3. Wilkins, E. Air pollution and the london fog of december, 1952. Journal of the Royal 

Sanitary Institute 1954, 74, 1-21. 

4. Logan, W. Mortality in the london fog incident, 1952. The Lancet 1953, 261, 336-338. 

5. Haagen-Smit, A.; Darley, E.F.; Zaitlin, M.; Hull, H.; Noble, W. Investigation on 

injury to plants from air pollution in the los angeles area. Plant Physiology 1952, 27, 18. 

6. Chass, R.L.; Pratch, M.; Atkisson, A.A. The air pollution disaster—prevention 

program of los angeles county. Journal of the Air Pollution Control Association 1958, 8, 

72-86. 

7. Hamming, W.J.; Macphee, R.D.; Taylor, J.R. Contaminant concentrations in the 

atmosphere of los angeles county. Journal of the Air Pollution Control Association 1960, 

10, 7-16. 

8. Ciocco, A.; Thompson, D.J. A follow-up of donora ten years after: Methodology and 

findings. American Journal of Public Health and the Nations Health 1961, 51, 155-164. 



24 
 

 

9. Schoettlin, C.E.; Landau, E. Air pollution and asthmatic attacks in the los angeles 

area. Public Health Reports 1961, 76, 545. 

10. Ware, J.H.; Thibodeau, L.A.; Speizer, F.E.; Colóme, S.; Ferris Jr, B.G. Assessment of 

the health effects of atmospheric sulfur oxides and particulate matter: Evidence from 

observational studies. Environmental Health Perspectives 1981, 41, 255. 

11. Martin, A. Mortality and morbidity statistics and air pollution. SAGE Publications: 

1964. 

12. Schimmel, H. Evidence for possible acute health effects of ambient air pollution 

from time series analysis: Methodological questions and some new results based on 

new york city daily mortality, 1963-1976. Bulletin of the New York Academy of Medicine 

1978, 54, 1052. 

13. Lebowitz, M.D. Utilization of data from human population studies for setting air 

quality standards: Evaluation of important issues. Environmental health perspectives 1983, 

52, 193. 

14. Schimmel, H.; Murawski, T.J. The relation of air pollution to mortality. Journal of 

Occupational and Environmental Medicine 1976, 18, 316-333. 

15. Whittemore, A.S. Air pollution and respiratory disease. Annual review of public health 

1981, 2, 397-429. 

16. Speizer, F.E. Studies of acid aerosols in six cities and in a new multi-city 

investigation: Design issues. Environmental health perspectives 1989, 79, 61. 

17. Speizer, F.E. Asthma and persistent wheeze in the harvard six cities study. CHEST 

Journal 1990, 98, 191S-195S. 

18. Ferris Jr, B.; Speizer, F.; Spengler, J.; Dockery, D.; Bishop, Y.; Wolfson, M.; Humble, 

C. Effects of sulfur oxides and respirable particles on human health: Methodology 



25 
 

 

and demography of populations in study 1–3. American Review of Respiratory Disease 

1979, 120, 767-779. 

19. Dockery, D.W.; Pope, C.A.; Xu, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Ferris Jr, 

B.G.; Speizer, F.E. An association between air pollution and mortality in six us cities. 

New England journal of medicine 1993, 329, 1753-1759. 

20. Klemm, R.J.; Mason Jr, R.M.; Heilig, C.M.; Neas, L.M.; Dockery, D.W. Is daily 

mortality associated specifically with fine particles? Data reconstruction and 

replication of analyses. Journal of the Air & Waste Management Association 2000, 50, 

1215-1222. 

21. Schwartz, J.; Dockery, D.W.; Neas, L.M. Is daily mortality associated specifically with 

fine particles? Journal of the Air & Waste Management Association 1996, 46, 927-939. 

22. Haines, J. Revisions to the national ambient air quality standards for particulate 

matter. Division, S.a.A.S., Ed. Federal Register, 1987; Vol. 52, pp 24634-24669. 

23. Haines, J. National ambient air quality standards for particulate matter. Division, 

A.Q.S.a.S., Ed. EPA: Federal Register, 1997; Vol. 62, pp 38652-38760. 

24. Weber, R.J.; Guo, H.; Russell, A.G.; Nenes, A. High aerosol acidity despite declining 

atmospheric sulfate concentrations over the past 15 years. Nature Geoscience 2016. 

25. Spengler, J.; Keeler, G.; Koutrakis, P.; Ryan, P.; Raizenne, M.; Franklin, C. Exposures 

to acidic aerosols. Environmental health perspectives 1989, 79, 43. 

26. Dockery, D.W.; Cunningham, J.; Damokosh, A.I.; Neas, L.M.; Spengler, J.D.; 

Koutrakis, P.; Ware, J.H.; Raizenne, M.; Speizer, F.E. Health effects of acid aerosols 

on north american children: Respiratory symptoms. Environmental health perspectives 

1996, 104, 500. 



26 
 

 

27. Ostro, B.D.; Lipsett, M.J.; Wiener, M.B.; Selner, J.C. Asthmatic responses to airborne 

acid aerosols. American journal of public health 1991, 81, 694-702. 

28. Thurston, G.D.; Ito, K.; Lippmann, M.; Hayes, C. Reexamination of london, 

england, mortality in relation to exposure to acidic aerosols during 1963-1972 

winters. Environmental health perspectives 1989, 79, 73. 

29. Pope III, C.A.; Thun, M.J.; Namboodiri, M.M.; Dockery, D.W.; Evans, J.S.; Speizer, 

F.E.; Heath Jr, C.W. Particulate air pollution as a predictor of mortality in a 

prospective study of us adults. American journal of respiratory and critical care medicine 

1995, 151, 669-674. 

30. Krewski, D.; Burnett, R.T.; Goldberg, M.S.; Hoover, K.; Siemiatycki, J. Special report 

reanalysis of the harvard six cities study and the american cancer society study of 

particulate air pollution and mortality part ii: Sensitivity analyses appendix c. Flexible 

modeling of the effects of fine particles. Health Effects Institute. Cambridge, MA 2000, 

246. 

31. Villeneuve, P.J.; Goldberg, M.S.; Krewski, D.; Burnett, R.T.; Chen, Y. Fine 

particulate air pollution and all-cause mortality within the harvard six-cities study: 

Variations in risk by period of exposure. Annals of Epidemiology 2002, 12, 568-576. 

32. Krewski, D.; Burnett, R.T.; Goldberg, M.S.; Hoover, K.; Siemiatycki, J.; 

Abrahamowicz, M.; White, W.H. Validation of the harvard six cities study of 

particulate air pollution and mortality. New England Journal of Medicine 2004, 350, 198-

199. 

33. Krewski, D.; Burnett, R.; Goldberg, M.; Hoover, K.; Siemiatycki, J.; Abrahamowicz, 

M.; White, W. Reanalysis of the harvard six cities study, part i: Validation and 

replication. Inhalation toxicology 2005, 17, 335-342. 



27 
 

 

34. Krewski, D.; Burnett, R.; Goldberg, M.; Hoover, K.; Siemiatycki, J.; Abrahamowicz, 

M.; Villeneuve, P.; White, W. Reanalysis of the harvard six cities study, part ii: 

Sensitivity analysis. Inhalation toxicology 2005, 17, 343-353. 

35. McDonnell, W.F.; Nishino-Ishikawa, N.; Petersen, F.F.; Chen, L.H.; Abbey, D.E. 

Relationships of mortality with the fine and coarse fractions of long-term ambient 

pm10 concentrations in nonsmokers. Journal of Exposure Science and Environmental 

Epidemiology 2000, 10, 427. 

36. Miller, K.A.; Siscovick, D.S.; Sheppard, L.; Shepherd, K.; Sullivan, J.H.; Anderson, 

G.L.; Kaufman, J.D. Long-term exposure to air pollution and incidence of 

cardiovascular events in women. N Engl j Med 2007, 2007, 447-458. 

37. Beelen, R.; Hoek, G.; van Den Brandt, P.A.; Goldbohm, R.A.; Fischer, P.; Schouten, 

L.J.; Jerrett, M.; Hughes, E.; Armstrong, B.; Brunekreef, B. Long-term effects of 

traffic-related air pollution on mortality in a dutch cohort (nlcs-air study). 

Environmental health perspectives 2008, 116, 196. 

38. Puett, R.C.; Hart, J.E.; Yanosky, J.D.; Paciorek, C.; Schwartz, J.; Suh, H.; Speizer, 

F.E.; Laden, F. Chronic fine and coarse particulate exposure, mortality, and coronary 

heart disease in the nurses’ health study. Environmental health perspectives 2009, 117, 

1697. 

39. Puett, R.C.; Hart, J.E.; Suh, H.; Mittleman, M.; Laden, F. Particulate matter 

exposures, mortality, and cardiovascular disease in the health professionals follow-up 

study. Environmental health perspectives 2011, 119, 1130. 

40. Katsouyanni, K.; Touloumi, G.; Spix, C.; Schwartz, J.; Balducci, F.; Medina, S.; Rossi, 

G.; Wojtyniak, B.; Sunyer, J.; Bacharova, L. Short term effects of ambient sulphur 



28 
 

 

dioxide and particulate matter on mortality in 12 european cities: Results from time 

series data from the aphea project. Bmj 1997, 314, 1658. 

41. Samet, J.M.; Dominici, F.; Curriero, F.C.; Coursac, I.; Zeger, S.L. Fine particulate air 

pollution and mortality in 20 us cities, 1987–1994. New England journal of medicine 

2000, 343, 1742-1749. 

42. Schwartz, J.; Morris, R. Air pollution and hospital admissions for cardiovascular 

disease in detroit, michigan. American journal of epidemiology 1995, 142, 23-35. 

43. Morris, R.D. Airborne particulates and hospital admissions for cardiovascular 

disease: A quantitative review of the evidence. Environmental health perspectives 2001, 

109, 495. 

44. Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, 

A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A. Particulate matter air 

pollution and cardiovascular disease. Circulation 2010, 121, 2331-2378. 

45. EPA, D. Integrated science assessment for particulate matter. US Environmental 

Protection Agency Washington, DC 2009. 

46. Heyder, J.; Gebhart, J.; Rudolf, G.; Schiller, C.F.; Stahlhofen, W. Deposition of 

particles in the human respiratory tract in the size range 0.005–15 μm. Journal of 

Aerosol Science 1986, 17, 811-825. 

47. Lippmann, M. Regional deposition of particles in the human respiratory tract. 

Comprehensive Physiology 1977. 

48. Møller, P.; Jacobsen, N.R.; Folkmann, J.K.; Danielsen, P.H.; Mikkelsen, L.; 

Hemmingsen, J.G.; Vesterdal, L.K.; Forchhammer, L.; Wallin, H.; Loft, S. Role of 

oxidative damage in toxicity of particulates. Free radical research 2010, 44, 1-46. 



29 
 

 

49. Mühlfeld, C.; Rothen-Rutishauser, B.; Blank, F.; Vanhecke, D.; Ochs, M.; Gehr, P. 

Interactions of nanoparticles with pulmonary structures and cellular responses. 

American Journal of Physiology-Lung Cellular and Molecular Physiology 2008, 294, L817-

L829. 

50. Wang, J.; Christopher, S.A. Intercomparison between satellite‐derived aerosol optical 

thickness and pm2. 5 mass: Implications for air quality studies. Geophysical research 

letters 2003, 30. 

51. Engel-Cox, J.A.; Holloman, C.H.; Coutant, B.W.; Hoff, R.M. Qualitative and 

quantitative evaluation of modis satellite sensor data for regional and urban scale air 

quality. Atmospheric environment 2004, 38, 2495-2509. 

52. Al-Saadi, J.; Szykman, J.; Pierce, R.B.; Kittaka, C.; Neil, D.; Chu, D.A.; Remer, L.; 

Gumley, L.; Prins, E.; Weinstock, L., et al. Improving national air quality forecasts 

with satellite aerosol observations. Bulletin of the American Meteorological Society 2005, 86, 

1249-1262. 

53. Green, M.; Kondragunta, S.; Ciren, P.; Xu, C. Comparison of goes and modis aerosol 

optical depth (aod) to aerosol robotic network (aeronet) aod and improve pm2. 5 

mass at bondville, illinois. Journal of the Air & Waste Management Association 2009, 59, 

1082-1091. 

54. Gupta, P.; Christopher, S.A.; Wang, J.; Gehrig, R.; Lee, Y.; Kumar, N. Satellite 

remote sensing of particulate matter and air quality assessment over global cities. 

Atmospheric Environment 2006, 40, 5880-5892. 

55. Liu, Y.; Sarnat, J.A.; Kilaru, V.; Jacob, D.J.; Koutrakis, P. Estimating ground-level 

pm2. 5 in the eastern united states using satellite remote sensing. Environmental science 

& technology 2005, 39, 3269-3278. 



30 
 

 

56. Liu, Y.; Paciorek, C.J.; Koutrakis, P. Estimating regional spatial and temporal 

variability of pm2. 5 concentrations using satellite data, meteorology, and land use 

information. Environmental health perspectives 2009, 117, 886. 

57. Lee, H.; Liu, Y.; Coull, B.; Schwartz, J.; Koutrakis, P. A novel calibration approach of 

modis aod data to predict pm2. 5 concentrations. Atmos. Chem. Phys 2011, 11, 7991-

8002. 

58. Hu, X.; Belle, J.H.; Meng, X.; Wildani, A.; Waller, L.A.; Strickland, M.J.; Liu, Y. 

Estimating pm2. 5 concentrations in the conterminous united states using the 

random forest approach. Environmental Science & Technology 2017, 51, 6936-6944. 

 



31 
 

 
Note: This chapter has been published in the journal, Remote Sensing, and has been formatted 
according to journal guidelines. 
 

Chapter 1: Evaluation of Aqua MODIS collection 6 AOD parameters for air quality 

research over the continental United States 

 

Remote Sens. 2016, 8(10), 815; doi:10.3390/rs8100815 

 

Article 

 
Evaluation of Aqua MODIS Collection 6 AOD Parameters for Air Quality 

Research over the Continental United States 

J. H. Belle and Yang Liu * 

Department of Environmental Health, Rollins School of Public Health, Emory 

University, Atlanta, GA 30322, USA 

* 

Correspondence: Tel.: +1-404-727-8744 

Academic Editors: Jun Wang, Omar Torres, Alexander A. Kokhanovsky, Richard Müller 

and Prasad S. Thenkabail 

Received: 18 July 2016 / Accepted: 26 September 2016 / Published: 1 October 2016  

Abstract:  

Satellite-retrieved aerosol optical depth (AOD) has become an important predictor of 

ground-level particulate matter (PM) and greatly empowered air pollution research 

worldwide. We evaluated the AOD parameters included in the Collection 6 aerosol product 

of the Moderate Resolution Imaging Spectroradiometer (MODIS) for two key factors 

affecting their applications in air quality research—coverage and accuracy—over the 

continental US. For the high confidence retrievals (QAC 3), the 10 km DB-DT combined 

AOD has the best coverage nationwide (29.7% of the days in a year in any given 12 km 

grid cell). While the Eastern US generally had more successful AOD retrievals, the highest 
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spatial coverage of AOD parameters were found in California (>55%) and other vegetated 

parts of the Western US. If lower QAC retrievals were included, the coverage of the 10 km 

DB AOD was dramatically increased to 49.6%. In the Eastern US, the QAC 3 retrievals of 

all four AOD parameters are highly correlated with AERONET observations (correlation 

coefficients between 0.80 and 0.92). In the Western US, positive retrieval errors existed in 

all MODIS AOD parameters, resulting in lower correlations with AERONET. AOD 

retrieval errors showed significant dependence on flight geometry, land cover type, and 

weather conditions. To ensure appropriate use of these AOD values, air quality researchers 

should carefully balance the needs for coverage and accuracy, and develop additional data 

screening criteria based on their study design. 

 

Keywords: 

 MODIS; AOD; remote sensing; United States; retrieval accuracy; satellite coverage  

1. Introduction 

Aerosol optical depth (AOD) is ‘the single most comprehensive variable to remotely 

assess the aerosol burden in the atmosphere’ [1]. It is used to characterize ambient aerosols, 

either for land-based remote sensing applications where it is used to remove atmospheric 

influences, or directly, to assess atmospheric pollution, primarily fine particulate matter, 

and its impacts on the climate, ecosystems, and human populations. Exposure to fine 

particulate matter (PM2.5, airborne particles with an aerodynamic diameter of 2.5 

micrometers or less) was identified as a leading risk factor for global disease burden with 

an estimated 2.9 million attributable deaths in the year 2013 [2]. Historically, the estimation 

of population exposure to PM2.5 depends on filter-based ground monitors. However, 

http://www.mdpi.com/2072-4292/8/10/815/htm#B1-remotesensing-08-00815
http://www.mdpi.com/2072-4292/8/10/815/htm#B2-remotesensing-08-00815
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because of its high operation and maintenance costs, these ground-based monitoring 

networks do not achieve comprehensive spatial coverage. With its comprehensive spatial 

coverage, spatial models driven by MODIS AOD are able to estimate the PM2.5 exposure 

levels in many parts of the world where ground observations are sparse or nonexistent [3]. 

The MODerate Resolution Imaging Spectroradiometer (MODIS) instruments on board the 

Aqua and Terra satellite platforms have been providing daily, near-global satellite coverage 

since 2000 and 2002, respectively [4]. MODIS-retrieved aerosol optical depth (AOD) has 

been used extensively in estimating ground-level fine particulate matter (PM2.5) 

concentrations [5]. Over the past decade, various MODIS-driven PM2.5 exposure models 

have been developed, from relatively simple linear regressions [6] to complex multi-level 

spatial models [7] and Bayesian hierarchical models [8]. Because PM2.5 is linked to adverse 

health outcomes even at the low concentrations commonly observed in the cities of North 

America [9], PM2.5 models based on MODIS retrievals have been used to extend ground air 

quality monitoring networks to cover the suburban and rural populations in the U.S. [10] 

and Canada [11]. 

Accuracy and coverage are the most important factors affecting the application of 

satellite AOD in air quality research. The retrieval error in AOD has a major influence in 

the PM2.5 prediction error, as AOD is often used as the primary predictor in various 

PM2.5 exposure models. If the AOD retrieval error varies by season or with land use types, 

the PM2.5 prediction error will also display spatiotemporal patterns. This is especially true at 

the low AOD levels, typically below 0.2, commonly observed in developed countries [12]. 

On the one hand, availability of AOD data coverage determines whether satellite-driven 

models are feasible for a given study region. On the other hand, it plays an important role 

http://www.mdpi.com/2072-4292/8/10/815/htm#B3-remotesensing-08-00815
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in determining the design of PM2.5 health effect studies [13]. For example, the health effect 

of short-term PM2.5 exposure such as asthma exacerbation is often evaluated in a time series 

model where temporal missingness of exposure estimates can substantially limit model 

performance [10]. Cohort studies designed for associating long-term PM2.5 exposure with 

cardiovascular morbidity and mortality would benefit from complete spatial coverage [14]. 

