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Abstract

Dynamics of 2-Dimensional Soft Particle Flow Through Hopper
By Benjamin F. Lonial

I study the quasi-2d hopper flow of oil-in-water emulsions as they exit an orifice in two
scenarios. First, I look at many particle flow of droplets with diameters smaller than the
opening width For many particle flow, prior work on hopper dynamics has focused on the flow
rate, which is defined as the number of oil droplets exiting per unit time. This has shown a
general power law dependence between flow rate, Q, the ratio of the opening width, w, to the
average diameter of droplet size, d, and the fitting constant κ as such: Q ∼ (w/d−κ)β. Prior
work has seen various values for the exponent β, corresponding to different experimental
conditions. Recent work has suggested that the range of values for the exponent β can
explained by the ratio of the viscous drag force of particles moving in their medium to the
kinetic friction of two particles sliding past each other. In two dimensions, for the low kinetic
friction limit, this exponent should be 1/2. We experimentally verify this claim by studying
the flow rate of silicon oil-in-water emulsions as they pass through an orifice over a range
of w/d values. We find that the flow rate collapses to the general curve with β = 0.49 and
κ = 1.47. I then extend this work to examine the flow of a oil droplet with a diameter
larger than the opening width of the orifice. If the volume of oil is high enough, I find that
droplets can flow through this opening by deforming, even when the droplet diameter is 3×
the size of the opening. In this scenario, I compare my results with the common approach to
modelling soft particles: the Durian bubble model. This model predicts that once the droplet
is half-way through the opening, the wall-droplet repulsion assists in pushing the droplet
out of the hopper, so much so that the droplet overshoots its terminal velocity. I find that
my experiment is unable to replicate the velocity overshoot predicted by the Durian bubble
model. I suggest that this occurs because of a regime where viscous dissipation is capable
of depleting the energy required to overshoot, as well as the presence of a non-negligible
depletion force.
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Chapter 1

Introduction

Figure 1.1: Drawn image of hopper
flow. The constriction is a funnel that
droplets are forced to flow through.
The opening of the hopper is w and
the diameter of droplets is d.

This investigation into the dynamics of soft particles is

motivated by an aim to continue and expand research on the

factors decisive in the phenomenon of soft particle flow in

general. This means crafting experiments that tease out the

subtle physics at stake, accentuating the features which lie

dormant in our intuitive or computational presuppositions.

I conduct two such experiments and report their findings

in this thesis. The first experiment looks at the hopper

flow of many particles with diameters smaller than the

orifice width, in the spirit of prior work done by Beverloo

et al. [4]. Hopper flow is the phenomenon where discrete

particles are forced to flow through a constriction, which I have sketched in Fig.1.1. The

constriction forces the particles to interact with each other because there is a limit imposed

on their ability to flow. Think, for instance, of grain draining through a silo. Many granular

particles flow through an opening that is much larger than their average diameter, meaning

that the constriction introduces some impedance, but not enough to commonly produce

clogging. The question I look to examine is how soft, frictionless particles flow differently.



2

The second experiment I conduct inverts the first to examine one soft particle with a

diameter larger than the opening width. If this were a hard particle, there would be no

question about its ability to flow— the hard particle would make contact with the walls and

not move any further. But, if the particle is soft and its weight great enough, it can flow

through. What are the dynamics of this flow?

Both of these experiments are conducted with an eye towards two computational models:

the Durian bubble model, suggested by Durian et al., and the Deformable particle model

(DP model), suggested by Boromand et al. [10, 5]. The specifics of these models will be

discussed later. That said, my aim in this project is to bring into focus the behaviours of

soft particle flow, particularly the features that might highlight a breakdown in our current

computational models.

1.1 Many Particle Flow and the Wandering Exponent

1.1.1 Beverloo Law

One cannot talk about hopper flow without first citing Beverloo et al. [4]. It was there that a

power law dependence was stated for the correlation between flow rate and the ratio between

the opening width w to the average diameter d, as such:

W = CmρB
√
g
(w
d
− κ

)2.5

. (1.1)

Where W is the flow rate, ρB is the density of the flowing material, g is the acceleration of

freely falling bodies, w is the opening width of the hopper, and d is average particle diameter.

The first constant, Cm, is characterised by the material properties of the flowing particles

(Beverloo measured this value for the curious assortment of sand, watercress, lupin, kale,

swede and others), whereas the second constant, κ, measures the minimum ratio of w/d after

which clogging occurs (since the flow rate goes to 0 as κd approaches w). Most work on
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hopper flow has generally looked at the flow of hard particles (they do not deform) where

friction is likely to dominate the dynamics of flow.

For these hard, frictional system, β traditionally has been correlated to the spatial

dimension of the hopper (2-dimensional, 3-dimensional, etc.), scaling as β = dim−1/2, where

dim is the dimension. In two dimensions, this can be understood if we imagine droplets of

diameter d flowing with uniform velocity v down an infinite length two dimensional hallway

of width w. The flux of droplets is the number of droplets passing a certain position over a

period of time: dN
dt
. The maximum number of droplets that stack across is given by N = w/d.

The time it takes one row of droplets to pass a certain threshold is the amount of time it

takes droplets to fall their own diameter, i.e. t = d/v. The flux is given by dN
dt

= wv
d2
. In

a hopper, the velocity is approximated by saying that droplets within an area of w × w

above the hopper fall freely, thus v2 ∼ gw, and the flux becomes dN
dt

∼ w3/2 (note that in

2-dimensions 2− 1/2 = 3/2). The argument is similar for three dimensions[7].

More recent work, however, has moved towards looking at the flow of soft, frictionless

particles in order to understand how these properties affect the parameters within the Beverloo

equation and hopper flow as a whole. In particular, prior work from the Weeks lab has shown

how softness dips κ lower since softer particles can squeeze through more narrow openings

[13]. Other groups have exposed have exposed deviations from the predicted value of β

[16, 20, 14, 1]. Some have even cited exponents as curious as β = 1, which means that the

experiment was theoretically conducted in 1.5-dimension chamber— something unphysical

[11, 3, 21].

On the computational side, an approach to modelling droplets as circles which can overlap

as a function of softness— called the Durian bubble model— but repel each other as a linear

function of this overlap, have similarly troubled the strict dimensional dependence of β,

exhibiting the presence of deviations [10, 17].

Since these particles are deformable and their effective diameter is smaller perpendicular

to the direction of flow, we expect that softer particles can stack such that the maximum
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number of droplets that can exit at a time is greater than w/d. That said, how might

frictionless droplets tinker with the area of free fall? In a high viscosity fluids, droplets will

reach terminal velocity (that velocity which makes squirrels immortal) quicker, resulting in a

limit to the outgoing velocity. But, at the same time, is it fair to assume that frictionless

droplets fall from a height w? In the end, is this enough to account for the deviation? Does

this imply that hopper geometry is irrelevant to β, or does this simply call for a correction?

Another computational approach to this problem, from out of the O’Hern group, models

droplets as polygons whose vertices are connected by springs [5, 6]. Recently, they have

focused on the effects of the two key dissipative mechanism: viscous drag and kinetic friction.

Dissipative forces are those forces which irrecoverably dissipate energy into the environment.

The viscous drag force is a feature of droplets moving through a viscous fluid that resists fast

moving droplets, like running in the ocean. The kinetic friction force is a force that resists

strong variations in the overall range of speeds, so that two adjacent droplets are averaged to

similar velocities (if you imagine yourself trying to run in a crowd, then kinetic friction is

akin to how hard it is pass the person ahead of you).

This model suggests that β is determined by the relative strength of each mechanism. In

the limit where viscous forces are negligible relative to kinetic friction, they reproduce the

granular flow β = dim− 1/2, whereas the limit where viscous drag becomes more important

than kinetic friction results in β = dim− 3/2. As such, if we are to study the flow of soft

frictionless droplets, we should expect that the flow of droplets should fit to the exponent

β = 1/2.

Similarities between this predicted exponent for frictionless particles and the granular

systems is that any increase in w/d increases the flow rate. But, for a β = 1/2 exponent this

flow rate increase starts to mean less as we go to higher w/d. Compare this to a β = 3/2

exponent where any increase in w/d means a great deal for the flow rate, and means more as

we go to higher w/d. If frictionless particles do indeed flow according to a β = 1/2 exponent,

then we expect for this payoff decrease to materialise in the flow patterns of the particles.
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Ultimately, my aim is to measure the Beverloo exponent for soft frictionless particles and

combine this measurement with information from the chambers in order to understand how

this exponent materialises in the hopper patterns themselves.

1.2 Single Particle Flow

While the flow of many droplets through an orifice width greater than the average diameter

can help us situate softer particles within the canonical understanding of hopper flow, we

can also invert our experiment to understand more deformable droplets. After all, if we are

studying soft particles in hoppers we would be remissed to ignore the very thing that makes

them special— their softness.

1.2.1 Surface Tension

One crucial concept that stands in need of elucidation is surface tension. Surface tension

arises from the imbalance of inter-molecular bonds at a boundary between two fluids. This

results in a net force that tends to group fluids together such that the area of contact between

the two fluids is minimised. Surface tension is essentially a statement by one fluid in contact

with another that it wants the least amount of contact possible.

