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Abstract

Topics in Analytic Number Theory
By Robert J. Lemke Oliver

In this thesis, the author proves results using the circle method, sieve theory
and the distribution of primes, character sums, modular forms and Maass
forms, and the Granville-Soundararajan theory of pretentiousness. In partic-
ular, he proves theorems about partitions and q-series, almost-prime values
of polynomials, Gauss sums, modular forms, quadratic forms, and multiplica-
tive functions exhibiting extreme cancellation. This includes a proof of the
Alder-Andrews conjecture, generalizations of theorems of Iwaniec and Ono
and Soundararajan, and answers to questions of Zagier and Serre, as well
as questions of the author in the Granville-Soundararajan theory of preten-
tiousness.
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Chapter 1

Introduction

Arguably the first work in analytic number theory was done by Euler, who
considered the function ζ(x), x ∈ R, defined via the series

ζ(x) :=
∞∑
n=1

1

nx
.

While Euler’s principal motivation may have been the resolution of the so-
called Basel problem – the evaluation ζ(2) = π2/6 – from our own, modern
perspective, probably the most far-reaching and important aspect of his work
relates to the value ζ(1). Of course, this is the harmonic series which was
known, even in Euler’s time, to diverge to infinity. However, Euler observed
that ζ(x) also possesses the product representation

ζ(x) =
∏
p

(
1− 1

px

)−1

,

valid for any x such that the series converges (where, here and throughout,
the index p runs only over primes); such a product representation for a series
is known today as an Euler product. From this product, the behavior at
x = 1 of ζ(x) implies something about the behavior of the primes: namely,
that the series

∑
p

1
p
diverges. Moreover, using more precise information

about the divergence of the harmonic series (which Euler himself studied),
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it was possible to deduce the rate of divergence. Since the harmonic series
diverges logarithmically – that is,∑

n<X

1

n
∼ logX,

as X goes to infinity – and the sum of the reciprocals of the primes is almost
the logarithm of ζ(1), Euler deduced that∑

p<X

1

p
∼ log logX. (1.1)

Although Euler did not think in distributional terms, this was nonetheless
essentially the first distributional statement about the primes post-Euclid:
being prime may be rare, but it cannot be so rare that the sum of the
reciprocals of the primes converges.
Probably the first person to think seriously about the distribution of the

primes was Gauss, who, in 1792 or 1793, when he was 15 years old, noticed
that the number of primes in chiliads – intervals of length 1000 – decreased
logarithmically. This led him to conjecture that, if we let π(X) := #{p < X},
then

π(X) ∼ X

logX
.

This conjecture (of course, now proved, and known as the prime number
theorem) is consistent with Euler’s observation (1.1). In particular, (1.1) is
a sort of average version of the prime number theorem, so that it is implied
by the prime number theorem, but it is unable to prove the prime number
theorem (for example, it can’t rule out conspiracies of the sort, e.g., that
there are almost no primes starting with the digit 9).
Moving past beautiful work of Chebychev – who proved, for example,

Bertrand’s Postulate that there are always primes between X and 2X, but
whose techniques are fundamentally unable to prove the prime number the-
orem – it wasn’t until 1859, more than sixty years after Gauss’s conjecture
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was made, that an attack on the prime number theorem was proposed. In
his seminal memoir, which has been at the heart of the past 150 years of
analytic number theory, Riemann outlines a program whose central object of
study is the zeta function

ζ(s) :=
∞∑
n=1

1

ns
,

now thought of as a function of a complex variable. Riemann showed that
ζ(s) satisfies the functional equation Z(s) = Z(1− s), where

Z(s) := π−s/2Γ
(s

2

)
ζ(s)

is the so-called “completed ζ-function”, whence ζ(s) possesses an analytic
continuation to the entire complex plane except for a simple pole at s = 1.
Here, we must remark that, in fact, Euler had a primitive understanding
of the functional equation for integral arguments, but that his arguments
are only made meaningful by Riemann (e.g., the evaluation ζ(−1) = −1/12

is meaningless without a notion of analytic continuation). In this memoir,
Riemann shows that the prime number theorem would follow if one could
show that ζ(s) 6= 0 for <(s) = 1, and in a quantitative form by bounding
zeros away from the 1-line. This program was completed, independently, by
Hadamard and de la Vallée Poussin, in 1896. Although subsequent progress
has been made, and, indeed, we will return to this theme later, it is not at
the heart of our story, so we postpone discussion and move back in time.
In work published in 1837, Dirichlet considered the following question: in

an arithmetic progression a (mod q), with (a, q) = 1, how many primes are
there? Legendre conjectured that there were infinitely many, and while some
progressions (e.g., p ≡ 3 (mod 4)) fall easily to analogues of Euclid’s proof,
many more (e.g., p ≡ 1 (mod 4)) do not, and, we know now, cannot. But if
Euclid’s proof cannot generalize, what about Euler’s? That is, what can be
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said about the divergence of the series∑
p≡a(mod q)

1

p
?

What Dirichlet observed is that the above sum can be decomposed naturally
in terms of what we now call Dirichlet characters modulo q: homomorphisms
χ : (Z/qZ)× → C× extended to all of Z by reduction modulo q. For (a, q) = 1,
these satisfy the orthogonality relation

1

φ(q)

∑
χ(mod q)

χ(n)χ(a) =

{
1 if n ≡ a (mod q)

0 otherwise
,

where φ(q) := #{n ≤ q : (n, q) = 1}, whence∑
p≡a(mod q)

1

p
=

1

φ(q)

∑
χ(mod q)

χ(a)
∑
p

χ(p)

p
.

It turns out that, analogous to Euler’s work, the inner summation can be
analyzed by studying the function L(s, χ) defined via

L(s, χ) :=
∞∑
n=1

χ(n)

ns
=
∏
p

(
1− χ(p)

ps

)−1

at the point s = 1. In particular, because each χ is periodic, if χ is non-trivial,
we have that ∑

n<X

χ(n) = O(1)

as X → ∞, whence partial summation easily shows that L(s, χ) is analytic
in the region <(s) > 0. If χ = χ0 is trivial, then L(s, χ0)

.
= ζ(s), where

.
= means the equality is valid up to a finite product over primes, and so
L(s, χ0) possesses a pole at s = 1. However, because the connection between
L(s, χ) and

∑
p χ(p)/ps is given by taking logarithms (actually, for technical

reasons, typically logarithmic derivatives), it is also necessary to establish
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that L(1, χ) 6= 0. This is typically done via two formulae: first, one shows
that

lim
σ→1+

∏
χ(mod q)

L(σ, χ) ≥ 1,

necessarily including the trivial character χ0, so that, bearing in mind the
pole of L(s, χ0) at s = 1, at most one L(s, χ) can be zero (such χ is necessarily
real, as L(1, χ) = L(1, χ̄)), and then one shows that, if χ is real, i.e. quadratic,
then we have Dirchlet’s beautiful class number formula

L(1, χ)
.
= h(d)

where h(d) is the class number of the quadratic field associated to χ, and the
equality is valid up to explicit non-zero terms depending (non-trivially!) on
d. This is enough, after some small effort, to show that the series∑

p≡a(mod q)

1

p

diverges; in fact, we even get the weak equidistribution statement that∑
p<X

p≡a(mod q)

1

p
∼ 1

φ(q)
log logX.

It is also possible to carry out Riemann’s program for the primes p ≡
a (mod q), and prove the prime number theorem for primes in arithmetic
progressions, which requires the fact that the functions L(s, χ) behave very
similarly to ζ(s). Let τ(χ) denote the Gauss sum associated to χ,

τ(χ) :=
∑

a(mod q)

χ(a)e2πia/q,

which arises naturally in the decomposition of χ into the (additive) Fourier
basis {e2πiax/q}a(mod q), and satisfies |τ(χ)| = q1/2. Then each L(s, χ) satisfies
a functional equation of the form

Λ(s, χ) =
τ(χ)

q1/2
Λ(1− s, χ̄),
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where
Λ(s, χ) := qs/2π−s/2Γ

(
s+ δ

2

)
L(s, χ)

and δ = 0 or 1 according to the parity of χ; we call Λ(s, χ) the completion
of L(s, χ) (the fact that τ(χ) arises is not surprising, as Poisson summation
is the main tool used to prove the functional equation). Thus, ζ(s) and the
functions L(s, χ) form the prototype for a class of functions for which we can
carry out Riemann’s program, and it is an overriding philosophy of number
theory that all such functions are of arithmetic interest. Such functions
are called L-functions, and, together, ζ(s) and all L(s, χ) (which we call
Dirichlet L-functions) form the complete set of degree one L-functions, the
degree being a fundamental measure of the complexity of an L-function.
Not all questions about primes can be attacked via L-functions, however.

For example, the famous twin prime conjecture, asserting that there are
infinitely many primes p such that p+ 2 is also prime, seems to be a funda-
mentally different beast. Nevertheless, there is a somewhat natural attack
on it (which, of course, has fundamental problems – we currently have no
idea how to actually prove the twin prime conjecture). Recall the sieve of Er-
atosthenes, which would predict that the proportion of primes in the interval
(X1/2, X] should be dictated by a product over primes up to X1/2. Namely,
we expect that

π(X)− π(X1/2) ≈ X
∏

p≤X1/2

(
1− 1

p

)
,

which we think of as, for each prime p, discarding those integers that are
divisible by p. It turns out that this formula is incorrect: it yields the right
order of magnitude, X/ logX, but it is off by a constant factor.
Proceeding nonetheless, we might expect that the number of twin primes
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up to X, π2(X), might be given by a formula of the sort

π2(X)− π2(X1/2) ≈ X
∏

p≤X1/2

#{n (mod p) : n, n+ 2 not divisible by p}
p

= X · 1

2
·
∏

3≤p≤X1/2

(
1− 2

p

)
� X

log2X
.

But, given the problems with even the sieve of Eratosthenes, could such a
formula possibly be true? Heuristically, we would expect so, but we are
currently unable to prove it. To see why, consider the sieve of Eratosthenes
in more detail. For any z ≥ 2, let

P (z) :=
∏
p≤z

p,

ω(d) := #{p : p|d}, µ(d) := (−1)ω(d) if d is squarefree, and µ(d) = 0 other-
wise. By inclusion-exclusion, we have that

π(X)− π(X1/2) =
∑

d|P (X1/2)

µ(d) ·#{n ≤ X : d | n}

=
∑

d|P (X1/2)

µ(d)

⌊
X

d

⌋

= X
∑

d|P (X1/2)

µ(d)

d
+

∑
d|P (X1/2)

µ(d)

(
X

d
−
⌊
X

d

⌋)

= X
∏

p≤X1/2

(
1− 1

p

)
+O

 ∑
d|P (X1/2)

1

 .

But this error term is

O
(

2π(X1/2)
)

= O
(

2X
1/2
)
,

so it is remarkable that the product is even of the same order of magnitude
as π(X)! The ingenious idea of Brun was that, if we’re willing to sacrifice
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the strength of our conclusion (e.g., to obtain only an upper bound, or a
result on numbers with few prime factors – so called almost-primes), then
the method can be salvaged and be made extremely general. Proceeding
along these lines, Brun was able to show that

π2(X)� X

log2X
,

from which he derived the compelling corollary that the series∑
p:

p+2 is prime

1

p

converges. He was also able to show that there are infinitely many integers n
such that, together, n and n+ 2 have at most nine prime factors. Following
along these lines, “approximate” versions of many classical conjectures have
been proved: the results on twin primes have been stengthened, there are
almost-prime versions of Goldbach’s conjecture, and it is known that polyno-
mials represent almost-primes infinitely often. One result we must mention,
due to Goldston, Pintz, and Yildirim [28], is the best unconditional result
toward the problem of bounded gaps between primes and was published in
2009. In particular, they prove that

lim inf
n→∞

pn+1 − pn
log n

= 0,

where pn denotes the n-th prime. In view of the prime number theorem, the
average gap between pn and pn+1 is log n, so this says that, compared to the
average gap, gaps between primes can be arbitrarily small.
Despite the above discussion, it would be a mistake to assert that all of

analytic number theory has been motivated by the study of the primes. In-
deed, throughout the 19th century, when much of the formative work on
the distribution of primes was being done, another, disjoint, theory was be-
ing developed by the likes of Dedekind, Fricke, Gauss, Jacobi, Kronecker,
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and Weierstrass, to be continued by the likes of Deuring, Hardy, Hecke,
Hilbert, Maass, Ramanujan, and Siegel in the early 20th century (and, of
course, many others since). This is the theory of modular forms, which,
broadly speaking, are functions on the upper half plane H satisfying remark-
able symmetry properties. Examples of modular forms include the partition
generating function P (q), given by

P (q) :=
∞∑
n=0

p(n)qn =
∞∏
n=1

1

1− qn
,

a formula first proved by Euler, where p(n) denotes the number of partitions
of n (i.e., unordered tuples of integers summing to n), Jacobi’s theta function
θ(q) given by

θ(q) :=
∞∑

n=−∞

qn
2

,

and the elliptic j-function, which plays a remarkable role in explicit class field
theory over imaginary quadratic fields (this is the theory of complex multi-
plication, which we will not touch upon further, but which Hilbert declared
to be the most beautiful theory in all of science). One remarkable result we
must mention, which birthed the ubiquitous circle method, is a theorem of
Hardy and Ramanujan, which asserts that

p(n) ∼ 1

4n
√

3
eπ
√

2n/3.

Essentially, the proof of this relied upon a simple observation using the
Cauchy integral formula and an extremely clever exploitation of the sym-
metry properties of the function P (q).
In recent years, the theory of modular forms has blossomed into one of

central arithmetic interest. Because of their symmetry properties, modular
forms naturally give rise to L-functions of degree two, and, in a certain sense,
seem to give rise to all such L-functions. This is of extreme importance: to
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any elliptic curve over Q (the solutions to the Diophantine equation y2 =

x3 +Ax+B), one can construct what we call the Hasse-Weil L-function, but
it turns out that actually proving that it is an L-function in a legitimate way
is extremely difficult and is done by showing that it agrees with the L-function
associated to a modular form. This was the crucial step in the resolution of
Fermat’s Last Theorem by Wiles and Taylor, with the full modularity result
for all elliptic curves over Q being due to Breuil, Conrad, Diamond, and
Taylor. More generally, all L-functions (of any degree) are expected to come
from generalizations of modular forms known as automorphic forms, and
any L-function is expected to be of arithmetic interest; this is the celebrated
Langlands program, which is the focus of much research in number theory,
but about which we shall say no more.
The theory of L-functions has been at the heart of analytic number theory

ever since Riemann’s 1859 memoir and is an area of active research (cf., the
Langlands program mentioned above). Nevertheless, there is a real sense
in which analytic number theory is stuck. The zeros of any L-function are
expected to be of extreme importance (cf. Riemann’s program to prove the
prime number theorem), but actually saying anything non-trivial is extremely
hard. Given any L-function, we expect that all zeros should lie on the line
of symmetry of the functional equation, <(s) = 1/2, that is, we expect all
zeros to be as far as possible from the 1-line (which, e.g., would yield best
possible quantitative versions of the prime number theorem); this is the infa-
mous Riemann hypothesis, which is one of the Clay prize problems (strictly
speaking, the Riemann hypothesis only concerns ζ(s), with the generalized
Riemann hypothesis, GRH, concerning any L-function). For the Riemann
zeta function ζ(s), any zero s = σ + it is known only to satisfy

σ < 1− c

log2/3 |t| log log1/3 |t|
,

whereas for a general L-function, typically, if we are able to say anything, we
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are only able to say that
σ < 1− c

log |t|
.

In fact, for general L-functions, the situation is often even worse: we some-
times cannot rule out the existence of an exceptional zero lying inside the
above region incredibly close to s = 1. Such a zero is called a Siegel zero.
Siegel zeros cause many problems in analytic number theory, and are one
of the principal sources of ineffectivity of many otherwise beautiful theo-
rems. Moreover, the above “zero-free regions” are classical: the bounds for
general L-functions (although hard to establish in general) essentially follow
from the classical techniques of Hadamard and de la Vallée Poussin, whereas
the bounds for ζ(s) are from 1958. That is, when it comes to the zeros of
L-functions, we have been stuck for more than 50 years.
If analytic number theory is able to say shockingly little about the zeros of

L-functions, is there another approach to the classical questions, one which
fundamentally avoids this issue? That is, is it possible to do analytic number
theory without L-functions? In 1948, Erdős and Selberg found an elementary
proof (meaning it avoided L-functions, not that it was simple – his contribu-
tions were part of what led to Selberg earning the Fields Medal) of the prime
number theorem, and it was expected that this would open the floodgates,
and that a new era of analytic number theory would be ushered in. This
new era never materialized, and the elementary proof, while beautiful, was
essentially relegated to being a curiosity of mathematics. In recent years,
however, Granville and Soundararajan have written a series of papers which
introduces ideas that finally establish a context for the elementary proof of
Erdős and Selberg. This is the pretentious view of analytic number theory.
How does pretentiousness work? There is an overriding philosophy in ana-

lytic number theory that the poles of a Dirichlet series correspond to the sum-
matory function of its coefficients, with zeros providing information about the
multiplicative structure of the coefficients (e.g., if they’re multiplicative, their
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correlation with the primes). Post-Riemann, analytic number theory has al-
most exclusively focused on the analytic side of this philosophy: to study a
multiplicative function, one should look at its Dirichlet series and determine
all salient information about its analytic properties. What Granville and
Soundararajan propose is a systematic, general study of multiplicative func-
tions themselves, completely bypassing the need to find analytic information
about the Dirichlet series (which, in every case of interest, requires looking
at the series in a region where it’s defined only by analytic continuation).
Where there is ground to be gained is by proving deep theorems about the
structure of multiplicative functions. One can imagine taking a function of
interest, plugging it into this machinery that’s been developed, and, almost
for free, receiving interesting arithmetic information about the function. Put
another way, pretentiousness works by considering extremely general multi-
plicative functions simultaneously, while the standard L-function approach
(which cannot touch certain, more combinatorial, multiplicative functions
that naturally fit into the pretentious view) works with individual functions.
Pretentiousness is a very young theory, so while, as yet, pretentious tech-
niques can only match the results produced by more classical approaches, it
is nevertheless an exciting time in analytic number theory: we finally have a
new idea.

1.1 Gauss sums

Recall that, to a Dirichlet character χ (mod q), one associates the Gauss sum

τ(χ) :=
∑

a(mod q)

χ(a)e2πia/q,

and that τ(χ)/q1/2 arises naturally as the root number of the functional
equation satisfied by the Dirichlet L-function L(s, χ). Zagier [18] asked, in
general, when root numbers are roots of unity.
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There is another flavor of Gauss sum: given a finite field Fq and a character
χ of the multiplicative group F×q , one associates the Gauss sum

g(χ) :=
∑
a∈F×q

χ(a)e2πiTr(a)/p,

where q = pf , and, for any x ∈ Fq, Tr(x) := x + xp + · · · + xp
f−1 denotes

the trace map Tr: Fq → Fp. This quantity is still of critical interest, as it
connects the multiplicative structure of χ to the additive structure of Fq.
Motivated by the question of Zagier, we consider when ε(χ) := q−1/2g(χ) is
a root of unity (it is classical that |g(χ)| = q1/2). In Chapter 2, using p-adic
techniques, we prove the following classification of characters χ with ε(χ) a
root of unity, which depends only on the order m of χ (this result was also
proved by Evans, with a longer, fundamentally different, proof).

Theorem 1.1. Suppose that χ is a multiplicative character of order m, and
let r be the order of p modulo m. Then ε(χ) is a root of unity if and only if,
for each t ∈ Z, we have that

m−1∑
i=0

tpi =
rm

2
,

where tpi denotes the reduction of tpi modulo m in {0, . . . ,m− 1}.

Essentially the idea of the proof is to use the Gross-Koblitz formula [36],
which is the beautiful fact that g(χ) is, up to an explicit power of p, given by
the product of values of the p-adic gamma function Γp(z), which is defined via
p-adic interpolation of factorials. The necessity of the condition is established
by considering the p-adic valuation of g(χ) and its conjugates, and sufficiency
is established via a result of Gross and Koblitz on when the product of values
of Γp(z) is a root of unity.
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1.2 Sieve theory and the distribution of primes

Recall that sieve techniques, developed by Brun and expanded by others,
consider “approximations” to classical questions about the distribution of
primes (e.g., the twin prime conjecture and Goldbach’s conjecture): letting
P2 denote the set of integers that are either prime or the product of two
primes, it is known that there are infinitely many primes p such that p + 2

is in P2, and it is also known that every sufficiently large even integer is the
sum of a prime and an element of P2. Another classical problem concerns
primes represented by polynomials. That is, given an irreducible polynomial
F (x), is F (n) prime infinitely often, where n ∈ Z? It turns out that there
can be local obstructions (e.g., the polynomial F (x) = x2 + x + 2 is always
even), but for polynomials without local obstructions, we can follow similar
heuristic reasoning as we did with the twin primes, and we conjecture that
F (n) is prime infinitely often. Dirichlet’s theorem on primes in arithmetic
progressions yields this conjecture in the case degF (x) = 1, but for no higher
degree polynomials is it known. In Chapter 3, we prove the following theorem.

Theorem 1.2. Let F (x) 6≡ x2 + x (mod 2) be an irreducible quadratic poly-
nomial. Then there are infinitely many n such that F (n) is in P2.

This theorem is the best possible result obtainable via sieve theory, as the
parity problem dictates that it is impossible to detect primes with a linear
sieve (which we are necessarily forced to use: on average, we discard one
residue class per prime). Theorem 1.2 is a generalization of an Inventiones
paper of Iwaniec [44], where he proves the same result for F (x) = x2 + 1.
Among other new inputs, Iwaniec’s proof relied upon the equidistribution of
roots to the quadratic congruence F (x) ≡ 0 (modm), which is established
using the arithmetic of the underlying field, Q(i). There are also deep the-
orems of Friedlander and Iwaniec [25] and of Heath-Brown [41], who proved
that the polynomials x2 + y4 and x3 + 2y3 are prime infinitely often (here,
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we bypass the restriction that sieves cannot detect primes because of the
bivariate nature of the polynomials), but, again, we see that the underlying
fields, Q(i) and Q( 3

√
2), are simple. When proving Theorem 1.2, to establish

equidistribution, we must consider arbitrary quadratic fields, both of positive
and negative discriminant, and of class number greater than 1. Both of these
features present serious technical difficulties.

1.3 The analytic theory of modular forms

The theory of modular forms is, naturally, very broad. In this thesis, we
consider several questions: the Alder-Andrews and Andrews conjectures in
the theory of partitions, a question concerning two types of special modular
forms known as eta-quotients and theta functions, and a question concerning
the representation of integers by ternary quadratic forms.

1.3.1 The Alder-Andrews and Andrews conjectures

Recall that the circle method was developed by Hardy and Ramanujan to
attack the problem of determining the asymptotic behavior of the partition
function, p(n). The method easily generalizes to the general problem of
estimating the coefficients of a modular form with a pole, but it has also
proved fruitful even when the generating function is not modular. Indeed,
the best known results toward Waring’s problem and the Goldbach conjecture
are proved using the circle method, where estimates for exponential sums are
used as substitutes for modularity.
A classical identity from the theory of partitions, due to Euler, is that the

number of partitions of an integer n into odd parts is the same as the number
of partitions into distinct parts. Let Qd(n) denote the number of partitions
of n into parts congruent to ±1 (mod d+ 3), and let qd(n) denote the number
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of partitions of n such that the difference between any two parts is at least d.
Euler’s identity is the statement that Q1(n) = q1(n), and the second Rogers-
Ramanujan identity implies that Q2(n) = q2(n). This exact trend does not
continue, however, as an identity of Schur shows that Q3(n) ≤ q3(n), with
equality holding only for finitely many n. Motivated by these classical results,
Alder conjectured in 1953 that Qd(n) ≤ qd(n) for all values of n and d. With
C. Alfes and M. Jameson, we proved the following theorem (presented in
Section 4.1).

Theorem 1.3. Alder’s conjecture is true.