The most recent MODIS collection 6 (C6) aerosol products include enhanced Dark-

Target (10 km DT) and Deep-Blue (10 km DB) AOD present in collection 5 (C5), a 

‘merged’ DB-DT parameter (10 km DB-DT) and a 3 km AOD based off of the 10 km DT 

retrieval algorithm (3 km DT) [15,16]. The MODIS science team has conducted a few global 

validation studies to document the collective impact of these changes and differences 

between the various parameters [12,16,17,18]. These studies mainly focused on estimating 

the AOD retrieval errors by comparing with collocated measurements from the Aerosol 

Robotic Network (AERONET) at the global scale. Because of the large spatial differences 

in aerosol loading, global performance metrics such as regression slopes and correlation 

coefficients are often driven by regions of high AOD values. To date, only a handful of 

evaluation studies were reported in North America, none of which had both accuracy and 

coverage as their primary research objectives [19,20]. Therefore, there remains a need for 

detailed validation studies in dominantly low-AOD regions to investigate issues related to 

surface reflectance treatment and extreme events [12]. In addition, the accuracy and 

potential usability of lower quality retrievals needs to be better characterized, and could 

have important implications on the coverage issue in air quality applications of MODIS 

data. 
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In the current analysis, we focused on characterizing the accuracy and coverage of 

various MODIS AOD parameters in the continental US, a dominantly low-AOD area. We 

focused on examining the degree to which changes in surface properties and retrieval 

conditions, such as viewing angle and land use, affect AOD retrieval error. In addition to 

the highest quality AOD data, we evaluate the impact of including lower quality AOD 

values on the spatial and temporal coverage statistics. Additionally, we use a case study to 

demonstrate the practical implications of including lower-quality retrievals and accounting 

for major sources of bias on the ability of each AOD parameter to accurately estimate 

ground-level PM2.5 concentrations. Finally, we summarize the strengths and weaknesses of 

these AOD parameters in the context of air quality research. 

2. Materials and Methods 

2.1. Satellite and Ground Datasets 

We collected Aqua MODIS level 2 AOD data [21] between 1 January 2004 and 31 

December 2013 in the Continental US. Level 2 cloud-screened and quality assured AOD 

retrievals from 120 permanent AERONET stations and 73 temporary stations from the 

Distributed Regional Aerosol Gridded Observation Networks (DRAGON) were collected 

to validate MODIS retrievals. Out of the 120 permanent AERONET stations, 48% had 

been in operation for less than one year (Figure 1). Total column precipitable water 

estimates were also collected from these stations to evaluate their impact on MODIS AOD 

retrieval error. Since AERONET does not directly measure AOD at the 0.55 µm 

wavelength reported by MODIS, values were interpolated to this wavelength with a 

quadratic fit in log-log space based on valid AOD values at a minimum of 4 of any of the 

15 wavelengths potentially reported by AERONET [22]. Ancillary datasets were collected 

http://www.mdpi.com/2072-4292/8/10/815/htm#B21-remotesensing-08-00815
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for identifying surface properties and retrieval conditions that could have affected MODIS 

retrieval accuracy. The MODIS 16-day gridded NDVI parameter at 1 km spatial resolution 

[23] was used to calculate NDVI values at individual MODIS level 2 AOD pixels. The 

National Land Cover Database (NLCD) with a 30 m spatial resolution was used for land 

cover type calculation at individual MODIS level 2 AOD pixels [24]. The 2006 NLCD was 

used for collocations occurring prior to 2009 and the 2011 NLCD was used for collocations 

occurring after 2009. Information on scattering, viewing, and solar angles for each AOD 

retrieval was obtained for each MODIS pixel from the MODIS AQUA level 2 Aerosol 

product [21]. 

 

2.2. Coverage 

Since MODIS pixels are created relative to each satellite view and the MODIS instrument 

exhibits a fish-eye effect, the size and location of individual pixels is not constant from one 

day to the next. To compensate for this, a 12 km grid commonly used in the Community 

Multi-scale Air Quality (CMAQ) modeling system was created for our coverage calculation (a 

total of 55,031 cells). The grid size roughly corresponds to the nadir resolution of the 

MODIS 10 km AOD parameters and represents an important application of the MODIS 

data, where AOD observations are assimilated into air quality models to improve model 

performance [25]. MODIS pixels were determined to be within a grid cell if, for the 10 km 

DT, 10 km DB, and 10 km DB-DT AOD, the polygon representing the pixel area, 

reconstructed from the pixel centroids using a Voronoi tessellation algorithm [26], lay at least 

partially within the grid cell. Pixels from the 3 km DT parameter were determined to be 

within a grid cell if the centroid of the 3 km pixel fell within the grid cell, allowing the 

http://www.mdpi.com/2072-4292/8/10/815/htm#B23-remotesensing-08-00815
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increased resolution of the 3 km DT parameter relative to the grid to compensate for the 

lack of smoothing between cells that the Voronoi tessellation would have provided. The 

percentage of days with a valid, QAC 3 retrieval were calculated for each grid cell and 

parameter. Results were interpreted relative to averages over the continental U.S. (CONUS) 

for each parameter. Coverage statistics were also calculated for QAC 1, 2, and 3 retrievals 

together to provide an accounting of the gains in coverage by including lower confidence 

retrievals in an analysis. 

2.3. Accuracy 

AERONET observations were collocated with each MODIS AOD parameter 

respectively, so that a temporal average of AERONET observations within ±30 min of the 

MODIS pass was compared to the spatial average of MODIS pixels within a ~25 km radius 

for the 10 km DT, DB and DB-DT AOD, and a ~7.5 km radius for the 3 km DT AOD 

[17]. Following previous work, a collocation was only considered valid if a minimum of three 

MODIS pixels, two AERONET measurements, and at least 20% of the total number of 

MODIS pixels included in the 25/7.5 km radius had valid values with a QAC code of 3 

assigned to the pixel [27]. AERONET stations were categorized as either being in the East 

or the West, using the 100° W longitude line [16]. The east/west division was necessary 

because previous work had found large differences in MODIS performance between the two 

regions [25]. Retrieval error, or the difference between MODIS and AERONET AOD at 

each collocation (τM − τA) and the percentage of MODIS observations within the 10 km DT 

expected error envelope (EEDT)—defined as ±(0.05 + 0.15)τ—[16] were calculated and 

linear regression models were used to quantify retrieval errors. In order to evaluate the QAC 

code assignments as indicators of retrieval errors, independent collocations were created for 

http://www.mdpi.com/2072-4292/8/10/815/htm#B17-remotesensing-08-00815
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QAC 1 and QAC 2 retrievals with AERONET, using the same criteria as for the QAC 3 

collocations. Finally, for each AOD parameter, retrieval error in MODIS AOD relative to 

AERONET was examined within quintiles of the surface and retrieval parameters. These 

parameters include median NDVI, total column precipitable water from AERONET, land-

cover type mode, mean solar zenith, sensor zenith, and scattering angles. Linear regression 

models were used to identify any significant linear trends in retrieval error for each surface 

and retrieval parameter. 

3. Results 

During our study period, 193 ground stations reported a total of 286,055 observations 

that could be interpolated to AOD at 550 nm. Of these, 262,491 originated from a 

permanent AERONET station and 23,564 were recorded during a DRAGON campaign. In 

the Eastern US, the number of valid collocations at the 127 stations with high confidence 

MODIS retrievals ranges from 5616 for 3 km DT to 6617 for 10 km DB observations. 

AERONET AOD ranged from 0.0005 to 1.26, with mean values of 0.12, 0.12, 0.12, and 

0.10 for collocations with the high confidence 3 km DT, 10 km DT, 10 km DB-DT and 10 

km DB parameters, respectively. MODIS AOD ranged from −0.05 to 2.77, with mean 

values of 0.13, 0.13, 0.13, and 0.11 for these four AOD parameters, respectively. In the 

Western US, the number of valid collocations at 66 AERONET stations with high 

confidence MODIS retrievals ranges from 6251 for 3 km DT to 11,590 for 10 km DB-DT 

AOD. AERONET AOD values ranged from 0.0003 to 1.43, with mean values of 0.09, 0.09, 

0.08, and 0.08 for collocations with the high confidence 3 km DT, 10 km DT, 10 km DB-

DT, and 10 km DB parameters, respectively. MODIS AOD values ranged from −0.05 to 

2.35, with mean values of 0.09, 0.12, 0.10, and 0.08 for these parameters, respectively. In 
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both regions, and for all four products, the majority of collocations occurred in the fall and 

summer, while the fewest occurred in winter months. 

3.1. Coverage of High-Confidence Retrievals 

Table 1 shows that on average, a valid AOD retrieval was available on 25%–30% of days 

in any given grid cell. However, there is considerable spatial heterogeneity in coverage rates 

for each parameter (Figure 1). The highest rates of coverage are found on the western coast, 

near the large cities of Los Angeles and San Francisco, and in California’s central valley. In 

these areas, all four AOD parameters achieve coverage rates of over 55%, and in the area 

right around Los Angeles, coverage rates are above 70%. Similarly high coverage rates, 

between 50% and 60%, are also observed over the national forests north of Phoenix in 

Arizona and rates of 40%–50% are observed over the south-central plains covering the areas 

of central Texas, Oklahoma, and Kansas. A north-to-south and elevation gradient in 

coverage rates can also be observed in Figure 2. The lowest coverage rates were observed 

over the Great Salt Lake desert, where a few locations had no valid retrieval. Outside of the 

Rockies, average coverage rates in the northern parts of the CONUS—an area that includes 

the large cities of Chicago and New York—were typically only 10%–20%. Coverage rates 

further south were 30%–40%, slightly higher than the CONUS-wide average. This north-

south and elevation-based gradient in coverage rates can be linked to seasonal snow-cover 

occurring primarily at higher latitudes and elevations. 

The 3 km DT AOD, with a CONUS-wide coverage rate of 28.2%, is comparable to the 

10 km AOD parameters in terms of coverage. In contrast to the 10 km products, the 3 km 

DT AOD excels over areas where the surface is more complex but not arid, such as the 

Pacific Northwest, and over the Carolinas. It achieves slightly higher coverage rates on the 

http://www.mdpi.com/2072-4292/8/10/815/htm#table_body_display_remotesensing-08-00815-t001
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eastern coast than the 10 km parameters, and retrieves at higher rates at high to moderate 

latitudes and elevations than the 10 km AOD parameters (Figure 2a). The most likely 

explanation for these higher coverage rates at higher elevations and latitudes would be an 

increased ability, on the part of the higher resolution parameter, to retrieve aerosols over 

patchy snow-cover. However, while it has been previously noted that the higher resolution 

parameter is able to retrieve aerosol information at higher rates over complex landscapes, 

coastlines, and between clouds, the extension of this ability to complex snow-cover has not 

been investigated [17,19]. The 10 km merged AOD has the highest overall coverage, 

averaging 29.7% for the CONUS. This parameter aims to maximize the number of high-

confidence AOD retrievals by using AOD values from the 10 km DT algorithm over 

locations where the NDVI is higher and to use 10 km DB AOD values over locations where 

NDVI is lower and the 10 km DT algorithm is less likely to accurately retrieve AOD. The 

result is that the spatial patterns of coverage for the merged AOD are similar to 10 km DT 

AOD, but without the gaps in coverage over the arid southwest. The coverage of 10 km DB 

AOD along the east coast is lower than the other three AOD parameters especially in the 

summer months (see Supplementary Figure S1) and over Florida, and balances out the 

additional coverage gained in the west and south-central plains (Figure 2). The reasons for 

this are currently unknown, but slight differences exist between the DT and DB retrieval 

processes in the tests used to identify cloud-cover and distinguish it from aerosols and this 

could explain summertime differences in coverage over the highly vegetated Eastern 

CONUS [15,16]. 

3.2. Coverage Gains with Lower-Quality Retrievals 
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When lower-quality retrievals were included, coverage rates increased for all AOD 

parameters. However, there were large differences in relative increases between products, 

reflective of differences in QAC code assignments among AOD parameters. On the one 

hand, coverage rates for the 3 km DT AOD increased only slightly from 28.2% to 28.9%, 

similar to that observed for the 10 km DB-DT AOD. Coverage rates for the 10 km DT 

parameter increased substantially from 24.3% to 32.8%. On the other hand, coverage of the 

10 km DB AOD increased dramatically from 28.9% to 49.6% when lower-confidence 

retrievals were included. Of the four AOD parameters, the 10 km merged AOD provides 

the highest overall coverage over the CONUS if only high-confidence retrievals are 

considered. Coverage patterns are similar to those observed for high confidence 

observations (Supplementary Figure S2). Previous studies have examined how AOD 

missingness impacts the representativeness of the sample within the CONUS, with mixed 

results [28,29]. For some applications, the typical coverage rates from high quality retrievals 

of ~30% may be too low to preserve study power, and investigators may seek to boost 

coverage rates through the use of noisier, lower-confidence observations. In this instance, 

the 10 km DB AOD offers the greatest potential gains in coverage. 

3.3. Accuracy of High-Confidence Retrievals 

Error statistics for all four AOD parameters, broken down by region, are presented 

in Table 2. In the eastern region, 76% of QAC 3 3 km DT AOD retrievals were within pre-

launch expectations with a mean retrieval error of 0.01, and the correlation coefficient 

between AERONET and MODIS values was 0.89. However, the slope of a regression line 

fit between the two was 1.24, indicating over-prediction. In the western region, 49% of 3 km 

DT observations were within the EE and the slope of a line relating AERONET AOD 
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values to MODIS observations was 1.41. The QAC 3 10 km DT AOD retrievals in the East 

had a slightly positive, but near 0 retrieval error, and its correlation coefficient with 

AERONET observations (0.92) was the highest of the four parameters. Over-prediction was 

a problem in the western region, but was more problematic at low AOD levels. The 

performance of the 10 km DB-DT AOD across accuracy metrics was nearly identical to the 

10 km DT AOD in the Eastern US, but it had an additional 341 QAC 3 collocations. In the 

western region, it was the most highly correlated with AERONET (0.73). The QAC 3 10 km 

DB AOD had somewhat uneven performance across accuracy metrics relative to findings 

from global validations [12]. It had the highest percentage of observations within EEDT(87% 

in the East, 83% in the West). Correlation coefficients, however, were lower than the other 

three parameters (0.80 in the East, 0.63 in the West) and global estimates [12]. Median 

retrieval error estimates in both regions were low (0.01 in the East, −0.00 in the West), but 

intercepts from regression modeling were higher (0.03 in the East, 0.02 in the West) and 

slopes were below 1 (0.79 in the East, 0.75 in the West). When assessed together, these 

metrics indicated over-prediction at lower AOD values and under-prediction at higher AOD 

values. Previous global validations have found similar patterns for 10 km DB retrievals, but 

over-prediction was more severe in the Western US than was noted in the global studies. 

 

3.4. Accuracy Assessment of Lower-Confidence Retrievals 

The more mature 10 km DB and 10 km DT AOD had 20,306 and 6924 valid lower-

confidence collocations, respectively. In contrast, the less mature 3 km DT and 10 km DB-

DT products had only 1429 and 2259 valid lower-confidence collocations, respectively. As 

expected, lower confidence collocations for the 10 km DB and 10 km DT AOD were 
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noisier and had larger retrieval errors when compared to QAC 3 observations (Table 2). For 

both parameters, a lower proportion of low-confidence observations were within EEDT, 

ranging from 40% to 68% of retrievals, median retrieval error estimates were higher, ranging 

from 0.02 to 0.09, and correlation coefficients were lower, ranging from 0.52 to 0.88. There 

were a substantial number of valid QAC 1 10 km DB collocations with a positive retrieval 

error at lower AOD values. This is typically attributable to cloud contamination, and so it 

may be possible to use some of these observations in an analysis with caution and additional 

cloud screening procedures [25]. Accuracy statistics for lower-confidence 3 km DT and 10 

km merged AOD, on the other hand, were comparable with high confidence retrievals 

(Table 2). The 3 km DT AOD had a high percentage of observations within EEDT, 83 and 

90% for the eastern and western regions, respectively, and strong correlations (0.79 in the 

East, 0.85 in the West). All low-confidence 10 km DB-DT AOD except QAC 2 retrievals in 

the eastern region (only 16 valid collocations) met pre-launch expectations, having between 

70% and 90% of retrievals within EEDT. The QAC code assignments for the two new AOD 

parameters do not seem to accurately reflect retrieval errors in the same way as for the more 

mature AOD parameters. 

3.5. Dependence of Retrieval Errors on Flight Geometry and Land Cover Type 

Figure 3 illustrates the dependence of AOD errors on the scattering, solar zenith, and 

viewing angles for QAC 3 retrievals. Scattering angle was associated with a statistically 

significant, positive trend in retrieval error in all four parameters in both regions. This trend 

is most pronounced for 3 km DT AOD in the western region with a median retrieval error 

of 0.12 for the highest quintile, and 0.04 for the lowest quintile of scattering angle. The 

median retrieval errors of 10 km DT, DB, and DB-DT AOD in both regions, and 3 km DT 
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observations in the eastern region increase slightly with scattering angle (but remain below 

0.04). This type of dependence could be related to issues with accounting for anisotropy in 

the surface reflectance over the CONUS [30]. Our findings in the CONUS disagree with 

those presented in global evaluations, which found tendencies of median retrieval error with 

scattering angle to be small and negative [12]. Our findings on the association between 

retrieval errors and solar zenith angles are only partially consistent with Sayer et al. [12] 

which found solar zenith angles below 20 degrees to have positive retrieval errors for the 10 

km DT parameter and negative retrieval errors for the 10 km DB parameter, but retrievals at 

angles greater than 20 to be relatively unbiased. In the Eastern US, our results show a similar 

pattern to those present in Sayer et al. [12] for 10 km DB retrievals relative to 10 km DT 

retrievals, but with a slight positive retrieval error for 10 km DB. Additionally, we observed 

fairly substantial retrieval errors at solar zenith angles greater than 20 degrees. In the Western 

US, we observed negative retrieval errors in 10 km DB observations spanning solar zenith 

angles from 25 to 43 degrees, while the first quintile, containing observations with solar 

zenith angles less than 25 degrees, was relatively unbiased. This finding runs contrary to 

previous observations which have suggested that it is primarily low solar zenith angles that 

are problematic [12,25]. AOD retrieval error shows a small negative trend with sensor zenith 

angle for the 10 km DB AOD in both regions and for the 3 km DT in the West, and a small 

positive trend for the 10 km DT, 10 km DB-DT, and 3 km DT AOD in the East. The 

largest change was for 10 km DB observations in the East, where the median retrieval error 

estimate in AOD within the first quintile of sensor zenith angle, near the nadir, was 0.024 

and the median retrieval error in the highest quintile was −0.005. 
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We assessed AOD retrieval errors by six land cover types, i.e., developed, forest, shrub, 

grass, cultivated, and wetland (see Supplementary Figure S3). All AOD parameters showed 

positive retrieval errors over developed areas, particularly in the Western US (0.03 for 10 km 

DB, and 0.21 for 3 km DT AOD). Small but consistent positive errors were also observed 

over wetlands in the Eastern US (mean retrieval errors of 0.04 for 3 km DT, 0.03 for 10 km 

DT, 0.03 for 10 km DB-DT, and 0.02 for 10 km DB). The 3 km DT and, to a lesser degree, 

10 km DT AOD also showed significant positive errors over shrub lands in the Western US 

(mean retrieval errors were 0.10 and 0.06 for 3 km DT and 10 km DT, respectively). The 

best agreement between MODIS and AERONET was over forests, grasslands, and 

cultivated lands. Overall, the 10 km DB AOD had the least retrieval errors across all land 

cover types (<0.03), followed by the 10 km DB-DT AOD (greatest mean retrieval error of 

0.10 over developed areas in the Western US). Previous studies have identified high retrieval 

error in AOD retrievals over developed areas, and the retrieval error in DT products over 

poorly vegetated surfaces to which 10 km DB retrievals are more robust [16,20,31]. 

3.6. Dependence of Retrieval Errors on Season and Weather Conditions 

Figure 4 summarizes monthly retrieval errors from each AOD parameter. Median retrieval 

errors in the 10 km DT, 10 km DB-DT, and 3 km DT parameters were the highest in the 

summer months. The 3 km DT AOD had the widest fluctuation of retrieval errors over the 

course of the year (0.009 in December to 0.056 in May). The 10 km DB product had a more 

even distribution over time, from −0.01 in August to 0.01 in February. The reasons for the 

increased positive retrieval error in the DT-based AOD parameters in the summer months is 

unclear, and has not been well-characterized in previous work on this collection. However, 

despite the fact that collocations in summer months are associated with increased mean 

http://www.mdpi.com/2072-4292/8/10/815/htm#app1-remotesensing-08-00815
http://www.mdpi.com/2072-4292/8/10/815/htm#B16-remotesensing-08-00815
http://www.mdpi.com/2072-4292/8/10/815/htm#B20-remotesensing-08-00815
http://www.mdpi.com/2072-4292/8/10/815/htm#B31-remotesensing-08-00815
http://www.mdpi.com/2072-4292/8/10/815/htm#fig_body_display_remotesensing-08-00815-f004


46 
 

 
Note: This chapter has been published in the journal, Remote Sensing, and has been formatted 
according to journal guidelines. 
 