That said, surface tension must negotiate its wants within the economy of other energy

considerations. Take, for instance, a single drop of water, which forms a neat hemisphere,

against a puddle. In the drop of water, surface tension is able to preside more effectively and

dominate the circular shape, whereas the puddle silences surface tension since other concerns,

such as gravity, are more important.

For a droplet larger than the opening width, buoyancy pays energy to temporarily increase

the surface tension of the droplet, so that the droplet deforms. This deformation allows

the droplet to squeeze through the opening, ultimately allowing the passage of the droplet

through the hopper, even though its diameter is larger than the opening width. As it turns
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out, surface tension is the only reason that something soft can flow through an opening

smaller than its diameter, without, of course, breaking the boundary of the droplet or the

hopper altogether.

This ability to squeeze through narrow openings is one of the fascinating features of soft

particle flow. This increased deformability also tests the limits of certain ways of thinking

about these droplets. Namely, is the Durian bubble model, which was first developed to

study the effect of shearing foams, a good way of modelling highly deformed droplets, or does

something break down? Can the newer DP model, which can accurately model the shape

of deformed droplets, accurately model the entire system? I aim to study more deformed

droplets in this simple system as a way to simply test the physical features of soft particle

flow.
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Chapter 2

Methods

2.1 Emulsion Production

An emulsion is a mixture of two immiscible liquids, where one liquid is in a continuous

“environment” phase and the other is suspended in this environment as discrete little droplets.

That is to say, a layer of oil and a layer of water do not an emulsion make. But, when we

shake a container with oil and water, the big layer of oil is separated into smaller oil bubbles

of various sizes— this is now an emulsion. After a period of time, a shaken bottle of pure

water and oil will eventually settle back into its original layered de-composition. This occurs

because it is energetically favorable for two small droplets to coalesce into one big one, since

this decreases their surface area per unit volume.

While emulsions occur in many of our everyday food items such as milk and mayonnaise, for

our purposes here, emulsions are appropriate because they model soft, deformable, frictionless

particles.

Traditional hopper flow experiments tend to focus on hard particles, which can clog by

forming strong arches. Soft particles, because of their deformability, are able to pack more

tightly, and thus occupy cracks hitherto inaccessible to hard particles, thus allowing more

acrobatic flow dynamics. To get a sense of this, compare the three images in Fig.2.1 all
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Figure 2.1: Images of oil moving through hopper. The left and right images are silicon oil-in-water emulsions
produced through the use of a microfluidic device. The center image is a vegetable oil-in-water emulsion
produced from shaking a bottle. The hopper materials vary, left to right, from laser cut plastic, to double
sided sticky tape to glass coverslips. The sizes and polydispersities vary drastically between images. The
right image has a polydispersity of δ ∼ 20%, the middle image has a polydispersity above δ ∼ 70%, and the
right image has a polydispersity around δ ∼ 5%

showing oil droplets, but some more flexible than others.

While shaking a bottle mixed with oil and water produces an emulsion, hopper experiments

traditionally work with a narrow range of diameters measured by the term polydispersity,

which is defined as the ratio between the standard deviation of diameter to the average

diameter; δ =

√
⟨∆R2⟩
⟨R⟩ . The right image in Fig.2.1, for instance, has a low polydispersity,

whereas the central image, which used “shaken bottle” emulsions, has a high polydispersity.

For this project, I need to produce droplets with a polydispersity between δ = 5% → 15% in

accordance with prior experimental and computational work. The higher limit is so that we

do not have small particles which can traverse 3-dimensional space, since these small particles

can dart around the chamber. Conversely, small polydispersity throws out large particles,

which take up a significant area of droplet coverage, but only count as 1 droplet. There are

other reasons as well to a mix of large and small droplets, but the rationale requires that we

first examine what our set up looks like.

Surfactant
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Figure 2.2: Image demonstrating
the danger of too much surfac-
tant. The droplets in this im-
age clog the opening, despite the
open space.

Droplet coalescence is an issue for my experiment because it

increases the polydispersity and reduces the overall number

of droplets. Moreover, what will I do if two droplets become

one in the middle of shooting a movie? Most critical in this

respect is that coalescence increases in likelihood according to

the external pressure of the droplets. Hence, the most likely

place of coalescence is right at the hopper exit— this will not

do.

To aid in the stabilisation of emulsions, I use a 5% Tween

20 surfactant solution [22]. A surfactant stabilises the droplets

because it consists of a hydrophobic tail and a hydrophilic head. The surfactant will coat

the droplets such that the tail will point towards the oil and the head towards the water.

This means that two droplets in contact with each other will have a thin double layer of

hydrophilic heads which repel each other, preventing coalescence.

Figure 2.3: Image demonstrat-
ing depletion effect. Pressure im-
balance causes droplets to “stick”
together.

One brief note is that we find the surfactant is needed

for generating any kind of flow. For instance, I create some

chambers that have no surfactant, i.e. purely water and oil, and

find that the droplets “stick” to the floor and ceiling microscope

slides. This suggests that the surfactant is helping lubricate

the glass surface, allowing droplets to the flow. Even at no risk

of coalescence, for instance in our trials of one large droplet,

surfactant is necessary.

But, too much surfactant produces globs of surfactant called

micelles. Micelles occur when the concentration of surfactant

is high enough such that the surfactant finds it energetically

favorable to create a ball whose surface is made of hydrophilic

heads and whose interior is filled with hydrophobic tails. This
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configuration excludes water from entering the micelle, thus satisfying the hydrophobic tail.

But, the presence of these micelles introduces what is known as a depletion force.

To understand the depletion force, imagine these micelles as small hard balls that are

bouncing around in a liquid with oil droplets. The movement of the micelles is entirely

random, so that when they hit a stationary oil droplet, the probability of these collisions

is uniform around the edge of the droplet, as shown in Fig.2.3. If these collisions were not

random, then our droplet would magically start moving. We say that these collisions are

isotropic. When two droplets are close together, as we see in the bottom section of Fig.2.3,

the micelles cannot collide with the droplets from the inside, leading to a pressure imbalance

that keeps the droplets “stuck” together. This stickiness is called the depletion force, and its

effect is shown in Fig.2.2. As such, we should be careful not to inject too much surfactant, so

as to avoid the production of micelles.

2.1.1 Snap Off Through Direct Syringe Injection

A method for generating droplets within my desired range of polydispersity is called the

snap off method, taken from Barkley et al [2]. There, Barkley slowly flows oil through a

small glass syringe, as seen in Fig.2.4. Once a critical radius is reached, the buoyancy of

the droplet snaps the droplet off the tip. Barkley concludes that the inner diameter of the

syringe determines the characteristic size of droplets, producing droplets with an overall

polydispersity less than δ < 1%. I use this technique for the production of droplets in my

experiment.

To set the size of the needle’s inner diameter, I use a Sutter Instruments Model P-97

Flaming Brown Micropipette Puller and a Narishige MF-830 Micro Forge. The micropipette

puller heats the glass pipette and pulls it apart, creating two needles. The result is the same

as when a putty is pulled from two sides, creating a thin elongated stream where the break

occurs. I then place one of syringes in the micro forge, where a hot knife cuts off the excess

glass. The micro forge is encased within a microscope equipped with a fitted ruler. This
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allows me to cut the glass to the specified inner diameter.

Figure 2.4: Snap-off procedure
for droplet creation. Slow in-
jection of oil allows droplets to
snap off at a critical size given by
the inner diameter of the needle.
Taken from Barkley et al. [2].

I then glue this glass needle to a Luer lock syringe tip, lock

this onto a syringe barrel and place the syringe on a syringe

pump. The specifics of chamber design will come later, but for

now, suffice it to say that a chamber is a box with an extremely

small thickness (d ≈ 250µm between two 75×50mm microscope

slides). I find it easier to thread the needle in between these

plates and directly inject oil into the chamber than creating

the droplets in a separate container and transferring them. To

help this process, I use a retooled microscope frame, shown in

Fig.2.5 to help guide the needle with steadiness as I lower the

needle into chamber, assuring that the fragile tip of the needle

stays intact.

The flow rate I use is typically f = 0.0001 mlmin−1— the

fastest rate I find that sustains the required polydispersity and

keeps the pressure from bursting the fragile glass needle. This slow flow condition means

that a chamber can typically take an 1-2 hours to fill. As such, this method for making

oil-in-water emulsions was used mainly for the one droplet chambers.

2.1.2 Microfluidic Device

Another method for droplet creation uses a microfluidic device. A microfluidic device uses

two streams of fluid, a continuous phase and a dispersed phase, to create droplets. The device

works by pumping the continuous phase at a higher velocity than the dispersed phase such

that it tears or cuts away droplets of oil from the oil stream itself. Images taken from the

production of droplets are shown in Fig.2.6. If the pressure is stable within the apparatus,

then the droplets are created with moderately low polydispersities (δ = 5− 10%), and, unlike

the syringe injection, produced in the amount of tens per second. Hence, the microfluidic
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device is excellent at producing a large number of droplets with low polydispersity— the

ideal device for many droplet chambers.

