

Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an

advanced degree from Emory University, I hereby grant to Emory University and its agents the

non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole

or in part in all forms of media, now or hereafter known, including display on the world wide

web. I understand that I may select some access restrictions as part of the online submission of

this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or

dissertation. I also retain the right to use in future works (such as articles or books) all or part of

this thesis or dissertation.

Signature:

_____________________________ ______________

Dalton Bidleman Date

Riemann—Roch for Toric Rank Functions

By

Dalton Bidleman

Master’s of Science

Mathematics

David Zureick Brown, Ph.D.

Advisor

Ron Gould, Ph.D.

Committee Member

Shawn Ramirez, Ph.D.

Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.

Dean of the Graduate School

Date

Riemann—Roch for Toric Rank Functions

By

Dalton Bidleman

Master’s of Science
B.S., Emory University 2015

Advisor: David Zureick-Brown, Ph.D.

An abstract of
 A thesis submitted to the Faculty of the James T.

 Laney School of Graduate Studies of Emory University
 in partial fulfillment of the requirements for the degree of
 Master of Science

 in Mathematics
 2015

Abstract

 Riemann--Roch for Toric Rank Functions
 By Dalton Bidleman

In this thesis we study toric rank functions for chip firing games and prove special cases of a
conjectural Riemann-Roch. The original motivation for an investigation into this area of study
came for the adaptation (due to Matt Baker) of Riemann-Roch into a graph theoretic analogue
through the use of chip-firing games. Here, we collect known results and present new
observations that indicate Riemann--Roch holds for trees and polygons. We also prove an
asymptotic case of Riemann--Roch (i.e.~Riemann--Roch for divisors of large degree). Finally,
we also provide magma code and computational evidence that Riemann--Roch holds for the toric
rank function.

Riemann—Roch for Toric Rank Functions

By

Dalton Bidleman

Master’s of Science
B.S., Emory University 2015

Advisor: David Zureick-Brown, Ph.D.

 A thesis submitted to the Faculty of the James T.
 Laney School of Graduate Studies of Emory University
 in partial fulfillment of the requirements for the degree of
 Master of Science

 in Mathematics
 2015

Table of Contents

1 Introduction 1

2 Background Information 3

2.1 Divisors on Graphs . 3

2.2 Chip Firing Games . 6

2.3 Divisors on the Smooth Curve and the Projective Plane 8

2.4 Divisors on Graph Curves . 9

3 Toric Rank 11

3.1 Definition of Toric Rank . 11

3.2 Results . 14

4 Experimental Data 20

4.1 Data . 20

4.2 Code . 20

5 Bibliography 31

List of Figures

2.0 Graph with 4 Vertices and 4 Edges . 4

2.1 Instance of a Borrowing Move . 6

2.2 A Curve and Its’ Dual Graph . 10

1

Chapter 1

Introduction

The history of the Riemann–Roch Theorem traces back to 1857 when Riemann proved the initial

result for complex analysis and algebraic geometry, which he called the Riemann Inequality. His

student Gustav Roch finalized it in 1865. This theorem, in a general sense, says that for a surface,

functions with prescribed zeroes and poles satisfy strong numerical constraints (see Chapter 2 for

more precise definitions). Also, since the middle of the 20th century, there have been several papers

devoted to chip-firing games [4,5,6,7,8] played on the vertices of a graph.

These games became of interest to Matt Baker and Sergei Nourine [1] when they were at-

tempting to find a graph theoretic analogue of the Riemann–Roch Theorem. Through a rather

clever combinatorial approach, they were able to show that the classical Riemann–Roch Theorem

applies to graphs with slight modifications to some of the definitions. Therefore, for any graph we

were now able to define the notion of the rank of a divisor on a graph in terms of other features

that describe the graph. A divisor on a graph is just a labeling of the vertices, and Baker’s notion

of rank is a numerical measure of the “robustness” of this labeling.

This application of the theorem opened many more current doors of study that motivate the

findings in this paper. Specifically, the work of Katz and Zureick-Brown [2] in 2012 utilized these

ideas of rank functions, but applied them in an algebro-geometric context to study Diophantine

problems, allowing them to combinatorially bound numbers of solutions to equations. Likewise,

2

Matt Baker was able to take his own work a step farther and prove that the Brill–Noether Conjecture

has an analogue for graphs, and other authors have used this to give combinatorial proofs of the

Brill–Noether Theorem [3]. This conjecture bounds the rank given certain facts about the graph

hold. It is because of these things that attempts have been made to see how the Riemann–Roch

Theorem acts on other surfaces and in other cases, mainly by varying variables like the genus of

the graph.

This line of thinking led to the analysis of how Riemann–Roch Theorem can be applied to

graph curves. Graph curves have the useful property that for every graph curve we can associate

to it a dual graph (see Figure 2.2). This allows us to play a chip firing game on the dual graph.