NDVI values, which typically result in better accuracy statistics for DT products, 

collocations in these months also have higher scattering angles, lower solar zenith angles, 

and higher values of total column precipitable water, all factors that result in positive 

retrieval errors over the CONUS.  

As mentioned above, lower NDVI has been associated with increased retrieval error 

and noise in MODIS AOD retrievals, particularly for DT-based products, in previous 

works [16]. In the West, this is clearly shown in the 3 km DT AOD, and to a lesser degree 

in 10 km DT AOD (Figure 5). The 10 km DB AOD in the Western US was unbiased in 

the lowest three quintiles of NDVI, but was negatively biased in the upper two quintiles 

(up to −0.03 in the highest quintile). This pattern was observed in the global validations 

as well [12] and it likely points to an overestimation of the surface reflectance over 

vegetated areas in the eastern US. In the East, AOD retrieval errors are less dependent on 

NDVI, and the negative retrieval error observed for DB at higher NDVI values was not 

observed. Both humidity and potential cloud contamination have been shown to bias 

MODIS observations, and total column precipitable water (TCPW) can be a marker for 

both factors [32]. Figure 5 shows a complex relationship between AOD retrieval errors 

and TCPW. In the Western US, TCPW has little impact on the retrieval errors of 10 km 

DB and DB-DT AOD, but both very high or very low TCPW values are associated with 

positive retrieval errors in the 3 km and 10 km DT AOD. In the Eastern US, the 10 km 

DB AOD is negatively associated with TCPW. However, the impact of TCPW is 

generally small for all AOD parameters, except at very high levels where both the 3 km 

and 10 km DT AOD showed a small positive retrieval error. At higher TCPW values, this 

bias is likely indicative of cloud contamination, and the lack of retrieval error in 10 km 
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DB product under these conditions fits with our coverage results, which suggests more 

conservative cloud screening procedures for this product. 

4. Case Study 

We conducted a case study over the Atlanta Metropolitan Area from 1 January 2004 to 

31 December 2013. The study area stretched from 32°N to 36°N latitude and from 83°W 

to 86°W longitude, and included 23 ground-level PM2.5 monitors in 19 distinct grid cells 

from the same ~12 km × 12 km grid used in the coverage analysis. This case study 

compared the ability of each of the four MODIS AOD products to predict ground-level 

PM2.5 in a widely used linear mixed effect (LME) model framework [33]. Three AOD 

datasets were generated for each of the four MODIS AOD products: (1) AOD values with 

only QAC = 3; (2) AOD values with the highest available QAC (1, 2 or 3); and (3) filtered 

and corrected AOD values using the relationships examined in Section 3.5 and Section 

3.6 prior to inclusion in the model. To produce the filtered and corrected dataset, AOD 

values from dataset #2 with scattering angles over 165° or solar zenith angles less than 15° 

were first eliminated. This removed ~9% of observations while some were additionally lost 

in the matching process. This filtered dataset was then corrected, using a linear regression 

model fit to the dataset of matched AERONET and MODIS AOD observations in the 

Eastern CONUS, used in the accuracy analysis, for QAC value, land use type, sensor zenith 

angle, total column precipitable water, and NDVI. All 12 combinations of AOD were fit 

using the LME model, of the form: PM2.5,s,t = (b0 + b0,t) + (b1 + b1,t)AODs,t, where b0 is the 

fixed intercept, b0,t the random intercept for each day, b1 the fixed slope, and b1,t the 

random slope for each day [33]. These results are presented in Table 3. 
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For the parameters where the number of observations increased with the addition of 

lower QAC valued observations, 10 km DB and 10 km DT, R2 values for a model relating 

ground-level PM2.5 concentrations to AOD actually increased slightly. Increasing from 0.80 

to 0.83 for 10 km DB and from 0.72 to 0.75 for 10 km DT. When AOD values were filtered 

and corrected to remove potentially biased observations, model fits for the 10 km DT 

product decreased slightly, from 0.77 to 0.75 and remained the same for the 10 km DB 

product. For the parameters with relatively few lower quality observations, 10 km DB-DT 

and 3 km DT, neither the number of observations included in the model nor the resulting 

R2 values changed when lower confidence observations were included in the model. When 

filtering and correction was applied, model fits, as measured by the R 2 values, actually 

decreased by 0.01 relative to the ‘best of’ models. These results run counter to what would 

be expected: that R2 values for all four parameters would decrease slightly with the inclusion 

of lower-confidence retrievals, given the fact that the lower confidence observations for 

the 10 km DB and 10 km DT parameters are noisier. However, in this case study, the 

additional number of observations appears to have offset the additional noise introduced 

via these observations in the model and resulted in better prediction of ground-level 

PM2.5 via this simple model. Despite the smaller sample sizes, the models using the 

corrected and filtered AOD values achieved similar R2 values as the uncorrected AOD 

models. 

These results illustrate some of the key points made in this paper, namely that coverage 

is an often-overlooked but important factor, when considering AOD accuracy statistics, 

and that, because of the role played by coverage, the inclusion of lower-quality AOD 

observations in a model can provide some benefit. These results additionally highlight our 
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observation that the lower confidence designations for the newer products, 10 km DB-DT 

and 3 km DT, are very few in number. The utility of correcting for major sources of bias 

or error in the AOD values was demonstrated in this limited example by greater fixed effect 

regression slopes, indicating greater sensitivity of the corrected and filtered AOD values to 

PM2.5 concentrations. 

5. Conclusions 

We conducted a detailed analysis on the coverage and accuracy of Collection 6 MODIS 

AOD parameters in the CONUS. With their applications in air quality research in mind, we 

examined the benefits and risks of including lower QAC retrievals in order to improve data 

coverage, as well as how AOD retrieval errors depend on various factors. Our 

recommendation is that, for inexperienced users who are beginning to explore MODIS 

AOD data for air quality research, the QAC 3 10 km DB-DT AOD is their best choice. 

For more experienced users, the ideal AOD parameter could depend on the purpose as well 

as domain of their study. The coverage of QAC 3 retrievals is comparable among all four 

AOD parameters, ranging from 25% to 30%. The Eastern US in general had higher and 

more consistent data coverage. However, much higher coverage rates were found in highly 

developed Southern California and over the south-central plains with limited ground-level 

air pollution monitoring, a surprising fact since these areas are traditionally regarded as 

having too high of surface brightness for DT to retrieve reliably. These findings are 

promising to researchers interested in conducting regional air quality assessments in these 

regions. Including lower QAC retrievals marginally improved coverage for the 3 km DT 

and 10 km DB-DT AOD. However, since these QAC assignments do not appear to reflect 

retrieval accuracy and are few in number, including lower QAC retrievals of these two 
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parameters is probably beneficial, and unlikely to be harmful. On the other hand, lower 

QAC retrievals could increase the coverage of 10 km DT AOD by ~20% and that of 10 

km DB AOD by ~70% on average. Caution must be given when including them to enhance 

coverage as these retrievals are often noisier, as shown in Table 2. However, as 

demonstrated in the case study, sufficient daily sample sizes can sometimes be more 

important than retaining only the high quality AOD values for the purposes of improving 

prediction errors with ground-level PM2.5. To take advantage of the dramatic coverage gain 

offered by these lower QAC retrievals, retrieval error correction steps using local 

AERONET observations could be valuable [7]. 

In terms of data accuracy, the 10 km DB-DT AOD had the best performance in terms 

of correlation and linear model fit statistics, although QAC 3 retrievals for all but the 3 km 

DT AOD over the Western US met pre-launch expectations for the percentage of 

collocations within EEDT. However, the 10 km DB product performs well in the context 

of a prediction model and may be an understudied AOD parameter in the US, where the 

10 km DT product is currently used more frequently. The robustness of this product to 

major sources of bias additionally makes it an attractive option in the Western United States. 

The noisier 3-km DT AOD, however, can be valuable over dark targets in the Eastern US, 

particularly over areas where it tends to retrieve at higher rates than the lower-resolution 

products, such as in the Northeast and Northern Midwest, over the South Central plains in 

Texas, and over Southern Florida. The errors in MODIS AOD parameters vary in time and 

space, and are dependent on various retrieval conditions. Additional data screening and 

retrieval error correction steps should be considered other than simply relying on the QAC 

values, particularly in the Western United states, where these biases tend to have a larger 
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impact. For example, AOD retrievals associated with high scattering angles and lower solar 

zenith angles may be excluded to avoid data contamination. Such parameters can be found 

in the operational MODIS aerosol product. In addition, categorical variables of land cover 

types as well as time trends can be introduced in PM2.5exposure models to control for the 

systematic retrieval errors in DT-based AOD retrievals. NDVI and TCPW had statistically 

significant, distinct impacts on all AOD parameters in the Western US, and therefore are 

probably worth considering when analyzing AOD data. Since they must be extracted from 

separate MODIS data products, users would need to consider the nontrivial time and 

computational demands associated with dealing with these large datasets.  

Supplementary Materials 

The following are available online at www.mdpi.com/2072-4292/8/10/815/s1, Figure 

S1: Seasonal coverage for high confidence retrievals, Figure S2: Seasonal coverage for all -

confidence retrievals, Figure S3: AOD retrieval errors by land cover type.  
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Abstract:  

Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-

level fine particulate matter (PM2.5) concentrations in support of air pollution health effects 
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research and air quality assessment at the urban to global scales. However, a large 

proportion, ~70%, of satellite observations of aerosols are missing as a result of cloud-

cover, surface brightness, and snow-cover. The resulting PM2.5 estimates could therefore 

be biased due to this non-random data missingness. Cloud-cover in particular has the 

potential to impact ground-level PM2.5concentrations through complex chemical and 

physical processes. We developed a series of statistical models using the Multi -Angle 

Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution 

with information from the MODIS cloud product and meteorological information to 

investigate the extent to which cloud parameters and associated meteorological conditions 

impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We 

find that changes in temperature, wind speed, relative humidity, planetary boundary layer 

height, convective available potential energy, precipitation, cloud effective radius, cloud 

optical depth, and cloud emissivity are associated with changes in PM 2.5 concentration and 

composition, and the changes differ by overpass time and cloud phase as well as between 

the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that 

accounting for cloud-cover and associated meteorological conditions could substantially 

alter the spatial distribution of monthly ground-level PM2.5 concentrations. 

Keywords: 

 PM2.5; MAIAC AOD; non-random missingness; cloud properties; RUC/RAP 

1. Introduction 

Satellite observations of aerosol optical properties, such as the aerosol optical depth 

(AOD), are increasingly being used to infer spatial and temporal patterns of fine-mode 

particulate matter, PM2.5, for health studies [1]. However, significant challenges associated 
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with the use of these observations remain. A large proportion of satellite observations are 

missing (estimated at ~70% in the 10 km AOD products), chiefly as a result of cloud-cover, 

snow-cover, and surface brightness [2,3]. Previous work to address this gap-filling problem 

has largely assumed that the observed aerosols are comparable to aerosols that could not 

be observed [4,5]. Contradicting this assumption, global and US-centric studies have 

estimated that missing satellite observations result in an underestimation of true 

PM2.5 concentrations, by an average of 20% in the US [6,7]. Additional work has 

demonstrated that missing satellite data results in over-prediction of ground-level PM2.5 

concentrations in the summer months and under-prediction in the winter months at higher 

latitudes [8,9]. More recent work has gone beyond this to examine the contribution of 

certain drivers, namely the impact of cloud-cover, on PM2.5concentrations at ground level 

and associated changes in the composition of particulates [10]. The authors found that 

increased quantities of cloud-cover and increased cloud optical depth were associated with 

both compositional changes in PM2.5 and an overall decrease in concentrations in the 

southeastern US. These findings suggest that cloud-cover is associated with changes in 

ground-level PM2.5 concentrations and composition. Non-random missingness in satellite 

retrievals, if not accounted for during exposure estimation of PM2.5, can bias health effect 

estimates in subsequent analyses [11]. 

Through complex physical and chemical processes, clouds influence the composition, 

vertical distribution, diurnal patterns, size distribution, and mass concentration of the 

aerosols beneath them [12]. At the macro scale, clouds are associated with meteorological 

conditions that govern the micro- and macro-physical properties of both clouds and 

aerosols, as well as temperature, humidity, wind speed, vertical convection, and planetary 
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boundary layer height [13,14]. All of these can influence particulate concentrations at the 

ground level by altering rates of deposition, vertical distributions, emissions, and rates of 

secondary aerosol formation [15]. Relative humidity and temperature additionally interact 

to influence rates of both cloud and aerosol formation, the properties and phase of the 

clouds, and gas-particle partitioning of aerosol components [13,15,16,17]. On a more 

localized scale, clouds, particularly thunderstorms, alter vertical and horizontal convection, 

block light, and occasionally rain. Changes in convection directly influence vertical 

distributions of aerosols beneath the cloud, as well as rates of dry deposition [18,19]. Light 

blockage alters rates of the photochemical reactions responsible for secondary aerosol 

formation from gaseous precursors in the atmosphere, indirectly altering aerosol 

composition and concentrations nearer the ground [20,21]. A small fraction of clouds 

precipitate, in the process depositing airborne aerosols within and beneath the cloud to the 

ground [22,23]. Near and within the actual cloud, aerosols participate in the process of 

cloud formation via nucleation scavenging, and can reduce the effective radius of the c loud 

particles and alter precipitation efficiency [24,25]. Taken together, the result is a complex 

tangle of interrelationships between clouds, aerosols, and meteorology which results in 

different aerosol concentrations and composition beneath cloud-cover relative to that 

observed when the sky is clear. 

The combined impact of these processes on ground-level PM2.5 has not been directly 

studied or linked to measurable properties of the clouds themselves. The current study aims 

to advance our understanding of whether satellite-retrieved cloud properties are associated 

with changes in ground-level PM2.5 concentration and composition, and the extent to which 

cloud properties are associated with these changes. We examine the empirical relationship 
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between cloud properties and the meteorological conditions associated with cloud presence 

and ground-level concentrations of PM2.5 from area ground monitors over two urban sites 

in the US: Atlanta and San Francisco, two sites chosen as representative of different aerosol 

and meteorological regimes. We additionally apply these relationships to account for cloud-

cover related missing PM2.5 estimates when using AOD to predict ground-level PM2.5. We 

compare results from a model which assumes that the reason for the missing AOD 

observation is random, to one that accounts specifically for cloud-cover missingness as a 

distinct phenomenon. 

2. Materials and Methods 

Environmental Protection Agency (EPA) ground observations of 24-h total and 

speciated PM2.5 concentrations between 1 April 2007 and 31 March 2015, were obtained 

from the EPA’s AirData website [26]. Daily ground observations were used to represent 

the daily gravimetric mass concentrations at individual stations. Mass reconstruction was 

used to calculate concentrations of organic carbon (OC), sulfate, and nitrate, elemental 

carbon (EC), sea salt, and soil to account for unmeasured molecules in the speciation 

information and ensure that changes in the speciated masses, and model estimates, would 

be comparable to changes in the matched gravimetric measurements [27]. This aids 

interpretation by allowing direct comparison of changes in component masses to changes 

in gravimetric masses. Results are only presented in the paper for the reconstructed OC, 

sulfate and nitrate mass concentrations. The Chemical Speciation Network (CSN) EC and 

OC carbon fractions were additionally corrected for differences between Total Optical 

Transmittance (TOT) and Total Optical Reflectance (TOR) monitors, following previous 

work [28]. 
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Monitors located within the study areas surrounding San Francisco and Atlanta, 

displayed in Figure 1, were collocated with additional data products. The 1 × 1 km twice-

daily MAIAC AOD product, with a retrieval accuracy that is comparable to the ±(0.05 + 

0.15)*AOD error envelope of the 10 km MODIS AOD products in validation studies, was 

used to obtain information on AOD and cloud presence/absence, as calculated using the 

slightly different screening criteria used for aerosol products relative to cloud products 

[29,30]. The twice-daily MODIS collection 6, daytime cloud product (M*D06) was used to 

obtain information on cloud emissivity, cloud optical depth (OD), cloud effective radius, 

and cloud phase [31]. Of these, cloud emissivity, comparable to cloud fraction, and cloud 

phase are available at 5 km resolution at nadir, while cloud radius and cloud optical depth 

are available at 1 km resolution at nadir. The 13 × 13 km hourly rapid update cycle (RUC) 

and its successor the RAPid refresh (RAP) model [32,33] was used to obtain meteorological 

data on convective available potential energy (CAPE), wind speed, relative humidity (RH), 

planetary boundary layer (PBL) height, temperature, and precipitation rates in the pixel 

nearest to each EPA monitoring station during the hours in which twice-daily MODIS pass 

times from Terra and Aqua occurred. The RUC/RAP meteorological model represents a 

continuous time-series of moderate resolution assimilated meteorological data, and is 

known to accurately reproduce vertical profiles of temperature, humidity, and wind speed, 

all of particular importance to this application [33]. Collocations of satellite and modeled 

products with EPA observations were processed in a stepwise fashion, starting with 

MAIAC, so that AOD missingness could be defined separately from its associated climatic 

conditions and to account for differences in the spatial resolution of each product. First, 

each 24-h gravimetric EPA observation was matched to the nearest MAIAC pixel within 1 

http://www.mdpi.com/1660-4601/14/10/1244/htm#fig_body_display_ijerph-14-01244-f001
http://www.mdpi.com/1660-4601/14/10/1244/htm#B29-ijerph-14-01244
http://www.mdpi.com/1660-4601/14/10/1244/htm#B30-ijerph-14-01244
http://www.mdpi.com/1660-4601/14/10/1244/htm#B31-ijerph-14-01244
http://www.mdpi.com/1660-4601/14/10/1244/htm#B32-ijerph-14-01244
http://www.mdpi.com/1660-4601/14/10/1244/htm#B33-ijerph-14-01244
http://www.mdpi.com/1660-4601/14/10/1244/htm#B33-ijerph-14-01244


64 
 

 
Note: This chapter has been published in the journal, International Journal of Environmental 
Research and Public Health, and has been formatted according to journal guidelines. 
 

km of the station and defined as AOD missing or present. Using the Quality Assurance 

(QA) code we further defined each missing AOD value as missing as a result of cloud or 

other reason, such as snow-cover or fire hot spot. Observations with AOD missing as a 

result of cloud-cover were then matched to MODIS cloud parameters averaged within a 10 

km radius of each EPA observation, and the nearest RUC/RAP observation. Observations 

where discrepancies existed between the MODIS cloud parameters and the RUC/RAP 

results on precipitation rate were classified as possibly cloudy, with the remaining cloudy 

pixels classified according to the cloud phase information from MODIS. This collocation 

process was repeated separately for both Aqua and Terra MODIS overpasses. Observations 

were categorized into five categories: definitively uncloudy, possibly cloudy, definitively 

cloudy but with no phase determination for the cloud, ice clouds, and water clouds. The 

possibly cloudy and cloudy but of an uncertain phase categories were collapsed in the later 

analysis into the possibly cloudy category, and definitively uncloudy observations were not 

analyzed. 

In preliminary analyses, a linear mixture modeling approach was used to examine the 

nature of the relationship between ground-level PM2.5 and cloud properties [34,35]. A 

number of categorical variables were tested as conditioning variables for grouping 

PM2.5 values into sub-populations. The conditional variables included cloud top height, 

cloud phase, multi-layered cloud flag, the interaction of cloud phase and cloud height and 

the interaction of multi-layered cloud flag and cloud top height. Of these, the lowest AIC 

(Akaike information criterion) value was obtained when using cloud phase as the 

conditioning variable. Since a mixture model with hard separation of components using  a 

categorical variable is statistically very similar to a set of independent models. The final 
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results presented here correspond to simpler, linear mixed effects models run 

independently for each modeling category. 