Andrews [2] and Yee [80] proved Alder’s conjecture for d ≥ 31 via com-
binatorial techniques, where there is enough wiggle room in the generating
functions to construct an injection, thus leaving those cases of small d where
analytic number theory intervenes. To prove the conjecture, we obtained
explicit asymptotic formulae using the circle method, both for modular and
non-modular generating functions, and verified the conjecture for all “small”
n. However, proceeding naively, one first obtains a bound on n of the or-
der 10200, so that considerable effort is needed to reduce the problem to
something computationally feasible. In response to our proof of Alder’s con-
jecture, Andrews made a related conjecture, which, with Jameson, we prove,
in Section 4.2, holds asymptotically.

1.3.2 Eta-quotients and theta functions

In the theory of modular forms, there is a stark dichotomy between two
classes of arithmetic interest: there are modular forms of integer weight, and
there are those of half-integer weight. Although many deep questions abound,
the integer weight theory is much more developed than that of half-integer
weight. This is no accident: the spaces of half-integral weight modular forms
enjoy less rigid structure than integral weight spaces, which opens the door



17

for yet deeper theory. Indeed, the coefficients of half-integral weight forms
frequently encode values of L-functions, and this is both the source of much
delight and much frustration.
There are two natural examples of half-integer weight forms: theta func-

tions, either associated to a Dirichlet character or to a quadratic form of odd
dimension, and certain η-quotients, which are modular forms generated by
infinite products. Zagier has asked for a classification of those η-quotients
which are holomorphic, and his student, Mersmann [58], showed that, for
any given weight, there are essentially only finitely many. Since, by a the-
orem of Serre and Stark, all weight 1/2 forms are linear combinations of
theta functions associated to even Dirichlet characters, this shows that only
finitely many η-quotients can also be equal to a theta function associated
to an even Dirichlet character. Two questions immediately jump out: which
η-quotients are they, and what can be said about theta functions associated
to odd Dirichlet characters? We answer both of these questions in Section
4.3.

Theorem 1.4. There are exactly seven η-quotients that are theta functions
for an even Dirichlet character, and there are exactly five that are theta
functions for an odd Dirichlet character.

In fact, this theorem also applies to certain linear spaces generated by
theta functions, but not to the full linear span. Since any theta function
associated to a Dirichlet character is necessarily lacunary, meaning almost
all of its Fourier coefficients are 0, this also provides a partial answer to a
problem of Serre [73] to classify the lacunary η-quotients. Although there are
other classifications of η-quotients known, this is some of the first progress
toward Serre’s problem in half-integral weight.
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1.3.3 Representation by ternary quadratic forms

It is a classical problem to classify the integers represented by a positive
definite, integral quadratic form. In particular, one may ask when such a form
represents all positive integers. This is now known due to recent theorems of
Conway-Schneeberger-Bhargava [9] and Bhargava-Hanke [8], a pair of results
known as the 15 and 290 theorems. If a form does not represent all positive
integers, perhaps the next best thing would be for it to represent all integers
which are locally represented (represented modulo m for all integers m).
Such forms are known as regular quadratic forms, and Jagy, Kaplansky, and
Schiemann [47] proved that there are at most 913 regular ternary quadratic
forms, of which 899 are known to be regular. Adapting techniques of Ono
and Soundararajan [65], we prove the following theorem in Section 4.4.

Theorem 1.5. Assume the GRH for all Dirichlet and modular L-functions.
Then each of the remaining 14 forms is regular.

The subtlety of this question, and the need for the GRH, is that the theta
function associated to any ternary quadratic form can be canonically decom-
posed into two parts, one of which is, essentially, the class number of an
imaginary quadratic field, the other of which is, essentially, the central value
of a modular L-function. It is known, ineffectively, due to Duke and Schulze-
Pillot [22], that the class number part eventually dominates, proving that
any sufficiently large and locally represented integer is globally represented.
However, similar in spirit to work of Granville and Stark [35] who show that
a failure of a form of the abc-conjecture implies the existence of a Siegel zero,
we exploit the ineffectivity to prove the following theorem, also in Section
4.4.

Theorem 1.6. Assume the GRH for modular L-functions. There is an ex-
plicitly computable constant C(Q) such that if n ≥ C(Q) is locally represented
by Q but not globally, then some Dirichlet L-function has a Siegel zero.
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1.4 The pretentious view of analytic number

theory

In the pretentious view of analytic number theory, one looks for deep struc-
ture theorems concerning multiplicative functions. One beautiful theorem
among many in the subject – and the first foundational result – is due to
Halász, which classifies those functions with large partial sums, i.e., multi-
plcative f(n) such that both |f(n)| ≤ 1, f(n) ∈ C, and

Sf (X) :=
∑
n<X

f(n)� X.

Granville and Soundararajan define a distance D(f, g) between two multi-
plicative functions as a sort of average of the difference on primes. Gener-
ically, we expect that D(f, g) should be infinite, but in the event that it is
not, we say that f(n) is g(n)-pretentious. Halász’s theorem states that if
Sf (X) � X as X → ∞, then f(n) is nit-pretentious for some t ∈ R – that
is, it “comes from” a natural example of a function with large sums.
The principal focus of Chapter 5 of this thesis is the following complemen-

tary question: suppose that Sf (x) exhibits more cancellation than it has a
right to – that is, suppose that Sf (X)� X1/2−δ as X →∞ for some δ > 0

– must f(n) be pretentious to a Dirichlet character? While this question is
likely intractable in general, in Section 5.1, we provide an affirmative answer
for a natural class of functions SK defined via the arithmetic of any number
field K, where one can see Dirichlet characters naturally arising.

Theorem 1.7. If f ∈ SK satisfies Sf (X)� X1/2−δ for some δ > 0, then f
coincides with a Dirichlet character.

It turns out, somewhat surprisingly, that pretentiousness does not “detect”
power cancellation – it is possible for Sf (x)� 1, say, and for g(n) to be f(n)-
pretentious, and yet for Sg(x) 6� x1−ε for any ε > 0. In work with J. Jung, we
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rectify this situation by establishing new definitions of pretentiousness that
do detect power cancellation. As an example of our work, which is presented
in Section 5.2, we have the following theorem, which should be thought of as
establishing the right pretentious framework to ask the question of extreme
cancellation.

Theorem 1.8. If f(n) is g(n)-strongly pretentious and Sf (x)� xα for some
α > 0, then Sg(x)� xα.
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Chapter 2

Gauss sums over finite fields and

roots of unity

Let p > 2 be a prime, and let q = pf for some f ≥ 1. Let ψ : Fp → C×

be a non-trivial additive character, and let χ : F×q → C× be a non-trivial
multiplicative character. The Gauss sum g(χ) = g(χ, ψ) associated to χ is
given by

g(χ) :=
∑
x∈F×q

χ(x)ψ(tr(x)), (2.1)

where tr(x) := x + xp + . . . + xp
f−1 . The determination of g(χ) is of central

importance in analytic number theory as it reflects both the multiplicative
and additive structure of Fq. Classical arguments show that |g(χ)| = √q. On
the other hand, the quantity ε(χ) := g(χ)/

√
q has only been determined for

χ of certain orders (see [7] for a comprehensive treatment of recent results).
Motivated by private communications with Zagier, we determine when ε(χ)

is a root of unity.

Theorem 2.1. Let χ : F×q → C× be a multiplicative character of order m
and let r be the order of p modulo m. The quantity ε(χ) is a root of unity if
and only if for every integer t coprime to m we have that

r−1∑
i=0

tpi =
rm

2
, (2.2)
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where tpi denotes the canonical representative of tpi modulo m in [0, . . . ,m−
1].

Remark: After this work was done, the author learned that Theorem 2.1
was first obtained by Evans [24]. Evans’s proof used Stickelberger’s relation
on the decomposition of g(χ) into prime ideals (see [43]). An equivalent
condition, essentially (2.7) below, was later obtained by Yang and Zheng [79],
again using Stickelberger’s relation. We give a different proof of Theorem 2.1,
one based on a deep theorem of Gross and Koblitz [36] relating Gauss sums
to the p-adic gamma function.

2.1 The Gross-Koblitz formula

Let p > 2 be a prime and q = pf for some f ≥ 1. The p-adic gamma function
Γp(z) : Zp → Z×p is defined by

Γp(z) := lim
m→z
m∈Z

(−1)m
∏
j<m

(j,p)=1

j. (2.3)

Let ωf : F×q → C× be the Teichmüller character of Fq, ψ : Fp → C× be a
non-trivial additive character, and ζp = ψ(1). Let π ∈ Qp(ζp) be the unique
element satisfying both πp−1 = −p and ζp ≡ 1 + π (mod π2). For integers
0 ≤ a < q − 1, the Gauss sum g(ω−af ) is defined by

g(ω−af ) := −
∑
x∈F×q

ω−af (x)ψ(tr(x)), (2.4)

where tr(x) := x + xp + . . . + xp
f−1 . The Gross-Koblitz formula [36] states

that

g(ω−af ) = πS(a)

f−1∏
j=0

Γp

({
apj

q − 1

})
, (2.5)

where S(a) denotes the sum of digits in the base p expansion of a and, for
any x ∈ R, {x} := x− bxc denotes the fractional part of x.
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2.2 Proof of Theorem 2.1

Let χ be a multiplicative character of F×q of order m. There is a unique a
such that 0 ≤ a < q − 1 and χ = ω−af . Since g(χ) ∈ Q(ζp, ζq−1), ε(χ) is a
root of unity if and only if g(χ)2p(q−1) = qp(q−1). The Gross-Koblitz formula
(2.5) yields that

g(χ)2p(q−1) = p2p(q−1)S(a)/(p−1)

(
f−1∏
j=0

Γp

({
apj

q − 1

}))2p(q−1)

, (2.6)

and by comparing the p-adic valuation of both sides, we see that a necessary
condition for ε(χ) to be a root of unity is S(a) = f(p−1)

2
. In fact, if χ′ is

another character of F×q of orderm, then there is an element of Gal(Q(ζp, ζm))

taking g(χ) to g(χ′). Hence, ε(χ) is a root of unity if and only if ε(χ′) is.
Thus, if ε(χ) is a root of unity, for all t coprime to m we have that

S(ta
(q−1)

) =
f(p− 1)

2
, (2.7)

where ta(q−1) is the canonical reduction of ta modulo q − 1. This condition
will prove to be sufficient to guarantee that ε(χ) is a root of unity. To see
this, we begin by reinterpreting the sum of digits function S(a).

Lemma 2.2. For any 0 ≤ b < q − 1, we have that
f−1∑
j=0

{
bpj

q − 1

}
=

S(b)

p− 1
.

Proof. Write b =
∑f−1

i=0 bip
i. For any 0 ≤ j ≤ f − 1, we observe that

bpj ≡ b(j) (mod q − 1) where 0 ≤ b(j) < q − 1 is the j-th iterate of the cyclic
permutation on the base p digits of b. Hence, we have that

f−1∑
j=0

{
bpj

q − 1

}
=

1

q − 1

f−1∑
j=0

b(j)

=
S(b)

p− 1
.
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Write a = t0 · (a, q − 1) for some t0 coprime to m. Since m = q−1
(a,q−1)

, we
have that {

apj

q − 1

}
=

{
t0p

j

m

}
=
t0pj

m
,

whence
f−1∑
j=0

{
apj

q − 1

}
=
f

r

r−1∑
j=0

t0pj

m
, (2.8)

where tpj is the reduction of tpj modulo m and r is the multiplicative order
of p modulo m. Hence, by Lemma 2.2, (2.7) holds for t coprime to m if and
only if we have that

r−1∑
j=0

tpj =
rm

2
. (2.9)

This establishes the necessity of (2.2) in the statement of Theorem 2.1.
Sufficiency follows immediately from a result of Gross and Koblitz [36]: If
{a1, . . . , ak, n1, . . . , nk} is a set of integers such that, for all u coprime to m,∑k

i=1 ni · uai is an integer independent of u, then the product

k∏
i=1

f−1∏
j=0

Γp

(
aipj

m

)ni

is a root of unity. We apply this result with k = r, ai = pi, and ni = 2,
showing that if (2.2) is satisfied, then ε(χ) is a root of unity.
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Chapter 3

Almost-primes represented by

quadratic polynomials

Let G(x) = cgx
g + cg−1x

g−1 + . . . + c1x + c0 ∈ Z[x] be an irreducible
polynomial of degree g and discriminant D, and let ρ(m) = ρG(m) denote
the number of incongruent solutions to the congruence G(n) ≡ 0 (mod m).
Throughout, we assume that cg > 0 and ρ(p) 6= p for all primes p. The
question of how often G(x) represents primes is the content of a conjecture
by Bouniakowsky [12], and, more generally, by Schinzel [70] and Bateman
and Horn [6]:

Conjecture 3.1. Assuming the notation and hypotheses above, we have that

#{1 ≤ n ≤ x : G(n) is prime} ∼ ΓG ·
x

log x
,

where

ΓG :=
1

g

∏
p prime

(
1− ρ(p)

p

)(
1− 1

p

)−1

.

The prime number theorem for primes in arithmetic progressions implies
that this conjecture is true when g = 1. Very little is known if g ≥ 2.

Remark. There have been fantastic recent results on the related problem for
polynomials in two variables, such as x2 +y4 and x3 +2y3, which Friedlander
and Iwaniec [25] and Heath-Brown [41] have shown represent primes infinitely
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often; in fact, they have obtained the asymptotic orders of the sets of such
primes.

Here we consider how frequently G(x) represents numbers that are “almost
prime." To this end, let Pr denote the set of squarefree positive integers with
at most r distinct prime factors. The best general result along the lines of
the above conjecture asserts that a degree g polynomial G(x) represents Pg+1

infinitely often. For g ≤ 7, this is due to Kuhn [52], Wang [78], and Levin
[54], and for general g this follows from work of Buhštab [16] and Richert [68].
In the special case of G(x) = x2 + 1, a deep theorem of Iwaniec [44] states
that G(x) represents P2 infinitely often. To prove this, Iwaniec obtained a
new form of the error in the linear sieve, and he proved an equidistribution
result about the roots of the quadratic congruence x2 + 1 ≡ 0 (mod m). By
generalizing Iwaniec’s result, we are able to obtain the following theorem.

Theorem 3.2. If G(x) = c2x
2 + c1x + c0 ∈ Z[x] is irreducible, with c2 > 0

and ΓG 6= 0, then there are infinitely many positive integers n such that G(n)

is in P2.

Remark. 1) If G(x) = c2x
2 + c1x + c0 ∈ Z[x] is irreducible, with c2 > 0 and

ΓG = 0, then, since ρG(p) ≤ 2 for all primes p, we must have that ρG(2) = 2.
The polynomials G0(x) := G(2x)/2 and G1(x) := G(2x+1)/2 are irreducible,
have integer coefficients, and satisfy ρG0(2) = ρG1(2) = 1. Theorem 3.2 then
shows that G(n) is 2P2 infinitely often.
2) The author, in unpublished work, has obtained conditions on higher

degree G(x) which would allow one to conclude that G(x) represents Pg
infinitely often. Unfortunately, these conditions are rather technical, and
there are no higher degree polynomials yet known to satisfy them.

To prove Theorem 3.2, we use the method employed by Iwaniec [44] to
consider arbitrary quadratic polynomials. In Section 3.1, we transform the
original problem into a sifting problem to which we can apply Iwaniec’s
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linear sieve inequality. To obtain non-trivial cancellation in the resulting
error terms and deduce Theorem 3.2, we need a result on the distribution of
roots of G(x) to various moduli, which we prove in Section 3.2. To prove this
result for G(x) = x2+1, Iwaniec made use of the fact that disc(x2+1) = −4 is
negative, which allowed him to use the theory of positive definite quadratic
forms. It is here, therefore, that most of the additional work in handling
arbitary quadratic polynomials is necessary, to account for the fact that the
discriminant may be positive and also that G(x) may not be monic. This
equidistribution problem also provides the obstruction for establishing the
analogue of Theorem 3.2 for higher degree polynomials.

3.1 Proof of Theorem 3.2

We assume from here on out that G(x) is a fixed irreducible quadratic poly-
nomial with positive leading coefficent such that ρ(2) 6= 2. We apply the
method of Iwaniec [44] to obtain an estimate for

#{1 ≤ n < x : G(n) ∈ P2}.

We will introduce a weighted sum in Section 3.1.1 which will change the
problem into one of establishing estimates of sifting functions, which we
study by using the linear sieve in Section 3.1.2. In Section 3.1.3, we then use
these estimates to complete the proof of Theorem 3.2.

3.1.1 A weighted sum

If we let
A = Ax := {G(n) : 1 ≤ n < x}, (3.1)

we wish to estimate the sum ∑
a∈A∩P2

1.
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To do so, we introduce a weight function w(n) and instead sum w(a). Let λ
be a real number such that 2 ≤ λ < 3, and assume x is sufficiently large so
that G(n) ≤ xλ for all n ≤ x. If n is a positive integer, let pn and ω(n) denote
the smallest prime divisor of n and the number of distinct prime divisors of
n, respectively. For a prime p < xλ/2 such that p|n, let

ωp(n) :=


1− log p

λ/2 log x
if p = pn

log pn
λ/2 log x

if p > pn and p < xλ/4

1− log p
λ/2 log x

if p > pn and p ≥ xλ/4,

then let
w(n) := 1− λ/2

3− λ
∑

p|n,p<xλ/2
ωp(n). (3.2)

Remark. The weights w(n) are the same weights that Iwaniec used, which are
due to Richert (unpublished, see [44]). Laborde [53] developed weights which
would yield a slightly better implied constant for the asymptotic #(A∩P2)�
x

log x
, but since we have suppressed the constant, we choose to use Richert’s

weights to maintain continuity with Iwaniec.

We require a lemma due to Iwaniec [44, Lemma 1], which asserts that the
weight function w(n) detects P2 for squarefree n.

Lemma 3.3 (Iwaniec). If n ≤ xλ and w(n) > 0, then n has at most 2
distinct prime factors.

By Lemma 3.3, for any z ≤ xλ/4 we have that

#{a ∈ A : a ∈ P2} ≥
∑
a∈A

(a,P (z))=1
a squarefree

w(a),

where P (z) =
∏

p<z p. If z = xγ for some γ > 0, there are few non-squarefree
a ∈ A such that (a, P (z)) = 1, as∑

n<x
(G(n),P (z))=1

G(n) not squarefree

1 � xλ/2z−1/2 + x2/3 log4/3 x,
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which we obtain by Iwaniec’s argument for x2 + 1 and an application of the
square sieve [19, Theorem 2.3.5]. Hence, we consider the sum

W (A, z) =
∑
a∈A

(a,P (z))=1

w(a), (3.3)

with the goal of showing that W (A, z)� x
log x

. For any positive integer q, let

Aq := {a ∈ A : a ≡ 0 (mod q)}.

Following Iwaniec, we can write W (A, z) in terms of the sifting functions

S(Aq, u) := #{a ∈ Aq : (a, P (u)) = 1}, (3.4)

namely we have that

W (A, z) = S(A, z) +
λ/2

3− λ

 ∑
z≤p<xλ/4

∑
z≤p1<p

log p/p1

λ/2 log x
S(App1 , p1)

−
∑

z≤p<xλ/4

((
1− 2

log p

λ/2 log x

)
S(Ap, p) +

log p

λ/2 log x
S(Ap, z)

)

−
∑

xλ/4<p<xλ/2

(
1− log p

λ/2 log x

)
S(Ap, z)

 .
(3.5)

3.1.2 The linear sieve

We have reduced the problem to that of obtaining a lower bound for the
function W (A, z) defined by (3.3), and by (3.4) and (3.5) this reduces to the
problem of obtaining good estimates for the sifting functions S(Aq, u). We
recall the following linear sieve inequality [44, Lemma 2].
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Lemma 3.4 (Iwaniec). Let q ≥ 1, u ≥ 2, M ≥ 2, and N ≥ 2. For any
η > 0 we have

S(Aq, u) ≤ V (u)x
ρ(q)

q
(F (s) + E) + 2η

−7

R(Aq;M,N),

S(Aq, u) ≥ V (u)x
ρ(q)

q
(f(s)− E)− 2η

−7

R(Aq;M,N),

where s = logMN/ log u, E � ηs2 + η−8e−s(logMN)−1/3, and

V (u) =
∏
p<u

(
1− ρ(p)

p

)
.

The functions F (s) and f(s) are the continuous solutions of the system of
differential-difference equations

sf(s) = 0 if 0 < s ≤ 2,

sF (s) = 2eC if 0 < s ≤ 3,

(sf(s))′ = F (s− 1) if s > 2,

(sF (s))′ = f(s− 1) if s > 3,

where C is Euler’s constant. The error term R(Aq;M,N) has the form

R(Aq;M,N) =
∑

m<M,n<N,mn|P (u)

ambnr(Aq;mn), (3.6)

where
r(Aq; d) := |A[q,d]| −

ρ([q, d])

[q, d]
x,

and the coefficients am and bn are real numbers, bounded by 1 in absolute
value, and supported on squarefree values of m and n.

The functions F (s) and f(s) both tend to 1 monotonically as s→∞, F (s)

from above and f(s) from below. Thus, we wish to choose M and N so that
s is large, but we do so at the expense of increasing the size of the error
term R(Aq;M,N). Consequently, we are mainly concerned with bounding
R(Aq;M,N) for large values of M and N .
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Lemma 3.5. With notation as in Lemma 3.4, for any ε > 0 we have

∑
m<x1−8ε

∣∣∣∣∣∣∣∣
∑

n<xγ0−γ1ε

(n,m)=1

bnr(A;mn)

∣∣∣∣∣∣∣∣� x1−ε,

where γ0 := 1−α0

2(1+β0)
and γ1 := 4α0

1+β0
, where α0 and β0 are defined in Lemma

3.6.

Before we prove Lemma 3.5, we state a result whose proof we postpone
until Section 3.2 (see Lemma 3.10).

Lemma 3.6. Let q be a squarefree number, d an odd divisor of q, µ an integer
prime to d, and ω a root of G(x) modulo d. Furthermore, let M < M1 < 2M

and 0 ≤ α < β < 1. Let P (M1,M ; q, d, µ, ω, α, β) denote the number of
pairs of integers m,Ω such that M < m < M1, (m, q) = 1, m ≡ µ (mod d),
α ≤ Ω

mq
< β, G(Ω) ≡ 0 (mod mq), and Ω ≡ ω (mod d). Then there are

constants A(q) > 0, α0 < 1 and β0 such that, for every ε > 0,

P (M1,M ; q, d, µ, ω, α, β) = (β − α)(M1 −M)ρ
(q
d

) A(q)

φ(d)
+O

(
Mα0+εqβ0+ε

)
.

Proof of Lemma 3.5. Let

B(x;m,N) :=
∑

n<N,(n,m)=1

bnr(A;mn).

Our initial task will be to bound B(x;m,N) by using Lemma 3.6. By the
Cauchy-Schwarz inequality, we get

∑
M<m<2M

|B(x;m,N)| ≤M
1
2

( ∑
M<m<2M

B(x;m,N)2

) 1
2

. (3.7)

Since we have that

B(x;m,N) =
∑

0≤v<m
G(v)≡0(mod m)

∑
n<N

(n,m)=1

bn


∑
k<x

k≡v(mod m)
G(k)≡0(mod n)

1− x

m

ρ(n)

n

 ,
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the Cauchy-Schwarz inequality implies that

B(x;m,N)2 ≤ ρ(m)
∑

0≤v<m
G(v)≡0(mod m)


∑
n<N

(n,m)=1

bn


∑
k<x

k≡v(mod m)
G(k)≡0(mod n)

1− x

m

ρ(n)

n




2

� M ε
∑

0≤v<m
G(v)≡0(mod m)


∑
n<N

(n,m)=1

bn


∑
k<x

k≡v(mod m)
G(k)≡0(mod n)

1− x

m

ρ(n)

n




2

.