That game immediately gives us a scenario in which the Riemann–Roch Theorem is potentially

applicable again. However, this new instance of chip firing is not as a straight forward because we

now have to deal with the intersection points of the graph curves. That is how we formulate the

idea of the toric rank that defines the whole of Chapter 3. In the first part of the chapter we define

necessary terms that indicate what the individual pieces of our divisor look like, where a divisor is

just some initial configuration. We also define the process of chip firing on these new structures.

After that, we formalize the process by which we are able to make the intersection points agree

and that is how we arrive at the definition of toric rank. It is with this new definition, that we can

approach new problems that deal with the Riemann–Roch Theorem. With toric rank, we are able

to prove Riemann–Roch holds for trees, for n-gons, and even the asymptotic case of Riemann–

Roch (i.e. for divisors of large degree). To finish, in the final chapter we provide magma code that

allow us to compile computational evidence toward the validity of Riemann–Roch on intermediate

cases of toric rank functions. These functions can also be used more simply to look at ranks, as

Matt Baker defined them [1], on graphs and their ability to meet the criterion of the graph theoretic

Riemann–Roch Theorem.

3

Chapter 2

Background Information

2.1 Divisors on graphs

To begin, we define a graph and the associated notions that will be used to investigate toric rank

functions and chip firing games.

Definition 2.1.1. Let V be the set of vertices and E the set of edges. Then, generally we can

consider a graph to be an ordered pair of disjoint sets (V,E) such that E is a subset of the set of

unordered pairs of V .

Unless stated, all graphs that will be dealt with in this paper will be finite; therefore V and E

will be finite as well. Also, a graph for the sake of the arguments presented here, will always be

connected and have no loops. For notation, note that V (G) and E(G) will simply represent the

vertex and edge set on some specific graph G. Now, take some arbitrary edge (x, y). It is said to

join the vertices x and y and is denoted by xy. Therefore, it is important to note that xy and yx

are the same edge and if x, y ∈ E(G) then x and y are adjacent vertices of G and x and y are

incident with an edge xy. Note that Figure 2.0 below highlights a graph with V (G) = {1, 2, 3, 4}

and E(G) = {12, 23, 34, 41}.

4

s s

ss4 1

23

Figure 2.0 Graph with 4 vertices and 4 edges

With each graph there is this linear algebraic notion of an adjacency matrix, which acts as a

bookkeeping device for a graph.

Definition 2.1.2. An adjacency matrix on our finite graph G of n vertices is an n × n matrix

whose non-diagonal entries are exactly the number of edges from vertex i to vertex j and whose

diagonal entries, are generally 0 in the examples of this paper, but more generally represent the

number of loops from a vertex vi to itself.

Therefore, recalling the graph in Figure 2.0. we see that the adjacency matrix is just

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

Using the information generated by the adjacency matrix we can define the next useful notion

in graph theory called a Laplacian matrix if we first make use of the degree matrix D. The degree

matrix allows us to keep track of the number of edges that are attached to each vertex vi, which is

also denoted as deg(vi). The matrix itself has 0 at all non-diagonal entries and deg(vi) at each aij

5

where i = j. It is from this that we also get the degree of the entire graph G, as it is equal to the

degree of greatest value on V (G). Then, the Laplacian matrix of G is defined as the difference

of the degree matrix D and the adjacency matrix, that is, L = D − A. The Laplacian allows us

to measure by what extent a graph differs at one vertex from the values of the ones nearby. It

is clear then, that the laplacian of G just takes the negative values of the adjacency matrix at all

non-diagonal entries and keeps the degree matrix entries along the diagonal. Therefore, referring

back to the graph in figure 2.1 we see that the Laplacian of this graph is just:

2 −1 0 −1

−1 2 −1 0

0 −1 2 −1

−1 0 −1 2

Definition 2.1.3. Mathematically, the genus is the number g, where g = |edges|− |vertices|+ 1.

The genus is also representative topologically as the number of the holes in the graph. For clarity,

both a torus and a mug with a handle have genus 1.

After this, it is only natural to look at divisors on a graph G.

Definition 2.1.4. For a graph G, the group of divisors, denoted asDiv(G), is the free abelian group

on V (G). Then, a divisor is just an integer labeling of the vertices where a divisor D ∈ Div(G)

takes the form
∑

av(v), such that the coefficients are integers that represent the value of the given

vertex v.

Definition 2.1.5. Following this, a canonical divisor is defined as KG =
∑

(deg(v)− 2)(v). We

simply define the value at the vertex as two less the original degree. The most important fact about

a canonical divisor deals with its’ degree. Specifically, we know that deg(KG) = 2g − 2, where g

is simply the genus as defined before. This is the case since the sum over all vertices v of deg(v) is

equal to twice the number of edges inG. Therefore, we get deg(KG)= 2|E(G)|−2|V (G)| = 2g−2

as desired.

6

2.2 Chip Firing Games

Next, we must define the notion of a chip firing game on a graph, call it G. The game is played

on V (G), and fixes a certain number of chips, either positive or negative, on each vertex. We have

several definitions on the chip-firing game, whose graph theoretic analogue has been defined in the

prior section.

Definition 2.2.1. The initial configuration, or a divisor D, in this case, has the sum of the chips in

D denoted as the degree of D, or deg(D) for simplicity.