Figure 2.5: Image of the set used to inject
oil into hoppers. The needle comes in from
above and is anchored to a pole which can
be moved up and down by the rotation of
a knob. The bottom platform is also ad-
justable by two knobs that move translate
the platform horizontally, allowing me to
finely guide the needle into the chamber
without snapping it.

In theory, the size of the droplets is determined by

the relative rates of the continuous and dispersed phase

[15, 19]. In my experiment, however, the desired size of

droplets (d ≈ 315µm) brushes up against the upward

limit determined by the constraints of the device itself,

viz. the inner diameter of the channels. This means

that I drive the microfluidic device in an unsteady

region where slight pressure changes can rapidly shift

the characteristic size of droplets. This issue is only

compounded by the use of syringe pumps which can

produce pressure transients— as opposed to pressure

pumps which maintain steady pressure by driving

flow through the direct manipulation of pressure —

given that pressure is only a knock on effect of the

pump itself. That is to say, syringe pumps compress

a plunger which in turn induces a pressure differential

in the tubes to pump out the fluid— although the rate

of this compression is relatively controlled (at smaller flow rates the motor “discretely” pump

fluid in bursts) the pressure differential can be far from it. Ultimately, this causes a wide,

undesirable range of droplet sizes; many with diameters smaller than the thickness of the

plates, meaning that our condition of quasi-2d flow stands unmet.

To fix this, I first place the device under a microscope so that I can examine the types of

droplets being produced. This allowed me to develop the ensuing strategy: first, I run the

dispersed phase at a constant injection rate of 15mLmin−1 and the continuous phase at a

rate of 40mLmin−1. This creates a regime where both the continuous and dispersed phases
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Figure 2.6: Images of three regions of microfluidic droplet production under a microscope. The bottom
image is the starting image of stable co-flow region where oil and water flow without droplet creation. The
top left is the region where droplets are pinched off by the continuous phase, but too small to be used in
hopper experiments. The top right is the region I select droplets from, which are appropriately sized and
polydisperse. For scale, the the width of the tubes is 425µm.

“co-flow”, as is seen with the two “bars” of fluid in Fig.2.6. If I do not achieve this regime at

the start, then I pump the dispersed phase at a very high injection rate (≈ 120mLmin−1) to

let the dispersed phase break through. Once stable co-flow is achieved, I then switch off the

dispersed phase syringe pump for roughly 5− 10 seconds. This has the effect of pulling the

dispersed phase back, and letting the continuous phase “run ahead” by reducing the pressure

of the dispersed phase’s emergence. After a couple rounds of turning off the syringe pump, I

achieve the state seen in top left of Fig.2.6. To maintain this state, I visually track the trend

in droplet sizes: if they are increasing in size then I turn the dispersed phase off to let the

continuous get an edge; if the droplets are decreasing in size, I turn the continuous phase off

to give the dispersed phase a chance.
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2.2 Chamber Design

A chamber denotes a box with a very thin width where I place my oil droplets to flow. A

chamber consists of a hopper sealed between two plates. The chambers themselves are made

from two 75× 50 mm microscope slides. I place the hopper inside the chamber to add volume

to the chamber, and glue the chamber shut with Optical Adhesive #68. In the course of this

project, I have used different hopper designs and production techniques.

2.2.1 Hopper Material

The first batch of chambers I used to explore the important features of this project, before

gathering any data, was a reproduction of the chamber design used in Hofert [12]. This

hopper design cut out double sided sticky tape, pasted it to a slide and sealed the slide

with an ultraviolet drying adhesive Norland UV epoxy #68. Per Hofert , I use two layers of

sticky tape stuck to each other in order to increase the thickness of the chamber [12]. This

creates a chamber of roughly d ≈ 300µm. Because these chambers were used to explore the

workings of the microscope and lighting stages, meaning that the emulsions in these chambers

were “shaken production” with high polydispersities, the thickness of the chamber was not

calibrated in the manner of later designs to create quasi-2d systems.

While these tape chambers were indispensable for understanding the important control

knobs for microscopy (to be discussed later), they ultimately proved to be too uncontrollable

for experimental results. Namely, because the double layer of tape could not be accurately

aligned, there were often staggers introduced at the edges, creating “shelves” which could

pin droplets— an effect amplified by the stickiness of the tape itself. Along this same theme

of alignment, the relative angle of the hopper was difficult to control, even with the use of

an alignment tool, since the tape left a residue on the slide if lifted and moved. Moreover,

left over time, a reside would begin to form, most likely from soaking sticky tape in a liquid,

which would limit the reusability of the chambers after one hour in some cases.



15

Figure 2.7: Images of three different chambers. Top left is double sided sticky tape with shaken bottle
emulsions. Top right is glass coverslips with snap off emulsions. For scale on top images, the opening is
roughly ∼ 500µm. Bottom is laser cut plastic with microfluidic emulsions. For the scale, the slide has
dimensions of 75× 50mm.

The next hopper material I used were size 2 glass coverslips, as seen on the right in Fig.2.7.

Because the coverslips are not coated with any sticking substance, I placed a small drop of

Norland UV epoxy #81. This glue also dries under ultraviolet light, but is much less viscous

and dries in seconds as opposed to the 3-4 minute time of #68. By adding a small drop of

glue to the coverslips, the overall thickness of the chamber increases slightly. Moreover, a

slight gap is introduced between the lab slide and the coverslip. I try to minimise this gap by

pressing the coverslip into the microscope slide, but when filling the chambers, I noticed that

the surfactant solution would get in this gap. However, because the oil droplets have higher

surface tensions, which makes it difficult to deform into less spherical shapes, the oil droplets

never get pinned, always flowing along the edge of the slip. These coverslips fixed the residue

problems of the tape, allowing me to reuse chambers.

A brief, but small issue with coverslips is the manufacturers error on the coverslip thickness

which can range along δ ≈ 0.04µm (which could has also been true for the tape but given that
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I was only testing loose protocols with the tape chambers, this slight detail missed my eye).

What is concerning about this difference is that the two microscope slides will no longer be

parallel to one another. Because the surface tension pushes the bubbles toward the direction

that will maximise their spherical shape, the imbalance of plates results in a preferred side

that the bubbles will drift to. To counter this, I use a micrometer to measure the thickness

and ensure that the two coverslips I match up do not blatantly outsize one another.

The larger issue with the coverslips is that the shape and size of the slips are themselves

immutable. And the given square shape does not lend itself to corralling the droplets, meaning

that many droplets do not pass through the hopper, but flow along the outside edge. To fix

this, I use plastic sheets that I laser cut into experimentally useful shapes. To determine this

shape, I look to Hofert, Tao et al. and Hong et al. for inspiration [12, 18, 13]. Ultimately, I

settle on the shape given in Fig.2.7.

Looking to the derivation of Eq.3.1, we find that the difference between the asymmetric

and symmetric hopper openings will not play a role. A fortiori, an asymmetric hopper

with the same number of droplets as a symmetric hopper will exert more pressure on the

exiting droplets since the droplets are stacked higher, thus increasing the flow rate— but the

symmetric hopper doubles the effective opening width of the asymmetric hopper, which also

increases the flow rate.

These laser cut hoppers are the best evolution of the hopper design for multiple reasons.

They have the chemical inertness of the glass coverslips that makes them reusable. They are,

in fact, easier to align than the glass coverslips since the flat base can be set using a straight

edge that simultaneously aligns the hopper angle as well as the angle relative to gravity.

Moreover, since the pieces are cut from the same sheet of plastic, the error in thickness is

much smaller. That said, they are not adhesive in any way, so they do require spot bonding.

Looking at Fig.2.7, I spot bond the top of the “boot” which juts out of the chamber anyway.

As such, gluing at this location minimises the unwanted thickness of the glue.

This hopper design is shown in the bottom of Fig.2.7. Under a microscope, this hopper is
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shown on the right in Fig.3.5.

2.2.2 Hopper Initialization

To match the initial static state of simulated hopper flow, a large air or oil bubble was

introduced to clog the opening, letting the droplets stack against it and build hydrostatic

pressure as seen in Fig.2.8. The large air-bubble was then squeezed through by gyration or

pressing against the chamber. We find that this bubble effectively reproduces the unplugging

phenomenon from prior work, by helping meet the pressure conditions required for the

application of Eq.3.1.

Prior to this method, droplets could only build the requisite pressure after a large portion

had already passed through, which is to say that this method not only matches the traditional

hopper initialisation setting, but also increases the amount of useable data by extending the

amount of droplets that are part of the hopper flow.

Figure 2.8: Image taken of large droplet deliberately produced to clog opening. This allows droplets to
stack behind, recreating the initial “plugged” conditions in simulations. The large droplet is squeezed out by
pressing against the glass with light pressure. For scale, the opening width is w = 2.2mm.
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Figure 2.9: Image of imaging apparatus, with a rotated microscope, light source on tripod, a chamber fastened
by its seat-belt, resting on a shelf that juts out from the stage.