Expanding the square on the right-hand side and reintroducing the sum over
m, we get that∑
M<m<2M

B(x;m,N)2 �M ε
(
W (x;M,N)− 2xV (x;M,N) + x2U(M,N)

)
,

(3.8)
where

W (x;M,N) :=
∑

M<m<2M

∑
0≤v<m

G(v)≡0(mod m)

∑
n1,n2<N

(n1n2,m)=1

bn1bn2

∑
k1,k2<x

k1≡k2≡v(mod m)
G(k1)≡G(k2)≡0(mod n)

1, (3.9)

V (x;M,N) :=
∑

M<m<2M

∑
0≤v<m

G(v)≡0(mod m)

1

m

∑
n1,n2<N

(n1n2,m)=1

bn1bn2

ρ(n2)

n2

∑
k<x

k≡v(mod m)
G(k)≡0(mod n1)

1, (3.10)

and

U(M,N) :=
∑

M<m<2M

∑
0≤v<m

G(v)≡0(mod m)

1

m2

∑
n1,n2<N

(n1n2,m)=1

bn1bn2

ρ(n1)ρ(n2)

n1n2

. (3.11)

We will estimateW (x;M,N), V (x;M,N), and U(M,N) separately with the
goal of showing that their main terms cancel in the expression (3.8). Our
main tools to this end are Lemma 3.6 and partial summation. We follow the
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method of Iwaniec [44, Proof of Proposition 1] closely, with more effort being
necessary only in the estimation ofW (x;M,N). Consequently, we state only
the results for U(M,N) and V (x;M,N), noting that they follow in the same
fashion as the estimate of W (x;M,N) we provide below. In particular, the
required estimate for U(M,N) is

U(M,N) =
1

2M

∑
n1,n2<N

bn1bn2

ρ(n1)ρ(n2)

n1n2

A([n1, n2]) +O
(
Mα0−2+εN2β0+ε

)
,

(3.12)
and the required estimate for V (x;M,N) is

V (x;M,N)=
x

2M

∑
n1,n2<N

bn1bn2

ρ(n1)ρ(n2)

n1n2

A([n1, n2]) +O
(
xε+xMα0−2+εN2β0+ε

)
.

(3.13)
Follwing Iwaniec’s method for W (x;M,N) as far as we can, we obtain

W (x;M,N) =
∑

n1,n2<N

bn1bn2T
∗(n1, n2;x,M) +O

(
x1+ε

)
,

where to define T ∗(n1, n2;x,M) we need to first define the integers c and d.
For integers l1, l2 < x

M
, let 0 ≤ c < [n1, n2] be the solution to

c ≡ l1

(
mod

n1

(n1, n2)

)
c ≡ l2

(
mod

n2

(n1, n2)

)
c ≡ l1 (mod (n1, n2)) ,

and let
d :=

(n1, n2)

(n1, n2, l1 − l2)
.

With the above definitions, we have

T ∗(n1, n2;x,M) :=
∑

l1,l2<
x
M

l1≡l2(mod (2,n1,n2))

∑
0≤µ<d
(µ,d)=1

∑
0≤v<d

G(µl1+v)≡0(mod d)
G(µl2+v)≡0(mod d)

Σ1, (3.14)



34

where
Σ1 :=

∑
M<m<M1,(m,n1n2)=1

m≡µ(mod d),cm≤Ω<(c+1)m
Ω≡µl1+v(mod d),G(Ω)≡0(mod m[n1,n2])

1,

and M1 = min
(

2M, x
l1
, x
l2

)
. In fact, Σ1 is precisely

P

(
M1,M ; [n1, n2], d, µ, µl1 + v,

c

[n1, n2]
,
c+ 1

[n1, n2]

)
,

so Lemma 3.6 implies that

T ∗(n1, n2;x,M) =
A([n1, n2])ρ([n1, n2])

[n1, n2]

∑
l1,l2<

x
M

l1≡l2(mod (2,n1,n2))

M1 −M
ρ(d)φ(d)

∑
µ,v

1

+O
(
x2Mα0−2+εN2β0+ε

)
.

(3.15)
The sum

∑
µ,v 1 is counting the number of integers µ and v modulo d such

that (µ, d) = 1 and G(µl1 + v) ≡ G(µl2 + v) ≡ 0 (mod d). This is the same
as the number of choices of µl1 + v and µl2 + v such that G(µl1 + v) ≡
G(µl2 + v) ≡ 0 (mod d) and their difference, µ(l1 − l2), is invertible modulo
d. Since d is squarefree and the number of solutions is multiplicative in d,
there are exactly ρ(d)ψ(d) ways of doing this, where ψ(d) is the multiplicative
function defined by ψ(p) := ρ(p) − 1 for each prime p. Hence, the sum in
(3.15) is equal to

φ((n1, n2))−1
∑

l1,l2<
x
M

l1≡l2(mod (2,n1,n2))

φ((n1, n2, l1−l2))ψ

(
(n1, n2)

(n1, n2, l1 − l2)

)
(M1−M).

Since ρ(p) = 0, 1, or 2, we must have that ψ(p) = 0,±1. We first note that
if ψ(p) = −1 for some p | [n1, n2], then ρ(p) = 0 and so T ∗(n1, n2;x,M) would
then be 0. We therefore assume that ψ(p) 6=−1 and evaluate T ∗(n1, n2;x,M).
Let n | (n1, n2) be maximal such that ψ(n) = 1, and let n0 = (n1,n2)

n
. Since

we have
ψ

(
(n1, n2)

(n1, n2, l1 − l2)

)
= ψ

(
n0

(n0, l1 − l2)

)
,
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it follows that ψ
(

(n1,n2)
(n1,n2,l1−l2)

)
= 0 unless n0 | (l1 − l2). Hence, we consider

1

φ((n1, n2))

∑
l1,l2<

x
M

l1≡l2(mod n0)

φ((n1, n2, l1 − l2))

ψ
(

(n1,n2,l1−l2)
n0

) (M1 −M),

which, by using the fact that (n1, n2, l1 − l2) = n0(n, l1 − l2), is given by

1

φ(n)

∑
l1,l2<

x
M

l1≡l2(mod n0)

φ((n, l1 − l2))(M1 −M).

We now have that, letting ξ := µ ∗ φ,∑
0<l1<l2

l1≡l2(mod n0)

φ((n, l1 − l2)) =
∑

0<l1<l2
l1≡l2(mod n0)

∑
t|(n,l1−l2)

ξ(t)

=
l2
n0

∑
t|n

ξ(t)

t
+O (φ(n)) =

l2φ(n)ρ(n)

n0n
+O (φ(n)) ,

where the last equality follows from the evaluation of
∑

t|n
ξ(t)
t

on primes. We
are thus led to consider∑

l2<
x
M

l2

(
min

(
2M,

x

l2

)
−M

)
=

x2

4M
+O(x).

Inserting these estimates into (3.15), we now see that

T ∗(n1, n2;x,M) =
x2

2M

(
A([n1, n2])

ρ([n1, n2])

n1n2

ρ(n)

)
+O

(
xN ερ(n1)ρ(n2)

n1n2

+ x2Mα0−2+εN2β0+ε

)
.

Hence, we have

W (x;M,N) =
x2

2M

∑
n1,n2<N

bn1bn2

ρ(n1)ρ(n2)

n1n2

ρ(n)

ρ((n1, n2))
A([n1, n2])

+O
(
x1+ε + x2Mα0−2+εN2+2β0+ε

)
.
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Since primes p | n0 satisfy ψ(p) = 0 and hence ρ(p) = 1, we have that
ρ((n1, n2)) = ρ(n). This implies the required estimate, that

W (x;M,N) =
x2

2M

∑
n1,n2<N

bn1bn2

ρ(n1)ρ(n2)

n1n2

A([n1, n2])

+O
(
x1+ε + x2Mα0−2+εN2+2β0+ε

)
.

(3.16)

Inserting the estimates (3.12), (3.13), and (3.16) into (3.8), we see that the
main terms cancel, and we obtain that∑

M<m<2M

B(x;m,N)2 �
(
x+ x2Mα0−2N2+2β0

)
xεM εN ε. (3.17)

Returning to the statement of the lemma, let N = xγ0−γ1ε. With this choice
of N , it suffices to show for any M < x1−8ε that∑

M<m<2M

|B(x;m,N)| � x1−3ε/2.

If M < x1−γ0−ε, the trivial estimate

|B(x;m,N)| ≤ ρ(m)
∑
n<N

ρ(n)� ρ(m)N

yields the desired result.
If M > x1−γ0−ε, we use the estimate (3.17) in equation (3.7), and obtain∑

M<m<2M

|B(x;m,N)| �
(

(Mx)1/2 + xM
α0−1

2 N1+β0
)
xεM εN ε

� x1−3ε/2

by our choice of M < x1−8ε and N = xγ0−γ1ε.

Armed with Lemma 3.5, we are now able to acquire the desired estimate
for the sifting functions S(Aq, u).
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Lemma 3.7. If z < xλ/2r, then for any ε > 0 and x sufficiently large, we
have ∑

q<x1−ε

(q,P (zq))=1

cqS(Aq, zq) < V (z)x·

·

 ∑
q<x1−ε

(q,P (zq))=1

cq
ρ(q)

q
F

(
(1 + γ0) log x− log q

log zq

)
log z

log zq
+Olog z(ε)

 ,

with γ0 as defined in Lemma 3.5, provided that for each q, z ≤ zq < xλ/2r

and 0 ≤ cq ≤ 1.

This lemma is essentially the same as Proposition 2 in [44], so we present
it without proof. We obtain a lower bound for the sum in Lemma 3.7 by
replacing F with f .

3.1.3 Proof of Theorem 3.2

With Lemma 3.7 at our disposal, we obtain a lower bound for the size of the
set

{1 ≤ n < x : G(n) ∈ P2}.

We wish to apply Lemma 3.4 and Lemma 3.7 to equation (3.5) to obtain
a lower bound for W (A, z). We may do this for each term in (3.5) but the
short sum ∑

x1−ε≤p<x

(
1− log p

λ/2 log x

)
S(Ap, z).

However, in this case, we make the estimate

S(Ap, z)�
x

p log(x/p)
,

yielding the bound O
(

εx
log x

)
. For notational convenience, set

α := 1 + γ0 and γ :=
log z

log x
.
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By partial summation, we obtain

W (A, z) > V (z)x

(
f

(
α

γ

)
+

[∫ 1
2

γ

∫ u

γ

u− t
1

γ

t
f

(
α− u− t

t

)
dt

t

du

u

−
∫ 1

2

γ

(
(1− 2u)

γ

u
F

(
α− u
u

)
+ uF

(
α− u
γ

))
du

u

−
∫ 1

1
2

(1− u)F

(
α− u
γ

)
du

u

]
− ε

)
=: V (z)x(W − ε),

where we have let λ tend to 2, which is permitted by continuity. Since ΓG 6= 0,
we have that V (z) � log−1 x by Mertens’ Theorem and we wish to show that
W > 0.
We observe that W decreases monotonically as α increases from 1, so we

wish to find γ < 1
2
such that W |α=1 > 0. However, we will not immediately

substitute α = 1 into the above formula. Instead, we will choose γ = α
6
and

take the limit as α tends to 1 from the right. Using that

sF (s) = 2eC
(

1 +

∫ s−1

2

log(u− 1)
du

u

)
if 3 ≤ s ≤ 5, and

sf(s) = 2eC
(

log(s− 1) +

∫ s−1

3

∫ t−1

2

log(u− 1)
du

u

dt

t

)
if 4 ≤ s ≤ 6, we obtain

W =
αeC

3

(
log

(
5

6
α

)
− α− 1

α
log(α− 1)

−
∫ 4

2

[
t log

(
6(t+ 1)

5(t+ 2)

)
+ (t+ 1) log

(
1− t

5

)]
log(t− 1)

t(t+ 1)
dt

)
.

Upon taking the limit α→ 1+, we see that

W1=
eC

3

(
log

(
5

6

)
−
∫ 4

2

[
t log

(
6(t+ 1)

5(t+ 2)

)
+(t+ 1) log

(
1− t

5

)]
log(t− 1)

t(t+ 1)
dt

)
,

which a numerical computation reveals to be positive.
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3.2 An equidistribution result for the congru-

ence G(x) ≡ 0 (mod m)

Here we prove Lemma 3.6, an equidistribution result for the roots of the
congruence G(x) ≡ 0 (mod m), where G(x) is any irreducible quadratic poly-
nomial. The proof of Theorem 3.2 is complete once this lemma is proved.
Before we can do this, however, we need a result concerning the Dirichlet
series L(s, ψ) :=

∑∞
m=1

ψ(m)
ms

, where ψ = ρ ∗ µ and ρ(m) is the number of
incongruent solutions to G(x) ≡ 0 (mod m). Although we only need this
result for deg(G(x)) = 2, we prove the following result for any irreducible
polynomial G(x).

Lemma 3.8. The series L(s, ψ) converges to a positive real number at s = 1.

Proof. One, admittedly easier, way to establish this result would be to ob-
serve that

L(s, ψ) =
ζK(s)

ζ(s)
· A(s),

where ζK(s) denotes the Dedekind zeta function of the splitting field of G(x),
and A(s) is given by an absolutely convergent product in the region <(s) >

1/2. However, we eschew this attack to present what we believe to be a more
aesthetically pleasing proof.
If D is the discriminant of G(x), then, by Hensel’s Lemma, we can express

the Euler product for L(s, ψ) as

L(s, ψ) = λD(s)
∏
p-D

(
1 +

ψ(p)

ps

)
=: λD(s)L0(s, ψ),

where λD(s) is the product arising from primes p | D. Since it is a finite
product, it will have no bearing on the convergence of L(1, ψ). Thus, we are
only concerned with the convergence of L0(1, ψ). Assuming that s is tending
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to 1 in the half-plane <(s) > 1, we have that

log (L0(s, ψ)) =
∑
p-D

log

(
1 +

ψ(p)

ps

)

=
∑
p-D

ψ(p)

ps
+O

∑
p-D

1

p2<(s)−ε


=

∑
p-D

ψ(p)

ps
+O(1).

Since ρ(p) can be interpreted Galois theoretically and depends only on the
conjugacy class C of Frobp in Gal(G), we have, letting Gal(G)# denote the
set of conjugacy classes of Gal(G) and recalling that ψ(p) = ρ(p)− 1,∑

p-D

ψ(p)

ps
=

∑
C∈Gal(G)#

(ρ(C)− 1)
∑

Frobp∈C

p−s

=
∑

C∈Gal(G)#

(ρ(C)− 1)
#C

#Gal(G)
log

(
1

s− 1

)
+ θ(s),

where θ(s) is holomorphic for <(s) ≥ 1. The last equality follows from the
Chebotarev Density Theorem (for example, see Proposition 1.5 of [72]). The
value of ρ(C) is the number of roots of G(x) in C fixed by elements of C, so
letting Fix(C) (resp. Fix(σ), for σ ∈ Gal(G)) be the number of fixed points
of an element of C (resp. the number of fixed points of σ), we have that∑

C∈Gal(G)#

#C · (ρ(C)− 1) =
∑

C∈Gal(G)#

#C · Fix(C)−#Gal(G)

=
∑

σ∈Gal(G)

Fix(σ)−#Gal(G) = 0,

by Burnside’s Lemma. Hence, we see that log (L0(s, ψ)) = O(1) as s tends to
1. Thus, the infinite product converges and L0(1, ψ) exists, whence L(1, ψ)

does as well. The fact that L(1, ψ) is positive and real comes immediately
from its Euler product and the definition of ψ(m).
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We will also need a lemma of Iwaniec [44, Lemma 7] on the approximation
of the characteristic function χI(t) of the interval I := [α, β) ⊆ [0, 1) by
Fourier series.

Lemma 3.9 (Iwaniec). Let 2∆ < β−α < 1−2∆. There exist two functions
A(t) and B(t) such that

|χI(t)− A(t)| = B(t)

and

A(t) = β − α +
∑
h6=0

Ahe(ht)

B(t) = ∆ +
∑
h6=0

Bhe(ht),

with Fourier coefficients Ah and Bh satisfying

|Ah|, |Bh| ≤ min

(
1

|h|
,
∆−2

|h|3

)
=: Ch. (3.18)

Armed with Lemmas 3.8 and 3.9, we now prove the main result of this
section, which is a generalization of Iwaniec’s Lemma 4 [44], and is the precise
statement of our Lemma 3.6. For a squarefree integer q we define

A(q) :=
φ(q)

q

L(1, ψ)

Lq(1, ψ)
, (3.19)

where φ(n) is Euler’s totient function,

Lq(1, ψ) :=
∏
p|q

(
1 +

ψ(p)

p
+ . . .+

ψ(prp)

prp

)
, (3.20)

and rp is the smallest integer such that ψ(pk) = 0 for all k > rp. We note that
rp exists as a consequence of Hensel’s Lemma because G(x) is irreducible.
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Lemma 3.10. Let q be a squarefree number, d an odd divisor of q, µ an
integer prime to d, and ω a root of G(x) modulo d. Furthermore, let M <

M1 < 2M and 0 ≤ α < β < 1. Let P (M1,M ; q, d, µ, ω, α, β) denote the
number of pairs of integers m,Ω such that M < m < M1, (m, q) = 1,
m ≡ µ (mod d), α ≤ Ω

mq
< β, G(Ω) ≡ 0 (mod mq), and Ω ≡ ω (mod d).

Then there are constants α0 < 1 and β0 such that, for every ε > 0,

P (M1,M ; q, d, µ, ω, α, β) = (β − α)(M1 −M)ρ
(q
d

) A(q)

φ(d)
+O

(
Mα0+εqβ0+ε

)
.

Proof. By Lemma 3.9, we have that

P (M1,M ; q, d, µ, ω, α, β) = (β − α)
∑

M<m<M1,(m,q)=1,m≡µ(mod d)
0≤Ω<mq,G(Ω)≡0(mod mq),Ω≡ω(mod d))

1

+O

ρ(q)∆M +
∑
h6=0

Ch

∣∣∣∣∣ ∑
M<m<M1,(m,q)=1,m≡µ(mod d)

0≤Ω<mq,G(Ω)≡0(mod mq),Ω≡ω(mod d)

e

(
hΩ

mq

) ∣∣∣∣∣
 .

(3.21)
By the Chinese Remainder Theorem, the sum in the main term above is
given by

ρ
(q
d

) ∑
M<m<M1

(m,q)=1
m≡µ(mod d)

ρ(m) = ρ
(q
d

) ∑
a≤T

(a,q)=1

ψ(a)
∑

M
a
<b<

M1
a
,(b,q/d)=1

b≡µā(mod d)

1

+ρ
(q
d

) ∑
b<2M1/2

(b,q)=1

∑
max(Mb ,T)<a<M1

b

a≡µb̄(mod d),(a,q/d)=1

ψ(a).
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If (a,D) = 1, then ψ(a) =
(
D
a

)
µ(a)2. Hence, we have that

ρ
(q
d

) ∑
M<m<M1

(m,q)=1
m≡µ(mod d)

ρ(m) = ρ
(q
d

) ∑
a≤T,(a,q)=1

ψ(a)

(
φ
(q
d

)M1 −M
aq

+O
(
φ
(q
d

)))

+O
(
ρ(q)φ(q)M

1
2

+ε
)

= ρ
(q
d

)
φ
(q
d

)M1 −M
q

∑
a≤T

(a,q)=1

ψ(a)

a
+O

(
ρ(q)φ(q)T 1+ε + ρ(q)φ(q)M

1
2

+ε
)

= ρ
(q
d

)
φ
(q
d

)M1 −M
q

L(1, ψ)

Lq(1, ψ)

+O

(
ρ(q)φ(q)

(
M
φ(q)

q
T−1+ε + T 1+ε +M

1
2

+ε

))
.

By choosing T = M
1
2 , we see that the error above is O

(
M

1
2

+εq1+ε
)
.

We now estimate the error term in (3.21), which is

O

(
ρ(q)∆M +

∑
h6=0

Ch

∣∣∣∣∣ ∑
M<m<M1,(m,q)=1,m≡µ(mod d)

0≤Ω<mq,G(Ω)≡0(mod mq),Ω≡ω(mod d)

e

(
hΩ

mq

) ∣∣∣∣∣
)
.

We will bound the above sum by an estimate of the form∑
M<m<M1,(m,q)=1,
m≡µ(mod d),0≤Ω<mq,

G(Ω)≡0(mod mq),Ω≡ω(mod d)

e

(
hΩ

mq

)
�Mα2+εqβ2+ε

∑
h6=0

Ch
(
1 + hMα3+εqβ3+ε

)
τ(h),

(3.22)
and, upon summing over h, we find that the error is

O

(
Mα2+εqβ2+ε

(
1 +

Mα3+εqβ3+ε

∆

)
(log ∆)2

)
, (3.23)

where α2 < 1, α3 < 1 − α2, and β2 and β3 are real numbers, and the last
equality has come from (3.18).
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If α3 < 0, we take ∆ = Mα3qβ3 , yielding that the error in equation (3.21)
is

O
(
M1+α3+εqβ3+ε +Mα2+εqβ2+ε

)
,

in which case we may take α0 = max
(

1
2
, α2, 1 + α3

)
and β0 = max (1, β2, β3) .

If α3 ≥ 0, we take ∆ = M
α2+α3−1

2 qβ3 , yielding that the error in equation (3.21)
is

O
(
M

1+α2+α3
2

+εqβ3+ε +M
1+α2+α3

2
+εqβ2+ε

)
,

and we may take α0 = max
(

1
2
, 1+α2+α3

2

)
and β0 = max (1, β2, β3) . Thus, it

only remains to establish (3.22).
We begin by removing the condition that (m, q) = 1 by Möbius inversion:∑

M<m<M1,(m,q)=1,m≡µ(mod d)
0≤Ω<qm,G(Ω)≡0(mod mq),Ω≡ω(mod d)

e

(
hΩ

mq

)

=
∑
l| q
d

µ(l)
∑

qM<E<qM1,E≡µq(mod dq),E≡0(mod lq)
0≤Ω<E,G(Ω)≡0(mod E),Ω≡ω(mod d)

e

(
hΩ

E

)
.

We will estimate the inner sum by using the theory of quadratic forms, a
method originally due to Hooley [42]. If c2 and E are relatively prime, there
is a bijection between roots G(Ω) ≡ 0 (mod E) and quadratic forms [E, y, z]

of discriminant D, given explicitly by Ω = y−c1
2
c2, where 0 ≤ c2 < E is the

inverse of c2 modulo E. To apply this correspondence, therefore, we first
take out the part of E not relatively prime to c2, getting∑

qM<E<qM1,E≡µq(mod dq)
E≡0(mod lq),0≤Ω<E

G(Ω)≡0(mod E),Ω≡ω(mod d)

e

(
hΩ

E

)

=
∑∗

f≤T
(f,c1)=1

∑
0≤u<fc2
(u,c2)=1

∑
0≤v<f

G(v)≡0(mod f)
v≡ω(mod (d,f))

e

(
hvū

f

) ∑∗

E,Ω

e

(
hΩf̄

E

)

+O
(
(qM)1+εT−1+ε

)
,
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where the star on the first summation indicates that f is composed only
of primes dividing c2, ū is the inverse of u modulo fc2, f̄ is the inverse
of f modulo E, T is a parameter to be specified later, and the star on
the innermost summation indicates that E and Ω satisfy qM

f
< E < qM1

f
,

fE ≡ 0 (mod lq), fE ≡ µq (mod dq), E ≡ u (mod fc2), 0 ≤ Ω < E, Ω ≡
ω
(
mod d

(d,f)

)
, and G(Ω) ≡ 0 (mod E).

We are now able to use the bijection between roots of quadratic congruences
and quadratic forms. From the explicit construction described above, we have
that ∑∗

E,Ω

e

(
hΩf̄

E

)
=

∑∗

[E,y,z]

e

(
hfc2(y − c1)

2E

)

=
∑∗

[E,y,z]

e

(
h(y − c1)

2fc2E
− hū(y − c1)

2fc2

)
,

where we have transferred the congruence conditions on Ω to conditions on
y. Now, suppose the form [E, y, z] is equivalent to [a, 2b + c1, c] under the

action of Γ0(fc2). In other words, there is an

(
α β

γ δ

)
∈ Γ0(fc2) such that

(
α γ

β δ

)(
a 2b+c1

2
2b+c1

2
c

)(
α β

γ δ

)
=

(
E y

2
y
2

z

)
,

where

Γ0(fc2) =

{(
α β

γ δ

)
∈ SL2(Z) : β ≡ 0 (mod fc2)

}
.