This set up is then represented by an n× 1 vector whose entries are just the chip value of that

vertex on our graph G. We introduce the term in-debt to represent any vertex at which there are

some negative number of dollars present. The goal of a chip firing game is to then manipulate the

chips in such a way that every vertex is out of debt. This can be done in two ways, denoted as the

two possible moves in a chip firing game. The first move is called borrowing. Borrowing consists

of a vertex taking one chip from each vertex adjoined to it by an edge. For a concrete example,

Figure 2.1 below highlights an instance of borrowing at the topmost vertex.

2 1 3

−2

4

1 0 2

1

4

Figure 2.1: Instance of a Borrowing Move.

Likewise, a lending move consists of a vertex giving one chip to each vertex adjoined to it

by an edge. Both of these instances are also represented as a vector, specifically the firing vector,

that keeps up with how the chips are transmitted about the vertices with either a positive value

representing borrowing or a negative value representing firing.

Definition 2.2.2. Every possibility that is achieved by some combination of lending and borrowing

7

moves is called the divisor group |D| and some arbitrary new divisor in this group is denoted as

D′.

Furthermore, these moves can be performed multiple times and in tandem to potentially pro-

duce a graph that has every vertex out of debt. Such a configuration is called a winning position or

an effective divisor and the moves it took to produce such a winning position are called a winning

strategy. Likewise, a divisor in which there is no possible way to get all the vertices out of debt is

called non-effective. With all the necessary definitions in place, we can use the genus as defined

before to establish some facts about chip-firing games. If deg(D) ≥ g, then there is always a

winning strategy. Also, if deg(D) ≤ g − 1 there is an initial configuration for which no winning

strategy exists. Next, we need to define an important notion of rank for a chip-firing game.

Definition 2.2.3. Rank is defined as the largest numbers of chips that can be arbitrarily removed

from some graph G and it still have some possible winning strategy.

As a byproduct of this, a game in which the initial configuration is not winnable has rank =

−1. An algorithmic way to calculate rank is found in a combinatorial approach to the possible

way of distributing the chips. For each possible value of the rank, r, we remove r chips arbitrarily.

Therefore, for r = 2, we would have to check the cases when we remove 2 from some vertex

and also the cases when we remove 1 from two distinct vertices. We can then write each of these

possibilities as a vector, call the vector Ei, and check that for some D′ in |D|, D′ −Ei ≥ 0, which

implies that there is a winning strategy. The instant that we find some Ei whose difference with

every D′∈|D| is not effective, we conclude that it has rank equal to one less the sum of the entries

in E. Mathematically, this can be calculated by the Riemann–Roch analog for graph theory. This

says that given some divisor D, r(D) − r(K − D) = deg(D) + 1 − g. In this formula, we have

already defined all the pieces. r(D) is the rank of the divisor, r(K−D) is the rank of the canonical

divisor, g is the genus and the deg(D) is just the degree of the divisor.

8

2.3 Divisors on Smooth Curves and the Projective Line

For this paper, we are only working on curves isomorphic to P1 (the projective line). The projective

line is a convenient way of extending the Euclidean plane, containing points of the form (x, y), to

infinity through the use of homogeneous coordinates, which take the form [x : y]. This is an

important notion because now we are able to speak of the intersection point of every pair of lines,

when in the past that was impossible. On the Euclidean plane, parallel lines by definition are lines

that never cross. However, on P1 we simply define the point at infinity as [1 : 0], and say that any

two lines that do not cross in the Euclidean plan cross there. A result that immediately follows

from this is that [0 : 0] does not exist and that any two sets of coordinates are equivalent up to a

scalar. For example, [1 : 1] = [−3,−3], but [1 : 1] 6= [1 : −1]. With those facts, we can now define

divisors over the smooth curve.

Definition 2.3.1. If we are given an irreducible curve X and a function f : X → P1 we define

divisors of curves in this instance as divf =
∑

vp(f)P . Here, the coefficients vp(f) are just the

order of the zero or pole of f at P.

These divisors are called principal divisors, which means that they are just divisors of a mero-

morphic function, or a function that is analytic at all but a certain number of points, with those

points going to infinity. It is with this fact that we are able to prove the important result: On a

smooth curve, the degree divf = 0. This is because for a meremorphic function, there are as many

poles as there are zeros. Thus, when we calculate the degree, the zeros take on positive values

and the poles take on negative values, leaving us with our desired result. Moving onward, it is

important to define the types of maps that will be used by the functions in this paper which are

exactly those of the form, f : P1 → P1. These maps take a point [s : t] and send them to a pair of

homogeneous polynomials, that is,

[s : t] 7→ [F (s, t) : G(s, t)].

