
 

Distribution Agreement 

 
In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced 
degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive 
license to archive, make accessible, and display my thesis or dissertation in whole or in part in all 
forms of media, now or hereafter known, including display on the world wide web.  I understand 
that I may select some access restrictions as part of the online submission of this thesis or 
dissertation.  I retain all ownership rights to the copyright of the thesis or dissertation.  I also retain 
the right to use in future works (such as articles or books) all or part of this thesis or dissertation. 
 
 
 
 
 
 
Signature: 
 
_____________________________   ______________ 
Kylie E. C. Ainslie    Date 

 



 

 

 

 
Estimation of influenza vaccine effectiveness from observational studies 

 
By 

 
Kylie E. C. Ainslie 

 
Doctor of Philosophy 

 
Biostatistics 

 
 

_________________________________________ 
Michael Haber, Ph.D. 

Advisor 
 
 

_________________________________________ 
Vicki Hertzberg, Ph.D. 

Committee Member 
 
 

_________________________________________ 
Andrew Hill, Ph.D. 
Committee Member 

 
 

_________________________________________ 
Limin Peng, Ph.D. 

Committee Member 
 
 
 

Accepted: 
 

_________________________________________ 
Lisa A. Tedesco, Ph.D. 

Dean of the James T. Laney School of Graduate Studies 
 

___________________ 
Date 

 



 

 
 
 
 
 

Estimation of influenza vaccine effectiveness from observational studies 
 
 

By 
 
 
 

Kylie E. C. Ainslie 
M.S., Emory University, 2016 

A.B., Ripon College, 2011 
 
 
 

Advisor:  
Michael Haber, Ph.D. 

 
 
 
 
 
 
 
 

An abstract of  
A dissertation submitted to the Faculty of the  

James T. Laney School of Graduate Studies of Emory University 
in partial fulfillment of the requirements for the degree of  

Doctor of Philosophy 
in Biostatistics 

2018 
 

  



 

 
 

Abstract 

 
Estimation of influenza vaccine effectiveness from observational studies 

By Kylie E. C. Ainslie 

 
Each year seasonal influenza epidemics cause millions of influenza infections worldwide. Influenza 
vaccination is recommended as the best way to protect against influenza infection; however, a 
different vaccine must be produced each season due to changes in influenza virus types, subtypes, 
and phenotypes from one season to the next. To evaluate the reduction in influenza infections 
caused by vaccination, vaccine effectiveness (VE) is estimated each year. Observational studies are 
exclusively used to estimate VE in the United States after the universal recommendation of influenza 
vaccination because randomized clinical trials are now unethical. Here we consider five different 
types of observational studies used to assess VE. We use probabilistic models to estimate influenza 
VE from each study design. 
 
First, we develop a probability model and accompanying maximum likelihood procedure to estimate 
vaccine-related protection against transmission of influenza from the household and the community. 
We apply our method to data from a monitored household study conducted in Michigan during the 
2012-2013 influenza season and estimate source-specific transmission parameters and VE. We find 
that the 2012-2013 influenza vaccine provides a significant protective effect against community-
acquired transmission. 
 
Second, we develop a dynamic probability model for the evaluation of bias of VE estimates from 
four commonly used observational study designs: active surveillance cohort (ASC), passive 
surveillance cohort, test-negative (TN), and traditional case-control. We use the model to evaluate 
and compare estimates of VE against symptomatic and medically-attended influenza when different 
sources of bias are present. We show that the preferred study designs for estimating VE against 
symptomatic influenza and medically-attended influenza are ASC and TN studies, respectively. TN 
studies are cheaper and involve fewer logistical issues compared to ASC studies; however, if 
vaccination is suspected to affect the probability of non-influenza acute respiratory illness then one 
should consider a cohort study. 
 
Finally, we extend our dynamic probability model to further evaluate the bias of VE estimates from 
test-negative studies. First, we allow vaccination to occur over time (as in a pandemic). Several 
influenza pandemics have occurred throughout the past century, none greater than in 1918, which 
killed between 50 and 100 million people. Future influenza pandemics have the potential to inflict a 
tremendous disease burden. Thus, it is important to determine VE in this setting. Second, we 
assume an all-or-none vaccine model, where a proportion of vaccinated individuals acquire complete 
immunity from infection, while the remaining vaccinated individuals acquire no protection. This 
model differs from the vaccine model assumed in the second topic of this dissertation. However, 
since vaccine model cannot directly be observed it is important to assess the bias of VE estimates 
under this alternative model. For each extension we assess the bias of TN-based VE estimates when 
different sources of bias are present. 
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Chapter 1

Introduction

Each year seasonal influenza epidemics cause millions of influenza infections

worldwide [1]. While most individuals who become infected with influenza

have mild symptoms and recover without sequelae, some individuals can de-

velop severe illness, particularly those at high risk for infection (e.g., the el-

derly, persons with chronic health conditions, and young children) [2–5]. An

estimated 3 to 5 million cases of severe illness and 300,000 to 650,000 deaths

are caused by seasonal influenza epidemics worlwide according to the World

Health Organization (WHO) [1, 6]. In the United States, an estimated 140,000

to 710,000 influenza-related hospitalizations and 12,000 to 56,000 influenza-

related deaths occur each year [7]. In the 2014-2015 influenza season, a par-

ticularly severe influenza season, an estimated 40 million influenza illnesses,

19 million influenza-associated medical visits, and 970,000 influenza-associated

hospitalizations occurred in the United States [8].

In addition to seasonal epidemics, influenza has the potential to cause global

pandemics. The most recent pandemic in 2009 caused an estimated 60.8 million

cases of influenza, 274,304 hospitalizations, and 12,469 deaths in the United

States, according to the Centers for Disease Control and Prevention (CDC) [9].

The introduction of a vaccine against the novel influenza virus strain mitigated

the pandemic disease burden. An estimated 700,000 to 1.5 million cases, 4,000

to 10,000 hospitalizations, and 200 to 500 deaths were averted by administering
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the monovalent (containing a single strain of influenza virus) pandemic vaccine

[10].

Due to the rapid genetic changes that influenza viruses undergo, seasonal

influenza vaccines must be reformulated and readministered annually. While

the effectiveness (i.e., the prevention of illness in vaccinated persons) of in-

fluenza vaccines varies from season to season and by individual factors (e.g.,

age and health status), they are regarded as the most effective way to pre-

vent influenza infection. In 2010, the CDC began recommending annual in-

fluenza vaccination to everyone older than six months in the United States [11].

Even in years when influenza vaccine effectiveness (VE) is modest, vaccination

can drastically lower the disease burden. For example, the 2015-2016 seasonal

influenza vaccine had an effectiveness ranging from 24% to 57% (depending

on age group), resulting in an estimated 5.1 million influenza cases, 2.5 mil-

lion influenza-associated medical visits, and 71,000 hopitalizations that were

averted by vaccination [12]. Influenza poses a significant public health burden

and vaccination reduces this burden. Thus, it is essential that influenza VE be

estimated each season to quantify vaccine performance for the improvement of

future vaccines.

1.1 Influenza

Influenza is an infectious disease that can manifest as an acute respiratory ill-

ness (ARI) caused by influenza viruses. Influenza viruses are members of the

Orthomyxoviridae family and have a negative-sense ribonucleic acid (RNA) genome

comprised of seven or eight genes [13]. The virus particle is composed of both

structural (9) and non-structural (1 or 2) proteins encoded by the genome and
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a host-cell derived lipid envelope [14]. Three types of influenza viruses infect

humans: A, B, and C; however, infection with influenza C is rare in humans and

causes mild symptoms [15]. The two major pathogens in humans are influenza

A and B. Influenza A viruses can be further divided into different subtypes

based on the composition of glycoproteins, hemagglutinin (HA) and neuro-

minidase (NA), on the surface of the viral particles. Eighteen HA and 11 NA

subtypes have been identified [7]; however, not all combinations are found in

humans [16]. Currently, influenza A viruses with surface proteins HA 1 and

NA 1 (H1N1) and HA 3 and NA 2 (H3N2) circulate annually [17]. Influenza

B viruses are not subtyped, but two distinct lineages of influenza B circulate

annually: B/Yamagata and B/Victoria [18].

Influenza viruses circulate annually, typically during the winter months in

temperate climates (May to October in the Southern Hemisphere and October

to March in the Northern Hemisphere). The seasonality of influenza trans-

mission is dependent on the relative humidity and temperature. Specifically,

low relative humidity and cold temperatures (typical of winter months) favor

influenza virus transmission because infected individuals shed more virus in

colder temperatures and virus particles can remain airborne easier when rel-

ative humidity is low [14]. When an infected individual coughs or sneezes,

droplets, containing virus particles, are exhaled. When relative humidity is low,

water evaporates quickly from exhaled droplets forming very small droplet nu-

clei, which can remain airborne (and thus be inhaled by nearby individuals).

When relative humidity is high, exhaled droplets collect water causing the for-

mation of large droplets which fall more quickly out of the air [19].

In tropical regions, influenza viruses may circulate year-round with some re-

gions experiencing an influenza season that coincides with the rainy season [20,
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21], while other locations experience no well-defined influenza season [22]. The

different timing of influenza seasons, or lack thereof, in the tropics compared

to temperate climates may be caused by different modes of influenza trans-

mission. Transmission in the tropics may be dominated by direct transmission

(person-to-person contact), while transmission in temperate regions is domi-

nated by aerosol transmission [23]. It has been shown that aerosol transmission

within households is an important mode of transmission in tropical regions

[24], so while each region may be dominated by a single mode of transmission,

multiple modes play a role in the annual circulation of influenza viruses.

The duration and severity of the influenza season varies from year to year

depending on the circulating viral strains [11]. Each year, influenza viruses un-

dergo genetic changes that result in differences in the circulating viruses. Two

types of genetic changes can occur, antigenic drift and antigenic shift. Anti-

genic drift events are small genetic changes that occur continuously as the virus

replicates. These small changes produce viruses that are closely related to each

other. If a person has immunity against a particular viral strain (either from

prior infection or vaccination), and then is later infected with a closely related

viral strain, the immune system is more likely to mount a memory response.

However, multiple antigenic drift events can accumulate to produce a more

distantly related virus that is unlikely to produce a memory response and may

make previous immunity from prior exposure or from vaccination ineffective

[25].

Antigenic shift events are major genetic changes in the virus resulting in

novel viral surface protein combinations (i.e., a novel HA and NA combina-

tion), and can only occur in influenza A. An influenza virus that has undergone

antigenic shift is very different from the previously circulating viral strains.
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Due to the dramatic difference in viral strains, even people who had prior im-

munity from the original viral strain (before the antigenic shift event) will have

little to no immunity or protection against the new strain. Although shift events

only occur occasionally [26], these events have the potential to produce viruses

that cause large pandemics. For example, an antigenic shift event caused the

2009 H1N1 pandemic influenza strain.

1.1.1 Pandemic Influenza

Since the beginning of the 20th century, there have been five influenza A pan-

demics: 1918, 1957, 1968, 1977, and 2009. Each pandemic was the result of

the emergence, or reemergence, of a novel influenza A strain. The 1918 pan-

demic (nicknamed the "Spanish" influenza), the most deadly pandemic in his-

tory, was caused by the emergence of H1N1 [27, 28]. The 1957 Asian pandemic

was caused by the emergence of H2N2, while the 1968 Hong Kong pandemic

was characterized by the emergence of H3N2. Usually the emergence of a pan-

demic strain causes the discontinued circulation of the previously circulating

strain. For example, after the 1968 Hong Kong pandemic, H3N2 became the in-

fluenza A strain that circulated annually, replacing H2N2. However, in the Rus-

sian pandemic of 1977 H1N1 reemerged, and for the first time two influenza A

viruses circulated annually (H1N1 and H3N2) [17]. Finally, in 2009 a genetically

different pandemic strain of H1N1 (pH1N1) emerged [29].

Influenza pandemics have the potential to cause higher mortality than sea-

sonal epidemics. In the United States, it is estimated that 675,000 people died

from the 1918 pandemic, 116,000 from the 1957 pandemic, 100,000 from the 1968

pandemic, and 12,469 people from the 2009 pandemic. The decrease in mortal-

ity from each pandemic is likely due, in part, to better disease surveillance,
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medical intervention (e.g., vaccines and antivirals), and awareness.

Influenza viruses capable of causing a pandemic can occur in two ways: (1)

genetic reassortment between avian influenza viruses and circulating human

influenza viruses (as seen in the 1957 and 1968 pandemics) and (2) transmis-

sion from an avian reservoir to an intermediate host (such as swine) and then

transmission to humans after continued adaptations (as seen in the 1918 pan-

demic). The 1918 pandemic was so deadly because all eight viral genes came

from the avian reservoir, rather than an assortment of avian and human genes.

The completely avian genome of the 1918 strain resulted in no immunity in hu-

mans [30], hence the catastrophic global mortality (50-100 million people [27]).

Currently, there is no way to prevent the adaptation of influenza viruses

and the occurence of another pandemic. The WHO monitors novel influenza

A viruses through the Global Influenza Surveillance and Response System that

have the potential to adapt the ability to transmit effectively from person-to-

person, thus triggering a pandemic. Some novel influenza A viruses are be-

lieved to pose a greater threat than others, specifically several avian influenza

viruses that have caused infections in humans (H5N1, H7N9, and H9N2) [7].

The WHO and many individual countries, including the United States, have

developed pandemic preparedness plans [28]. One element of pandemic pre-

paredness is the rapid development of a vaccine against the pandemic strain.

Thousands of hospitalizations and hundreds of deaths were estimated to have

been averted by the monovalent vaccine against pH1N1 in 2009 in the United

States [10].
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1.2 Influenza Vaccine

The CDC recommends the influenza vaccine as the best way to prevent in-

fluenza infection [31], and has recommended annual vaccination to everyone

over the age of six months in the United States since 2010 [11]. Between the

2005-2006 and 2013-2014 influenza seasons, an estimated 40,127 influenza-associated

deaths were averted by influenza vaccination [32]. The influenza vaccine is

composed of inactive influenza viruses (both A and B) that are closely related to

the strains predicted to circulate in the coming season. Strain predictions in the

Northern Hemisphere are made by monitoring the strains that circulate during

the winter months in the Southern Hemisphere. Strains are then selected for

inclusion in the seasonal vaccine.

1.2.1 History of Influenza Vaccination

The first influenza virus (A(H1N1)) was isolated in 1933. Shortly after the suc-

cessful isolation of influenza virus, research began on an influenza vaccine. In

1936, the first monovalent influenza vaccine, composed of live-attenuated virus

(live virus that has been altered to make the pathogen less virulent or harm-

less), was created in the Union of Soviet Socialist Republics, and was widely

used in factory workers. Due to complexitities in preparing live-attenuated

vaccines, efforts were conducted in England and the United States to produce

an inactivated vaccine (composed of dead, inactive virus). Following the iso-

lation of influenza B in 1940, the first bivalent influenza vaccine (composed of

influenza A and B viruses) was created in 1942 [33]. The first population-scale
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use of an inactivated influenza vaccine was in United States military person-

nel in 1945 [34, 35]. By 1947, the bivalent vaccine began to show limited ef-

fectiveness, and a genetically disimilar A(H1N1) virus was isolated, prompting

researchers in France to begin studying the vaccine [36]. Due to the genetic vari-

ation in influenza viruses from season to season, early influenza vaccines began

to show limited protective effects. When H2N2 emerged in 1958, seasonal vac-

cines again failed, and a new bivalent vaccine was created which contained the

new influenza A strain [33].

In 1960, the United States Surgeon General recommended annual influenza

vaccination in high-risk individuals following the 1958-1959 influenza pandemic.

High-risk individuals were defined as individuals with chronic debilitating dis-

eases, persons over the age of 65, and pregnant women [37]. The Advisory

Committee on Immunization Practices (ACIP) reaffirmed this recommendation

in 1964 [38]. In 1973, the WHO began issuing recommendations for the compo-

sition of influenza vaccines based on influenza surveillance systems.

Due to the co-circulation of two influenza A strains (H1N1 and H3N2) and

influenza B in 1978, the first trivalent influenza vaccine was created. Since 2002,

two influenza B strains (B/Victoria and B/Yamagata) circulate annually in ad-

dition to the two circulating A strains [33]. The ACIP established the first na-

tional universal recommendation of seasonal influenza vaccination in 2010 in

the United States [11]. In 2012, a quadrivalent vaccine, composed of A(H1N1),

A(H3N2), B/Victoria, and B/Yamagata was approved by the United States

Food and Drug Administration [33]. Today, both trivalent and quadrivalent

vaccines are produced annually.

With the continued production of seasonal influenza vaccines, it is neces-

sary to determine how well each vaccine protects against influenza infection.
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The estimation and assessment of influenza VE every season provides infor-

mation regarding vaccine virus strain similarity with the circulating strains, in-

forms public health officials of the efficacy of the vaccination program in any

given season, identifies at risk groups within the population, and provides the

basis of educational materials disseminated to the general public and heathcare

providers on the merits of seasonal vaccination [39]. Based on the seasonal es-

timates of VE, the live-attenuated influenza vaccine, previously recommended

for children, was not recommended during the 2016-2017 and 2017-2018 sea-

sons due to concerns about its effectiveness against A(pH1N1) during the prior

two seasons [40].

1.2.2 Vaccine Efficacy and Effectiveness

Vaccine efficacy is defined as the relative reduction in influenza risk in vac-

cinated individuals compared to unvaccinated individuals, under ideal condi-

tions [35]. Vaccine efficacy refers to the reduction in the risk of disease in a vacci-

nated person through direct effects of the vaccine assessed through a random-

ized clinical trial (RCT). Vaccine effectiveness refers to the impact of a vaccine

assessed using observational studies. Both vaccine efficacy and effectiveness

are defined as one minus the relative risk of disease in vaccinated individuals

versus unvaccinated individuals. In an outbreak situation, as in a seasonal in-

fluenza epidemic, relative risk can be expressed as the ratio of attack rates in

the vaccinated and unvaccinated [41]. Attack rate is defined as the proportion

of new cases in the susceptible (those capable of being infected) population.

Orenstein et al. define vaccine efficacy as one minus the ratio of attack rate in

vaccinated persons compared to unvaccinated persons [42]. A more appropri-

ate term for the attack rate calculated over the entire influenza season (as is
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done when estimating VE) is ‘cumulative incidence’. Seasonal attack rates are

the cumulative number of infected individuals in a group (e.g., vaccinated or

unvaccinated) divided by the total number of persons at risk in that group.

After the univeral recommendation of the influenza vaccine in the Unites

States [11], RCTs are no longer considered ethical. Thus, observational studies

must be used to estimate vaccine effectiveness rather than efficacy. Both vac-

cine efficacy and effectiveness measure the direct effects of vaccination (i.e., the

amount of protection conferred to an individual by the vaccine). The use of

observational studies to assess VE may lead to biased estimates due to lack of

random vaccination assignment. However, observational studies allow for the

measurement of the effectiveness of a vaccine program through both direct ef-

fects of the vaccine and indirect effects on the entire at risk population [43]. The

two main classes of observational studies used for the estimation of influeza VE

are cohort and case-control studies.

Cohort Studies

In cohort studies used to assess influenza VE, members of the study population

are identified prior to the influenza season and followed throughout the study

period. There are two main types of cohort studies: active surveillance cohort

(ASC) and passive surveillance cohort (PSC). In ASC studies, cases are defined

as individuals in the cohort who reported an ARI and test positive for influenza.

Study participants report each occurence of ARI symptoms to study personnel

and are then tested for influenza infection regardless of whether the participant

seeks medical care for their symptoms. In PSC studies, cases are only selected

from individuals in the cohort who seek medical care for ARI and subsequently

test positive for influenza. Non-cases in both study designs are defined as all
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study participants who are not considered cases. ASC studies aim to test every-

one who develops ARI for influenza and thus can capture cases with influenza

illness of any severity, not just those that necessitate seeking medical care. The

prospective nature of cohort studies allows for the collection of information on

timing of infection and vaccination.

As in RCTs, VE is defined in cohort studies as one minus the relative risk

[44–46], where relative risk is estimated by comparing the incidence of the

outcome (e.g., influenza illness) among the vaccinated to the incidence of the

outcome among the unvaccinated [47]. VE has also been estimated in cohort

studies as one minus the hazard rate ratio [48, 49] using the Cox proportional

hazards model [50]; however, the hazard ratio may differ from the relative risk.

Unlike in a RCT, vaccination status is not assigned randomly, thus the observed

vaccine effect may be confounded by risk factors other than vaccination status

[44]. For example, a person’s health status may be associated with the probabil-

ity of being vaccinated. Consider a person who is in good health. This person

may be more likely to be vaccinated because they are generally healthy and

want to maintain their good health resulting in less vaccinated cases, which

bias VE estimates upwards. Conversely, that same healthy person may be less

likely to be vaccinated because they are in good health and less likely to be-

come infected with influenza resulting in less unvaccinated cases, biasing VE

estimates downwards. The sources of bias that may be present in cohort studies

are further discussed in Chapter 3.

Another complication of cohort VE studies is that vaccination status may

change during the study period. Estimating relative risk using attack rates

makes the implicit assumption that exposure (e.g., vaccination) is the same for

each person in the exposed group. However, an individual vaccinated at the
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beginning of the study has a different exposure than someone vaccinated in the

middle of the study period. An alternative estimate of VE called the person-

time estimate (V EPT ) allows for vaccination status to vary over time, and is

calculated by determining the proportion of new cases in vaccinated and un-

vaccinated individuals for every time point t. For illustration, we will consider

one time point to be one week. LetNvj denote the number of persons in the pop-

ulation of vaccination status v = 0, 1 (0 - unvaccinated, 1 - vaccinated) in week

j = 1, . . . , J , where J is the last week of the study. Let Cvj denote the number of

new cases of symptomatic influenza (persons on day 1 of the infectious period)

in the population of vaccination status v = 0, 1 in week j = 1, . . . , J . Using the

above notation, VE can be estimated as

V EPT = 1−

J∑
j=1

C1j/
J∑
j=1

N1j

J∑
j=1

C0j/
J∑
j=1

N0j

We will use this alternative VE estimate in Chapter 4 to assess the bias of VE

estimates when vaccination occurs throughout the study period.

A third type of cohort study, a monitored household (MH) study, is a special

type of ASC study in which entire households are enrolled in the study instead

of unrelated individuals. A MH study design has recently been adopted to

assess influenza VE [49, 51, 52] because transmission of influenza within the

household has been shown to play an important role in influenza disease dy-

namics [24, 53]. During the influenza season, there are potentially two different

types of influenza exposures: exposure to other infected household members

and exposure to individuals in the larger community. Unlike ASC and PSC



1.2. Influenza Vaccine 13

studies, MH studies allow for the separate estimation of VE against household-

acquired and community-acquired influenza infection [49]. Determining sepa-

rate estimates of VE from different sources of infection is the focus of Chapter 2.

Case-Control Studies

Traditional case-control (TCC) studies have historically been used to estimate

influenza VE when RCTs were not feasible [54]. Within TCC studies, cases are

defined as individuals who seek medical care for an ARI and test positive for

influenza infection. Controls are selected randomly from people who did not

develop an ARI. In TCC studies, VE is defined as one minus the odds ratio

comparing the odds of vaccination in cases and controls [46, 55, 56]. TCC stud-

ies may introduce bias into VE estimates because cases are selected only from

people infected with influenza who sought medical care, while controls are ran-

domly selected from the population. More recently, a newer case-control study

design has been used to estimate influenza VE in an attempt to reduce the bias

introduced using a TCC study.

The test-negative design (TN) has become a popular observational study

design for estimation of influenza VE [57, 58]. TN studies are a type of case-

control study in which cases are defined as individuals who seek medical care

for an ARI and test positive for influenza infection. As the name suggests, con-

trols are defined as individuals who seek medical care for ARI and test negative

for influenza infection. A TN study was first used to estimate the effectiveness

of the pneumococcal vaccine [59], and has since been used to evaluate vaccines

against rotavirus [60, 61], cholera [62, 63], meningococcus [64], and influenza
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[56, 65]. The TN design was first used to estimate influenza VE in Canada dur-

ing the 2004-2005 [56] and 2005-2006 [65] influenza seasons. The TN is attrac-

tive because it is convenient, can be applied to existing surveillance programs,

and controls for confounding due to propensity to seek medical care because

cases and controls are selected from the same population. However, selection

bias may be introduced into estimates of VE obtained from TN studies because

cases and controls are selected only from persons who seek medical care. This

may not accurately reflect the entire population of cases and controls.

An important assumption underlying the validity of the TN design is the

exposure (e.g., influenza vaccine) has no effect on the probability of develop-

ing the control outcome (e.g., a non-influenza ARI (NFARI)). Recent studies

to test this assumption are conflicting. In a RCT, Cowling et al. found that

vaccinees had a significantly increased risk of developing a NFARI compared

to non-vaccinees [66]. Other studies found no increased risk of developing a

NFARI in vaccinees compared to non-vaccinees [45, 67]. Since the validation

of its methodology [55] and core assumption [45], the TN has become the most

widely used study design for the estimation of influenza VE.

1.3 Disease Modeling

Before assessing the impact of an intervention on the transmission of an infec-

tious disease, it is important to understand the natural history of the disease

(i.e., what causes infection, who is susceptible, and how the disease is transmit-

ted). Influenza infection is caused by influenza viruses. Influenza viruses can

infect everyone; however, the young, elderly, and those with chronic health

conditions are at increased risk of infection [7]. Influenza is mainly spread
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person-to-person by exposure to droplets when infectious individuals cough,

sneeze, or talk. Influenza virus particles can survive for hours on non-porous

surfaces, so individuals can become infected by touching a surface contami-

nated with influenza virus and then touching their own mouth or nose [7, 68].

Recent research has shown that aerosol transmission of influenza via very small

droplets is an important mode of influenza A transmission, particularly within

households [24].

Once an individual becomes infected with influenza, they enter an incuba-

tion (or latent) period after which they become infectious. The average latent

period for seasonal influenza is two days, but can range from one to four days

[69–73]. The infectious period of influenza lasts for approximately four to five

days [74], but children or severely immunocompromised individuals may shed

virus for longer [75, 76]. After an individual recovers, they usually acquire

immunity from the viral strain with which they were infected; however, con-

siderable genetic change in the virus can result in immune escape.

1.3.1 Epidemic Models

Epidemic models are used to approximate the natural history of infectious dis-

eases by combining biological characteristics (e.g., susceptibilitiy, infectious-

ness, and length of infectious period) with social characteristics (e.g., social

mixing patterns and contact structures) [77], and are an important tool used to

understand the biological and sociological mechanisms of disease transmission

[78]. Many epidemic models divide individuals by their disease status [79–81]

and describe the number of individuals who are susceptible to, infected with,

and recovered from a particular disease [82]. The simplest epidemic model is
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the susceptible-infected-removed (SIR) model, and has been used to model dis-

eases characterized by lifelong immunity after infection, such as measles [83]

and whooping cough [84]. The SIR model describes a disease process in which

individuals are initially susceptible, can become infected with rate λ, and then

after a period of time are removed from the susceptible population either by

recovery and acquired immunity or by death with rate ν (Figure 1.1) [79].

Figure 1.1: SIR epidemic model

SIR model of an infectious disease in which individuals are ini-
tially susceptible (S), can become infected (I) with rate λ, and fi-

nally are removed (R) from the population with rate ν.

An extension of the SIR model is the susceptible-exposed-infectious-removed

(SEIR) model [85], which adds the exposed (E) state, where an individual has

been exposed to an infective, but is not yet infectious. In the SEIR model, in-

dividuals are initially susceptible and can become infected with rate λ, then

after a latent (or exposed) period, may become infectious with rate θ. Finally,

infectious individuals recover with rate ν (Figure 1.2). The exposed state is also

referred to as the latent period. The SEIR model has been used extensively to

model influenza [86–90]. In the following chapters, we assume influenza trans-

mission follows the SEIR model. We build upon this assumption to develop

more complex models for the evaluation of vaccine-related protection from in-

fluenza infection.
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Figure 1.2: SEIR epidemic model

SEIR model of an infectious disease in which individuals are ini-
tially susceptible (S), can become exposed (E) with rate λ, can be-
come infectious (I) with rate θ, and finally are removed (R) from

the population with rate ν.

1.4 Aims

The aims of this dissertation are to estimate influenza VE from observational

studies and assess these estimates with respect to bias. We first estimate in-

fluenza VE from different sources of transmission from a MH study (Chapter 2).

Next, we assess the bias of VE estimates from four different observational study

designs in the presence of sources of bias that may be related to the probabili-

ties of vaccination, developing ARI, and seeking medical care (Chapter 3). We

compare the bias from the different study designs to form a recommendation of

the study design(s) best used in practice when different sources of bias may be

present. Finally, we further investigate the bias of VE estimates from TN stud-

ies in Chapter 4 when deviating from our model assumptions in Chapter 3 by

allowing vaccination to occur over time and assuming an alternative vaccine

model. Throughout this work, we only consider unadjusted estimates of VE

as we are interested in characterizing how, and to what degree, sources of bias

influence estimates of VE.
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1.4.1 Estimation of influenza vaccine effectiveness in house-

hold studies

MH studies have gained popularity in the past few influenza seasons [48, 49,

51, 52] since, while logistically more challenging, they provide several advan-

tages over other study designs. MH studies are less susceptible to selection bias

(due to enrollment prior to the influenza season), allow for the assessment of

VE against influenza infection of any severity, and provide longitudinal data on

vaccination status and infection history [49]. The longitudinal nature of house-

hold data allows for the estimation of VE against influenza infection from other

household members separately from VE against influenza infection from indi-

viduals outside of the household.

Previous methods have been developed for the estimation of transmission

parameters and VE from household data. Longini and Koopman [91] devel-

oped a probability model and maximum likelihood procedure for the separate

estimation of influenza transmission parameters in the household and commu-

nity from final count data, but do not estimate VE. Halloran et al. developed

a framework to estimate VE from time-to-event household data using the sec-

ondary attack rate, but did not account for community transmission [92]. Davis

and Haber incorporated temporal information into VE estimates using survival

models as a method to estimate influenza transmission probabilities from com-

munity and household contacts [93]. Neither of the approaches used by Hal-

loran et al. or Davis and Haber allow for the estimation of source-specific VE,

which is the focus of Chapter 2. Ohmit et al. [49] estimate source-specific VE

using the Cox proportional hazards model, but make assumptions about the

source of infection based on viral type/subtype and the timing of infection, as
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infection source cannot be directly observed.

In Chapter 2, we present a probability model and accompanying maximum

likelihood procedure to first estimate source-specific transmission parameters

from time-to-event household data. Using these transmission parameter esti-

mates, we then estimate VE separately against influenza transmission from the

household and from the community. Our approach does not require the source

of infection to be known and incorporates temporal information into VE esti-

mates. Additionally, our model allows vaccination to occur during the study.

We use symptomatic influenza (SI), defined as laboratory-confirmed infection

with the influenza virus that develops into an ARI, as our outcome of interest.

Using an agent-based simulation program we evaluate our model. Finally, we

apply our method to data from an ongoing, longitudinal MH cohort study in

Ann Arbor, MI [49, 51, 52].

1.4.2 Evaluation of bias of influenza vaccine effectiveness

estimates from observational studies

Observational studies remain the only option for estimating influenza VE in

the United States, most commonly against influenza illness requiring outpa-

tient medical care [94–97], since the CDC’s universal recommendation of the

seasonal influenza vaccine [11]. Unlike RCTs, the exposure (e.g., vaccination)

cannot be randomized in observational studies, possibly introducing bias into

estimates of VE. Numerous studies have tried to evaluate the bias of influenza

VE estimates from case-control studies [46, 55, 57, 98, 99]. Little has been done

to evaluate the bias of VE from cohort studies or to compare the bias of VE

estimates in case-control and cohort studies.
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In Chapter 3 we evaluate and compare the bias of VE estimates from ASC,

PSC, TN, and TCC studies. To accomplish this, we develop a dynamic model

(Figure 1.3) that extends previously developed static models [98, 99]. Our model

provides several advantages over existing models: 1) a time component allow-

ing for the intensities of FARI and NFARI to change over time and the possibil-

ity of developing more than one ARI in a season; 2) the incorporation of two

covariates (health status and health awareness) that may affect the probabilities

of vaccination, developing ARIs, and seeking medical care for these ARIs; and

3) the ability to assess VE estimates from cohort studies. We use the model to

evaluate and compare the bias of VE estimates against both SI and medically-

attended influenza (MAI) when different sources of bias are present.

Figure 1.3: Dynamic model of influenza vaccine studies.

X = health status, (U) = health awareness (unobserved), V =
vaccination status, Yj = ARI status in week j, Mj = seeking med-
ical care for ARI in week j, and Tj = influenza test result in week
j, where j = 1, . . . , J and J = the number of weeks in the study.
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1.4.3 Bias of test-negative-based estimates of influenza vaccine

effectiveness

The TN study design has become the preferred design for assessing annual

influenza VE because it is practically easier than other study designs and min-

imizes confounding related to health-care seeking behavior because both cases

and controls are selected from individuals who seek medical care for ARI [100].

Many countries have incorporated TN studies into their annual influenza surveil-

lance systems [101–105]. With the growing popularity of the TN design, it

is important to assess the validity of TN-based VE estimates. Previous work

has demonstrated the validity of TN-based estimates of VE if vaccination does

not affect the probability of developing a NFARI in outpatient settings [45, 55,

57, 98, 106], in inpatient settings [32], and when the influenza test has imper-

fect sensitivity and specificity [46]. However, these studies make assumptions

about the timing of vaccination, the vaccine model, and the definitions of cases

and controls. In Chapter 4 we present two extensions to the model presented

in Chapter 3.