Then we have that

E = aα2 + (2b+ c1)αγ + cγ2 =: Eα,γ, (3.24)

and
y = 2aαβ + (2b+ c1)(αδ + βγ) + 2cγδ. (3.25)
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Hence, we see that
y − c1

2
= aαβ + cγδ + b(αδ + βγ) + c1βγ,

from which it follows that

α
y − c1

2
= βEα,γ + cγ + bα.

Thus, we have that

h(y − c1)

2fc2E
− hū(y − c1)

2fc2

=
hβ

fc2α
+
h(cγ + bα)

fc2αEα,γ
− hū(βEα,γ + cγ + bα)

fc2α

≡
h
((
fc2fc2 − 1

)
cūγ − fc2fc2γ̄

)
fc2α

+
h(cγ + bα)

fc2αEα,γ
− hbū

fc2

(mod 1)

=:
h
((
fc2fc2 − 1

)
cūγ − fc2fc2γ̄

)
fc2α

+ hφα,γ,

where γ̄ and fc2 are the inverses of γ and fc2 modulo α, respectively. To
simplify notation, we denote by θα,γ the quantity on the right hand side of
the final equation. We note that we may obtain a similar expression for θα,γ
with γ in the denominator. With this notation, we have that∑∗

E,Ω

e

(
hΩf̄

E

)
=

∑′

Q=[a,2b+c1,c]

∑∗

α,γ

e (θα,γ) , (3.26)

where the outer sum runs over a set of representatives of quadratic forms
Q = [a, 2b + c1, c] of discriminant D under the action of Γ0(fc2), and the
inner sum runs over coprime integers α and γ such that qM

f
< aα2 + (2b +

c1)αγ + cγ2 < qM1

f
, restricted to one representation of the form (3.24) and

(3.25), and satisfying

fEα,γ ≡ 0 (mod lq) ,
fEα,γ ≡ µq (mod dq) ,
Eα,γ ≡ u (mod fc2) , and(

1−ūEα,γ
c2

)
(cγ + bα)− αω ≡ 0

(
mod d

(d,f)

)
.

(3.27)
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If either α or γ is fixed, the number of simultaneous soltuions to these con-
gruences, cG, is bounded by (q, c)τ(q)(fc2)

1
2 . Since c = O(1) if G(x) is monic,

we have that cG is O(qε) if G(x) is monic and O(q1+εf
1
2 ) otherwise.

Returning to (3.26), we now break into two cases, depending on the sign
of D. If D is negative, then the forms [a, 2b+ c1, c] are positive definite, and
we may write ∑∗

E,Ω

e

(
hΩf̄

E

)
=

∑′

Q=[a,2b+c1,c]

1

|ΓQ|
∑∗

α,γ

e (θα,γ) , (3.28)

where the summation over α and γ is no longer restricted to one represen-
tation of (3.24) and (3.25) and ΓQ is the isotropy subgroup of Q in Γ0(fc2).
We consider this case completely before handling the indefinite case, D > 0.
Since the number of reduced forms is finite, we are primarily concerned

with estimating∑∗

α,γ

e (θα,γ) =
∑∗

|γ|<|α|

e (θα,γ) +
∑∗

|α|<|γ|

e (θα,γ) .

These two sums can be handled in the same way, so we will only provide
details for the first. In this case, we have that∣∣∣∣∣∣
∑∗

|γ|<|α|

e (θα,γ)

∣∣∣∣∣∣
� cG

∑
α

sup
λ,Λ

∣∣∣∣∣∣
∑∗

γ≡λ(mod Λ)

e

(
h
((
fc2fc2 − 1

)
cūγ − fc2fc2γ̄

)
fc2α

+ hφα,γ

)∣∣∣∣∣∣ .
(3.29)

We will use partial summation to handle this inner sum. To do so, we note
that

φα,γ − φα,γ+1 �
max(|a|, |b|, |c|)
|α|qM

. (3.30)

We will also need the following estimate for incomplete Kloosterman sums,
which can be derived from Weil’s bound via the method of completion.
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Lemma 3.11. If u, v, and s are integers and if 0 < r2 − r1 < 2s, then, for
any integers λ and Λ, we have that∑

r1<r<r2,(r,s)=1
r≡λ(mod Λ)

e

(
ur + vr̄

s

)
� s

1
2

+ε(u, v, s)
1
2 .

Now, by using Lemma 3.11 and (3.30) with partial summation in (3.29),
we get that∣∣∣∣∣∣

∑∗

|γ|<|α|

e (θα,γ)

∣∣∣∣∣∣ � cGq
1
4

+εM
1
4

+εf
1
4

(
1 +

hmax(|a|, |b|, |c|)
qM

)∑
α

(α, h)
1
2

� cGq
3
4

+εM
3
4

+εf−
1
4

+ε

(
1 +

hmax(|a|, |b|, |c|)
qM

)
τ(h).

We obtain the same estimate for
∑∗
|α|<|γ| .

If G(x) is monic, then max(|a|, |b|, |c|) � |D| 12 = O(1) by the theory of
reduced forms for SL2(Z)(= Γ0(1)). Since the number of reduced forms is
finite and depends only on the discriminant, we then have that∑∗

E,Ω

e

(
hΩ

E

)
= O

(
q

3
4

+εM
3
4

+ε

(
1 +

h

qM

)
τ(h)

)
.

The same estimate holds for
∑

m,Ω e
(
hΩ
mq

)
, establishing (3.22).

If G(x) is not monic, by considering the coset representatives of Γ0(fc2) in
SL2(Z), which can be taken modulo fc2, we obtain max(|a|, |b|, |c|) = O(f 2),
from which it follows that∑∗

E,Ω

e

(
hΩ

E

)
� q

7
4

+εM
3
4

+εf
1
4

+εHD(fc2)

(
1 +

hf 2

qM

)
τ(h),

where HD(fc2) denotes the number of reduced forms of discriminant D with
respect to the action of Γ0(fc2). By again considering the coset representa-
tives of Γ0(fc2) in SL2(Z), we see that

HD(fc2) ≤ HD(1)[SL2(Z) :Γ0(fc2)]� f 1+ε.
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Hence, we have that∑
m,Ω

e

(
hΩ

mq

)
� (qM)1+εT−1+ε

+ q
7
4

+εM
3
4

+ετ(h)
∑∗

f≤T

∑
(u,fc2)=1

ρ(f)HD(fc2)f
1
4

+ε

(
1 +

hf 2

qM

)

� (qM)1+εT−1+ε + q
7
4

+εM
3
4

+εT
9
4

+ετ(h)

(
1 +

hT 2

qM

) ∑∗

f≤T

1

� (qM)1+εT−1+ε + q
7
4

+εM
3
4

+εT
9
4

+ετ(h)

(
1 +

hT 2

qM

)
,

where, on the last line, we have used that there are O(T ε) values of f ≤ T

whose prime divisors all divide c2. Upon choosing T = q−
3
13M

1
13 , we see that

(3.22) holds, with∑
m,Ω

e

(
hΩ

mq

)
� q

16
13

+εM
12
13

+ε
(

1 + hq−
19
13M− 11

13

)
τ(h).

We now consider the indefinite case (i.e. when D > 0). To deduce (3.22)
from the sum in (3.26), we apply the theory of Pell-type equations. If D ≡
0 (mod 4), let

u2 − D

4
v2 = 1

be chosen such that τ := u + v
√

D
4

is minimal with τ > 1. If τm =

um + vm

√
D
4
, let k = kfc2 be the smallest positive integer such that vk ≡

0 (mod fc2). If D ≡ 1 (mod 4), let

u2 + uv − D − 1

4
v2 = 1

be chosen such that τ := u + v
(

1+
√
D

2

)
is minimal with τ > 1. If τm =

um + vm

(
1+
√
D

2

)
, we again let k be the smallest positive integer such that

vk ≡ 0 (mod fc2).
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With this notation, since we may take a > 0, there is a unique representa-
tive of (3.24) and (3.25) satisfying α > 0 and

− 2a(τ k − 1)

b+ (τ k + 1)
√
D
α < γ ≤ 2a(τ k − 1)

(τ k + 1)
√
D − b

α.

We apply the same techniques as in the positive definite case and find that∑∗

E,Ω

e

(
hΩ

E

)
� cGq

3
4

+εM
3
4

+εf
9
4

+εHD(fc2)

(
1 +

hf 2

qM

)
τ(h),

from which we derive that∑
m,Ω

e

(
hΩ

mq

)
� q

3
4

+εM
3
4

+ε

(
1 +

h

qM

)
τ(h)

if G(x) is monic, and∑
m,Ω

e

(
hΩ

mq

)
� q

8
7

+εM
20
21

+ε
(

1 + hq−
9
7M− 18

21

)
τ(h)

if G(x) is not monic. This establishes (3.22).
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Chapter 4

The analytic theory of modular

forms

4.1 The Alder-Andrews conjecture

(The results in this section are joint with Marie Jameson and Claudia Alfes.)
A famous identity of Euler states that the number of partitions into odd

parts equals the number of partitions into distinct parts, and the first Rogers-
Ramanujan identity tells us that the number of partitions into parts which
are±1 (mod 5) equals the number of partitions into parts which are 2-distinct
(a d-distinct partition is one where the difference between any two parts is
at least d). Another related identity is a theorem of Schur which states that
the partitions of n into parts which are ±1 (mod 6) are in bijection with
the partitions of n into 3-distinct parts where no consecutive multiples of
3 appear. In 1956, these three facts encouraged H.L. Alder to consider the
partition functions qd(n) := p(n|d-distinct parts) and Qd(n) := p(n|parts ±
1 (mod d+ 3)).

Conjecture (Alder). If ∆d(n) = qd(n) − Qd(n), then, for any d, n ≥ 1, we
have that ∆d(n) ≥ 0.
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By the above discussion, the conjecture is true for d ≤ 3, and the inequality
can be replaced by an equality for d = 1 and 2. Large tables of values seem to
suggest, however, that qd(n) and Qd(n) are rarely equal. Andrews [2] refined
Alder’s conjecture (see [4] for more information on this conjecture):

Conjecture (Alder-Andrews). For 4 ≤ d ≤ 7 and n ≥ 2d + 9, or d ≥ 8 and
n ≥ d+ 6, ∆d(n) > 0.

Remark. For any given d, there are only finitely many n not covered by the
Alder-Andrews conjecture, and a simple argument shows that ∆d(n) ≥ 0 for
these n.

In essence, Alder’s conjecture asks us to relate the coefficients of

∞∑
n=0

Qd(n)qn =
∞∏
n=1

1

(1− qn(d+3)−(d+2))(1− qn(d+3)−1)

and
∞∑
n=0

qd(n)qn =
∞∑
n=0

qd(
n
2)+n

(1− q)(1− q2) · · · (1− qn)
.

Although the first generating function is essentially a weight 0 modular form,
the second is generally not modular (except in the cases d = 1 and 2). This
is the root of the difficulty in proving Alder’s conjecture, since the task is
to relate Fourier coefficients of two functions which have different analytic
properties.
Nonetheless, there have been several significant advances toward proving

Alder’s conjecture. Using combinatorial methods, Andrews [2] proved that
Alder’s conjecture holds for all values of d which are of the form 2s−1, s ≥ 4.

In addition, Yee ([80], [81]) proved that the conjecture holds for d = 7 and
for all d ≥ 32. These results are of great importance because they resolve the
conjecture except for 4 ≤ d ≤ 30, d 6= 7, 15.

In addition, Andrews [2] deduced that limn→∞∆d(n) = +∞ using powerful
results of Meinardus ([56], [57]) which give asymptotic expressions for the
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coefficients qd(n) and Qd(n). Unfortunately, a mistake in [57] implies that one
must argue further to establish this limit. We correct the proof of Meinardus’s
main theorem (see the discussion after (4.21)) and show that the statement
of the theorem remains unchanged. We first prove the following result, which
can be made explicit:

Theorem 4.1. Let d ≥ 4 and let α ∈ [0, 1] be the root of αd + α− 1 = 0. If
A := d

2
log2 α +

∑∞
r=1

αrd

r2
, then for every positive integer n we have

∆d(n) =
A1/4

2
√
παd−1(dαd−1 + 1)

n−3/4 exp(2
√
nA) + Ed(n),

where Ed(n) = O
(
n−

5
6 exp(2

√
nA)

)
.

Remark. The main term of ∆d(n) is the same as the main term for qd(n) (cf.
Theorem 4.6).

In the course of proving Theorem 4.1, we derive explicit approximations
for Qd(n) and qd(n) (see Theorems 4.3 and 4.6, respectively). Using these
results, we obtain the following:

Theorem 4.2. The Alder-Andrews Conjecture is true.

In order to prove Theorems 4.1 and 4.2, we consider qd(n) and Qd(n) inde-
pendently and then compare the resulting effective estimates. Accordingly,
in Section 4.1.1, we give explicit asymptotics for Qd(n), culminating in The-
orem 4.3. Next, in Section 4.1.2, we laboriously make Meinardus’s argument
effective (and correct) in order to give an explicit asymptotic formula for
qd(n) in Theorem 4.6. In Section 4.1.3 we use the results from Sections 4.1.1
and 4.1.2 to prove Theorems 4.1 and 4.2.
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4.1.1 Estimate of Qd(n) with explicit error bound

As before, let Qd(n) denote the number of partitions of n whose parts are
±1 (mod d+ 3). From the work of Meinardus, we have that

Qd(n) ∼ (3d+ 9)−
1
4

4 sin
(

π
d+3

)n− 3
4 exp

(
n

1
2

2π√
3(d+ 3)

)
.

In this formula, only the order of the error is known. We will bound the error
explicitly, following closely the method of Meinardus [56] as it is presented by
Andrews in Chapter 6 of [3]. This allows us to prove the following theorem:

Theorem 4.3. If d ≥ 4 and n is a positive integer, then

Qd(n) =
(3d+ 9)−

1
4

4 sin
(

π
d+3

)n− 3
4 exp

(
n

1
2

2π√
3(d+ 3)

)
+R(n),

where R(n) is an explicitly bounded function (see (4.10) at the end of this
section).

Remark. An exact formula for Qd(n) is known due to the work of Subrah-
manyasastri [75]. In addition, by using Maass-Poincaré series, Bringmann
and Ono [13] obtained exact formulas in a much more general setting. How-
ever, we do not employ these results since the formulas are extremely com-
plicated, and Theorems 4.1 and 4.2 do not require this level of precision.

Preliminary Facts

Consider the generating function f associated to Qd(n),

f(τ) :=
∏

n≡±1(d+3)
n≥0

(1− qn)−1 = 1 +
∞∑
n=1

Qd(n)qn,

where q = e−τ and <(τ) > 0. Let τ = y + 2πix. We can then obtain a
formula for Qd(n) by integrating f(τ) against enτ . Consequently, we require
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an approximation of f(τ) so that we may make use of this integral formula.
To do this, we need an additional function,

g(τ) :=
∑

n≡±1(d+3)
n≥0

qn.

Lemma 4.4. If arg τ > π
4
and |x| ≤ 1

2
, then <(g(τ))−g(y) ≤ −c2y

−1, where
c2 is an explicitly given constant depending only on d.

Proof. For notational convenience, we will consider the expression

−y (<(g(τ))− g(y)) .

Expanding, we find that

−y (<(g(τ))− g(y)) = S1 + S2 + S3,

where

S1 :=

(
1− cos(2πx)

) (
e(3d+8)y − e(2d+5)y − e(d+4)y + ey

)(
e(d+3)y−1

y

)
(e(2d+6)y − 2e(d+3)y cos(2π(d+ 3)x) + 1)

,

S2 :=

(
1− cos(2π(d+ 2)x)

) (
e(2d+7)y − e(2d+5)y − e(d+4)y + e(d+2)y

)(
e(d+3)y−1

y

)
(e(2d+6)y − 2e(d+3)y cos(2π(d+ 3)x) + 1)

,

and

S3 :=

(
1− cos(2π(d+ 3)x)

) (
2e(2d+5)y + 2e(d+4)y

)(
e(d+3)y−1

y

)
(e(2d+6)y − 2e(d+3)y cos(2π(d+ 3)x) + 1)

.

When y = 0, each of S1, S2, and S3 is defined. Namely, S1 = 0, S2 = 0, and
S3 = 2

d+3
.

Since these functions are even in x, we may assume x ≥ 0. Further, the
condition arg τ > π

4
implies that y < 2πx. To find c2, we note that each

Si ≥ 0 and so it suffices to bound one away from 0. We do this in three
different cases.
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Case 1 : Suppose that y ≥ 1
2
. Since 1

2
> x > 1

2π
y, it follows that 1 −

cos(2πx) > 1− cos 1
2
and that S1 is bounded away from 0. In particular,

S1 ≥
π
(
1− cos 1

2

) (
e

3d+8
2 − e 2d+5

2 − e d+4
2 + e

1
2

)
(eπ(d+3) − 1) (eπ(d+3) + 1)

2 . (4.1)

Case 2 : Suppose that y < 1
2
and

∣∣x− k
d+3

∣∣ < y
d+3

for some positive integer
k. Although less obvious than in Case 1, S1 will again be bounded away from
0:

S1 ≥
π
(
1− cos π

d+3

)
eπ(d+3) − 1

e(3d+8)y − e(2d+5)y − e(d+4)y + ey

(e(d+3)y − 1)
2

+ 8π2y2e(d+3)y
,

and so

S1 ≥
2π3

(
1− cos π

d+3

)
(d+ 2)(d+ 3)

(eπ(d+3) − 1)
(

(e(d+3)π + 1)
2

+ 8π4e(d+3)π
) . (4.2)

Case 3 : Suppose that y < 1
2
and

∣∣x− k
d+3

∣∣ ≥ y
d+3

for some non-negative
integer k. We additionally assume

∣∣x− k
d+3

∣∣ ≤ 1
2(d+3)

. This is permitted
since every x is covered as we vary k. It will be S3 that is bounded away
from 0.
Let u := 2π(d + 3)

∣∣x− k
d+3

∣∣ and note that 0 ≤ u ≤ π, y ≤ u
2π
, and

cosu = cos 2π(d+ 3)x. Now, we have that

S3 ≥
4π

e(d+3)π − 1

1− cosu(
e

(d+3)u
2π − 1

)2

+ 2e
(d+3)u

2π (1− cosu)
,

and a tedious analysis of the derivative of this function implies for d ≥ 4 that

S3 ≥
8π

(e(d+3)π − 1)

((
e
d+3
2 − 1

)2

+ 4e
d+3
2

) . (4.3)

Obviously, we may take c2 to be the minimum of the bounds (4.1), (4.2),
and (4.3).

Using Lemma 4.4, we now obtain an approximation for f(τ).
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Lemma 4.5. If |arg τ | ≤ π
4
and |x| ≤ 1

2
, then

f(τ) = exp

(
π2

3(d+ 3)
τ−1 + log

(
1

2 sin π
d+3

)
+ f2(τ)

)
,

where f2(τ) = O
(
y

1
2

)
is an explicitly bounded function. Furthermore, if

y ≤ ymax is sufficiently small, 0 < δ < 2
3
, 0 < ε1 < δ

2
, β := 3

2
− δ

4
, and

yβ ≤ |x| ≤ 1
2
, then there is a constant c3 depending on d, ε1 and δ such that

f(y + 2πix) ≤ exp

(
π2

3(d+ 3)
y−1 − c3y

−ε1
)
.

Remark. The discussion of the size of ymax will follow (4.4).

Proof. From page 91 of Andrews [3], we have that

log f(τ) = τ−1 π2

3(d+ 3)
+log

(
1

2 sin π
d+3

)
+

1

2πi

− 1
2

+i∞∫
− 1

2
−i∞

τ−sΓ(s)ζ(s+1)D(s)ds,

where D(s) is the Dirichlet series

D(s) :=
∑

n≡±1(d+3)
n≥0

1

ns

which converges for <(s) > 1. Writing

D(s) = (d+ 3)−s
(
ζ

(
s,

1

d+ 3

)
+ ζ

(
s,
d+ 2

d+ 3

))
,

where ζ(s, a) is the Hurwitz zeta function, we see that D(s) can be analyti-
cally continued to the entire complex plane except for a pole of order 1 and
residue 2

d+3
at s = 1 (see, for example, page 255 of Apostol’s book [5]).

We bound the integral by noting that |D(s)| ≤ |ζ(s)|, obtaining∣∣∣∣∣∣∣
1

2πi

− 1
2

+i∞∫
− 1

2
−i∞

τ−sΓ(s)ζ(s+ 1)D(s)ds

∣∣∣∣∣∣∣ ≤ ξ
√
y,
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where

ξ :=

√
2

2π

∫ ∞
−∞

∣∣∣∣ζ (1

2
+ it

)
ζ

(
−1

2
+ it

)
Γ

(
−1

2
+ it

)∣∣∣∣ dt.
The first statement of the lemma follows.

Remark. Numerical estimates show that ξ < .224.

To prove the second statement, we again follow the method of Andrews [3].
We consider two cases: (1) yβ ≤ |x| ≤ y

2π
and (2) y

2π
≤ |x| ≤ 1

2
. In the first,

we see that |arg τ | ≤ π
4
, so we apply the first statement of the lemma, getting

log |f(y + 2πix)|

≤ π2y−1

3(d+ 3)
+

π2y−1

3(d+ 3)

((
1 + 4π2x2y−2

)− 1
2 − 1

)
+ log

(
1

2 sin π
d+3

)
+ ξ
√
y

≤ π2

3(d+ 3)
y−1 − c4y

− δ
2 ,

where

c4 :=
π4

3(d+ 3)

(
2− 3

2
y

1− δ
2

max

)
− log

(
1

2 sin π
d+3

)
y
δ
2
max − ξy

1+δ
2

max.

In the second case, we have that

log |f(y + 2πix)| = log f(y) + < (g(τ))− g(y),

and using Lemma 4.4, we obtain

log |f(y + 2πix)| ≤ π2

3(d+ 3)
y−1 − c5y

−1

where

c5 := c2 − ymax log

(
1

2 sin π
d+3

)
− ξy

3
2
max. (4.4)

We let c3:=min
(
c4(ymax)ε1−

δ
2 , c5(ymax)ε1−1) and take ymax to be small enough

so that c3>0.
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Remark. In the proof of Theorem 4.1, we need only bound Qd(n) since it
is of lower order than qd(n). We shall ignore the restriction on ymax for
convenience.

Proof of Theorem 4.3

From the Cauchy integral theorem, we have

Qd(n) =
1

2πi

∫ τ0+2πi

τ0

f(τ) exp(nτ) dτ

=

∫ 1
2

− 1
2

f(y + 2πix) exp(ny + 2nπix) dx.

Applying the saddle point method, we take y = n−
1
2π/
√

3(d+ 3) and we let
m := ny for notational simplicity. Assuming the notation in Lemma 4.5, for
n ≥ 6, we have ymax ≤

(
1

2π

) 1
β−1 , so that both cases in the proof of the second

statement of Lemma 4.5 are nonvacuous. We have that

Qd(n) = em
∫ yβ

−yβ
f(y + 2πix) exp(2πinx) dx+ emR1,

where

R1 :=

(∫ −yβ
− 1

2

+

∫ 1
2

yβ

)
f(y + 2πix) exp(2πinx) dx.

By Lemma 4.5,

|R1| ≤ exp

[
π2

3(d+ 3)

(m
n

)−1

− c3

(m
n

)−ε1]
,

so

|emR1| ≤ exp

(
2m− c3m

ε1

(
π2

3(d+ 3)

)−ε1)
. (4.5)

Using Lemma 4.5, write

Qd(n) = exp
(

2m− log
(

2 sin
π

d+ 3

))∫ (m/n)β

−(m/n)β
exp(φ1(x)) dx+ exp(m)R1,
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where

φ1(x) := m

[(
1 +

2πixn

m

)−1

− 1

]
+ 2πinx+ g1(x)

and |g1(x)| ≤ ξ
√

π2

3m(d+3)
.

After making the change of variables 2πx = (m/n)ω, we obtain

Qd(n) = exp

(
2m+ log

m

n
+ log

(
1

2 sin π
d+3

)
− log 2π

)
I + exp(m)R1,

where

I :=

∫ c10m1−β

−c10m1−β
exp(φ2(ω)) dω, c10 := 2π

(
π2

3(d+ 3)

)β−1

,

and
φ2(ω) := m

(
1

1 + iω
− 1 + iω

)
+ g1(ω).