Homogeneous polynomials are just those that have every nonzero term of the same degree. Then,

9

in this instance the degree of f is the degree of F . But, that means that it is also the number of

points in a (generic) fiber, that is, deg f = #f−1([a : b]). Therefore to solve for the degree we

just have to find the values [s : t], that when we plug into [F (s, t) : G(s, t)] the result is the new

homogeneous coordinate [a : b]. On curves, we define linear equivalence between 2 divisors D

and D′ if they differ by some principal divisor divf . With linear equivalence, we can define the

linear system, |D|, of D to be

{D′ : D′ ∼ D and D′ ≥ 0}

2.4 Divisors on Graph Curves

Before moving on to the main result of this paper, dealing with toric rank, we have one last topic

to explain.

Definition 2.4.1. A graph curve over k, where k is an algebraically closed field, is defined to be

a curve X over k such that each component of X is isomorphic to P1 and such that each pair of

components intersects transversely.

Here, ”transversely” just means that when two lines meet the equation locally looks like xy =

0. Also, we have that the intersection points are called nodes, irreducible curves are those with one

component, and a smooth curve is a curve with no nodes.

Definition 2.4.2. With a graph curve we are able to associate the dual graph, call it Γ. The makeup

of Γ is as follows. The vertices V = V (Γ) are the components of X and the edges correspond to

the nodes.

We see in Figure 2.2 below, an example of graph curve and its dual graph.

Having that information in hand, we are able to define the idea of a divisor on a graph curve.

Definition 2.4.3. A divisor on a graph curve is a formal integral sum
∑
nPP of points, where

each P is a smooth point of X and each nP ∈ Z. With that, we can say DivX is the free abelian

group on the smooth points and Div Γ is the free abelian group on V (Γ).

10

Figure 2.2: A curve and its dual graph.

By labeling the vertices of Γ, we can now represent D ∈ Div Γ as a vector. If we do not label

the vertices, we refer to a divisor as
∑
nvv. The degree of a divisor is just

∑
nP . But, this is

important because it allows us to create a map from one divisor group to the other. We do this

by first labeling the components of X as X1, . . . , Xn and labeling the corresponding vertices as

v1, . . . , vn. Then, the map is just

τ : DivX → Div Γ

which sends ∑
nPP 7→

∑
ni (vi) ,

where

ni =
∑
P∈Xi

nP .

This also allows us to speak of the specialization of divisors. It is easiest to think of this notion

geometrically. The specialization of a divisor is the process by which you collapse the points on a

curve to whatever node corresponds to the component they lie on. This is seen in Figure 2.3 below.

2

−1

2
2

1

2

1 0 2

1

4

Figure 2.3: Example of specialization on a tree.

11

Chapter 3

Toric Rank

3.1 Definition of Toric Rank

Throughout this section, we let X be a graph curve with dual graph Γ.

Definition 3.1.1. Let X be a graph curve. We define the normalization X̃ of X to be the disjoint

union
∐
Xi of the irreducible components of X . We denote the pre-images of the nodes by Pij ∈

Xi, labeled so that Pij and Pji correspond to the two points above the intersection of Xi and Xj .

We define a divisor on the normalization to be a divisor on each component curve. Given a divisor

D on X we define τ(D) to be the associated divisor on the dual graph Γ, which assigns to a vertex

associated to a component Xi the sum of the values of D lying on Xi.

For simplicity, we will always assume that Pij 6= ∞, and this can always be arranged after an

automorphism.

Example 3.1.2. We have below an example of a curve and its normalization, that have the compo-

nents labeled, and intersections marked.

X1

X2 X3

P13 P12

P31

P32

P21

P23

12

The next important definition to unpack is that of a twisted divisor. A twisted divisor, D(f),

is the divisor on the normalization of the graph curve given as follows. Leave each of the points on

D as they are. Then, each time we fire, we add and subtract points to the divisor at the intersection

points. Formally, this process can be given as follows.

Definition 3.1.3. Let D ∈ DivX be a divisor and let f : V (Γ)→ Z be an integer valued function

(representing a sequence of firings). We define D(f) as follows. We have D(f) = D away from

the points Pij , and given a vertex vi corresponding to some component Xi, we subtract f(vi) many

points from Pij for each j such that Xi ∩ Xj is nonempty, and we add f(vi) points at each such

Pji.

The next important definition is that of toric rank. First we define what it means to have non-

negative rank. Given a non-zero function f on a component Xi of X and for a component Xj

that intersects Xi, we define gj(f) to be the function f(x− Pij)
−vPij

(f). Given a divisor D on the

normalization X̃ , we define D|Xi
to be the restriction of D to Xi.

Definition 3.1.4. We say that rtor(D) ≥ 0 if there exists a function f : V (Γ)→ Z such that

D + div f ≥ 0

and there exist non-zero functions fi ∈ H0(Xi, D(f)|Xi) such that for every i, j such that Xi∩Xj

is nonempty, we have

gj(fi)(Pij) = gi(fj)(Pji).

We say that rtor(D) = −1 if rtor(D) is not ≥ 0.

So, colloquially, rtor(D) ≥ 0 if r(τ(D)) ≥ 0 and, for some equivalence D ∼ D′ to D′ ∈ |D|,

witnessed by some firing sequence f , the remnants of the twisted divisor D(f) on each component

Xi can be made equivalent in a way compatible with the intersection points Pij .

Now we come to the general definition, which we define inductively.