2.3 Microscopy

An inverted Leica DM IRB microscope, outfitted with a ThorLabs DCC1545M CMOS camera

is used to image and record the droplets at 4 frames per second. In all trials, the microscope

is fitted with a 1.6× lens and the camera is mounted with a 0.35× C mount. Together, the

lens and the C mount give me a sufficiently large field of view to allow a glimpse at the

dynamics of particles far from the opening without losing the resolution necessary for imaging

and distinguishing droplets from one another. After calibration, I find that 151 pixels is equal

to 1 mm. The set up is shown in Fig.2.9.

Because the inverted microscope we use is rotated to align the stage with the direction

of gravity, as shown in Fig.2.9, I was forced to remove the arm on the microscope that

lights up the stage. To remedy this, I combine a common desk lamp with a variable height

camera stand. This apparatus gives me a large amount of room to play with the lighting. In

particular, this lighting set up allows me to control and root out the shadows cast on the

droplets. This is especially useful since our tracking algorithm detects and measures droplets

by looking for connected regions of white pixels. If there is an asymmetric shadow cast on the
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image, or glare, the algorithm will miscalculate the deformation or, worse, miss the droplet

altogether.

Another issue in rotating the microscope stage is getting the chamber to stay in place.

Early on, I use the method described in Hofert of taping the chamber to the stage [12]. This

method, however, produces extremely variable results, since the chamber can be rotated off

the direction of gravity. To fix this, I use a different microscope stage that has threaded

holes. This allows me to create a “shelf” on the stage with two metal brackets and a sheet of

acrylic. To keep the chamber pressed against the stage I take advantage of two other holes

on the stage to create a “seat belt” out of a rubber belt. Together, the seat belt and shelf

allow me to easily align my chambers with gravity.

2.4 Computational Work

2.4.1 Particle Tracking

Figure 2.10: Image taken from lblmovie.pro. The num-
bers inside the droplets give the area in pixels corre-
sponding to that droplet, but the function could print
whatever property is desired.

To identify and track droplets, I use software

developed by Crocker, Grier and Weeks [8, 9].

The software uses identifies regions of con-

nected white pixels in a pre-tracking phase

and then connects these regions through a

tracking algorithm that finds the nearest

white region between frames. In addition,

this software also calculates many useful

physical properties of the droplets, such as

the area, perimeter, deformation and others.

Because, however, the gaps between droplets often count as closed white regions, the

software requires a careful set of criteria to discriminate between droplets and gaps.

To help this process, I develop a couple algorithms to identify what these criteria should



20

be. Since the software works in pixels, it can be difficult to imagine what an area of 300

square pixels looks like. For this reason, I wrote a program called lblmovie.pro which plays

the movie and prints the desired property for each droplet inside the droplet, as shown in

Fig.2.10. This gives me a more intuitive understanding these properties. I then identify the

range that the droplets fit in and cut out the rest.

Often times, however, the properties of a gap will fit within the criteria of droplets,

meaning that removing the gap means removal of the droplets. For this reason, I also write a

procedure that I allows me to click on the image to remove a white region from the tracking

data.

2.4.2 Measuring Flux

To measure the flux, I write a program that counts the number of droplets that pass the y

position of the hopper between two frames (0.25 seconds) and multiplies each droplet by its

particular area divided by the average area of droplets. I then smooth over the data through

a boxcar average that takes the average of number of droplets exiting over a specified length.

I generally smooth the data over a 2.5 → 3.0 second range, meaning that the recorded flux at

a time t is really the average flux over the range of t− 3 → t+ 3. While smoothing helps get

rid of the intermediate regions where IDL records no flow, overuse can wash out and suppress

the slope of the curve, since smoothing tends to level the data. For this reason, I smooth the

data over a window size of at most ∼ 4 seconds.
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Chapter 3

Multiple Particle Results and Analysis

Using the outlined techniques, I record 41 movies suitable for tracking and the extraction of

hopper flow data. While we are poised from this collection to address the specific problem

of hopper flow, i.e. the determination of β for soft, frictionless flow, the overarching goal

remains to characterise features of hopper flow for soft frictionless droplets in general. Let

us begin by examining the basic element we can surmise from our tracking algorithm— the

trajectory of droplets.

3.1 Trajectory of Droplets

Figure 3.2: Contour plot for ψ6. Purple
represents ψ6 = 1 and blue represents a
ψ6 = 0.

Peripherally, looking at Fig.3.1, we immediately en-

counter an interesting phenomenon— the trajectory

of droplets appears to become more discretised for

droplets more closely aligned with the wall. That is

to say, we see defined lines of allowed flow followed

by gaps that are emptied, for the most part, of trajec-

tories. Occasionally, we see a trajectory that crosses

these badlands, and these transgressing trajectories

line up with the direction of gravity and, by extension,
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Figure 3.1: Still image from hopper flow and trajectory of droplets over a 25 second range. Each line
represents the trajectory of a droplet navigating through the hopper. In this trial w/d = 7.4, with d ∼ 304 at
a polydispersity of δ = 8%.

the direction of droplet flow.

I roughly calculate the distance between the first and second order lines and find that

they correspond the the diameter of the droplets. This suggests that the trajectories along

the wall are the trajectories that correspond to a “unit” of crystalline droplets travelling with

a group flow. This suggests that gaps in between are features of the way that droplets are

located at integer steps within a crystalline structure.

We can test wall crystallinity by looking at a parameter called ψ6. This parameter

measures the angles between neighboring droplets in order to calculate how hexagonally

packed these neighbors are. If they are hexagonally packed, then the droplets are located at

equidistant angles of π/6 from each other, and ψ6 = 1. Any deviation means that there is

not as strong hexagonal ordering and ψ6 will subsequently dip. In Fig.3.2 I create a contour

plot that that assigns a value of ψ6 for each x and y point in the hopper over a small period

of time (∼ 3 seconds). There, we see that crystalline structures are present near the walls, as

we predicted, and this crystallinity disappears for the droplets over the exiting beam.

The interesting results from this suggest that crystallinity occurs from two distinct

phenomena: 1) the pressure of droplets being pushed against the wall 2) the difficulty for
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droplets along the wall to exit. That is to say, if we compress a pile of shaving cream with

our hand, the shaving cream will spread out laterally. This compression mimics the effect

of pressure 1). What these crystalline structures tell us, however, is that we have another

pressure that keeps the droplets compact, not allowing them to spread laterally like our pile

of shaving cream. This latter idea suggests an important interaction between flow and the

exit itself. Let us examine this more closely by tracking the velocity profiles of the droplets.

3.2 Velocity Profiles

For a general understanding, I plot a heat map for the speed of droplets as a function of

location in the hopper, given in Fig.3.3. There, we see three trends: 1) Droplets move faster

the closer they are to the exit 2) Droplets along the walls tend to move slower than droplets

in the center 3) The droplets pressed against the walls, but near the exit, have a wide range

of speeds, from very slow to very fast.

Figure 3.3: A heat map representing the speed of droplets flowing through a hopper. Blue represents the
slowest speed to through red to purple which represents the fastest. w/d = 7.4 for this experiment.
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The first two behaviours are better understood when we break the heat map into slices,

shown in Fig.3.4. The bottom graph shows that the vertical velocity of droplets as a function

of vertical distance from the hopper increases until the droplets are close to the exit, upon

which their vertical velocity levels out to terminal velocity. Around y = 1.5mm, where the

exit is, there is a small dip in the average vertical velocities. This suggests a crucial droplet

wall interaction. Droplets near the exit, but on the wall, are given second priority to depart

relative to droplets directly within the vertical beam of the hopper. As such, these droplets

are made to wait until an opening occurs, whereupon the droplet can enter the exit beam.

Because these droplets were stationary their velocity accelerates from v = 0, hence the dip in

vertical velocities near the exit.

This waiting behavior can be further evinced when we look at the vertical and horizontal

velocities as a function of horizontal position, graphed in Fig.3.4. The different colors

correspond to slices of different heights above the exit, from navy blue which represents the

region from the hopper exit to 0.75mm above the exit, to gold which is 4mm to 4.75mm

above the exit. From the horizontal velocity graph, we see that droplets near the walls move

with greater non-affine motion to the direction of gravity than droplets in the center— as

we expect given that the normal force of the walls repel droplets perpendicular relative to

themselves, but 45◦ relative to gravity. Interestingly, we see that the non-affine motion of

droplets for the slice nearest the wall is not the greatest at the wall itself, but increases

linearly until the region directly above the exit. This occurs because a droplet which is next

in line cannot go any farther upward unless it moves off the wall. But, glancing at the vertical

velocity for the slice nearest the exit, entering the exiting beam is no easy feat, since this

beam is moving at a high velocity relative to the droplets on the wall.