We must now find an asymptotic expression for I. Write

I =

∫ c10m1−β

−c10m1−β
exp

(
−mω2

)
dω +R2, (4.6)

where

R2 :=

∫ c10m1−β

−c10m1−β
exp

(
−mω2

)
(exp(φ3(ω))− 1) dω,

with
φ3(ω) := m

(
1

1 + iω
− 1 + iω + ω2

)
+ g1(ω).

Simplifying, we find that

|φ3(ω)| ≤ c3
10m

3δ−2
4 + ξ

√
π2

3m(d+ 3)
. (4.7)

Substituting mmin = 2
2−δ
4 π

10−δ
4 (3(d+ 3))−1 for m in (4.7), it follows that

|φ3(ω)| ≤ 2
44+8δ−3δ2

16 π
76+8δ−3δ2

16

3(d+ 3)
+ ξ(2π)

δ−2
8 =: φ3,max.
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Thus, letting c6 := exp(φ3,max)−1

φ3,max
, we have

|exp(φ3(ω))− 1| ≤ m−
1
2

+ 3δ
4

(
c6c

3
10 + ξc6m

− 3δ
4

min

√
π2

3(d+ 3)

)
=: m−

1
2

+ 3δ
4 c7.

Hence, we conclude that |R2| ≤ 2c10c7m
δ−1.

Computing the integral in (4.6), we see that∫ −c10m1−β

−c10m1−β
exp

(
−mω2

)
dω =

( π
m

) 1
2

+ g2(m), (4.8)

where |g2(m)| ≤ 2m−
1
2 exp

(
−c10m

δ
4

)
. Thus, we find that I =

(
π
m

) 1
2 +

g2(m) + R2. Combining these results, we obtain the desired expression for
Qd(n),

Qd(n) =

(
n−

3
4 (3(d+ 3))−

1
4

4 sin
(

π
d+3

) )
exp

(
n

1
2

2π√
3(d+ 3)

)
+R(n), (4.9)

where

|R(n)| ≤

n−
1
4

(
π

1
2 (3(d+ 3))−

3
4

2 sin
(

π
d+3

) )
exp

(
n

1
2

2π√
3(d+ 3)

−n
δ
8 2π2− δ

4 (3(d+ 3))−2+ 3δ
8

)

+n−1+ δ
2

(
c7π

1+ δ
2

(3(d+ 3))2 sin
(

π
d+3

)) exp

(
n

1
2

2π√
3(d+ 3)

)

+ exp

(
n

1
2

2π√
3(d+ 3)

− c3n
ε1
2

(
π2

3(d+ 3)

)− 3ε1
2

)
.

(4.10)

4.1.2 Estimate of qd(n) with explicit error bound

Theorem 2 of [57] (with k = m = 1 and ` = d) gives

qd(n) ∼ A1/4

2
√
παd−1(dαd−1 + 1)

n−3/4 exp(2
√
nA),
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where α and A depend only on d (see their definitions below in Theorem 4.6).
We will bound the error explicitly, following closely the paper of Meinardus
[57]. We make his calculations effective, and we obtain the following theorem.

Theorem 4.6. Let α be the unique real number in [0, 1] satisfying αd+α−1 =

0, and let A := d
2

log2 α +
∑∞

r=1
αrd

r2
. If n is a positive integer, then

qd(n) =
A1/4

2
√
παd−1(dαd−1 + 1)

n−3/4 exp(2
√
nA) + rd(n)

where |rd(n)| can be bounded explicitly (see the end of this section).

Preliminary Facts

For fixed d ≥ 4, we have the generating function

f(z) :=
∞∑
n=0

qd(n)e−nz (4.11)

with z = x+ iy. Hence, we obviously have that

qd(n) =
1

2π

∫ π

−π
f(z)enz dy. (4.12)

Therefore to estimate qd(n) we require strong approximations for f(z).

Lemma 4.7. Assuming the notation above, for |y| ≤ x1+ε and x < β, where

β := min

(
− π

log ρ
ξ,

2α2−d

πd
,

1

2d
+ ρ

(
1

2
− π2

24

)) 1
ε

and 0 < ξ < 1 is a constant, we have that

f(z) =
(
αd−1

(
dαd−1 + 1

))− 1
2 e

A
z (1 + ferr(z)),

where ferr(z) = o(1) is an explicitly bounded function.
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Lemma 4.8. Assuming the notation above, for x < β and x1+ε < |y| ≤ π,
we have that

|f(x+ iy)| ≤
√

2π

dx
e−ηρx

2ε−1

(1 + f2(ρ, x)) exp

(
A

x
+

1− d
2

logα + f1(ρ, x)

)
,

where f1, f2 are functions given in Lemma 4.9, and η is an explicitly given
constant.

Remark. Although ε = 11
24

in [57], we will benefit by varying ε in our work.

To prove Lemmas 4.7 and 4.8, we follow [57] and write, by the Cauchy
Integral Theorem,

f(z) =
1

2πi

∫
C
H(w, z)Θ(w, z)

dw

w
(4.13)

where C is a circle of radius ρ := 1− α centered at the origin,

H(w, z) :=
∞∏
n=1

(1− we−nz)−1, and Θ(w, z) :=
∞∑

n=−∞

e−
d
2
n(n−1)zw−n.

(4.14)
Therefore, we estimate H(w, z) and Θ(w, z).

Lemma 4.9. Let ρ = αd = 1 − α and suppose w = ρeiφ with −π ≤ φ < π.
Then for |y| ≤ x1+ε and x < β,

H(w, z) = exp

(
1

z

∞∑
r=1

wr

r2
+

1

2
log(1− w) + f1(w, z)

)
(4.15)

and

Θ(w, z) =

√
2π

dz
exp

(
log2w

2dz
− 1

2
logw

)
(1 + f2(w, z)), (4.16)

where, as x→ 0, f1(w, z) = O
(
x

1
2

)
and

f2(w, z) = O
(
x+ exp

[
−c0

x
(π − |φ|) + c1x

ε−1
])

are explicitly bounded functions.
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Proof. First, (4.14) and the inverse Mellin transform yield

logH(w, z) =
1

2πi

∫ 2+i∞

2−i∞
z−sΓ(s)ζ(s)D(s+ 1, w) ds, (4.17)

where ζ(s) is the Riemann zeta function, Γ(s) is the Gamma function, and
D(s, w) :=

∑
r≥1

wr

rs
, which is defined as a function of s for all fixed w with

|w| < 1.
Note that if θ0 := arctanxε, then

|z1/2−it| ≤ |z|1/2eθ0|t| ≤
(
1 + x2ε

) 1
4 x1/2eθ0|t|.

By changing the curve of integration and accounting for the poles at s = 0

and 1, we have

logH(w, z) =
1

z

∑
r≥1

wr

r2
+

log(1− w)

2
+ f1(w, z),

where

|f1(w, z)| =

∣∣∣∣ 1

2πi

∫ ∞
−∞

z1/2−itΓ

(
−1

2
+ it

)
ζ

(
−1

2
+ it

)
D

(
1

2
+ it, w

)
dt

∣∣∣∣
≤

(
1 + x2ε

) 1
4 2−

5
2π−

3
2 ζ

(
3

2

)
ρ

1− ρ
4

π
2
− θ0

x
1
2 =: f1(x)

This proves the first statement as x2ε and θ0 = arctanxε both tend toward 0
as x→ 0.
The transformation properties of theta functions functions give

Θ(w, z) =

√
2π

dz
e

(logw−dz/2)2
2dz

∞∑
µ=−∞

e
−2π2µ2

dz
− 2πiµ

dz
(logw−dz/2). (4.18)

The argument on page 295 of [57] completes the proof of the lemma, with

|f2(w, z)| ≤ e
d|z|
8

e dx√1+x2ε

8 − 1 + 2
exp

(
− 4π2(1−ξ)
dx(1+x2ε)

)
1− exp

(
− 2π2(1−ξ)
dx(1+x2ε)

)


+2 exp

(
2π(|φ| − π)

dx (1 + x2ε)
− 2π log ρ

d
xε−1 +

d|z|
8

)
=: f2(φ, z) = f 0

2 (z) + fφ2 (z) exp

(
2π|φ|

dx (1 + x2ε)

)
.

(4.19)
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We now prove Lemmas 4.7 and 4.8 using Lemma 4.9.

Proof of Lemma 4.7. Recall from (4.13) that

f(z) =
1

2πi

∫
C
H(w, z)Θ(w, z)

dw

w
.

Let φ0 = xc with 3
8
< c < 1

2
. Then

f(z) =
1

2πi

∫ ρeiφ0

ρe−iφ0
H(w, z)Θ(w, z)

dw

w
+

1

2πi

∫
B
H(w, z)Θ(w, z)

dw

w
, (4.20)

where B is the circle C without the arc ρe−iφ0 to ρeiφ0 .
We first estimate the second integral in (4.20). We note the error of Meinar-

dus [57] in the bound of Θ(w, z) provided between (25) and (26). From
Lemma 4.9, we have that

|Θ(w, z)| ≤√
2π

d|z|
ρ−

1
2 exp

(
x log2 ρ

2d(x2 + y2)
− φ2x

2d(x2 + y2)
+

yφ log ρ

d(x2 + y2)

)
(1 + |f2(w, z)|) .

(4.21)
The term yφ log ρ

d(x2+y2)
does not appear in [57] and tends to infinity if yφ < 0. This

term arises from the main term of Θ(w, z), so its contribution cannot be ig-
nored. Furthermore, it is O (xε−1), and hence cannot be combined into the
negative O (x2c−1) term arising from φ2x

2d(x2+y2)
. However, the bound Meinar-

dus claims on the product |H(w, z)Θ(w, z)| is correct. To see this, we need
more than the bound |H(w, z)| ≤ H(ρ, x) that was originally thought to be
sufficient.
From Lemma 4.9, we have that

|H(w, z)| ≤ exp (|f1(w, z)|) (1 + ρ)
1
2 exp

(
<

(
1

z

∞∑
r=1

wr

r2

))
, (4.22)
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and

<

(
1

z

∞∑
r=1

wr

r2

)
=

x

x2 + y2

∞∑
r=1

ρr cos(rφ)

r2
+

y

x2 + y2

∞∑
r=1

ρr sin(rφ)

r2

=
x

x2 + y2

∞∑
r=1

ρr

r2
+

x

x2 + y2

∞∑
r=1

ρr

r2
(cos(rφ)− 1)

−yφ log(1− ρ)

x2 + y2
+

y

x2 + y2

∞∑
r=1

ρr

r2
(sin(rφ)− rφ).

Since ρ = αd and 1 − ρ = α, combining this with (4.22) and (4.21), we see
that

|H(w, z)Θ(w, z)|≤

√
2π(1 + ρ)

d|z|ρ
(1 + |f2(w, z)|) exp

(
|f1(w, z)|+ Ax

x2 + y2

− φ2x

x2 + y2
·

[
1

2d
+

1

φ2

∞∑
r=1

ρr

r2
(1− cos(rφ))− y

φ2x

∞∑
r=1

ρr

r2
(sin(rφ)− rφ)

])

Hence, as x→ 0 we recover Meinardus’s bound on |H(w, z)Θ(w, z)|.
Using the notation of Lemma 4.9,∣∣∣∣∫
B
H(w, z)Θ(w, z)

dw

w

∣∣∣∣ ≤
√

2π

d|z|

(
1 + ρ

ρ

) 1
2

exp

(
f1(x) +

Ax

x2 + y2

)
·[(

1 + f 0
2 (z)

)
·
∫
B
e−ψ(φ,z)dφ+ fφ2 (z)

∫
B

exp

(
−ψ(φ, z) +

2π|φ|
dx (1 + x2ε)

)
dφ

]
,

(4.23)
where

ψ(φ, z) :=
φ2x

2d(x2 + y2)
+

x

x2 + y2

∞∑
r=1

ρr

r2
(1− cos(rφ))

− y

x2 + y2

∞∑
r=1

ρr

r2
(sin(rφ)− rφ).

(4.24)

We evaluate the two integrals of (4.23) separately.
For the integral

∫
B exp (−ψ(φ, z)) d φ, we consider two parts based on the

sign of yφ. We assume that y > 0. When φ > 0, sin(rφ) − rφ < 0 for all r,
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and so ψ(φ, z) > 0. Then∫ π

φ0

exp (−ψ(φ, z)) d φ ≤ 1

ψφ(φ0, z)
[exp (−ψ(φ0, z))− exp (−ψ(νφ0, z))]

+
1

ψφ(νφ0, z)
[exp (−ψ(νφ0, z))− exp (−ψ(π, z))] ,

(4.25)
where ν > 1 is a constant.
When φ < 0, we note that sin(rφ)− rφ > 0, and so

ψ(φ, z)

≥ φ2x

2d(x2 + y2)
+

x

x2 + y2

∞∑
r=1

ρr

r2
(1− cos(rφ))− x1+ε

x2 + y2

∞∑
r=1

ρr

r2

(
r3φ3

6

)
=

φ2x

2d(x2 + y2)
+

x

x2 + y2

∞∑
r=1

ρr

r2
(1− cos(rφ)) +

φ3x1+εαd−2

6(x2 + y2)

=: ψ̂(φ, z),

(4.26)
whence, using that π2

2
αd−2xε ≤ π

d
,∫ π

φ0

exp(−ψ(−φ, z))dφ

≤ 1

ψ̂φ(−φ0, z)

[
exp

(
−ψ̂(−φ0, z)

)
− exp

(
−ψ̂(−νφ0, z)

)]
+

+
1

ψ̂φ(−νφ0, z)

[
exp

(
−ψ̂(−νφ0, z)

)
− exp

(
−ψ̂(−π, z)

)]
.

(4.27)
We now consider the second integral in (4.23). A weaker bound on ψ(φ, z)

suffices. In particular, we have ψ(φ, z) ≥ kφ2, where

k :=
x

x2 + y2

(
1

2d
− παd−2

6

∣∣∣y
x

∣∣∣+ ρ

(
1

2
− π2

24

))
,

which is positive since x < β.
Hence, we have that∫

B
exp

(
−ψ(φ, z) +

2π|φ|
dx (1 + x2ε)

)
dφ ≤ dx (1 + x2ε)

π − kdx (1 + x2ε)
·[

exp
(
−kπ2 + 2π2

dx(1+x2ε)

)
− exp

(
−kφ2

0 + 2πφ0
dx(1+x2ε)

)]
.

(4.28)
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Using (4.25), (4.27), and (4.28) in (4.23) gives an explicit bound for the
second integral of (4.20), say EB(z).
Following page 297 of [57], the first integral of (4.20) is given by

I :=
1

2πi

∫ ρeiφ0

ρe−iφ0
H(w, z)Θ(w, z)

dw

w

=
1√

2πdz
exp

(
A

z
+

1− d
2

logα

)
(Imain + Ierror) ,

where
Imain :=

∫ φ0

−φ0
exp

(
− φ2

2dz

(
dαd−1 + 1

))
dφ (4.29)

and

Ierror :=

∫ φ0

−φ0

(
exp

(
log

(
1− ρeiφ

1− ρ

)
+f3(w, z)+f1(w, z)

)
(1 + f2(w, z))− 1

)
· exp

(
− φ2

2dz

(
dαd−1 + 1

))
dφ,

(4.30)
where |f3(w, z)| ≤ ρe

6(1−ρe)2φ
3. Then we have

|Ierror| ≤ 2φ0

(
1− ρ cosφ0

1− ρ
exp

(
f1(x) +

ρe

6(1− ρe)2
φ3

0

)
(1 + f2(φ0, z))− 1

)
,

(4.31)
and

Imain =

√
πzd

dαd−1 + 1
− 2

∫ ∞
φ0

exp

(
− φ2

2dz

(
dαd−1 + 1

))
dφ. (4.32)

Hence, it follows that

I =
α

1−d
2

√
dαd−1 + 1

exp

(
A

z

)
+ Êφ0(w, z), (4.33)
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where

|Êφ0(w, z)|

≤ α
d−1
2√

2πd|z|
exp

(
Ax

x2 + y2

)[
(2d|z|) 1

2

φ0 (dαd−1 + 1)
1
2

exp

(
−
φ2

0x
(
dαd−1 + 1

)
2d (x2 + y2)

)
+ 2φ0

(
1− ρ cosφ0

1− ρ
exp

(
f1(x) +

ρe

6(1− ρe)2
φ3

0

)
(1 + f2(φ0, z))− 1

)]
=: Eφ0(z).

(4.34)
Hence, we finally see that

|ferr(z)| ≤ (Eφ0(z) + EB(z))
(
αd−1

(
dαd−1 + 1

)) 1
2 exp

(
−Ax
x2 + y2

)
.

Proof of Lemma 4.8. In order to bound f for x1+ε < |y| ≤ π, note that
|Θ(w, z)| ≤ Θ(ρ, x) by (4.14), which also yields that

log |H(w, z)| = <{logH(w, z)} ≤ logH(ρ, x) +<

{
w
∑
n≥1

e−nz

}
− ρ

∑
n≥1

e−nx.

On the other hand, we have that

<

{
w
∑
n≥1

e−nz

}
− ρ

∑
n≥1

e−nx

≤ −ρx2ε−1
(
β1−2εe−β

)( 1

1− e−β
− 1√

1− 2e−β cos β1+ε + e−2β

)
.

To see this, note that

<

{
w
∑
n≥1

e−nz

}
− ρ

∑
n≥1

e−nx

≤ −ρe−x
(

1

1− e−x
− 1√

1− 2e−x cosx1+ε + e−2x

)
.
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This then gives

<
{
w
∑

n≥1 e
−nz}− ρ∑n≥1 e

−nx

−ρx2ε−1

≥ x1−2εe−x
(

1

1− e−x
− 1√

1− 2e−x cosx1+ε + e−2x

)
≥ β1−2εe−β

(
1

1− e−β
− 1√

1− 2e−β cos β1+ε + e−2β

)
=: η.

The statement of Lemma 4.8 now follows from (4.13) and Lemma 4.9.

Proof of Theorem 4.6

From (4.12), it follows that qd(n) = I1 + I2, where

I1 :=
1

2π

∫ x1+ε

−x1+ε
f(z)enz dy and I2 :=

1

2π

(∫ −x1+ε
−π

+

∫ π

x1+ε

)
f(z)enz dy.

In this proof, we let x =
√

A
n
. Following the idea of page 291 of [57], we split

I1 as

I1 = γe
2A
x

∫ x1+ε

−x1+ε
e−

y2A

x3 dy + E2 + E3, (4.35)

where γ is given by
γ :=

1

2π
√
αd−1 (dαd−1 + 1)

,

E2 by

E2 := γe
2A
x

∫ x1+ε

−x1+ε
e−

y2A

x3

(
e
A

(
y4+ixy3

x3(x2+y2)

)
− 1

)
dy,

and

E3 := γe
2A
x

∫ x1+ε

−x1+ε
e
−xy2+iy3

x2(x2+y2)ferr(z) dy.

The first integral in (4.35) can be written

γe
2A
x

∫ x1+ε

−x1+ε
e−

y2A

x3 dy = γe
2A
x

√
πx3

A
+ E1 (4.36)
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where
|E1| ≤

γ

A
√

2
x2−εe

2A
x
−Ax2ε−1

. (4.37)

For E2, we further split the integral:

E2 = γe
2A
x

∫
|y|≤x1+ε2

e−
y2A

x3

(
e
A

(
y4+ixy3

x3(x2+y2)

)
− 1

)
dy

+γe
2A
x

∫
x1+ε2≤|y|≤x1+ε

e−
y2A

x3

(
e
A

(
y4+ixy3

x3(x2+y2)

)
− 1

)
dy,

with ε2 > ε, ε2 > 1
3
. Then∣∣∣∣∣γe 2A

x

∫
|y|≤x1+ε2 e

− y
2A

x3

(
e
A

(
y4+ixy3

x3(x2+y2)

)
− 1

)
dy

∣∣∣∣∣ ≤
γe

2A
x (exp (Ax3ε2−1)− 1)

√
πx3

A

(4.38)

and∣∣∣∣∣γe 2A
x

∫
x1+ε2≤|y|≤x1+ε

e−
y2A

x3

(
e
A

(
y4+ixy3

x3(x2+y2)

)
− 1

)
dy

∣∣∣∣∣ ≤
γ exp

(
2A
x
− Axε2−2

1+x2ε

)
x3 (1 + x2ε) + γx3

A
exp

(
2A
x
− Axε2−2

)
.

(4.39)
Finally, for E3, we have

|E3| ≤ γe
2A
x |fmax

err |
(
πx3

(
1 + x2ε

)) 1
2 . (4.40)

To bound I2, we apply Lemma 4.8 to find that

|I2| ≤
√

2π

dx
e−ηρx

2ε−1

(1 + f2(ρ, x)) exp

(
nx+

A

x
+

1− d
2

logα + f1(ρ, x)

)
.

(4.41)
Finally, we obtain

qd(n) =
A1/4

2
√
παd−1(dαd−1 + 1)

n−3/4 exp(2
√
nA) + E1 + E2 + E3 + I2,

where |E1 +E2 +E3 + I2| is bounded using the expressions in (4.37) - (4.41).
The result follows with |rd(n)| ≤ |E1|+ |E2|+ |E3|+ |I2|.



72

4.1.3 Proof of Alder’s Conjecture

Using Theorems 4.3 and 4.6, we are now able to prove our main results.

Proof of Theorem 4.1. Applying the results of Sections 4.1.1 and 4.1.2, we
have that

∆d(n) = qd(n)−Qd(n) =
A1/4

2
√
παd−1(dαd−1 + 1)

n−3/4 exp(2
√
nA) + Ed(n),

where Ed(n) = rd(n) − Qd(n). In the proof of Lemma 4.5, we relax the
restriction on ymax. Thus, Theorem 4.3 implies

Qd(n) = O

(
exp

(
2π√

3d+ 9
n1/2 + c0n

1
6

))
,

where c0 is some positive constant.
By Theorem 4.6, |rd(n)| ≤ |E1| + |E2| + |E3| + |I2|, and a careful ex-

amination of each of these terms shows that E1 = O
(
n−

5
6 e2
√
An
)
, E2 =

O
(
n−

3
2
ε2− 1

4 e2
√
An
)
, E3 = O

(
n−

15
16 e2

√
An
)
, and I2 = O

(
n

1
4 e2
√
An−ηρx2ε−1

)
.

Hence, by choosing ε2 ≥ 7
18
, the result follows.

Proof of Theorem 4.2. The works of Yee ([80],[81]) and Andrews [2] show
that ∆d(n) ≥ 0 when d ≥ 31 and can be easily modified to show that the
inequality is strict when n ≥ d + 6. For each remaining 4 ≤ d ≤ 30, we
use Theorems 4.3 and 4.6 to compute the smallest n such that our bounds
imply ∆d(n) > 0. We denote this n by Ω(d), and a C++ program computed
the values of ∆d(n) ≤ Ωd(n), which then confirmed the remaining cases of
the Alder-Andrews Conjecture. As an example, we find that when d = 30,
Ω(30) ≤ 9.77·106. To get this, we take δ = 10−10 and ε1 = 5·10−11 in Theorem
4.3 and, in Theorem 4.6, ε = .16906, ε2 = .499999, ξ = .99, c = .375000001,
and ν = 1. Other d are similar, and all satisfy Ω(d) ≤ Ω(30).
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4.2 A conjecture of Andrews

(The results in this section are joint with Marie Jameson.)
The first Göllnitz-Gordon identity states that the number of partitions of n

into 2-distinct parts, with difference at least 4 between even parts, equals the
number of partitions of n into parts congruent to ±1, 4 (mod 8) . Here, a d-
distinct partition is defined to be a partition in which the difference between
any two parts is at least d. In addition, an identity of Schur states that
the number of partitions of n into 3-distinct parts, with difference at least
6 between multiples of 3, equals the number of partitions of n into parts
congruent to ±1 (mod 6) .