Specifically, four separate models for the two cloud phases (ice and water), to all 

observations where AOD was not missing, as well as to all other observations where AOD 

was missing as a result of possible cloud-cover, were fit to the natural log of the 24-h 

PM2.5 mass concentration at each study location and for each overpass time, making a total 

of 16 independent models. PM2.5 concentrations were log-transformed to normalize the 

data distribution for these linear models. Results for the possibly cloud models are 

presented only in the supplementary materials. All models included as predictors RH, wind 

speed, temperature, PBL height, CAPE, precipitation rate, cloud radius, cloud OD, and 

cloud emissivity. The model fit to observations where AOD was not missing were fit only 

to the meteorological parameters RH, wind speed, temperature, PBL height and CAPE. All 

models additionally included random intercepts for each day of the study period to control 

for seasonal effects. The equation for this model, used throughout the paper, is given in 

Equation (1). Here, the natural log of the PM2.5 observation at each location (j) and time (i), 

is modeled using a random intercept for each day (βi), and a fixed effect slope (γk) for each 

of k predictors (X), plus a random Normal error component (ε). 

 

ln(PM2.5; i,j)=Dayi,j*βi+∑Xi,j,k*γk + ε    (1) 

 

The same linear mixed effects models (Equation (1)) used to model the impact of cloud 

cover and meteorological conditions on PM2.5 mass were used to model the various 

PM2.5 components, with the goal of identifying the individual component’s relative impacts 
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on the change in total mass. Models were fitted to the natural log of the reconstructed mass 

of three largest components: sulfate, nitrate, and organic carbon. 

We then conducted a case study using a MAIAC AOD-PM model to estimate daily 

PM2.5 where AOD was available. When AOD was not available, values missing in the ungap-

filled model were filled in using Equation (3) in the Harvard gap-filling model and were filled 

in using Equation (1) in the Cloud gap-filling model. We examined differences between the 

ungap-filled, Harvard gap-filled, and Cloud gap-filled models in the spatial distribution of 

aerosols from an example monthly estimate choosing January 2012 at the San Francisco site 

and using a models fit to EPA data over the time period from 2012 to 2014 to predict PM2.5. 

We compared daily predictions made using an ungap-filled model to one that assumes 

missingness is random (Harvard gap-filled) and to one that assumes cloud-driven 

missingness (Cloud gap-filled). To accomplish this, the MODIS cloud product and 

RUC/RAP observations were gridded to the 1 × 1 km MAIAC grid used as the predictive 

surface for PM2.5. The MODIS cloud product was gridded using a method that reconstructs 

the MODIS polygons using a Voronoi tessellation algorithm from the midpoint locations for 

each pixel in a granule [3]. These reconstructed polygons were then matched to the MAIAC 

grid by area to account for the fisheye effect, where pixels towards the edges of the granule 

are larger than those in the center, still present in the MODIS cloud product. The 1 × 1 km 

MAIAC grid cells were then matched to the nearest ~13 × 13 km RUC/RAP observation. 

For pixels where AOD was present a standard prediction model, published in previous 

works (Equation (2)), was used to predict PM2.5 from AOD [36]. 
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PMst=(α+ut)+(β′1+vt)AODst+(β′2k)MetVarsstk+β′3Elevations+β′4MajorRoadss+β′5ForestCovers

+β′6PointEmissionss+ε′st(ut, vt, wt)~ N[(0,0,0), ψ]  (2) 

 

Where MAIAC AOD was absent, Equation (1) was used to impute the missing 

PM2.5 values. We additionally compared results to those obtained over cloudy pixels from an 

adaptation of the gap-filling model developed by researchers at Harvard, which assumes that 

all types of missing AOD observations are comparable (Equation (3)) [5,37]. All three 

models fit a first-stage model to obtain ground-level PM2.5 estimates over all times and 

locations where AOD exists (Equation (2)). In Equation (2), daily PM2.5 is modeled using a 

mixed effects model with fixed (α) and daily random intercepts (ut), fixed (βʹ1, βʹ2k) and daily 

random slopes (vt) for AOD. We additionally included fixed slopes for each of k 

meteorological variables (MetVars), which included RH, PBL height, temperature, and wind 

speed as well as fixed slopes (βʹ3–6) for spatial variables including road length, forest cover 

percentage, point emissions, and elevation. Equation (2) additionally accounts for error in 

space and time (εʹst(ut,vt,wt)), assuming a multivariate normal distribution centered at 

0 N[(0,0,0), ψ]. The Harvard gap-filled model predicts missing PM2.5 via the use of Equation 

(3), while the gap-filling model utilized in this work accounts for cloud cover by predicting 

missing PM2.5 using Equation (1). Equation (3) predicts the square root of 

PM2.5 concentrations at each location (s) and time (t), to constrain estimates to be positive, 

fitting a model with an intercept (αʹ), slope for the square root of the daily mean 

PM2.5 concentration over the study area (βʺ1), and using a spatial smoother (s(Xs, Ys)) fit for 

each month in the year, predicts the value at each location using the daily mean, assuming 
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random error (εʺst). The R statistical computing language was used to fit all models, relying 

on the packages mgcv, and lme4 [38]. 

 

√PredPMst= α′+ β′′1√MeanPMt+s(Xs, Ys)k+ ε′′st  (3) 

 

3. Results 

3.1. Study Area Characteristics 

As shown in Table 1 and Figure 1, the Atlanta site contained 23 monitoring sites that 

collected a total of 26,369 24-h gravimetric observations between 1 April 2007 and 31 March 

2015. Study area characteristics for this site are presented in Table 1. Figure 1 shows the 

spatial distribution of average monitor values. PM2.5 concentrations ranged from 2 to 212.5 

µg/m3, with an average concentration of 11.7 µg/m3. Concentration values decreased with 

time, from an average of 15.9 µg/m3 in 2007 to an average of 9.2 µg/m3 in 2015, and 

exhibited seasonal patterns, with higher concentrations in the summer months. Out of the 

23 monitoring sites, six additionally collected speciated measurements, which totaled 2410 

sets of observations. The largest fraction, both on average and throughout the year, was 

organic carbon, followed by sulfate. 

Of the 26,369 EPA observations, 21,700 could be matched to an Aqua MAIAC pixel, 

and 21,359 were matched to a Terra MAIAC pixel. Of these, 14,470 (67%) of the Aqua 

matches and 13,050 (61%) of the Terra matches had a missing AOD observation. For Aqua 

and Terra the vast majority, were marked as missing due to cloud-cover. This implies that 

cloud-cover was slightly more common in the mornings in Atlanta. Speciated collocations 

of monitors and MAIAC pixels followed a similar pattern. Of the 2410 speciated 
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observations, 1997 were matched to an Aqua MAIAC pixel and 1982 to a Terra MAIAC 

pixel. Of the 1997 matched to Aqua MAIAC, 1313 had AOD missing, while of the 1982 

matched to Terra MAAIC, 1192 has AOD missing. For both Aqua and Terra, all 

observations with missing AOD were marked as missing due to cloud cover. 

At the time of the Aqua overpass, the majority (5860) of observations with AOD missing 

were possibly cloudy, implying disagreement between parameters of products regarding the 

presence of a cloud in the vicinity of the EPA station. At the time of the Terra overpass, 

3556 were marked as possibly cloudy. When cloud presence was definitive at the Aqua 

overpass time, 4719 were marked as water clouds, 2725 as ice clouds, and 1100 as clouds 

of an undetermined phase. When cloud presence was definitive at the Terra overpass, 4269 

were classified as water clouds, 3210 as ice clouds, and 1994 as clouds of an undetermined 

phase. Speciated observations followed a similar pattern. These categorizations are 

additionally presented in Table 2. 

As shown in Table 1 and Figure 1, the San Francisco study site contained 28 monitoring 

stations that recorded a total of 23,357 24-h observations of PM2.5 mass concentration over 

the study period. Concentration values ranged from 2 to 190.2 µg/m3 and had a mean value 

of 9.5 µg/m3. Concentrations had no clear trend by year, but varied seasonally from 

springtime lows of 6 µg/m3 to winter highs of 13.6 µg/m3. Of the 28 monitoring stations 

that recorded total mass, 10 additionally recorded speciated mass fractions (2853 sets of 

observations). The dominant fraction, throughout the year, was organic carbon. In the 

summer months, this was followed by sulfate, and in the winter months by nitrate. 

Of the 23,357 EPA observations in San Francisco, 19,388 were matched to Aqua MAIAC 

and 19,390 to Terra MAIAC. Nearly 8000 from Aqua and Terra, separately, were missing 
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AOD, 5000 to 6000 fewer than at the Atlanta site. Speciated results followed similar 

patterns. As can be seen in Table 2, after combination with MODIS cloud and RUC/RAP 

products, observations within categories of ice cloud, clouds of an uncertain phase, and 

possibly cloudy were comparable in number to those observed at the Atlanta site. However, 

water clouds were far fewer in number at the San Francisco site. Similar patterns were 

observed in the categorization of the speciated results and are presented in Table 2. 

3.2. Clouds and 24-Hour Gravimetric Mass 

Linear mixed effect models relating ground-level PM2.5 to meteorological conditions and 

cloud properties on days and at locations where the MAIAC AOD was missing, separately 

run for each combination of study site, overpass time, and cloud phase, revealed differences 

between these categories and dependence of these differences on the cloud phase and the 

associated variables. As Table 3 demonstrates, cloud-phase specific models outperformed 

the more ambiguous category containing possible clouds and clouds of an undetermined 

phase in both sites. Water cloud models also consistently outperformed ice cloud models on 

this metric, a fact which we ascribe to the fact that the ice cloud category, which includes 

both thunderstorms and high cirrus clouds, contains a broader range of cloud and 

meteorological conditions likely to influence aerosol concentrations than the water cloud 

category, which is more homogenous. 

Regression coefficients relating meteorological variables to PM2.5 under various cloud 

conditions are presented in Figure 2 and Supplementary Table S4. With a few exceptions, 

model results were generally consistent with those from the possibly cloudy and uncloudy 

observations. Intercepts were all positive, indicating average concentrations in each 

category that were greater than 1 µg/m3. Consistency was also the case for wind speed and 
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PBL height, both of which were associated with decreases in PM2.5 concentrations in nearly 

all models. An increase in RH was associated with a decrease in the PM2.5 concentration 

when clouds were present, with no clear trends by cloud category, site, or overpass. 

However, in the no cloud model where AOD values were present, RH was associated with 

an increase in PM2.5 concentrations. Higher temperature was associated with a slight 

increase in ln(PM2.5) concentrations in Atlanta, where summertime concentrations tended 

to be higher, and with a slight decrease in San Francisco, where wintertime concentrations 

tended to be higher (see Table 1). CAPE, which increases with increasing vertical 

convection, was strongly negative but not statistically significant at the San Francisco site 

and slightly positive at the Atlanta site and in the no cloud models at both sites. 

Precipitation was generally associated with a decrease in ground-level PM2.5 at both sites, 

although this decrease was larger in magnitude at the San Francisco site, where estimates 

clustered around 0.2 to 0.3, than in Atlanta, where estimates were not significantly different 

from 0 during the morning overpass. At both sites, precipitation was associated with 

significant decreases in 24-h PM2.5 concentrations when falling in during the afternoon 

overpass, but with less consistently significant decreases in concentration when falling 

during the morning overpass. 

Cloud properties such as emissivity, radius, and OD, obtained from the MODIS cloud 

product were also associated with changes in the ground-level PM2.5. At the Atlanta site, 

cloud OD was associated with a significant decrease in PM2.5concentrations when ice clouds 

were present in the morning and afternoon and with an increase when water clouds were 

present in the mornings. However, water and ice cloud OD, emissivity, and radius were 

primarily associated with positive changes in ground-level PM2.5 at the Atlanta site. Cloud-
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cover observed during a MODIS overpass had a more significant and more negative impact 

on PM2.5 concentrations at the San Francisco site. When water clouds were present during 

the morning overpass, cloud OD was associated with a decrease in ground-level 

PM2.5 concentrations, while increasing cloud radius was associated with a decrease in ground-

level PM2.5. Cloud emissivity was associated with a decrease in concentration when water 

clouds were present during the afternoon overpass. Results for ice clouds also differed by 

overpass at the San Francisco site, although the estimates were comparable, cloud emissivity 

was a better predictor of concentration changes for morning ice clouds, while cloud OD was 

a better predictor of concentration changes on the ground for afternoon ice clouds. 

3.3. Clouds and Speciation of PM2.5 

Speciated model results are presented in Supplementary Tables S2–S4. An increase in RH 

was associated with increases in sulfate and nitrate mass at the San Francisco site, with a 

decrease in nitrate at the Atlanta site, and with decreases in the OC mass at both sites. 

Increased temperature was associated with an increase in sulfate mass and a decrease in 

nitrate mass at both sites, and with a decrease in OC mass at the San Francisco site and an 

increase in OC mass at the Atlanta site. Wind speed was associated with a decrease in mass 

for all three components, with the exception of sulfate at the San Francisco site. Increases in 

the PBL height were also associated with decreases in the mass of all components, with one 

exception for nitrate at the Atlanta site. This same pattern was observed for an increase in 

CAPE and decreases in component masses with increasing CAPE, with the exception of 

nitrate in Atlanta. Precipitation was also associated with decreases in component masses for 

sulfate, nitrate, and OC, particularly when ice clouds were overhead. 
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Cloud radius was associated with a decrease in the total and sulfate masses at the San 

Francisco site, but was otherwise not a significant predictor of changes in 

PM2.5 concentrations. Results for sulfate and cloud emissivity or cloud OD at the San 

Francisco site were mixed, but cloud OD was associated with a decrease in sulfate mass at 

the Atlanta site. Cloud OD was associated with a decrease in nitrate mass at the San 

Francisco site and with an increase in nitrate mass at the Atlanta site, although the majority 

of estimates at the San Francisco site were positive but not significant. Cloud emissivity at 

the San Francisco site, and Cloud OD at the Atlanta site were associated with increases in 

OC mass. 

3.4. Application to MAIAC-Derived PM2.5 

We applied the cloud model results within the context of a predictive model relating 

MAIAC AOD to ground-level PM2.5concentrations, comparing results from an ungap-filled 

AOD to PM2.5 model (Equation (2)) with missing observations to those to those from a gap-

filling model that ignores cloud-cover, the Harvard gap filling approach (Equation (3)) and a 

gap-filling model that accounts for cloud properties, the Cloud gap-filling approach 

(Equation (1)). Results are presented in Figure 3. All three models produce a similar basic 

spatial pattern for PM2.5 concentrations in San Francisco, with higher concentrations in the 

central valley, lower concentrations over the forested mountains, and higher concentrations 

on the other side of the mountains near Nevada. However, there are substantial differences 

in both the monthly averages and spatial patterns between the Harvard and Cloud gap filled 

results, ranging from −13.14 to 15.52 µg/m3 by location. The Harvard gap filled results are 

considerably smoother than the Cloud gap filled results, also averaging 2.58 µg/m3 higher in 

concentration over the month of January in 2012. It is also worth noting the differences 
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between the non-gap filled and Cloud gap filled results, which average 2.40 µg/m3. In Figure 

3, the Cloud gap filled monthly average concentrations are lower than the non-gap filled 

results, particularly over the central valley and metropolitan San Francisco. Cloud fractions 

(panel E) additionally vary spatially, ranging from 20% to 80%, depending on location. 

4. Discussion 

We examined the relationship between cloud presence and ground-level PM2.5 mass and 

speciation, linking changes in concentration to cloud properties and meteorological 

conditions. We found that, overall, cloud presence can lead to fairly substantial over or 

under-prediction of PM2.5 concentrations and differences in the spatial patterns of pollutant 

concentrations when using satellite-observed AOD to estimate ground-level 

concentrations. 

The impact of relative humidity on PM2.5 was both negative and consistent between sites, 

overpass times, and cloud and type. However, results differed by species, with estimates for 

RH that were negative and largest in magnitude for organic carbon. This implies that most 

of the changes in total PM2.5 mass that were associated with relative humidity result 

specifically from a decrease in the organic carbon fraction. A likely explanation for this is 

an increase in the photo-oxidation rates for aromatic hydrocarbons with decreasing 

humidity [16]. The fact that this association was stronger for organics at the San Francisco 

site, where NOx concentrations are higher and relative humidity tends to be lower on 

average, but stronger for gravimetric PM2.5 at the Atlanta site, which is known for its high 

isoprene emissions, also supports this explanation. 
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The impact of PBL height and the horizontal wind speed on ground-level concentrations 

of PM2.5 were consistently negative, excepting estimates for the association between PBL 

height and nitrates in Atlanta, implying that increased wind speeds and PBL heights were 

associated with decreases in PM2.5 concentrations. CAPE, an indicator of vertical stability, 

was more consistently associated with increases in ground-level concentrations of PM2.5 on 

the ground, implying increases with decreasing convective energy, although this association 

was not consistent. This, in addition to the nitrate results, suggests that future work on this 

topic should include consideration of vertical convection and distribution of aerosols, as 

these may also change under cloudy conditions. 

Increasing cloud OD, a marker of light blockage from cloud cover, and cloud emissivity, 

an indicator of the quantity of cloud present, were significantly associated with changes in 

nitrate, sulfate, and organic carbon concentrations. At both sites, we observed decreases in 

sulfate and total mass with increasing cloud OD when ice clouds were present. This is 

consistent with previous results [10] and with an impact specifically from blockage of light 

to the surface during sunny/fair weather conditions that would otherwise be conducive to 

the photochemical production of sulfate from gaseous sulfur dioxide [20,39]. Results for 

water clouds and for nitrate and OC were not consistent between sites, however, and 

interpretation of these results is less straightforward. This interpretation is further 

complicated by the fact that cloud-aerosol interactions go both ways, and aerosols have the 

potential to reduce cloud droplet radii, and thus alter emissivity and OD [21,24]. We had 

expected to observe an increase in nitrate concentrations with increasing cloud OD or cloud 

amount, but instead only observed a decrease in nitrate concentrations under afternoon ice 

clouds in San Francisco. One possible explanation is noise from precipitation events 
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associated with darker cloud-cover that were missing from our precipitation variable. 

Similarly, we observed an increase in the OC mass with morning water cloud OD at the 

Atlanta site and emissivity at the San Francisco site. The results point to changes in rates 

of secondary organic aerosol formation associated with light blockage. Similar to nitrate, 

recent research points to more rapid, nitrate-driven, nighttime oxidation of isoprene and 

other volatile organic compounds than through the photo-oxidation routes available during 

daytime and could explain this increase in concentration with increasing light blockage 

during the morning hours when nitrate could still be present [20]. 

Precipitation, via the process of wet deposition, is associated with an overall decrease in 

PM2.5 mass that is larger in magnitude for soluble than for non-soluble PM species [40]. 

This was observed in our data consistently for ice clouds, which tended to precipitate more, 

and to some extent for water clouds. The impact of precipitation at the time of the overpass 

in San Francisco was also larger than that observed in Atlanta. Reasons for this could 

include the fact that we used a precipitation indicator instead of the precipitation rate, and 

that it rains more frequently in Atlanta than San Francisco, making the capture of rain 

during a MODIS overpass time less important relative to 24-h pollutant concentrations. 

Finally, we observed a few important differences between sites. Overall, cloud-cover 

properties and observations at the time of the MODIS overpasses had greater explanatory 

power in San Francisco than in Atlanta. This was evidenced both by the significance of the 

cloud OD, cloud emissivity, cloud radius, and precipitation predictors in the models, as well 

as by the R2 values presented in Table 3. The case study included in our results additionally 

demonstrates that accounting for cloud-cover in a gap-filling model produces differences 
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in monthly results that can be substantial. The observed differences may also stem from 

the frequency of cloud cover. 