This isolates the third phenomenon we see from the heat map. For, along the pincers,

we have a mix of fast and slow moving droplets. That we simultaneously have droplets in

waiting and fast moving droplets demonstrates that the droplets along the pincers are “eager”

to exit. We can understand this by saying that droplets at the pincer are subjected to two
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Figure 3.4: Velocity profiles of droplets filing through hopper. The top left and right graphs represent the
vertical and horizontal velocities as a function of horizontal position. The different lines represent “slices”
taken from regions of increasing height from the exit, where navy blue includes the hopper exit, to gold which
is ∼ 4mm away from the hopper exit. For this trial, w = 2.24mm, d = 304µm and w/d = 7.4. Note that
then vertical speed is the negative of the vertical velocity. Also note that the hopper begins at xleft = 3.3mm
and ends at xright = 5.5mm, aligning with the peaks on the purple curve of the top right graph.

strong, but equally matched sources of pressure: 1) the flow of droplets above the beam 2)

the line of droplets behind the pincer. The first pushes the droplet back, while the latter

pushes it forward. Once an opening appears for the tormented droplet, it not only falls into

place; it is pushed there.
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3.3 Flux

3.3.1 Flux for Soft Particles

If we are going to measure the flux of soft particles, we need a way to characterise flux for

a system of soft particles. This is needed because soft particles, unlike hard ones, have a

continuous pressure gradient. As such, the outflow dynamics of soft, buoyant particles is

controlled by the exertion of pressure of the droplets attempting to lower their gravitational

potential energy, alongside the negotiation of surface energy constraints that aim to keep the

droplets circular [20]. Hence, as the oil flows out, this pressure steadily abates, corresponding

to an equivalent decrease in hopper outflow.

With negligible friction, the outflow of particles goes as ∆ρgh, where ∆ρ is the difference

in density between water and oil, g is the gravitational acceleration constant, and h is the

height of oil above the hopper. That is, besides some constants, the flux of oil droplets

is controlled by how many droplets are above loaded in the hopper, exerting pressure on

the droplets near the orifice to exit. For a triangular hopper, shown in Fig.2.1, the height

of droplets above the hopper squared goes, geometrically, as the area of droplet coverage.

Assuming that each droplet occupies a relatively small portion of the overall area, then the

hydrostatic pressure can be approximately written in terms of the number of droplets left.

Hence, the flux:

dN

dt
= c0

√
N. (3.1)

Where dN
dt

is the flow rate, N is the number of droplets loaded in the hopper, and c0 is a

proportionality constant. The question can now be posed: if we measure the flow rate as a

function of
√
N , will the proportionality constant, c0, fit to a power law? If so, what will its

exponent be? That is to say, will the coefficients be fittable to the Beverloo equation:

c0 = a(w/d− κ)β? (3.2)
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Figure 3.5: Two images of hopper flow under microscope. On the left, oil-in-water emulsions filing through
glass hopper of opening size 490µm (thickness ∼ 210µm) with 45◦/90◦ walls. The average droplet has a
diameter of 284µm with a 9% polydispersity and w/d = 1.72. On the right, oil-in-water emulsions filing
through plastic hopper of opening size 2039µm (thickness ∼ 180µm) with 45◦/45◦ walls. The average droplet
has a diameter of 298µm with a polydispersity of 7% and w/d = 6.84.

3.3.2 Experimental Data on Flux

I test Eq.3.1 by plotting dN
dt

against
√
N in Fig.3.6. In Fig.3.6 we see a general trend that less

droplets means slower flow, as we expect. That said, we also observe three regions of flow.

We see an initial flow transient from
√
N ≈ 40 on and a final flow transient from

√
N ≈ 14

under. Between those two regions, we see a linear increase of flow rate as a function of
√
N .

The final and initial transients can be understood by examining the presumptions made

in our derivation of Eq.3.1. One presumption of this derivation is the condition of requisite

pressure. To understand, imagine that we have a hopper of 1200 particles and we release the

particles one by one, so that they may file through. Clearly, our equation will break down

since the particles are not exerting hydrostatic pressure on one another. On the other hand,

imagine those same 1200 particles loaded in, ready to go, as shown in Fig.2.8. But, once

this large oil bubble flows out, it drags the fluid with it, and by extension the surrounding

droplets. As such, these droplets are being pulled by out a non-static field, which breaks

with our derivation. Thus, these flow transients are features of the experiment which we can
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Figure 3.6: Graphs of flux as a function of the square root of remaining droplets and the Beverloo coefficients
for a small range of fitting by means of ftfinder.pro. On the top, the number of droplets exiting as a function
of the square root of how many droplets remain in the hopper, i.e. against decreasing time. On the bottom,
the graph used to determine the appropriate region of fitting for the flux using ftfinder.pro. I look for flat
regions on this graph to determine a steady region. The red lines on the bottom graph represent the desired
flat region. The axes do not match since ftfinder.pro cuts off the indices which extend past the “ruler” length
of the fit. For this case, the steady of region of flow ranges from

√
N = 14 → 24. The red line on the top graph

is fit to this established region of linear flow, following the equation dN
dt = c◦

√
N + b◦, with c◦ = 0.024s−1

and b◦ = 0.44s−1. The non-zero intercept is an artifact from omitting the initial and terminal droplets. For
this trial, w/d = 12.2 and the average diameter was 305µm.

account for, but must omit since they will not flow linearly.

Because of the final and initial pressure transients that break from the assumptions we

make in in deriving Eq.3.1, the flux data will not match for the entire region of flow. For

this reason, I write a function that helps me sort through the data, examining when the flow

matches our conditions such that the parameter c◦ has meaning. First, I assume that the

data has been linearised such that dN
dt

is plotted against
√
N . If this data is truly linear, then

I should be able to slice a small range of the data,compare the slope to an adjacent slice and

find no difference in value— where I measure the slope does not matter if the data is linear.

For this reason, to determine the appropriate region of linear fitting necessary for determining

c◦ from Eq.3.1, I measure the slop over a small range of the data (typically δ
√
N = 4− 5)

and look for flat regions where the slope is approximately the same. Doing this generates a

graph that shows me c◦ as a function of
√
N for a small range of

√
N . This is shown as a

companion to the flux data in Fig.3.6.
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Overall, I find that trials strongly cohere to the principles laid out in Eq.3.1 for at least

some range of
√
N— as seen in Fig.3.6 where the blue flux curve fits snugly on the red

line. Moreover, I also find that the difference in hopper geometries does not change the
√
N

dependence.

As mentioned before, to determine the appropriate region of linear fitting, an IDL routine,

ftfinder.pro, scans over the flux data and records the linear fitting parameters over partial

regions of the data. Stable extrema of these parameters are taken to represent adequate zones

of fitting. Typically, this tosses out the last (first in fig.3.6) 100 droplets. If the droplets have

significant initial momentum then the first (last in fig.3.6) ∼ 300 droplets are tossed out, but

the initial clog of a large air bubble helps reduce the initial transient down to ∼ 100 droplets.

Intuitively, the tossed out regions correspond to the presence of unwanted initial pressure

transients due to either the lack of hydrostatic pressure (when their was no forced initial

clog) or the abundance of hydrostatic pressure (when droplets were gathered with a forced

initial clog).

That said, I am occasionally forced to toss out certain trials for other reasons. This is

mostly due to a poor tracking stage that misinterprets gaps and droplets, or to an error

in droplet production that produces an untenable number of small (< 30µm radius and

therefore << thickness of the chamber) droplets. Some trials were well tracked, but tossed

out because the linear region of fitting was over less than 20 droplets.

3.4 Fitting to the Beverloo Equation

Confirming that the flux of droplets goes as
√
N , I now move to the Beverloo equation that

gathers these individual trials into a universal principle. What this means is that I take all

those slopes from each trial and treat them as representatives of their individual w/d so that

I can observe a general trend in how droplet flow relates to w/d. In Fig.3.7, then, I plot the

slope, c◦, taken from Eq.3.1, against the ratio of opening width to average diameter, w/d, for
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Figure 3.7: Power Law Fitting of Beverloo Coefficients. Coefficients of the flux mentioned in Eq.3.1, fitted
to the equation c◦ = a(w/d − κ)β , with a = 0.0071 s−1,κ = 1.47 β = 0.49. The blue squares were trials
conducted with 45◦/90◦ walls and red triangles were trials conducted with 45◦/45◦ walls.

a range of 1.8 ≤ w/d ≤ 13.1. There, we see that the data collapses to a fit, this fit is a power

law, and its exponent is β = 1/2.

Again, we find an intuitive understanding of hopper flow at hand— if we increase the

ratio of opening width to average diameter, the linear slope for our flux graph gets steeper.

That is to say, we make it easier for droplets to depart from the hopper, because they can

more readily take on an exiting posture without the need of hydrostatic pressure in the form

of large N .

What is interesting, however, is that this pay off in flow rate levels out— increasing w/d

starts to mean less and less for the flow rate. This idea is formalised when we fit these

coefficients, achieving an exponent of β = 1/2. This tells us that we always get some payoff

when we increase w/d but that it lessens the greater w/d was to begin with.
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Figure 3.8: Graph of the average vertical velocity of droplets against the height, in pixels, for a range of w/d.
The colors transition from red to blue as w/d increases, starting with w/d = 2.1 for red to w/d = 4.5 for blue.