First, we evaluate the bias of TN-based VE estimates when individuals get

vaccinated during the study period, as may happen during a pandemic when

a vaccine becomes available in the middle of an outbreak [7]. Previous work

addressing the bias of VE estimates from TN studies has assumed that all vac-

cinated individuals are vaccinated prior to the study period [32, 45, 46, 55, 57,

98, 106]. The assumption of vaccination prior to the study period is reasonable

for seasonal epidemics because vaccine campaigns begin prior to the outbreak;

however, it is not a reasonable assumption during an influenza pandemic. Dur-

ing the 2009 influenza pandemic, a vaccine was made available months after the
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start of the outbreak [7].

Second, we assume an all-or-none vaccine model [44], that is, of the people

who are vaccinated a proportion ρ are conferred complete immunity from in-

fluenza infection, while the remaining proportion (1 − ρ) are fully susceptible

to influenza infection. In Chapter 3 we assumed a leaky vaccine model [44],

where vaccinations lowers the probability of infection by ρ.

In Chapter 5 we present on-going work to assess the bias of TN-based VE es-

timates for different definitions of cases and controls in the presence of sources

of bias. Most previous work has ignored different definitions of TN cases and

controls. For example, if an individual seeks medical care for ARI twice dur-

ing the study period and tests negative for influenza during their first visit and

positive during their second visit, they could be included only as a control, only

as a case, or as a control for their first visit and as a case for their second visit.

We aim to assess the bias of TN-based estimates for five different definitions of

cases and controls. There is no consensus on the definiton of cases and controls

in the event of multiple ARI-related medical visits. This work is motivated by a

desire to better inform the design and implementation of TN studies to produce

more reliable VE estimates.
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Chapter 2

Estimation of influenza vaccine

effectiveness in household studies

Originally published in Statistics in Medicine, v. 37(6), 2017, pp. 970-982.

https://doi.org/10.1002/sim.7558

2.1 Introduction

Influenza vaccination is recommended every season due to changes in influenza

virus types, subtypes, and phenotypes from one season to the next. The varia-

tion in the influenza virus requires the production of a new vaccine each season,

thus vaccine effectiveness (VE) must be estimated each year [107]. The concept

of ‘vaccine effectiveness’ is based on comparing the probability of illness of a

vaccinated person to that of an unvaccinated person, i.e., it measures the benefit

of vaccination for a single individual. VE is defined as one minus the risk ratio,

where risk is defined as the probability of becoming infected and ill through-

out the influenza season. In this work we use the term ’vaccine effectiveness’

rather than ’vaccine efficacy’ because the former is estimated using observa-

tional studies, while the latter is estimated from a randomized trial.

https://doi.org/10.1002/sim.7558
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Observational studies have been increasingly used to assess the benefit of

influenza vaccination. Most commonly, observational studies on unrelated in-

dividuals have been used to estimate VE against influenza illness requiring

outpatient medical care [94–97]. The household unit has been shown to play

an important role in the transmission of influenza [24, 53]. Additionally, house-

hold data has been shown to provide more robust estimates of VE than data

consisting of unrelated individuals [93], thus recent VE studies have employed

a MH cohort design [48, 49, 97].

In a MH study, entire households are enrolled and closely monitored over

the course of the study period. Whenever a participant has ARI, s/he has to

report to study personnel who arrange for a swab to be taken and tested for in-

fluenza infection. Despite being expensive and logistically complex, MH stud-

ies are attractive to assess influenza VE because they allow for the observation

of time of influenza disease and vaccination as well as allow for the estimation

of VE against community-acquired and household-acquired influenza [49, 97].

An additional advantage of a MH study is that it allows for the examination of

SI of any severity regardless of whether participants sought medical care [49,

94, 97]. Other commonly used study designs (ordinary cohort, in which in-

dependent individuals are followed rather than households, case-control, and

test-negative [58, 106]) are only able to capture individuals infected with in-

fluenza who seek medical care. These studies are prone to bias as many people

infected with influenza may not seek medical care, and those who seek medical

care might not represent the entire population.

Statistical methods have been developed to estimate influenza VE from house-

hold data, first from final data in which influenza infection was assessed after
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the season by serological testing [91, 108, 109] and more recently from time-to-

event data [49, 51, 92, 93, 97]. Longini and Koopman [91] developed a prob-

ability model and maximum likelihood procedure for the separate estimation

of influenza transmission parameters in the household and community from

final count data. Haber et al. [108] extended this model to assess the impact of

risk factors on influenza transmission. It has been shown that the use of time-

to-event data produces VE estimates with smaller bias compared to estimates

produced using final data [93]. Halloran et al. [92] developed a framework

to estimate VE from time-to-event household data using the secondary attack

rate, but did not account for community transmission. Davis and Haber [93]

incorporated temporal information into VE estimates using survival models

as a method to estimate influenza transmission probabilities from community

and household contacts. Neither of these approaches allow for the estimation

of source-specific VE, which is the focus of this work. Ohmit et al. [49] esti-

mate source-specific VE using the Cox proportional hazards model, but make

assumptions about the source of infection based on viral type/subtype and the

timing of infection, as infection source cannot be directly observed.

We present a probability model and accompanying maximum likelihood

procedure to first estimate source-specific transmission parameters and then to

estimate vaccine-related protection against transmission of influenza from the

household and from the community from time-to-event household data. Our

approach does not require the source of infection to be known and incorporates

temporal information into VE estimates. Additionally, our model allows vacci-

nation to occur during the study and does not assume household VE is equal to

community VE, thus providing a framework to estimate VE against influenza

infection separately from each source. However, for interpretability, VE needs
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to be estimated assuming all vaccinated individuals are vaccinated over the

entire study period. To assess VE, we use SI, defined as laboratory-confirmed

infection with the influenza virus that develops into an ARI, as our outcome of

interest. We perform a simulation study to evaluate our model and then apply

our model to data from the Household Influenza Vaccine Effectiveness (HIVE)

study. The HIVE study has been established in Ann Arbor, MI as an ongoing,

longitudinal MH cohort to better characterize the impact of households on in-

fluenza transmission [49, 51, 52].

2.2 Methods

We consider a population composed of households of varying sizes as in a MH

study. There are potentially two different sources of influenza exposure, expo-

sure to other infected household members and exposure to infected individuals

in the larger community. We define the study period as a single influenza sea-

son.

We make several important model assumptions: (1) Each member of the

study population belongs to a household. (2) Persons are only classified by their

household membership (i.e., there are no other stratifying variables or covari-

ates). (3) Each person makes daily contacts with each member of their house-

hold and with randomly selected community contacts. (4) There is random

mixing within the household and among community members. (5) A person

can only be infected once during the study. Thus, once a person is infected with

influenza s/he is removed from the at risk population for the remainder of the

study. (6) Asymptomatic influenza cases - persons infected with influenza, but

do not develop ARI - have a very small probability of transmitting influenza to
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others (and therefore, are not accounted for in our model). (7) The per-contact

transmission probabilities within a household and among the community for

vaccinees and non-vaccinees remain constant throughout the study. (8) The

vaccine provides reduction in transmission probability (leaky vaccine model

[43, 44]) and only affects susceptibility to influenza. (9) The length of the latent

and infectious periods are constant and known.

2.2.1 Probability Model

In real data, it is difficult to ascertain the source of infection for each individual.

Recent studies have attributed the source of infection to a household member if

the influenza type/subtype are the same and the secondary case was identified

within a short time period from the index case [48, 49, 51, 97]. However, it is

not possible to actually observe source of infection (except in challenge stud-

ies) thus, it is important to develop a probability model that can be used when

source of infection is unknown.

Below we present a probability model for estimating VE for household-

acquired and community-acquired influenza. To accomplish this, we first esti-

mate influenza transmission parameters within the household and in the com-

munity using a maximum likelihood procedure. Then, using these transmis-

sion parameter estimates, we estimate source-specific influenza VE. Table 2.1

defines the parameters used in the model.

Consider a susceptible person i on day d. Let Yid denote the infection status

for that person, where
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Table 2.1: Model parameters

Parameter Definition
i Index over people, where i = 1, . . . , N
d Index over days, where d = 1, . . . , D
j Index of infection status on a given day: (0=escaped infection

(susceptible), 1=made an infectious contact on this day, 2=made
an infectious contact before this day).

vid Vaccination status of person i on day d. Also denoted at v
(0=unvaccinated, 1=vaccinated)

βv Daily transmission probability from an infectious household
member to a susceptible with vaccination status v = 0, 1

γv Daily transmission probability from infectious community con-
tacts to a susceptible with vaccination status v = 0, 1

mid The number of infectious persons in the household of person i
on day d

p(d) The prevalence of influenza infection on day d
πijd Conditional probability that person i has infection status j on

day d given that s/he was susceptible on the previous day
ψijd Unconditional probability that person i has infection status j on

day d
λiH Probability that person i was infected from a household contact

by the end of the study
λiC Probability that person i was infected from a community con-

tact by the end of the study

Yid =


0 person i susceptible by the end of day d

1 person i made an infectious contact on day d

2 person i made an infectious contact before day d

Let vid denote her/his vaccination status (vid = 0, 1 for unvaccinated and

vaccinated, respectively). We define βvid as the daily transmission probability

to that person from a single household contact; similarly, we define γvid as the
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daily transmission probability of infection from the community to that person

when everyone else is infectious. Since vid can only take on the values 0, 1 for

any person on any day, we have four transmission parameters: β0, β1, γ0, γ1.

We assume that the latent period, the time between an individual getting

infected and becoming infectious, begins on the day after the infectious con-

tact was made. An infected person becomes infectious L + 1 days after making

an infectious contact and remains infectious for I days, where L and I are the

length of the latent and infectious periods, respectively. For example, if an in-

fectious contact is made on day 1 then, the latent period lasts two days (days 2

and 3) and the infectious period lasts four days (days 4-7). After the duration

of the infectious period, the person recovers and remains immune for the rest

of the study. It is usually assumed that the day of becoming infectious is the

day of onset of symptoms, i.e., the length of the incubation period equals the

length of the latent period. During our estimation process, we observe the first

day of the infectious period and determine the day of the infectious contact by

subtracting L + 1. We let p(d) denote the prevalence of influenza infection on

day d, defined as the proportion of the population who is infectious [110], and

let mid be the number of infectious persons in the household of person i on day

d. When determining the probability that a person is infected from community

contacts on day d, we multiply γvid by the proportion of infectious individuals

in the population on that day, p(d).

Let πijd = P(Yid = j|Yi(d−1) = 0) denote the conditional probability that

person i has infection status j on day d, given that s/he was susceptible on

the previous day, j = 0, 1, 2. Let ψijd = P(Yid = j) denote the unconditional

probability that person i has infection status j on day d, j = 0, 1, 2. All of the

probabilities involving individual persons are conditioned on the vaccination
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history of individual i, Vi = (Vi1, . . . , ViD), i = 1, . . . , N .

The conditional probabilities πijd can be written as follows:

πi0d = P(Yid = 0|Yi(d−1) = 0) = (1− βvid)mid(1− γvid · p(d))

πi1d = P(Yid = 1|Yi(d−1) = 0) = 1− [(1− βvid)mid(1− γvid · p(d))]

πi2d = P(Yid = 2|Yi(d−1) = 0) = 0

where, given person i was susceptible on day d − 1, πi0d is the probability of

person i escaping infection on day d, πi1d is the probability of person i becoming

infected on day d, and πi2d is the probability that person i was infected on a

previous day. Under assumption (5) πi2d = 0.

The unconditional probability of person i having infection status j (j = 0, 1)

on day d is defined as

ψijd = P(Yid = j)

= P(Yid = j|Yi(d−1) = 0)P(Yi(d−1) = 0) + P(Yid = j|Yi(d−1) > 0)P(Yi(d−1) > 0).

By assumption (5), P(Yid = j|Yi(d−1) > 0) = 0, thus

P(Yid = j) = P(Yid = j|Yi(d−1) = 0)P(Yi(d−1) = 0)

= πijdψi0(d−1)

For example, the probability that person i, who was effectively vaccinated on

day 2, gets infected on day 3 is

P(Yi3 = 1) = πi13ψi02

= πi13πi02πi01

= {1− [(1− β1)mi3(1− γ1p(3))]} {(1− β1)mi2(1− γ1p(2))} {(1− β0)mi1(1− γ0p(1))},
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where the value of vid changes from 0 to 1 on day 2.

2.2.2 Maximum Likelihood Procedure

Each person’s contribution to the likelihood function depends on whether or

not s/he became infected during the study and on the day of infection, if in-

fected. If person i got infected on day d then his/her contribution to the like-

lihood function is: Li = ψi1d. If person i did not become infected by the last

day of the study D, Li = ψi0D, the probability of escaping infection through-

out the study. The overall likelihood is L(β0, β1, γ0, γ1|data) =
N∏
i=1

Li, where N

is the number of study participants. We assume that persons are (condition-

ally) independent because our probabilities condition on the daily number of

infected persons in the household and the daily prevalences of infection in the

community. Finally, maximum likelihood estimates (MLEs) of the transmis-

sion parameters, β̂0, β̂1, γ̂0, γ̂1, are obtained by maximizing L(β0, β1, γ0, γ1|data).

Likelihood optimization was performed using a limited-memory modification

of the BFGS quasi-Newton method [111] with a lower bound of 0 and an upper

bound of 1 using the R function optim [112]. Standard errors (SEs) of trans-

mission parameter estimates were obtained from the Hessian matrix from the

maximization procedure, empirically from simulations by taking the standard

deviation of all simulation estimates, and by parametric bootstrap. Using the

transmission parameter MLEs, we can estimate the distribution of Yid for every

(i, d) by plugging the parameter estimates into the equations for πijd and ψijd.

We estimate VE using a two-step process. First, we estimate the transmis-

sion probabilities from the likelihood function in which a person’s actual day

of vaccination, before or during the study, is used. Second, using the estimated
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transmission probabilities from Step 1, we estimate VE by comparing the prob-

ability of becoming infected during the entire study between persons who be-

came effectively vaccinated prior to the study and persons who remained un-

vaccinated throughout the study. In this way, the estimates of VE do not depend

on the times of vaccination. For each person i, we added to the population two

dummy persons: person Ai who was effectively vaccinated before the onset of

the study, and person Bi who remained unvaccinated throughout the study.

These dummy persons make the same contacts with real persons (but not with

other dummy persons) that correspond with the contacts of person i. They can

become infected but they are unable to infect others. Therefore, the dummy

persons do not affect the infection probabilities of the real persons (i.e., they do

not modify the vaccine’s indirect effects). The vaccination status of all real per-

sons remained unchanged for the purpose of estimating VE. We define λiH and

λiC as the probability that person i is infected from a household (H) or com-

munity (C) contact during the study, respectively. The MLEs of λiH and λiC are

obtained by substituting the MLEs of our transmission parameters for the true

parameters (see Appendix A for details). Due to the very small probability of

coinfection we do not include the probability of being coinfected in estimates

of VE.

We denote the seasonal VEs against household transmission, community

transmission, and overall transmission by V EH , V EC , and V EO, respectively.
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The estimates of VE are

ˆV EH = 1−

N∑
i=1

λ̂AiH

N∑
i=1

λ̂BiH

ˆV EC = 1−

N∑
i=1

λ̂AiC

N∑
i=1

λ̂AiC

ˆV EO = 1−

N∑
i=1

(λ̂AiH + λ̂AiC)

N∑
i=1

(λ̂BiH + λ̂BiC)

,

SEs for VE estimates were obtained empirically and by parametric bootstrap.

2.2.3 Simulations

To assess the performance of our method and the accuracy of our maximum

likelihood estimates, we developed a stochastic agent-based simulation pro-

gram to simulate an influenza outbreak in a population with households. One

simulation corresponded to one outbreak. Each simulation featured a suscepti-

ble population of 1000 individuals with 10 initially infected individuals. Each

individual was assigned to a household. Households varied in size from one

to twelve members. The proportion of households of each size were based

on DeKalb County, GA census data [113]. The influenza season lasted three

months. It was assumed that each person made 10 daily community contacts

(under the assumption of random-mixing) and made daily contact with each



34 Chapter 2. Estimation of influenza VE in household studies

person in their household. Two vaccination scenarios were assessed: (1) all

vaccinations occurred prior to the study period and (2) vaccinations occurred

prior to the study (25%), during the first month (15%), and during the second

month (10%). In each vaccination scenario, 50% of the population was vacci-

nated. A person was considered effectively vaccinated 14 days after the receipt

of the influenza vaccine. The following parameter values were used as the

daily transmission probability from an infectious person to a susceptible per-

son with vaccination status v (v=0, unvaccinated, v=1, vaccinated): α0 = 0.04

(γ0 = α0 · 10 = 0.40), α1 = 0.01 (γ1 = α1 · 10 = 0.1), β0 = 0.15, and β1 = 0.075.

MLEs and SEs of the transmission parameters were calculated for each sim-

ulation. The MLEs of the transmission parameters were used to estimate house-

hold VE, community VE, and overall VE. True VE was calculated using the true

transmission parameter values under each vaccination scenario. For each sim-

ulation scheme, the bias of the VE estimates was assessed. Bias was defined as

the true VE subtracted from the estimated VE. Two hundred outbreak simula-

tions were performed and fifty bootstrap simulations were performed for each

outbreak simulation. Source specific VE, SE, and 95% confidence intervals (CI)

were estimated for each simulation. The same assumptions we made for our

model (see section 2) were used for the simulation program. The latent period

was set to 2 days and the infectious period was set to 4 days [74].

2.2.4 Sensitivity Analyses

Sensitivity analyses were performed to assess the bias of VE estimates using

the maximum likelihood procedure when several model assumptions were re-

laxed. Each sensitivity analysis was conducted independently. In the first sen-

sitivity analysis, we relaxed assumption (10) (the latent and infectious periods
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fixed and known) and allowed the latent and infectious periods to follow a dis-

tribution. We assessed bias under two different scenarios: (1) the mean latent

and infectious periods were correctly specified and (2) the mean latent and in-

fectious periods were incorrectly specified. For scenario (1) the latent period

was 1, 2, or 3 days with probabilities 0.25, 0.5, and 0.25, respectively. The in-

fectious period was 3, 4, 5, or 6 days with probabilities 0.3, 0.5, 0.1, and 0.1,

respectively. The mean latent and infectious periods were 2 and 4 days, respec-

tively. For scenario (2) the latent period was 1, 2, or 3 days with probabilities

0.1, 0.1, and 0.8, respectively with a mean of 2.7 days. The infectious period was

3, 4, 5, or 6 days with probabilities 0.05, 0.1, 0.65, and 0.2, respectively with a

mean of 5 days. The specified mean latent and infectious periods, used for the

derivation of the MLEs, were 2 and 4 days, respectively.

In the second sensitivity analysis, we assessed the bias of VE estimates when

the prevalence in the cohort was allowed to differ from the prevalence in the

overall population. An overall population of households, comprised of 2000

individuals, was simulated, from which households were selected to make up

the study cohort of 1000 individuals. Households in the cohort were assumed

to be a random sample of the households in the overall population. MLEs, SEs,

and 95% CIs were calculated for each simulation.

2.2.5 A Real-Life Example

Our maximum likelihood approach was applied to a dataset from the HIVE

study in Michigan during the 2012-2013 influenza season designed to estimate

household and community VE. The study population consisted of 321 house-

holds with a total sample size of 1426 members followed from October 2012 to

May 2013. Households ranged in size from 4 to 10 members. Only households
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with at least 4 persons including at least 2 children were included in the study.

At the onset of influenza-like symptoms, participants were instructed to contact

study personnel, so a respiratory specimen could be collected. Specimens were

tested for the presence of influenza virus by reverse transcription polymerase

chain reaction (RT-PCR) [49, 51, 52, 97]. Influenza infection was identified by

RT-PCR in 111 individuals with influenza-like illness. Five individuals were

infected with influenza twice [49], but only the first influenza infection was

considered for our analysis. Index cases were assumed to be infected from the

community and a household-acquired case was defined by transmission link

to an index case within the household if both cases were caused by the same

influenza type/subtype/lineage and if illness onset in the secondary case oc-

curred 1-7 days after illness onset in the index case. Vaccination status was de-

termined as previously described using a combination of medical records and

state registry data. Adults and children aged 9-17 years old were considered ef-

fectively vaccinated 14 days after the receipt of the vaccine. Children under the

age of 9 years old were considered effectively vaccinated 14 days after receipt

of the second dose of the vaccine [49].

Influenza transmission parameters for vaccinated and unvaccinated indi-

viduals and VE against household-acquired and community-acquired trans-

mission of influenza were estimated using our maximum likelihood approach.

To avoid undefined values during maximum likelihood estimation due to a

prevalence of zero within the cohort, values of zero were changed to 1/1426

(the total size of the cohort). Fifty parametric bootstrap simulations were per-

formed to obtain SE estimates and 95% CIs for transmission parameter and VE

estimates. Simulations were performed using information from the study data,

such as, transmission parameter estimates, proportion of households of each
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size and proportion of individuals vaccinated. Model adequacy was assessed

by comparing the mean number of cases per household size from 200 simulated

outbreaks to the observed frequencies of cases per household size in the data.

All simulations and analyses were performed in R 3.2.2 [112].

2.3 Results

2.3.1 Simulations

Mean transmission parameter and SE estimates from 200 simulations are shown

in Table 2.2. When all vaccinations occurred prior to the study, our maximum

likelihood procedure produced the following estimates: β̂0 = 0.153 (95% CI:

0.129, 0.177), β̂1 = 0.078 (95% CI: 0.064, 0.092), γ̂0 = 0.429 (95% CI: 0.380, 0.478),

γ̂1 = 0.118 (95% CI: 0.092, 0.142). When vaccinations occurred prior to and dur-

ing the study, β̂0 = 0.156 (95% CI: 0.132, 0.180), β̂1 = 0.078 (95% CI: 0.060,

0.096), γ̂0 = 0.425 (95% CI: 0.382, 0.468), γ̂1 = 0.118 (95% CI: 0.093, 0.143).

Transmission parameter estimates were similar between the two vaccination

scenarios. All transmission parameter estimates were close to the true values

(β0 = 0.15, β1 = 0.075, γ0 = 0.4, γ1 = 0.10). The greatest bias observed was

in the estimate of γ0 when vaccinations occurred prior to and during the study

(Bias=0.031 corresponding to a relative bias of 7.75%); however, the estimates of

γ1 suffered from relative biases of 16% and 17% in vaccination scenarios (1) and

(2), respectively (Table 2.2). SE estimates were calculated empirically, using the

Hessian matrix from the maximum likelihood procedure, and from fifty para-

metric bootstraps. All three SE estimation methods produced similarly small

SE estimates (Table 2.2).
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Table 2.2: Household and community transmission parameter es-
timates by vaccination status from 200 simulated influenza out-

breaks

Vaccination
Scenario

Value β0 β1 γ0 γ1

True 0.150 0.075 0.400 0.100

Before
study

Estimate 0.153 0.078 0.429 0.118
(95% CI) (0.129, 0.177) (0.064, 0.092) (0.380, 0.478) (0.092, 0.142)
Bias 0.003 0.003 0.029 0.018
SE (Empirical) 0.012 0.007 0.025 0.011
SE (Hessian) 0.013 0.007 0.026 0.011
SE (Bootstrap) 0.014 0.007 0.027 0.012

Before
and
during
study

Estimate 0.156 0.078 0.425 0.118
(95% CI) (0.132, 0.180) (0.060, 0.096) (0.382, 0.468) (0.093, 0.143)
Bias 0.006 0.003 0.025 0.018
SE (Empirical) 0.012 0.009 0.022 0.013
SE (Hessian) 0.012 0.008 0.023 0.014
SE (Bootstrap) 0.012 0.009 0.022 0.015

Transmission parameters (β0-household, unvaccinated; β1-household,
vaccinated; γ0-community, unvaccinated; and γ1-community, vacci-
nated), 95% CIs, and SEs. SEs were calculated empirically, using the
Hessian matrix from the maximization procedure, and by parametric

bootstrap.

Mean VE and SE estimates from 200 simulations are shown in Table 2.3.

When vaccinations occurred prior to the study, our maximum likelihood proce-

dure produced the following estimates: ˆV EMLH = 0.478 (95% CI: 0.358, 0.598),

ˆV EMLC = 0.724 (95% CI: 0.659, 0.789), and ˆV EMLO = 0.607 (95% CI: 0.546,

0.668). When vaccinations occurred prior to and during the study, ˆV EMLH =

0.453 (95% CI: 0.314, 0.592), ˆV EMLC = 0.719 (95% CI: 0.652, 0.786), and ˆV EMLO =

0.602 (95% CI: 0.535, 0.669). The greatest bias was observed in the estimate of

VE against community-acquired influenza when all vaccinations occurred prior

to the study, Bias=-0.024 (corresponding to a relative bias of 3.2%). SEs of the
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VE estimates were calculated empirically and via parametric bootstrap. Empir-

ical SEs were very similar to bootstrap SEs. VE against household-acquired in-

fluenza consistently had the highest SE, while VE estimates against community-

acquired and overall influenza were very similar. When vaccinations occurred

during the study, the empirical SEs were slightly larger for all VE estimates than

when all vaccinations occurred prior to the study. For all estimates of VE, we

observed coverage probabilities of or greater than 95% with the exception of

community VE when all vaccinations occurred prior to the study (Table 2.3).

Table 2.3: Maximum likelihood VE estimates against influenza in-
fection in the household, community, and overall from 200 simu-

lated influenza outbreaks

Vaccination
Scenario

Value VEMLH VEMLC VEMLO

Before
study

True 0.477 0.746 0.607
Estimate 0.467 0.721 0.601
(95% CI) (0.354, 0.580) (0.662, 0.779) (0.544, 0.659)
Bias -0.010 -0.025 -0.006
SE (Empirical) 0.056 0.030 0.030
SE (Bootstrap) 0.064 0.034 0.030
Coverage Probability 0.960 0.920 0.960

Before and
during
study

True 0.470 0.745 0.605
Estimate 0.469 0.717 0.602
(95% CI) (0.339, 0.600) (0.645, 0.789) (0.540, 0.664)
Bias -0.001 -0.028 -0.003
SE (Empirical) 0.067 0.037 0.032
SE (Bootstrap) 0.069 0.038 0.033
Coverage Probability 0.960 0.950 0.970

Household VE (V EMLH ), community VE (V EMLC), overall VE
(V EMLO), 95% CIs, and SEs. SEs were calculated empirically and by

parametric bootstrap.
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2.3.2 Sensitivity Analyses

Table 2.4 shows the results of the sensitivity analyses performed when the as-

sumption that the latent and infectious periods are fixed and known was re-

laxed. When the mean lengths of the latent and infectious periods were cor-

rectly specified and all vaccinations occurred prior to the study, ˆV EMLH = 0.474

(95% CI: 0.348, 0.599), ˆV EMLC = 0.703 (95% CI: 0.635, 0.770), and ˆV EMLO =

0.602 (95% CI: 0.546, 0.657). When vaccinations occurred prior to and during the

study, ˆV EMLH = 0.470 (95% CI: 0.327, 0.612), ˆV EMLC = 0.699 (95% CI: 0.630,

0.768), and ˆV EMLO = 0.600 (95% CI: 0.531, 0.669). When the mean lengths of the

latent and infectious periods were misspecified and all vaccinations occurred

prior to the study, ˆV EMLH = 0.440 (95% CI: 0.303, 0.577), ˆV EMLC = 0.679 (95%

CI: 0.617, 0.740), and ˆV EMLO = 0.589 (95% CI: 0.541, 0.636). When vaccinations

occurred prior to and during the study, ˆV EMLH = 0.442 (95% CI: 0.311, 0.573),

ˆV EMLC = 0.657 (95% CI: 0.588, 0.726), and ˆV EMLO = 0.575 (95% CI: 0.524,

0.626) (Table 2.4).

When the latent and infectious periods were allowed to follow a distribu-

tion, VE estimates were underestimated. When the mean latent and infectious

periods were correctly specified the largest bias was observed in estimates of

VE against community transmission with a relative bias of 6%. Larger bias was

observed in all VE estimates when the mean lengths of the latent and infectious

periods were misspecified with the largest bias (corresponding to a relative bias

>11%) observed in estimates of VE against community transmission when vac-

cination occurred prior to and during the study. Estimates of SE were similar

when the mean latent and infectious periods were correctly specified and mis-

specified. Estimates of V EMLH had the largest SE and the SE of V EMLC and

V EMLO were similar (Table 2.4).
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Table 2.4: Estimates of VE when the latent and infectious periods
are not constant from 200 simulated influenza outbreaks

Mean
Lengths of
Latent and
Infectious
Periods

Vaccination
Scenario

Value VEMLH VEMLC VEMLO

L̄ = 2, Ī = 4

Before
study

True 0.477 0.747 0.607
Estimate 0.474 0.703 0.602
(95% CI) (0.349, 0.599) (0.635, 0.770) (0.546, 0.657)
Bias -0.003 -0.044 -0.005
SE (Empirical) 0.064 0.035 0.028
SE (Bootstrap) 0.074 0.031 0.032

Before and
during
study

True 0.471 0.745 0.606
Estimate 0.470 0.699 0.600
(95% CI) (0.327, 0.612) (0.630, 0.768) (0.531, 0.669)
Bias -0.001 -0.046 -0.006
SE (Empirical) 0.073 0.035 0.035
SE (Bootstrap) 0.070 0.034 0.033

L̄ = 2.7, Ī = 5

Before
study

True 0.469 0.745 0.605
Estimate 0.440 0.679 0.589
(95% CI) (0.303, 0.577) (0.617, 0.740) (0.542, 0.636)
Bias -0.029 -0.066 -0.016
SE (Empirical) 0.070 0.031 0.024
SE (Bootstrap) 0.074 0.028 0.027

Before and
during
study

True 0.462 0.743 0.604
Estimate 0.442 0.657 0.575
(95% CI) (0.298, 0.559) (0.584, 0.720) (0.525, 0.623)
Bias -0.020 -0.086 -0.029
SE (Empirical) 0.067 0.035 0.026
SE (Bootstrap) 0.075 0.033 0.030

Bias of VE estimates were calculated allowing the latent and infectious
periods to follow a distribution. V EMLH , V EMLC , and V EMLO denote
VE estimates using the maximum likelihood approach against house-
hold, community, and overall transmission, respectively. We considered
two situations. First, the mean length of the latent (L̄) and infectious (Ī)
periods were L̄ = 2 and Ī = 4 (i.e., they were correctly specified). Sec-
ond, L̄ = 2.7 and Ī = 5 (i.e., they were misspecified). In both situations,
during the estimation procedure, it was assumed that L=2 and I=4. VE
estimates, 95% CIs, and SEs were obtained from 200 simulations under
two different vaccination scenarios. SEs were calculated empirically and

by parametric bootstrap.

Table 2.5 shows the results of the sensitivity analysis when the cohort was

selected from a simulated overall population. This simulation scenario allowed
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the prevalence of influenza infection in the cohort to differ from the prevalence

in the overall population. When all vaccinations occurred prior to the study,

ˆV EMLH = 0.480 (95% CI: 0.344, 0.615), ˆV EMLC = 0.727 (95% CI: 0.662, 0.791),

and ˆV EMLO = 0.614 (95% CI: 0.551, 0.677). When vaccinations occurred prior

to and during the study, ˆV EMLH = 0.469 (95% CI: 0.334, 0.604), ˆV EMLC = 0.722

(95% CI: 0.648, 0.796), and ˆV EMLO = 0.607 (95% CI: 0.544, 0.671) (Table 2.5).

The biases of VE estimates when the cohort was selected from a larger over-

all population were very similar to the original simulations in which only the

cohort was simulated (Tables 2.5 and 2.3, respectively).

Table 2.5: VE estimates from a random sample drawn from a
larger population from 200 simulated influenza outbreaks

Vaccination
Scenario

Value VEMLH VEMLC VEMLO

Before
study

True 0.476 0.746 0.605
Estimate 0.480 0.727 0.614
(95% CI) (0.344, 0.615) (0.662, 0.791) (0.551, 0.677)
Bias 0.004 -0.019 0.009
SE (Empirical) 0.069 0.033 0.032
SE (Bootstrap) 0.065 0.032 0.030

Before and
during
study

True 0.469 0.745 0.604
Estimate 0.469 0.722 0.607
(95% CI) (0.334, 0.604) (0.648, 0.796) (0.544, 0.671)
Bias 0.000 -0.023 0.003
SE (Empirical) 0.069 0.038 0.032
SE (Bootstrap) 0.070 0.037 0.032

Bias of VE from a sample population randomly selected from a larger
population. V EMLH , V EMLC , and V EMLO denote VE estimates using
the maximum likelihood approach against household, community, and
overall transmission, respectively. True VE was calculated from the over-
all population. VE estimates, 95% CIs, and SEs were obtained from 200
simulations performed under two different vaccination scenarios. SEs

were calculated empirically and by parametric bootstrap.