We had expected a large proportion of MAIAC retrievals for AOD would be missing, 

however, a smaller proportion than expected had consistent information on cloud 

properties between products. Hence, this study was only able to investigate associations for 

around 50% of the missing AOD observations, limiting the generalizability of conclusions. 

To mitigate this issue, we have made an effort in the discussion to only highlight results 

that were consistently observed across the models. However, this also underscores the 

importance of possible cloud contamination as a source of uncertainty in estimation of 

ground-level PM2.5 from satellite retrievals and is a potentially important area for future 

research. 

5. Conclusions 

This study demonstrated that clouds are associated with changes in ground-level 

PM2.5 concentration, and these changes are driven by physical and chemical processes 

associated with cloud cover. We additionally demonstrated that the impact of cloud-driven 

satellite missingness on our ability to make accurate PM2.5 estimates over a surface using 

this data differs by location. Not accounting for cloud cover and associated meteorological 

conditions, particularly rainfall, can lead to both over- and under-estimation of 

PM2.5 concentrations. However, additional work is still needed to confirm and clarify the 

relationships investigated here, particularly into the nature and rationale for the geographic 

differences observed in these relationships. 
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Associations between meteorological variables and PM2.5 total mass and constituents 

showed variability across pollutants, cloud types, and locations, but a few important 

findings stood out. We found that relative humidity is associated with a decrease in the 

organic component of PM2.5 resulting from the humidity dependence of rates of secondary 

organic aerosol formation. Also, precipitation and changes in rates of secondary aerosol 

production, indicated by increased cloud OD or cloud emissivity, impact concentration, 

and speciation of aerosols underneath the clouds. 

Our analyses also suggested that not all clouds and locations can be considered equal, 

and the cloud presence, observed at a specific time of the day, generally matters more in 

San Francisco than in Atlanta. In San Francisco, we conducted a case study demonstrating 

changes in spatial patterns of air pollution at the monthly level that were associated with 

cloud-cover. 

Supplementary Materials 

The following are available online at www.mdpi.com/1660-4601/14/10/1244/s1, Table 

S1. Tabulation of numbers of observations within cloud categories by Environmental 

Protection Agency (EPA) monitoring site in the Atlanta study area; Table S2. Tabulation 

of numbers of observations within cloud categories by EPA monitoring site in the San 

Francisco study area; Table S3. Tabulation of observations within cloud categories by 

season in Atlanta and San Francisco; Table S4. Model results for gravimetric PM 2.5 mass 

concentration. All results are presented as the parameter estimate (standard error) with stars 

indicating significance if the p-value was below 0.05; Table S5. Model results for Sulfate. 

All results are presented as the parameter estimate (standard error) with stars indicating 

significance if the p-value was below 0.05; Table S6. Model results for Nitrate. All results 
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are presented as the parameter estimate (confidence interval) with stars indicating 

significance if the p-value was below 0.05; Table S7. Model results for organic carbon (OC). 

All results are presented as the parameter estimate (confidence interval) with stars indicating 

significance if the p-value was below 0.05; Table S8. CV R2values from San Francisco case 

study data over time period from 2012 to 2014. 

Acknowledgments 

The work of Jessica H. Belle and Yang Liu is partially supported by the NASA Applied 

Sciences Program (Grant # NNX14AG01G and NNX16AQ28G, PI: Liu). 

Author Contributions 

Jessica H. Belle, Yang Liu, and Howard H. Chang conceived and designed the analysis. 

Yujie Wang and Alexei Lyapustin contributed data. Jessica H. Belle analyzed the data. 

Jessica H. Belle and Xuefei Hu contributed analysis tools. Jessica H. Belle wrote the paper.  

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Sorek-Hamer, M.; Just, A.C.; Kloog, I. Satellite remote sensing in epidemiological 

studies. Curr. Opin. Pediatr. 2016, 28, 228–234. [Google Scholar] [CrossRef] [PubMed] 

2. Fasso, A.; Finazzi, F. Statistical Mapping of Air Quality by Remote Sensing. In Proceedings 

of the Accuracy 2010 Conference, leicester, UK, 20–23 July 2010; Available 

online: http://www.spatial-accuracy.org/FassoAccuracy2010(accessed on 17 October 

2017). [Google Scholar] 

http://scholar.google.com/scholar_lookup?title=Satellite%20remote%20sensing%20in%20epidemiological%20studies&author=Sorek-Hamer,+M.&author=Just,+A.C.&author=Kloog,+I.&publication_year=2016&journal=Curr.+Opin.+Pediatr.&volume=28&pages=228%E2%80%93234&doi=10.1097/MOP.0000000000000326&pmid=26859287
http://dx.doi.org/10.1097/MOP.0000000000000326
http://www.ncbi.nlm.nih.gov/pubmed/26859287
http://www.spatial-accuracy.org/FassoAccuracy2010
http://scholar.google.com/scholar_lookup?title=Statistical%20Mapping%20of%20Air%20Quality%20by%20Remote%20Sensing&conference=Proceedings+of+the+Accuracy+2010+Conference&author=Fasso,+A.&author=Finazzi,+F.&publication_year=2010


80 
 

 
Note: This chapter has been published in the journal, International Journal of Environmental 
Research and Public Health, and has been formatted according to journal guidelines. 
 

3. Belle, J.; Liu, Y. Evaluation of aqua modis collection 6 aod parameters for air quality 

research over the continental united states. Remote Sens. 2016, 8, 815. [Google Scholar] 

[CrossRef] 

4. Anderson, T.L.; Charlson, R.J.; Winker, D.M.; Ogren, J.A.; Holmén, K. Mesoscale 

variations of tropospheric aerosols. J. Atmos. Sci. 2003, 60, 119–136. [Google Scholar] 

[CrossRef] 

5. Just, A.C.; Wright, R.O.; Schwartz, J.; Coull, B.A.; Baccarelli, A.A.; Tellez-Rojo, M.M.; 

Moody, E.; Wang, Y.; Lyapustin, A.; Kloog, I. Using high-resolution satellite aerosol optical 

depth to estimate daily PM2.5 geographical distribution in mexico city. Environ. Sci. 

Technol. 2015, 49, 8576–8584. [Google Scholar] [CrossRef] [PubMed] 

6. Ford, B.; Heald, C. Exploring the uncertainty associated with satellite-based estimates of 

premature mortality due to exposure to fine particulate matter.  Atmos. Chem. Phys. 

Discuss. 2015, 15, 25329–25380. [Google Scholar] [CrossRef] 

7. Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Boys, B.L. Use of satellite observations for 

long-term exposure assessment of global concentrations of fine particulate matter.  Environ. 

Health Perspect. 2015, 123, 135. [Google Scholar] [CrossRef] [PubMed] 

8. Christopher, S.A.; Gupta, P. Satellite remote sensing of particulate matter air quality: The 

cloud-cover problem. J. Air Waste Manag. Assoc. 2010, 60, 596–602. [Google Scholar] 

[CrossRef] [PubMed] 

9. Gupta, P.; Christopher, S.A. An evaluation of terra-modis sampling for monthly and annual 

particulate matter air quality assessment over the southeastern united states.  Atmos. 

Environ. 2008, 42, 6465–6471. [Google Scholar] [CrossRef] 

http://scholar.google.com/scholar_lookup?title=Evaluation%20of%20aqua%20modis%20collection%206%20aod%20parameters%20for%20air%20quality%20research%20over%20the%20continental%20united%20states&author=Belle,+J.&author=Liu,+Y.&publication_year=2016&journal=Remote+Sens.&volume=8&pages=815&doi=10.3390/rs8100815
http://dx.doi.org/10.3390/rs8100815
http://scholar.google.com/scholar_lookup?title=Mesoscale%20variations%20of%20tropospheric%20aerosols&author=Anderson,+T.L.&author=Charlson,+R.J.&author=Winker,+D.M.&author=Ogren,+J.A.&author=Holm%C3%A9n,+K.&publication_year=2003&journal=J.+Atmos.+Sci.&volume=60&pages=119%E2%80%93136&doi=10.1175/1520-0469(2003)060%3C0119:MVOTA%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2003)060%3C0119:MVOTA%3E2.0.CO;2
http://scholar.google.com/scholar_lookup?title=Using%20high-resolution%20satellite%20aerosol%20optical%20depth%20to%20estimate%20daily%20PM2.5%20geographical%20distribution%20in%20mexico%20city&author=Just,+A.C.&author=Wright,+R.O.&author=Schwartz,+J.&author=Coull,+B.A.&author=Baccarelli,+A.A.&author=Tellez-Rojo,+M.M.&author=Moody,+E.&author=Wang,+Y.&author=Lyapustin,+A.&author=Kloog,+I.&publication_year=2015&journal=Environ.+Sci.+Technol.&volume=49&pages=8576%E2%80%938584&doi=10.1021/acs.est.5b00859&pmid=26061488
http://dx.doi.org/10.1021/acs.est.5b00859
http://www.ncbi.nlm.nih.gov/pubmed/26061488
http://scholar.google.com/scholar_lookup?title=Exploring%20the%20uncertainty%20associated%20with%20satellite-based%20estimates%20of%20premature%20mortality%20due%20to%20exposure%20to%20fine%20particulate%20matter&author=Ford,+B.&author=Heald,+C.&publication_year=2015&journal=Atmos.+Chem.+Phys.+Discuss.&volume=15&pages=25329%E2%80%9325380&doi=10.5194/acpd-15-25329-2015
http://dx.doi.org/10.5194/acpd-15-25329-2015
http://scholar.google.com/scholar_lookup?title=Use%20of%20satellite%20observations%20for%20long-term%20exposure%20assessment%20of%20global%20concentrations%20of%20fine%20particulate%20matter&author=Van+Donkelaar,+A.&author=Martin,+R.V.&author=Brauer,+M.&author=Boys,+B.L.&publication_year=2015&journal=Environ.+Health+Perspect.&volume=123&pages=135&doi=10.1289/ehp.1408646&pmid=25343779
http://dx.doi.org/10.1289/ehp.1408646
http://www.ncbi.nlm.nih.gov/pubmed/25343779
http://scholar.google.com/scholar_lookup?title=Satellite%20remote%20sensing%20of%20particulate%20matter%20air%20quality:%20The%20cloud-cover%20problem&author=Christopher,+S.A.&author=Gupta,+P.&publication_year=2010&journal=J.+Air+Waste+Manag.+Assoc.&volume=60&pages=596%E2%80%93602&doi=10.3155/1047-3289.60.5.596&pmid=20480859
http://dx.doi.org/10.3155/1047-3289.60.5.596
http://www.ncbi.nlm.nih.gov/pubmed/20480859
http://scholar.google.com/scholar_lookup?title=An%20evaluation%20of%20terra-modis%20sampling%20for%20monthly%20and%20annual%20particulate%20matter%20air%20quality%20assessment%20over%20the%20southeastern%20united%20states&author=Gupta,+P.&author=Christopher,+S.A.&publication_year=2008&journal=Atmos.+Environ.&volume=42&pages=6465%E2%80%936471&doi=10.1016/j.atmosenv.2008.04.044
http://dx.doi.org/10.1016/j.atmosenv.2008.04.044


81 
 

 
Note: This chapter has been published in the journal, International Journal of Environmental 
Research and Public Health, and has been formatted according to journal guidelines. 
 

10. Yu, C.; Di Girolamo, L.; Chen, L.; Zhang, X.; Liu, Y. Statistical evaluation of the feasibility 

of satellite-retrieved cloud parameters as indicators of PM2.5 levels. J. Expo. Sci. Environ. 

Epidemiol. 2015, 25, 457–466. [Google Scholar] [CrossRef] [PubMed] 

11. Strickland, M.; Hao, H.; Hu, X.; Chang, H.; Darrow, L.; Liu, Y. Pediatric emergency visits 

and short-term changes in PM2.5 concentrations in the us state of georgia. Environ. Health 

Perspect. 2015, 124, 690–696. [Google Scholar] [CrossRef] [PubMed] 

12. Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate 

Change; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar] 

13. Mauger, G.S.; Norris, J.R. Meteorological bias in satellite estimates of aerosol-cloud 

relationships. Geophys. Res. Lett.2007, 34. [Google Scholar] [CrossRef] 

14. Rossow, W.B.; Schiffer, R.A. Advances in understanding clouds from ISCCP. Bull. Am. 

Meteorol. Soc. 1999, 80, 2261–2287. [Google Scholar] [CrossRef] 

15. Klein, S.A.; Hartmann, D.L.; Norris, J.R. On the relationships among low-cloud structure, 

sea surface temperature, and atmospheric circulation in the summertime northeast 

pacific. J. Clim. 1995, 8, 1140–1155. [Google Scholar] [CrossRef] 

16. Zhang, H.; Surratt, J.; Lin, Y.; Bapat, J.; Kamens, R. Effect of relative humidity on soa 

formation from isoprene/no photooxidation: Enhancement of 2-methylglyceric acid and 

its corresponding oligoesters under dry conditions. Atmos. Chem. Phys. 2011, 11, 6411–6424. 

[Google Scholar] [CrossRef] 

17. Zhou, Y.; Zhang, H.; Parikh, H.M.; Chen, E.H.; Rattanavaraha, W.; Rosen, E.P.; Wang, W.; 

Kamens, R.M. Secondary organic aerosol formation from xylenes and mixtures of toluene 

and xylenes in an atmospheric urban hydrocarbon mixture: Water and particle seed effects 

(II). Atmos. Environ. 2011, 45, 3882–3890. [Google Scholar] [CrossRef] 

http://scholar.google.com/scholar_lookup?title=Statistical%20evaluation%20of%20the%20feasibility%20of%20satellite-retrieved%20cloud%20parameters%20as%20indicators%20of%20PM2.5%20levels&author=Yu,+C.&author=Di+Girolamo,+L.&author=Chen,+L.&author=Zhang,+X.&author=Liu,+Y.&publication_year=2015&journal=J.+Expo.+Sci.+Environ.+Epidemiol.&volume=25&pages=457%E2%80%93466&doi=10.1038/jes.2014.49&pmid=25052693
http://dx.doi.org/10.1038/jes.2014.49
http://www.ncbi.nlm.nih.gov/pubmed/25052693
http://scholar.google.com/scholar_lookup?title=Pediatric%20emergency%20visits%20and%20short-term%20changes%20in%20PM2.5%20concentrations%20in%20the%20us%20state%20of%20georgia&author=Strickland,+M.&author=Hao,+H.&author=Hu,+X.&author=Chang,+H.&author=Darrow,+L.&author=Liu,+Y.&publication_year=2015&journal=Environ.+Health+Perspect.&volume=124&pages=690%E2%80%93696&doi=10.1289/ehp.1509856&pmid=26452298
http://dx.doi.org/10.1289/ehp.1509856
http://www.ncbi.nlm.nih.gov/pubmed/26452298
http://scholar.google.com/scholar_lookup?title=Atmospheric+Chemistry+and+Physics:+From+Air+Pollution+to+Climate+Change&author=Seinfeld,+J.H.&author=Pandis,+S.N.&publication_year=2012
http://scholar.google.com/scholar_lookup?title=Meteorological%20bias%20in%20satellite%20estimates%20of%20aerosol-cloud%20relationships&author=Mauger,+G.S.&author=Norris,+J.R.&publication_year=2007&journal=Geophys.+Res.+Lett.&volume=34&doi=10.1029/2007GL029952
http://dx.doi.org/10.1029/2007GL029952
http://scholar.google.com/scholar_lookup?title=Advances%20in%20understanding%20clouds%20from%20ISCCP&author=Rossow,+W.B.&author=Schiffer,+R.A.&publication_year=1999&journal=Bull.+Am.+Meteorol.+Soc.&volume=80&pages=2261%E2%80%932287&doi=10.1175/1520-0477(1999)080%3C2261:AIUCFI%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1999)080%3C2261:AIUCFI%3E2.0.CO;2
http://scholar.google.com/scholar_lookup?title=On%20the%20relationships%20among%20low-cloud%20structure,%20sea%20surface%20temperature,%20and%20atmospheric%20circulation%20in%20the%20summertime%20northeast%20pacific&author=Klein,+S.A.&author=Hartmann,+D.L.&author=Norris,+J.R.&publication_year=1995&journal=J.+Clim.&volume=8&pages=1140%E2%80%931155&doi=10.1175/1520-0442(1995)008%3C1140:OTRALC%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1995)008%3C1140:OTRALC%3E2.0.CO;2
http://scholar.google.com/scholar_lookup?title=Effect%20of%20relative%20humidity%20on%20soa%20formation%20from%20isoprene/no%20photooxidation:%20Enhancement%20of%202-methylglyceric%20acid%20and%20its%20corresponding%20oligoesters%20under%20dry%20conditions&author=Zhang,+H.&author=Surratt,+J.&author=Lin,+Y.&author=Bapat,+J.&author=Kamens,+R.&publication_year=2011&journal=Atmos.+Chem.+Phys.&volume=11&pages=6411%E2%80%936424&doi=10.5194/acp-11-6411-2011
http://dx.doi.org/10.5194/acp-11-6411-2011
http://scholar.google.com/scholar_lookup?title=Secondary%20organic%20aerosol%20formation%20from%20xylenes%20and%20mixtures%20of%20toluene%20and%20xylenes%20in%20an%20atmospheric%20urban%20hydrocarbon%20mixture:%20Water%20and%20particle%20seed%20effects%20(II)&author=Zhou,+Y.&author=Zhang,+H.&author=Parikh,+H.M.&author=Chen,+E.H.&author=Rattanavaraha,+W.&author=Rosen,+E.P.&author=Wang,+W.&author=Kamens,+R.M.&publication_year=2011&journal=Atmos.+Environ.&volume=45&pages=3882%E2%80%933890&doi=10.1016/j.atmosenv.2010.12.048
http://dx.doi.org/10.1016/j.atmosenv.2010.12.048


82 
 

 
Note: This chapter has been published in the journal, International Journal of Environmental 
Research and Public Health, and has been formatted according to journal guidelines. 
 

18. Morgan, W.; Allan, J.; Bower, K.; Capes, G.; Crosier, J.; Williams, P.; Coe, H. Vertical 

distribution of sub-micron aerosol chemical composition from north-western europe and 

the north-east atlantic. Atmos. Chem. Phys. 2009, 9, 5389–5401. [Google Scholar] [CrossRef] 

19. Hicks, B.; Baldocchi, D.; Meyers, T.; Hosker, R.; Matt, D. A preliminary multiple resistance 

routine for deriving dry deposition velocities from measured quantities.  Water Air Soil 

Pollut. 1987, 36, 311–330. [Google Scholar] [CrossRef] 

20. Ng, N.; Kwan, A.; Surratt, J.; Chan, A.; Chhabra, P.; Sorooshian, A.; Pye, H.O.; Crounse, 

J.; Wennberg, P.; Flagan, R. Secondary organic aerosol (SOA) formation from reaction of 

isoprene with nitrate radicals (NO3). Atmos. Chem. Phys.2008, 8, 4117–4140. [Google 

Scholar] [CrossRef] 

21. Liao, H.; Adams, P.J.; Chung, S.H.; Seinfeld, J.H.; Mickley, L.J.; Jacob, D.J. Interactions 

between tropospheric chemistry and aerosols in a unified general circulation model.  J. 

Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] 

22. Radke, L.F.; Hobbs, P.V.; Eltgroth, M.W. Scavenging of aerosol particles by precipitation.  J. 

Appl. Meteorol. 1980, 19, 715–722. [Google Scholar] [CrossRef] 

23. Rodhe, H.; Grandell, J. On the removal time of aerosol particles from the atmosphere by 

precipitation scavenging. Tellus 1972, 24, 442–454. [Google Scholar] [CrossRef] 

24. Fan, J.; Leung, L.R.; Rosenfeld, D.; Chen, Q.; Li, Z.; Zhang, J.; Yan, H. Microphysical 

effects determine macrophysical response for aerosol impacts on deep convective 

clouds. Proc. Natl. Acad. Sci. USA 2013, 110, E4581–E4590. [Google Scholar] [CrossRef] 

[PubMed] 

25. Stevens, B.; Feingold, G. Untangling aerosol effects on clouds and precipitation in a 

buffered system. Nature 2009, 461, 607–613. [Google Scholar] [CrossRef] [PubMed] 

http://scholar.google.com/scholar_lookup?title=Vertical%20distribution%20of%20sub-micron%20aerosol%20chemical%20composition%20from%20north-western%20europe%20and%20the%20north-east%20atlantic&author=Morgan,+W.&author=Allan,+J.&author=Bower,+K.&author=Capes,+G.&author=Crosier,+J.&author=Williams,+P.&author=Coe,+H.&publication_year=2009&journal=Atmos.+Chem.+Phys.&volume=9&pages=5389%E2%80%935401&doi=10.5194/acp-9-5389-2009
http://dx.doi.org/10.5194/acp-9-5389-2009
http://scholar.google.com/scholar_lookup?title=A%20preliminary%20multiple%20resistance%20routine%20for%20deriving%20dry%20deposition%20velocities%20from%20measured%20quantities&author=Hicks,+B.&author=Baldocchi,+D.&author=Meyers,+T.&author=Hosker,+R.&author=Matt,+D.&publication_year=1987&journal=Water+Air+Soil+Pollut.&volume=36&pages=311%E2%80%93330&doi=10.1007/BF00229675
http://dx.doi.org/10.1007/BF00229675
http://scholar.google.com/scholar_lookup?title=Secondary%20organic%20aerosol%20(SOA)%20formation%20from%20reaction%20of%20isoprene%20with%20nitrate%20radicals%20(NO3)&author=Ng,+N.&author=Kwan,+A.&author=Surratt,+J.&author=Chan,+A.&author=Chhabra,+P.&author=Sorooshian,+A.&author=Pye,+H.O.&author=Crounse,+J.&author=Wennberg,+P.&author=Flagan,+R.&publication_year=2008&journal=Atmos.+Chem.+Phys.&volume=8&pages=4117%E2%80%934140&doi=10.5194/acp-8-4117-2008
http://scholar.google.com/scholar_lookup?title=Secondary%20organic%20aerosol%20(SOA)%20formation%20from%20reaction%20of%20isoprene%20with%20nitrate%20radicals%20(NO3)&author=Ng,+N.&author=Kwan,+A.&author=Surratt,+J.&author=Chan,+A.&author=Chhabra,+P.&author=Sorooshian,+A.&author=Pye,+H.O.&author=Crounse,+J.&author=Wennberg,+P.&author=Flagan,+R.&publication_year=2008&journal=Atmos.+Chem.+Phys.&volume=8&pages=4117%E2%80%934140&doi=10.5194/acp-8-4117-2008
http://dx.doi.org/10.5194/acp-8-4117-2008
http://scholar.google.com/scholar_lookup?title=Interactions%20between%20tropospheric%20chemistry%20and%20aerosols%20in%20a%20unified%20general%20circulation%20model&author=Liao,+H.&author=Adams,+P.J.&author=Chung,+S.H.&author=Seinfeld,+J.H.&author=Mickley,+L.J.&author=Jacob,+D.J.&publication_year=2003&journal=J.+Geophys.+Res.+Atmos.&volume=108&doi=10.1029/2001JD001260
http://dx.doi.org/10.1029/2001JD001260
http://scholar.google.com/scholar_lookup?title=Scavenging%20of%20aerosol%20particles%20by%20precipitation&author=Radke,+L.F.&author=Hobbs,+P.V.&author=Eltgroth,+M.W.&publication_year=1980&journal=J.+Appl.+Meteorol.&volume=19&pages=715%E2%80%93722&doi=10.1175/1520-0450(1980)019%3C0715:SOAPBP%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1980)019%3C0715:SOAPBP%3E2.0.CO;2
http://scholar.google.com/scholar_lookup?title=On%20the%20removal%20time%20of%20aerosol%20particles%20from%20the%20atmosphere%20by%20precipitation%20scavenging&author=Rodhe,+H.&author=Grandell,+J.&publication_year=1972&journal=Tellus&volume=24&pages=442%E2%80%93454&doi=10.3402/tellusa.v24i5.10658
http://dx.doi.org/10.3402/tellusa.v24i5.10658
http://scholar.google.com/scholar_lookup?title=Microphysical%20effects%20determine%20macrophysical%20response%20for%20aerosol%20impacts%20on%20deep%20convective%20clouds&author=Fan,+J.&author=Leung,+L.R.&author=Rosenfeld,+D.&author=Chen,+Q.&author=Li,+Z.&author=Zhang,+J.&author=Yan,+H.&publication_year=2013&journal=Proc.+Natl.+Acad.+Sci.+USA&volume=110&pages=E4581%E2%80%93E4590&doi=10.1073/pnas.1316830110&pmid=24218569
http://dx.doi.org/10.1073/pnas.1316830110
http://www.ncbi.nlm.nih.gov/pubmed/24218569
http://scholar.google.com/scholar_lookup?title=Untangling%20aerosol%20effects%20on%20clouds%20and%20precipitation%20in%20a%20buffered%20system&author=Stevens,+B.&author=Feingold,+G.&publication_year=2009&journal=Nature&volume=461&pages=607%E2%80%93613&doi=10.1038/nature08281&pmid=19794487
http://dx.doi.org/10.1038/nature08281
http://www.ncbi.nlm.nih.gov/pubmed/19794487


83 
 

 
Note: This chapter has been published in the journal, International Journal of Environmental 
Research and Public Health, and has been formatted according to journal guidelines. 
 

26. EPA. Aqs Data Mart. Available 

online: https://aqs.epa.gov/aqsweb/documents/data_mart_welcome.html (accessed on 

31 March 2016). 

27. Hand, J.; Copeland, S.; Day, D.; Dillner, A.; Indresand, H.; Malm, W.; McDade, C.; Moore, 

C.; Pitchford, M.; Schichtel, B. Spatial and Seasonal Patterns and Temporal Variability of 

Haze and Its Constituents in the United States Report V. IMPROVE Reports. Available 

online: http://vista.cira.colostate.edu/improve/Publications/improve_reports.htm(access

ed 11 September 2011). 

28. Malm, W.C.; Schichtel, B.A.; Pitchford, M.L. Uncertainties in PM 2.5 gravimetric and 

speciation measurements and what we can learn from them. J. Air Waste Manag. 

Assoc. 2011, 61, 1131–1149. [Google Scholar] [CrossRef] [PubMed] 

29. Levy, R.; Mattoo, S.; Munchak, L.; Remer, L.; Sayer, A.; Hsu, N. The collection 6 modis 

aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google 

Scholar] [CrossRef] 

30. Lyapustin, A.; Wang, Y.; Laszlo, I.; Kahn, R.; Korkin, S.; Remer, L.; Levy, R.; Reid, J. 

Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm.  J. 

Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] 

31. Platnick, S.; Ackerman, S.; King, M.; Menzel, P.; Wind, G.; Frey, R. MODIS Atmosphere l2 

Cloud Product (06_L2); System, N.M.A.P., Ed.; Goddard Space Flight Center: Greenbelt, 

MD, USA, 2015. 

32. Benjamin, S.G.; Dévényi, D.; Weygandt, S.S.; Brundage, K.J.; Brown, J.M.; Grell, G.A.; 

Kim, D.; Schwartz, B.E.; Smirnova, T.G.; Smith, T.L. An hourly assimilation-forecast cycle: 

The ruc. Mon. Weather Rev. 2004, 132, 495–518. [Google Scholar] [CrossRef] 

https://aqs.epa.gov/aqsweb/documents/data_mart_welcome.html
http://vista.cira.colostate.edu/improve/Publications/improve_reports.htm
http://scholar.google.com/scholar_lookup?title=Uncertainties%20in%20PM2.5%20gravimetric%20and%20speciation%20measurements%20and%20what%20we%20can%20learn%20from%20them&author=Malm,+W.C.&author=Schichtel,+B.A.&author=Pitchford,+M.L.&publication_year=2011&journal=J.+Air+Waste+Manag.+Assoc.&volume=61&pages=1131%E2%80%931149&doi=10.1080/10473289.2011.603998&pmid=22168097
http://dx.doi.org/10.1080/10473289.2011.603998
http://www.ncbi.nlm.nih.gov/pubmed/22168097
http://scholar.google.com/scholar_lookup?title=The%20collection%206%20modis%20aerosol%20products%20over%20land%20and%20ocean&author=Levy,+R.&author=Mattoo,+S.&author=Munchak,+L.&author=Remer,+L.&author=Sayer,+A.&author=Hsu,+N.&publication_year=2013&journal=Atmos.+Meas.+Tech.&volume=6&pages=2989%E2%80%933034&doi=10.5194/amt-6-2989-2013
http://scholar.google.com/scholar_lookup?title=The%20collection%206%20modis%20aerosol%20products%20over%20land%20and%20ocean&author=Levy,+R.&author=Mattoo,+S.&author=Munchak,+L.&author=Remer,+L.&author=Sayer,+A.&author=Hsu,+N.&publication_year=2013&journal=Atmos.+Meas.+Tech.&volume=6&pages=2989%E2%80%933034&doi=10.5194/amt-6-2989-2013
http://dx.doi.org/10.5194/amt-6-2989-2013
http://scholar.google.com/scholar_lookup?title=Multiangle%20implementation%20of%20atmospheric%20correction%20(MAIAC):%202.%20Aerosol%20algorithm&author=Lyapustin,+A.&author=Wang,+Y.&author=Laszlo,+I.&author=Kahn,+R.&author=Korkin,+S.&author=Remer,+L.&author=Levy,+R.&author=Reid,+J.&publication_year=2011&journal=J.+Geophys.+Res.+Atmos.&volume=116&doi=10.1029/2010JD014986
http://dx.doi.org/10.1029/2010JD014986
http://scholar.google.com/scholar_lookup?title=An%20hourly%20assimilation-forecast%20cycle:%20The%20ruc&author=Benjamin,+S.G.&author=D%C3%A9v%C3%A9nyi,+D.&author=Weygandt,+S.S.&author=Brundage,+K.J.&author=Brown,+J.M.&author=Grell,+G.A.&author=Kim,+D.&author=Schwartz,+B.E.&author=Smirnova,+T.G.&author=Smith,+T.L.&publication_year=2004&journal=Mon.+Weather+Rev.&volume=132&pages=495%E2%80%93518&doi=10.1175/1520-0493(2004)132%3C0495:AHACTR%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2004)132%3C0495:AHACTR%3E2.0.CO;2


84 
 

 
Note: This chapter has been published in the journal, International Journal of Environmental 
Research and Public Health, and has been formatted according to journal guidelines. 
 

33. Benjamin, S.G.; Weygandt, S.S.; Brown, J.M.; Hu, M.; Alexander, C.R.; Smirnova, T.G.; 

Olson, J.B.; James, E.P.; Dowell, D.C.; Grell, G.A. A north american hourly assimilation 

and model forecast cycle: The rapid refresh. Mon. Weather Rev. 2016, 144, 1669–1694. 

[Google Scholar] [CrossRef] 

34. Grün, B.; Leisch, F. Fitting finite mixtures of generalized linear regressions in R. Comput. 

Stat. Data Anal. 2007, 51, 5247–5252. [Google Scholar] [CrossRef] 

35. Leisch, F. Flexmix: A General Framework for Finite Mixture Models and Latent Glass 

Regression in R. J. Stat. Softw.2004, 11, 1–18. [Google Scholar] [CrossRef] 

36. Hu, X.; Waller, L.A.; Lyapustin, A.; Wang, Y.; Al-Hamdan, M.Z.; Crosson, W.L.; Estes, 

M.G.; Estes, S.M.; Quattrochi, D.A.; Puttaswamy, S.J. Estimating ground-level 

PM2.5 concentrations in the southeastern united states using maiac aod retrievals and a two-

stage model. Remote Sens. Environ. 2014, 140, 220–232. [Google Scholar] [CrossRef] 

37. Kloog, I.; Ridgway, B.; Koutrakis, P.; Coull, B.A.; Schwartz, J.D. Long-and short-term 

exposure to PM2.5 and mortality: Using novel exposure models. Epidemiology 2013, 24, 555. 

[Google Scholar] [CrossRef] [PubMed] 

38. Team, R.C. R: A Language and Environment for Statistical Computing. R Foundation for 

Statistical. Available online: https://www.R-project.org/ (accessed on 17 October 2017). 

39. Stockwell, W.R.; Calvert, J.G. The mechanism of the HO-SO2 reaction. Atmos. 

Environ. 1983, 17, 2231–2235. [Google Scholar] [CrossRef] 

40. Chamberlain, A. Aspects of Travel and Deposition of Aerosol and Vapour Clouds ; Atomic Energy 

Research Establishment: Harwell/Berks, UK, 1953. 

 

 

http://scholar.google.com/scholar_lookup?title=A%20north%20american%20hourly%20assimilation%20and%20model%20forecast%20cycle:%20The%20rapid%20refresh&author=Benjamin,+S.G.&author=Weygandt,+S.S.&author=Brown,+J.M.&author=Hu,+M.&author=Alexander,+C.R.&author=Smirnova,+T.G.&author=Olson,+J.B.&author=James,+E.P.&author=Dowell,+D.C.&author=Grell,+G.A.&publication_year=2016&journal=Mon.+Weather+Rev.&volume=144&pages=1669%E2%80%931694&doi=10.1175/MWR-D-15-0242.1
http://dx.doi.org/10.1175/MWR-D-15-0242.1
http://scholar.google.com/scholar_lookup?title=Fitting%20finite%20mixtures%20of%20generalized%20linear%20regressions%20in%20R&author=Gr%C3%BCn,+B.&author=Leisch,+F.&publication_year=2007&journal=Comput.+Stat.+Data+Anal.&volume=51&pages=5247%E2%80%935252&doi=10.1016/j.csda.2006.08.014
http://dx.doi.org/10.1016/j.csda.2006.08.014
http://scholar.google.com/scholar_lookup?title=Flexmix:%20A%20General%20Framework%20for%20Finite%20Mixture%20Models%20and%20Latent%20Glass%20Regression%20in%20R&author=Leisch,+F.&publication_year=2004&journal=J.+Stat.+Softw.&volume=11&pages=1%E2%80%9318&doi=10.18637/jss.v011.i08
http://dx.doi.org/10.18637/jss.v011.i08
http://scholar.google.com/scholar_lookup?title=Estimating%20ground-level%20PM2.5%20concentrations%20in%20the%20southeastern%20united%20states%20using%20maiac%20aod%20retrievals%20and%20a%20two-stage%20model&author=Hu,+X.&author=Waller,+L.A.&author=Lyapustin,+A.&author=Wang,+Y.&author=Al-Hamdan,+M.Z.&author=Crosson,+W.L.&author=Estes,+M.G.&author=Estes,+S.M.&author=Quattrochi,+D.A.&author=Puttaswamy,+S.J.&publication_year=2014&journal=Remote+Sens.+Environ.&volume=140&pages=220%E2%80%93232&doi=10.1016/j.rse.2013.08.032
http://dx.doi.org/10.1016/j.rse.2013.08.032
http://scholar.google.com/scholar_lookup?title=Long-and%20short-term%20exposure%20to%20PM2.5%20and%20mortality:%20Using%20novel%20exposure%20models&author=Kloog,+I.&author=Ridgway,+B.&author=Koutrakis,+P.&author=Coull,+B.A.&author=Schwartz,+J.D.&publication_year=2013&journal=Epidemiology&volume=24&pages=555&doi=10.1097/EDE.0b013e318294beaa&pmid=23676266
http://dx.doi.org/10.1097/EDE.0b013e318294beaa
http://www.ncbi.nlm.nih.gov/pubmed/23676266
https://www.r-project.org/
http://scholar.google.com/scholar_lookup?title=The%20mechanism%20of%20the%20HO-SO2%20reaction&author=Stockwell,+W.R.&author=Calvert,+J.G.&publication_year=1983&journal=Atmos.+Environ.&volume=17&pages=2231%E2%80%932235&doi=10.1016/0004-6981(83)90220-2
http://dx.doi.org/10.1016/0004-6981(83)90220-2


85 
 

 
Note: This chapter has been published in the journal, International Journal of Environmental 
Research and Public Health, and has been formatted according to journal guidelines. 
 

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

http://creativecommons.org/licenses/by/4.0/


86 
 

 
 

Effect attenuation in the relationship between pediatric ED visits and satellite-

based PM2.5 exposure  

I. Abstract 

Background: Emergency department visits for respiratory issues have been associated with 

PM2.5 concentrations. However, discrepancies exist between different studies in the 

literature.  

Objective: This study considers the impact of different gap-filled and ungap-filled satellite-

based exposure models on the OR between PM2.5 exposure and pediatric ED visits for 3 

possible outcomes, asthma or wheeze, otitis media, and upper respiratory infection.  

Methods: We compare odds ratios calculated for three possible outcomes using three 

different, but related, satellite-based exposure models for PM2.5, an ungap-filled model that 

leaves missing observations missing, and two gap-filled exposure models, one that accounts 

for the influence of cloud-cover on PM2.5 concentrations and one that does not account for 

cloud-cover. We additionally examine results stratified on cloudiness. 

Results: The three exposure models produced different results for the exposure, with the 

cloud-based exposure model producing slightly lower concentrations, on average, than the 

ungap-filled and no cloud gap-filled exposure models. When examining odds ratio estimates 

for each of the three outcomes, we identified statistically significant associations between 

satellite estimates and emergency department visits for asthma or wheeze, otit is media, and 

upper respiratory tract infection. Ungap-filled odds ratio estimates were biased towards the 

null for the outcomes asthma or wheeze and otitis media and unbiased for upper respiratory 

infection. When results were stratified on cloudiness we observed effect attenuation among 

ungap-filled ORs, only on cloudy days. 
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Conclusion: Gap-filling a satellite model is important to prevent effect attenuation in the 

resulting OR estimates calculated from an exposure model. However, the method used to 

gap-fill is less important. 

II. Introduction 

Emergency department (ED) visits for respiratory issues have been associated with air 

pollution episodes, often, like mortality, affecting the most vulnerable, children and elderly 

adults with pre-existing respiratory issues. Seminal work on the relationship between ED 

visits and air pollution concentrations in elderly adults has identified a 1-2% increase in ED 

visits for heart failure that is associated with increases in PM2.5 concentrations of 10 μg/m3. 

[1] Pediatric populations, however, are no less vulnerable to morbidity resulting from air 

pollution. The literature lacks large-scale studies on the association between ED visits for 

various causes and air pollution concentrations in pediatric populations. However, regional 

studies have found associations between air pollution concentrations and upper respiratory 

symptoms [2], asthma exacerbation [3] [4] [5], pneumonia [6], and bronchitis [7]. However, 

given the patchwork nature of the existing studies on this topic, discrepancies remain 

between studies regarding the strength of the association. These discrepancies undermine 

the strength of the existing literature, making biases inherent in different study designs and 

exposure measurement methods important to root out.  

Strickland et al. examined the associations between pediatric emergency department 

(ED) visits for six possible health outcomes and exposure to PM 2.5. [8] The authors 

identified a sensitivity in the odds ratios (OR) between pediatric emergency department 

(ED) visits and exposure estimates that was dependent on the proportion of missing 

observations in the satellite model. [8] This is a significant finding because satellite models 

often have many missing observations due to cloud cover and high surface reflectance. [9] 
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PM2.5 levels under these conditions are likely to differ from conditions observed when 

observations are not missing. [10] [11] This non-random missingness in satellite-derived 

PM2.5 exposure estimates has the potential to bias study results in unpredictable ways.  