This result becomes more interesting when we place it in the context of computational

models discussed in the introduction— if the domination of viscous drag forces over kinetic

friction, as we have recreated here, accounts for this exponent, then it should also account

for this qualitative change in flow rate. After all, in the opposite limit, where kinetic friction

dominates and β = 3/2, the pay off only keeps increasing as we move to greater and greater

w/d.

If we follow the heuristic argument for the dependence of flux on dimension laid out in

the introduction, we would expect for this characteristic frictionless payoff to manifest in

the velocity profiles as a function of w/d. And we do indeed notice a trend in the vertical

velocities, shown in Fig.3.8. On a global scale, the velocity of droplets levels out for larger

w/d such that the difference in velocity between the droplets at the exit and the droplets far

from the exit are moving at similar speeds. This flattening demonstrates the prominence
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of viscous dissipation in our system, where Stokes’ drag caps the velocity of the droplets,

slowly approaching the scenario of droplets flowing down a hallway for larger w/d. So, as

w/d increases, you can fit more droplets in, but the actual velocity of these exiting droplets

decreases. Conversely, for smaller w/d we see that the velocity of droplets is faster at the

exit than terminal velocity. So, we have less droplets, yes, but their velocities are faster than

droplets for a larger w/d. Gathering these ideas together, when w/d is small, the number

of droplets capable of exiting at once is also small, but their velocities are larger than the

velocity of droplets in a larger w/d. The physical idea here is that smaller w/d means that

droplets are being ejected from the hopper, and this ejection phenomenon decreases as w/d

is increased. The decreasing payoff is a feature of the way that increasing w/d allows more

droplets to flow through at once, thus increasing flow, but this increase simultaneously abates

the ejection effect such that droplets are moving with slower velocities at the exit.

3.5 Summary of Findings

I have studied the dynamics of hopper flow for many particles with diameters smaller than the

opening width. I have shown how the motion of droplets is affected by their location within

the hopper, showing the presence of crystalline structures near the walls, and correlated this

motion to the exiting beam directly over the orifice. Furthermore, I studied the flux of these

soft, frictionless droplets, confirming the importance of hydrostatic pressure as the driver

of particle flow. Finally, I have shown how this rate depends on w/d, and correlated this

dependence to a power law with an exponent β = 1/2. This power law was explained through

the velocity profiles for varying w/d, which suggested a trade off between number of droplets

exiting and their velocity.
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Chapter 4

Single Particle Results and Analysis

While the work on many particle flow was important for situating soft, frictionless particle

flow within prior work on hopper flow, tracking the dynamics of one droplet can help us

isolate and amplify the features necessary for the study of more deformable particles. As

such, I now turn to my findings related to flow of one large (d > w) droplet. I am able to

create 11 videos of droplets moving through the hopper. Each video contains 8− 11 trials of

the same droplet moving through the hopper. I am occasionally forced to toss out a trial if

the droplet does not initially strike the center of the chamber head on, but overall I find a

remarkable level of consistency between trials.

4.1 Velocity

4.1.1 Durian Bubble Model

For this one droplet system, I focus on measuring and characterising the velocity of the

droplet as a function of time, since the velocity can give us a an understanding of the forces

acting on the droplet.

To get a sense for how prior work can help us think about this one droplet system, we

can model a single droplet through recourse to the Durian bubble model. The Durian bubble
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Figure 4.1: Geometry of single droplet flowing through hopper. R is the radius of the droplet, s is the
distance from the center of the droplet to the wall, y is the distance from the center of the droplet to the
center of the orifice, with y = 0 at the orifice itself, and θ is the angle between the center of the circle and the
pincer of the hopper. The painted area is a diamond that begins from a height of y = w/2, when the center
of the droplet can no longer form a perpendicular line to the wall. The painted region ends when the droplet

has a position of y < −
√
R2 −

(
w
2

)2
. The left image corresponds to the region outside the paint. The right

image corresponds to the region inside the paint. Note that the size of the paint varies with the size of the
droplet, and the sketch proportions do not hold true generally.

model works by modelling droplets as circles which can overlap with each other and with

walls. These overlaps are made to be repulsive interactions whose strength is proportional to

the size of the overlap.

Prior to any contact with a wall, however, a single droplet flowing through a hopper

follows a simple differential equation. The equation of motion for a freely falling droplet in

equilibrium is

mg = cẏ. (4.1)

Where m is the mass of the droplet, g is free fall acceleration due to gravity, c is a measure

of viscosity and ẏ is the time derivative of y position, i.e. the vertical velocity.

For wall interactions, the Durian bubble model has two different regions corresponding to

the distance of the droplet from the exit, which I will denote by the terms inside and outside

the painted area, shown in Fig.4.1. The circle is outside the paint when the position of the

circle is between w/2 < y <
√
2R−w/2. The circle is inside the paint when the position lies
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between w/2 > y > −
√
R2 − (w/2)2. Otherwise, the circle moves under free fall conditions.

For the region outside the paint, the overlap between the droplet and wall induces a

normal reaction with a magnitude determined by the overlap length as such:

F out paint
y = − k√

2
(R− s). (4.2)

Where k is a spring force constant that determines the characteristic strength of the

repulsion between wall and droplet, R is the radius of the droplet, and s is the distance from

the center of the droplet to the wall, given by s = 1√
2
(y + w/2), where w is the width of

the opening. Under equilibrium conditions, where the net force on the circle is Fnet = 0 our

equation of motion becomes:

ẏ + νy + ϵ = 0 (4.3)

Where ν = k
c
and ϵ = wν

2
−
√
2νR− mg

c
are constants introduced for tidiness. Eq.4.3 has

a decaying solution given by:

y(t) =
√
2R− w

2
+
mg

k
(1− e−νt). (4.4)

While this equation is easy to solve, its solution is relatively uninteresting compared to the

dynamics inside the paint. More interestingly, for the region inside the paint, the wall-droplet

repulsion force no longer points perpendicular to the droplet because such a line no longer

exists perpendicular from the wall to the center of the droplet. The Durian bubble model

models the wall force inside the paint as such:

F in paint
y = −k sin θ(R− s). (4.5)

Where θ is the angle made by the center of the droplet and the pincer of the hopper, and

this force emanates solely from the pincer, whereas outside the paint moved the location of
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the force along the wall. The distance from the center of the droplet to the wall is given

by s = y
sin θ

. From geometry, sin θ = y√
(w/2)2+y2

. Gathering these formulas, the equation of

motion becomes:

ẏ + µy + τ − Rµy√
(w/2)2 + y2

= 0. (4.6)

Where µ = 2k
c
and τ = −mg

c
= vT , such that we achieve a form similar to Eq.4.3, with a

non-linear correction. While the correction makes this differential equation difficult to solve,

we can intuit a few properties. First, the velocity of the droplet at y = 0 is v = mg
c

= vT .

When the droplet is halfway through the hopper, the Durian bubble model predicts that the

droplet has been accelerated back to terminal velocity.

In addition, the sign of the correction flips as the center of the droplet switches from

above to below the hopper. This means that this term at first works against the droplet’s

motion, pushing it upward, as we expect when a droplet confronts a constriction which forces

the droplet to economise its energy in a different way. But, once the half the droplet has

been pushed through by the brute force of gravity, the repulsive interaction between wall and

droplet now aids in helping push the droplet out. As we can see in Fig.4.2, this repulsive

interaction pushes the droplet out so much so that it overshoots its terminal velocity. Once

the droplet reaches a certain distance the linear term starts to dominate again, meaning that

the viscous drag slows the velocity back to terminal velocity. Then, the droplet is out of

contact and moves under free fall conditions.

Since Eq.4.6 accounts for the presence of the overshoot, we can determine where this

overshoot occurs by looking for the maximum velocity as a function of the position. Doing

this tells us that:

yos = −

√[
R
(w
2

)2
]2/3

−
(w
2

)2

. (4.7)

Where yos is the location of the overshoot. Immediately, this tells us that the overshoot

disappears when R = w/2, also known as w/d = 1, where we expect no wall interactions, or
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Figure 4.2: Graph of normalised speed (velocity divided by terminal velocity) against timesteps for a single
droplet flowing through hopper over multiple values of µ. The blue curve represents the smallest value of µ,
red the largest, and the colors in between increment µ by a factor of 10. Eq.4.6 tells us that the velocity at
y = 0 is the terminal velocity. As such, the first intersection between the dotted line at Normalised Velocity
= 1 and the velocity curve denotes the moment when the droplet is halfway through.

when w/d = 0, and the droplet is blocked from flowing.