2.3. Results 43

2.3.3 A Real-Life Example

Estimates of transmission parameters from the HIVE study are shown in Ta-

ble 2.6. The daily transmission probability from an infectious household con-

tact to an unvaccinated susceptible is 0.013 (95% CI: 0.008, 0.019) and to a vac-

cinated susceptible is 0.013 (95% CI: 0.005, 0.021). The transmission rate from

all daily infectious community contacts to an unvaccinated susceptible is 0.202

(95% CI: 0.159, 0.245) and to a vaccinated susceptible is 0.134 (95% CI: 0.081,

0.187) (Table 2.6). A transmission rate of 0.202 (0.134) means that, on average,

20.2% (13.4%) of unvaccinated (vaccinated) persons who make contacts with

infectious persons on a given day will become infected. The lower estimated

transmission rate in the community to vaccinated individuals compared to un-

vaccinated individuals suggests that there is at least a small protective effect

of vaccination against community-acquired influenza infection. SE estimates

were obtained using the Hessian matrix from the maximum likelihood proce-

dure and using parametric bootstrap. The bootstrap SE estimates were similar

to the Hessian matrix SE estimates (Table 2.6). Our simulated frequencies of

cases per household size (Table A.1) were a good match to the observed fre-

quencies (Table A.2) suggesting that our model captures the dependency be-

tween household size and attack rate.

Estimates of household VE, community VE, and overall VE are presented in

Table 2.7. VE point estimates indicated significant protection against community-

acquired influenza infection (0.336, 95% CI: 0.066, 0.606), and non-significant

protection against household-acquired (0.052, 95% CI: -0.754 0.858) and overall

(0.250, 95% CI: -0.019, 0.519) influenza infection (Table 2.7).
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Table 2.6: Transmission parameter estimates from HIVE Study
data

Value β0 β1 γ0 γ1

Estimate 0.013 0.013 0.202 0.143
(95% CI) (0.008, 0.019) (0.005, 0.021) (0.159, 0.245) (0.081, 0.187)
SE (Hessian) 0.003 0.003 0.032 0.026
SE (Bootstrap) 0.003 0.004 0.022 0.027

Maximum likelihood transmission parameter estimates, 95% CIs, and
SEs from HIVE Study data (2012-2013). Transmission parameters were
defined as follows: β0-household, unvaccinated; β1-household, vacci-

nated; γ0-community, unvaccinated; and γ1-community, vaccinated.

Table 2.7: Maximum likelihood estimates of VE from HIVE Study
data

Value VEMLH VEMLC VEMLO

Estimate 0.052 0.336 0.250
(95% CI) (-0.754, 0.858) (0.066, 0.606) (-0.019, 0.519)
SE 0.411 0.138 0.137

Maximum likelihood VE estimates, 95% CIs, and SEs from HIVE Study
data (2012-2013) [49]. V EMLH , V EMLC , and V EMLO denote VE esti-
mates using the maximum likelihood approach against household, com-

munity, and overall transmission, respectively.

We compared our VE estimates to results found by Ohmit et al. [49] us-

ing unadjusted and adjusted hazard rate ratios (Table 2.8). The adjusted mod-

els adjusted for age in months and documentation of high-risk health status

[49]. Our point estimate of VE against household-acquired influenza was sub-

stantially lower (by more than 0.25) than the estimates found by Ohmit et al..

Our point estimate of VE against community-acquired influenza infection was

slightly higher than the estimates in the original paper, and we were able to
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detect a significant protective effect of vaccination against overall influenza in-

fection across all study participants. The original paper did not detect a sig-

nificant protective effect of the vaccine from any source using either the unad-

justed or adjusted model (Table 2.8). We estimated overall VE lower than both

the unadjusted and adjusted estimates. Our method produced 95% CIs that

were slightly wider for household VE, but narrower than those reported in the

original study for community and overall VE.

Table 2.8: VE estimates based on hazard rate ratios and 95% con-
fidence intervals from the HIVE Study

Model VEH VEC VEO

Unadjusted (95% CI) 0.31 (-0.73, 0.73) 0.27 (-0.13, 0.54) 0.30 (-0.09, 0.55)
Adjusted (95% CI) 0.37 (-0.73, 0.77) 0.30 (-0.09, 0.55) 0.43 (-0.18, 0.72)

VE point estimates and 95% CIs from Ohmit et al. using both the unad-
justed and adjusted hazard rate ratio. The adjusted models adjusted for
age in months and documentation of high-risk health status [49]. V EH ,
V EC , and V EO denote VE estimates against household, community, and

overall transmission, respectively.

2.4 Discussion

We have presented a probability model and accompanying maximum likeli-

hood procedure to estimate VE against household-acquired and community-

acquired influenza infection from MH studies. Our method first estimates source-

specific transmission parameters that characterize the daily probability of in-

fection. We use these transmission parameters to estimate the probability of

influenza infection throughout the study and estimate VE against transmission

of influenza from the household and from the community. Previous methods
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that estimate source-specific VE use final count data that do not take into ac-

count the time of infection [43, 91, 108]. Our approach improves upon these

methods by incorporating time to event data, which allows for variation in in-

fluenza prevalence and timing of vaccination to be incorporated into estimates

of VE. We used a stochastic agent-based simulation program to evaluate the

bias and precision of our estimates.

Under our model assumptions, our method estimated the transmission pa-

rameters and VE close to the truth for two different vaccination scenarios (Ta-

bles 2.2 and 2.3). Transmission parameter estimates were very similar regard-

less of vaccination scenario. SEs were calculated empirically, using the Hessian

matrix, and using a parametric bootstrap procedure. In all scenarios, bootstrap

SEs were close to empirical SEs indicating that the bootstrap procedure per-

forms well and is appropriate for the estimation of SE when analyzing real

data (when estimation of SE empirically is not possible). Coverage probabil-

ities of greater than or equal to 95% for all estimates of VE suggest that our

method performs well. For estimates of VE against community-acquired in-

fluenza when all vaccinations occurred prior to the study, the coverage proba-

bility was slightly lower (92%) suggesting that our method produces CIs that

are too narrow for this estimate.

We developed a similar likelihood method under the assumptions that the

source of infection (household or community) is known. We found that the esti-

mates and their standard deviations were similar to those we obtained without

this assumption. Hence, we conclude that knowing the source of infection does

not substantially improve the VE estimates.

Results from our sensitivity analyses suggest that our maximum likelihood

approach provided estimates of source specific VE with small bias and SE when
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the length of the latent and infectious periods are not constant and the mean is

correctly specified. When the mean lengths of the latent and infectious periods

were misspecified, our results suggest that caution should be used when using

the maximum likelihood procedure to estimate community-acquired influenza

when vaccination occurs during the study, as the estimates may be moderately

biased. However, the misspecification of the mean lengths of the latent and

infectious periods had little impact on SE of VE estimates.

Allowing the prevalence of influenza infection to differ in a randomly sam-

pled cohort compared to the overall population had little impact on the bias

of source-specific VE estimates (Table 2.5) indicating that the maximum likeli-

hood approach is robust to differences in the prevalence of influenza between

the study cohort and overall population. To investigate the bias of VE estimates

when the sample population is a small fraction of the overall population, we

performed an additional sensitivity analysis in which we simulated an overall

population of 10,100 people with a sample population of 1,000 people (results

not shown). We saw no change in the amount of bias when the cohort was a

smaller fraction of the overall population. Under the assumption that the cohort

is a random sample of the overall population, we would expect the results to

be similar regardless of the size of the overall population relative to the cohort.

It is well known that not all individuals infected with influenza develop

an ARI [74]. However, little is known about the proportion of asymptomatic

individuals in a given influenza season. One study estimated that approx-

imately 67% of individuals infected with influenza develop symptoms [74],

while other studies have estimated that as few as 23% [114] or as many as

84% [115] of influenza infected individuals develop symptoms. Despite the

lack of symptoms, asymptomatic individuals are still infectious; however, less
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so than symptomatic individuals [74]. Little is known about the relative infec-

tiousness of asymptomatic individuals compared to symptomatic individuals.

While asymptomatic individuals are considered less infectious because they are

not shedding as much virus as symptomatic individuals [116], asymptomatic

individuals may make more contacts while infectious than their symptomatic

counterparts because they do not realize they are infected. Due to the many

unknowns surrounding asymptomatic influenza infections, we did not include

asymptomatic individuals in our sensitivity analyses. It will be important in fu-

ture work to assess the impact of asymptomatic individuals in the population

on VE estimates.

We applied our method to data from the HIVE study during the 2012-2013

influenza season [49] (Table 2.7). Our VE point estimates for household and

overall influenza infection were lower than the point estimates found in the

original study (Table 2.8) using unadjusted and adjusted hazard rate ratios.

This difference in point estimates is likely due to the fact that our method

does not require source of infection to be known, and in the case of the ad-

justed estimates, does not control for potential confounders, such as health sta-

tus and age. Our estimate of community VE was similar to the original esti-

mates, but we were able to detect a significant protective effect of vaccination

against community-acquired influenza infection across all study participants

(Table 2.7). Ohmit et al. found no significant protective effect of vaccination

for overall, household-acquired, and community-acquired influenza infection

across all study participants using the hazard rate ratio (Table 2.8) [49].

Our probability model makes many simplifying assumptions about influenza

disease progression. In future work, we plan to relax some of our model as-

sumptions to more realistically model the influenza disease process. First, we
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would like to allow for strata within the population, particularly age groups.

Previous research indicates that transmission of influenza is different from child

to child, child to adult, adult to child, and adult to adult [117]. Additionally, age

has been identified as an important risk factor associated with influenza trans-

mission in which children and the elderly are more susceptible to infection than

young adults. Very young children and older adults are also more susceptible

to complications from infection. The addition of strata requires additional as-

sumptions about the contact patterns of individuals in the same stratum and

between strata. Previous studies have found that contacts made by children

and adolescents are more assortative than other age groups. The same study

found that individuals aged 55 years and older had the least assortative contact

patterns [118]. We plan to extend our method to incorporate these additional

contact patterns. We also plan to use stratification to reduce confounding bias.

Second, we plan to extend our probability model for the all-or-none pro-

tection vaccination model in which a proportion of vaccinated individuals are

completely protected from infection and the remaining vaccinated individuals

are not protected at all [43, 44].

Finally, we plan to analyze data from different influenza seasons and dif-

ferent settings to better determine the effectiveness of influenza vaccination

against household transmission compared to community transmission. One

study during the 2010-2011 influenza season found that VE against household

and community transmission were different [48]. However, more recent stud-

ies have not observed this difference in VE against household- and community-

acquired influenza infection [49, 97]. Further research is required to elucidate

the impact of contact dynamics within populations of households on influenza
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VE; however, our model and maximum likelihood procedure provide a frame-

work to begin distinguishing influenza VE from different sources of infection.
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Chapter 3

A dynamic model for evaluation of

bias of estimates of influenza

vaccine effectiveness from

observational studies

3.1 Introduction

3.1.1 Background

Influenza vaccination is required each year due to changes in the influenza

viruses (antigenic drift) and waning immunity from vaccination. A new in-

fluenza vaccine is produced annually requiring influenza vaccine effectiveness

(VE) to be estimated each year [107] using observational studies as RCTs are no

longer considered ethical [11]. Observational studies usually produce biased

VE estimates, thus we aim to compare VE estimates from four different study

designs to (1) better characterize the conditions under which estimates of VE

may be biased, (2) evaluate the magnitude and direction of the bias, and (3)
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compare the bias of VE estimates from different study designs.

3.1.2 Study designs

We will evaluate the bias of influenza VE estimates produced by ASC, PSC,

TN, and TCC studies. The study population in each of these studies consists

of individuals who receive most of their medical care at a single clinic or net-

work of clinics and consent to being inlcluded in the study. In an ASC study,

a person is tested for influenza by study personnel when they develop and re-

port symptoms of ARI regardless of whether or not they seek medical care for

their symptoms. In PSC, TN, and TCC studies, when an individual develops an

ARI, s/he may seek medical care at a clinic for treatment of the ARI and may be

tested for influenza infection. Definitions of cases and non-cases/controls for

each study design are shown in Table 3.1.

3.1.3 Sources of Bias

In this section we discuss the sources of bias that may be present in each type

of study. For convenience, we use the acronyms FARI and NFARI for inFluenza

and Non-inFluenza ARI, respectively.

A. Vaccination affects the probability of NFARI: Vaccination may modify

the probability of developing NFARI. As a result, too many or too few

vaccinated persons may be classified as controls/non-cases. Specifically,

an assumption underlying the validity of TN studies is that vaccination

does not effect of the probability of developing NFARI [45]. Recent studies

to test this assumption have produced conflicting results [45, 66, 67].
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Table 3.1: Definitions of cases and controls/non-cases for obser-
vational studies.

Study design Cases Controls/Non-cases

ASC
Individuals in the cohort who
reported an ARI and test posi-
tive for influenza

All other members of the cohort

PSC
Individuals in the cohort who
seek medical care for an ARI
and test positive for influenza

All other members of the cohort

TN

Members of the study popula-
tion who seek medical care for
an ARI and test positive for in-
fluenza

Members of the study popula-
tion who seek medical care for
an ARI and test negative for in-
fluenza

TCC

Members of the study popula-
tion who seek medical care for
an ARI and test positive for in-
fluenza

Randomly selected individu-
als from the study population
who did not develop an ARI
throughout the study

ASC - active surveillance cohort, PSC - passive surveillance co-
hort, TN - test-negative, and TCC - traditional case-control.

B. Confounding bias due to the presence of a covariate (e.g. health status)

that is related to both the probability of being vaccinated and the prob-

abilities of FARI and NFARI: Health status may be associated with the

probability of being vaccinated as frail persons may be more likely to be

vaccinated because they are considered at higher risk for influenza infec-

tion. On the other hand, healthy persons may be more likely to be vacci-

nated to preserve their good health. Health status may also be associated

with the probabilities of developing FARI and NFARI as frail persons may

be more likely to have an ARI.

C. Vaccination may modify the probability of seeking medical care: A per-

son who is vaccinated may have a different probability of seeking medical

care for FARI compared to an unvaccinated person due to a reduction of
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symptom severity from vaccination [119–121]. In PSC and TCC studies,

cases are selected from individuals who seek medical care, while controls

are not, which may confound the effect of vaccination [39]. A TN study

attempts to control for this by selecting both cases and controls from per-

sons seeking medical care for an ARI. This source of bias is removed from

ASC studies because cases and non-cases can be identified regardless of

whether a participant seeks medical care for an ARI.

D. Confounding bias due to the presence of a covariate (e.g. health aware-

ness) that is related to both the probabilities of vaccination and seeking

medical care: A person’s health awareness may be associated with the

probability of being vaccinated as a person with high health awareness

may be more likely to be vaccinated. That same person may also be more

likely to seek medical care if they develop an ARI.

E. Misclassification bias: Influenza diagnostic tests are not 100% sensitive

and specific, resulting in false-positive or false-negative test results. Addi-

tionally, vaccination status may be misclassified. This source of bias may

be present in all four study designs.

3.1.4 Outcomes of Interest

Previous work has shown that estimates of VE may change depending on the

outcome of interest [99]. We will consider assessing VE with respect to two

different outcomes of interest: SI and MAI. SI is defined as influenza infec-

tion resulting in an ARI. Although SI and FARI are identical concepts, SI is

considered the true outcome (e.g., an outcome against which VE is estimated),
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whereas FARI is an observed outcome. MAI is defined as an influenza infection

resulting in an ARI for which a person seeks medical care.

TN, TCC, and PSC studies all require individuals with FARI to seek medical

care to be considered a case thus, we expect these types of studies to provide es-

timates of VE against MAI. We will also assess the bias of estimates from these

studies when the outcome of interest is SI. Evaluating VE against SI is impor-

tant as influenza patients who do not seek medical care add to the burden of

disease. Additionally, estimated VE against MAI may be misinterpreted by the

media and public as VE against SI. Therefore, we are interested in assessing the

validity of estimates of VE against SI from studies that are designed to provide

estimates of VE against MAI. ASC studies usually do not collect information on

seeking care, therefore we will only evaluate the bias of the resulting estimates

of VE against SI.

3.1.5 Objectives of this Work

In this work, we present a dynamic model that allows the intensities of FARI

and NFARI to change over time and allows for the possibility of developing

more than one ARI in a season. The model incorporates factors that may affect

the probabilities of vaccination, developing FARI and/or NFARI, and seeking

medical care for ARI. We use the model to evaluate and compare the bias of

VE estimates from four different observational study designs against two out-

comes of interest. This work extends a previous paper [99] which used a static

model for evaluating the bias of VE estimates from the two types of case-control

studies.
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3.2 Methods

3.2.1 Model Description

We present a dynamic model consisting of five steps. Below we define the

model steps, the associated variables (Table 3.2), and the probabilities determin-

ing each variable’s distribution (which may depend on variables from previous

steps). Table 3.3 lists all of the model parameters. All variables are defined

for each member of the study population. Within this model we allow some

variables to change over time. We consider each time unit to be one week. In

Figure 3.1 we present a directed acyclic graph [122, 123] to illustrate the pos-

sible sources of confounding and bias present in studies designed to evaluate

influenza VE.

Figure 3.1: Causal graph of influenza vaccine studies with
covariates.

X = health status, (U) = health awareness (unobserved), V =
vaccination status, Yj = ARI status in week j, Mj = seeking med-
ical care for ARI in week j, and Tj = influenza test result in week
j, where j = 1, . . . , J and J is the total number of weeks in the

study.

Step 1: Covariates. We assume that people within the population can be

classified with a health status of either "healthy" or "frail" and a health aware-

ness of either "high" or "low". We define an observable binary variableX , where
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X = 1 for a "healthy" person and an unobserved binary variableU , whereU = 1

for a person with high health awareness. Let πxu = P(X = x, U = u).

Table 3.2: Variables in the model.

Variable Definition Values

X Health Status 0 - frail person
1 - healthy person

U Health Awareness (unobserved) 0 - low health awareness
1 - high health awareness

V Vaccination Status 0 - unvaccinated
1 - vaccinated

Yj Influenza/non-influenza ARI status at week j
0 - no ARI
1 - non-influenza ARI
2 - influenza ARI

Mj Seeking medical care for ARI at week j 0 - no
1 - yes

Tj Result of test for influenza infection at week j 0 - negative
1 - positive

Step 2: Vaccination. We consider the scenario where everyone is either

effectively vaccinated prior to the study or remains unvaccinated throughout

the study. A person is considered effectively vaccinated if they received the

vaccine at least 14 days prior to the study onset. We define a binary variable V ,

where V = 1 if a person is effectively vaccinated. The probability of vaccination

may depend on X and U . Let αxu = P(V = 1|X = x, U = u).

For the remainder of the steps, it will be convenient to define a standard

person as a person who is unvaccinated, healthy, and has high health awareness

(i.e., a person with V = 0, X = 1, and U = 1).

Step 3: Influenza and non-influenza ARI. During the influenza season, a

person may become infected with an influenza virus and develop FARI. Re-

gardless of influenza infection, a person may develop one or more NFARIs. We
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assume that an individual can only become infected with influenza once dur-

ing the study period and a person can have no more than one NFARI per week,

but there is no limit on the total number of NFARIs. We define a variable Yj

for the illness/infection status in week j as follows: Yj = 0 for no ARI, Yj = 1

for NFARI, and Yj = 2 for FARI. If a person has both NFARI and FARI in the

same week, we consider them as FARI (i.e., Yj = 2). The distribution of Yj may

depend on the person’s vaccination (V ) and health (X) status. We denote the

probability of NFARI in week j as βjvx = P(Yj = 1|V = v,X = x), j = 1, . . . , J .

We denote the probability of NFARI for a standard person βj01 and specify the

value of βj01 for all j. For all other persons we define multipliers for β, θβ

and φβ , where θβ is the multiplier when V = 1 and φβ is the multiplier when

X = 0. Then, the probabilities of NFARI in week j for non-standard persons

are βj11 = βj01 · θβ , βj00 = βj01 · φβ , and βj10 = βj01 · θβ · φβ .

We denote the probability of FARI in week j as γjvx = P(Yj = 2|V = v,X =

x), j = 1, . . . , J . Similarly to the probability of NFARI, the probability of FARI

for standard persons is denoted by γj01 and we specify the value of γj01 for all

j. We define multipliers for γ, θγ and φγ , where θγ is the multiplier when V = 1

and φγ is the multiplier when X = 0. The probabilities of FARI in week j for

non-standard persons are γj11 = γj01 · θγ , γj00 = γj01 · φγ , and γj10 = γj01 · θγ · φγ .

We also assume βjvx + γjvx ≤ 1 in week j for all v and x.

Step 4: Seeking medical care for ARI. A person with an ARI may seek med-

ical care. We define a binary variableMj for whether or not a person seeks med-

ical care for ARI in week j. The probability of seeking medical care depends on

Yj , as only those individuals who have an ARI may seek medical care, and it

may be different for FARI and NFARI patients. This probability may also de-

pend on V and U . We assume that the conditional probability of M given Y is
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fixed over time and P(Mj = 1|Yj = 0) = 0.

The probability of a person seeking medical care in week j for NFARI is

denoted as δ1vu = P(Mj = 1|Yj = 1, V = v, U = u), v = 0, 1;u = 0, 1; j = 1, . . . , J .

For the standard person, the probability of seeking care for NFARI in week j,

δ101 = P(Mj = 1|Yj = 1, V = 0, U = 1), is an input parameter. We define

multipliers for δ1, θδ1 and µδ1 , where θδ1 is the multiplier when V = 1 and µδ1

is the multiplier when U = 0, such that δ111 = δ101 · θδ1 , δ100 = δ101 · µδ1 , and

δ110 = δ101 · θδ1 · µδ1 .

Similar notation is used for FARI. The probability of seeking care for FARI in

week j is δ2vu = P(Mj = 1|Yj = 2, V = v, U = u), v = 0, 1;u = 0, 1; j = 1, . . . , J .

For the standard person, δ201 = P(Mj = 1|Yj = 2, V = 0, U = 1) is an input

parameter. The multipliers for δ2 are θδ2 , when V = 1, and µδ2 , when U = 0,

such that δ2vu can be expressed in terms of δ201 and the multipliers.

Step 5: Testing for influenza infection. We assume that each person who

seeks medical care for ARI is tested for influenza infection. We define a binary

variable Tj as the test result for a person with ARI in week j, where Tj = 1 for

an influenza positive test result. We assume the probability of testing positive

for influenza given a person’s influenza infection status does not depend on

any other factors. We denote τy = P(Tj = 1|Yj = y), y = 1, 2. Note that τ1 is

one minus the test’s specificity and τ2 is the test’s sensitivity. Since only persons

with ARIs are tested, τ0 is irrelevant.

Assumptions

We make several assumptions in the model: (a) Each person is assigned two

binary covariates: health status and health awareness, which are constant over

time, (b) everyone is either effectively vaccinated prior to the study or remains
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Table 3.3: Parameters in the model.

Parameters Definition Input Value Details

πxu P(X = x, U = u)

π11 = 0.40
π10 = 0.40
π01 = 0.10
π00 = 0.10

αxu P(V = 1|X = x, U = u)

α11 = 0.60
α10 = 0.30
α01 = 0.90
α00 = 0.45

βjvx P(Yj = 1|V = v,X = x) see Table B1 βj11 = βj01 · θβ
θβ multiplier for β when V = 1 see Table 3.7 βj00 = βj01 · φβ
φβ multiplier for β when X = 0 see Table 3.7 βj10 = βj01 · θβ · φβ
γjvx P(Yj = 2|V = v,X = x) see Table B1 γj11 = γj01 · θγ
θγ multiplier for γ when V = 1 see Table 3.7 γj00 = γj01 · φγ
φγ multiplier for γ when X = 0 see Table 3.7 γj10 = γj01 · θγ · φγ
δ1vu P(Mj = 1|Yj = 1, V = v, U = u) δ101 = 0.25 δ111 = δ101 · θδ1
θδ1 multiplier for δ1 when V = 1 see Table 3.7 δ100 = δ101 · µδ1
µδ1 multiplier for δ1 when U = 0 see Table 3.7 δ110 = δ101 · θδ1 · µδ1
δ2vu P(Mj = 1|Yj = 2, V = v, U = u) δ201 = 0.40 δ211 = δ201 · θδ2
θδ2 multiplier for δ2 when V = 1 see Table 3.7 δ200 = δ201 · µδ2
µδ2 multiplier for δ2 when U = 0 see Table 3.7 δ210 = δ201 · θδ2 · µδ2

τy P(T = 1|Y = y)
τ1 = 0
τ2 = 1

For a standard person (V = 0, X = 1, U = 1), βj01 and γj01 represent
the probabilities of contracting a NFARI or FARI in week j, respec-
tively, j = 1, . . . , J , and δ101 and δ201 represent the probability of
seeking care for NFARI and FARI, respectively. These probabili-
ties, as well as all πxu, x = 0, 1;u = 0, 1, all αxu, x = 0, 1;u = 0, 1,

τ1, τ2, and all multipliers (µ, θ, φ), are input parameters.

unvaccinated throughout the study, and vaccination status is determined with-

out error, (c) everyone in the study population is susceptible at the beginning of

the study, (d) a person can only have one FARI during the season, (e) a person

can have at most one NFARI per week, (f) the probabilities of FARI and NFARI

do not depend on a person’s health awareness given his/her health status, (g)

the probability of seeking medical care does not depend on a person’s health
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status given his/her health awareness, (h) influenza test specificity and sensi-

tivity do not depend on health status, health awareness, or vaccination status,

given a person’s influenza infection status, (i) every person who seeks medical

care is tested for influenza infection, and (j) a person with no ARI does not seek

care (i.e., if Yj = 0, then Mj = 0).

3.2.2 True VE

The bias of a VE estimate is the difference between the expected value of the

estimate and the true VE. True VE is defined as one minus RR, where RR is

the probability of the outcome given vaccination divided by the probability of

the same outcome given no vaccination when vaccination is random (i.e., the

probability of vaccination does not depend on any covariates). Previously, we

showed that the true VEs against SI and MAI may differ [99]. Therefore, we

evaluate the true VE for each of the two outcomes of interest. Explicit expres-

sions and derivations of true VE can be found in Appendices B.1.1 and B.1.2.

True VE Against SI

A person is considered a true case of SI if s/he develops an influenza ARI dur-

ing the study. True VE against SI (V ETSI) is

V ETSI = 1−RRTSI where RRTSI =
P(contracting SI|V = 1)
P(contracting SI|V = 0)

,

where P(contracting SI|V = v) =
J∑
j=1

P(Yj = 2|V = v), v = 0, 1;

j = 1, . . . , J .
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True VE Against MAI

A person is considered a true case of MAI if s/he develops an influenza ARI

during the study and seeks medical care for this ARI. True VE against MAI

(V ETMAI) is

V ETMAI = 1−RRTMAI where RRTMAI =
P(classified as MAI|V = 1)
P(classified as MAI|V = 0)

,

where P(classified as MAI|V = v) =
J∑
j=1

P(Yj = 2,Mj = 1|V = v), v = 0, 1; j =

1, . . . , J .

3.2.3 VE Estimates

In ASC and PSC studies, VE is estimated as ˆV E = 1−R̂R, where R̂R is based on

sample proportions. In TN and TCC studies, VE is estimated as 1−OR, where

OR is the odds ratio comparing the odds of vaccination in cases and controls

[46, 55–57]. In this work we consider only unadjusted estimates of VE because

we are interested in characterizing bias rather than in methods to adjust for it.

Current VE estimates are not specifically designed to estimate VE against SI

or MAI. Therefore, we will not account for the outcome of interest when we

develop expressions for these estimates. The outcome of interest will be ac-

counted for when we evaluate the bias of these estimates (Section 3.3). Explicit

expressions and derivations of estimates of VE from each study design can be

found in Appendices B.2–B.4. We write the VE estimates in terms of proba-

bilities; in actual studies, these probabilities are replaced by the corresponding

proportions. Therefore, the ’VE estimates’ we calculate are the expected values

of the actual estimates under our assumptions.
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For each person, YJ = (Y1, . . . , YJ) and MJ = (M1, . . . ,MJ) are the arrays of

Yj and Mj values, respectively, from week 1 to week J .

ASC Studies

For a person to be considered a case, they must have an ARI (Yj > 0) and

test positive (Tj = 1) in at least one week j. Since we do not assume perfect

influenza test sensitivity and specificity, a person may test positive in more than

one week (even though s/he can have true influenza only once).

The probability of being a case in an ASC study for a given v can be written

as

P(Case(ASC)|V = v) = P(
J⋃
j=1

[{Yj = 1, Tj = 1} ∪ {Yj = 2, Tj = 1}])

Thus, the VE estimate from an ASC study is

ˆV EASC = 1− P̂(Case(ASC)|V = 1)

P̂(Case(ASC)|V = 0)

PSC Studies

In a PSC study, a person is considered a case in week j if:

• they have an ARI in week j (i.e., Yj > 0)

• they seek medical care for their ARI in week j (i.e., Mj = 1)

• they test positive for influenza infection (i.e., Tj = 1)
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The probability of being a PSC case for a given v is the probability of being

a case in at least one week.

P(Case(PSC)|V = v) = P(
J⋃
j=1

[{Yj = 1,Mj = 1, Tj = 1} ∪ {Yj = 2,Mj = 1, Tj = 1}])

Thus, the VE estimate from an PSC study is

ˆV EPSC = 1− P̂(Case(PSC)|V = 1)

P̂(Case(PSC)|V = 0)

TN Studies

We assume that a person is classified as a TN case or a TN control at her/his

first ARI-related visit. This classification does not change, regardless of possible

conflicting test results in future visits. A person is considered a case in week j,

if:

• they did not seek medical care for any ARI prior to week j, so Mk = 0 for

every week k = 1, . . . , j − 1 (i.e., Mj−1 = 0)

• they seek medical care for their ARI in week j (i.e., Mj = 1)

• they are diagnosed with FARI in week j (i.e., Tj = 1)

The probability of being considered a case for a given v is:

P(Case(TN, TCC)|V = v) =
J∑
j=1

P(Mj−1 = 0,Mj = 1, Tj = 1|V = v)
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A TN control in week j is defined the same as a TN case, except they test

negative for influenza infection (i.e., Tj = 0). The probability of being consid-

ered a TN control for a given vaccination status v is

P(Control(TN)|V = v) =
J∑
j=1

P(Mj−1 = 0,Mj = 1, Tj = 0|V = v)

The VE estimate from a TN study is

ˆV ETN = 1− ÔRTN ,

where ÔRTN is the odds ratio from Table 3.4.

Table 3.4: Final 2x2 table for a TN study.

Vaccinated Unvaccinated
Case P̂(Case(TN, TCC)|V = 1) P̂(Case(TN, TCC)|V = 0)

Control P̂(Control(TN)|V = 1) P̂(Control(TN)|V = 0)

TCC Studies

A TCC case is classified in the same way as a TN case . TCC controls are selected

after the end of the study. A person is considered a TCC control if s/he did not

have an ARI during the entire study period (i.e., YJ = 0).

The probability of being considered a TCC control for a given vaccination

status v is

P(Control(TCC)|V = v) = P(YJ = 0|V = v)

The VE estimate from a TCC study is

ˆV ETCC = 1− ÔRTCC ,
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where ÔRTCC is the odds ratio from Table 3.5.

Table 3.5: Final 2x2 table for a TCC study.

Vaccinated Unvaccinated
Case P̂(Case(TN, TCC)|V = 1) P̂(Case(TN, TCC)|V = 0)

Control P̂(Control(TCC)|V = 1) P̂(Control(TCC)|V = 0)

3.2.4 Sources of Bias

The various sources of bias that may occur under our model and assumptions

are listed in Table 3.6. We use labels to refer to these sources of bias throughout

the Results and Discussion sections. Each source of bias can be attributed to de-

viation of a specific probability ratio from 1. Table 3.7 lists the probability ratio

corresponding to each source of bias, the corresponding model parameter, and

the range of values used for that parameter in our calculations and simulations.

Table 3.6: Sources of bias.

Label Source of Bias

A Vaccination affects the probability of NFARI

B1 Healthy persons have a lower probability of NFARI

B2 Healthy persons have a lower probability of FARI

BS
Healthy persons have a lower probability of
FARI and NFARI. Health status has the same
effect on the probabilities of both types of ARI.

C
Vaccination lowers the probability of seeking
medical care in FARI patients (because of re-
duced symptom severity).

D
ARI patients with high health awareness have
a higher probability of seeking medical care.

E Misclassification of influenza infection status
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In our calculations and simulations, we assumed perfect sensitivity and

specificity. In other words, we will not account for bias E.

Table 3.7: Probability ratios corresponding to sources of bias.

Source
of Bias

Probability
Ratio

Definition Parameter Range

A PRA P(NFARI|Vacc)/P(NFARI|Unv) θβ 0.5 - 2.0
B1 PRB1 P(NFARI|Frail)/P(NFARI|Healthy) φβ 1.0 - 2.0
B2 PRB2 P(FARI|Frail)/P(FARI|Healthy) φγ 1.0 - 2.0
BS PRBS Common value PRB1 and PRB2 φβ = φγ 1.0 - 2.0
C PRC P(SMC|FARI, Vacc)/P(SMC|FARI, Unv) θδ2 0.5 - 1.0
D PRD P(SMC|Low HA)/P(SMC|High HA) µδ1 = µδ2 0.5 - 1.0

PR - Probability ratio, Vacc - Vaccinated, Unv - Unvaccinated,
FARI - Influenza ARI, NFARI - Non-influenza ARI, HA - Health

awareness, SMC - Seeking medical care

3.2.5 Calculations

To evaluate the bias of VE estimates under different sources of bias (Table 3.6),

we derived expressions of true and estimated VE from our model (appendix B.2).