This study investigates sensitivity in odds ratios calculated from satellite-based exposure 

measurements to missing satellite observations. We compare three sets of odds ratios 

calculated between PM2.5 and pediatric ED visits for three adverse health outcomes, i.e. 

asthma/wheeze, otitis media, and upper respiratory infection. Two of the three sets of odds 

ratios (ORs) use a satellite-based model that has been gap-filled, or where the missing 

observations have been imputed, to represent the exposure, while the third uses an ungap-

filled satellite model. The first set of gap-filled ORs uses a gap-filled exposure model that 

assumes the missing observations are missing at random, while the second set of ORs uses 

a gap-filled exposure model that assumes the missing observations are missing as a result 

of cloud cover. The resulting OR estimates and confidence interval sizes are then compared 

to identify changes resulting from whether cloud-driven missingness in a satellite model is 

treated in a model and whether it makes a difference if the gap-filling is treated as a random 

or non-random event.  

III. Methods – Data 

a. Health data 

The health dataset consists of ZIP code-level data on pediatric ED visits in the US 

state of Georgia from January 1st 2002 through June 30th, 2010 for a total of over 8 million 

ED visits from 150 hospitals. This dataset, and the analysis of ICD-9 codes for case 

definitions were previously described by Strickland et al. [8] Briefly, ICD-9 codes 493 or 

786.07 in any diagnosis field was determined to be asthma/wheeze, primary codes 381 and 
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382 were defined as otitis media (OM), and primary codes 460-465 and 477 as upper 

respiratory infection (URI) if the codes for asthma/wheeze were also not present.  

Over the time period from 2002-2010, a total of 429,199 ED visits for asthma or 

wheeze were recorded in the state of Georgia. In addition to these visits, over 1 million, 

1,021,685, ED visits for URI were recorded, additionally the state recorded 548,197 for 

OM. We additionally restricted to ED visits that occurred between January 1st, 2003 and 

December 31st 2005, to correspond to the period of availability of the exposure data. After 

restricting the time period the number of ED visits for each outcome dropped to 137,912 

for asthma/wheeze, 365,541 for URI, and 199,856 for OM.   

Cases were additionally categorized by cloudiness. ZIP codes and days with less 

than or equal to 20% cloudy observations categorized as ‘clear,’ ZIP codes and days with 

greater than or equal to 80% cloudy observations categorized as ‘cloudy,’ and ZIP codes 

and days with 20-80% cloudy observations categorized as ‘partially cloudy.’ After 

categorization by cloudiness a total of 107,793 URI cases were categorized as partially 

cloudy, while 58,836 were categorized as clear, and 165,818 were categorized as cloudy. For 

asthma or wheeze, 42,668 were partially cloudy, 64,065 were cloudy, and 20,775 were clear. 

For OM, 58,688 were partially cloudy, 92,533 were cloudy, and 29,943 were clear.  

b. Exposure model inputs 

We utilized 1 km AOD retrieved by the Multi-Angle Implementation of 

Atmospheric Correction (MAIAC) algorithm based on the measurements of the Moderate 

Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua and Terra satellites as a 

major predictor of our PM2.5 exposure model. [12] For the basic satellite model, this 

information was combined with meteorological information from the nearest National 

Land Data Assimilation System (NLDAS) [13] and North American Regional Reanalysis 
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(NARR) [14] model pixels and matched in time to the overpass time for Aqua and Terra 

separately. Meteorological information pulled from NLDAS included the precipitation rate, 

the percentage of precipitation that was convective, temperature, humidity, short wave 

radiation downwards, long wave radiation downwards, and wind speed. Meteorological 

information pulled from NARR included the planetary boundary layer (PBL) height, and 

relative humidity. Daily counts of fires within a 25 km radius were also taken from the Aqua 

and Terra MODIS fire products (M*D14_L2). [15] From a global 2x2.5 degree run of the 

10.1 GEOS-Chem chemical transport model incorporating mechanisms for secondary 

organic aerosols, we included the percentage of sulfate molecules contained in the PBL, 

calculated using equation 1 and the modeled PM2.5 concentration. [16] In equation 1, the 

percentage of sulfate molecules contained in the PBL at each pixel and overpass, p k, is 

calculated by summing the product of the mixing ratio of sulfate, x, air density, y, and box 

height, z, at that pixel in each level to the PBL height, and dividing by the product of x, y, 

and z summed over the entire vertical column, composed of n layers.  

𝑝𝑘 =  
∑ 𝑥𝑖𝑘𝑦𝑖𝑘𝑧𝑖𝑘

𝑃𝐵𝐿
𝑖=1

∑ 𝑥𝑗𝑘𝑦𝑗𝑘𝑧𝑗𝑘
𝑛
𝑗=1

⁄    Equation 1 

From the National Land Cover Database (NLCD) we included the percentage of 

impervious surface area in each MAIAC pixel. [17] From Census TIGER database we 

extracted the distance from each MAIAC pixel polygon to the nearest primary or secondary 

road. [18] We additionally included elevation from the 3D elevation program (3DEP) 

national elevation product [19], and counts of PM2.5 point sources from the National 

Emissions Inventory 2008 [20]. For the cloud gap-filling model we incorporated 

information from the Terra and Aqua MODIS cloud (M*D06_L2) [21] and location 

products (M*D03_L2), converting the 1x1 km cloud AOD (COD) swath product to the 
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1x1 km MAIAC grid using inverse distance interpolation (IDW) and the 5x5 km cloud 

emissivity swath product to the 1x1 km MAIAC grid using reconstructed Thiessen 

polygons. [22] Finally, models were fit to PM2.5 concentrations measured at EPA ground 

monitors within the study area. [23] 

IV. Methods – Exposure models 

Both the no cloud and cloud gap-filled satellite models start from the same AOD-PM2.5 

model, and differ in how they fill in the PM2.5 observations where and when AOD is 

missing. This model, a linear mixed effects model represented by equation 2, relates 

MAIAC AOD values to ground-level concentrations of PM2.5, as measured at EPA ground 

monitors, with random slopes for AOD, temperature, RH, and percentage of sulfate 

molecules in the PBL, and a random intercept for each day in the time series.   

𝑃𝑀2.5,𝑠𝑡 = (𝑏0 + 𝑏0,𝑡) + (𝑏1 + 𝑏1,𝑡)𝐴𝑂𝐷𝑠𝑡 + (𝑏2 + 𝑏2,𝑡)𝑝𝑠𝑡 + (𝑏3 +

𝑏3,𝑡)𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑠𝑡 + (𝑏4 + 𝑏4,𝑡)𝑅𝐻𝑠𝑡 + 𝑏5𝑊𝑖𝑛𝑑𝑆𝑝𝑒𝑒𝑑𝑠𝑡 + 𝑏6𝑃𝐵𝐿ℎ𝑒𝑖𝑔ℎ𝑡𝑠𝑡 +

𝑏7𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑠 + 𝑏8𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝐼𝑚𝑝𝑒𝑟𝑣𝑖𝑜𝑢𝑠𝑠 + 𝑏9𝑁𝐸𝐼2008𝑠 + 𝑏10𝐷𝑖𝑠𝑡𝑅𝑜𝑎𝑑𝑠𝑠 +

𝑏11𝐹𝑖𝑟𝑒𝐶𝑜𝑢𝑛𝑡𝑠 + 𝑏12𝐿𝑜𝑐𝑎𝑙𝑅𝑜𝑎𝑑𝐿𝑒𝑛𝑔𝑡ℎ𝑠 + 𝑏13(𝐷𝑖𝑠𝑡𝑅𝑜𝑎𝑑𝑠𝑠 ∗ 𝐿𝑜𝑐𝑎𝑙𝑅𝑜𝑎𝑑𝐿𝑒𝑛𝑔𝑡ℎ𝑠) +

𝑏14(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑠𝑡 ∗ 𝑅𝐻𝑠𝑡) +  𝜖𝑠𝑡(𝑏0,𝑡𝑏1,𝑡𝑏2,𝑡) ~ 𝑁[(0,0,0), 𝜓]      

Equation 2 

In equation 2, PM2.5 at each location, s, and time, t, is modeled as a function of intercepts, 

normal (b0) and day-specific (b0,t), with fixed (b1-4) and random (b1-4,t) slopes for AOD, the 

percentage of sulfate molecules in the PBL, p, Temperature and RH; fixed slopes, b 5-14, for 

wind speed, PBL height, elevation, percent impervious surface area, counts from the NEI 

2008 within a buffer of 25 km, the distance to nearest road, fire counts within a 25 km 

radius, length of local roads, interaction between temperature and RH, and interaction 

terms between distance to major roads and local road length. We then fit a second stage 
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Generalized Additive Model (GAM), equation 3, over the residuals from equation 2 at each 

location and month, smoothing results over space.  

𝑃𝑀2.5𝑟𝑒𝑠𝑖𝑠𝑚
= 𝛼 +  𝑠(𝑋𝑠, 𝑌𝑠)𝑚 + 𝑠(𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝐼𝑚𝑝𝑒𝑟𝑣𝑖𝑜𝑢𝑠𝑠) + 𝑠(𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛) + 𝜀𝑠𝑚 

   Equation 3 

In equation 3, PM2.5 residuals at each location, s, and month, m, are regressed on a spatial 

spline of the projected X and Y locations of each point and spatial splines of the percent 

impervious surface area and elevation at each location, plus the random error, ε. 

a. No cloud gap-filled satellite model 

We adapt the model presented in Kloog et al (2014) to predict PM2.5 concentrations 

on each day at locations where AOD was not available. This model, presented in equation 

4, is a generalized additive model (GAM) with the mean PM2.5 from all monitors in the study 

area on that day, a smooth function of latitude and longitude, and a random intercept for 

each cell.  

𝑃𝑟𝑒𝑑𝑃𝑀𝑖𝑗 = (𝛼 + 𝑢𝑖) + (𝛽1 + 𝑣𝑖)𝑀𝑃𝑀𝑗 + 𝑠(𝑋𝑖, 𝑌𝑖) +  𝜀𝑖𝑗  Equation 4 

In equation 4 the predicted PM, PredPM, at each location, i, and time point, j, is modeled 

as a function of intercepts for the entire study area, α, and each grid cell, u i, and slopes for 

the mean PM2.5 concentration, MPM overall, β1, and at each location, vi, plus a smooth 

function of the latitude and longitude, s(X i, Yi).  

b. Cloud gap-filled satellite model 

Finally, for the cloud gap-filling model, we adapt the no cloud gap-filling model, 

adding additional meteorological and cloud parameters to better predict PM 2.5 

concentrations when AOD is missing. In this GAM model, represented by equation 5, the 

following predictors were additionally included; Cloud AOD (COD), cloud emissivity (CE), 

Temperature (Temp), Convective precipitation (CPrec), modeled PM2.5 from GEOS-Chem 
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(PM25), shortwave radiation downwards (SWIR), longwave radiation downwards (LWIR), 

elevation, percentage of impervious surface area (PImperv), PBL height (PBLh), Fire 

counts within a 25 km buffer (FireCounts), indicator for NEI 2008 source emissions 

(NEI2008), and distance to the nearest primary or secondary road (DistRds).  

𝑃𝑟𝑒𝑑𝑃𝑀𝑖𝑗 = (𝛼 + 𝑢𝑖) + (𝛽1 + 𝑣𝑖)𝑀𝑃𝑀𝑗 + 𝑠(𝑋𝑖, 𝑌𝑖) + 𝑠(𝐶𝑂𝐷𝑖𝑗) +  𝛽2𝐶𝐸𝑖𝑗

+ 𝑠(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖𝑗) + 𝑠(𝐶𝑃𝑟𝑒𝑐𝑖𝑗) + 𝑠(𝑃𝑀25𝑖𝑗) + 𝑠(𝑆𝑊𝐼𝑅𝑖𝑗)

+ 𝑠(𝐿𝑊𝐼𝑅𝑖𝑗) + 𝑠(𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑖) + 𝑠(𝑃𝐼𝑚𝑝𝑒𝑟𝑣𝑖) + 𝑠(𝑃𝐵𝐿ℎ𝑖𝑗)

+ 𝑠(𝐹𝑖𝑟𝑒𝐶𝑜𝑢𝑛𝑡𝑠𝑖𝑗) +  𝛽3𝑁𝐸𝐼2008𝑖 + 𝛽4𝐷𝑖𝑠𝑡𝑅𝑑𝑠𝑖

+ 𝑠(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖𝑗 , 𝑅𝐻𝑖𝑗) + 𝑠(𝐶𝑂𝐷𝑖𝑗 , 𝐶𝐸𝑖𝑗)

+ 𝑐(𝐶𝑃𝑟𝑒𝑐𝑖𝑗, 𝑊𝑖𝑛𝑑𝑆𝑝𝑒𝑒𝑑𝑖𝑗) + 𝑠(𝑃𝑀25𝑖𝑗 , 𝐿𝑊𝐼𝑅𝑖𝑗)

+ 𝑠(𝑃𝑀25𝑖𝑗 , 𝑆𝑊𝐼𝑅𝑖𝑗) +  𝜀𝑖𝑗 

Equation 5 

In equation 5, the predicted PM, PredPM at each location, i, and time point, j, is modeled 

as in equation 4, plus the addition of 18 parameters.  

V. Methods – Epidemiology models 

Exposure estimates for daily PM2.5 produced from the No cloud and Cloud gap-filled 

and ungap-filled satellite models were aggregated to daily ZIP code level estimates, with 

ZIP codes defined according to the 2010 Census TIGER definitions. [18] These ZIP code-

level daily estimates of PM2.5 concentration were then paired with daily counts of ED visits 

for asthma/wheeze, otitis media, and upper respiratory infection, and case-crossover 

models with stratification by ZIP code year, and month were used to obtain OR estimates 

between ED visits for each of the three outcomes and the three exposure estimates. Case-

crossover models included a number of variables to control for residual within-month and 
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seasonal confounding. We included cubic polynomials for same day temperature, humidity 

and day of year as well as indicators for day of week, warm season, holiday and lag holiday. 

We additionally included interaction terms between the warm season indicator and 

temperature, humidity, day of week, holiday and lag holiday.  

We also conducted sensitivity analyses to investigate the impact of effect modification 

by cloudiness and existence of an ungap-filled PM2.5 estimate. To accomplish this we 

followed the same methodology as the above, also matching cases to control days based 

off of cloudiness and existence of an ungap-filled PM2.5 estimate. The same set of variables 

as were used in the main models was used to control for residual within-month and seasonal 

confounding. 

Finally, we examined the effectiveness of the filtering technique used in Strickland et al 

[8], where to prevent weakening of effect estimates resulting from missing AOD 

observations in the exposure model, ZIP codes and days where less than 30% of the 

exposure observations were valid were screened out from the analysis. We screened ungap-

filled estimates using this same method.  

VI. Results 

Ten-fold cross-validation R2 estimates were 0.78 for the ungap-filled satellite model, 

0.74 for the cloud gap-filled satellite model, and 0.70 for the no cloud gap-filled satellite 

model. These results, reported in table 1, indicate model fits that are comparable to reported 

results for similar models in the southeast. [24] [25] Examining relative differences at the 

daily level between the no cloud and cloud models reveals a slight negative average relative 

difference, indicating that most locations had slightly lower estimates under the cloud than 

the no cloud model. A few exceptions, such as near roads and in locations with PM 2.5 
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emissions from NEI 2008 are visible in figure 1, below, which maps these average relative 

differences at each location. 

ZIP code level concentrations of PM2.5 averaged 13.5 μg/m3 under the ungap-filled 

model. Under the No cloud gap-filled model, concentrations averaged 13.6 μg/m3, and 

under the cloud gap-filled model concentrations averaged 12.9 μg/m3. Reflecting the lower 

average concentrations in the cloud gap-filled exposure model, ZIP code level 

concentrations are lower across the state, but particularly in the southern part of the state, 

relative to the no cloud gap-filled model. Again, some exceptions exist, primarily along road 

networks where differences between the cloud and no cloud gap-filled models are strongest 

(see figure 1). These differences aside, spatial patterns in the three exposure layers at the 

zip code level are fairly similar. 

After aggregation to ZIP codes, concentrations followed the same general pattern, see 

table 2, averaging 13.48 μg/m3 for the ungap-filled model, 13.58 μg/m3 for the no cloud 

gap-filled model, and 12.87 μg/m3 for the cloud gap-filled model.  A number of ZIP codes, 

200,607, were missing ungap-filled estimates, however concentrations were similar between 

the ungap-filled and no cloud gap-filled, while 475 were missing cloud gap-filled estimates.  

Strickland et al. found statistically significant associations for asthma or wheeze and 

upper respiratory infection, with odds ratios of 1.013 (1.003, 1.023) for asthma or wheeze 

and 1.015 (1.008, 1.022) for upper respiratory infection. [8] Using the same dataset, albeit 

restricted to 2003-2005, we observed statistically significant associations, see table 3, for 

both of these outcomes, as well as for otitis media, under both gap-filled exposure models. 

Under the ungap-filled exposure model we observed statistically significant results for 

asthma or wheeze and URI only. Our estimates, even the ungap-filled estimates which 

would best approximate the Strickland et al. values, are all higher than the original odds 



96 
 

 
 

ratios. This is likely a function of the difference in time period between the two studies, 

even though the same underlying data is used.  

We expected to observe that ungap-filled OR estimates would be attenuated towards 

the null relative to gap-filled estimates, with the cloud gap-filled estimates having the least 

attenuation and the smallest confidence intervals. We did observe, for the outcomes asthma 

or wheeze and OM, OR estimates under the ungap-filled satellite model were attenuated 

towards the null, relative to estimates from the gap-filled satellite models. Confidence 

interval sizes are also slightly smaller for the gap-filled estimates than for the ungap-filled 

estimates, a result of including additional cases in the gap-filled results. For the other 

outcome, URI, ungap-filled estimates were comparable to gap-filled estimates.  

The sensitivity analysis results, where estimates were broken down by cloudiness to 

look for effect modification between the groups, are laid out in figure 3.  All three exposure 

models produce comparable odds ratios under clear and partially cloudy conditions, when 

cloudcover is less than 80% of a ZIP code on a given day. However, under cloudy 

conditions, the ungap-filled exposure estimates are attenuated towards the null, relative to 

the gap-filled estimates. In the case of OM, this attenuation is enough to make the 

difference between a significant estimate and a non-significant estimate. In the case of OM, 

we also see some effect modification on cloudy days relative to clear and partially cloudy 

days, where cloudy effect estimates are significantly higher and exclude the null  whereas 

clear and partially cloudy estimates all include the null.  

After screening of ungap-filled exposure estimates where more than 30% of pixels in a 

given ZIP code on a given day were missing, OR estimates were weaker than before 

screening for all three outcomes and had larger confidence intervals. For asthma or wheeze, 

OR values dropped from 1.027 (1.010; 1.044) to 1.021 (0.993; 1.050) and became non-
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significant as confidence interval sizes increased. For otitis media, OR estimates dropped 

from 1.008 (0.994; 1.023) without screening down to 1.004 (0.980; 1.029) with screening. 

Upper respiratory infection followed the same pattern, decreasing from 1.031 (1.021; 1.042) 

to 1.028 (1.010; 1.046) with screening  

 VII. Discussion 

We observed statistically significant associations between daily no cloud and cloud gap-

filled satellite-based PM2.5 exposure estimates at the zip code level and asthma or wheeze, 

URI, and OM. These findings are broadly in keeping with the existing literature. Pediatric 

respiratory issues are broadly known to be associated with PM2.5 concentrations. [26] Upper 

respiratory infection, and asthma or wheeze fall into this category. Otitis media, has been 

shown to be associated with extremely high air pollution exposures (e.g. Household smoke), 

but associations with ambient levels of air pollutants are inconsistent in the literature. [27] 

[28]  

We observed that ORs for asthma or wheeze and OM were attenuated towards the null 

when ungap-filled estimates were used, relative to when cloud or no cloud gap-filled 

estimates were used. This was what we expected to observe, given non-differential exposure 

misclassification on a continuous outcome. In the sensitivity analysis we broke down results 

by cloudiness, confirming attenuation towards the null amongst cloudy observations for all 

three outcomes. This attenuation results from a combination of exposure misclassification 

and inclusion of additional cloudy cases in the dataset. Exposure misclassification results 

as ZIP codes and days with estimates from the ungap-filled model may be biased relative 

to gap-filled estimates since observations were only made over clear locations and 

observations made under cloudy locations tend to be lower on average. Additional cloudy 

cases are added into the dataset as ZIP codes and days which do not have an ungap-filled 
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estimates gain estimates under the gap-filled models. In the case of OM, there is also some 

evidence of effect modification by cloudiness. For this outcome, only gap-filled cloudy days 

are associated with an increase in ED visits as a result of same day PM2.5 exposure, and all 

other estimates cross over the null. 