13

Definition 3.1.5. We define the toric rank rtor(D) as follows. We say that rtor(D0) ≥ r if for

every effective divisor E ∈ DivX of degree r, r(D0 − E)tor ≥ 0.

Example 3.1.6. Consider the following tree and dual graph

1

−1

1 −1

with components (from left to right) X1, X2, X3 and intersection points P12, P21, P23, P32. For

simplicity, assume that the divisor is 1 at the point 0 of X1 and −1 at the point 0 of X3. The graph

divisor on the right is equivalent to the zero divisor via the firing sequence

f(v1) = 1, f(v2) = 0, f(v3) = −1.

This sequence represents firing at v1 and v2, and results in the zero divisor on the graph. Now, we

consider the twisted divisor on the normalization of X:

1 −1
1

−1 −11

Then the twisted divisor D(f) has degree 0, but moreover the restriction D(f)|Xi
has degree zero

on each component. It follows that

dimH0(Xi, D(f)|Xi
) = 1

for each i, so for each i there is a one dimensional space 〈fi〉 = H0(Xi, D(f)|Xi
) of functions with

zeroes and poles constrained by D(f). We can make this explicit as follows, taking

1. f1 = A1(x− P12)/x,

2. f2 = A2(x− P23)/(x− P21),

14

3. f3 = A3x/(x− P23).

To compare these, we modify and get

1. g2(f1) = A1/x,

2. g1(f2) = A2(x− P23),

3. g3(f2) = A2/(x− P21),

4. g2(f3) = A3x.

The compatibility condition is then that

1. g2(f1)(P12) = g1(f2)(P21),

2. g3(f2)(P23) = g2(f3)(P32),

and evaluating gives

A1/P12 = A2(P21 − P23) and A2/(P32 − P21) = A3P32.

This is a pair of linear equations, with a solution: A2 is determined by A1, and A3 by A2. We

conclude that rtor(D) ≥ 0.

3.2 Results

Theorem 3.2.1 (Riemann–Roch Theorem for trees). Let X be a graph curve whose dual graph is

a tree. Then, Riemann–Roch Theorem holds for X .

Proof. Let D ∈ DivX . We may assume that degD ≥ 0, since if degD = −1 there is nothing to

prove, and if degD ≤ −2 we may replace D with D −K, which has non-negative degree. Since

degD ≥ 0 implies that degK −D ≤ 0, rtor(K −D) = −1. Thus, the goal is to prove that

rtor(D) = degD.

15

For this, it suffices (from the definition of rank) to prove that if degD is exactly zero, then it is

torically equivalent to an effective divisor.

Now, Riemann–Roch Theorem holds for τ(D), so there exists a sequence f : V (Γ)→ Z of chip

firings such thatD(f)|Xi
has non-negative degree. On each component, the spaceH0(Xi, D(f)|Xi

)

has dimension at least one. We proceed by a “depth-first search”. Let X1 be any component, and

let f1 be any non-zero element of H0(X1, D(f)|X1). Consider the components intersecting X1

non-trivially; since X is a tree, they intersect exactly once; the intersection with X1 imposes ex-

actly one condition on each fj . For such a component Xj , since dimH0(Xj, D(f)|Xj
) ≥ 1, we

can choose fj so that gi(f1)(P1j) = g1(fj)(Pji). Next, a component Xk intersecting X1 or the

previous Xj , intersects at most once, so we can again arrange compatibility of the elements fk.

Since Γ is a tree, as we proceed, no component ever intersects the part of the tree we have dealt

with, and so by induction we can choose non-zero fi compatibly on each component, completing

the proof.

Lemma 3.2.2. Let Γ′ ⊂ Γ be a subgraph and suppose that the complement is a union of trees such

that each tree intersects Γ at most once. Then, Riemann–Roch Theorem holds for Γ if and only if

it holds for Γ′.

Proof. The proof is the same as that of Theorem 3.2.1.

Theorem 3.2.3 (Riemann–Roch Theorem for g(Γ) = 1). Let X be a graph curve whose dual

graph has genus 1. Then, Riemann–Roch Theorem holds for X .

Proof. Let D ∈ DivX . First, since degK = 0, if degD ≤ −1 then by symmetry it suffices

to prove Riemann–Roch Theorem for K − D. Moreover, if degD = 0, then since K = 0,

K −D = −D, and in this case rtor(D) = rtor(−D), so Riemann–Roch Theorem holds by default

(since both sides are 0).

We may assume that degD ≥ 0, in which case the goal is to prove that

rtor(D) = degD − 1.

16

For this, it suffices (from the definition of rank) to prove that if degD is exactly one, then it is

torically equivalent to an effective divisor.

Now, by Lemma 3.2.2 we may assume that Γ is an n-gon. Riemann–Roch Theorem holds for

τ(D), so there exists a sequence f : V (Γ)→ Z of chip firings such that D(f)|Xi
has non-negative

degree, and at least one component (lets renumber so that it is the first component) D(f)|X1 has

degree one. The spaces H0(Xi, D(f)|Xi
) have dimension one for i 6= 1 and two for i = 1. The

complement of X1 is a tree, so as in the proof of Theorem 3.2.1 we may arrange the existence

of non-zero functions fi ∈ H0(Xi, D(f)|Xi
) (for i 6= 1) with agreement at the nodes. Since

dimH0(X1, D(f)|X1) = 2, we may arrange for a function f1 with agrees at the nodes too, com-

pleting the proof.