Using these expressions, we calculated the bias of VE estimates under various

combinations of sources of bias by varying the values of the corresponding pa-

rameters (probability ratios, Table 3.7). When a source of bias was absent, we

kept the corresponding probability ratio fixed at 1.0. Bias was defined as es-

timated VE minus true VE. For bias A, we considered that vaccination might

increase or decrease the probability of NFARI, so θβ varied from 0.5 to 2.0. For

biases B1, B2, and BS, we allowed φβ and φγ to vary between 0.5 and 1.0, since

we expect healthy persons to have lower probabilities of ARI compared to frail

persons. For bias C, θδ2 varied between 0.5 to 1.0, since we expect vaccination

to reduce the probability of seeking medical care for FARI compared to NFARI.

For bias D, we assume µδ1 = µδ2 , and their common value varied between 0.5
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to 1.0 because we expect persons with high health awareness to have a higher

probability of seeking medical care for both FARI and NFARI compared to per-

sons with low health awareness. For each study design and each combination

of sources of bias we determined the 5th, 50th, and 95th quantiles of bias from

1,000 Monte Carlo simulations. For each simulation, values for the relevant

probability ratio(s) were drawn from independent triangular distributions over

the ranges specified in Table 3.7. The mode of each distribution was assumed

to be 1. The true and estimated VE were calculated for each simulation. Values

of input parameters used in the calculations can be found in Appendix B.5.

3.2.6 Simulations

To validate our calculated results, we used a stochastic simulation program to

simulate data from each type of study design. Each simulation consisted of a

population of 30,000 people. Each person was assigned a health status, health

awareness, and vaccination status. A random sample of 5,000 and 10,000 peo-

ple were assigned to be the active surveillance and passive surveillance cohorts,

respectively. The remaining people in the population were eligible to be in-

cluded in one of the case-control studies. The same parameter values used

in the calculations were used in the simulation (see Appendix B.5). The pa-

rameter value corresponding to the source of bias being assessed was varied

by 0.1 while keeping all other parameter values fixed. 1000 simulations were

performed for each combination of parameter values. True VE and estimated

VE were determined for each simulation. True VE was simulated under ran-

dom vaccination. VE estimates were obtained from the observed frequencies

of cases and controls by vaccination status. The mean true and estimated VE
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values over all simulations were compared to the calculated values. All simu-

lations were performed in R 3.3.1 [112].

3.2.7 Sensitivity Analyses

To assess whether the value of true VE had an effect on the magnitude of bias,

we performed our calculations using different values of true VE (0.2, 0.4, 0.6,

and 0.8). We also varied the probabilities related to health status, health aware-

ness, and vaccination to determine if and how the choice of these probabilities

impacts the bias of VE estimates. Finally, we varied the value of influenza test

sensitivity and specificity. For each sensitivity analysis, bias was calculated in

the presence of each source of bias for every study design.

Alternative Values of True VE

To evaluate the magnitude of bias for different values of true VE, we performed

our calculations when the true VE was 0.2, 0.4, 0.6, and 0.8.

Alternative Probabilities of (X, U)

We selected two additional sets of input probabilities of X and U to assess the

dependency of the amount of bias of VE estimates on our chosen probabilities

of health status and health awareness. Originally, we assumed independence

between the probabilities ofX and U (i.e., a person’s health status did not affect

their health awareness). In the first set of alternative probabilities, we selected

values such that the probability of having high health awareness (U = 1) given

a healthy health status (X = 1) is greater than the probability of having high

health awareness given a frail health status (X = 0). In the second set of alter-

native probabilities, we selected probabilities for the opposite scenario (i.e., the
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pobability of having high health awareness given a healthy health status is less

than the probability of having high health awareness given a frail health status).

Table 3.8 shows the input probabilities for the original scenario (independence)

and the two alternative scenarios.

Table 3.8: Alternative X and U probabilities.

Scenario Parameters Input Values

Independent

π11 0.40
π10 0.40
π01 0.10
π00 0.10

P(U = 1|X = 1) > P(U = 1|X = 0)

π11 0.44
π10 0.36
π01 0.06
π00 0.14

P(U = 1|X = 1) < P(U = 1|X = 0)

π11 0.32
π10 0.48
π01 0.18
π00 0.02

Alternative Probabilities of Vaccination

We selected two additional sets of input probabilities of vaccination to assess

the dependency of the amount of bias of VE estimates on our chosen proba-

bilities of vaccination. Originally, we selected values such that the probability

of being vaccinated was multiplicatively higher in individuals with frail health

status (X = 0), high health awareness (U = 1), or both (X = 0, U = 1). In the

first set of alternative probabilities we selected values such that the probabil-

ity of being vaccinated was lower in people with frail health status (X = 0),

low health awareness (U = 0), or both (X = 0, U = 0). For the second set of

alternative probabilities, we selected values such that persons with frail health
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status and high health awareness had a much higher probability of vaccination

as we expect this group to have the highest probability of vaccination. Table 3.9

shows the alternative input probabilities.

Table 3.9: Alternative probabilities of vaccination.

Scenario Parameters Input Values

Original

α11 0.60
α10 0.30
α01 0.90
α00 0.45

Alternative 1

α11 0.60
α10 0.30
α01 0.30
α00 0.15

Alternative 2

α11 0.60
α10 0.20
α01 0.95
α00 0.05

Sensitivity and Specificity

We varied the values of influenza test sensitivity and specificity to assess how

deviations from our assumption of 100% sensitivity and specificity impacted

influenza VE estimates. We assessed four combinations of sensitivity and speci-

ficity: (0.9, 0.9), (0.9, 1.0), (1.0, 0.9), and (1.0, 1.0). For each combination of sen-

sitivity and specificity, the median absolute value of bias was calculated in the

presence of sources of bias A, BS, C, and D (separately) for every study design.



72 Chapter 3. Bias of influenza VE estimates in observational studies

3.3 Results

We evaluated bias of VE estimates from cohort and case-control studies in the

presence of the sources of bias listed in Table 3.6. Table 3.10 shows the 5th,

50th, and 95th quantiles of bias for each study design first, for each source of

bias separately and then, for combinations of source of bias. We define several

terms to aid in our evaluation of the magnitude of bias: little/small or no bias

indicates an absolute bias of less than 0.05, moderate bias indicates absolute

bias greater than or equal to 0.05 and less than 0.10, substantial bias indicates

absolute bias greater than or equal to 0.10 and less than 0.20, and severe bias

indicates absolute bias of 0.20 or more.

When no sources of bias are present, all study designs, except the TCC

(bias=0.02), produce unbiased estimates of VE (Table 3.10). VE estimates from

both the TN and TCC studies are based on the odds ratio rather than on the

risk ratio, however, the TN-based estimate is unbiased even if the rare disease

assumption does not hold [99]. Under bias A, both cohort studies produced

unbiased VE estimates, while the case-control studies produce VE estimates

with a wide range of bias (TN 90% Interval: (-0.34, 0.22), TCC 90% Interval: (-

0.15, 0.10)). Interestingly, the direction of bias of VE estimates from the TN and

TCC estimates is opposite as the probability ratio varies (Figure 3.2). Under

bias B1, VE estimates from both cohort studies are unbiased. Estimates from

the TN and TCC may suffer from small positive bias (TN: (0.00, 0.05), TCC:

(0.00, 0.02)). Under bias B2, VE estimates from all four studies may suffer from

small bias (ASC: (-0.05, 0.00), PSC: (-0.05, 0.00), TN: (-0.05, 0.00), TCC: (-0.03,

0.02)). Under bias BS, VE estimates from TN studies are unbiased, while esti-

mates from the other three study designs may still suffer from small bias. Under
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bias C, estimates of VE against SI are unbiased from ASC studies, but may be

severely biased from the other three studies (PSC: (0.01, 0.23), TN: (0.01, 0.23),

TCC: (0.03, 0.24)). Estimates of VE against MAI are unbiased from PSC and TN

studies, while estimates from TCC studies have little bias. As mentioned ear-

lier, we do not evaluate the bias of VE estimates against MAI from ASC studies

(represented as a blank plot in Figure 3.2). Under bias D, estimates of VE from

ASC and TN studies are unbiased. Estimates of VE from PSC and TCC studies

may suffer from substantial bias (PSC: (-0.10, 0.00), TCC: (-0.07, 0.02)). All of

our calculated results were validated using our stochastic simulation program

(results not shown).

Next, we evaluated the bias of VE estimates when multiple sources of bias

were present simultaneously (Table 3.10). We expect biases B and D to occur

most often because they represent confounding due to an association between

the covariates and the likelihood of illness and seeking medical care. Further-

more, we add the assumption that health status has the same effect on the prob-

abilities of FARI and NFARI; therefore, we consider the bias BS rather than bi-

ases B1 and B2. The presence of biases A and C is more controversial. Therefore,

biases BS and D were included in all scenarios, while the presence of biases A

and C was varied. For these reasons, we looked at four scenarios: BS and D

only; BS, D, and A; BS, D, and C; BS, D, A, and C.

• In the presence of BS and D only, ASC and TN studies produced estimates

with little or no bias, while PSC and TCC studies produced estimates with

moderate to substantial bias.

• With the addition of bias A (BS, D, A), ASC studies still produced esti-

mates with little or no bias, while the remaining study designs produced
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estimates with bias that ranged from little to severe (PSC 90% Interval:

(-0.14, -0.01), TN: (-0.35, 0.22), TCC: (-0.26,0.06)).

• In the presence of BS, D, and C, the ASC design produced estimates of

VE against SI with little or no bias, while the remaining study designs

produced estimates of VE against SI with bias that ranged from little to

severe (PSC: (-0.07, 0.20), TN: (0.01, 0.24), TCC: (-0.06,0.21)). The TN de-

sign produced unbiased estimates of VE against MAI. PSC and TCC stud-

ies produced estimates of VE against MAI that ranged from unbiased to

substantially biased (PSC: (-0.11, -0.01), TCC: (-0.10,0.00)).

• When all four sources of bias were present (BS, D, A, C), the ASC design

produced estimates of VE against SI with little or no bias, estimates of

VE against SI and MAI from the other three study designs suffered from

moderate to severe bias.
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Figure 3.2: Plots of VE estimates from ASC, PSC, TN, and TCC
studies compared to true VE for each source of bias alone

Each row of plots corresponds to a single source of bias and each column
of plots corresponds to a single study design. Sources of bias: A - vac-
cination affects the probability of NFARI, BS - Healthy persons have a
lower probability of NFARI and FARI, C - Vaccination lowers the prob-
ability of seeking medical care in FARI patients, and D - ARI patients
with high health awareness have a higher probability of seeking medi-
cal care. Under sources of bias A, BS, and D, the true VE against SI is
equal to the true VE against MAI. Under source of bias C the true VE
against MAI differs from the true VE against SI when the probability
ratio is not equal to 1. If only a solid line is visible, that indicates that
the VE estimate is unbiased. Since we do not estimate VE against MAI
from ASC studies, the figure for VE against MAI when source of bias C

is present for ASC studies is blank. PR - probability ratio.
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3.3.1 Sensitivity Analyses

Alternative Values of True VE

To assess whether the value of true VE had an effect on the magnitude of bias,

we performed our calculations using different values of true VE (0.2, 0.4, 0.6,

and 0.8). Table 3.11 shows the bias of VE estimates under select sources of bias

for different values of true VE. Based on our results, bias is dependent on the

value of the true VE (particularly for the case-control studies). When the true

VE is higher, bias is lower. Much of the biases from A and C in the case-control

studies are reduced when the true VE is 0.8; however, if true VE is 0.2, the

bias is even larger than our original scenario (true VE=0.437). We illustrate this

phenomenon in Figure 3.3 where the magnitude of bias under source of bias A

in TN-based VE estimates shrinks as the true VE increases. Our results suggest

that more effective vaccines are more robust to sources of bias.

Figure 3.3: VE estimates from TN studies under source of bias A
for different values of true VE

PR_A=probability ratio under source of bias A (vaccination affects
the probability of NFARI).
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Alternative Probabilities of (X,U)

When A and C were present, bias was the same for both sets of alternative

probabilities when compared to the original probabilities for all study designs.

When B1 was present bias was the same as the original probabilities for the co-

hort studies, but differed for the case-control studies. When B2 and BS were

present, bias using both sets of alternative probabilities differed from the origi-

nal calculations for all study designs. When D was present, bias was the same

as the original calculations for ASC and TN studies, but differed under both

sets of alternative probabilities for PSC and TCC studies (Figure 3.4).

Alternative Probabilities of Vaccination

Bias was the same for each set of alternative input probabilities compared to the

original input probabilities for all study designs when A and C were present.

Bias of estimates of VE from the cohort studies was the same in the alternative

scenarios compared to the original scenario, but differed for case-control stud-

ies when B1 was present. When B2 and BS were present, bias differed in the

alternative scenarios compared to the original scenario for all study designs,

except for bias in the TN study for alternative scenario 1. When D was present,

bias was the same in the alternative scenarios compared to the original scenario

for ASC and TN studies, but differed for all three alternative scenarios for PSC

and TCC studies (Figure 3.5).
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Figure 3.4: Bias of VE estimates from ASC, PSC, TN, and TCC
studies for alternative probabilities of (X, U)

Each plot shows the bias of VE estimates for different probabilities of
(X,U ) for a single source of bias (row) and study design (column) as the
probability ratio varies. Under sources of bias A, BS, and D, the true VE
against SI is equal to the true VE against MAI thus, the bias is the same
for both outcomes of interest. Under source of bias C the true VE against
MAI differs from the true VE against SI when the probability ratio is not
equal to 1. If only a solid line is visible the bias is the same among the
different scenarios. Since we do not obtain an estimate of VE against
MAI from ASC studies, the figure for VE against MAI when source of

bias C is present for ASC studies is blank.
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Figure 3.5: Bias of VE estimates from ASC, PSC, TN, and TCC
studies for alternative probabilities of vaccination

Each plot shows the bias of VE estimates for different probabilities of
vaccination for a single source of bias (row) and study design (column)
as the probability ratio varies. Under sources of bias A, BS, and D, the
true VE against SI is equal to the true VE against MAI thus, the bias is
the same for both outcomes of interest. Under source of bias C the true
VE against MAI differs from the true VE against SI when the probability
ratio is not equal to 1. If only a solid line is visible the bias is the same
among the different scenarios. Since we do not obtain an estimate of
VE against MAI from ASC studies, the figure for VE against MAI when

source of bias C is present for ASC studies is blank.
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Sensitivity and Specificity

We varied the values of influenza test sensitivity and specificity to assess how

deviations from our assumption of 100% sensitivity and specificity impacted

influenza VE estimates. We assessed the median absolute value of bias for four

combinations of sensitivity and specificity: (0.9, 0.9), (0.9, 1.0), (1.0, 0.9), and

(1.0, 1.0). Our results suggest that VE estimates are robust to imperfect test sen-

sitivity, but may be more biased when the test has less than perfect specificity

(Table 3.12). However, when source of bias C is present and the outcome of

interest is SI, estimates of VE from PSC, TN, and TCC have a smaller absolute

value of bias when the specificity is 0.9. Additionally, when bias A is present

estimates of VE from TN studies have similar median absolute value of bias

regardless of the value of test sensitivity and specificity.

3.4 Discussion

In this chapter we present a dynamic extension of a previously developed model

[99] for the evaluation of bias of influenza VE estimates from both case-control

and cohort studies. This extended model provides several advantages over ex-

isting models [46, 55, 57, 98, 99], namely, 1) a time component allowing for the

intensities of FARI and NFARI to change over time and the possibility of de-

veloping more than one ARI in a season, 2) the incorporation of two covariates

(health status and health awareness) that may affect the probabilities of vacci-

nation, developing ARIs, and seeking medical care for these ARIs, and 3) the

ability to assess VE estimates from cohort studies. This work makes an impor-

tant contribution to the literature by comparing the bias of VE estimates from

four study designs under various sources of bias.
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Our primary findings for each study design are:

• ASC studies produce unbiased estimates of VE against SI except when

health status influences the probability of FARI (bias B2), in which case

the bias may be moderate.

• PSC studies produce unbiased VE estimates against MAI except when

health status influences the probability of FARI (bias B2) or health aware-

ness influences the probability of seeking care (bias D). This study design

may produce severely biased estimates against SI when vaccination low-

ers the probability of seeking medical care.

• VE estimates from TN studies are unbiased for both SI and MAI when

health status has the same effect on the probabilities of FARI and NFARI

(bias BS) and when health awareness affects the probability of seeking

care (bias D). Estimates are unbiased for MAI when vaccination lowers

the probability of seeking care for FARI (bias C). TN-based VE estimates

may be severely biased when vaccination affects the probability of NFARI

(bias A) for both outcomes or when vaccination affects the probability of

seeking care (bias C) and the outcome of interest is SI.

• TCC studies may produce moderate to severely biased VE estimates in

the presence of all sources of bias.

Our results confirm earlier findings [55, 99] that when vaccination affects

the probability of NFARI (bias A), TN-based estimates may be severely biased.

We also show that under this source of bias VE estimates from TCC studies may

be severely biased, but VE estimates from both cohort studies are unbiased.

In the results presented above, we only considered one value of true VE and

one possible combination of the probabilities of health status, health awareness,
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and vaccination. To assess the impact of the value of true VE on the magnitude

of bias, we varied the value of true VE. Based on our results, bias is dependent

on the value of the true VE, and estimates of more effective vaccines are less in-

fluenced by the sources of bias evaluated in this work compared to less effective

vaccines. Additionally, we assumed that health status and health awareness

were independent. To assess the impact of different input probabilities on the

bias of VE estimates from each study design, we varied these probabilities. We

observed no change in the bias of VE estimates from any study design when

biases A and D were present. Bias did differ when the other sources of bias

were present. Especially, VE estimates from the TN were no longer unbiased

against MAI in the presence of source of bias C when the probabilities of health

status and health awareness were correlated. Finally, we varied the value of in-

fluenza test sensitivity and specificity and observed that influenza VE estimates

are robust to imperfect test sensitivity, but in general, had a larger magnitude

of median absolute value bias when the influenza test had imperfect specificity.

It is important to consider that the biases presented here are from unad-

justed VE estimates. We focused on characterizing bias from different sources,

rather than on methods to adjust for this bias. It is reasonable to postulate that

if appropriate adjustments are made, some of the bias may be reduced. An-

other limitation of this work is that we did not account for the misclassification

of vaccination status.

Based on the results presented here, and the assumption that multiple sources

of bias are present, the preferred study designs for estimating VE against SI and

MAI are ASC and TN, respectively. TN studies are cheaper and involve fewer

logistical issues compared to ASC studies. The TN is the only study design that

adjusts for the two most common sources of bias: BS and D, which represent
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the confounding due to covariates (health status and health awareness) that

are related to both vaccination and the outcome. However, if the core assump-

tion underlying this study design is violated, i.e., bias A is present, then one

should consider a cohort study, which is usually more expensive and logisti-

cally complex. Even if the core assumption is satisfied, one should not interpret

TN-based estimates as estimates of VE against SI, unless bias C has been ruled

out.



87

Chapter 4

Estimation of bias of influenza

vaccine effectiveness estimates from

test-negative studies: extensions of a

dynamic probability model

Since first being used to assess influenza VE in 2005 [56], the TN study design

has become the most popular design for assessing annual influenza VE. The TN

design is attractive because it can be easily incorporated into existing surveil-

lance systems and attempts to control for confounding due to propensity to

seek medical care because cases and controls are both selected from individuals

who seek medical care for ARI [100]. Within a TN study, cases are selected from

individuals who seek medical care for ARI and test positive for influenza infec-

tion, while controls are individuals who seek care for ARI and test negative for

influenza infection.

Concern has been raised with the growing popularity of the TN design

about the validity of TN-based VE estimates. Previous work has demonstrated
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the validity of TN-based estimates of VE if vaccination does not affect the prob-

ability of developing NFARI in outpatient settings [45, 55, 57, 98, 106], in in-

patient settings [32], and when the influenza test has imperfect sensitivity and

specificity [46]. However, more work is needed to determine the validity of TN-

based estimates under scenarios that deviate from commonly made assump-

tions. In this chapter, we present two extensions of the model presented in

Chapter 3.

First, we consider the scenario when vaccination occurs during the study

period rather than assume all vaccinated individuals were vaccinated prior to

the study period, as has been done previously [32, 45, 46, 55, 57, 98, 99, 106,

124]. The assumption of vaccination prior to the study period is reasonable

for seasonal epidemics because vaccine campaigns begin prior to the outbreak;

however, it is not a reasonable assumption during an influenza pandemic. For

example, during the 2009 influenza pandemic, a vaccine was made available

months after the start of the outbreak [7]. We extend our model from Chap-

ter 3, to allow vaccination to occur over time and assess the bias of TN-based

estimates of VE under different sources of bias. We then compare the bias of

estimates from our extended model to the bias of estimates when vaccination

occurs prior to the study period.

Second, we assume a different vaccine model, the all-or-none vaccine model

[44]. In Chapter 3 we assumed a leaky vaccine model, where vaccination lowers

the probability of infection a fraction, ρ. In the all-or-none model, a proportion

ρ of vaccinated individuals are conferred complete immunity from infection,

while the remaining proportion (1 − ρ) are fully susceptible to infection. We

assess the bias of TN-based estimates under the all-or-none model under differ-

ent sources of bias and compare them to TN-based estimates under the leaky
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model.

For each extension, we make the same assumptions detailed in section 3.2.1

with the additional assumption that the influenza test has perfect sensitivity

and specificity.

4.1 Vaccination Over Time

4.1.1 Background

Since the beginning of the 20th century, five influenza pandemics have oc-

curred, none more devastating than the 1918 ‘Spanish flu’ pandemic. Despite

the medical advances (e.g., vaccines and antivirals) and increased public aware-

ness throughout the previous century, influenza pandemics pose a significant

public health threat. The most recent 2009 H1N1 pandemic provided a pow-

erful reminder of how dangerous pandemic influenza can be. An estimated

151,700 to 575,400 deaths occurred worldwide during the first year the pan-

demic strain circulated [125]. Due to the continual adaptation of the influenza

A virus, future influenza pandemics are inevitable. One important element of

pandemic preparedness is the rapid development of a vaccine against the pan-

demic strain, as vaccination remains the best way to prevent against influenza

infection [7]. It is estimated that as many as 1.5 million cases, 4,000-10,000 hos-

pitalizations and 200-500 deaths were averted in the United States by the mono-

valent vaccine during the 2009 pandemic [10].

In the context of a pandemic, estimation of influenza vaccine effectiveness

(VE) involves additional challenges compared to the estimation of the effective-

ness of seasonal influenza vaccines. During the 2009 pandemic, the monovalent

vaccine against the pandemic strain was made available months after the start
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of the pandemic. The delayed and gradual timing of vaccination may introduce

additional bias into estimates of VE compared to seasonal epidemics, where

most people get vaccinated before the outbreak.

4.1.2 Methods

Model Description

We present an extension to the dynamic model presented in Chapter 3 that

allows vaccination status to change over time (Figure 4.1). Details about the

associated variables and the probabilities determining each variable’s distribu-

tion can be found in Tables 4.1 and 4.2, respectively. All variables are defined

for each member of the study population. Some variables vary over time, and

we consider each time unit to be one week. It will be convenient to define a

standard person as a person who is unvaccinated, healthy, and has high health

awareness. In Table 4.2, probabilities are first defined for a standard person,

and then defined for non-standard persons as a function of the corresponding

standard person probability and multiplier(s).



4.1. Vaccination Over Time 91

Figure 4.1: Causal graph of influenza vaccine studies with
covariates.

X = health status, (U) = health awareness (unobserved), Vj =
vaccination status in week j, Yj = ARI status in week j, Mj =
seeking medical care for ARI in week j, and Tj = influenza test
result in week j, where j = 1, . . . , J and J = the number of weeks

in the study.

Step 1: Covariates. We assume that people within the population can be

classified with a health status (X) of either "healthy" or "frail" and a health

awareness (U ) of either "high" or "low".

Step 2: Vaccination. Individuals can be vaccinated throughout the study.

We use jv to denote the first week individuals may become vaccinated. A per-

son is considered effectively vaccinated 14 days after receipt of the vaccine. We

will use the term ‘vaccinated’ to indicate ‘effectively vaccinated’.

Step 3: Influenza and non-influenza ARI. During the study, a person may

become infected with an influenza virus and develop FARI and/or develop one

or more NFARIs. We define a variable Yj for the illness/infection status in week

j, where the distribution of Yj may depend on the person’s vaccination status

(Vj) and health status (X).

Step 4: Seeking medical care for ARI. A person with an ARI in week j may

seek medical care (Mj). The probability of seeking medical care depends on Yj ,

as only those individuals who have an ARI may seek medical care (i.e., Mj = 0
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if Yj = 0), and it may be different for FARI and NFARI patients. This probability

may also depend on Vj and U .

Step 5: Testing for influenza infection. We assume that each person who

seeks medical care for ARI is tested for influenza infection (Tj).

Table 4.1: Variables in the model.

Variable Definition Values

X Health status 0 - frail person
1 - healthy person

U Health awareness (unobserved) 0 - low health awareness
1 - high health awareness

Vj Vaccination status in week j 0 - unvaccinated
1 - vaccinated

K The week a person became effectively vaccinated K = jv, . . . , J + 1*

Yj Influenza/non-influenza ARI status in week j
0 - no ARI
1 - non-influenza ARI
2 - influenza ARI

Mj Seeking medical care for ARI in week j 0 - no
1 - yes

Tj Result of test for influenza infection in week j 0 - negative
1 - positive

*K = jv indicates the first week individuals may become vacci-
nated and K = J + 1 indicates a person who was not vaccinated

by the end of the study (i.e., remain unvaccinated).

True VE

The true VEs against SI and MAI may be different [99, 124]. Therefore, we

evaluated the true VE for each of the two outcomes of interest. True VE is

calculated under the assumption of random vaccination, i.e., the probability

that K = j does not depend on X or U . Because vaccination status can change

during the study, we derive true VE allowing persons to be vaccinated during

the study. The true VE is one minus the ratio of

∑
j

Cjv∑
j

Njv

when v = 1 and v = 0,
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Table 4.2: Parameters in the model.

Parameters Definition Comments
πxu P(X = x, U = u)
αjxu P(K = j|X = x, U = u)
βjvx P(Yj = 1|Vj = v,X = x) βj11 = βj01 · θβ
θβ multiplier for β when Vj = 1 βj00 = βj01 · φβ
φβ multiplier for β when X = 0 βj10 = βj01 · θβ · φβ
γjvx P(Yj = 2|Vj = v,X = x) γj11 = γj01 · θγ
θγ multiplier for γ when Vj = 1 γj00 = γj01 · φγ
φγ multiplier for γ when X = 0 γj10 = γj01 · θγ · φγ
δ1vu P(Mj = 1|Yj = 1, Vj = v, U = u) δ111 = δ101 · θδ1
θδ1 multiplier for δ1 when Vj = 1 δ100 = δ101 · µδ1
µδ1 multiplier for δ1 when U = 0 δ110 = δ101 · θδ1 · µδ1
δ2vu P(Mj = 1|Yj = 2, Vj = v, U = u) δ211 = δ201 · θδ2
θδ2 multiplier for δ2 when Vj = 1 δ200 = δ201 · µδ2
µδ2 multiplier for δ2 when U = 0 δ210 = δ201 · θδ2 · µδ2

A standard person is defined as a person with (Vj = 0, X = 1, U =
1). βj01 and γj01 represent the probabilities of contracting a NFARI
or FARI for a standard person in week j, respectively, j = 1, . . . , J .
δ101 and δ201 represent the probabilities of seeking care for NFARI
and FARI for a standard person, respectively. These probabilities,
as well as all πxu, x = 0, 1;u = 0, 1, all αjxu, j = 1, . . . , J ; x = 0, 1;
u = 0, 1, τ1, τ2, and all multipliers (µ, θ, φ), are input parameters.

where Cjv and Njv are the expected numbers of cases and persons of vaccine

status v in week j, respectively. A person is considered a true case of SI if s/he

develops an influenza ARI during the study (Yj = 2). A person is considered a

true case of MAI if s/he develops an influenza ARI during the study and seeks

medical care for this ARI (Yj = 2,Mj = 1). See Appendix C.1.1 for expressions

of true VE in terms of model parameters.
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VE Estimates from TN Studies

We assume that a person is classified as a TN case or a TN control at her/his

first ARI-related visit. This classification does not change, regardless of possible

conflicting test results in future visits. Similarly, when a person is classified as a

case or control, only their vaccination status at that visit is recorded, regardless

of whether their vaccination changes in future visits. We assume that the study

begins in week j = jv, the first week of vaccination. Therefore, we define Mj =

0 for j < jv.

Cases

A person is considered a case in week j, if:

• they did not seek medical care for any ARI prior to week j, so Mk = 0 for

every week k = 1, . . . , j − 1 (i.e., Mj−1 = 0)

• they seek medical care for their ARI in week j (i.e., Mj = 1)

• they have FARI in week j (i.e., Yj = 2)

The expected number of vaccinated cases in week j is:

E(unvaccinated cases in week j) = N × P(Mj−1 = 0,Mj = 1, Yj = 2, K ≤ j)

and the expected number of unvaccinated cases in week j is:

E(unvaccinated cases in week j) = N × P(Mj−1 = 0,Mj = 1, Yj = 2, K > j)

See Appendix C.1.2 for expressions of expected numbers of cases in terms of

the model parameters.
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Controls

A control in week j is defined in the same way as a case with the exception that

Yj = 1. The expected number of vaccinated controls in week j is:

E(unvaccinated controls in week j) = N × P(Mj−1 = 0,Mj = 1, Yj = 1, K ≤ j)

and the expected number of unvaccinated controls in week j is:

E(unvaccinated controls in week j) = N × P(Mj−1 = 0,Mj = 1, Yj = 1, K > j)

For expressions of expected number of controls in terms of the model parame-

ters, see Appendix C.1.2. To obtain the final 2x2 table for a TN study (Table 4.3),

we sum the expected cell counts over all weeks in the study period jv, . . . , J .

The VE estimate from a TN study is

ˆV ETN = 1− ÔRTN ,

where ÔRTN is the odds ratio from Table 4.3.

Table 4.3: Final 2x2 table for a TN study.

Vaccinated Unvaccinated

Case
J∑

j=jv

E(vaccinated cases in week j)
J∑

j=jv

E(unvaccinated cases in week j)

Control
J∑

j=jv

E(vaccinated controls in week j)
J∑

j=jv

E(unvaccinated controls in week j)
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Calculations and Simulations

Using expressions of true and estimated VE derived from our model (Appen-

dices C.1.1 and C.1.2), we calculated the bias of TN-based VE estimates under

various sources of bias (Table 4.4). Bias was defined as estimated VE minus

true VE. Each source of bias can be attributed to deviation of a specific pa-

rameter from 1.0, and bias was calculated by varying the values of the corre-

sponding parameters (Table 4.4). When a source of bias was absent, we kept

the corresponding parameter fixed at 1.0. We calculated VE estimates from a

20 week study (J = 20) in which the first week of vaccination varied (jv =

1, 6, 11, 15, 20, 24, 28, 33, 38). The values of jv corresponded to the first week of

each month during the 2009 influenza pandemic season (with the exception of

week 1, which corresponded to the beginning of the outbreak). For bias A,

Table 4.4: Sources of Bias

Label Source of Bias Parameter Range
A Vaccination affects the probability of NFARI θβ 0.5-2.0

B1 Healthy persons have a lower probability of NFARI φβ 1.0-2.0

B2 Healthy persons have a lower probability of FARI φγ 1.0-2.0

BS
Healthy persons have a lower probability of
FARI and NFARI. Health status has the same
effect on the probabilities of both types of ARI.

φβ = φγ 1.0-2.0

C
Vaccination lowers the probability of seeking
medical care in FARI patients (because of re-
duced symptom severity).

θδ2 0.5-1.0

D
ARI patients with high health awareness have
a higher probability of seeking medical care. µδ1 = µδ2 0.5-1.0

we considered that vaccination might increase or decrease the probability of

NFARI, so θβ , the ratio of the probability of NFARI in vaccinated persons com-

pared to unvaccinated persons, varied from 0.5 to 2.0. For biases B1, B2, and BS,

we allowed φβ and φγ , the ratios of the probabilities of NFARI and FARI in frail
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persons compared to healthy persons, respectively, to vary between 0.5 and 1.0,

since we expect healthy persons to have lower probabilities of ARI compared

to frail persons. For bias C, θδ2 , the ratio of the probability of seeking medical

care for FARI in vaccinated persons compared to unvaccinated persons, var-

ied between 0.5 to 1.0, since we expect vaccination to reduce the probability of

seeking medical care for FARI compared to NFARI. For bias D, we let µδ1 and

µδ2 denote the ratios of the probability of seeking medical care for NFARI and

FARI, respectively, comparing persons with high health awareness to persons

with low health awareness. We let their values vary between 0.5 to 1.0 because

we expect persons with high health awareness to have a higher probability of

seeking medical care for both FARI and NFARI compared to persons with low

health awareness. We assume µδ1 = µδ2 .