Limitations of this study include possible error in the assignment of ambient air 

pollutant concentrations. Children spend a large amount of their daytime at locations which 

are not the residence, such as at a school or daycare center. These alternative locations may 

not be located in the same ZIP code as the residence leading to misclassification of 

exposure levels. However, since this type of misclassification would have been non-

differential relative to the outcome, results should be biased towards the null. Additionally, 

in this case, all three exposure models would have been equally affected. 

Finally, we did not investigate confounding by co-pollutants. This is a potential 

limitation of the study as clear sky days are also associated with increases in ozone, which 

has been reported to exacerbate ED visits for asthma.  [30] It is possible that confounding 

from other pollutants could have affected our results. However, this bias, particularly that 

from ozone should have resulted in an association with PM2.5 under clear skies that was 

higher than that under cloudy skies, effectively causing effect modification by cloudiness. 

Given the inconclusive results of our sensitivity analysis, it is likely that multi-pollutant 

models would be revealing in this case. Moreover, the additional uncertainty involved with 

characterizing ozone concentrations in the context of using multiple exposure models for 

PM2.5 would have complicated the analysis.  

 

VIII. Conclusions 
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We found statistically significant associations between PM2.5 and pediatric ED visits 

for asthma or wheeze, upper respiratory infection, and otitis media. Futhermore, we 

observed that ungap-filled satellite-based estimates were biased towards the null, relative to 

gap-filled satellite-based estimates, to the extent that different conclusions would have been 

reached in the case of otitis media. When results were broken down by cloudiness we 

additionally observed effect attenuation in estimates from the ungap-filled models under 

cloudy conditions. This attenuation in the results comes from a combination of increased 

study power via the addition of additional case-days with gap-filled but no ungap-filled 

exposure estimates and exposure misclassification in the ungap-filled estimates. We did not, 

however, identify significant differences between the two gap-filling methods, finding, 

instead, that the cloud and no cloud gap-filling models are roughly equivalent from an 

epidemiology standpoint. However, these results highlight the importance of gap-filling 

when using satellite-based models to represent the exposure. 
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Conclusion 

 

This dissertation has focused on missing observations in satellite retrievals of 

aerosol optical depth (AOD) and the impact of these missing observations on our ability 

to make accurate estimates of PM2.5 concentrations, as well as downstream impacts on our 

ability to estimate health impacts for this pollutant. In the introduction, we introduced the 

field of air pollution epidemiology, going over the basics of what PM2.5 is and how it has 

been associated with human health in the past. In chapter 1, we evaluated the coverage 

and accuracy in the 10 and 3 km AOD products from NASA, some based off of the dark 

target (DT) algorithm, and some based off of the deep blue (DB) algorithm. We found 

that, while all four of the products evaluated were highly accurate, coverage only averaged 

around 30% in the United States. This leaves around 70% of all AOD observations 

missing. We additionally examined the impact of including lower-confidence retrievals for 

AOD in a model relating AOD to PM2.5, finding that the gains in coverage associated 

with these noisier observations outweighed the loss of accuracy. Finally, we examined a 

number of potential sources of bias in AOD retrievals, namely, land cover type, scattering 

angle, solar zenith angle, sensor zenith angle, normalized difference vegetation index 

(NDVI), and total column precipitable water (TCPW), finding some amount of bias from 

all sources. Of particular interest were positive biases in AOD that was associated with 

developed land, shrub land, high scattering angles, low solar zenith angles, summer 

months, and low or high NDVI and TCPW. All four products were more susceptible to 

bias in the Western US than in the Eastern US. Of the four products surveyed, the 10 km 

DB product was most robust to bias from all sources.  
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In chapter 2, we characterized the missing data problem, showing that cloud-cover 

alters PM2.5 concentrations beneath the cloud via changes in associated meteorological 

conditions, wet deposition during precipitation events, and light blockage. We identified 

negative associations between PM2.5 concentrations and relative humidity (RH), planetary 

boundary layer height (PBL height), and wind speed, which we understood as coming 

from, respectively, changes in the rate of photooxidation of hydrocarbons, additional area 

available for vertical mixing, and increased rates of dry deposition and vertical and 

horizontal mixing. We additionally identified changes in speciation that occur under 

clouds as a result of light blockage. Namely, thick afternoon clouds are associated with 

decreases in the sulfate component of PM2.5, while thick morning clouds were associated 

with increases in the organic carbon component of PM2.5. Precipitation was associated 

with a general decrease in PM2.5 concentrations, as well as with changes in speciation, with 

indications that soluble components of PM2.5 were more likely to be deposited to the 

surface than non-soluble components, such as OC. We additionally demonstrated that 

gap-filling methods that account for cloud-cover produce estimated concentrations and 

spatial patterns of concentrations that are different from those obtained without gap-

filling or by using a gap-filling method that doesn’t account for the impact of cloud-cover.   

In chapter 3, we examined the impact of different satellite gap-filling techniques 

on odds ratio estimates for the relationship between pediatric ED visits for asthma or 

wheeze, upper respiratory infection and otitis media and PM2.5 concentrations. We found 

that when the satellite model was left ungap-filled, meaning that missing AOD 

observations were left missing in the final PM2.5 estimates,  odds ratios were attenuated 

towards the null for asthma or wheeze and otitis media, relative to odds ratios obtained 

when using any gap-filling technique. We further examined OR estimates stratified on 
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cloudiness, defining clear as having less than 20% cloud, partially cloudy as having 

between 20% and 80% and cloudy as having greater than 80% cloud. In stratified 

analyses, ungap-filled effect estimates were attenuated towards the null relative to 

estimates that use gap-filled exposure models.  

Our results highlight the problem of missing observations in satellite retrievals, 

demonstrating the importance of handling these observations and imputing any missing 

values, when estimating PM2.5 concentrations, particularly if these estimates are used in the 

context of determining human health impacts. 
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Figures and Tables 

 

 

Chapter 1: Evaluation of Aqua MODIS collection 6 AOD parameters for air quality research 

over the continental United States 

 

 

 

Chapter 1.Figure 1. Spatial distribution of AERONET (hexagons) and DRAGON 

(diamonds) sites over the study period from 1 January 2004 to 31 December 2013. The 

color of the symbols represents the number of collocations at each site. 
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Chapter 1.Figure 2. Mean coverage statistics for high confidence AOD retrievals in the 

CONUS for 10 km DT (a); 3 km DT (b); 10 km DB-DT (c); and 10 km DB (d). Coverage 

is calculated as the percentage of days between 1 January 2004 and 31 December 2013 

with a valid MODIS retrieval from Aqua. 
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AOD Parameter Coverage % (QAC 3 Only) Coverage % (QAC 1, 2, 3) 

3 km DT 28.2 28.9 

10 km DT 24.3 32.8 

10 km DB-DT 29.7 31.1 

10 km DB 28.9 49.6 

 

Chapter 1.Table 1. Coverage statistics for both QAC 3 retrievals only, and for all AOD 

retrievals. Coverage is calculated as the percentage of days with a valid Aqua retrieval for 

each AOD parameter. 
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Region QAC Parameter N Error Inter

cept 

Slo

pe 

R % 

Ab

ove 

EE 

% 

Bel

ow 

EE 

% 

Insi

de 

EE 

West 1 3 km DT 546 0.02 0.02 1.03 0.86 9.0 0.9 90.1 

10 km DT 1487 0.04 0.05 1.46 0.58 43.4 1.6 55.0 

10 km 

DB-DT 

482 0.01 0.01 1.06 0.85 7.3 1.5 91.3 

10 km DB 10603 0.04 0.07 1.01 0.52 42.0 2.0 55.9 

2 10 km DT 2577 0.08 0.08 1.30 0.58 58.1 2.4 39.6 

10 km 

DB-DT 

1321 0.01 0.03 0.95 0.47 27.0 3.3 69.6 

10 km DB 2316 0.01 0.04 0.90 0.62 27.8 3.4 68.9 

3 3 km DT 6251 0.06 0.06 1.41 0.64 48.9 2.5 48.6 

10 km DT 7814 0.02 0.03 0.98 0.71 25.3 5.6 69.1 

10 km 

DB-DT 

11590 0.01 0.01 1.01 0.73 17.3 5.1 77.6 

10 km DB 10662 −0.00 0.02 0.75 0.63 11.2 5.9 82.9 

East 1 3 km DT 883 0.02 0.04 0.80 0.79 12.6 4.6 82.8 

10 km DT 1322 0.02 0.02 1.19 0.82 26.6 5.6 67.8 

10 km 

DB-DT 

440 0.00 0.04 0.50 0.71 3.9 8.4 87.7 

10 km DB 7019 0.05 0.08 0.84 0.76 36.4 1.0 62.7 

2 10 km DT 1538 0.04 0.02 1.26 0.88 37.1 6.1 56.8 

10 km 

DB-DT 

16 0.13 0.17 0.42 0.21 62.5 0.0 37.5 

10 km DB 368 0.05 0.09 0.70 0.73 39.1 1.4 59.5 

3 3 km DT 5616 0.01 −0.01 1.24 0.89 16.0 7.6 76.4 

10 km DT 6409 0.00 −0.01 1.18 0.92 10.8 8.4 80.9 

10 km 

DB-DT 

6750 0.00 −0.01 1.17 0.91 11.7 7.5 80.8 

10 km DB 6617 0.01 0.03 0.79 0.80 10.5 2.6 86.9 

N: number of collocations. Error: τM − τA The intercept, slope, and correlation 

coefficient (r) are calculated using a linear regression model relating MODIS to 

AERONET AOD values. The error envelope is defined as ±(0.05 + 0.15)τA.  

 

Chapter 1.Table 2. Performance statistics for each AOD parameter. 



111 
 

 

 

 

 

 

Chapter 1.Figure 3. The dependence of AOD retrieval error and distributions of values 

for scattering angle (a); solar zenith angle (b); and sensor zenith angle (c). Median error 

(points) and the IQR (vertical line ranges from 25th to 75th percentile) is shown within 

quintiles. The distribution of values is shown in the background in gray and represents 

proportional frequency, where 0.25 on the y-axis represents the most frequent value in 

the category. 
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Chapter 1.Figure 4. Boxplot showing the distribution of retrieval errors in MODIS 

AOD relative to AERONET, for each month of the year, for 3 km DT (a); 10 km DT 

(b); 10 km DB-DT (c); and 10 km DB (d). For each box, the midline represents the 

median, upper, and lower hinges represent the 25th and 75th percentiles, whiskers extend 

out to 5th and 95th percentiles. 
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Chapter 1.Figure 5. Dependence of AOD retrieval errors and distributions of values in 

QAC 3 MODIS AOD for NDVI (a) and TCPW (b). Median AOD retrieval error (dots) 

and the IQR (vertical line ranges from 25th percentile to 75th) is shown within quintiles 

of NDVI, and total column precipitable water. The density distribution of values is 

shown in the background in gray and represents proportional frequency, where 0.25 on 

the y-axis represents the most frequent value in the category. 
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Parameter 

QAC 3 only Best of QAC 1, 2, 

and 3 

Filtered & Corrected 

AOD 

N R2 Fixed 

Slope 

N R2 Fixed 

Slope 

N R2 Fixed 

Slope 

3 km DT 10,438 0.76 14.4 10,438 0.76 14.4 9680 0.75 20.2 

10 km DT 8994 0.72 20.4 11,511 0.77 16.1 10,593 0.75 23.4 

10 km DB-DT 8994 0.72 20.4 8994 0.72 20.4 8457 0.71 25.7 

10 km DB 8560 0.80 31.2 14,706 0.83 11.7 13,448 0.83 16.7 

 

Chapter 1.Table 3. Performance statistics for each AOD parameter in the Atlanta case 

study. 
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Chapter 2: The potential impact of satellite-retrieved cloud parameters on ground-level PM2.5 mass and 

composition 

 

 

Chapter 2.Figure 1. Study site definitions and Environmental Protection Agency (EPA) 

ground monitor distributions within the two study areas. Mean PM2.5 concentrations 

over the study period are displayed for each monitor. 
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Study site and 

season 

No. of 

observations 

Mean 

PM2.5 

(μg/m3) 

Median 

PM2.5 

(μg/m3) 

San 

Francisco 

Total 23,357 9.5 7.0 

Winter 6393 13.6 10.2 

Spring 5739 6.0 5.5 

Summer 5173 8.1 6.5 

Fall 6052 9.8 7.9 

Atlanta Total 26,369 11.7 10.7 

Winter 6124 10.2 9.2 

Spring 6731 11.7 10.6 

Summer 6677 13.9 12.8 

Fall 6837 10.9 10.2 

 

Chapter 2.Table 1A. Descriptive results for total gravimetric mass 

 

Study site and 

season 

No. of 

observations 

Nitrate * Sulfate * Organic 

Carbon (OC) * 

San 

Francisco 

Total 2853 19.7 (2.5) 16.5 (1.3) 47.6 (5.3) 

Winter 722 28.5 (5.3) 7.0 (1.0) 52.0 (8.5) 

Spring 675 17.9 (1.2) 20.5 (1.3) 42.5 (2.9) 

Summer 724 15.2 (1.1) 24.6 (1.6) 43.7 (3.5) 

Fall 732 17.4 (2.2) 14.1 (1.3) 51.9 (6.0) 

Atlanta Total 2410 6.7 (0.7) 32.6 (3.4) 46.5 (5.1) 

Winter 570 11.9 (1.2) 27.3 (2.6) 48.2 (5.0) 

Spring 628 6.8 (0.7) 34.5 (3.6) 45.4 (5.3) 

Summer 607 3.3 (0.3) 37.0 (4.4) 43.4 (4.9) 

605 5.3 (0.5) 31.1 (3.1) 49.2 (5.0) 605 

* Values are presented as % total mass (species mass in µg/m3). 

 

Chapter 2.Table 1B. Descriptive results for species fractions 
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Observation Category 
Atlanta San Francisco 

Aqua Terra Aqua Terra 

Total 

gravimetric 

mass 

Matches 

with 

MAIAC 

All matches 21,700 21,359 19,388 19,390 

Matches with 

AOD missing 

14,470 

(67%) 

13,050 

(61%) 

7922 

(41%) 

7927 

(41%) 

Cloud 14,460 13,046 7733 7693 

Including 

MODIS 

cloud and 

RUC/RAP 

information 

Definitively 

uncloudy 

9 (<1%) 2 (<1%) 95 

(1%) 

178 

(2%) 

Possibly 

cloudy 

5860 

(41%) 

3556 

(27%) 

2355 

(30%) 

4326 

(56%) 

Cloud—

uncertain 

phase 

1100 

(8%) 

1994 

(15%) 

1124 

(15%) 

800 

(10%) 

Cloud—Ice 

cloud 

2725 

(19%) 

3210 

(25%) 

2397 

(31%) 

1530 

(20%) 

Cloud—

Water cloud 

4719 

(33%) 

4269 

(33%) 

1929 

(25%) 

1050 

(14%) 

Speciated 

Mass 

Fractions 

Matches 

with 

MAIAC 

All matches 1997 1982 2385 2394 

Matches with 

AOD missing 

1313 

(66%) 

1192 

(60%) 

868 

(36%) 

908 

(38%) 

Cloud 1313 1192 868 908 

Including 

MODIS 

cloud and 

RUC/RAP 

information 

Definitively 

uncloudy 

0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Possibly 

cloudy 

464 

(35%) 

480 

(40%) 

254 

(29%) 

458 

(50%) 

Cloud—

uncertain 

phase 

100 

(8%) 

141 

(12%) 

114 

(13%) 

98 

(11%) 

Cloud—Ice 

cloud 

286 

(22%) 

253 

(21%) 

252 

(29%) 

204 

(22%) 

Cloud—

Water cloud 

459 

(35%) 

311 

(26%) 

248 

(29%) 

147 

(16%) 

 

Chapter 2.Table 2. Categorization of observations using Multi-Angle Implementation of 

Atmospheric Correction (MAIAC), then MODIS cloud and rapid update cycle 

(RUC)/RAPid refresh (RAP) information. 
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Model R2 Estimates Possibly Cloudy Ice Clouds Water Clouds 

Atlanta Terra 0.56 0.71 0.74 

Aqua 0.57 0.69 0.73 

San Francisco Terra 0.47 0.60 0.64 

Aqua 0.45 0.54 0.56 

 

Chapter 2.Table 3. Model R2 estimates 
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Chapter 2.Figure 2. Effect estimate directions and significance for no cloud, ice cloud, 

and water cloud models. Each estimate is colored according to its direction (positive or 

negative) and significance (0.05 level). Excepting the intercepts, a positive estimate means 

an increase in that variable is associated with an increase in PM2.5 concentrations, a 

negative estimate with a decrease in concentrations. 



120 
 

 

 

Chapter 2.Figure 3. Case study results in San Francisco for January 2012. Results 

presented are mean concentrations in µg/m3 over the month of January for: (A) un-gap-

filled surface (Equation (2)); (B) Harvard model gap-filled surface (Equations (2) and (3)); 

(C) Cloud gap-filled surface (Equations (1) and (2)); (D) the difference between the 

Harvard gap-filled and Cloud gap-filled results at the monthly level; (E) the difference 

between the ungap-filled and Cloud gap-filled results at the monthly level; and (F) the 

fraction of days with a water or ice cloud, as detected by the MODIS M*D06 cloud 

product. 
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Effect attenuation in the relationship between pediatric ED visits and satellite -based PM2.5 exposure 

 

 

 

 

 

 Ungap-filled No cloud gap-filled Cloud gap-filled 

CV R2 0.78 0.70 0.74 

Chapter 3.Table 1 – CV R2 values for each of the three exposure models 
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Chapter 3.Figure 1 – 2003-2005 average of daily relative differences between the cloud 

and no cloud models over the 1 km MAIAC prediction grid 
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Exposure 

Model 

N Minimum P25 P50 Mean P75 Maximum 

Ungap-filled 558,385 2.0 9.51 12.76 13.48 16.38 71.55 

No cloud gap-

filled 

758,992 2.0 9.73 12.76 13.58 16.63 48.11 

Cloud gap-filled 758,557 2.0 8.8 11.92 12.87 15.92 52.41 

 

Chapter 3.Table 2 - ZIP code level exposure estimate distributions for the three 

different exposure models 
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Outcome 

group 

Ungap-filled model  No cloud model Cloud model  

 

Asthma or 

wheeze 

1.027 (1.010, 1.044) 1.040 (1.026, 1.055) 1.041 (1.026, 1.056) 

Otitis Media 1.008 (0.994, 1.023) 1.024 (1.012, 1.037) 1.023 (1.011, 1.036) 

Upper 

respiratory 

infection 

1.031 (1.021, 1.042) 1.038 (1.029, 1.047) 1.032 (1.023, 1.042) 

 

Chapter 3.Table 3 - Odds ratios per 10 µg/m3 increase in same-day PM2.5 

concentrations for ED visits for 6 pediatric health outcomes in Georgia. Odds ratios 

(ORs) and confidence intervals (CIs), presented as OR (95% CI) 
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Chapter 3.Figure 2 - Odds ratios per 10 microgram/m^3 increase in same-day PM2.5 

concentrations and ED visits for 3 pediatric health outcomes in Georgia under cloudy, 

partially cloudy (PartialCloud), and clear conditions (NoCloud) 