It is natural to investigate whether this phenomenon has a generalization
to further d ≥ 3, and in this direction H.L. Alder [1] showed that if d > 3,
the number of partitions of n into d-distinct parts where parts divisible by
d differ by at least 2d is not equal to the number of partitions of n into
parts taken from any set of integers whatsoever. G.E. Andrews considered a
different generalization by considering the functions

q∗d(n) := p(n|d-distinct parts, no consecutive multiples of d) (4.42)

Q∗d(n) := p(n|parts ≡ ±1,±(d+ 2) (mod 4d)). (4.43)

At a 2009 conference in Ottawa, he made the following conjecture1 to ac-
company Alder’s Conjecture (for more information on Alder’s Conjecture,
see Section 4.1, as well as [2], [4], [80], and [81]).

Conjecture (Andrews). For d > 1 and n ≥ 1, we have that

q∗d(n)−Q∗d(n) ≥ 0.

1A few days after the conference, in a private communication, he modified the conjec-
ture. We are concerned with this modification.
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Clearly, the conjecture holds for d = 2 and d = 3 by the Göllnitz-Gordon
and Schur identities. Although the truth of this conjecture remains open, we
show that the conjecture holds for sufficiently large n.

Theorem 4.10. For fixed d > 3,

lim
n→∞

(q∗d(n)−Q∗d(n)) = +∞.

In addition to making the above conjecture, Andrews defined

Q∗∗d (n) := p(n|parts ≡ ±1,±(d+ 2),±(d+ 6), . . . ,±(d+ 4j + 2) (mod 4d)),

where j = b(d− 2)/4c, and wondered which values of d would yield

q∗d(n)−Q∗∗d (n) ≥ 0. (4.44)

Clearly, (4.44) implies the truth of Andrews’s conjecture. Unfortunately, it
is not true for all values of d (it fails, for example, when d = 14 and n = 644).
We find which values of d cause (4.44) to hold (or fail) asymptotically.

Theorem 4.11. Assuming the notation above, the following are true:

1. If 4 ≤ d ≤ 13 or d = 17, and d 6= 6 or 10, then

lim
n→∞

(q∗d(n)−Q∗∗d (n)) = +∞.

2. If d = 14 or 15, or d ≥ 18, then

lim
n→∞

(Q∗∗d (n)− q∗d(n)) = +∞.

Remark. To establish Theorem 4.11, we show that the orders of q∗d(n) and
Q∗∗d (n) are different.

Remark. Theorem 4.11 does not apply when d = 6, 10, or 16. In these cases,
we expect q∗d(n) to be asymptotically larger than Q∗∗d (n).



75

In the next section, to establish these results, we find an asymptotic ex-
pression for q∗d(n) by relating it to qd(n), where

qd(n) := p(n|d-distinct parts).

Asymptotics for qd(n) are known, and they have been very helpful in proving
Alder’s Conjecture and its refinement by Andrews. We use these formulae
to prove Theorem 4.10 in Section 4.2.1 and Theorem 4.11 in Section 4.2.1.

4.2.1 Proof of Andrews’s conjecture in the limit

As stated above, rather than find an asymptotic formula for q∗d(n) directly,
we instead compare it to the function qd(n) without the added difference
condition between multiples of d. We speculate that relatively few d-distinct
partitions of n have consecutive multiples of d, so we expect that q∗d(n) �
qd(n). At present, this sort of relation is difficult to obtain. However, we note
that

q∗d(n) ≥ qd+1(n) (4.45)

for all d ≥ 2 and n ≥ 1. From G. Meinardus [57] or from Theorem 4.6 (which
corrects the proof), we have the asymptotic formula

qd(n) ∼ c0n
− 3

4 exp
(

2
√
Adn

)
, (4.46)

where c0 is an explicit constant depending only on d,

Ad :=
d log2 ρ

2
+
∞∑
r=1

ρrd

r2
, (4.47)

and ρ = ρd is the unique root of xd + x− 1 = 0 in the interval [0, 1]. Hence,
(4.45) and (4.46) imply that

q∗d(n)� n−
3
4 exp

(
2
√
Ad+1n

)
. (4.48)
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Proof of Theorem 4.10

We must consider Q∗d(n). A result of V.V. Subrahmanyasastri (Theorem 10,
[75]) yields the following asymptotic formula for Q∗d(n):

Q∗d(n) ∼ c1n
− 3

4 exp

(
π

√
2n

3d

)
,

where c1 is an explicit constant. Recalling (4.48), our task is now to show
that for all d ≥ 4,

π

√
2

3d
< 2
√
Ad+1,

or, equivalently, that √
2dAd+1 >

π√
3
. (4.49)

From (4.47), we have that

2dAd+1 ≥ d2 log2 ρd+1,

and so we consider when

|d log ρd+1| >
π√
3
. (4.50)

Since |d log ρd+1| is increasing in d, one can verify that (4.50) holds for d ≥ 13.
A numerical computation verifies (4.49) in the remaining 4 ≤ d ≤ 12.

Proof of Theorem 4.11

As in Section 4.2.1, Theorem 10 of [75] applies. In particular, we have that

Q∗∗d (n) ∼ c2n
− 3

4 exp

π
√
n
⌊
2 + d−2

4

⌋
3d


for an explicit constant c2. A numerical computation now shows that

π

√⌊
2 + d−2

4

⌋
3d

< 2
√
Ad+1
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for 4 ≤ d ≤ 13, d 6= 6, 10, and for d = 17. Hence, for these d, (4.48) implies
that

lim
n→∞

(q∗d(n)−Q∗∗d (n)) = +∞.

For the other values of d 6= 6, 10, or 16, instead of showing that

lim
n→∞

(Q∗∗d (n)− q∗d(n)) = +∞,

we show the stronger statement that

lim
n→∞

(Q∗∗d (n)− qd(n)) = +∞.

Hence, we must show that for these d,

π

√⌊
2 + d−2

4

⌋
3d

> 2
√
Ad. (4.51)

But

π

√⌊
2 + d−2

4

⌋
3d

>
π√
12

for all d and
2
√
Ad <

π√
12

for d ≥ 26. A numerical computation verifies (4.51) in the remaining cases.

Remark. One can check that (4.51) fails to hold when d = 6, 10, or 16. Our
above speculation that q∗d(n) � qd(n) suggests that, for these values of d,

lim
n→∞

(q∗d(n)−Q∗∗d (n)) = +∞,

although a stronger result along the lines of (4.48) would be needed to prove
this.
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4.3 Eta-quotients and theta functions

Jacobi’s Triple Product Identity states that
∞∏
n=1

(1− x2n)(1 + x2n−1z2)(1 + x2n−1z−2) =
∞∑

n=−∞

z2mxm
2

, (4.52)

which is surprising because it gives a striking closed form expression for an
infinite product. Using (4.52), one can derive many elegant q-series identities.
For example, one has Euler’s identity

q
∞∏
n=1

(1− q24n) =
∞∑

k=−∞

(−1)kq(6k+1)2 (4.53)

and Jacobi’s identity
∞∏
n=1

(1− q2n)5

(1− qn)2(1− q4n)2
=

∞∑
k=−∞

qk
2

. (4.54)

Both (4.53) and (4.54) can be viewed as identities involving Dedekind’s eta-
function η(z), which is defined by

η(z) := q1/24

∞∏
n=1

(1− qn), (4.55)

where q := e2πiz. It is well known that η(z) is essentially a half-integral weight
modular form, a fact which Dummit, Kisilevsky, and McKay [23] exploited
to classify all the eta-products (functions of the form

∏s
i=1 η(niz)ti , where

each ni and each ti is a positive integer) whose q-series have multiplicative
coefficients. Martin [55] later obtained the complete list of integer weight eta-
quotients (permitting the ti to be negative) with multiplicative coefficients.
The right hand sides of both (4.53) and (4.54) also have an interpretation

in terms of half-integral weight modular forms: they are examples of theta
functions. Given a Dirichlet character ψ, the theta function θψ(z) of ψ is
given by

θψ(z) :=
∑
n

ψ(n)nδqn
2

, (4.56)
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where δ = 0 or 1 according to whether ψ is even or odd. The summation
over n in (4.56) is over the positive integers, unless ψ is the trivial character,
in which case the summation is over all integers. With this language, (4.53)
becomes

η(24z) = θχ12(z),

where χ12(n) =
(

12
n

)
and

( ·
·

)
is the Jacobi symbol. This fact is subsumed into

the theorem of Dummit, Kisilevsky, and McKay, as η(24z) is an eta-product
and any theta function necessarily has multiplicative coefficients. However,
we note that (4.54) is equivalent to

η(2z)5

η(z)2η(4z)2
= θ1(z),

which is covered neither by the theorem of Dummit, Kisilevsky, and McKay
(as the left-hand side is a quotient of eta-functions, not merely a product),
nor is it covered by the theorem of Martin (as the modular forms involved
are of half-integral weight). It is therefore natural to ask which eta-quotients
are theta functions.

Theorem 4.12. 1. The following eta-quotients are the only ones which are
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theta functions for an even character:

η(2z)5

η(z)2η(4z)2
=

∞∑
n=−∞

qn
2

,

η(8z)η(32z)

η(16z)
=
∞∑
n=1

(
2

n

)
qn

2

,

η(16z)2

η(8z)
=
∞∑
n=1

(n
2

)2

qn
2

,

η(6z)2η(9z)η(36z)

η(3z)η(12z)η(18z)
=
∞∑
n=1

(n
3

)2

qn
2

,

η(24z) =
∞∑
n=1

(
12

n

)
qn

2

,

η(48z)3

η(24z)η(96z)
=
∞∑
n=1

(
24

n

)
qn

2

,

η(48z)η(72z)2

η(24z)η(144z)
=
∞∑
n=1

(n
6

)2

qn
2

,

η(24z)η(96z)η(144z)5

η(48z)2η(72z)2η(288z)2
=
∞∑
n=1

(
18

n

)
qn

2

.

2. The following eta-quotients are the only ones which are theta functions
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for an odd character:

η(8z)3 =
∞∑
n=1

(
−4

n

)
nqn

2

,

η(16z)9

η(8z)3η(32z)3
=
∞∑
n=1

(
−2

n

)
nqn

2

,

η(3z)2η(12z)2

η(6z)
=
∞∑
n=1

(n
3

)
nqn

2

,

η(48z)13

η(24z)5η(96z)5
=
∞∑
n=1

(
−6

n

)
nqn

2

,

η(24z)5

η(48z)2
=
∞∑
n=1

( n
12

)
nqn

2

.

In fact, we establish a broader classification theorem. Given a positive
integer m, let Θ0

m denote the linear span of the set of all theta functions
associated to an even character ψ whose modulus is m together with its
‘twists’ by χ2,0, χ3,0, and χ6,0, where χr,0 denotes the principal character
modulo r, and let Θ1

m denote the analogous space associated to odd characters
of modulus m. Here, the twist of a theta function associated to ψ by another
character χ is the theta function associated to ψχ. For convenience, let Θm

denote the union of Θ0
m and Θ1

m. We call an element of Θm monic if its
q-expansion has the form 1 +O(q) or q +O(q4).

Theorem 4.13. 1. The only eta-quotients which are monic elements of Θ0
m
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for some m are those in Theorem 4.12 together with

η(z)2

η(2z)
=

∞∑
n=−∞

(
1− 2

(n
2

)2
)
qn

2

=
∞∑

n=−∞

(−1)nqn
2

,

η(z)η(4z)η(6z)2

η(2z)η(3z)η(12z)
=

∞∑
n=−∞

(
1− 3

2

(n
3

)2
)
qn

2

,

η(2z)2η(3z)

η(z)η(6z)
=

∞∑
n=−∞

(
1− 2

(n
2

)2

− 3

2

(n
3

)2

+ 3
(n

6

)2
)
qn

2

,

η(8z)5

η(4z)2η(16z)2
=

∞∑
n=−∞

(
1−

(n
2

)2
)
qn

2

,

η(9z)2

η(18z)
=

∞∑
n=−∞

(
1− 2

(n
2

)
−
(n

3

)2

+ 2
(n

6

)2
)
qn

2

,

η(18z)5

η(9z)2η(36z)2
=

∞∑
n=−∞

(
1−

(n
3

)2
)
qn

2

,

η(4z)η(16z)η(24z)2

η(8z)η(12z)η(48z)
=

∞∑
n=−∞

(
1−

(n
2

)2

− 3

2

(n
3

)2

+
3

2

(n
6

)2
)
qn

2

,

η(72z)5

η(36z)2η(144z)2
=

∞∑
n=−∞

(
1−

(n
2

)2

−
(n

3

)2

+
(n

6

)2
)
qn

2

,

η(3z)η(18z)2

η(6z)η(9z)
=
∞∑
n=1

(
2
(n

6

)2

−
(n

3

)2
)
qn

2

,

η(8z)2η(48z)

η(16z)η(24z)
=
∞∑
n=1

(
3
(n

6

)2

− 2
(n

2

)2
)
qn

2

.

2. The only eta-quotients which are monic elements of Θ1
m for some m are

those in Theorem 4.12 together with

η(6z)5

η(3z)2
=
∞∑
n=1

(
2
( n

12

)
−
(n

3

))
nqn

2

.

Remark. A theorem of Mersmann [58] classifying holomorphic eta-quotients
implies that there are essentially only finitely many eta-quotients which could
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be in any Θm, even allowing non-monic elements. Unfortunately, while Mers-
mann’s result can be made effective, the computations necessary to prove
either case of Theorem 4.13 in this way would be prohibitively large. Con-
sequently, our proof proceeds along fundamentally different lines. We note
that Mersmann’s result is slightly misquoted in [15] - the theorem credited
to Mersmann on Page 30 of [15] is stronger than what he proves in his thesis.

Our proof proceeds as follows. Instead of using the method employed by
Mersmann [58] - essentially a careful study of the order of vanishing of eta-
quotients - we make use of the combinatorial properties of eta-quotients and
the constraints on the q-series of theta functions. Combined with the theory
of modular forms, in particular the Fricke involution Wk,M , asymptotic for-
mulae, Eisenstein series, and Shimura’s correspondence, the classification
in Theorems 4.12 and 4.13 reduces to a case by case analysis. In this
analysis, we make great use of the simple observation that if a > b, then
(1 + qa)(1 + qb) = 1 + qb + O(qa). In this regard, we also need the solution
to a classical Diophantine problem.

4.3.1 Preliminary Facts

We begin by recalling some basic facts about modular forms. A holomorphic
function f : H → C is a weakly holomorphic modular form of weight k ∈
1
2
Z for the subgroup Γ ⊆ SL2(Z) if f(γz) = εγ(cz + d)kf(z) for all γ =(
a b

c d

)
∈ Γ, acting in the usual way by fractional linear transformation,

where εγ is a suitable fourth root of unity. Moreover, we require for each
γ ∈ SL2(Z) that (f |k γ)(z) := (cz + d)−kf(γz) is represented by a Fourier
series of the form

(f |k γ)(z) =
∑
n≥n0

aγ(n)qnN ,
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where qN := e2πi/N . In fact, there are only finitely many such series required,
one for each “cusp” of Γ \H, that is, an element ρ ∈ Γ \Q. In this case, we
let qρ := qN . The space of all weakly holomorphic modular forms of weight
k on Γ is denoted by M !

k(Γ); its subspace consisting of all forms which are
holomorphic (resp. vanishing) at the cusps is denoted byMk(Γ) (resp. Sk(Γ))
(these are the spaces of modular forms and cusp forms, respectively). For
the subgroups we are concerned with, namely the congruence subgroups of
level N ,

Γ1(N) :=

{(
a b

c d

)
∈ SL2(Z) :

(
a b

c d

)
≡

(
1 ∗
0 1

)
(mod N)

}
,

weakly holomorphic modular forms are fixed under the substitution z 7→ z+1,
and so they have a Fourier series at infinity with respect to the variable
q := e2πiz. Although we will briefly need the Fourier expansions at other
cusps, it is this Fourier series (also called a q-expansion) that is of the most
interest to us.
If f(z) ∈M !

k(Γ1(N)), then f(z) is said to be modular of level N . If f(z) is
holomorphic, then necessarily k ≥ 0 and the space Mk(Γ1(N)) decomposes
naturally into two pieces: the previously mentioned cusp space Sk(Γ1(N))

and the so-called Eisenstein space Ek(Γ1(N)). If k ∈ Z, exploiting this decom-
position, the size of the Fourier coefficients af (n) of f(z) is well-understood.
In particular, letting af (n) = acusp(n) + aEis(n), then we have that both

aEis(n)�f,ε n
k−1+ε,

due to the explicit nature of the coefficients (see (4.61) below), and

acusp(n)�f,ε n
(k−1)/2+ε,

which is the celebrated bound of Deligne. If k ∈ 1/2 + Z, then the coeffi-
cients of both the Eisenstein series and the cuspidal part are not understood
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nearly as well, as both frequently encode values of L-functions. Nevertheless,
polynomial bounds are known for each. In particular, we have the “trivial”
bound that

acusp(n)�f n
k/2,

valid for all k ≥ 1/2 and

aEis(n)�f,ε n
k−1+ε

for k ≥ 3/2, and aEis(n) � nε if k = 1/2. Although stronger bounds are
known (most recently, due to Blomer and Harcos [11]), it is only the fact that
each is polynomially bounded that will be relevant to us. This is because
if f(z) is weakly holomorphic, but not holomorphic, then the coefficients of
f(z) are of a fundamentally different size. Namely, for n in certain arithmetic
progressions depending on the level, they satsify

log |af (n)| � n1/2.

This is due, in various settings, to Rademacher and Zuckerman ([66], [67],
[82], [83]), and, more recently, to Bringmann and Ono [14]. We will find this
vast difference in size useful later on.
We recall that, given a Dirichlet character ψ of modulus r, the function

θψ(z) is defined by θψ(z) :=
∑

n ψ(n)nδqn
2 , where δ = 0 or 1 according to

whether ψ is even or odd. In both cases, the summation over n is assumed
to be over the positive integers unless r = 1, in which case the sum is over
all integers. It is classical that θψ(z) is a modular form of weight 1/2 if ψ is
even and of weight 3/2 if ψ is odd. Each θψ(z) is of level 4r2 and, moreover,
if r 6= 1, then it is a cusp form. Regardless of the parity of ψ, we refer to
θψ(z) as a theta function of modulus r.
The twist of a theta function θψ(z) by a character χ is the theta function

associated to ψχ. Given a positive integer m, we let Θ0
m denote the linear

span of the set of all weight 1/2 theta functions whose moduli are m and
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their twists by χ2,0, χ3,0, and χ6,0, and we let Θ1
m denote the analogous space

for weight 3/2 theta functions. Let Θm be the union of Θ0
m and Θ1

m.
Dedekind’s eta-function η(z) is defined by

η(z) := q1/24
∏
n

(1− qn).

It is almost a modular form of weight 1/2 on SL2(Z), in the sense that

η

(
−1

z

)
= (−iz)1/2η(z), (4.57)

but it fails to transform suitably under z 7→ z + 1. However, since η(z) is
non-vanishing away from the cusps, a function of the form

f(z) =
∏
d|N

η(dz)rd (4.58)

will be a weakly holomorphic modular form on Γ1(24N) if
∑

d|N drd ≡
0 (mod 24). This level may not be sharp, in the sense that f(z) may be
a weakly holomorphic modular form on Γ1(M) for some proper divisor M of
24N , but what is important for our purposes is that the only primes divid-
ing the level of f(z) are those dividing N together with 2 and 3. We call
a function of the form (4.58) satisfying this condition an eta-quotient. The
order of vanishing of f(z) at the cusp ρ := α

δ
is given by [64, Theorem 1.65]

ordz=ρf(z) =
N

24

∑
d|N

(d, δ)2rd

(δ, N
δ

)dδ
. (4.59)

Lemma 4.14. Suppose that f(z) =
∏

d|N η(dz)rd is an element of Θm. Set
a := 1 + max(1, ν2(m)) and b := max(1, ν3(m)), where νp(·) is the standard
p-adic valuation, and let m0 be the maximal divisor of m coprime to 6. Then
rd = 0 for d - 22a32bm2

0.

Proof. Given a theta function θ(z) of modulus r and weight k, it is well
known that θ(z) | Wk,4r2 := (−2rz)−kθ

( −1
4r2z

)
is again a modular form of
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weight k whose Fourier series has integral exponents, where Wk,4r2 is the
usual Fricke involution (see [64, Proposition 3.8]). This property also holds
for θ(z)|Wk,4r2t for any t, and so we see that the operator Wk,22a32bm2

0
sends

Θm to the union of two spaces of modular forms whose Fourier series have
integral exponents. If f(z) is in Θm and has weight k, therefore, we must
have that f(z)|Wk,22a32bm2

0
is a modular form of weight k with only integral

exponents.
On the other hand, we compute using (4.57) that

f(z)|Wk,22a32bm2
0

= (−2a3bm0z)−k
∏
d|N

η

(
−d

22a32bm2
0z

)rd
= C

∏
d|N

η

(
22a32bm2

0z

d

)rd
=: Cf̃(z)

for some constant C. But the only way for f̃(z) to have a Fourier series with
integral exponents is if for each d - 22a32bm2

0 we have that rd = 0.

The above lemma limits the eta-quotients which are in Θm for a fixed m,
but we still need a way to control the possible values of m. The following
proposition permits us to do that. First, though, we fix notation. Given a
weakly holomorphic modular form f(z) =

∑
n�−∞ a(n)qn of level N , the Up

operator for a prime p is defined by

f(z)|Up :=
∑

n�−∞

a(pn)qn.

It is well known that f(z)|Up is again a weakly holomorphic modular form
of level N if p | N and level pN if p - N .

Proposition 4.15. If f ∈M !
k(Γ1(N)) and p - N is prime, then f(z)|Up = 0

if and only if f(z) = 0.

Before proving Proposition 4.15, we deduce its application to the problem
at hand.
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Corollary 4.16. If f(z) =
∏

d|N η(dz)rd is in Θm for some m, then the only
primes dividing m are 2 and 3.

Proof. We first show that any eta-quotient f(z) is not annihilated by the Up
operator for any p ≥ 5. Fix such a prime and write f(z) = f1(z)f2(pz), with

f1(z) :=
∏

d|N,p-d

η(dz)rd , and

f2(z) :=
∏

d|N,p|d

η

(
dz

p

)rd
,

where an empty product has value 1. We now have that f(24z)|Up =

f1(24z)|Up · f2(24z). Since f1(24z) is a weakly holomorphic modular form
of level indivisible by p, we see by Proposition 4.15 that f1(24z)|Up is non-
zero, and since f2(24z) 6= 0, we also have that f(24z)|Up is non-zero. Since
p - 24 by assumption, it follows that that f(z)|Up 6= 0.
On the other hand, functions in Θm have the property that their coefficients

are supported on exponents which are coprime to m. Hence, for any prime
divisor p of m, we must have that Up annihilates Θm. Thus, if f(z) is in Θm,
the only way it can have this property is if the only primes dividing m are 2

and 3.

The proof of Proposition 4.15 relies upon a lemma on sums of almost-
everywhere multiplicative functions, which we define to be functions satisfy-
ing f(mn) = f(m)f(n) for any coprime m and n, neither of which is divisible
by any of a finite set of primes called the bad primes. As an example, if f(n) is
a multiplicative function such that f(t) 6= 0 for some t, then f(tn)/f(t) is not
generically multiplicative. It is, however, almost-everywhere multiplicative
away from the primes dividing t.

Lemma 4.17. Suppose that f1, · · · , fs are almost-everywhere multiplicative
functions which are each non-zero for an infinite set of primes. Moreover,



89

assume that, for each i 6= j, fi(p) 6= fj(p) for an infinite number of primes
p. If c1f1(n) + . . .+ csfs(n) = 0 for all n indivisible by every bad prime, then
each ci = 0.

Proof. We proceed by induction, noting that the result is obviously true if
s = 1.
If s ≥ 2, we may assume by way of contradiction that each ci 6= 0, so we

have that

fs(n) = −
s−1∑
i=1

ci
cs
fi(n) (4.60)

for every n not divisible by any bad prime. Let m and n be coprime integers
not divisible by any bad prime. We then have that both

fs(mn) = −
s−1∑
i=1

ci
cs
fi(m)fi(n)

and

fs(mn) =

(
−

s−1∑
i=1

ci
cs
fi(m)

)(
−

s−1∑
i=1

ci
cs
fi(n)

)

=
s−1∑
i=1

(
ci
cs

s−1∑
j=1

cj
cs
fj(m)

)
fi(n).