Under each source of bias we determined the 5th, 50th, and 95th quantiles

of bias and the 50th and 95th quantiles of the absolute value of bias from 1,000

Monte Carlo simulations. For each simulation, values for the relevant param-

eter(s) were drawn from independent triangular distributions over the ranges

specified in Table 4.4. The mode of each distribution was assumed to be 1. The

true and estimated VE were calculated for each simulation. Bias was calcu-

lated for each source of bias separately as well as for combinations of sources

of bias. We validated the calculations using a stochastic simulation program

(Appendix C.1.3). The mean bias of VE estimates over 1,000 simulations were

compared to the calculated values. All simulations were performed in R 3.3.1

[112].
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Sensitivity Analyses

We performed several sensitivity analyses to determine if different parameter

values affected the magnitude of bias of under the all-or-none vaccine model.

First, we varied vaccination coverage (0.40, 0.60, and 0.80). Next, we varied the

value of true VE (0.2, 0.4, 0.6, and 0.8). Finally, we varied the length of the study

period (15, 20, 25, 30 weeks). For each sensitivity analysis we held the first week

of vaccination fixed at week 24.

4.1.3 Results

We evaluated bias of VE estimates from TN studies in the presence of the sources

of bias listed in Table 4.4. We calculated the 5th, 50th, and 95th quantiles of bias

and the 50th and 95th quantiles of the absolute value of bias under each source

of bias (Table 4.5). We define several terms to aid in our evaluation of the mag-

nitude of bias: little/small or no bias indicates an absolute bias of less than 0.05,

moderate bias indicates absolute bias greater than or equal to 0.05 and less than

0.10, substantial bias indicates absolute bias greater than or equal to 0.10 and

less than 0.20, and severe bias indicates absolute bias of 0.20 or more.

When vaccination occurred during the study, the effect of the first week of

vaccination (jv) was unpredictable. Interestingly, the 95th quantile of bias of VE

estimates from different sources followed a similar pattern when the first week

of vaccination varied (Figure 4.2). The TN study produced biased VE estimates

regardless of the source of bias present, except when all vaccinated individuals

were vaccinated in week 1 (baseline). The values of bias under biases BS and D

were the same as when no sources of bias were present (Table 4.5). The largest

bias under these sources of bias was observed at jv = 15 (0.10) compared to
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Figure 4.2: 95th Quantile of absolute value of bias of VE estimates
by first week of vaccination

The solid line indicates the incidence of influenza infection in each
week. The 95th quantile of bias was the same for no sources of bias
(None) and biases BS and D; therefore, BS and D are not repre-
sented in the figure individually. The 95th quantile of bias follows
a similar pattern regardless of the source of bias as the first week

of vaccination varies.

unbiased estimates at baseline. When vaccination influenced the probability

of NFARI (bias A), VE estimates suffered from substantial to severe bias re-

gardless of the value of jv. The largest 95th quantiles of absolute value of bias

were observed at jv = 11 and jv = 38 (QAV B(95) = 0.26); however this was

only slightly larger than at baseline (QAV B(95) = 0.24). For several values of

jv, the bias of VE estimates was smaller than baseline. The smallest bias was

observed when jv = 24 (QAV B(95) = 0.13). When health status affected the

probability of NFARI (bias B1), VE estimates suffered from little bias at baseline
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(QAV B(95) = 0.03) and little to substantial bias for all other values of jv. The

largest bias was observed at jv = 11 (QAV B(95) = 0.12). When health status

affected the probability of FARI (bias B2), VE estimates suffered from little bias

at baseline (QAV B(95) = 0.02) and little to moderate bias for all other values

of jv, except jv = 38, which suffered from substantial bias (QAV B(95) = 0.10).

When vaccination lowers the probability of seeking medical care for FARI (bias

C) the bias of VE estimates differed by outcome of interest. TN-based esti-

mates of VE against SI suffered from little to severe bias depending on the

first week of vaccination. At baseline, VE estimates were substantially biased

(QAV B(95) = 0.16). The largest bias was observed at jv = 11 (QAV B(95) = 0.26)

and the smallest bias was observed at jv = 28 (QAV B(95) = 0.04). When the out-

come of interest was MAI, VE estimates at baseline were unbiased. For all other

values of jv VE estimates suffered from little to moderate bias (QAV B(95) = 0.09

at jv = 11 and QAV B(95) = 0.02 at jv = 28). We also assessed the bias of VE

estimates under combinations of sources of bias (Table C2). Similar patterns

of bias were observed under combinations of sources of bias as under a single

source of bias.
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Table 4.5: Bias of TN-based estimates of VE when first week of
vaccination varies

Source
of Biasa

Outcome
of Interest

jv QB(5)b QB(50) QB(95) QAV B(50) QAV B(95)

None SI & MAI

1 c 0.00 0.00 0.00 0.00 0.00
6 0.05 0.05 0.05 0.05 0.05

11 0.10 0.10 0.10 0.10 0.10
15 0.05 0.05 0.05 0.05 0.05
20 -0.03 -0.03 -0.03 0.03 0.03
24 -0.04 -0.04 -0.04 0.04 0.04
28 -0.03 -0.03 -0.03 0.03 0.03
33 -0.05 -0.05 -0.05 0.05 0.05
38 -0.07 -0.07 -0.07 0.07 0.07

A SI & MAI

1 -0.24 0.00 0.14 0.08 0.24
6 -0.14 0.05 0.17 0.08 0.18

11 -0.16 0.09 0.25 0.12 0.26
15 -0.18 0.04 0.19 0.09 0.22
20 -0.24 -0.03 0.09 0.06 0.24
24 -0.16 -0.04 0.04 0.05 0.16
28 -0.13 -0.03 0.04 0.04 0.13
33 -0.25 -0.05 0.08 0.07 0.25
38 -0.26 -0.07 0.05 0.08 0.26

B1 SI & MAI

1 0.00 0.01 0.03 0.01 0.03
6 0.05 0.06 0.07 0.06 0.07

11 0.10 0.10 0.12 0.10 0.12
15 0.05 0.06 0.07 0.06 0.07
20 -0.03 -0.02 -0.01 0.02 0.03
24 -0.04 -0.04 -0.03 0.04 0.04
28 -0.03 -0.03 -0.02 0.03 0.03
33 -0.04 -0.04 -0.03 0.04 0.04
38 -0.07 -0.07 -0.06 0.07 0.07

B2 SI & MAI

1 -0.02 -0.01 0.00 0.01 0.02
6 0.03 0.04 0.05 0.04 0.05

11 0.07 0.09 0.09 0.09 0.09
15 0.02 0.04 0.05 0.04 0.05
20 -0.05 -0.04 -0.03 0.04 0.05
24 -0.05 -0.05 -0.04 0.05 0.05
28 -0.04 -0.03 -0.03 0.03 0.04
33 -0.06 -0.05 -0.05 0.05 0.06
38 -0.10 -0.08 -0.08 0.08 0.10

a Sources of bias: see Table 4.4, b QB(5)=5th quantile, QB(50)=50th quan-
tile (median), QB(95)=95th quantile, QAV B(50)=50th quantile of the abso-
lute value of bias, QAV B(95)=95th quantile of the absolute value of bias.
Quantiles were determined from 1000 Monte Carlo simulations. Abso-
lute value of bias is defined as the difference between the estimate VE
and the true VE without regard to the sign, c all vaccinated individuals

are vaccinated in the first week of the study.
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Table 4.5: Bias of TN-based estimates of VE when first week of
vaccination varies

Source
of Bias

Outcome
of Interest

jv QB(5) QB(50) QB(95) QAV B(50) QAV B(95)

BS SI & MAI

1 0.00 0.00 0.00 0.00 0.00
6 0.05 0.05 0.05 0.05 0.05

11 0.10 0.10 0.10 0.10 0.10
15 0.05 0.05 0.05 0.05 0.05
20 -0.03 -0.03 -0.03 0.03 0.03
24 -0.04 -0.04 -0.04 0.04 0.04
28 -0.03 -0.03 -0.03 0.03 0.03
33 -0.05 -0.05 -0.05 0.05 0.05
38 -0.08 -0.08 -0.07 0.08 0.08

Cd

SI

1 0.01 0.07 0.16 0.07 0.16
6 0.05 0.11 0.18 0.11 0.18

11 0.10 0.17 0.26 0.17 0.26
15 0.06 0.12 0.21 0.12 0.21
20 -0.02 0.03 0.11 0.03 0.11
24 -0.04 0.00 0.05 0.02 0.05
28 -0.03 0.00 0.04 0.02 0.04
33 -0.04 0.02 0.09 0.03 0.09
38 -0.07 -0.01 0.07 0.04 0.07

MAI

1 0.00 0.00 0.00 0.00 0.00
6 0.03 0.04 0.05 0.04 0.05

11 0.06 0.08 0.09 0.08 0.09
15 0.03 0.04 0.05 0.04 0.05
20 -0.03 -0.02 -0.02 0.02 0.03
24 -0.04 -0.03 -0.02 0.03 0.04
28 -0.03 -0.02 -0.02 0.02 0.02
33 -0.04 -0.04 -0.03 0.04 0.04
38 -0.07 -0.06 -0.04 0.06 0.07

D SI & MAI

1 0.00 0.00 0.00 0.00 0.00
6 0.05 0.05 0.05 0.05 0.05

11 0.10 0.10 0.10 0.10 0.10
15 0.05 0.05 0.05 0.05 0.05
20 -0.03 -0.03 -0.03 0.03 0.03
24 -0.04 -0.04 -0.04 0.04 0.04
28 -0.03 -0.03 -0.03 0.03 0.03
33 -0.05 -0.05 -0.05 0.05 0.05
38 -0.08 -0.08 -0.07 0.08 0.08

d Under bias C, estimates of VE against SI and MAI differ.
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4.1.4 Sensitivity Analyses

We performed several sensitivity analyses to determine if different parame-

ter values affected the magnitude of bias when vaccination started at different

weeks during the season. For all sensitivity analyses, we compared the 95th

quantile of absolute value of bias when vaccination occured prior to the season

(jv = 1) and at weeks 24 and 38. We varied the final vaccination coverage (0.20,

0.40, 0.60, and 0.80), value of true VE (0.2, 0.4, 0.6, and 0.8), and length of the

study period (15, 20, 25, 30 weeks).

Vaccination Coverage

To assess whether the final vaccination coverage at the end of the study had

an effect on the magnitude of bias when vaccination occured during the study

period, we calculated the bias of TN-based VE estimates when the final vaccina-

tion coverage was 0.20, 0.40, 0.60, and 0.80. Under most sources of bias (except

A and C against SI), the 95th quantile of absolute value of bias of VE estimates

was larger when vaccination started in weeks 24 and 38 compared to baseline

(Table 4.6). The largest difference in bias relative to baseline was 0.1 (under no

bias, bias BS, or D when jv = 38 and final vaccination coverage was 0.8). Under

bias A, the bias was smaller when jv = 24 compared to baseline. When jv = 38,

the bias was slightly larger than baseline. Under bias C when the outcome of

interest was SI, the bias was largest at baseline (QAV B(95) = 0.16) and smallest

when jv = 24 (QAV B(95) ranged from 0.04 to 0.06). Final vaccination coverage

had little impact on the bias of VE estimates for a given value for jv.
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Table 4.6: Bias of TN-based estimates of VE when vaccination
coverage varies

Source
of Biasa

Outcome
of Interest

jv
Vaccination Coverageb

0.20 0.40 0.60 0.80

None SI & MAI
1 0.00 0.00 0.00 0.00

24 0.04 0.04 0.05 0.05
38 0.07 0.08 0.09 0.10

A SI & MAI
1 0.24 0.24 0.23 0.24

24 0.17 0.17 0.16 0.17
38 0.28 0.27 0.28 0.30

B1 SI & MAI
1 0.02 0.03 0.04 0.09

24 0.04 0.04 0.05 0.05
38 0.07 0.08 0.09 0.10

B2 SI & MAI
1 0.02 0.03 0.05 0.11

24 0.05 0.06 0.06 0.07
38 0.09 0.10 0.12 0.13

BS SI & MAI
1 0.00 0.00 0.00 0.00

24 0.04 0.04 0.05 0.05
38 0.07 0.08 0.09 0.10

Cc

SI
1 0.16 0.16 0.16 0.16

24 0.06 0.05 0.04 0.05
38 0.07 0.08 0.08 0.09

MAI
1 0.00 0.00 0.00 0.00

24 0.04 0.04 0.04 0.05
38 0.07 0.08 0.09 0.10

D SI & MAI
1 0.00 0.00 0.00 0.00

24 0.04 0.04 0.05 0.05
38 0.07 0.08 0.09 0.10

a For definitions of sources of bias, see Table 4.4. b Vaccination coverage
refers to the final vaccination coverage at the end of the study. c Bias for
estimates of VE against SI and MAI differ when bias C is present. The
95th quantile of absolute value of bias from 1,000 Monte Carlo simula-
tions is reported for each combination of source of bias, jv , and vaccina-

tion coverage.

True VE

We varied the value of true VE (0.2, 0.4, 0.6, 0.8) to assess whether the value

of true VE had an impact on the bias of estimates when vaccination occurred

during the study period compared to baseline. Regardless of the value of true
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VE, we observed a similar pattern of bias as in the original simulations. Under

most sources of bias (except A and C against SI), the 95th quantile of absolute

value of bias of VE estimates was larger when vaccination started in weeks 24

and 38 compared to baseline (Table 4.7). The largest difference in bias relative

to baseline was 0.16 (under no bias, bias BS, or D when jv = 38 and the true

VE was 0.2). Under bias A, the bias was smaller when jv = 24 compared to

baseline. When jv = 38, the bias was larger than baseline. For all values of

true VE and jv estimates suffered from substantial to severe bias. Under bias C

when the outcome of interest was SI, the bias was largest at baseline (QAV B(95)

ranged from 0.08 to 0.34) and smallest when jv = 24 (QAV B(95) ranged from

0.03 to 0.11). For all values of jv the bias of VE estimates decreased as true VE

increased (except for unbiased estimates when jv = 1).

Study Length

We varied the length of the study period (15, 20, 25, 30 weeks) to determine

if the window of the season captured by the study period influenced the bias

of VE estimates. The season was only 57 weeks long therefore, we could not

calculate the bias for 25 and 30 week study periods when vaccination started in

week 38. For a fixed jv, the length of the study period had a very small effect on

the 95th quantile of absolute value of bias (Table 4.8). For a fixed study period

length, we observed the same pattern of bias between the values of jv as in the

original analysis and other sensitivity bias. Specifically, bias was larger when

vaccination started later in the outbreak, except under sources of bias A and C

when the outcome of interest was SI.
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Table 4.7: Bias of TN-based estimates of VE when true VE varies

Source
of Biasa

Outcome
of Interest

jv
True VE

0.20 0.40 0.60 0.80

None SI & MAI
1 0.00 0.00 0.00 0.00

24 0.09 0.06 0.04 0.02
38 0.16 0.12 0.08 0.04

A SI & MAI
1 0.50 0.35 0.22 0.12

24 0.38 0.28 0.19 0.09
38 0.59 0.44 0.29 0.15

B1 SI & MAI
1 0.05 0.04 0.03 0.01

24 0.09 0.06 0.04 0.02
38 0.16 0.12 0.08 0.04

B2 SI & MAI
1 0.05 0.04 0.02 0.01

24 0.12 0.09 0.06 0.02
38 0.20 0.15 0.10 0.05

BS SI & MAI
1 0.00 0.00 0.00 0.00

24 0.09 0.06 0.04 0.02
38 0.16 0.12 0.08 0.04

Cb

SI
1 0.34 0.26 0.17 0.08

24 0.11 0.09 0.06 0.03
38 0.15 0.11 0.08 0.04

MAI
1 0.00 0.00 0.00 0.00

24 0.08 0.06 0.04 0.02
38 0.15 0.12 0.08 0.04

D SI & MAI
1 0.00 0.00 0.00 0.00

24 0.09 0.06 0.04 0.02
38 0.16 0.12 0.08 0.04

a For definitions of sources of bias, see Table 4.4. b Bias for estimates of
VE against SI and MAI differ when bias C is present. The 95th quantile
of absolute value of bias from 1,000 Monte Carlo simulations is reported

for each combination of source of bias, jv , and true VE.
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Table 4.8: Bias of TN-based estimates of VE when study length
varies

Source
of Biasa

Outcome
of Interest

jv
Study Lengthb

15 20 25 30

None SI & MAI
1 0.00 0.00 0.00 0.00

24 0.04 0.04 0.04 0.04
38 0.05 0.07 - -

A SI & MAI
1 0.23 0.24 0.23 0.21

24 0.19 0.17 0.16 0.16
38 0.29 0.26 - -

B1 SI & MAI
1 0.03 0.03 0.03 0.03

24 0.04 0.04 0.04 0.04
38 0.05 0.07 - -

B2 SI & MAI
1 0.02 0.02 0.02 0.02

24 0.05 0.05 0.05 0.06
38 0.07 0.10 - -

BS SI & MAI
1 0.00 0.00 0.01 0.01

24 0.04 0.04 0.04 0.05
38 0.05 0.08 - -

Cc

SI
1 0.16 0.16 0.16 0.17

24 0.07 0.05 0.05 0.04
38 0.11 0.07 - -

MAI
1 0.00 0.00 0.00 0.01

24 0.07 0.05 0.05 0.04
38 0.05 0.07 - -

D SI & MAI
1 0.00 0.00 0.00 0.01

24 0.04 0.04 0.04 0.05
38 0.05 0.08 - -

a For definitions of sources of bias, see Table 4.4. b We varied the length
of the study period (15, 20, 25, 30 weeks). Bias for 25 and 30 week study
periods for jv = 38 could not be calculated because the season was only
57 weeks long. c Bias for estimates of VE against SI and MAI differ when
bias C is present. The 95th quantile of absolute value of bias from 1,000
Monte Carlo simulations is reported for each combination of source of

bias, jv , and study length.
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4.2 Discussion

We assessed the bias of TN-based VE estimates when vaccination began at dif-

ferent weeks during an influenza outbreak by extending our model from Chap-

ter 3. We used the 2009 pandemic as the motivating example, where a vaccine

against the pandemic influenza strain was made available months after the be-

ginning of the outbreak. Our results highlighted that VE estimates from TN

studies suffer from bias when vaccination occurs during the study period, re-

gardless of the source of bias present. However, the effect of the first week of

vaccination was unpredictable. The largest increase in the magnitude of bias

compared to the baseline scenario was 0.10. Median VE estimates for all values

of jv suffered from small to moderate under all sources of bias, except when

vaccination affected the probability of NFARI (bias A) and vaccination reduced

the probability of seeking medical care for FARI (bias C) and the outcome of

interest was SI.

In some cases vaccination occuring during the study period mitigated the

bias observed in the baseline scenario. For example, when vaccination affected

the probability of NFARI (bias A), baseline VE estimates may suffer from severe

bias (QAV B(95) = 0.24), but when vaccination occured during the study period,

VE estimates suffered only substantial bias (QAV B(95) = 0.13 when jv = 24).

This phenomenon could be due to lower numbers of vaccinated controls when

vaccination occurs during the study period relative to the baseline scenario.

When all vaccinated individuals are vaccinated prior to the study period there

would be a larger number of vaccinated controls biasing VE estimates down-

wards.
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Overall, these results are incouraging. If the core assumption of the TN de-

sign is satisfied, that is, if bias A is not present, and VE estimates are not inter-

preted as VE against SI if it is suspected that vaccination reduces the probability

of seeking care for FARI (due to reduced symptom severity), then TN-based VE

estimates might only suffer from small to moderate bias.
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4.3 All-or-None Vaccine Model

4.3.1 Background

In Chapter 3, we assumed a leaky vaccine model in which vaccination provides

a reduction in the probability of influenza infection [44]. An alternative vaccine

model, called the all-or-none vaccine model can be applied to the influenza

vaccine. In the all-or-none model, a proportion ρ of vaccinated individuals will

acquire complete immunity to infection, while the remaining 1− ρ individuals

will acquire no protection from vaccination [44]. In this way, the vaccine either

provides full protection or no protection. To determine if the assumed vaccine

model has an impact on the magnitude of bias of VE estimates from TN studies,

we developed a second extension to the model presented in Chapter 3.

4.3.2 Methods

Model Description

We present an extension to the dynamic model presented in Chapter 3 in which

we assume an all-or-none vaccine model (Figure 4.3). We introduce a new vari-

able associated with protection from influenza vaccination. Details about the

associated variables and the probabilities determining each variable’s distribu-

tion can be found in Tables 4.9 and 4.10, respectively. We define a standard person

as a person who is not protected by vaccination, healthy, and has high health

awareness. A person is considered not protected by vaccination either by re-

maining unvaccinated or not acquiring protection after receipt of the vaccine.
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Figure 4.3: Causal graph of influenza vaccine studies with
covariates under all-or-none vaccine model.

X = health status, (U) = health awareness (unobserved), V =
vaccination status, W = protection from vaccination, Yj = ARI
status in week j, Mj = seeking medical care for ARI in week j,
and Tj = influenza test result in week j, where j = 1, . . . , J and

J = the number of weeks in the study.

Step 1: Covariates. We assume that people within the population can be

classified with a health status (X) of either "healthy" or "frail" and a health

awareness (U ) of either "high" or "low".

Step 2: Vaccination. Individuals are either vaccinated prior to the begin-

ning of the study or remain unvaccinated. We use V to denote if a person re-

ceived a vaccine (0 - unvaccinated, 1 - vaccinated). A proportion ρ of vaccinated

individuals acquire complete protection from influenza infection, while the re-

maing 1−ρ vaccinated individuals acquire no protection. We let W indicate if a

person acquires protection from vaccination, where W = 0 if a person remains

unvaccinated or does not acquire protection and W = 1 if a person is vacci-

nated and acquires protection. We denote ρ = P(W = 1|V = 1). Whether or not

a person acquires immunity from vaccination (W ) is unobserved. We assume

the distribution of W given V does not depend on a person’s health status (X)
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or health awareness (U ).

Step 3: Influenza and non-influenza ARI. During the study, a person may

become infected with an influenza virus and develop FARI and/or develop

one or more NFARIs. We define a variable Yj for the illness/infection status in

week j, where the distribution of Yj may depend on whether or not the person

is protected by vaccination (W ) and health status (X).

Step 4: Seeking medical care for ARI. A person with an ARI in week j may

seek medical care (Mj). The probability of seeking medical care depends on Yj ,

W , and U .

Step 5: Testing for influenza infection. We assume that each person who

seeks medical care for ARI is tested for influenza infection (Tj).

Table 4.9: Variables in the model.

Variable Definition Values

X Health status 0 - frail person
1 - healthy person

U Health awareness (unobserved) 0 - low health awareness
1 - high health awareness

V Vaccination status 0 - unvaccinated
1 - vaccinated

W Protection from vaccination 0 - no
1 - yes

Yj Influenza/non-influenza ARI status in week j
0 - no ARI
1 - non-influenza ARI
2 - influenza ARI

Mj Seeking medical care for ARI in week j 0 - no
1 - yes

Tj Result of test for influenza infection in week j 0 - negative
1 - positive
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Table 4.10: Parameters in the model.

Parameters Definition Comments
πxu P(X = x, U = u)
αxu P(V = 1|X = x, U = u)
ρ P(W = 1|V = 1)

βjwx P(Yj = 1|W = w,X = x) βj11 = βj01 · θβ
θβ multiplier for β when W = 1 βj00 = βj01 · φβ
φβ multiplier for β when X = 0 βj10 = βj01 · θβ · φβ
γjwx P(Yj = 2|W = w,X = x) γj11 = 0
θγ multiplier for γ when W = 1 γj00 = γj01 · φγ
φγ multiplier for γ when X = 0 γj10 = 0

δ1wu P(Mj = 1|Yj = 1,W = w,U = u) δ111 = δ101 · θδ1
θδ1 multiplier for δ1 when W = 1 δ100 = δ101 · µδ1
µδ1 multiplier for δ1 when U = 0 δ110 = δ101 · θδ1 · µδ1
δ2wu P(Mj = 1|Yj = 2,W = w,U = u) δ211 = δ201 · θδ2
θδ2 multiplier for δ2 when W = 1 δ200 = δ201 · µδ2
µδ2 multiplier for δ2 when U = 0 δ210 = δ201 · θδ2 · µδ2

A standard person is defined as a person with (W = 0, X = 1, U =
1). βj01 and γj01 represent the probabilities of contracting a NFARI
or FARI for a standard person in week j, respectively, j = 1, . . . , J .
δ101 and δ201 represent the probabilities of seeking care for NFARI
and FARI for a standard person, respectively. These probabilities,
as well as all πxu, x = 0, 1;u = 0, 1, all αjxu, j = 1, . . . , J ; x = 0, 1;
u = 0, 1, and all multipliers (µ, θ, φ), are input parameters. Under

the all-or-none vaccine model, θγ = 0 and θδ2 = 0.

True VE

True VE is defined as one minus the relative risk of influenza infection in vac-

cinated persons compared to unvaccinated persons. We define true VE against

SI and MAI. Explicit expressions and derivations of true VE can be found Ap-

pendix C.2.1. A person is considered a true case of SI if s/he develops an ARI

as a result of influenza infection (Yj = 2). True VE against SI is defined as one

minus the risk of influenza infection among vaccinated persons compared to
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unvaccinated persons.

V ETSI = 1−

J∑
j=1

P(Yj = 2|V = 1)

J∑
j=1

P(Yj = 2|V = 0)

= ρ.

A person is considered a true case of MAI if s/he develops an influenza ARI

during the study and seeks medical care for this ARI.

V ETMAI = 1−

J∑
j=1

P(Mj = 1, Yj = 2|V = 1)

J∑
j=1

P(Mj = 1, Yj = 2|V = 0)

= ρ.

Estimated VE

We assume that a person is classified as a TN case or a TN control at her/his

first ARI-related visit. This classification does not change, regardless of possible

conflicting test results in future visits. We also assume a person with no ARI

does not seek care (i.e., if Yj = 0, then Mj = 0).

A person is considered a case in week j, if they did not seek medical care

for any ARI prior to week j (Mj−1 = 0), seek medical care for their ARI in week

j (Mj = 1), and have FARI in week j (Yj = 2). We can calculate the expected

number of vaccinated and unvaccinated cases as

E(vaccinated cases in week j) = N × P(Mj−1 = 0,Mj = 1, Yj = 2, V = 1)

and

E(unvaccinated cases in week j) = N × P(Mj−1 = 0,Mj = 1, Yj = 2, V = 0)

A person is considered a control in week j in the same way as a case, except
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that they have a NFARI in week j (Yj = 1). The expected number of vaccinated

and unvacinated controls in week j can be calculated as

E(vaccinated controls in week j) = N × P(Mj−1 = 0,Mj = 1, Yj = 1, V = 1)

and

E(unvaccinated controls in week j) = N × P(Mj−1 = 0,Mj = 1, Yj = 1, V = 0)

Expressions of the expected numbers of cases and controls in terms of the model

parameters are shown in Appendix C.2.2. To obtain the final 2x2 table for a

TN study, we sum the expected cell counts over all weeks in the study period

1, . . . , J (Table 4.11). The VE estimate from a TN study is

ˆV ETN = 1− ÔRTN ,

where ÔRTN is the odds ratio from Table 4.11.

Table 4.11: Final 2x2 table for a TN study.

Vaccinated Unvaccinated

Case
J∑
j=1

E(vaccinated cases in week j)
J∑
j=1

E(unvaccinated cases in week j)

Control
J∑
j=1

E(vaccinated controls in week j)
J∑
j=1

E(unvaccinated controls in week j)

4.3.3 Calculations and Simulations

To evaluate the bias of VE estimates assuming an all-or-none vaccine model

under different sources of bias (Table 4.4), we derived expressions of true and

estimated VE from our model (Appendices C.2.1 and C.2.2). As in Chapter 3,

we used these expressions of true and estimated VE to calculate the bias of VE
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estimates under different sources of bias by varying the values of the corre-

sponding parameters (Table 4.4). When a source of bias was absent, we kept

the corresponding probability ratio fixed at 1.0. Bias was defined as estimated

VE minus true VE. For bias A, we considered that protection from vaccination

might increase or decrease the probability of NFARI, so θβ varied from 0.5 to 2.0.

For biases B1, B2, and BS, we allowed φβ and φγ to vary between 0.5 and 1.0,

since we expect healthy persons to have lower probabilities of ARI compared

to frail persons. We did not assess bias C because the probability of a protected

person seeking care for FARI is zero, θδ2 = 0. For bias D, we expect persons with

high health awareness to have a higher probability of seeking medical care for

both FARI compared to persons with low health awareness, so µδ2 varied be-

tween 0.5 to 1.0. We assume µδ1 = µδ2 .

We determined the 5th, 50th, and 95th quantiles of bias and 50th and 95th quan-

tiles of absolute value of bias from 1,000 Monte Carlo simulations, as described

in Section 4.1.2. Values of input parameters can be found in Appendix B.5.

We performed several sensitivity analyses to assess whether the patterns of

bias observed in the main analysis were an artifact of our original input param-

eters. Specifically, we compared the bias of VE estimates under the all-or-none

and leaky vaccine models for different values of true VE (0.2, 0.4, 0.6, and 0.8),

vaccination coverage (0.2, 0.4, 0.6, and 0.8), when the probabilities of health

status (X) and health awareness (U ) were correlated, and for two alternative

vaccination scenarios.

4.3.4 Results

We evaluated bias of TN-based VE estimates under the assumption of an all-

or-none vaccine model in the presence of the sources of bias listed in Table 4.4.
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Table 4.12 shows the 5th, 50th, and 95th quantiles of bias and the 50th and 95th

quantiles of absolute value of bias for each source of bias separately and then,

for combinations of sources of bias. We compare the bias of estimates between

the leaky vaccine model (assumed in Chapter 3) and the all-or-none vaccine

model. When no sources of bias are present and under biases BS, D, and BS

and D, TN-based estimates are unbiased under both vaccine models. Under

source of bias A, the all-or-none estimate had a smaller 90% interval of bias (-

0.11, 0.10) compared to the leaky estimate (-0.23, 0.15). Under bias B1 and B2,

the magnitude of bias was similar between the two vaccine models; however,

the leaky estimates had slightly smaller 90% intervals of bias compared to the

all-or-none estimates.

4.3.5 Sensitivity Analyses

Alternative Values of True VE

To assess whether the value of true VE had an effect on the magnitude of bias

under the all-or-none vaccine model, we varied the value of true VE (0.2, 0.4,

0.6, and 0.8). Table 4.13 compares the 95th quantile of absolute value of bias of

VE estimates under the leaky and all-or-none vaccine models in the presence

of different sources of bias when the true VE varies. As true VE increases, the

difference in the magnitude of bias between the leaky and all-or-none estimates

decreases, becoming small (<0.05) when true VE≥0.60. Additionally, for both

vaccine models, as the true VE increases, the magnitude of bias decreases in

the presence of biases B1 and B2. Interestingly, this decreasing trend is not ob-

served for the all-or-none model in the presence of bias A. Finally, TN-based VE
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Table 4.12: Comparison of bias of TN-based estimates between
leaky and all-or-none vaccine models

Source
of Biasa

Vaccine
Model QB(5)b QB(50) QB(95) QAV B(50) QAV B(95)

None Leaky 0.00 0.00 0.00 0.00 0.00
All-or-None 0.00 0.00 0.00 0.00 0.00

A Leaky -0.23 0.00 0.15 0.08 0.23
All-or-None -0.11 0.00 0.10 0.05 0.12

B1 Leaky 0.00 0.02 0.04 0.02 0.04
All-or-None 0.01 0.03 0.07 0.03 0.07

B2 Leaky -0.04 -0.01 0.00 0.01 0.04
All-or-None -0.07 -0.02 0.00 0.02 0.07

BS Leaky 0.00 0.00 0.00 0.00 0.00
All-or-None 0.00 0.00 0.00 0.00 0.00

D Leaky 0.00 0.00 0.00 0.00 0.00
All-or-None 0.00 0.00 0.00 0.00 0.00

BS, D Leaky 0.00 0.00 0.00 0.00 0.00
All-or-None 0.00 0.00 0.00 0.00 0.00

BS, D, A Leaky -0.25 0.00 0.15 0.09 0.25
All-or-None -0.11 0.01 0.10 0.05 0.12

a Sources of bias: A - vaccination affects the probability of NFARI, B1 - Healthy persons
have a lower probability of NFARI, B2 - Healthy persons have a lower probability of FARI,
BS - Healthy persons have a lower probability of NFARI and FARI, and D - ARI patients
with high health awareness have a higher probability of seeking medical care.
b QB(5)=5th quantile, QB(50)=50th quantile (median), QB(95)=95th quantile, QAV B(50)=50th

quantile of the absolute value of bias, QAV B(95)=95th quantile of the absolute value of bias.
Quantiles were determined from 1,000 Monte Carlo simulations. Absolute value of bias is
defined as the difference between the estimate VE and the true VE without regard to the
sign.
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Table 4.13: Bias of TN-based estimates of VE when true VE varies

Source
of Bias

Vaccine Model True VE
0.20 0.40 0.60 0.80

None Leaky 0.00 0.00 0.00 0.00
All-or-None 0.00 0.00 0.00 0.00

A Leaky 0.30 0.23 0.15 0.08
All-or-None 0.08 0.12 0.12 0.08

B1 Leaky 0.07 0.05 0.04 0.02
All-or-None 0.13 0.10 0.07 0.03

B2 Leaky 0.07 0.06 0.04 0.02
All-or-None 0.15 0.11 0.07 0.04

BS Leaky 0.00 0.00 0.00 0.00
All-or-None 0.00 0.00 0.00 0.00

D Leaky 0.00 0.00 0.00 0.00
All-or-None 0.00 0.00 0.00 0.00

For definitions of sources of bias, see Table 4.4. The 95th quantile of ab-
solute value of bias from 1,000 Monte Carlo simulations is reported for

each combination of source of bias, vaccine model, and true VE.

estimates are unbiased under no source of bias and biases BS and D regardless

of the vaccine model.