We can also substitute yos back into Eq.4.6 to quantify how the overshoot depends on

the stiffness and drag of droplets. Doing this gives us that ratio of the overshoot to terminal

velocity is:

ẏos
vT

=
2kyos
mg

[(
2R

w

)2/3

− 1

]
+ 1 (4.8)

What we see here is that the size of the overshoot relative to the terminal velocity increases

as k, the stiffness of the particles, also increases. This makes sense— stiffer particles are

repelled by the wall more strongly, meaning that the droplet is more repelled by the wall such

that the force of ejection is greater. What is interesting here is that the ratio of the velocities

is not dependent on drag. This is a bit counter intuitive, as we would expect that stronger
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drag means that energy is dissipated into the fluid so that the particle has less energy set aside

for overshooting. But, we can reconcile this with the idea that stronger viscous dissipation

means that the particle has a lower terminal velocity, such that the overshoot velocity must

be compensating proportionally. This occurs because a slower terminal velocity results in

a more sustained contact with the walls, such that it “feels” the repulsive interaction with

greater sensitivity.

That said, when we can notice two limit cases that drive the overshoot to 0: either the

viscous drag goes to infinity, in which case our terminal velocity goes to 0, or when the spring

repulsion of the walls goes to 0, in which case the droplet and walls have no interaction. Thus,

we recuperate, in some way, our intuition that drag and velocity are inversely proportional.

Moreover, these two scenarios predict that the overshoot only disappears in trivial cases

where the droplet cannot be considered to be flowing through an orifice. As a definitive

statement: the Durian bubble model predicts that the velocity overshoot exists for all cases

where the droplet flows through the hopper.

We have to be somewhat careful here not to be so adherent to the Durian bubble model

that we delimit the phenomenon observed now out of some blind necessity for correspondence.

After all, the Durian bubble model was first formulated to study the effect of shearing foams.

Its recent application in hopper work has proven useful. But, these situations were not

looking at regimes of extreme droplet deformation. Most important in this respect is that

the Durian bubble model does not conserve the area of the droplets— any overlap between

droplet and wall is a loss to the overall area of the droplet. As such, we are suspicious of these

claims, but nonetheless looking to explore their characteristics, and through this exploration

of extremely deformed droplets we can examine how this lack of a conservation manifests in

the phenomenon of one particle flow.
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4.1.2 Surface Energy and Velocity

We can also think about this problem from an energy perspective. Namely, the overshoot

can be recast as a feature of how the droplet must deform in order to pass through the

narrow opening. This deformation away from the circular shape costs surface energy. The

deformation back toward a circle, however, releases surface energy. As such, once half the

droplet has run through the hopper, any movement in the direction of gravity is also a step

towards achieving a more circular shape, since the region above the hopper has the open

space for the droplet to expand into. For this reason, if we assume that viscous dissipation is

small relative to surface energy, then all surface energy at the velocity overshoot has been

converted into kinetic energy as such:

Us =
1

2
m(ẏ2os − v2T ). (4.9)

For this reason, ẏos ≈
√
U2
s + v2T , and by extension ẏos/vT ≈

√
1 +

(
Usc
mg

)2

, where Us

houses the information about how rigid our system is.1This casting of our overshoot recuperates

many of the same proportionalities we discovered in the Durian bubble model. But it also

leaves open the idea that if our surface energy, Us, is less than our equal to the viscous

dissipation energy, then there will not be enough surface energy to overshoot the velocity.

The question remains, however, is there some intermediary range of parameters in which

the viscous dissipation removes the overshoot without dissipating the energy needed for the

droplet to move through the constriction?

4.1.3 Center of Mass Velocity

To test these predictions, I begin by looking at the time evolution of droplet velocity and

deformation, shown in Fig.4.3.

I measure the deformation of droplets by calculating the ratio between perimeter squared

1Thank you to Yuxuan Cheng for showing me this other way of accounting for the overshoot.
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Figure 4.3: Graphs of velocity and normalised perimeter for a single droplet flowing through hopper. The
data is taken for the same droplet, but averaged over the 6 trials.
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to the area (times some normalisation constants), called the normalised perimeter, as such:

NP = perimeter2

4π×area
. Deformation is ultimately a measure of how far a droplet is from its most

desired shape: a circle. Now, oil is incompressible, which means that its area is constant

since its density is as well. This means that any deformation occurs within the stretching

of the perimeter. In short, normalised perimeter measures the deviation of a droplets

current perimeter to its perimeter if it were a perfect circle— any disconnect means that the

perimeter of the current droplet has been stretched or compressed. Physically, any stretching

or compressing is an energy cost in surface energy. Note the fact that increases in perimeter

result in a greater exposed boundary, which means a greater exposed surface between the

two fluids; the very thing surface energy wants to minimise. As such, normalised perimeter is

our route to surface energy.

In Fig.4.3 we notice some predicted and obvious features. The droplet slows down when

it reaches the wall, before speeding up as it moves through the hopper, eventually returning

to its terminal velocity which we briefly encounter at the end. The initial slow down of the

droplet, almost to v = 0, occurs as the droplet takes the shape of the wall. Once the droplet

has molded to the shape of the hopper, it begins to go through, reaching its max deformation

of nearly NP = 2 (meaning that the actual perimeter has been stretched by almost 1.4× the

length of the circular perimeter), whereupon it rapidly retakes its circular shape.

I also notice that the time for the droplet to reach the halfway point is slower than the

time for the droplet to depart from the halfway point. I also notice a dip that occurs in the

velocity near the exit.

The Durian bubble model says that this asymmetry is a consequence of the mutual

repulsion between droplet and wall now pointing in the direction of gravity. In correspondence

with this switch, the Durian bubble model predicts the presence of an overshoot. In the

experiment, however, I observe this stunted overshoot in all one bubble trials. In fact, looking

at the experimental data alone, we have little reason to call it an overshoot, since it remains

safely below terminal velocity. As such, I prefer to call it a local velocity maximum.
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Figure 4.4: Graph of velocity as a function of time for four different values of w/d. The dark blue line
represents when the droplet has a position of y = 0 relative to the hopper and the cyan line represents
when the droplet stops making contact with the hopper. w/d decreases from top left to bottom right, from
w/d = 0.93, w/d = 0.51, w/d = 0.41, to w/d = 0.33. The opening width is kept at the same value of
w ∼ 900µm.

In Fig.4.4 I plot the center of mass velocity for 4 different values of w/d. There are two

notable features we mentioned briefly, but appear more robustly for varying diameters. 1)

The presence of a local velocity maximum that occurs far below terminal velocity 2) The

velocity of the droplet after departing from the hopper is below terminal velocity.

In these graphs we see that increasing the diameter of the droplet decreases the size of

the local velocity maximum. For the largest radius size, in fact, we see that the local velocity

maximum is barely visible, resembling a plateau more than any dip.

If we were to presuppose that the local velocity maximum corresponds to the predicted
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Figure 4.5: Consecutive image of droplet separating from wall. This separation corresponds to the timing for
the local velocity minimum.

overshoot, then our read on this trend would be as follows: we know that smaller droplets

are more rigid, corresponding to an increased k from Eq.4.6 and Eq.4.3, corresponding to

an increased amplitude of overshooting. To be sure, shrinking the radius means shrinking

the volume of oil and thus the strength of the buoyancy, but our overshoot term in Eq.4.3 is

independent of the volume of oil. Indeed, if we thought this way, we would find agreement

between the SP model and the experiment for the effect of surface tension on the size of the

overshoot.

We were never certain of this thinking, and our decision to call this local velocity maximum

a velocity overshoot is far too hasty. Another idea for what occurs in the local velocity

maximum requires that we observe, with equal importance, the adjacent velocity minimum.

Doing this, we see that the local velocity minimum occurs in frames when the droplet

separates from the wall, as seen in the transition between consecutive frames in Fig.4.5. This

suggests an adhesion between the walls and the droplet. One of the most famous adhesive

interactions for this system is called the depletion force, the same depletion force we have

already described.

If the slow down that occurs in the center of mass velocity is generated by the depletion

force, then we must be very careful so as to not enforce the overshoot predicted by the SP

model. For instance, this suggests that the local velocity maximum we see in the experiments
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is not an overshoot at all but rather a slow down of the droplet from its trajectory. And our

fixation on the local velocity maximum obscured the ability to understand that this maximum

was derivative from the local velocity minimum. As such, this places the velocity curve in

greater continuity with itself such that the curve, in the absence of depletion, would have a

more sigmoidal shape, erasing the observed overshoot. For comprehension, but by no means

accuracy, I have plotted a velocity curve with an overlaid with a sigmoidal fit in Fig.4.6.

Figure 4.6: Speculation of velocity in the absence of
depletion force. The blue curve is the actual velocity for
a droplet of d = 1578µm flowing through an opening
width of w = 821µm (w/d = 0.52). The red curve
is a speculation for the velocity of the droplet in the
absence of depletion, fitted to a sigmoidal function.
Note the absence of the overshoot.

This idea is further supported by the fact

that the slow down strengthens as the ra-

dius of the droplet decreases. Smaller ra-

dius means less volume, means less buoy-

ancy, means that the depletion force can take

on a more dominant role. Moreover, larger

droplets not only have a stronger buoyant

force, but their highly deformed character

also tacks on a significant surface tension

restoration, again suppressing the strength

of the depletion force.