Equating these two expressions for fs(mn), we obtain that

s−1∑
i=1

(
ci
cs
fi(m) +

ci
cs

s−1∑
j=1

cj
cs
fj(m)

)
fi(n) = 0,

which, by our induction hypothesis, can only happen if for each i and m, we
have that

ci
cs

(
fi(m) +

s−1∑
j=1

cj
cs
fj(m)

)
= 0.

Since ci 6= 0 for each i, we then get a linear combination of fj(m) equaling
0, and again using the induction hypothesis, we find that ci = −cs and all
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other cj = 0. Since we assumed that each cj 6= 0, this can only happen if
s = 2, and in that case, (4.60) yields that f1(n) = f2(n) for all n away from
the set of bad primes. But since these functions were assumed to be distinct,
this cannot happen.

Proof of Proposition 4.15. If the Fourier expansion of f(z) at the cusp ρ is
given by

f(z) =
∑

n�−∞

aρ(n)qn+κρ
ρ ,

then the principal part of f(z) at ρ is

f−ρ (z) =
∑

n+κρ<0

aρ(n)qn+κρ
ρ .

Following either the classical work of Rademacher and Zuckerman ([66], [67],
[82], [83]) or the recent work of Bringmann and Ono [14], we can write
f(z) = f−(z)+fhol(z), where f−(z) is a linear combination of so-called Maass-
Poincaré series which matches the principal part of f(z) at each cusp and
fhol(z) is a holomorphic modular form. Since the coefficients of the Maass-
Poincaré series grow superpolynomially along certain arithmetic progressions
modulo N and the coefficients of fhol(z) are polynomially bounded (see the
above discussion), in order for f(z)|Up to be 0, we must have that f−(z) = 0

and f(z) = fhol(z). In the case that k < 0, we are now done, as there
are no holomorphic modular forms of negative weight. If k = 0, the only
holomorphic modular forms are constant and are preserved under Up. Hence,
in this case too, we must have that f(z) = 0.
If k = 1/2, a deep theorem of Serre and Stark [71] states that f(z) must

be a linear combination of weight 1/2 theta functions θχ(z) of level dividing
N and their dilates θχ(tz), with t · cond(χ) | N . Thus, if (n,N) = 1, we have
that

0 = af (p
2n2) =

∑
χ

cχχ(p)χ(n),
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where the sum runs over the characters of conductor dividing N , and each
cχ is a constant. But by the linear independence of characters, we must have
that each cχχ(p) = 0, whence cχ = 0 since (p, cond(χ)) = 1. Considering
iteratively af (tp2n2) in the same way, the result follows if k = 1/2.
We may now suppose that k ≥ 1. In the case that k is an integer, following

[21], a basis for the Eisenstein space of Mk(Γ1(N)) is given by

{Eε,ψ,t
k (z) : (ε, ψ, t) ∈ Ak,N},

where we define Eε,ψ,t
k (z) using the series

Eε,ψ
k (z) = ck,ε,ψ +

∞∑
n=1

∑
d|n

ε(n/d)ψ(d)dk−1

 qn (4.61)

by Eε,ψ,t
k (z) = Eε,ψ

k (tz) for k 6= 2 or (ε, ψ) 6= (1, 1), and E1,1,t
2 (z) = E1,1

2 (z)−
tE1,1

2 (tz) for t 6= 1. In the above, ck,ε,ψ is a constant and Ak,N is the set of
triples (ε, ψ, t) where ε and ψ are primitive Dirichlet characters of conductor
u and v, respectively, with (εψ)(−1) = (−1)k, and t is a positive integer such
that tuv | N . In the case k = 2 we exclude the triple (1, 1, 1), and in the case
k = 1, we require the first two elements of a triple to be unordered. We note
that the Fourier coefficients of the Eisenstein series Eε,ψ

k (z) are multiplicative;
we denote these coefficients by σε,ψk−1(n).
For the cusp space Sk(Γ1(N)), we may choose a basis of Hecke eigen-

forms, so that any holomorphic modular form is a linear combination of
forms g1(z), · · · , gs(z), each with Fourier coefficients a1(n), · · · , as(n) that
are “essentially” multiplicative: in the case that ai(n) arises from a newform
(that is, a form not coming from some level M | N), it is legitimately mul-
tiplicative, but if ai(n) arises from a non-newform, then it is of the form
ai(tn) = aj(n) for some t | N and the coefficients aj(n) of some newform
(the role of t will be handled easily in the proof below). In particular, if
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f(z) =
∑
a(n)qn, we may, for (n,N) = 1, write

a(n) = c1f1(n) + · · · crfr(n)

for some constants c1, · · · , cr and multiplicative fi(n), coming either from
an Eisenstein series or an eigenform. Since f(z)|Up = 0, we must have that
a(pn) = 0 for all n. In particular, for (n, pN) = 1, we must have that

0 = c1f1(pn) + · · ·+ crfr(pn) = c1f1(p)f1(n) + · · ·+ crfs(p)fr(n),

and we may omit any fi(n) arising from an Eisenstein series Eε,ψ
k (tz) with

t > 1 or from a non-newform (since (n,N) = 1 and t | N , the omitted
coefficients are 0 and will have no effect on a(pn)). By Lemma 4.17, we must
have that each cifi(p) = 0. Now, fi(p) may be zero for some i, but in that
case we necessarily have that fi(p2) 6= 0 (this follows from the Euler product
expansion in the case of a cusp form and by a direct computation in the case
of Eisenstein series, which can only have this property if k = 1). Thus, by
also considering a(p2n), we see that each ci not arising from an Eε,ψ

k (tz) or a
non-newform must be 0. Iteratively letting t be the smallest divisor of N not
yet considered and repeating the argument above for a(tpn) and a(tp2n), we
see that all ci = 0, whence f(z) = 0 identically.
In the case that the weight is half-integral, we may still choose as a basis of

the cusp space a sequence of Hecke eigenforms, but we no longer know that
there is a basis of the Eisenstein space with multiplicative Fourier coefficients.
We proceed, therefore, to show that f(z) is a cusp form. The argument in
the integer weight case then applies, showing that f(z) = 0.
Consider the image of f(z) under the Shimura map Sλ,τ : Mλ+ 1

2
(Γ1(N))→

M2λ(Γ1(N)), where λ := k − 1/2 and τ is any squarefree positive integer
(often, this map is only defined for the cusp-space; see, for example, work of
Jagathesan and Manickam [46] on extensions of this). If f(z) =

∑
a(n)qn,

the non-constant terms of Sλ,τ (f(z)) =
∑
b(n)qn =: F (z) are given by the
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Dirichlet series formula [64, Theorem 3.14]
∞∑
n=1

b(n)n−s = L(s+ 1− λ, χτ )
∞∑
n=1

a(τn2)n−s,

where χτ is a Dirichlet character. Hence, we have that

b(n) =
∑
d|n

dλ−1χτ (d)a

(
τn2

d2

)
.

In particular if (p, n) = 1, then

b(pmn) =
∑
d|pmn

dλ−1χτ (d)a

(
τp2mn2

d2

)

=
∑
d|n

(pmd)λ−1χτ (p
md)a

(
τn2

d2

)
= pm(λ−1)χτ (p

m)b(n),

since a(pr) = 0 for any r. Let F0(z) denote the projection of F (z) into the
Eisenstein space of M2λ(Γ1(N)). We can express F0(z) as

F0(z) =
∑

(ε,ψ,t)

aε,ψ,tE
ε,ψ
2λ (tz), (4.62)

where we are summing over all triples (ε, ψ, t) such that ε and ψ are primitive
characters of conductor dividing N and t is any divisor of N (thus, we in-
clude triples (ε, ψ, t) which do not arise in A2λ,N). We require that aε,ψ,t = 0

when (ε, ψ, t) 6∈ A2λ,N , unless λ = 1, where we let a1,1,1 absorb the coeffi-
cients of E1,1

2 (z) arising from the terms E1,1,t
2 (z) in the basis expansion of the

Eisenstein space of M2(Γ1(N)). We then have that, if (n, pN) = 1,

b(pmn) =
∑
ε,ψ

aε,ψ,1σ
ε,ψ
2λ−1(pmn) +O

(
(pmn)λ−1/2+ε

)
by Deligne’s bound. Similarly, we also have for such n that

b(n) =
∑
ε,ψ

aε,ψ,1σ
ε,ψ
2λ−1(n) +O

(
nλ−1/2+ε

)
.
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Since b(pmn) = pm(λ−1)χτ (p
m)b(n), we must have that∑

ε,ψ

ãε,ψσ
ε,ψ
2λ−1(n) = O

(
(pmn)λ−1/2+ε

)
, (4.63)

where
ãε,ψ = aε,ψ,1 · (σε,ψ2λ−1(pm)− pm(λ−1)χτ (p

m)).

Let n = `1`2, where `1 and `2 are large primes such that `2 � `
1/2
1 . Then

(4.61) implies that

σε,ψ2λ−1(`1`2) = (ψ(`1)`2λ−1
1 + ε(`1)) · (ψ(`2)`2λ−1

2 + ε(`2))

= ψ(`1)ψ(`2)(`1`2)2λ−1 + ψ(`1)ε(`2)`2λ−1
1 +O

(
`
λ−1/2
1

)
.

Using this in (4.63) and dividing by (`1`2)2λ−1, we see that∑
ε,ψ

ãε,ψψ(`1)ψ(`2) = O
(
`
−λ+1/2
1 + pm(λ−1/2)+ε`

−λ+1/2+ε
1

)
,

and letting `1 and `2 tend to infinity along fixed arithmetic progressions
modulo N , we see that, in fact,∑

ε,ψ

ãε,ψψ(`1)ψ(`2) = 0.

Hence, (4.63) and the expansion of σ2λ−1(`1`2) now yield that∑
ε,ψ

ãε,ψψ(`1)ε(`2) = O
(
`
−λ+1/2
1 + pm(λ−1)+ε`

− 1
2

(λ−1/2)+ε

1

)
,

and again letting `1 and `2 tend to infinity along fixed arithmetic progressions,
we see that ∑

ε,ψ

ãε,ψψ(`1)ε(`2) = 0. (4.64)

Since `1 and `2 were chosen to be in arbitrary arithmetic progressions modulo
N , this can be viewed as an equation in terms of the matrix KN⊗KN , where
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KN is the φ(N) × φ(N) matrix whose components are χ(a) as a runs over
elements of (Z/NZ)× and χ runs over its characters. Since KN is invertible
(it is the tensor product of Vandermonde matrices arising from the cyclic
factors of (Z/NZ)×), KN ⊗KN is as well. Hence, the only way for (4.64) to
hold is if each ãε,ψ = 0. Recall that

ãε,ψ = aε,ψ,1 · (σε,ψ2λ−1(pm)− pm(λ−1)χτ (p
m)),

and since σε,ψ2λ−1(pm) � pm(2λ−1), by considering large enough m, we conclude
that each aε,ψ,1 = 0. By iteratively letting t be the smallest divisor of N
not yet considered and looking at b(tpmn), the above argument shows that
each aε,ψ,t = 0. Consequently, we must have that F0(z) = 0 and F (z) is a
cusp form. But since this is true independent of the choice of τ in the map
Sλ,τ , we also have that f(z) is itself a cusp form. We now proceed as in the
integer-weight case. Strictly speaking, the coefficients of half-integer weight
eigenforms are only almost-everywhere multiplicative in square classes (that
is, for t squarefree, a(tn2)/a(t) is multiplicative in n, provided that (n,N) =

1), but by considering each square class separately, the result follows.

Before we can prove Theorem 4.13, we need one further lemma.

Lemma 4.18. The only a = 2i3j which are one less than a square are
a = 3, 8, 24, 48, and 288.

Proof. Suppose a = n2 − 1 = (n+ 1)(n− 1). If a is odd, then we must have
that both n− 1 and n+ 1 are powers of 3, and so a = 3. If a is not divisible
by 3, then both n− 1 and n + 1 must be powers of 2, and so a = 8. Lastly,
suppose that a is divisible by both 2 and 3. Since both n − 1 and n + 1

are then required to be even, the pair
(
n−1

2
, n+1

2

)
must be either (2i−2, 3j) or

(3j, 2i−2). It is a classical result due to Levi ben Gerson that the only powers
of 2 and 3 which differ by one are (2, 3), (3, 4), and (8, 9). These lead to
a = 24, 48, and 288, respectively.
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Remark. Of course, by Mihăilescu’s resolution of Catalan’s conjecture [59] it
is known that 8 and 9 are the only consecutive perfect powers.

4.3.2 Proof of Theorem 4.13

We begin by considering a few concrete cases of Theorem 4.12. Although we
could prove Theorem 4.13 without doing so, this allows us to illustrate the
constructive approach we shall take.
Lemma 4.14 and Corollary 4.16 together tell us that if f(z) =

∏
d|N η(dz)rd

is an eta-quotient which is also a theta function θψ(z) of modulus r, then r
must be divisible only by the primes 2 and 3, and we may take N = 4r2.
Since the coefficients of any eta-quotient are real, we must also have that ψ
is a quadratic character. The key observation which leads to Theorem 4.12
is that if we know the modulus of a quadratic theta function, then we know
the first few terms in its Fourier series, at least up to a sign.
First, we consider whether θ1(z) = 1 + 2

∑∞
n=1 q

n2 is an eta-quotient. Let
η0(z) :=

∏∞
n=1(1−qn), so that f(z) = qaf

∏
d|N η0(dz)rd , where af =

∑
d|N

drd
24
.

In order for f(z) to be equal to θ1(z), we must have that af = 0, as η0(dz) =

1 +O(qd). In fact, we know more:

η0(dz)rd = 1− rdqd +O(q2d). (4.65)

Consequently, in order for the Fourier expansion of f(z) to match that of

θ1(z) = 1 + 2q + 2q4 + 2q9 +O(q16),

we must have that r1 = −2 or, equivalently, that −2 is the exact power of
η(z) dividing f(z) (we say that η(z)−2 divides f(z)). The Fourier series of
η0(z)−2 is given by

η0(z)−2 = 1 + 2q + 5q2 +O(q3),
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and since there is no q2 term in the Fourier expansion of θ1(z), we see that
η(2z)5 must also divide f(z) in order to cancel the 5q2 term in the Fourier
series for η0(z)−2. This leads us to consider

η0(2z)5

η0(z)2
= 1 + 2q − 4q5 +O(q6).

Since we now need to add 2q4 to this Fourier expansion, we see that η(4z)−2

must also divide f(z). We compute that

η0(2z)5

η0(z)2η0(4z)2
= 1 + 2q + 2q4 + 2q9 +O(q16),

which matches perfectly the Fourier expansion of θ1(z)! Since for f(z) =
η(2z)5

η(z)2η(4z)2
, we have that af = 0, f(z) is a candidate for an eta-quotient rep-

resentation of θ1(z). One easily verifies via (4.59) that f(z) is holomorphic,
and then the Sturm bound [64, Theorem 2.58] implies that f(z) = θ1(z).
We now suppose that ψ is a character whose modulus is a positive power

of 2 and that the weight of θψ(z) is 1/2. The Fourier series of θψ(z) must
start as

θψ(z) = q ± q9 ± q25 ± q49 +O(q81).

Consequently, with the notation from before, we must have that af = 1, and
from (4.65), that the term η(dz)rd dividing f(z) with smallest d must be
either η(8z) or η(8z)−1. We consider only the first case before turning to the
general situation of Theorem 4.13.
The Fourier expansion of η0(8z) is given by

η0(8z) = 1− q8 − q16 +O(q40).

As before, we now see that η(16z)−1 must divide f(z), and

η0(8z)

η0(16z)
= 1− q8 − q24 + q32 +O(q40).
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Since the modulus of ψ is a power of 2, the proof of Lemma 4.14 implies that
we cannot change the coefficient of q24, as it would require the level to be
divisible by 3. Of course, this is acceptable, as the coefficient of q25 in the
expansion of θψ(z) is permitted to be −1. Continuing, we see that η(32z)

must divide f(z), which leads us to

η0(8z)η0(32z)

η0(16z)
= 1− q8 − q24 + q48 + q80 − q120 − q168 +O(q224),

a very promising Fourier series. We compute that for f(z) = η(8z)η(32z)
η(16z)

, we
have that af = 1, f(z) is holomorphic, and f(z) = θχ8(z) where χ8(·) =

(
2
·

)
is a primitive character of conductor 8.
A priori it is conceivable that there are other theta functions expressible

as eta-quotients divisible by η(8z). However, since we have now reached a
Fourier series whose exponents are supported on the squares, if f(z) were
additionally divisible by some η(dz)rd with d > 32 chosen minimally, then we
must have both that d is a power of 2, based on the level, and that d is one
less than a square, based on its effect on the Fourier series. But Lemma 4.18
implies that there are no such d, so we have produced the only eta-quotient
divisible by η(8z) which is a theta function.
We now turn to the proof of Theorem 4.13, assuming that f(z) =

∏
η(dz)rd

is in Θm for some m whose only prime factors are 2 and 3. Under the
assumption that f(z) is monic, we must consider two cases: either the Fourier
series of f(z) has the form 1 +O(q) or it has the form q +O(q4).
In the first case, the Fourier expansion has the form 1 +O(q) and we must

have that m = 1 since f(z) is a linear combination of theta functions and
the only theta function whose Fourier expansions begins in this fashion is
θ1(z). Lemma 4.14 then tells us that we are limited to factors η(dz) with
d | 144. Unfortunately, we must now split into further cases, depending on
the location of the first non-zero coefficient after the constant term.
If the Fourier series begins 1 − aq + O(q2) with a 6= 0, then we must have
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that η(z)a is a factor of f(z). We have that

η0(z)a = 1− aq +
a(a− 3)

2
q2 +O(q3),

and consequently, we must have that η(2z)a2 divides f(z), where a2 =
a(a−3)

2
. We then see that η(3z)a3 must also divide f(z), where a3 = a3−4a

3
.

The coefficient of q4 can be arbitrary, however, so we let η(4z)b denote the
power of η(4z) dividing f(z). We then compute the coefficient of q5 in
η0(z)aη0(2z)a2η0(3z)a3η0(4z)b to be

a

(
b− 1

20
a4 +

3

4
a2 − 1

2
a− 6

5

)
.

This coefficient must be 0, since we cannot ‘fix’ it with some η(dz) with d |
144. Since a was assumed to be non-zero, we see that b is in fact not allowed
to be arbitrary. We let a4 be the required value, namely 1

20
a4− 3

4
a2 + 1

2
a+ 6

5
.

We then continue as before, seeing that we must have a factor of η(6z)a6 ,
where a6 = − 1

30
a6 − 1

2
a3 + 8

15
a2 + 2a. The coefficient of q7 is then

− 2

35
a(a− 1)(a+ 1)(a− 2)(a+ 2)(a2 + 5),

and, again since a 6= 0, we must have that a = ±1,±2.
If a = −2, the above yields that f(z) is divisible by η(2z)5

η(z)2η(4z)2
, which is

exactly the eta-quotient representation of θ1(z) we found earlier. In partic-
ular, the exponents in its Fourier series are supported on the squares, and
any additional factor η(dz)rd of f(z) must then have the property that d is a
square. But because of the 2q term in the Fourier series of f(z), this would
introduce a term of order qd+1 in the Fourier series which we cannot change.
Since d+1 is not a perfect square, we have found the only possible f(z) with
a = −2. Similarly, we find that there is exactly one form in Θ1 for each of
a = −1, a = 1, and a = 2:

η(2z)2η(3z)

η(z)η(6z)
,
η(z)η(4z)η(6z)2

η(2z)η(3z)η(12z)
, and

η(z)2

η(2z)
.
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If the first non-zero coefficient of f(z) after the constant term is −aq4, the
argument above translates almost exactly to this case, with the modification
that q is replaced by q4. One must argue that there can be no η(9z)r9 factor,
but this is clear, as it would introduce an irreparable q13 in the Fourier
expansion. We thus obtain in this case the previous eta-quotients with z

replaced by 4z. Two of these are in Θ1, namely

η(8z)5

η(4z)2η(16z)2
and

η(4z)η(16z)η(24z)2

η(8z)η(12z)η(48z)
.

If the Fourier series starts 1− aq9 +O(q16), we proceed similarly, obtaining
two elements of Θ0

1, namely η(9z)2

η(18z)
and η(18z)5

η(9z)2η(36z)2
. Throughout all of the

remaining cases, corresponding to the first non-constant term being q16, q36,
and q144, we obtain exactly two forms whose coefficients are supported on
the squares: η(36z)2

η(72z)
, which is not in Θ1, and η(72z)5

η(36z)2η(144z)2
, which is in Θ1.

We now consider the case when the Fourier expansion of f(z) has the form
q + O(q4). By Lemma 4.18, the factor η(dz)rd of f(z) with rd 6= 0 and d

minimal has d ∈ {3, 8, 24, 48, 288}. We consider each of these cases in turn.
If a := r3 6= 0, in order for the Fourier coefficients to cancel properly,

we must also have that η(6z)a2η(9z)a3η(12z)a4η(18z)a5 divides f(z), where
a2 = a(a−3)

2
, a3 = a(a−2)(a+2)

3
, a4 = a(a+2)(a−1)2

4
, and a5 = −a(a−2)(a+2)(a3+4a+15)

30
.

The coefficient of q21 in the Fourier expansion of the corresponding f(z) is

− 2

35
a(a− 1)(a+ 1)(a− 2)(a+ 2)(a2 + 5),

from which we see that a must be one of ±1,±2. These give rise to

η(3z)2η(12z)2

η(6z)
,
η(3z)η(18z)2

η(6z)η(9z)
,
η(6z)2η(9z)η(36z)

η(3z)η(12z)η(18z)
, and

η(6z)5

η(3z)2
.

As before, one verifies that each of these is in some Θm, and no additional
factors η(dz)rd can be added to each of these eta-quotients while maintaining
the property that the Fourier coefficients are supported on the squares.
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If r3 = 0 and a := r8 6= 0, then we must also have that

η(16z)a2η(24z)bη(32z)a4

divides f(z), where a2 = a(a−3)
2

, b is arbitrary, and a4 = ab− 1
12
a4 + 7

12
a2 + 1

2
a.

Requiring the coefficient of q40 to be 0 (as we are not permitted to change
it), we must have that

b =
2a4 − 20a2 + 18

15a
.

Since b is an integer, we have that a | 18, and one observes that the above is
an integer only for a | 6. If a = ±1, we find the two forms

η(8z)η(32z)

η(16z)
and

η(16z)2

η(8z)
,

both of which are theta functions. Any factors of η(48z) or η(288z) would
introduce irreparable coefficients, so these are all the forms arising from a =

±1. If a = ±2, we find

η(8z)2η(48z)

η(16z)η(24z)
and

η(16z)5η(24z)η(96z)

η(8z)2η(32z)2η(48z)2
,

the first of which is in Θ0
2, the second of which is also a form of some interest,

namely θχ(z)+3θχ(9z) where χ(n) =
(

2
n

)
, but the Serre-Stark basis theorem

[71] implies that it cannot lie in any Θm. If a = ±3, we obtain the forms

η(8z)3 and
η(16z)9

η(8z)3η(32z)3
,

both of which are theta functions. Lastly, if a = ±6, we obtain no forms,
eventually running into a non-zero coefficient of q88.
We now suppose that η(24z)aη(48z)b is the smallest divisor of f(z). We

consider these two variables, since either coefficient can be arbitrary. Con-
sequently, we permit one, but not both, of a and b to be 0. We proceed as
before, eventually finding potentially problematic coefficients of q240 and q264,
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say A1 and A2, respectively. Both A1 and A2 are polynomials in a and b,
whose degrees in a are 10 and 11, respectively, and whose degrees in b are both
5. A1 is irreducible, whereas A2 has a factor of a and is otherwise irreducible.
Substituting a = 0 into A1, we find that we must have b(b4 − 6) = 0, which
cannot hold since we assumed that not both a and b are 0. Now, we compute
the resultant in b of A1 and A2/a. This yields a degree 50 polynomial in
a whose only rational roots are a = 1, a = −1, a = 5, and a = −5, which
yield that b = 0 or −2, b = 1 or 3, b = −2, and b = 13, respectively. These
yield the forms η(24z), η(24z)η(96z)η(144z)5

η(48z)2η(72z)2η(288z)2
, η(48z)η(72z)2

η(24z)η(144z)
, η(48z)3

η(24z)η(96z)
, η(24z)5

η(48z)2
, and

η(48z)13

η(24z)5η(96z)5
.