Vaccination Coverage

To assess whether the differences in magnitude of bias between the leaky and

all-or-none vaccine models was attributable to the vaccination coverage, we

varied the value of vaccination coverage (Table 4.14). Vaccination coverage did

not affect the magnitude of bias of all-or-none VE estimates. However, under

biases B1 and B2 the magnitude of bias of leaky VE estimates increased as vac-

cination coverage increased. When vaccination coverage was 80% leaky VE

estimates suffered from a larger bias than all-or-none estimates. In the presence

of bias A, leaky estimates suffered from severe bias, whereas all-or-none VE es-

timates suffered from substantial bias. Under no source of bias and biases BS
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Table 4.14: Bias of TN-based estimates of VE when vaccination
coverage varies

Source
of Bias

Vaccine Model Vaccination Coverage
0.20 0.40 0.60 0.80

None Leaky 0.00 0.00 0.00 0.00
All-or-None 0.00 0.00 0.00 0.00

A Leaky 0.34 0.30 0.35 0.33
All-or-None 0.12 0.11 0.12 0.12

B1 Leaky 0.03 0.04 0.06 0.12
All-or-None 0.07 0.07 0.07 0.07

B2 Leaky 0.03 0.04 0.07 0.15
All-or-None 0.07 0.07 0.07 0.08

BS Leaky 0.00 0.00 0.00 0.00
All-or-None 0.00 0.00 0.00 0.00

D Leaky 0.00 0.00 0.00 0.00
All-or-None 0.00 0.00 0.00 0.00

For definitions of sources of bias, see Table 4.4. The 95th quantile of ab-
solute value of bias from 1,000 Monte Carlo simulations is reported for
each combination of source of bias, vaccine model, and vaccination cov-

erage.

and D, VE estimates from both vaccine models were unbiased for regardless of

vaccination coverage.

Alternative Probabilities of (X,U)

Table 4.15 compares the 95th quantile of absolute value of bias of VE estimates

under the leaky and all-or-none vaccine models when the probabilities of (X,U)

are independent and correlated. The same pattern of bias between the leaky

and all-or-none vaccine models was observed when the probabilities of (X,U)

were correlated compared to when the probabilities of (X,U) were indepen-

dent. Bias of VE estimates under the all-or-none model were very similar re-

gardless of the probilities of (X,U ). Under the leaky model, bias of VE estimates

varied in the presence of biases B1 and B2. Compared to when the probabili-

ties of health status and health awareness were independnent, smaller bias was
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Table 4.15: Bias of TN-based estimates of VE for alternative prob-
abilities of (X,U)

Source
of Bias

Vaccine Model Probabilities of (X,U)
Independent Alternative 1a Alternative 2b

None Leaky 0.00 0.00 0.00
All-or-None 0.00 0.00 0.00

A Leaky 0.34 0.32 0.33
All-or-None 0.12 0.12 0.12

B1 Leaky 0.05 0.03 0.09
All-or-None 0.07 0.06 0.08

B2 Leaky 0.05 0.02 0.10
All-or-None 0.07 0.07 0.09

BS Leaky 0.00 0.00 0.00
All-or-None 0.00 0.00 0.00

D Leaky 0.00 0.00 0.00
All-or-None 0.00 0.00 0.00

a The probability of high health awareness given a healthy health
status is greater than the probability of having high health aware-
ness given frail health status (P(U = 1|X = 1) > P(U = 1|X = 0)).
b The probability of high health awareness given a healthy health
status is less than the probability of having high health awareness
given frail health status (P(U = 1|X = 1) < P(U = 1|X = 0)).The
95th quantile of absolute value of bias from 1,000 Monte Carlo sim-
ulations is reported for each combination of source of bias, vaccine

model, and probability of (X,U ).

observed when the probability of high health awareness given a healthy health

status is greater than the probability of having high health awareness given frail

health status (alternative 1), and larger bias was observed when the probability

of high health awareness given a healthy health status is less than the proba-

bility of having high health awareness given frail health status (alternative 2).
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Table 4.16: Bias of TN-based estimates of VE for alternative prob-
abilities of vaccination

Source
of Bias

Vaccine Model Probabilities of Vaccination
Independent Alternative 1a Alternative 2b

None Leaky 0.00 0.00 0.00
All-or-None 0.00 0.00 0.00

A Leaky 0.34 0.35 0.33
All-or-None 0.12 0.12 0.12

B1 Leaky 0.05 0.05 0.02
All-or-None 0.07 0.03 0.06

B2 Leaky 0.05 0.05 0.02
All-or-None 0.07 0.03 0.06

BS Leaky 0.00 0.00 0.00
All-or-None 0.00 0.00 0.00

D Leaky 0.00 0.00 0.00
All-or-None 0.00 0.00 0.00

a The probability of being vaccinated was lower in persons with
frail health status (X = 0), low health awareness (U = 0), or
both (X = 0, U = 0). b The probability of being vaccinated much
higher in persons with frail health status and high health aware-
ness (X = 0, U = 1). The 95th quantile of absolute value of bias
from 1,000 Monte Carlo simulations is reported for each combina-
tion of source of bias, vaccine model, and probability of vaccina-

tion.

Alternative Probabilities of Vaccination

Table 4.16 compares the 95th quantile of absolute value of bias of VE estimates

under the leaky and all-or-none vaccine models under different probablities of

vaccination. The same pattern of bias between the leaky and all-or-none vaccine

models was observed when the probabilities of vaccination were and were not

multiplicative. Additionally, within a given vaccine model the bias did not

differ greatly between the three vaccination scenarios.
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4.3.6 Discussion

In this section we evaluated the bias of influenza VE estimates from TN studies

under the assumption of an all-or-none vaccine model, a special case of the vac-

cine model assumed in Chapter 3. The primary findings of this work are: (1)

under the assumption of an all-or-none model, TN-based estimates of VE are

less susceptible to bias when vaccination affects the probability of NFARI (bias

A), (2) when health status impacts the probability of NFARI (bias B1) and FARI

(bias B2) VE estimates under the all-or-none vaccine model suffered only small

increases in bias compared to VE estimates under the leaky vaccine model, and

(3) TN-based estimates were unbiased when health status had the same affect

on the probabilities of NFARI and FARI (bias BS) and health awareness affected

the probability of seeking care for ARI (bias D) regardless of the assumed vac-

cine model.

The phenomenon from finding (1) is likely due to our assumption that the

probability of developing NFARI depends on whether or not a person was pro-

tected by vaccination (W ) rather than on receipt of the vaccine (V ). Under the

all-or-none vaccine model only a proportion of individuals who receive the vac-

cine are protected thus, fewer individuals are impacted by bias A compared

to the leaky vaccine model, resulting in less drastic changes in VE. However,

despite the smaller magnitude of bias, VE estimates may still suffer from sub-

stantial bias when vaccination affects the probability of NFARI. The vaccine

model is usually unknown, so despite the reduction in bias under the all-or-

none model, the use of the TN design is not recommended if there is evidence

to support that vaccination affects the probability of NFARI.

We performed several sensitivity analyses and observed the same pattern
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of bias between the leaky and all-or-none model within each sensitivity anal-

ysis. However, the difference between the bias for leaky and all-or-none VE

estimates diminished as true VE increased, becoming small when true VE was

80%. From this, we conclude that for highly effective vaccines the assumption

of vaccine model has a very small impact on the magnitude of bias.

In this work, we assumed that the vaccine model was the same for every

individual. It is conceivable that a hybrid vaccine model may be more realistic,

in which the vaccine model is not the same for every individual and instead

results in one of three outcomes: complete protection, a reduction in the prob-

ability of influenza infection (incomplete protection), and no protection. An in-

dividual’s response to the vaccine likely depends on covariates, such as health

status, prior vaccination, or prior infection. In this work, we assumed that the

probability of complete protection from vaccination given receipt of the vac-

cine did not depend on any covariates. An extension of this model could allow

the probability of protection to depend on covariates, allowing the assessment

of the bias of TN-based estimates under a hybrid vaccine model. Addition-

ally, this work only focuses on assessing the bias of VE estimates from a TN

study because of the popularity of this study design for assessing influenza VE.

Future work should investigate the impact that vaccine model has on VE esti-

mates from other study designs. Finally, this work only considers unadjusted

estimates of VE. Assessment of common methods (e.g., logistic regression) for

adjusting VE estimates to mitigate bias should be evaluated to establish how

effective these methods are at controlling for sources of bias and confounding.
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Chapter 5

Discussion

5.1 Work In Progress: Alternative case and control

definitions for test-negative studies

In Chapter 3 we presented a model to quantify the bias of VE estimates from

four different types of observational studies. In Chapter 4, we extended this

model to further evaluate the bias of VE estimates from TN studies when vac-

cinations occurred during the study period and under an all-or-none vaccine

model. However, in the models presented in the previous chapters we consider

only a person’s first ARI-related medical visit to determine their case or control

status for the study designs requiring outpatient medical care as an inclusion

criterion. It is possible for a person to seek medical care for ARI multiple times

throughout the duration of the study period, particularly during the months

when influenza viruses and other non-influenza viruses are in peak circulation.

If a person makes numerous ARI-related medical visits during a study, their

case or control status may be defined differently. To determine the effect of dif-

ferent definitions of cases and controls within TN studies, we have developed

a third extension of the model presented in Chapter 3.
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5.1.1 Background

Cases and controls in TN studies are determined by the results of being tested

for influenza infection after seeking medical care. In Chapter 3, cases and con-

trols were determined at a person’s first medical visit for ARI, and any sub-

sequent visits were ignored. However, throughout the study period, a person

may seek care for ARI more than once. For example, consider an individual

who seeks care for ARI twice and tests negative for influenza during their first

visit and tests positive during their second visit. This person could be included

in the study in several ways: only as a control (because they tested negative

first), only as a case (because they had a positive test result), or as a control for

their first visit and as a case for their second visit (i.e., they are counted sepa-

rately for each visit).

In a 2013 study, De Serres et al. investigated TN-based estimates of VE from

RCT data using different definitions of TN controls. Specifically, the study com-

pared estimates of VE when controls were defined as (a) participants with any

negative swabs (regardless of any positive swabs at another time); (b) partici-

pants with only negative swabs (who never tested positive); and (c) all NFARI

episodes (a participant could be counted more than once). The study found

little difference in TN-based estimates of VE regardless of the definition of con-

trols used [45]. However, the study did not assess TN-based estimates with

respect to bias or consider alternative definitions of cases. Furthermore, the use

of RCT data does not account for possible confounding present in an actual TN

study. We present a model that allows for more than one ARI-related medi-

cal visit during a TN study period. Using this model, we aim to assess how

different definitions of cases and controls influence the bias of TN-based VE

estimates.
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Methods

We use the same model presented in Chapter 3, where each person in our study

population has a health status (X) and a health awareness (U ), and may be

vaccinated prior to the beginning of the study (V ), develop an ARI in week j

(Yj), and seek care for that ARI in week j (Mj). Unlike in Chapter 3, where we

ignored any subsequent medical visits after the first vist, we assume a person

seeks medical care for ARI at most twice during the study period. At each visit

they are tested for influenza infection (Tj). We assume the influenza test has

perfect sensitivity and specificity.

We first calculate the probability of a given outcome or combination of out-

comes in each week and then use these probabilities to determine the expected

number of cases and controls. Using the expected numbers of cases and con-

trols we can obtain an estimate of VE as one minus the odds ratio.

Since the event of seeking care once during the study is mutually exclusive

from seeking care twice, we can first determine the probability of seeking care

once for either FARI or NFARI. We assume a person with no ARI does not seek

care. The probability of seeking care once during the study is the same as the

probability of developing an ARI and seeking care in week j (Yj = yj,Mj = 1)

and not seeking care in any other week (MJ∗ = 0), where J∗ is the set {1, . . . , J},

excluding j. We can express the probability of one ARI-related medical visit for

one j and combination of (v, x, u) as

P(Mj = 1, Yj = yj,MJ∗ = 0|V = v,X = x, U = u)

=
∑

(Y1,...,YJ )

(P(Mj = 1, Yj = yj,MJ∗ = 0|Y1, . . . , YJ , V = v,X = x, U = u)

× P(Y1, . . . , YJ |V = v,X = x, U = u)) ,
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where yj = 1, 2. Since M1, . . . ,MJ are independent given Y1, . . . , YJ ,

P(Mj = 1, Yj = yj ,MJ∗ = 0|Y1, . . . , YJ , V = v,X = x, U = u)

= P(Mj = 1|Yj = yj , V = v,X = x, U = u)
∏
k∈J∗

P(Mk = 0|Yk = yk, V = v,X = x, U = u).

To determine the joint probability of ARI status in each week (Y1, . . . , YJ |V =

v,X = x, U = u), consider week jF , jF = 1, . . . , J + 1 to be the week in which a

person has FARI (YjF = 2). The joint probility of ARI status for every week can

be written as

P(Y1, . . . , YJ |V = v,X = x, U = u)

= P(Y1, . . . , YJ |YjF = 2, V = v,X = x, U = u)P(YjF = 2|V = v,X = x, U = u)

By conditioning on YjF = 2, we can treat the ARI status in the remaining weeks

as independent, since the probability of NFARI is independent from one week

to the next. Thus,

P(Y1, . . . , YJ |YjF = 2, V = v,X = x, U = u)

=
J∏
h=1

P(Yh < 2|YjF = 2, V = v,X = x, U = u)

For each value of j the joint probability of seeking care once for ARI and having

vaccination status v is

P(Mj = 1, Yj = yj,MJ∗ = 0, V = v)

=
1∑

x=0

1∑
u=0

[P(Mj = 1, Yj = yj,MJ∗ = 0|V = v,X = x, U = u)

× P(V = v|X = x, U = u)P(X = x, U = u)]
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Finally, the overall probability of seeking care once during the study period for

ARI status yj and vaccination status v is the sum over all weeks j = 1, . . . , J .

To determine the probability of seeking care twice during the study period,

we developed an algorithm to determine all possible combinations of ARI out-

comes given a person seeks care twice. This algorithm can be extended to acco-

modate more than two medical visits; however, we leave this to future work.

We assume a person makes two visits to seek medical care in weeks j1 and

j2 and has ARI status Yj1 = yj1 and Yj2 = yj2 , respectively. Since we assume

a person can have at most one FARI during the study, there are three possible

outcomes for which a person seeks medical twice: having NFARI in week j1

and FARI in week j2 (Yj1 = 1, Yj2 = 2), having FARI in week j1 and NFARI in

week j2 (Yj1 = 2, Yj2 = 1), or having NFARI twice in weeks j1 and j2 (Yj1 =

1, Yj2 = 1). Using the following algorithm we can determine the probability of

seeking medical care for ARI twice during the study period for a given (v, x, u).

1. Specify outcome:

(Yj1 = 1, Yj2 = 2|V = v,X = x, U = u),

(Yj1 = 2, Yj2 = 1|V = v,X = x, U = u), or

(Yj1 = 1, Yj2 = 1|V = v,X = x, U = u)

2. Specify weeks of visits: (j1, j2), where j1 < j2

3. Specify (Y1, . . . , YJ |V = v,X = x, U = u)

4. Calculate P(Mj1 = 1, Yj1 = yj1 ,Mj2 = 1, Yj2 = yj2 ,MJ∗∗ = 0|Y1, . . . , YJ , V =

v,X = x, U = u) × P(Y1, . . . , YJ |V = v,X = x, U = u), where yj1 = 1, 2,

yj2 = 1, 2, and J∗∗ = {1, . . . , J} excluding j1, j2.
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5. Repeat steps (3) and (4) for each combination of

(Y1, . . . , YJ |V = v,X = x, U = u)

6. Sum probabilities from (4) for every combination of

(Y1, . . . , YJ |V = v,X = x, U = u)

7. Repeat steps (2) thru (6) for each pair (j1, j2), j1 < j2

8. Sum probabilities from (6) over all possible pairs (j1, j2)

The joint probability of seeking medical in weeks j1 and j2 can be written as the

probability of seeking medical care in weeks j1 and j2 and not seeking care in

any of the remaining weeks. Thus, for a single pair (j1, j2) and combination of

(v, x, u),

P(Mj1 = 1, Yj1 = yj1 ,Mj2 = 1, Yj2 = yj2 ,MJ∗∗ = 0|V = v,X = x, U = u)

=
∑

(Y1,...,YJ )

[P(Mj1 = 1, Yj1 = yj1 ,Mj2 = 1, Yj2 = yj2 ,MJ∗∗ = 0|Y1, . . . , YJ , V = v,X = x, U = u)

× P(Y1, . . . , YJ |V = v,X = x, U = u)] ,

where yj1 = 1, 2, yj2 = 1, 2, and J∗∗ = {1, . . . , J} excluding j1, j2. SinceM1, . . . ,MJ

are independent given Y1, . . . , YJ ,

P(Mj1 = 1, Yj1 = yj1 ,Mj2 = 1, Yj2 = yj2 ,MJ∗∗ = 0|Y1, . . . , YJ , V = v,X = x, U = u)

= P(Mj1 = 1|Yj1 = yj1 , V = v,X = x, U = u)P(Mj2 = 1|Yj2 = yj2 , V = v,X = x, U = u)

×
∏
k∈J∗∗

P(Mk = 0|Yk = yk, V = v,X = x, U = u).
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For each pair (j1, j2) the joint probability of seeking care twice for ARI and hav-

ing vaccination status v is

P(Mj1 = 1, Yj1 = yj1 ,Mj2 = 1, Yj2 = yj2 ,MJ∗∗ = 0, V = v)

=
1∑

x=0

1∑
u=0

[P(Mj1 = 1, Yj1 = yj1 ,Mj2 = 1, Yj2 = yj2 ,MJ∗∗ = 0|V = v,X = x, U = u)

× P(V = v|X = x, U = u)P(X = x, U = u)]

Finally, the overall probability of seeking care twice during the study period for

outcome (yj1 , yj2) and vaccination status v is the sum over all possible pairs of

(j1, j2).

We intend to compare TN-based estimates of VE, using these probabilities,

under five different definitions of cases and controls:

1. Case/control status is based on a person’s first medical visit and all sub-

sequent visits are ignored (original definition used in Chapter 3).

2. A case is a person who tested positive for influenza at least once, and a

control is a person who had at least one negative test result and no posi-

tive test results.

3. A case is a person who tested positive for influenza at least once and a

person is classified as a control if (a) s/he had only negative test results,

or (b) s/he had at least one negative test result before any positive test

results.

A person who had one or more negative results followed by a positive

result is counted both as a case and a control; however, negative results

after the first positive result are ignored (censored).
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4. A case is a person who tested positive for influenza at least once and a

control is a person who tested negative at least once, regardless of any

prior or subsequent positive test results (uncensored).

5. Each visit contributes one observation. A case is a visit resulting in a pos-

itive test result and a control is a visit resulting in a negative test result. A

person may be included more than once in the study.

The expected number of vaccinated and unvaccinated cases and controls

can be calculated as N times the corresponding probabilities, where N is the

population size. For example, for definition (2), the expected number of vacci-

nated cases and controls are

E(vaccinated cases)

= N ×

(
J∑
j=1

P(Mj = 1, Yj = 2,MJ∗ = 0, V = 1)

+
∑
(j1,j2)

P(Mj1 = 1, Yj1 = 1,Mj2 = 1, Yj2 = 2,MJ∗∗ = 0, V = 1)

+
∑
(j1,j2)

P(Mj1 = 1, Yj1 = 2,Mj2 = 1, Yj2 = 1,MJ∗∗ = 0, V = 1)


and

E(vaccinated controls)

= N ×

(
J∑
j=1

P(Mj = 1, Yj = 1,MJ∗ = 0, V = 1)

+
∑
(j1,j2)

P(Mj1 = 1, Yj1 = 1,Mj2 = 1, Yj2 = 1,MJ∗∗ = 0, V = 1)


We will compare the bias of VE estimates from TN studies under the sources

of bias described in Chapter 3 (Section 3.2.4) to determine if the TN design is

robust to different definition of cases and controls. We will validate our model
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using stochastic simulations. We hope this work can better inform the design

and implementation of TN studies, producing more reliable VE estimates.

5.2 Future Work

In the preceding chapters, the main focus has been on unadjusted VE esti-

mates first, the estimation of unadjusted source-specific estimates of influenza

VE (Chapter 2) and second, the evaluation of bias of unadjusted VE estimates

from different observational studies in the presence of different sources of bias

(Chapters 3 and 4). With regard to bias, our main objective was to characterize

the bias of VE estimates from different sources rather than to identify or de-

velop methods to adjust for this bias. This work highlights that bias is present

in observational studies for the estimation of influenza VE. Depending on the

study design, this bias may be a result of differing health-care seeking behavior

between vaccinees and non-vaccinees, the effect of vaccination on the proba-

bility of developing NFARI, the effect of health status on both the probability

of vaccination and the probability of FARI, or misclassification of influenza in-

fection status. While some bias can be mitigated through careful study design

(for example employing an ASC study if vaccination affects the probability of

NFARI), other sources of bias must be adjusted for after the study has been con-

ducted. Thus, it is important to identify statistical techniques to control for the

bias of VE estimates. Previous work has identified sources of bias [122, 123]

and characterized the magnitude of this bias [99, 124], but little work has been

done to quantitatively assess and compare methods for bias adjustment. Fu-

ture work should focus on developing methods and techniques to successfully

reduce the bias in VE estimates identified in Chapters 3 and 4.
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An important confounder not usually accounted for in VE studies, and not

considered in this work, is repeated influenza vaccination or prior influenza

infection [122]. Repeated influenza vaccination has received growing interest

as more and more people are annually immunized [126]. Historically, studies

have reported inconsistent findings regarding whether repeated vaccination is

detrimental to protection against influenza infection [127–129]. Several recent

studies have found lower VE among individuals who were vaccinated in the

current season and the prior season compared to individuals only vaccinated

in the current season [94, 130, 131]. A 2017 systematic review and meta-analysis

found no evidence that prior season vaccination negatively impacts current sea-

son VE [126]. Despite these studies, there has been no theoretical assessment

of the potential bias of VE estimates caused by repeated vaccination or past in-

fluenza infection. Like prior vaccination, past influenza infection may effect the

probability of influenza infection in subsequent seasons [132, 133]. The models

presented in this dissertation could be further extended to incorporate vacci-

nation or influenza infection status in prior seasons to better characterize how

vaccination and infection history impacts current VE estimates.

Another important consideration in the evaluation of influenza VE is wan-

ing immunity from vaccination over time. Several studies conducted in Eu-

rope during the 2011-2012 influenza season found that vaccinated individuals

tended to present with influenza infection later in the season, suggesting some

degree of waning immunity from vaccination [134–137]. Since the 2011-2012

season, studies conducted in Australia [138], the United Kingdom [139], Eu-

rope [140], and the Unites States [141] have found conflicting results regarding

intraseason waning. A recent study pooled data from the 2011-2012 through
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2014-2015 influenza seasons and observed decreasing influenza vaccine protec-

tion as time since vaccination increased [141]. However, this study only showed

an association between VE and time since vaccination, not causation. If in-

traseason waning of protection from the influenza vaccine is a true biological

phenomenon, it is important to consider the impact of waning immunity on

estimates of VE.

Finally, we compare different types of observational studies with respect to

bias and make recommendations about which study design is most appropriate

in a given set of circumstances. However, we do not account for the cost asso-

ciated with these studies. In practice, cost is a major consideration in the choice

of study design. Future work should include a cost-benefit analysis of different

types of observational studies to determine if the benefit of using a more ex-

pensive study design, such as an ASC study, is justified by the improvement in

estimates of VE.
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Appendix A

Appendix to Chapter 2

A.1 Source-Specific Probabilities of Infection

To estimate source-specific VE, we define λiH and λiC as the probability that

person i is infected from a household (H) or community (C) contact during

the study, respectively. The source-specific probabilities of infection during the

study can be written in terms of the daily probabilities of infection. The source-

specific probabilities of being infected on day d are:

P(Infected from the household on day d) = [1− (1− βv)mid ] (1− γvp(d))ψi0(d−1)

P(Infected from the community on day d) = (1− βv)midγvp(d)ψi0(d−1)

The probabilities of being infected during the study can be expressed as the

sum of the daily probabilities of infection,

λiH =
D∑
d=1

{
[1− (1− βv)mid ] (1− γv · p(d)) · ψi0(d−1)

}
λiC =

D∑
d=1

{
(1− βv)midγv · p(d) · ψi0(d−1)

}
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When estimating the VEs we ignore the possibility of co-infection and assume

that a person can only be infected once during the study.

A.2 Model Adequacy

Table A.1: Frequencies of cases per household size from 200 simu-
lated influenza outbreaks using the Michigan Study data as input

``````````````̀HH Size
# of cases 0 1 2 3 4 5 6

4 124.70 30.87 8.36 1.83 0.25 0 0
5 71.07 19.86 6.09 1.57 0.38 0.04 0
6 25.60 7.73 2.61 0.83 0.21 0.04 0
7 8.63 2.59 1.09 0.48 0.19 0.05 0.01
8 2.45 0.96 0.38 0.15 0.05 0.02 0
9 0 0 0 0 0 0 0
10 1.04 0.37 0.25 0.14 0.12 0.07 0.02

Using the estimated transmission parameters from the data analysis as
input for our simulation program, we obtained mean number of cases

per household size from 200 influenza outbreak simulations.

Table A.2: Observed frequencies of cases per household size from
the Michigan Study

``````````````̀HH Size
# of cases 0 1 2 3 4 5 6

4 129 26 8 2 1 0 0
5 77 17 3 2 0 0 0
6 25 8 1 1 2 0 0
7 9 3 0 0 0 1 0
8 3 1 0 0 0 0 0
9 0 0 0 0 0 0 0
10 2 0 0 0 0 0 0
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Appendix B

Appendix to Chapter 3

B.1 True VE

B.1.1 True VE Against SI

A person is considered a true case of SI if s/he develops an ARI as a result

of influenza infection. For a given vaccination status v the probability of SI in

week j can be written as follows:

P(Yj = 2|V = v) =
1∑

x=0

P(Yj = 2|V = v,X = x)× P(X = x|V = v)

=
1∑

x=0

γjvx × P(X = x|V = v)

Because of assumption (d) above, the probability of SI over the entire study

given vaccination status v is

P(person classified as case of SI|V = v) =
J∑
j=1

1∑
x=0

[γjvx × P(X = x|V = v)] .
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where

P(X = x|V = v) =
P(V = v|X = x)P(X = x)

P(V = v)

=

1∑
u=0

P(V = v|X = x, U = u)P(X = x, U = u)

1∑
x=0

1∑
u=0

P(V = v|X = x, U = u)P(X = x, U = u)

.

Using our model parameters we can rewrite P(X = x|V = v) as

P(X = 0|V = 0) =
(1− α00)π00 + (1− α01)π01

(1− α00)π00 + (1− α01)π01 + (1− α10)π10 + (1− α11)π11

P(X = 1|V = 0) =
(1− α10)π10 + (1− α11)π11

(1− α00)π00 + (1− α01)π01 + (1− α10)π10 + (1− α11)π11

P(X = 0|V = 1) = α00π00 + α01π01
α00π00 + α01π01 + α10π10 + α11π11

P(X = 1|V = 1) = α10π10 + α11π11
α00π00 + α01π01 + α10π10 + α11π11

When evaluating true VE we assume random vaccination, i.e. vaccination does

not depend on health status X or health awareness U (αxu = α ∀x, u). Thus, the

above expressions of P(X = x|V = v) can be simplified as

P(X = 0|V = 0) =
(1− α)(π00 + π01)

(1− α)(π00 + π01 + π10 + π11)
= π00 + π01

P(X = 1|V = 0) =
(1− α)(π10 + π11)

(1− α)(π00 + π01 + π10 + π11)
= π10 + π11

P(X = 0|V = 1) =
α(π00 + π01)

α(π00 + π01 + π10 + π11)
= π00 + π01

P(X = 1|V = 1) =
α(π10 + π11)

α(π00 + π01 + π10 + π11)
= π10 + π11
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Therefore, the true VE against SI (V ETSI) can be written as one minus the

ratio of the probabilities of SI in vaccinated and unvaccinated persons:

V ETSI = 1−

J∑
j=1

[γj10(π00 + π01) + γj11(π10 + π11)]

J∑
j=1

[γj00(π00 + π01) + γj01(π10 + π11)]

.

B.1.2 True VE Against MAI

A person is considered a true case of MAI if s/he develops an ARI as a result

of influenza infection and seeks medical care for their ARI. Similarly to SI, the

probability of MAI given vaccination v for a given week j can be written as:

P(person considered case of MAI in week j|V = v)

=
1∑

x=0

1∑
u=0

P(Yj = 2,Mj = 1|V = v,X = x, U = u)× P(X = x, U = u|V = v)

=
1∑

x=0

1∑
u=0

δ2vuγjvx × P(X = x, U = u|V = v)

The probability of MAI over the entire study given vaccination status v is

P(person classified as case of MAI|V = v)

=
J∑
j=1

[
1∑

x=0

1∑
u=0

δ2vuγjvx × P(X = x, U = u|V = v)

]
,

where

P(X = x, U = u|V = v) =
P(V = v|X = x, U = u)P(X = x, U = u)

P(V = v)

=
P(V = v|X = x, U = u)P(X = x, U = u)

1∑
x=0

1∑
u=0

P(V = v|X = x, U = u)P(X = x, U = u)

.
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Using our model parameters we can rewrite P(X = x, U = u|V = v) as

P(X = 0, U = 0|V = 0) = (1−α00)π00
(1−α00)π00+(1−α01)π01+(1−α10)π10+(1−α11)π11

P(X = 0, U = 1|V = 0) = (1−α01)π01
(1−α00)π00+(1−α01)π01+(1−α10)π10+(1−α11)π11

P(X = 1, U = 0|V = 0) = (1−α10)π10
(1−α00)π00+(1−α01)π01+(1−α10)π10+(1−α11)π11

P(X = 1, U = 1|V = 0) = (1−α11)π11
(1−α00)π00+(1−α01)π01+(1−α10)π10+(1−α11)π11

P(X = 0, U = 0|V = 1) = α00π00
α00π00+α01π01+α10π10+α11π11

P(X = 0, U = 1|V = 1) = α01π01
α00π00+α01π01+α10π10+α11π11

P(X = 1, U = 0|V = 1) = α10π10
α00π00+α01π01+α10π10+α11π11

P(X = 1, U = 1|V = 1) = α11π11
α00π00+α01π01+α10π10+α11π11

Again, when evaluating the true VE, we assume random vaccination (αxu = α

∀x, u), thus the above expressions of P(X = x, U = u|V = v) can be simplified

as
P(X = 0, U = 0|V = 0) = (1−α)π00

(1−α)(π00+π01+π10+π11) = π00

P(X = 0, U = 1|V = 0) = (1−α)π01
(1−α)(π00+π01+π10+π11) = π01

P(X = 1, U = 0|V = 0) = (1−α)π10
(1−α)(π00+π01+π10+π11) = π10

P(X = 1, U = 1|V = 0) = (1−α)π11
(1−α)(π00+π01+π10+π11) = π11

P(X = 0, U = 0|V = 1) = απ00
α(π00+π01+π10+π11)

= π00

P(X = 0, U = 1|V = 1) = απ01
α(π00+π01+π10+π11)

= π01

P(X = 1, U = 0|V = 1) = απ10
α(π00+π01+π10+π11)

= π10

P(X = 1, U = 1|V = 1) = απ11
α(π00+π01+π10+π11)

= π11

Therefore, the true VE against MAI (V ETMAI) is

V ETMAI = 1−

J∑
j=1

{γj10 [δ210π00 + δ211π01] + γj11 [δ210π10 + δ211π11]}

J∑
j=1

{γj00 [δ200π00 + δ201π01] + γj01 [δ200π10 + δ201π11]}
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B.2 Probability of Being a Case

B.2.1 ASC Study

For a person to be considered a case in week j, then they have to be diagnosed

with FARI in week j (i.e., Tj = 1) and have an ARI in week j (i.e., Yj > 0). Since

we do not assume perfect influenza test sensitivity and specificity, a person may

also be misdiagnosed with influenza infection.

Consider a person with a given (v, x, u) combination. Let Cj be the event

that the person was identified as a case in week j (j = 1, . . . , J), i.e. Cj =

{Tj = 1}. Then the event that the person is a case is the union of all the events

Cj , j = 1, . . . , J . We write the event Cj as the union of two disjoint events: Aj =

{Tj = 1, Yj = 1} and Bj = {Tj = 1, Yj = 2}, where A1, . . . , AJ are independent

and B1, . . . , BJ are mutually exclusive. Let A =
J⋃
j=1

Aj , B =
J⋃
j=1

Bj , and C =

J⋃
j=1

Cj .

We can write the probability of being a case in an ASC study (C) as

P(C) = P(A
⋃
B) = P(A) + P(B)− P(A

⋂
B)

Since A1, . . . , AJ are independent

P(A) = 1− P(
⋂
Ā)

= 1−
J∏
j=1

P(Āj)

= 1−
J∏
j=1

(1− τ1βjvx),

where Ā is the event that a person never falsely tested positive for influenza.
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Since B1, . . . , BJ are mutually exclusive,

P(
J⋃
j=1

Bj) =
J∑
j=1

P(Bj)

=
J∑
j=1

(τ2γjvx),

where B̄ is the event that a person never correctly tested positive for influenza.