Next, we note that Riemann–Roch Theorem predicts that

rtor(D) = rtor(K −D) + degD + 1− g ≥ degD − g

(since rtor(K − D) ≥ −1). In particular, if Riemann–Roch is true, then if degD ≥ g, then

rtor(D) ≥ 0 and D is torically equivalent to an effective divisor. We prove an easier corollary of

Riemann–Roch, which we refer to as “asymptotic Riemann–Roch”.

Theorem 3.2.4 (Asymptotic Riemann–Roch Theorem). If degD ≥ 2g, then rtor(D) ≥ 0.

Proof. We proceed by another “depth search”. We define a sequence of subgraphs Γ1, . . . ,Γn as

follows. We let v1 be any vertex and define Γ1 to be just v1. For Γi, we pick any vertex vi such that

vi 6∈ Γi−1, but such that there is an edge from vi to at least one vertex of Γi−1, and we define Γi to

be the maximal subgraph containing Γi−1 and vi.

Define the divisor D′ to be D′ :=
∑

i max{degΓi
(vi), 0}(vi), where degΓi

(vi) is the degree of

vi as a vertex of Γi. (Equivalently, degΓi
(vi) is the number of edges from vi to Γi−1.) We claim

that degD′ = g. Indeed, it is clear from the Euler characteristic formula that each edge from vi to

Γi−1 beyond the first increases the genus by 1, so that g(Γi) = g(Γi−1) + max{degΓi
(vi), 0}.

17

Now, by Riemann–Roch for graphs,

r(D −D′) ≥ deg(D −D′)− g ≥ 2g − 2− 2 ≥ 0,

so there exists a sequence f : V → Z such that D−D′ + ∆(f) ≥ 0, i.e. D+ ∆(f) = D′ +E for

some effective divisor E. To show that rtor(D) ≥ 0, we need to show that the twisted divisor D(f)

is torically equivalent to an effective divisor. By our definition of D′ and effectivity of E, we have

degD(f)|Xi
≥ degΓi

(vi),

and in particular

dimH0(Xi, D(f)|Xi
) ≥ degΓi

(vi)

We proceed inductively. We let f1 ∈ H0(X1, D(f)|X1) be any non-zero function. The intersection

of v2 with Γ1 imposes at most degΓ2
(v2) conditions that a function in f1 ∈ H0(X2, D(f)|X2)

must satisfy, and we can find such a function since dimH0(X2, D(f)|X2) ≥ degΓ2
(v2). Similarly,

the intersection of vi with Γi−1 imposes at most degΓi
(v1), and since dimH0(Xi, D(f)|Xi

) ≥

degΓi
(vi), there exist a compatible function fi ∈ H0(Xi, D(f)|Xi

). By induction, we can choose

compatible fi, and we are done.

To proceed, using a more delicate linear algebra argument we prove a stronger asymptotic

theorem.

Theorem 3.2.5 (Stronger Asymptotic Riemann–Roch Theorem). If degD ≥ g, then rtor(D) ≥ 0.

Proof. Label the vertices v1, . . . , vn. Let D(f) be a twisted divisor such that degD(f)Xi
≥ 0 for

all i and set ki := H0(Xi, D(f)|Xi
) = degD(f)Xi

+ 1. Given a function fi ∈ H0(Xi, D(f)|Xi
),

define the column vector T (fi) to have jth component 0 if vi is not adjacent to vi and gj(fi)(Pij)

otherwise. For each i, let fi,1, . . . , fi,ki be a basis for fi ∈ H0(Xi, D(f)|Xi
). Then the vectors

T (fi,1), . . . , T (fi,ki) are linearly independent.

18

Let M be the matrix whose columns are T (fi,j) (where both i and j vary). Then the agreement

condition can be phrased as the existence of a vector v such that Mv = 0 (since the rows summing

to zero implies that there is a linear combination of functions at each component which agree) and

such that the entries of v corresponding to the coefficients of the functions fi,j for fixed i are not

all zero (this, together with the linear independence in the last paragraph, ensures that the resulting

functions are non-zero on each component).

Now a counting argument will ensure the existence of a non-trivial null space as follows. The

number of rows is equal to the number of edges, and the number of columns is degD(f) + g.

Thus, if degD(f) + g is greater than the number of edges, the corresponding matrix will have

more columns than rows and thus a non-trivial vector in the kernel. Linear independence of the

fi,k’s will ensure that we can choose this vector to have non-zero entries, completing the proof.