If this velocity slow down is a feature of

the depletant, rather than evidence of an

overshoot, a question remains as to whether

the depletant erases the overshoot or whether there never was one to begin with. The former

is what we have predicted from the SP model, whereas the latter is a case which our analysis

of the differential form of the SP model asserted was impossible, but is shown as possible

Fig.4.6. To be sure, the depletion force is at work whenever the contact between two surfaces

is changed. For this reason, there would be an “unpeeling” effect at work as the droplet

moves through the hopper. But, how does depletion dissipate energy relative to the overall

energy of the droplet?
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Figure 4.7: Graph of leading, trailing and center of mass velocity for two droplets. Red represents the trailing
edge, blue represents the leading edge and green represents the center of mass. The right graph is for a
droplet of size d = 1.21mm, an opening size of d = 0.75mm, and w/d = 0.62. The left graph is for a droplet
of size d = 2.44mm, an opening size of w = 0.80mm, and w/d = 0.33. Note that The droplet goes out of
frame before returning to circle in the left image.

4.1.4 Leading and Trailing Edge

To get a better sense for what happens in this local velocity minimum, and to gesture towards

the metrics necessary in the study of extremely deformed droplets, I examine the velocity

for the leading and trailing edge of the droplet. This idea emerges from the fact that our

deformation parameter corresponds to a stretching or shrinking of the droplets perimeter

from its desired circle shape. This stretching indicates that there is an imbalance in the

velocity within the droplet— any time dependent deviation means that one side is moving

faster than the other. Inversely, this means that a perfectly circular droplet will have identical

leading and trailing edge velocity equal to the center of mass velocity.

By examining Fig.4.7 we see that the trailing edge initially runs slower than the leading

edge. This corresponds to the droplet taking up the form of the hopper where the trailing

edge is essentially stationary. Since a small volume of fluid moves through, this gives the

leading edge a velocity. In this stage, the leading edge accounts for the center of mass velocity.

This initial asymmetry in velocities is important because it accounts for how the droplet is

deforming: the droplet deforms because the trailing edge of the droplet is held back by the
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walls whereas the leading edge is propelled forward by its buoyancy. That is to say, taking

reference from Fig.4.3, this taking shape corresponds to an increase in the deformation of the

droplet, indicating a stretching that occurs along the perimeter of the droplet.

At the point of minimum velocity, however, the trailing edge of the droplet begins to

accelerate faster than the leading edge. The velocity of the leading edge then sharply increases

at the point when the droplet reaches its point of maximum deformation. This is likely due

to the cooperation between gravity and surface tension where the droplet receives a reward

for moving upward as well as becoming more circular. This sharp increase in the velocity of

the trailing edge is then, with equal suddenness, cut short as the droplet exits the chamber.

The leading edge velocity lines up with the measured local velocity maximum, ultimately

signalling that the local velocity maximum we measure in our experiments is driven by

the velocity of the trailing edge of the droplet. Most importantly, this means that the

local velocity maximum as well as the corresponding velocity minimum are arranged by the

dynamics of what goes on at the trailing edge of the droplet. As such, that this sudden

dip occurs along the trailing edge can provide evidence that the depletion force is at work,

since only the trailing edge would be in greater proximity to the wall than the leading edge.

Most importantly, the fact that the trailing edge velocity is sharp whereas the center of mass

velocity is unresponsive signals a disconnect between the ability for the droplet to move as

a group and the ability for the trailing edge to snap into shape. This suggests that in the

absence of depletant the trailing, leading and center of mass velocities would meet each other

rather than the trailing edge being stunted. That is, we expect the impetus of the trailing

edge to push the entire droplet forward, especially for stiffer droplets.

A couple interesting features are of note in Fig.4.7. First, the point of maximum deforma-

tion corresponds to the crossover point between the leading and trailing edge velocities, which

also aligns with the halfway point. Recalling that deformation corresponds to a stretching,

the sharp increase in the leading velocity, as well as the moderate increase in the trailing edge

velocity, that follows the decrease in deformation suggests that the velocity of the droplet is
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Figure 4.8: Graph of trailing edge velocity for three differently sized droplets. The diameter of the droplet
increase as the shade of red goes darker. The smallest droplet has a diameter of d = 1.21mm, the medium
sized droplet has a diameter of d = 1.53mm, and the large droplet has a diameter of d = 2.44mm. The
opening width is relatively constant at d ∼ 0.8mm

dominated by a springy surface tension which, in returning to its ideal shape, amounts to an

increase in the velocity.

I also plot the trailing edge velocity for three different sizes of droplet, as shown in Fig.4.8.

Looking at this graph, we can notice that the size of the trailing edge peak diminishes

as we go to smaller droplets. This interesting because we would expect that because the

deformation of smaller droplets cost more surface energy, the trailing edge would reconnect to

the main body with greater speed. If we track, however, the difference between the leading

and trailing edges from Fig.4.7, we notice that the smaller droplet holds these two together.

This likely occurs because of the surface energy penalty for deformation away from a circle

is greater for both a smaller diameter and the more rigid shape. For large droplets, which

are more deformable, the penalty for stretching the droplet is small and the gravitational
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reward for moving through is greater, in turn leading to a greater ability for the leading edge

to “run ahead” of the trailing edge. As such, the larger trailing edge for the larger droplets

corresponds to an ability for larger droplets to sustain large asymmetries in the velocity

between the leading and trailing edge.

4.2 Summary of Findings

I have studied here the dynamics of one droplet flow through a hopper where the opening

width, w, is smaller than the diameter, d. In doing this, I made reference to Durian bubble

model as a leading computational model for soft particles, providing an analytic solution to

how one Durian model droplet would move through an opening smaller than its diameter.

This examination predicted the presence of a velocity overshoot where the wall-droplet

repulsion ejects the droplet out of the hopper at a velocity greater than its terminal velocity.

Alongside this model, I also presented an argument for the overshoot that appeals to energy

conservation. This approach gave us the question as to whether viscous drag could dissipate

energy such that the excess surface energy for overshooting was depleted without dissipating

the energy needed for the droplet to flow through at all. Experimentally, I find the presence of

a local velocity minimum, which I have argued could be a feature of the depletion force. I have

speculated that it is possible that the viscosity of the fluid used in this experiment behaves in

a regime of extreme droplet deformation outside the limits where the Durian bubble model

can be applied. Furthermore, I have measured the asymmetric velocities across the droplet as

a way of gesturing towards the metrics of interest in the study of more deformable droplets.

This has shown that larger, and therefore softer, droplets are able to vary their velocities

across the droplet, since the surface energy penalty for doing so is smaller.
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Conclusion

My project here has looked at two similar, but inverted, situations. Both projects have been

attempting to understand how the flow of soft, frictionless things differs from our general

understanding of particle flow.

For multiple particles, I showed how the frictionless conditions of the experiment generated

a flow that differs from flow where friction is the key dissipative mechanism, and that this

slipperiness does not correspond neatly to an easing of flow, as we might expect if we were

to take away a dissipative mechanism. Instead, the flow of soft droplets is slower than

frictional systems. If we think more generally, this occurs because of the way that these two

mechanisms, viscous drag and kinetic friction, dissipate energy. Friction dissipates energy

only when two particles are in contact. Viscous dissipation is more global, always acting

on the particle. This suggests that the impedance to flow for soft frictionless droplets is

more “open” to viscous drag as we increase the opening size. In the study of soft particles,

this result shows a need to think about how the dissipative mechanisms work in order to

understand how these droplets flow.

I also study one particle flow in order to explore the limits of our traditional model for

soft particles. Even before any quantitative statements, we can already glean from Fig.4.3

the insufficiency and inaccuracy in modelling this droplet as a circle. More importantly, by

looking at the velocity of the droplet, and focusing on the velocity asymmetry in leading and

trailing edges of the droplet, we can get a sense for how the droplet deforms as it interacts

with obstacles and how this deformation is a feature of the surface penalty for exposed
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boundaries. The dynamics of this deformation is interesting because it opens up avenues for

exploring how the actual shape of the droplet can activate certain behaviours outside the

scope delimited when we imagine droplets as circles with elastic potentials. Looking ahead,

we can begin to think of scenarios which were encountered in this project as crises, such as

droplet break up and coalescence. How would droplets flow if coalescence was activated?

How might they flow if they can break up? Which would be favored?

In this concluding remark, I would like to point to what I believe to be an important,

but neglected feature in the study of soft particle flow: the medium of flow. To be sure,

the many particle system actively considered the viscosity of the fluid as co-determinant in

the dynamics of the system. To do this, however, we had to toss out the regions of data

where the background of the fluid was markedly non-static. Similarly, in the flow of one large

particle the drag that the droplet feels would likely be different as the droplet travels through

the hopper. Take, for instance, the images shown on Fig.4.3: a circular droplet is not as

aerodynamic as the droplet while it squeezes through the opening, since the effective radius

relative to viscous drag is markedly smaller.

Ultimately, what I mean by these final points is to motivate and demonstrate the necessity

for modelling these droplets with an attunement to their physical dynamics, in order to study

what makes them unique, rather than trying to assimilate them into the context of hard

particles.
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