Finally, we can write P(A
⋂
B) as

P(A
⋂
B) =

J∑
j=1

J∑
k=1

P(Aj ∩Bk), where j 6= k

=
J∑
j=1

J∑
k=1

P({Tj = 1, Yj = 1} ∩ ({Tk = 1, Yk = 2}), where j 6= k

=
J∑
j=1

J∑
k=1

P(Tj = 1, Yj = 1)P(Tk = 1, Yk = 2e), where j 6= k

=
J∑
j=1

J∑
k=1

(τ1βjvx × τ2γkvx), where j 6= k

The probability of being a case in an ASC study for a given v can be written as

P(C|V = v) =
1∑

x=0

{[
1−

J∏
j=1

(1− τ1βjvx) +
J∑
j=1

(τ2γjvx)−
J∑
j=1

J∑
k=1

(τ1βjvx × τ2γkvx)

]

× P(X = x|V = v)

}
,

where j 6= k.

Thus, the VE estimate from an ASC study is
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V EASC = 1−

1∑
x=0

{[
1−

J∏
j=1

(1− τ1βj1x) +
J∑
j=1

(τ2γj1x)−
J∑
j=1

J∑
k=1

(τ1βj1x × τ2γk1x)

]
× P(X = x|V = 1)

}
1∑

x=0

{[
1−

J∏
j=1

(1− τ1βj0x) +
J∑
j=1

(τ2γj0x)−
J∑
j=1

J∑
k=1

(τ1βj0x × τ2γk0x)

]
× P(X = x|V = 0)

} .

B.2.2 PSC Study

In a PSC study, a person is considered a case in week j if they have an ARI in

week j (i.e., YJ > 0), seek medical care for their ARI in week j (i.e., Mj = 1),

and test positive for influenza infection (i.e., Tj = 1).

Let C∗j be the event that the person was identified as a case in week j (j =

1, . . . , J), i.e. C∗j = {Tj = 1,Mj = 1}. Then the event that the person is a case

is the union of all the events C∗j , j = 1, . . . , J . We can write the event C∗j

as the union of two disjoint events: A∗j = {Tj = 1,Mj = 1, Yj = 1} and B∗j =

{Tj = 1,Mj = 1, Yj = 2}, where A∗1, . . . , A∗J are independent and B∗1 , . . . , B
∗
J are

mutually exclusive. Let A∗ =
J⋃
j=1

A∗j , B∗ =
J⋃
j=1

B∗j , and C∗ =
J⋃
j=1

C∗j . As in an

ASC study, we can write the probability of being a case in a PSC study (C∗) as

P(C∗) = P(A∗) + P(B∗)− P(A∗
⋂
B∗).

Using the parameters from our model, we can write the probability of being

an PSC case for a given (v, x, u) as

P(C∗|V = v,X = x, U = u)

= 1−
J∏
j=1

(1− τ1δ1vuβjvx) +
J∑
j=1

(τ2δ2vuγjvx)−
J∑
j=1

J∑
k=1

[τ1δ1vuβjvx × τ2δ2vuγkvx] ,
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where k 6= j.

P(C∗|V = v)

=
1∑

x=0

1∑
u=0

{
1−

J∏
j=1

(1− τ1δ1vuβjvx) +
J∑
j=1

(τ2δ2vuγjvx)−
J∑
j=1

J∑
k=1

[τ1δ1vuβjvx × τ2δ2vuγkvx]

}
×P(X = x, U = u|V = v),

where k 6= j.

Thus, the VE estimate from an PSC study is

V EPSC = 1− P(C∗|V = 1)

P(C∗|V = 0)

B.2.3 TN and TCC Studies

The probability of being a case in week j is the probability of being diagnosed

with FARI in week j. The probability of having FARI in week j is the same as

the probability of having FARI in week j and not having a FARI in weeks 1 to

j − 1. For a given (v, x, u) we can write

P(Yj = 2|V = v,X = x) = P(Yj = 2,Yj−1 < 2|V = v,X = x) = γjvx.



B.2. Probability of Being a Case 149

Also, when Y1, . . . , Yj−1 are given, M1, . . . ,Mj−1 are independent, thus

P(Mj−1 = 0|Yj−1 < 2, V = v, U = u)

= P(M1 = 0|Y1 < 2, V = v, U = u) · · ·P(Mj−1 = 0|Yj−1 < 2, V = v, U = u)

=

j−1∏
k=1

P(Mk = 0|Yk < 2, V = v, U = u)

=

j−1∏
k=1

P(Mk = 0, Yk < 2|V = v, U = u)

P(Yk < 2|V = v,X = x)

=

j−1∏
k=1

1∑
y=0

P(Mk = 0, Yk = y|V = v,X = x, U = u)

1∑
y=0

P(Yk = y|V = v,X = x)

=

j−1∏
k=1

1∑
y=0

P(Mk = 0|Yk = y, V = v, U = u)P(Yk = y|V = v,X = x)

1∑
y=0

P(Yk = y|V = v,X = x)

=

j−1∏
k=1

1× (1− βkvx − γkvx) + (1− δ1vu)βkvx
(1− γkvx)

=

j−1∏
k=1

1− γkvx − δ1vuβkvx
(1− γkvx)
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Therefore, the probability of being considered a case in week j for a given

(v, x, u) is:

P(Mj = 1,Mj−1 = 0, Tj = 1|V = v,X = x, U = u)

=
2∑
y=1

P(Mj = 1,Mj−1 = 0, Tj = 1|Yj = y, V = v, U = u)P(Yj = y|V = v,X = x)

where

P(Mj = 1,Mj−1 = 0, Tj = 1|Yj = y, V = v, U = u)

= P(Tj = 1|Yj = y)P(Mj = 1,Mj−1 = 0|Yj = y, V = v, U = u)

and

P(Mj = 1,Mj−1 = 0|Yj = y, V = v, U = u)

= P(Mj = 1|Yj = y, V = v, U = u)P(Mj−1 = 0|Yj−1 < 2, V = v, U = u).
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The probability of being considered a case in week j for a given v is:

P(Mj = 1,Mj−1 = 0, Tj = 1|V = 1)

=
1∑

x=0

1∑
u=0

{[
τ2δ21uγj1x

j−1∏
k=1

(
1− γk1x − δ11uβk1x

1− γk1x

)
+ τ1δ11uβj1x

j−1∏
k=1

(1− δ11uβk1x − δ21uγk1x)

]

× P(X = x, U = u|V = 1)

}

=

[
δ210γj10

j−1∏
k=1

(
1− γk10 − δ110βk10

1− γk10

)
+ τ1δ110βj10

j−1∏
k=1

(1− δ110βk10 − δ210γk10)

]

× α00π00
α00π00 + α01π01 + α10π10 + α11π11

+

[
δ211γj10

j−1∏
k=1

(
1− γk10 − δ111βk10

1− γk10

)
+ τ1δ111βj10

j−1∏
k=1

(1− δ111βk10 − δ211γk10)

]

× α01π01
α00π00 + α01π01 + α10π10 + α11π11

+

[
δ210γj11

j−1∏
k=1

(
1− γk11 − δ110βk11

1− γk11

)
+ τ1δ110βj11

j−1∏
k=1

(1− δ110βk11 − δ210γk11)

]

× α10π10
α00π00 + α01π01 + α10π10 + α11π11

+

[
δ211γj11

j−1∏
k=1

(
1− γk11 − δ111βk11

1− γk11

)
+ τ1δ111βj11

j−1∏
k=1

(1− δ111βk11 − δ211γk11)

]

× α11π11
α00π00 + α01π01 + α10π10 + α11π11
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and

P(Mj = 1,Mj−1 = 0, Tj = 1|V = 0)

=
1∑

x=0

1∑
u=0

{[
τ2δ20uγj0x

j−1∏
k=1

(
1− γk0x − δ10uβk0x

1− γk0x

)
+ τ1δ10uβj0x

j−1∏
k=1

(1− δ10uβk0x − δ20uγk0x)

]

× P(X = x, U = u|V = 0)

}

=

[
δ200γj00

j−1∏
k=1

(
1− γk00 − δ100βk00

1− γk00

)
+ τ1δ00uβj00

j−1∏
k=1

(1− δ100βk00 − δ200γk00)

]

× (1− α00)π00
(1− α00)π00 + (1− α01)π01 + (1− α10)π10 + (1− α11)π11

+

[
δ201γj00

j−1∏
k=1

(
1− γk00 − δ101βk00

1− γk00

)
+ τ1δ101βj00

j−1∏
k=1

(1− δ101βk00 − δ201γk00)

]

× (1− α01)π01
(1− α00)π00 + (1− α01)π01 + (1− α10)π10 + (1− α11)π11

+

[
δ200γj01

j−1∏
k=1

(
1− γk01 − δ100βk01

1− γk01

)
+ τ1δ100βj01

j−1∏
k=1

(1− δ100βk01 − δ200γk01)

]

× (1− α10)π10
(1− α00)π00 + (1− α01)π01 + (1− α10)π10 + (1− α11)π11

+

[
δ201γj01

j−1∏
k=1

(
1− γk01 − δ101βk01

1− γk01

)
+ τ1δ101βj01

j−1∏
k=1

(1− δ101βk01 − δ201γk01)

]

× (1− α11)π11
(1− α00)π00 + (1− α01)π01 + (1− α10)π10 + (1− α11)π11

B.3 Probability of Being a TN Control

For a given (v, x, u) the probability of being considered a TN control in week j

can be expressed as:

P(Yj = 1,Mj = 1,Mj−1 = 0|V = v,X = x, U = u)

= P(Mj = 1,Mj−1 = 0|Yj = 1, V = v,X = x, U = u)P(Yj = 1|V = v,X = x)
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The second term in the above expression is simply βjvx, while the first term can

be further written as:

P(Mj = 1,Mj−1 = 0|Yj = 1, V = v,X = x, U = u)

= P(Mj = 1|Yj = 1, V = v,X = x, U = u)×
j−1∏
k=1

P(Mk = 0|V = v,X = x, U = u)

= δ1vu ×
j−1∏
k=1

P(Mk = 0|V = v,X = x, U = u),

where

P(Mk = 0|V = v,X = x, U = u)

=
2∑
y=0

P(Mk = 0|Yk = y, V = v,X = x, U = u)P(Yk = y|V = v,X = x)

= (1− βkvx − γkvx) + (1− δ1vu)βkvx + (1− δ2vu)γkvx

= 1− δ1vuβkvx − δ2vuγkvx.

Thus, for a given (v, x, u) the probability of being considered a TN control in

week j is

P(Yj = 1,Mj = 1,Mj−1 = 0|V = v,X = x, U = u)

= δ1vuβjvx

j−1∏
k=1

(1− δ1vuβkvx − δ2vuγkvx).
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The probability of being considered a TN control in week j for a given v is:

P(Yj = 1,Mj = 1,Mj−1 = 0|V = 1)

=
1∑

x=0

1∑
u=0

{
δ11uβj1x

j−1∏
k=1

(1− δ11uβk1x − δ21uγk1x)× P(X = x, U = u|V = 1)

}

= δ110βj10

j−1∏
k=1

(1− δ110βk10 − δ210γk10)×
α00π00

α00π00 + α01π01 + α10π10 + α11π11

+δ111βj10

j−1∏
k=1

(1− δ111βk10 − δ211γk10)×
α01π01

α00π00 + α01π01 + α10π10 + α11π11

+δ110βj11

j−1∏
k=1

(1− δ110βk11 − δ210γk11)×
α10π10

α00π00 + α01π01 + α10π10 + α11π11

+δ111βj11

j−1∏
k=1

(1− δ111βk11 − δ211γk11)×
α11π11

α00π00 + α01π01 + α10π10 + α11π11

and

P(Yj = 1,Mj = 1,Mj−1 = 0|V = 0)

=
1∑

x=0

1∑
u=0

{
δ10uβj0x

j−1∏
k=1

(1− δ10uβk0x − δ20uγk0x)× P(X = x, U = u|V = 0)

}
= δ100βj00

j−1∏
k=1

(1− δ100βk00 − δ200γk00)×
(1− α00)π00

(1− α00)π00 + (1− α01)π01 + (1− α10)π10 + (1− α11)π11

+δ101βj00

j−1∏
k=1

(1− δ101βk00 − δ201γk00)×
(1− α01)π01

(1− α00)π00 + (1− α01)π01 + (1− α10)π10 + (1− α11)π11

+δ100βj01

j−1∏
k=1

(1− δ100βk01 − δ201γk01)×
(1− α10)π10

(1− α00)π00 + (1− α01)π01 + (1− α10)π10 + (1− α11)π11

+δ101βj01

j−1∏
k=1

(1− δ101βk01 − δ201γk01)×
(1− α11)π11

(1− α00)π00 + (1− α01)π01 + (1− α10)π10 + (1− α11)π11

To obtain the final 2x2 table for a TN study, we collapse across X and U for

each week j and then sum over all weeks 1, . . . , J . Finally, we can obtain the

VE estimate from a TN study using the OR from the final 2x2 table. The VE
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estimate from a TN study is

V ETN = 1−ORTN =
a× dTN
b× cTN

,

where

a =
J∑
j=1

{
1∑

x=0

1∑
u=0

[
δ21uγj1x

j−1∏
k=1

[
1− γk1x − δ11uβk1x

1− γk1x

]
× P(X = x, U = u|V = 1)

]}

b =
J∑
j=1

{
1∑

x=0

1∑
u=0

[
δ20uγj0x

j−1∏
k=1

[
1− γk0x − δ10uβk0x

1− γk0x

]
× P(X = x, U = u|V = 0)

]}

cTN =
J∑
j=1

{
1∑

x=0

1∑
u=0

[
δ11uβj1x

j−1∏
k=1

(1− δ11uβk1x − δ21uγk1x)× P(X = x, U = u|V = 1)

]}

dTN =
J∑
j=1

{
1∑

x=0

1∑
u=0

[
δ10uβj0x

j−1∏
k=1

(1− δ10uβk0x − δ20uγk0x)× P(X = x, U = u|V = 0)

]}

B.4 Probability of no ARI

To determine the probability of being considered a TCC control, we need to

determine the probability that a person did not have either a FARI or NFARI

during the study. Because YFj is independent of YNj for all j, we can deter-

mine the probability of not having a FARI separately from the probability of

not having a NFARI.

Due to the independence of the YNjs, the joint probability of not having a

NFARI in weeks 1, . . . , J is simply the product of the marginal probabilities of

not having a NFARI in each week. Thus, for a given (v, x)

P(YN1 = 0, . . . , YNJ = 0|V = v,X = x) =
J∏
k=1

P(YNk = 0|V = v,X = x)

=
J∏
k=1

(1− βkvx).
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Due to our model assumption that a person can only be infected with in-

fluenza once during the season, and thus, only have one FARI, we cannot treat

the YFjs as independent. To determine the joint probability of not having a

FARI in weeks 1, . . . , J , we will start with a simple case. For given (v, x) first,

consider J = 2.

P(YF2 = 0|YF1 = 0, V = v,X = x) = 1− P(YF2 = 1|YF1 = 0, V = v,X = x)

= 1− P(YF1 = 0, YF2 = 1|V = v,X = x)

P(YF1 = 0|V = v,X = x)

= 1− γ2vx
1− γ1vx

=
1− γ1vx − γ2vx

1− γ1vx
.

So,

P(YF1 = 0, YF2 = 0|V = v,X = x)

= P(YF2 = 0|YF1 = 0, V = v,X = x)P(YF1 = 0|V = v,X = x)

=
1− γ1vx − γ2vx

1− γ1vx
(1− γ1vx)

= 1− γ1vx − γ2vx.

Now, consider J = 3.

P(YF3 = 0|YF1 = 0, YF2 = 0, V = v,X = x)

= 1− P(YF3 = 0|YF1 = 0, YF2 = 0, V = v,X = x)

= 1−
[
P(YF1 = 0, YF2 = 0, YF3 = 0|V = v,X = x)

P(YF1 = 0, YF2 = 0|V = v,X = x)

]
= 1− γ3vx

1− γ1vx − γ2vx
=

1− γ1vx − γ2vx − γ3vx
1− γ1vx − γ2vx
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Therefore,

P(YF1 = 0, YF2 = 0, YF3 = 0|V = v,X = x)

= P(YF3 = 0|YF1 = 0, YF2 = 0, V = v,X = x)P(YF1 = 0, YF2 = 0|V = v,X = x)

=
1− γ1vx − γ2vx − γ3vx

1− γ1vx − γ2vx
(1− γ1vx − γ2vx)

= 1− γ1vx − γ2vx − γ3vx.

For any j, j = 1, . . . , J ,

P(YFj = 0|YF1 = 0, . . . , YF (j−1) = 0, V = v,X = x) =

1−

j∑
k=1

γkvx

1−

j−1∑
k=0

γkvx

Thus, the probability that a person does not have an ARI in weeks 1, . . . , J is

P(YF1 = 0, . . . , YFJ = 0|V = v,X = x) = 1−
J∑
k=1

γkvx,

where
J∑
k=1

γkvx ≤ 1.

B.4.1 Probability of being a TCC control

For a person to be considered a TCC control they did not have an ARI during

the study (i.e., YJ = 0). Using the results from above, the probability of being
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a TCC control for a given (v, x) can be written as

P(YJ = 0|V = v,X = x) = P(YF1 = 0, . . . , YFJ = 0|V = v,X = x)

× P(YN1 = 0, . . . , YNJ = 0|V = v,X = x)

=

[
1−

J∑
k=1

γkvx

][
J∏
k=1

(1− βkvx)

]
.

The probability of being a TCC control for a given v is:

P(YJ = 0|V = 1) =
1∑

x=0

[
1−

J∑
k=1

γk1x

][
J∏
k=1

(1− βk1x)

]
× P(X = x|V = 1)

=

[
1−

J∑
k=1

γk10

][
J∏
k=1

(1− βk10)

]
× α00π00 + α01π01
α00π00 + α01π01 + α10π10 + α11π11

+

[
1−

J∑
k=1

γk11

][
J∏
k=1

(1− βk11)

]
× α10π10 + α11π11
α00π00 + α01π01 + α10π10 + α11π11

and

P(YJ = 0|V = 0) =
1∑

x=0

[
1−

J∑
k=1

γk0x

][
J∏
k=1

(1− βk0x)

]
× P(X = x|V = 0)

=

[
1−

J∑
k=1

γk00

][
J∏
k=1

(1− βk00)

]
× (1− α00)π00 + (1− α01)π01

(1− α00)π00 + (1− α01)π01 + (1− α10)π10 + (1− α11)π11

+

[
1−

J∑
k=1

γk01

][
J∏
k=1

(1− βk01)

]
× (1− α10)π10 + (1− α11)π11

(1− α00)π00 + (1− α01)π01 + (1− α10)π10 + (1− α11)π11
.

Finally, we can obtain the VE estimate from a TCC study using the OR from

the final 2x2 table. The VE estimate from a TCC study is

V ETCC = 1−ORTCC =
a× dTCC
b× cTCC

,
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where

a =
J∑
j=1

{
1∑

x=0

1∑
u=0

[
δ21uγj1x

j−1∏
k=1

[
1− γk1x − δ11uβk1x

1− γk1x

]
× P(X = x, U = u|V = 0)

]}

b =
J∑
j=1

{
1∑

x=0

1∑
u=0

[
δ20uγj0x

j−1∏
k=1

[
1− γk0x − δ10uβk0x

1− γk0x

]
× P(X = x, U = u|V = 0)

]}

cTCC =

{
1∑

x=0

[
1−

J∑
k=1

γk0x

][
J∏
k=1

(1− βk0x)

]
× P(X = x|V = 1)

}

dTCC =

{
1∑

x=0

[
1−

J∑
k=1

γk0x

][
J∏
k=1

(1− βk0x)

]
× P(X = x|V = 0)

}

Note, a and b are the same for TN and TCC studies.

B.5 Input Parameters

Table B1 shows the parameter input values used in the calculations and simula-

tions. Weekly values of the probabilities of NFARI (βs) and FARI (γs) are based

on the prevalence of illness from surveillance data collected by the CDC. Pa-

rameters whose input values are a range were varied by 0.1 for each calculation

scenario (see section 3.2.5).
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Table B1: Input parameter values used in calculations and
simulations.

Parameters Input Values
π11 0.4
π10 0.4
π01 0.1
π11 0.1
α11 0.6
α10 0.3
α01 0.9
α00 0.45
β101 0.020795
β201 0.02071
β301 0.020814
β401 0.020773
β501 0.024733
β601 0.027691
β701 0.027538
β801 0.027601
β901 0.028493
β1001 0.034245
β1101 0.034375
β1201 0.03441
β1301 0.0333
β1401 0.027464
β1501 0.027515
β1601 0.027607
β1701 0.027593
β1801 0.007901
θβ 0.5-2.0
φβ 1.0-2.0

Parameters Input Values
γ101 0.00103726
γ201 0.0015696
γ301 0.0018823
γ401 0.00210545
γ501 0.00237509
γ601 0.0030613
γ701 0.00394527
γ801 0.00507414
γ901 0.006394935
γ1001 0.007294342
γ1101 0.007909946
γ1201 0.008418902
γ1301 0.008899444
γ1401 0.007516386
γ1501 0.005374278
γ1601 0.003840503
γ1701 0.002726108
γ1801 0.000629997
θγ 0.563
φγ 1.0-2.0
δ101 0.25
θδ1 1.0
µδ1 0.5-1.0
δ201 0.40
θδ2 0.5-1.0
µδ2 0.5-1.0
τ1 0
τ2 1

We assume µδ1 = µδ2 .



B.5. Input Parameters 161





163

Appendix C

Appendix to Chapter 4

C.1 Vaccination Over Time

C.1.1 True VE

True VE Against SI

A person is considered a true case of SI if s/he develops an influenza ARI dur-

ing the study (Yj = 2) for one j, j = jv, . . . , J , where jv is the first week of

vaccination. Let
γjv = P(Yj = 2|Vj = v) =

Cjv

Njv

and

ηj = P(Vj = 1) =

j∑
h=1

αh =
Nj1

N

Then, we can write

Nj1 = N · ηj

Cj1 = N · ηj · γj1

Cj0 = N · (1− ηj) · γj0
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We can also write P(Yj = 2|Vj = v) in terms of our covariates X and U as

follows:

γjv =
1∑

x=0

1∑
u=0

P(Yj = 2|Vj = v,X = x, U = u)× P(X = x, U = u|Vj = v)

=
1∑

x=0

1∑
u=0

γjvx ×
P(Vj = v|X = x, U = u)× P(X = x, U = u)

P(Vj = v)

=
1∑

x=0

1∑
u=0

γjvxπxu.

Thus, for v = 1,

γj1x =
1∑

x=0

1∑
u=0

γj1xπxu

⇒ Cj1

Nj1
=

1∑
x=0

1∑
u=0

γj1xπxu

⇒ Cj1 = Nj1

1∑
x=0

1∑
u=0

γj1xπxu

⇒ Cj1 = Nηj

1∑
x=0

1∑
u=0

γj1xπxu

Similarly, Cj0 = N(1− ηj)
1∑

x=0

1∑
u=0

γj0xπxu.

Therefore,
J∑

j=jv

Cj1

J∑
j=jv

Nj1

=

J∑
j=jv

[
ηj

1∑
x=0

1∑
u=0

γj1xπxu

]
J∑

j=jv

ηj

and
J∑

j=jv

Cj0

J∑
j=jv

Nj0

=

J∑
j=jv

[
(1− ηj)

1∑
x=0

1∑
u=0

γj1xπxu

]
J∑

j=jv

(1− ηj)
.
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Finally,

V ETSI = 1−

J∑
j=jv

Cj1/
J∑

j=jv

Nj1

J∑
j=jv

Cj0/
J∑

j=jv

Nj0

True VE Against MAI

A person is considered a true case of MAI if s/he develops an influenza ARI

during the study and seeks medical care for this ARI (Yj = 2,Mj = 1) for one j,

j = jv, . . . , J , where jv is the first week of vaccination.

C∗jv
Njv

= P(Yj = 2,Mj = 1|Vj = v)

=
1∑

x=0

1∑
u=0

P(Yj = 2,Mj = 1|Vj = v,X = x, U = u)× P(X = x, U = u|Vj = v)

=
1∑

x=0

1∑
u=0

[P(Mj = 1|Yj = 2, Vj = v,X = x, U = u)× P(Yj = 2|Vj = v,X = x, U = u)

× P(X = x, U = u|Vj = v)]

Thus,

C∗j1 = Nηj

1∑
x=0

1∑
u=0

δ21uγj1xπxu

C∗j0 = N(1− ηj)
1∑

x=0

1∑
u=0

δ20uγj0xπxu.

Therefore,
J∑

j=jv

C∗j1

J∑
j=jv

Nj1

=

J∑
j=jv

[
ηj

1∑
x=0

1∑
u=0

δ21uγj1xπxu

]
J∑

j=jv

ηj
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and
J∑

j=jv

C∗j0

J∑
j=jv

Nj0

=

J∑
j=jv

[
(1− ηj)

1∑
x=0

1∑
u=0

δ20uγj0xπxu

]
J∑

j=jv

(1− ηj)
.

Finally,

V ETMAI = 1−

J∑
j=jv

C∗j1/

J∑
j=jv

Nj1

J∑
j=jv

C∗j0/

J∑
j=jv

Nj0

C.1.2 VE Estimates from TN Studies

Probability of Being a Case

A person is considered a case in week j, if:

• they did not seek medical care for any ARI prior to week j, so Mk = 0 for

every week k = 1, . . . , j − 1 (i.e., Mj−1 = 0)

• they seek medical care for their ARI in week j (i.e., Mj = 1)

• they have FARI in week j (i.e., Yj = 2).

We assume perfect influenza test sensitivity and specificity. We can write the

probabilities of being a case in week j and having a particular vaccination status

as:

P(vaccinated case in week j) = P(Mj−1 = 0,Mj = 1, Yj = 2, K ≤ j)

P(unvaccinated case in week j) = P(Mj−1 = 0,Mj = 1, Yj = 2, K > j).
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We can write the probability of being classified as a vaccinated case in week j

for a given (x, u) as

P(Mj−1 = 0,Mj = 1, Yj = 2, K ≤ j|X = x, U = u)

= P(Mj−1 = 0,Mj = 1, Yj = 2|K ≤ j,X = x, U = u)P(K ≤ j|X = x, U = u)

= P(Mj−1 = 0,Mj = 1|Yj = 2, K ≤ j,X = x, U = u)

×P(Yj = 2|K ≤ j,X = x, U = u)P(K ≤ j|X = x, U = u),

and the probability of being classified as an unvaccinated case in week j for a

given (x, u) as

P(Mj−1 = 0,Mj = 1, Yj = 2, K > j|X = x, U = u)

= P(Mj−1 = 0,Mj = 1|Yj = 2, K > j,X = x, U = u)

×P(Yj = 2|K > j,X = x, U = u)P(K > j|X = x, U = u).

Under our assumption that a person can have only one FARI during the study

P(Yj = 2|K ≤ j,X = x, U = u) = P(Yj = 2,Yj−1 < 2|K ≤ j,X = x, U = u) = γj1x

P(Yj = 2|K > j,X = x, U = u) = P(Yj = 2,Yj−1 < 2|K > j,X = x, U = u) = γj0x.

Therefore,

P(Mj−1 = 0,Mj = 1|Yj = 2, K ≤ j,X = x, U = u)

= P(Mj−1 = 0,Mj = 1|Yj = 2,Yj−1 < 2, K ≤ j,X = x, U = u)

= P(Mj = 1|Yj = 2, K ≤ j,X = x, U = u)P(Mj−1 = 0|Yj−1 < 2, K ≤ j,X = x, U = u)

and

P(Mj−1 = 0,Mj = 1|Yj = 2, K > j,X = x, U = u)

= P(Mj = 1|Yj = 2, K > j,X = x, U = u)P(Mj−1 = 0|Yj−1 < 2, K > j,X = x, U = u)
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where

P(Mj = 1|Yj = 2, K ≤ j,X = x, U = u) = δ21u

P(Mj = 1|Yj = 2, K > j,X = x, U = u) = δ20u

P(Mj−1 = 0|Yj−1 < 2, K ≤ j,X = x, U = u)

=

j−1∏
h=jv

P(Mh = 0|Yh < 2, K ≤ j,X = x, U = u),

since M1, . . . ,Mj−1 are independent given Y1, . . . , Yj−1, and

P(Mj−1 = 0|Yj−1 < 2, K > j,X = x, U = u)

=

j−1∏
h=jv

P(Mh = 0|Yh < 2, K > j,X = x, U = u).
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The probability of not seeking care in week h (Mh = 0) given a vaccinated

person does not have FARI (Yh < 2) can be derived as follows:

P(Mh = 0|Yh < 2, K ≤ j,X = x, U = u)

=
P(Mh = 0, Yh < 2, K ≤ j|X = x, U = u)

P(Yh < 2, K ≤ j|X = x, U = u)

=

1∑
y=0

j−1∑
g=1

P(Mh = 0, Yh = y,K = g|X = x, U = u)

1∑
y=0

j−1∑
g=1

P(Yh = y,K = g|X = x, U = u)

where

P(Mh = 0, Yh = y,K = g|X = x, U = u)

= P(Mh = 0|Yh = y,K = g,X = x, U = u)P(Yh = y|K = g,X = x, U = u)

×P(K = g|X = x, U = u)

and

P(Mh = 0|Yh = 0, K = g,X = x, U = u) = 1

P(Mh = 0|Yh = 1, K = g,X = x, U = u) = 1− δ11u when g ≤ h

P(Mh = 0|Yh = 1, K = g,X = x, U = u) = 1− δ10u when g > h

P(Yh = 0|K = g,X = x, U = u) = 1− βh1x − γh1x when g ≤ h

P(Yh = 0|K = g,X = x, U = u) = 1− βh0x − γh0x when g > h

P(Yh = 1|K = g,X = x, U = u) = βh1x when g ≤ h

P(Yh = 1|K = g,X = x, U = u) = βh0x when g > h

P(K = g|X = x, U = u) = αgxu
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The probability of not seeking care in week h (Mh = 0) given an unvaccinated

person does not have FARI (Yh < 2) can be derived similarly:

P(Mh = 0|Yh < 2, K > j,X = x, U = u)

=
P(Mh = 0, Yh < 2, K > j|X = x, U = u)

P(Yh < 2, K > j|X = x, U = u)

=

1∑
y=0

P(Mh = 0, Yh = y,K > j|X = x, U = u)

1∑
y=0

P(Yh = y,K > j|X = x, U = u)

,

where

P(Mh = 0, Yh = y,K > j|X = x, U = u)

= P(Mh = 0|Yh = y,K > j,X = x, U = u)P(Yh = y|K > j,X = x, U = u)

×P(K > j|X = x, U = u)

and

P(Mh = 0|Yh = 0, K > j,X = x, U = u) = 1

P(Mh = 0|Yh = 1, K > j,X = x, U = u) = 1− δ10u

P(Yh = 0|K > j,X = x, U = u) = 1− βh0x − γh0x

P(Yh = 1|K > j,X = x, U = u) = βh0x

P(K > j|X = x, U = u) =
J+1∑
g=j+1

αgxu



C.1. Vaccination Over Time 171

Finally, the overall probabilities of being a vaccinated and an unvaccinated case,

respectively, in week j are

P(Mj−1 = 0,Mj = 1, Yj = 2, K ≤ j)

=
1∑

x=0

1∑
u=0

P(Mj−1 = 0,Mj = 1, Yj = 2, K ≤ j,X = x, U = u)P(X = x, U = u)

or

P(Mj−1 = 0,Mj = 1, Yj = 2, K > j)

=
1∑

x=0

1∑
u=0

P(Mj−1 = 0,Mj = 1, Yj = 2, K > j,X = x, U = u)P(X = x, U = u)

Probability of Being a TN Control

A person is considered a TN control in week j, if:

• they did not seek medical care for an ARI prior to week j (i.e., Mj−1 = 0)

• they seek medical care for their ARI in week j (i.e., Mj = 1)

• they have NFARI in week j (i.e., Yj = 1)

We can write the probabilities of being a TN control in week j and having a

particular vaccination status as:

P(vaccinated control in week j) = P(Mj−1 = 0,Mj = 1, Yj = 1, K ≤ j)

P(unvaccinated control in week j) = P(Mj−1 = 0,Mj = 1, Yj = 1, K > j).
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We can write the probability of being classified as a vaccinated control in week

j for a given (x, u) as

P(Mj−1 = 0,Mj = 1, Yj = 1, K ≤ j|X = x, U = u)

= P(Mj−1 = 0,Mj = 1, Yj = 1|K ≤ j,X = x, U = u)P(K ≤ j|X = x, U = u)

= P(Mj−1 = 0,Mj = 1|Yj = 1, K ≤ j,X = x, U = u)P(Yj = 1|K ≤ j,X = x, U = u)

×P(K ≤ j|X = x, U = u),

and the probability of being classified as an unvaccinated control in week j for

a given (x, u) as

P(Mj−1 = 0,Mj = 1, Yj = 1, K > j|X = x, U = u)

= P(Mj−1 = 0,Mj = 1|Yj = 1, K > j,X = x, U = u)P(Yj = 1|K > j,X = x, U = u)

×P(K > j|X = x, U = u).