Example 3.2.6. Consider the following graph curve

−1 −1

2 2
1 1

The associated D divisor on the graph is already effective, so there is no twisting to do. Riemann–

Roch predicts that D is torically equivalent to an effective divisor. Label the components of X

clockwise, beginning with the top horizontal curve. Then, for instance, on Xi, D|X1 has degree 0,

so H0(X1, D|X1) has dimension 1. The rows correspond to the conditions at the nodes P12, P13,

P13, P13, P13, giving us the matrix

∗ ∗ ∗ 0 0 0

∗ 0 0 ∗ ∗ 0

0 ∗ ∗ ∗ ∗ 0

0 ∗ ∗ 0 0 ∗

0 0 0 ∗ ∗ ∗

19

Since the rank of this matrix is 5, there is a non-trivial vector in the null space, which specifies the

correct linear combination of functions to take.

20

Chapter 4

Experimental Data

4.1 Data

Using the Magma code in the next section, we tested Riemann–Roch for a large space of divisors.

For low genus, we enumerated all “tree-less” graphs of small genus and tested Riemann–Roch

for all divisors of degree at most g − 1. For larger genus, we picked random graphs and tested

Riemann–Roch for all divisors on such graphs. This becomes difficult to do exhaustively around

genus 4 and impossible to do exhaustively around genus 6. For larger genus, we pick a random

divisor and test Riemann–Roch for this single divisor. In all cases, Riemann–Roch is found to

hold.

4.2 Code

// Checks whether the graph with given adjacency matrix is connected

isConnected := function(M)

if not IsSymmetric(M) then

return false;

else

return &and{N[i][j] ge 1 : i,j in [1..Nrows(M)] }

21

where N is &+[Mˆi : i in [1..Nrows(M)]];

end if;

end function;

randomAdjacencyMatrix := function(n)

M:= Matrix(n,n,[[i ge j select 0 else

Random([0,1]) : i in [1..n]] : j in [1..n]]);

return M + Transpose(M);

end function;

randomConnectedAdjacencyMatrix := function(n)

M := randomAdjacencyMatrix(n);

while not isConnected(M) do

M := randomAdjacencyMatrix(n);

end while;

return M;

end function;

canonicalDivisor := function(M)

return Matrix(Nrows(M),1,[&+[M[i][j]

: j in [1..Nrows(M)]] - 2 : i in [1..Nrows(M)]]);

end function;

degree := function(D)

return (&+[D[i] : i in [1..Nrows(D)]])[1]; end function;

genus := function(M);

return Integers()!((degree(canonicalDivisor(M))+2)/2); end function;

22

produceNonEffectiveDivisorsOfDegree := function(v,n,m)

// v := (integer) number of verticies

// n := (integer) sum of chips

return {@

[a : a in tup] : tup in CartesianPower([-m..n+m],v)

| &+[a : a in tup] eq n @};

end function;

produceDivisorsOfDegree := function(v,n)

// v := (integer) number of verticies

// n := (integer) sum of chips

return {@

[a : a in tup] : tup in CartesianPower([0..n],v)

| &+[a : a in tup] eq n

@};

end function;

adjacencyToLaplacian := function(M)

n := Degree(Parent(M));

A := M*Matrix(n,1,[1 : i in [1..n]]);

D := DiagonalMatrix([A[i][1] : i in [1..n]]);

return -1*M + D;

end function;

toricTest := function(M,c : B := 10ˆ10)

N := (Matrix(

23

[

[not l in {i,j} select 0 else Random(FiniteField(NextPrime(B)))

: m in [1..c[l][1]+1], l in [1..Nrows(c)*Ncols(c)]

]

: k in [1..M[i][j]] , j in [i+1..Nrows(M)], i in [1..Nrows(M)]

]

));

v := Random(Nullspace(Transpose(N)));

return not 0 in {v[i] : i in [1..Ncols(v)]}, N;

end function;

BoundingBoxToMatrix := function(R,n)

dual := Dual(Ambient(R));

return Matrix([[dual.i*Vertices(R)[j]

: i in [1..n]] : j in [1..#Vertices(R)]]);

end function;

findMin:= function(M)

M:= Transpose(M);

min:= [];

for i in [1..Nrows(M)] do

min[i]:= Minimum([M[i][j] : j in [1..Ncols(M)]]);

end for;

return min;

end function;

24

findMax:= function(M)

M:= Transpose(M);

max:= [];

for i in [1..Nrows(M)] do

max[i]:= Maximum([M[i][j] : j in [1..Ncols(M)]]);

end for;

return max;

end function;

getTuples:= function(min,max)

tups:= [];

for i in [1..#min] do;

tups[i]:= {a : a in [min[i]..max[i]]};

end for;

return tups;

end function;

produceOnlyIntegerSolutions :=function(Q)

for i in [1..Nrows(Q)] do

for j in [1..Ncols(Q)] do

if Q[i][j] ge 0 then

Q[i][j] := (Floor(Q[i][j]));

else

Q[i][j] := (Ceiling(Q[i][j]));

end if;

end for;

end for;

25

return Q;

end function;

if degree(c) le -1 then return {}; else

v:= Rank(Parent(c)); // number of verticies

A:= adjacencyToLaplacian(M);