If Yj = 1, then the values of Y1, . . . , Yj−1 can take on any value y = 0, 1, 2 since

a person can have any number of NFARIs and may have had an FARI in a

previous week. Therefore,

P(Mj−1 = 0,Mj = 1|Yj = 1, K ≤ j,X = x, U = u)

= P(Mj−1 = 0,Mj = 1|Yj = 1,Yj−1 ≤ 2, K ≤ j,X = x, U = u)

= P(Mj = 1|Yj = 1, K ≤ j,X = x, U = u)P(Mj−1 = 0|Yj−1 ≤ 2, K ≤ j,X = x, U = u)

and

P(Mj−1 = 0,Mj = 1|Yj = 1, K > j,X = x, U = u)

= P(Mj = 1|Yj = 1, K > j,X = x, U = u)P(Mj−1 = 0|Yj−1 ≤ 2, K > j,X = x, U = u)
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where
P(Mj = 1|Yj = 1, K ≤ j,X = x, U = u) = δ11u

P(Mj = 1|Yj = 1, K > j,X = x, U = u) = δ10u

P(Mj−1 = 0|Yj−1 ≤ 2, K ≤ j,X = x, U = u)

=

j−1∏
h=jv

P(Mh = 0|Yh ≤ 2, K ≤ j,X = x, U = u)

P(Mj−1 = 0|Yj−1 ≤ 2, K > j,X = x, U = u)

=

j−1∏
h=jv

P(Mh = 0|Yh ≤ 2, K > j,X = x, U = u).
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Following a similar derivation as in section C.1.2, the probability of a vaccinated

person not seeking care in week h (Mh = 0) is

P(Mh = 0|Yh ≤ 2, K ≤ j,X = x, U = u)

=
P(Mh = 0, Yh ≤ 2, K ≤ j|X = x, U = u)

P(Yh ≤ 2, K ≤ j|X = x, U = u)

=

2∑
y=0

j−1∑
g=jv

P(Mh = 0, Yh = y,K = g|X = x, U = u)

2∑
y=0

j−1∑
g=jv

P(Yh = y,K = g|X = x, U = u)

where

P(Mh = 0, Yh = y,K = g|X = x, U = u)

= P(Mh = 0|Yh = y,K = g,X = x, U = u)P(Yh = y|K = g,X = x, U = u)

×P(K = g|X = x, U = u)

and

P(Mh = 0|Yh = 0, K = g,X = x, U = u) = 1

P(Mh = 0|Yh = 1, K = g,X = x, U = u) = 1− δ11u when g ≤ h

P(Mh = 0|Yh = 1, K = g,X = x, U = u) = 1− δ10u when g > h

P(Mh = 0|Yh = 2, K = g,X = x, U = u) = 1− δ21u when g ≤ h

P(Mh = 0|Yh = 2, K = g,X = x, U = u) = 1− δ20u when g > h

P(Yh = 0|K = g,X = x, U = u) = 1− βh1x − γh1x when g ≤ h

P(Yh = 0|K = g,X = x, U = u) = 1− βh0x − γh0x when g > h

P(Yh = 1|K = g,X = x, U = u) = βh1x when g ≤ h

P(Yh = 1|K = g,X = x, U = u) = βh0x when g > h

P(Yh = 2|K = g,X = x, U = u) = γh1x when g ≤ h

P(Yh = 2|K = g,X = x, U = u) = γh0x when g > h

P(K = g|X = x, U = u) = αgxu.



C.1. Vaccination Over Time 175

The probability of an unvaccinated person not seeking care in week h (Mh = 0)

is

P(Mh = 0|Yh ≤ 2, K > j,X = x, U = u)

=
P(Mh = 0, Yh ≤ 2, K > j|X = x, U = u)

P(Yh ≤ 2, K > j|X = x, U = u)

=

2∑
y=0

P(Mh = 0, Yh = y,K > j|X = x, U = u)

2∑
y=0

P(Yh = y,K > j|X = x, U = u)

,

where

P(Mh = 0, Yh = y,K > j|X = x, U = u)

= P(Mh = 0|Yh = y,K > j,X = x, U = u)P(Yh = y|K > j,X = x, U = u)

×P(K > j|X = x, U = u)

and

P(Mh = 0|Yh = 0, K > j,X = x, U = u) = 1

P(Mh = 0|Yh = 1, K > j,X = x, U = u) = 1− δ10u

P(Mh = 0|Yh = 2, K > j,X = x, U = u) = 1− δ20u

P(Yh = 0|K > j,X = x, U = u) = 1− βh0x − γh0x

P(Yh = 1|K > j,X = x, U = u) = βh0x

P(Yh = 2|K > j,X = x, U = u) = γh0x

P(K > j|X = x, U = u) =
J+1∑
g=j+1

αgxu.
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The overall probability of being a vaccinated and an unvaccinated control, re-

spectively, in week j are

P(Mj−1 = 0,Mj = 1, Yj = 1, K ≤ j)

=
1∑

x=0

1∑
u=0

P(Mj−1 = 0,Mj = 1, Yj = 1, K ≤ j|X = x, U = u)P(X = x, U = u)

or

P(Mj−1 = 0,Mj = 1, Yj = 1, K > j)

=
1∑

x=0

1∑
u=0

P(Mj−1 = 0,Mj = 1, Yj = 1, K > j|X = x, U = u)P(X = x, U = u).

For each week, we obtain the expected cell counts of the 2x2 table of cases

and controls by vaccination status by multiplying N by the probability of being

in each cell. For example the expected number of vaccinated cases in week j

is E(vaccinated cases in week j) = N × P(Mj−1 = 0,Mj = 1, Yj = 2, K ≤ j).

Then, to obtain the final 2x2 table for a TN study, we sum the expected cell

counts over all weeks during which vaccination occured jv, . . . , J . Finally, we

can obtain the VE estimate from a TN study using the OR from the final 2x2

table. The VE estimate from a TN study is

V ETN = 1−ORTN =
E(vaccinated cases)× E(unvaccinated controls)

E(unvaccinated cases)× E(vaccinated controls)
,
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where

E(vaccinated cases) =
J∑

j=jv

N × P(Mj−1 = 0,Mj = 1, Yj = 2, K ≤ j)

E(unvaccinated cases) =
J∑

j=jv

N × P(Mj−1 = 0,Mj = 1, Yj = 2, K > j)

E(vaccinated controls) =
J∑

j=jv

N × P(Mj−1 = 0,Mj = 1, Yj = 1, K ≤ j)

E(unvaccinated controls) =
J∑

j=jv

N × P(Mj−1 = 0,Mj = 1, Yj = 1, K > j)

C.1.3 Input Parameters

Table C1 shows the parameter input values used in the calculations and sim-

ulations. Weekly values of the probabilities of FARI (γs) are based on weekly

counts of positive influenza test results from the CDC during the 2009 influenza

pandemic assuming an overall prevalence of 20% [7, 142]. Weekly counts of

FARI after the introduction of a monovalent vaccine were adjusted assuming

a VE of 62%. Weekly probabilities of NFARI (βs) were calculated based on the

number of influenza negative specimens reported by the CDC during the 2009

pandemic. Weekly vaccination probabilities are based on vaccination coverage

estimates from CDC vaccination surveillance during the 2009 pandemic [7].
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Table C1: Input parameter values used in calculations and
simulations.

Parameters Input Values
π11 0.4
π10 0.25
π01 0.25
π11 0.1
α111 0.0
α211 0.0
α311 0.0
α411 0.0
α511 0.0
α611 0.0
α711 0.0
α811 0.0
α911 0.0
α1011 0.0
α1111 0.0
α1211 0.0
α1311 0.0
α1411 0.0
α1511 0.0
α1611 0.0
α1711 0.0
α1811 0.0
α1911 0.0
α2011 0.0
α2111 0.0
α2211 0.0
α2311 0.0
α2411 0.015
α2511 0.015
α2611 0.015
α2711 0.015
α2811 0.0158
α2911 0.0158
α3011 0.0158
α3111 0.0158
α3211 0.0158
α3311 0.011
α3411 0.011
α3511 0.011
α3611 0.011

Parameter Input Values
α3711 0.011
α3811 0.0137
α3911 0.0137
α4011 0.0137
α4111 0.00525
α4211 0.00525
α4311 0.00525
α4411 0.00525
α4511 0.002
α4611 0.002
α4711 0.002
α4811 0.002
α4911 0.002
α5011 0.001
α5111 0.001
α5211 0.001
α5311 0.001
α5411 0.00075
α5511 0.00075
α5611 0.00075
α5711 0.00075
α110 0.0
α210 0.0
α310 0.0
α410 0.0
α510 0.0
α610 0.0
α710 0.0
α810 0.0
α910 0.0
α1010 0.0
α1110 0.0
α1210 0.0
α1310 0.0
α1410 0.0
α1510 0.0
α1610 0.0
α1710 0.0
α1810 0.0
α1910 0.0



C.1. Vaccination Over Time 179

Parameter Input Values
α2010 0.0
α2110 0.0
α2210 0.0
α2310 0.0
α2410 0.007
α2510 0.007
α2610 0.007
α2710 0.007
α2810 0.0088
α2910 0.0088
α3010 0.0088
α3110 0.0088
α3210 0.0088
α3310 0.0072
α3410 0.0072
α3510 0.0072
α3610 0.0072
α3710 0.0072
α3810 0.01
α3910 0.01
α4010 0.01
α4110 0.00425
α4210 0.00425
α4310 0.00425
α4410 0.00425
α4510 0.0014
α4610 0.0014
α4710 0.0014
α4810 0.0014
α4910 0.0014
α5010 0.00075
α5110 0.00075
α5210 0.00075
α5310 0.00075
α5410 0.0005
α5510 0.0005
α5610 0.0005
α5710 0.0005

Parameter Input Values
α101 0.0
α201 0.0
α301 0.0
α401 0.0
α501 0.0
α601 0.0
α701 0.0
α801 0.0
α901 0.0
α1001 0.0
α1101 0.0
α1201 0.0
α1301 0.0
α1401 0.0
α1501 0.0
α1601 0.0
α1701 0.0
α1801 0.0
α1901 0.0
α2001 0.0
α2101 0.0
α2201 0.0
α2301 0.0
α2401 0.021
α2501 0.021
α2601 0.021
α2701 0.021
α2801 0.0216
α2901 0.0216
α3001 0.0216
α3101 0.0216
α3201 0.0216
α3301 0.0128
α3401 0.0128
α3501 0.0128
α3601 0.0128
α3701 0.0128
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Parameter Input Values
α3801 0.015
α3901 0.015
α4001 0.015
α4101 0.00575
α4201 0.00575
α4301 0.00575
α4401 0.00575
α4501 0.0018
α4601 0.0018
α4701 0.0018
α4801 0.0018
α4901 0.0018
α5001 0.00125
α5101 0.00125
α5201 0.00125
α5301 0.00125
α5401 0.001
α5501 0.001
α5601 0.001
α5701 0.001
α100 0.0
α200 0.0
α300 0.0
α400 0.0
α500 0.0
α600 0.0
α700 0.0
α800 0.0
α900 0.0
α1000 0.0
α1100 0.0
α1200 0.0
α1300 0.0
α1400 0.0
α1500 0.0
α1600 0.0
α1700 0.0
α1800 0.0
α1900 0.0
α2000 0.0

Parameter Input Values
α2100 0.0
α2200 0.0
α2300 0.0
α2400 0.01425
α2500 0.01425
α2600 0.01425
α2700 0.01425
α2800 0.0134
α2900 0.0134
α3000 0.0134
α3100 0.0134
α3200 0.0134
α3300 0.0108
α3400 0.0108
α3500 0.0108
α3600 0.0108
α3700 0.0108
α3800 0.0197
α3900 0.0197
α4000 0.0197
α4100 0.007
α4200 0.007
α4300 0.007
α4400 0.007
α4500 0.0026
α4600 0.0026
α4700 0.0026
α4800 0.0026
α4900 0.0026
α5000 0.00175
α5100 0.00175
α5200 0.00175
α5300 0.00175
α5400 0.00075
α5500 0.00075
α5600 0.00075
α5700 0.00075
β101 0000256009
β201 0.002377228
β301 0.004374099
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Parameter Input Values
β401 0.003103197
β501 0.004754456
β601 0.005138469
β701 0.006634294
β801 0.007137169
β901 0.007989314
β1001 0.005719976
β1101 0.004313754
β1201 0.004706911
β1301 0.003783449
β1401 0.003348234
β1501 0.003386635
β1601 0.002327855
β1701 0.002285796
β1801 0.002885589
β1901 0.002479631
β2001 0.003445152
β2101 0.004194893
β2201 0.004785542
β2301 0.005228073
β2401 0.007100189
β2501 0.011297181
β2601 0.015924209
β2701 0.017967336
β2801 0.014288605
β2901 0.011232564
β3001 0.00854768
β3101 0.005013384
β3201 0.002599943
β3301 0.001835585
β3401 0.001123076
β3501 0.000883732
β3601 0.000462118
β3701 0.000524716
β3801 0.000490549
β3901 0.000481328
β4001 0.000584602
β4101 0.00049167
β4201 0.000532031
β4301 0.000436632

Parameter Input Values
β4401 0.000476993
β4501 0.000578566
β4601 0.000618846
β4701 0.000657295
β4801 0.000452233
β4901 0.000314916
β5001 0.000287274
β5101 0.000171998
β5201 0.000100637
β5301 0.0000292763
β5401 0.0000237833
β5501 0.0000329308
β5601 0.00000914744
β5701 0.00000365897
θβ 0.5-2.0
φβ 1.0-2.0
γ101 0.007128339
γ201 0.056857479
γ301 0.052542095
γ401 0.024699552
γ501 0.020408465
γ601 0.016159923
γ701 0.014700962
γ801 0.014375775
γ901 0.014491285
γ1001 0.014058863
γ1101 0.013251482
γ1201 0.012829935
γ1301 0.01257947
γ1401 0.011016051
γ1501 0.011766687
γ1601 0.011122297
γ1701 0.011465152
γ1801 0.012859199
γ1901 0.01607784
γ2001 0.020914872
γ2101 0.023880692
γ2201 0.026345791
γ2301 0.027179623
γ2401 0.027319149
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Parameter Input Values
γ2501 0.030194027
γ2601 0.03351409
γ2701 0.036411291
γ2801 0.033578504
γ2901 0.031866133
γ3001 0.029362385
γ3101 0.027185619
γ3201 0.020909266
γ3301 0.021578301
γ3401 0.019280229
γ3501 0.018226878
γ3601 0.014984079
γ3701 0.016840602
γ3801 0.016882373
γ3901 0.015156862
γ4001 0.014944917
γ4101 0.014932952
γ4201 0.014698786
γ4301 0.014390479
γ4401 0.014707195
γ4501 0.013856789
γ4601 0.013078778

Parameter Input Values
γ4701 0.012814887
γ4801 0.010986937
γ4901 0.009645197
γ5001 0.008982453
γ5101 0.007833009
γ5201 0.006903403
γ5301 0.006556295
γ5401 0.006324788
γ5501 0.005014685
γ5601 0.003975537
γ5701 0.002058121
θγ 0.34
φγ 1.0-2.0
δ101 0.25
θδ1 1.0
µδ1 0.5-1.0
δ201 0.40
θδ2 0.5-1.0
µδ2 0.5-1.0
τ1 0
τ2 1

We assume µδ1 = µδ2 .
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C.1.4 Results

We evaluated bias of VE estimates from TN studies in the presence of different

sources of bias (Table 4.4). Table C2 shows the 5th, 50th, and 95th quantiles of bias

and the 50th and 95th quantiles of the absolute value of bias under combination

of sources of bias.
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Table C2: Bias of TN-based estimates of VE when first week of
vaccination varies: multiple sources of bias

Source
of Bias

Outcome
of Interest

jv QB(5) QB(50) QB(95) QAV B(50) QAV B(95)

BS, D SI & MAI

1 c 0.00 0.00 0.00 0.00 0.00
6 0.05 0.05 0.05 0.05 0.05

11 0.10 0.10 0.10 0.10 0.10
15 0.05 0.05 0.05 0.05 0.05
20 -0.03 -0.03 -0.03 0.03 0.03
24 -0.04 -0.04 -0.04 0.04 0.04
28 -0.03 -0.03 -0.03 0.03 0.03
33 -0.05 -0.05 -0.05 0.05 0.05
38 -0.08 -0.08 -0.07 0.08 0.08

BS, D, A SI & MAI

1 -0.22 0.01 0.15 0.08 0.22
6 -0.15 0.04 0.17 0.07 0.18

11 -0.16 0.09 0.25 0.11 0.25
15 -0.17 0.05 0.19 0.09 0.21
20 -0.22 -0.03 0.09 0.06 0.22
24 -0.17 -0.04 0.04 0.05 0.17
28 -0.13 -0.03 0.03 0.03 0.13
33 -0.25 -0.06 0.08 0.07 0.25
38 -0.28 -0.08 0.05 0.08 0.28

BS, D, C

SI

1 0.01 0.08 0.16 0.08 0.16
6 0.06 0.11 0.19 0.11 0.19

11 0.10 0.17 0.27 0.17 0.27
15 0.05 0.11 0.21 0.11 0.21
20 -0.03 0.03 0.11 0.03 0.11
24 -0.04 0.00 0.05 0.02 0.05
28 -0.03 0.00 0.04 0.02 0.04
33 -0.04 0.01 0.09 0.03 0.09
38 -0.07 -0.01 0.06 0.04 0.07

MAI

1 0.00 0.00 0.00 0.00 0.00
6 0.03 0.04 0.05 0.04 0.05

11 0.06 0.08 0.09 0.08 0.09
15 0.03 0.04 0.05 0.04 0.05
20 -0.03 -0.02 -0.02 0.02 0.03
24 -0.04 -0.03 -0.02 0.03 0.04
28 -0.03 -0.02 -0.02 0.02 0.03
33 -0.04 -0.04 -0.03 0.04 0.04
38 -0.07 -0.06 -0.04 0.06 0.07
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Table C2: Bias of TN-based estimates of VE when first week of
vaccination varies: multiple sources of bias

Source
of Bias

Outcome
of Interest

jv QB(5) QB(50) QB(95) QAV B(50) QAV B(95)

BS, D, A, C

SI

1 -0.13 0.08 0.21 0.10 0.2
6 -0.08 0.12 0.22 0.12 0.22

11 -0.04 0.18 0.31 0.18 0.31
15 -0.10 0.12 0.25 0.13 0.26
20 -0.16 0.03 0.15 0.07 0.17
24 -0.11 0.01 0.08 0.04 0.11
28 -0.09 0.00 0.06 0.03 0.09
33 -0.16 0.03 0.13 0.07 0.17
38 -0.20 -0.01 0.11 0.06 0.20

MAI

1 -0.18 0.00 0.12 0.06 0.18
6 -0.13 0.04 0.15 0.06 0.16

11 -0.11 0.07 0.21 0.09 0.21
15 -0.15 0.04 0.16 0.07 0.18
20 -0.19 -0.03 0.07 0.05 0.19
24 -0.14 -0.03 0.03 0.03 0.14
28 -0.11 -0.02 0.03 0.03 0.11
33 -0.20 -0.03 0.07 0.05 0.20
38 -0.23 -0.06 0.04 0.06 0.23
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C.2 All-Or-None Vaccine Model

C.2.1 True VE

True VE against SI

A person is considered a true case of SI if s/he develops an ARI as a result of in-

fluenza infection (Yj = 2). True VE against SI is defined as one minus the risk of

influenza infection among vaccinated persons compared to unvaccinated per-

sons.

V ETSI = 1− P(classified as SI|V = 1)
P(classified as SI|V = 0)

We can write probability of influenza infection in week j for a given (v, x, u) as:

P(Yj = 2|V = v,X = x, U = u)

=
1∑

w=0

P(Yj = 2|V = v,W = w,X = x, U = u)P(W = w|V = v)

where

P(Yj = 2|V = 0,W = w,X = x, U = u) = γj0x

P(Yj = 2|V = 1,W = 0, X = x, U = u) = γj0x

P(Yj = 2|V = 1,W = 1, X = x, U = u) = 0

P(V = 0|X = x, U = u) = 1− αxu

P(V = 1|X = x, U = u) = αxu

P(W = 0|V = 0) = 1

P(W = 1|V = 0) = 0

P(W = 0|V = 1) = 1− ρ

P(W = 1|V = 1) = ρ.
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The probability of influenza infection in week j can be expressed as

P(Yj = 2|V = v)

=
1∑

x=0

1∑
u=0

P(Yj = 2|W = 0, V = v,X = x, U = u)P(W = 0|V = v)P(X = x, U = u|V = v)

where

P(X = x, U = u|V = 0) =
(1− αxu)πxu

1∑
x=0

1∑
u=0

(1− αxu)πxu

P(X = x, U = u|V = 1) = αxuπxu
1∑

x=0

1∑
u=0

αxuπxu

Under the assumption of random vaccination (αxu = α∀x, u (x = 0, 1;u = 0, 1)),

the probability of a given (x, u) given vaccination status v can be further re-

duced to
P(X = x, U = u|V = 0) =

(1− α)πxu
1∑

x=0

1∑
u=0

(1− α)πxu

= πxu

P(X = x, U = u|V = 1) = απxu
1∑

x=0

1∑
u=0

απxu

= πxu

Therefore, the true VE against SI is

V ETSI = 1−

J∑
j=1

(1− ρ) [γj00(π00 + π01) + γj01(π10 + π11)]

J∑
j=1

γj00 [π00 + π01] + γj01 [π10 + π11]

= 1− (1− ρ)

= ρ
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True VE against MAI

A person is considered a true case of MAI in week j if s/he develops an ARI as

a result of influenza infection and seeks medical care for this ARI (Yj = 2,Mj =

1). We can write probability of seeking medical care for influenza infection in

week j for a given (v, x, u) as:

P(Mj = 1, Yj = 2|V = v,X = x, U = u)

=
1∑

w=0

P(Mj = 1, Yj = 2|W = w, V = v,X = x, U = u)P(W = w|V = v)

where

P(Mj = 1, Yj = 2|V = v,W = w,X = x, U = u)

= P(Mj = 1|Yj = 2,W = w, V = v,X = x, U = u)P(Yj = 2|W = w, V = v,X = x, U = u)

and

P(Mj = 1|Yj = 2,W = 0, V = v,X = x, U = u) = δ20u

P(Mj = 1|Yj = 2,W = 1, V = v,X = x, U = u) = 0

P(Yj = 2|W = 0, V = v,X = x, U = u) = γj0x

P(Yj = 2|W = 1, V = v,X = x, U = u) = 0

P(W = 0|V = 0) = 1

P(W = 1|V = 0) = 0

P(W = 0|V = 1) = 1− ρ

P(W = 1|V = 1) = ρ.
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The probability of seeking medical care for influenza infection in week j can be

expressed as

P(Mj = 1, Yj = 2|V = v)

=
1∑

x=0

1∑
u=0

P(Mj = 1, Yj = 2|W = 0, V = v,X = x, U = u)P(W = 0|V = v)P(X = x, U = u|V = v)

where

P(X = x, U = u|V = v) = πxu, assuming random vaccination.

Therefore, the true VE against MAI is

V ETMAI = 1−

J∑
j=1

(1− ρ) [δ210(γj00π00 + γj01π10) + δ211(γj00π01 + π11)]

J∑
j=1

δ200 [γj00π00 + γj01π10] + δ201 [γj00π01 + γj01π11]

= 1− (1− ρ)

= ρ

C.2.2 TN-based Estimates of VE

Case

The probability of being a case in week j is the probability of having FARI in

week j (Yj = 2), seeking medical care for FARI in week j (Mj = 1), and not

seeking medical care prior to week j (i.e., a person’s first medical visit occurs in

week j, Mj−1 = 0). We assume perfect influenza test sensitivity and specificity.

We can write the probability of being a case in week j as

P(Mj−1 = 0,Mj = 1, Yj = 2, V = v), v = 0, 1
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For a given (x, u), we can write the probability of being a case in week j as

P(Mj−1 = 0,Mj = 1, Yj = 2, V = v|X = x, U = u)

= P(Mj−1 = 0,Mj = 1, Yj = 2|V = v,X = x, U = u)P(V = v|X = x, U = u)

where

P(Mj−1 = 0,Mj = 1, Yj = 2|V = v,X = x, U = u)

=
1∑

w=0

P(Mj−1 = 0,Mj = 1, Yj = 2|W = w, V = v,X = x, U = u)P(W = w|V = v)

and

P(Mj−1 = 0,Mj = 1, Yj = 2|W = w, V = v,X = x, U = u)

= P(Mj−1 = 0,Mj = 1|Yj = 2,W = w, V = v,X = x, U = u)

×P(Yj = 2|V = v,W = w,X = x, U = u)

Under the assumption that a person can have only one FARI during the study,

P(Yj = 2|V = v,W = w,X = x, U = u)

= P(Yj−1 < 2, Yj = 2|V = v,W = w,X = x, U = u)

= γjwx.
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Therefore,

P(Mj−1 = 0,Mj = 1|Yj = 2,W = w, V = v,X = x, U = u)

= P(Mj−1 = 0,Mj = 1|Yj−1 < 2, Yj = 2,W = w, V = v,X = x, U = u)

= P(Mj = 1|Yj = 2,W = w, V = v,X = x, U = u)

×P(Mj−1 = 0|Yj−1 < 2,W = w, V = v,X = x, U = u),

where

P(Mj = 1|Yj = 2,W = 0, V = v,X = x, U = u) = δ20u

P(Mj = 1|Yj = 2,W = 1, V = v,X = x, U = u) = 0

P(Mj−1 = 0|Yj−1 < 2,W = w, V = v,X = x, U = u)

=

j−1∏
h=1

P(Mh = 0|Yh < 2,W = w, V = v,X = x, U = u),

since M1, . . . ,Mj−1 are independent given Y1, . . . , Yj−1.
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The probability of not seeking care in week h (Mh = 0) given no FARI (Yh < 2)

can be derived as follows:

P(Mh = 0|Yh < 2,W = w, V = v,X = x, U = u)

=
P(Mh = 0, Yh < 2,W = w, V = v,X = x, U = u)

P(Yh < 2,W = w, V = v,X = x, U = u)

=

1∑
y=0

P(Mh = 0, Yh = y,W = w, V = v,X = x, U = u)

1∑
y=0

P(Yh = y,W = w, V = v,X = x, U = u)

where

P(Mh = 0, Yh = y,W = w, V = v,X = x, U = u)

= P(Mh = 0|Yh = y,W = w, V = v,X = x, U = u)P(Yh = y|W = w, V = v,X = x, U = u)

×P(W = w|V = v)P(V = v|X = x, U = u)P(X = x, U = u)

and

P(Mh = 0|Yh = 0,W = w, V = v,X = x, U = u) = 1

P(Mh = 0|Yh = 1,W = 0, V = v,X = x, U = u) = 1− δ10u

P(Mh = 0|Yh = 1,W = 1, V = 0, X = x, U = u) = 0

P(Mh = 0|Yh = 1,W = 1, V = 1, X = x, U = u) = 1− δ11u

P(Yh = 0|W = 0, V = v,X = x, U = u) = 1− βh0x − γh0x

P(Yh = 0|W = 1, V = 1, X = x, U = u) = 1− βh1x

P(Yh = 1|W = 0, V = v,X = x, U = u) = βh0x

P(Yh = 1|W = 1, V = 1, X = x, U = u) = βh1x

P(W = 0|V = 0) = 1

P(W = 1|V = 0) = 0

P(W = 0|V = 1) = 1− ρ

P(W = 1|V = 1) = ρ

P(V = 0|X = x, U = u) = 1− αxu

P(V = 1|X = x, U = u) = αxu

P(X = x, U = u) = πxu
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Therefore,

P(Mh = 0|Yh < 2,W = 0, V = v,X = x, U = u) =
1− δ10uβh0x − γh0x

1− γh0x

The overall probability of being a case in week j is

P(Mj−1 = 0,Mj = 1, Yj = 2, V = 0)

=
1∑

x=0

1∑
u=0

δ20uγj0x(1− αxu)πxu
j−1∏
h=1

1− δ10uβh0x − γh0x
1− γh0x

and

P(Mj−1 = 0,Mj = 1, Yj = 2, V = 1)

=
1∑

x=0

1∑
u=0

δ20uγj0x(1− ρ)αxuπxu

j−1∏
h=1

1− δ10uβh0x − γh0x
1− γh0x

Control

A person is classified as a control in week j in the same way as a case, except

that they seek medical care for NFARI (Mj−1 = 0,Mj = 1, Yj = 1). We can write

the probability of being a control in week j as

P(Mj−1 = 0,Mj = 1, Yj = 1, V = v), v = 0, 1
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For a given (x, u), we can write the probability of being a control in week j as

P(Mj−1 = 0,Mj = 1, Yj = 1, V = v|X = x, U = u)

= P(Mj−1 = 0,Mj = 1, Yj = 1|V = v,X = x, U = u)P(V = v|X = x, U = u)

where

P(Mj−1 = 0,Mj = 1, Yj = 1|V = v,X = x, U = u)

=
1∑

w=0

P(Mj−1 = 0,Mj = 1, Yj = 1|W = w, V = v,X = x, U = u)P(W = w|V = v)

and

P(Mj−1 = 0,Mj = 1, Yj = 1|W = w, V = v,X = x, U = u)

= P(Mj−1 = 0,Mj = 1|Yj = 1,W = w, V = v,X = x, U = u)

×P(Yj = 1|V = v,W = w,X = x, U = u)

If Yj = 1, then the values of Y1, . . . , Yj−1 can take on any value y = 0, 1, 2 since

a person can have any number of NFARIs and may have had an FARI in a

previous week. Therefore,

P(Yj = 1|V = v,W = w,X = x, U = u)

= P(Yj−1 ≤ 2, Yj = 1|V = v,W = w,X = x, U = u)
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Thus,

P(Mj−1 = 0,Mj = 1|Yj = 1,W = w, V = v,X = x, U = u)

= P(Mj−1 = 0,Mj = 1|Yj−1 ≤ 2, Yj = 1,W = w, V = v,X = x, U = u)

= P(Mj = 1|Yj = 1,W = w, V = v,X = x, U = u)

×P(Mj−1 = 0|Yj−1 ≤ 2,W = w, V = v,X = x, U = u),

where

P(Mj = 1|Yj = 1,W = 0, V = v,X = x, U = u) = δ10u

P(Mj = 1|Yj = 1,W = 1, V = 1, X = x, U = u) = δ11u

P(Mj−1 = 0|Yj−1 ≤ 2,W = w, V = v,X = x, U = u)

=

j−1∏
h=1

P(Mh = 0|Yh ≤ 2,W = w, V = v,X = x, U = u),
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The probability of not seeking care in week h (Mh = 0) can be derived as fol-

lows:

P(Mh = 0|Yh ≤ 2,W = w, V = v,X = x, U = u)

=
P(Mh = 0, Yh ≤ 2,W = w, V = v,X = x, U = u)

P(Yh ≤ 2,W = w, V = v,X = x, U = u)

=

2∑
y=0

P(Mh = 0, Yh = y,W = w, V = v,X = x, U = u)

2∑
y=0

P(Yh = y,W = w, V = v,X = x, U = u)

where

P(Mh = 0, Yh = y,W = w, V = v,X = x, U = u)

= P(Mh = 0|Yh = y,W = w, V = v,X = x, U = u)P(Yh = y|W = w, V = v,X = x, U = u)

×P(W = w|V = v)P(V = v|X = x, U = u)P(X = x, U = u)

and

P(Mh = 0|Yh = 0,W = w, V = v,X = x, U = u) = 1

P(Mh = 0|Yh = 1,W = 0, V = v,X = x, U = u) = 1− δ10u

P(Mh = 0|Yh = 1,W = 1, V = 0, X = x, U = u) = 0

P(Mh = 0|Yh = 1,W = 1, V = 1, X = x, U = u) = 1− δ11u

P(Mh = 0|Yh = 2,W = 0, V = v,X = x, U = u) = 1− δ20u

P(Mh = 0|Yh = 2,W = 1, V = v,X = x, U = u) = 0

P(Yh = 0|W = 0, V = v,X = x, U = u) = 1− βh0x − γh0x

P(Yh = 0|W = 1, V = 1, X = x, U = u) = 1− βh1x

P(Yh = 1|W = 0, V = v,X = x, U = u) = βh0x

P(Yh = 1|W = 1, V = 1, X = x, U = u) = βh1x

P(Yh = 2|W = 0, V = v,X = x, U = u) = γh0x

P(Yh = 2|W = 1, V = 1, X = x, U = u) = 0

P(W = 0|V = 0) = 1

P(W = 1|V = 0) = 0
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P(W = 0|V = 1) = 1− ρ

P(W = 1|V = 1) = ρ

P(V = 0|X = x, U = u) = 1− αxu

P(V = 1|X = x, U = u) = αxu

P(X = x, U = u) = πxu

The overall probability of being a control in week j is

P(Mj−1 = 0,Mj = 1, Yj = 1, V = 0)

=
1∑

x=0

1∑
u=0

δ20uβj0x(1− αxu)πxu
j−1∏
h=1

(1− δ10uβh0x − δ20u)

and

P(Mj−1 = 0,Mj = 1, Yj = 1, V = 1)

=
1∑

x=0

1∑
u=0

{
αxuπxu

[
δ10uβj0x(1− ρ)

j−1∏
h=1

(1− δ10uβh0x − δ20u) + δ11uβj1xρ

j−1∏
h=1

(1− δ11uβh1x)

]}
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