D := { }; // this will contain the linear system

R := [] ;

for i in [1 .. v] do

Mtemp := RemoveColumn(A, i);

P := PolyhedronWithInequalities([[Mtemp[k][j] : j in [1..v-1]]

: k in [1..v]] ,[-c[k][1] : k in [1..v]]);

R[i] := BoundingBox(P);

end for;

Q:= [produceOnlyIntegerSolutions(

BoundingBoxToMatrix(R[i],v-1)) : i in [1..#R]];

min := [findMin(Q[i]) : i in [1..#Q]];

max := [findMax(Q[i]) : i in [1..#Q]];

tups := [getTuples(min[i],max[i]) : i in [1..#min]];

tups := [Insert(tups[i],i,{0}) : i in [1..#tups]];

26

C:= [CartesianProduct(tups[i]) : i in [1..#tups]];

for i in [1..#C] do

for tup in C[i] do

tempTup := Matrix(#tup,1,[a : a in tup]);

if &and{(c+A*tempTup)[i][1] ge 0 : i in [1..v]} then

D:= D join {c+A*tempTup};

end if;

end for;

end for;

return D;

end if;

end function;

produceRank := function(M,c)

v := Nrows(c)*Ncols(c);

linSys := linearSystem(M,c);

r := -1;

rankKnown := false;

while not rankKnown do

E := produceDivisorsOfDegree(v,r+1);

rankKnown := exists{e : e in E |

not exists{

d : d in linSys |

&and{(d - Matrix(v,1,e))[i][1] ge 0 : i in [1..v]} }

27

};

if not rankKnown then

r := r+1;

end if;

end while;

return r;

end function;

produceToricRank := function(M,c)

v := Nrows(c)*Ncols(c);

linSys := linearSystem(M,c);

r := -1;

rankKnown := false;

while not rankKnown do

E := produceDivisorsOfDegree(v,r+1);

rankKnown := exists{e : e in E |

not exists{d : d in linSys |

&and{(d - Matrix(v,1,e))[i][1] ge 0 : i in [1..v]}

and toricTest(M,d-Matrix(v,1,e))

}};

if not rankKnown then

r := r+1;

end if;

end while;

return r;

end function;

28

singleTestRR := function(M,c)

K := canonicalDivisor(M);

return produceRank(M,c) - produceRank(M,K-c) - degree(c) - 1

+ (degree(K) + 2)/2 eq 0;

// note that deg K = 2g-2

end function;

singleToricTestRR := function(M,c)

K := canonicalDivisor(M);

return produceToricRank(M,c) - produceToricRank(M,K-c)

- degree(c) - 1 + genus(M) eq 0;

// note that deg K = 2g-2

end function;

///

// testing

// Now, a big loop to test RR

v := 7;

while true do

i := -1;

M := randomConnectedAdjacencyMatrix(v);

g := genus(M);

//if g eq 1 then

"***";

"genus", g;//M;

29

while i le g-2 do

// while i le 2*g do // we know RR holds for i geq g.

// Switch these lines to test this.

i := i + 1;

"degree", i;

// for c in produceNonEffectiveDivisorsOfDegree(v,0,i) do

for c in produceDivisorsOfDegree(v,i) do

if not singleToricTestRR(M,Matrix(v,1,c))

then a := c;MM := M;c; end if;

end for;

end while;

//end if;

end while;

///

// testing

// Test RR for a few random graphs of large genus

while true do

v := Random([5..10]);

M := randomConnectedAdjacencyMatrix(v);

g := genus(M);

if g ge 4 then

"**";

"genus", g;//M;

i := g-1;

"degree", i;

c := Random(produceDivisorsOfDegree(v,i));

30

if not singleToricTestRR(M,Matrix(v,1,c))

then a := c;MM := M;c; end if;

end if;

end while;

31

Bibliography

[1] Matthew Baker and Serguei Norine, Riemann–Roch and Abel-Jacobi theory on a finite graph,

Adv. Math, 215 (2007), no. 2, 766788. MR2355607 (2008m: 05167) pages

[2] David Zureick Brown and Erick Katz, The Chabauty-Coleman bound at a prime of bad reduc-

tion and clifford bounds for geometric rank functions, Composito Mathematica, 149(2011),

no.11, 1818-1838 pages

[3] Matthew Baker, Specialization of linear systems from curves to graphs, Algebraic Number

Theory, 2 (2008), no. 6, 613653 pages

[4] N. Biggs. Chip-firing and the critical group of a graph. J.Algebraic Combinatorics, 9(1):2545,

1999. pages

[5] A. Bjorner and L. Lovasz. Chip-firing games on directed graphs. J. Algebraic Combinatorics,

1(4):305328, 1992. pages

[6] A. Bjorner, L. Lovasz, and P. W. Shor. Chip-firing games on graphs. European J. Combina-

torics, 12(4):283291, 1991. pages

[7] C. Merino. The chip-firing game”. Discrete Math., 302(1-3):188210, 2005. pages

[8] J. van den Heuvel. Algorithmic aspects of a chip-firing game. Combin. Probab. Comput.,

10(6):505529, 2001. pages