Finally, we suppose that η(288z)a is the smallest divisor of f(z). We then
must also have that

η(576z)a2η(864z)a3η(1152z)a4

divides f(z), where a2 = a(a−3)
2

, a3 = a(a−2)(a+2)
3

, and a4 = a(a+2)(a−1)2

4
. The

coefficient of q1440 is 1
5
a(a4 − 6), which is non-zero, and so there are no such

f(z). This finishes the proof of Theorem 4.13.

4.4 Representation by ternary quadratic forms

The problem of determining, given a positive definite integral quadratic form,
the integers represented by the quadratic form has motivated, and indeed en-
codes, a great deal of modern number theory. The problem of determining
which forms are universal – forms that represent every positive integer –
originates with Lagrange’s four squares theorem, but it is only recently that
a complete characterization has been found; this is the so called “15 Theo-
rem” of Bhargava, Conway, and Schneeberger [9] and the “290 Theorem” of
Bhargava and Hanke [8]. In addition, there is very recent work of Rouse [69]
proving a “451 Theorem” for representation of odd integers.
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When dealing with such problems, arguably the deepest case is that of
ternary quadratic forms, bearing in mind that there are always local ob-
structions, so that the interesting problem becomes to determine the locally
represented integers which are globally represented. The reason for the depth
in this case is that the number of representations of an integer can be canon-
ically decomposed into a “large” part and a “small” part, neither of which
is well-understood. These notions are only valid asymptotically, and a theo-
rem on representations follows by determining the point after which the large
part truly is larger than the small part, a method first explicitly employed by
Ono and Soundararajan [65] in their study of Ramanujan’s ternary quadratic
form; these techniques have subsequently been improved upon by Kane [50],
Jetchev-Kane [48], and Chandee [17]. Both the large and small parts have
an alternative arithmetic interpretation – the large part corresponds to the
class number of an imaginary quadratic field (and hence to the value of a
Dirichlet L-function), and the small part corresponds to the central critical
value of a modular L-function. Thus, the general problem of determining
when the large part dominates requires a great deal of understanding of the
behavior of L-functions, much of which is beyond our current technology.
Here, we are concerned principally with classifying regular positive definite

integral ternary quadratic forms. A quadratic form is regular if the only
obstructions to representation are local obstructions, which, as mentioned
above, is the natural generalization of universal forms to the ternary setting.
Jagy, Kaplansky, and Schiemann [47] proved that there are at most 913
regular ternary quadratic forms, and they proved that 891 of these forms are
indeed regular. In subsequent work of Oh [63], eight more forms in the list of
913 were proved to be regular. The purpose of this paper is to establish that
the remaining 14 forms are regular, albeit conditionally; see Sections 4.4.1
and 4.4.1 for the list of these forms.

Theorem 4.19. Assume the GRH for all Dirichlet L-functions and all mod-
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ular L-functions. Then each of the remaining 14 ternary quadratic forms
mentioned above is regular.

Remark. As the proof of Theorem 4.19 will show, we do not actually need the
GRH for all modular L-functions. Rather, we need it for the set of quadratic
twists of certain weight two newforms.

While it is obviously unfortunate that we are not able to provide an un-
conditional proof of this result, the fact that the GRH plays a role should
not be surprising. The only general method to obtain results on representa-
tion depends on the decomposition into the large and small parts mentioned
above, both of which encode values of L-functions. We understand both ob-
jects very well assuming the GRH, but for neither do we currently possess
unconditional bounds of sufficient quality.
Motivated by work of Granville and Stark [35], who established that a

form of the abc-conjecture implies that there are no Siegel zeros of Dirichlet
L-functions, we consider what exceptional arithmetic consequences would
arise from the failure of a large locally represented integer to be globally
represented.

Theorem 4.20. Let Q be a ternary quadratic form of discriminant ∆, and
assume the GRH for the family of L-functions associated to quadratic twists
of newforms of conductor dividing ∆. Moreover, given any integer n, let n
denote the image of n in the finite set

∏
p|∆ Q×p /

(
Q×p
)2. Then there is an

explicitly computable constant N(Q, a) such that if n ≥ N(Q, a), n = a, n is
squarefree, and n is locally represented but is not globally represented, then
there is a Siegel zero of some Dirichlet L-function.

Remark. By a Siegel zero of a Dirichlet L-function, we mean a real zero
σ < 1 of some L(s, χ), where χ is a primitive real Dirichlet character to the
modulus q and

σ > 1− c

log 3q
,



105

where c is some positive real number. Of course, we allow the quantity
N(Q, a) in Theorem 4.20 to depend upon the choice of c.

The constant N(Q, a) in Theorem 4.20 is especially nice in the case that
the cuspidal part of the theta function associated to Q is a Hecke eigenform.
As an example of this, we have the following application to Ramanujan’s
ternary quadratic form, Q = x2 +y2 +10z2, which, in their pioneering paper,
Ono and Soundararajan [65] proved represents all odd integers greater than
2719 under the assumption of the GRH.

Corollary 4.21. Assume the GRH for the L-functions of all quadratic twists
of the elliptic curve y2 = x3 + x2 + 4x + 4. If the quadratic form Q =

x2 + y2 + 10z2 does not represent an odd integer n ≥ 2.8 · 1025, then some
Dirichlet L-function has a Siegel zero with

c = 342395 · n−0.392 log2 n.

Moreover, if c is fixed, if Q does not represent a locally represented integer
n ≥ 8.179 · 1024 · c−2.793, then some Dirichlet L-function possesses a Siegel
zero.

Lastly, for completeness, we consider the complementary question of, as-
suming the GRH for Dirichlet L-functions, deducing from the failure of a
locally represented integer to be globally represented exceptional behavior
for the arithmetic of modular forms. While we are able to state a more
general result (see the third remark following the theorem), we focus on a
case of more arithmetic interest. We say that a ternary quadratic form Q is
associated to an elliptic curve E/Q if the cuspidal part of its theta function
is a Hecke eigenform which lifts, under the Shimura correspondence, to the
cusp form associated to E. Also, given any elliptic curve E, let Ed denote
its quadratic twist by d, and let X(Ed) denote the Tate-Shafarevich group
of Ed.
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Theorem 4.22. Assume the GRH for Dirichlet L-functions and the Birch
and Swinnerton-Dyer conjecture for rank 0 elliptic curves, and suppose that
Q is associated to the elliptic curve E. If n is locally represented but not
globally, then there is a positive integer d� n for which

|X(E−d)| �E
d

log4 d
,

where the implied constant can be made explicit.

Three remarks:
1) Ramanujan’s quadratic form x2 + y2 + 10z2 is an example of a quadratic

form associated to an elliptic curve; namely, it is associated to the curve
y2 = x3 + x2 + 4x + 4 given in Corollary 4.21. In this case, we would have
d = 10n.
2) While the lower bound on the size of X(Ed) does not contradict the

Goldfeld-Szpiro conjecture [26] that, for any E/Q with conductor N , |X(E)|
is Oε

(
N1/2+ε

)
uniformly in E, in fact a stronger statement is expected for

the family of quadratic twists. In particular, the Ramanujan conjecture for
half-integral weight modular forms would imply that |X(Ed)| �E,ε d

1/2+ε.
3) In the event that Q is not associated to an elliptic curve, it is still possible

to deduce similar sorts of arithmetic implications. To any packet of Galois
representations, and in particular to a newform, one can associate a Tate-
Shafarevich group, and it is possible, under the appropriate conjectures, to
deduce that some quadratic twist of a newform associated to Q would have
an usually large Tate-Shafarevich group in this sense. See, for example, work
of Bloch and Kato [10] for more information on such objects.
This paper is organized as follows. In Section 4.4.1, we go over the necessary

background in more detail, and we prove Theorem 4.19. In Sections 4.4.2
and 4.4.3, we prove Theorems 4.20 and 4.22, respectively.
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4.4.1 Representation by ternary quadratic forms

We begin this section by going into more detail on the decomposition alluded
to in the introduction, and we discuss the general approach to be taken to
prove Theorem 4.19; this comprises Section 4.4.1. This approach proves to
be technically slightly easier in the case that the form in question is in a
genus of size two. This is the case for 11 of the 14 forms, and we prove that
each is regular in Section 4.4.1. The remaining three forms are each in a
genus of size three, and we dispatch of these in Section 4.4.1.

Eisenstein series and cusp forms

We begin with a brief review of the theory of quadratic forms as it relates to
the theory of modular forms. Since we are only concerned with the case of
positive definite integral ternary quadratic forms, it is to be understood that
when we talk about a quadratic form, it is assumed to be such. Now, given
two quadratic forms Q1 and Q2, we say that Q1 and Q2 are (globally) equiv-
alent if there is some matrix γ ∈ GL3(Z) such that the variable substition
(x, y, z) 7→ γ · (x, y, z) takes Q1 to Q2; we say that they are locally equivalent
if for each prime p, there is some matrix γp ∈ GL3(Zp) taking Q1 to Q2. The
genus of a form Q, denoted by G(Q), is the set of forms locally equivalent to
Q modulo global equivalence.
We can express Q in the form

Q(x) =
1

2
xτAx,

where A is a symmetric 3× 3 matrix with integer entries and even diagonal
entries. The discriminant ∆ of Q is the determinant of A, and the level of Q
is the least integer N for which NA−1 has integer entries and even diagonal
entries. The theta function associated to Q is given by

θQ(z) :=
∑
x∈Z3

qQ(x), q := e2πiz,
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and it is a classical fact that θQ(z) is a modular form of weight 3/2, level N ,
and nebentypus

(−4∆
·

)
. As such, it can be decomposed as

θQ(z) = E(z) + C(z), (4.66)

where E(z) is an Eisentein series and C(z) is cusp form. In fact, E(z) can
always be found from the theta functions of the forms in the genus of Q by
the formula

E(z) =

∑
Q′∈G(Q)

1
|Aut(Q′)|θQ′(z)∑

Q′∈G(Q)
1

|Aut(Q′)|
,

where Aut(Q′) denotes the (finite) automorphism group of Q′. In addition,
there is the Siegel mass formula, which asserts that the Fourier coefficients
of E(z) are essentially class numbers of imaginary quadratic fields multiplied
by certain local densities. In particular, we have, if E(z) =

∑
aE(n)qn, that

aE(n) =
24h(−Mn)

Mw(−Mn)

∏
p|2N

βp(n) ·
1− χ(p)

(
n
p

)
p−1

1− p−2
, (4.67)

where h(−d) denotes the class number of the field Q(
√
−d), w(−d) denotes

the number of roots of unity in Q(
√
−d), M is a rational number depending

on n (mod 8N2) such that −nM is a fundamental discriminant, and the
quantities βp(n) are certain local densities depending on the image of n in
the finite set ∏

p|∆

Q×p /
(
Q×p
)2
.

See work of Hanke [40] or Rouse [69] for more information on these densities.
Hence, if n is locally represented, each βp(n) 6= 0, and we have that

aE(n)�Q h(−Mn)�ε n
1/2−ε,

where the last inequality is the notoriously ineffective theorem of Siegel.
Currently, the best effective lower bound on class numbers is due to Goldfeld
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[27]. This relies on the deep work of Gross and Zagier [37], and would yield
aE(n)�ε log1−ε n. As we will see, this bound is far too small to be of use, and
it is for this reason that we must assume the GRH for Dirichlet L-functions.
Assuming the GRH, the best explicit lower bounds on class numbers are due
to Chandee [17], and are, of course, of the same quality as Siegel’s lower
bound.
To handle the cuspidal part C(z) of θQ(z), we note that C(z) can be de-

composed as a linear combination of eigenforms. Each of these is either a
unary theta function, which necessarily has coefficients supported on a single
square class, or is subject to a theorem of Waldspurger [77], which says that
the coefficients in certain square classes are essentially the square roots of
central L-values of quadratic twists of the integral weight cusp form associ-
ated to the eigenform via Shimura’s correspondence. Precisely, we have the
following.

Theorem (Waldspurger). Suppose that f(z) ∈ Sλ+1/2(Γ0(N), χ) is a half-
integer weight eigenform of each of the Hecke operators T (p2), p - N , and
eigenvalues λ(p). Moreover, assume that F (z) ∈ S2λ(Γ0(N), χ2) has the same
system of eigenvalues under each T (p). If n1 and n2 are two positive square-
free integers with n1/n2 ∈ (Q×p )2 for each p | N and f(z) =

∑∞
n=1 a(n)qn,

then

a(n1)2

(
n2

n1

)λ−1/2

χ

(
n2

n1

)
L
(
1, F ⊗ χ−1χn2

)
= a(n2)2L

(
1, F ⊗ χ−1χn1

)
,

where n∗i = (−1)λni.

Now, assuming either the Ramanujan conjecture for half-integral weight
cusp forms or the GRH for the family of quadratic twists of weight two
newforms, it is possible to show that the Fourier coefficients aC(n) satisfy
aC(n) �ε n

1/4+ε. Unconditionally, the convexity bound for the family of
quadratic twists yields that aC(n) �ε n1/2+ε, which is not sufficient to
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establish any asymptotic result (recall that aE(n) �ε n
1/2−ε). The best

known subconvexity bound, due to Blomer and Harcos [11], yields that
aC(n) �ε n

7/16+ε, which, combined with Siegel’s theorem, is enough to es-
tablish an asymptotic result. However, as is the case for the coefficients of
the Eisenstein series, this upper bound is ineffective, and so we must assume
the GRH. Doing so, the best explicit results are again due to Chandee [17].
At this stage, assuming the GRH for Dirichlet L-functions and for the

family of L-functions associated to quadratic twists of certain weight two
newforms, we are able to obtain that if n is locally represented but is not
globally represented, then aE(n) + aC(n) = 0, and from Chandee’s bounds,
we are able to rule this out for large values of n. A finite computation then
suffices to establish the result. Unsurprisingly, if the cuspidal part of θQ(z)

is an eigenform, the bounds are marginally easier to assemble, and we are
left with computations that are shorter. Since this is generically the case if
the genus of Q is of size two, we consider those forms first before considering
the forms in a genus of size three.

Proof of Theorem 4.19: Genera of size two

Of the 14 quadratic forms whose regularity remains unproven, there are 11
that are in a genus of size two; see Table 2.1 for the list of these forms.
As mentioned above, for each of these forms, the cuspidal part of the theta
function is an eigenform, whose system of eigenvalues necessarily comes from
a weight two newform. In fact, each of these newforms is associated to a
rational elliptic curve, and we have indicated the Cremona label of each in
Table 2.1. With this information and Chandee’s bounds, it is now possible
to put into action the approach described in the previous section.
The form with the smallest discriminant is Q := 3x2 + 6y2 + 14z2 + 4yz +

2xz + 2xy, with discriminant 224 = 25 · 7, and it is associated to the elliptic
curve E with Cremona label 32a, given by the Weierstrass equation E : y2 =
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Form Disc. Curve Req. n Sec.

3x2 + 6y2 + 14z2 + 4yz + 2xz + 2xy 224 32a 6.1 · 106 75
x2 + 5y2 + 13z2 + 2yz + xz + xy 240 48a 6.7 · 106 318
x2 + 6y2 + 13z2 + 3yz + xz 297 99b 2.7 · 108 3103
2x2 + 5y2 + 11z2 + 2yz + 2xz + xy 405 27a 1.1 · 104 0.2
3x2 + 5y2 + 15z2 + 3yz + 3xz + 3xy 720 48a 2.2 · 107 381
x2 + 10y2 + 29z2 + 5yz + xz 1125 225b 3.8 · 108 3508
5x2 + 8y2 + 11z2 − 4yz + xz + 2xy 1620 27a 8.5 · 108 23703
2x2 + 15y2 + 32z2 + 15yz + xz 3375 225c 8.3 · 108 6386
5x2 + 13y2 + 33z2 − 6yz + 3xz + xy 8232 1176h 7.2 · 105 47
9x2 + 11y2 + 29z2 − 4yz + 3xz + 6xy 10125 225b 9.4 · 104 3
11x2 + 15y2 + 39z2 − 3yz + 6xz + 3xy 24696 1176h 2.4 · 106 217

Table 4.1: The 11 forms in a genus of size two.

x3−x. For each of the 32 square classes a in Q×2 /(Q×2 )2×Q×7 /(Q×7 )2, we can
find constants a, b, and d such that

rQ(n) = aE(n) + aC(n) = ah(−bn)± dn1/4L(1, E ⊗ χ−56n)1/2

whenever n = a; if a is not represented, then a = d = 0. As an example, if
a = (3, 1), we find that a = 1/4, b = 56, and d = 0.422 . . . . Using Dirichlet’s
class number formula, we have that

h(−56n) =
1

π

√
56nL(1, χ−56n),

and so if n is not represented, we have that

L(1, E ⊗ χ−56n)1/2

L(1, χ−56n)
≥ 1.409 · n1/4.

On the other hand, using Chandee’s theorems, we find that

L(1, E ⊗ χ−56n)1/2

L(1, χ−56n)
≤ 10.091 · n0.124,
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which implies that n ≤ 6.108 ·106. Similar computations for the other square
classes yield either the same or smaller bounds on n, so it suffices to check
that Q is regular for n ≤ 6.108 · 106. For convenience of computation, we
note that elementary arguments imply that Q represents n if and only if
Q′ := w2 + 17y2 + 10yz + 41z2 represents 3n. We check the regularity of Q′

up to 20 · 106 for integers divisible by 3, which takes 75 seconds.
The other forms of genus two are handled in exactly the same fashion. The

required bounds on n are recorded in Table 2.1, along with the time required
for the computation.

Proof of Theorem 4.19: Genera of size three

We now turn to the remaining three forms; see Table 2.2 for the list. For
forms in a genus of size greater than two, we no longer expect the cuspidal
part of the theta function to be an eigenform. Nonetheless, we are in the
lucky situation that the cuspidal part of the first form, Q := 5x2+9y2+15z2+

9yz + 3xz + 3xy, happens to be an eigenform, so it can be dispatched as in
Section 4.4.1; we have recorded the relevant data in Table 2.2. Moreover,
while the cuspidal parts of the theta functions of the remaining two forms
are not eigenforms under all Hecke operators T (p2) for p - N , each is an
eigenform under some T (p2). We exploit this fact to more easily compute
the decomposition of C(z) into eigenforms.

Form Disc. Curves Req.n Time

5x2 + 9y2 + 15z2 + 9yz + 3xz + 3xy 2160 48a 6.7·106 320
5x2 + 9y2 + 17z2 + 6yz + 5xz + 3xy 2592 32a, 288e 2.4·107 1974
5x2 + 9y2 + 27z2 + 3xz + 3xy 4536 56a, 504d 7.0·108 30161

Table 4.2: The three forms in a genus of size three.

For the third form in Table 2.2, Q := 5x2 + 9y2 + 27z2 + 3xz + 3xy,



113

C(z) is an eigenform under the Hecke operators T (p2) for p = 5, 7, and 13,
with eigenvalues 2,−1, and 2, respectively. There are only two newforms
with these eigenvalues in the appropriate weight two spaces, and they are
associated with the elliptic curves 56a and 504d. For convenience, we denote
these two curves by E1 and E2, respectively. Following the same approach as
above, for each of the 128 classes a ∈ Q×2 /(Q×2 )2 × Q×3 /(Q×3 )2 × Q×7 /(Q×7 )2,
we have, if n = a, that

rQ(n) = ah(−bn)± d1n
1/4L(1, E1 ⊗ χ−14n)1/2 ± d2n

1/4L(1, E2 ⊗ χ−14n)1/2,

where each of a, b, d1, and d2 can be computed explicitly. We obtain for the
squareclass a = (3, 2, 3), that

a = 1/4, b = 56, d1 = 0.851 . . . , d2 = 0.0801 . . . ,

which yields a bound of the form

d1

√
L(1, E1 ⊗ χ−14n) + d2

√
L(1, E2 ⊗ χ−14n)

L(1, χ−56n)
≥ 0.595 · n1/4,

and, following Chandee, we have that

d1

√
L(1, E1 ⊗ χ−14n) + d2

√
L(1, E2 ⊗ χ−14n)

L(1, χ−56n)
≤ 7.743 · n0.124.

This yields a bound on n of 6.918 · 108. Similar computations reveal only
smaller bounds.
For the second form in Table 2.2, Q := 5x2 + 9y2 + 17z2 + 6yz+ 5xz+ 3xy,

C(z) is an eigenform for every p ≡ 3 (mod 4) with eigenvalue 0, indicating
it is associated to weight two CM cusp forms. There are eight such forms
of possible level, each, again, associated to an elliptic curve. However, we
find that of these eight systems of eigenvalues, only two play a role in C(z);
we have listed the Cremona data for each in Table 2.2. We follow the same
technique as above, and have listed the relevant information in Table 2.2.
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4.4.2 Siegel zeros: Proof of Theorem 4.20

In this section, we consider the arithmetic consequences resulting from a large
locally represented integer failing to be globally represented. The essential
idea of the proof of Theorem 4.20 comes from equation (4.66), which states
that

θQ(z) = E(z) + C(z).

Similar to what we did in Section 4.4.1, by assuming the GRH for the family
of modular L-functions arising from quadratic twists of newforms of con-
ductor dividing ∆(Q), we are able to use Chandee’s theorems [17] to obtain
explicit upper bounds on the Fourier coefficients aC(n) of C(z). Conse-
quently, if n is locally represented, so that aE(n) is non-zero, and is not
globally represented, so that aE(n) + aC(n) = 0, we obtain an explicit up-
per bound on aE(n), which would seemingly contradict the ineffective lower
bound aE(n) �ε n

1/2−ε. Of course, the rectification of this comes from the
fact that the implied constant depends upon a possible Siegel zero of some
Dirichlet L-function. In particular, if there are no Siegel zeros σ < 1 satisfy-
ing

σ > 1− c

log 3q
,

then, following standard techniques (see Davenport [20, §21], for example) a
lower bound of the form

h(d) ≥ α · ce−8c d
1/2

log2 d
(4.68)

can be obtained, where α = 1.288 . . . · 10−4. Thus, if we are able to use the
above ideas to contradict the bound (4.68), we will have produced a Siegel
zero. This is obviously now our goal.
Following the techniques developed in Section 4.4.1, by applying Chandee’s

theorem, we obtain a bound of the form

aC(n) ≤ r · ns,
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for some explicit constants r, s depending only on the class of n in∏
p|∆

Q×p /(Q×p )2.

In fact, by varying the parameter x in Chandee’s bound [17, Equation (19)],
we can obtain many different values of (r, s), a fact which we will exploit
for the purposes of optimization whenever dealing with a specific form – see
the proof of Corollary 4.21 – but in general we only require x to be chosen
so that s < 1/2. Provided that there is no contribution to C(z) from a
unary theta function, we are guaranteed to be able to make this choice (see
equation (4.69) below), and if we restrict n to be squarefree and greater than
the level of Q, we bypass this issue entirely. We could also require, if we write
n = n0n

2
1 with n0 squarefree, that n0 is greater than the level, but we have

chosen the statement we did for aesthetic purposes. At this point, Theorem
4.20 follows immediately. We now prove Corollary 4.21 to make this more
explicit.

Proof of Corollary 4.21. We begin by noting that Q = x2 + y2 + 10z2 has
discriminant 40 and is associated to the elliptic curve E : y2 = x3+x2+4x+4

with Cremona label 20a. For each square class a ∈ Q×2 /(Q×2 )2 ×Q×5 /(Q×5 )2,
and in particular each odd square class, we can find a, b, and d such that

rQ(n) = ah(−bn)± d
√
L(1, E ⊗ χ−10n),

so that if n is not represented by Q, the bound

h(−bn) ≤ d

a

√
L(1, E ⊗ χ−10n)

must hold. On the other hand, if there are no Siegel zeros for some c < 1/8,
we also have the bound (4.68), so if the inequality

c ≥ 4ed

aαb1/2
n−1/2 log2 n

√
L(1, E ⊗ χ−10n)
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holds, we will have arrived at a contradiction. The bound for L(1, E⊗χ−10n)

obtained from Chandee’s theorem is independent of the square class a, and
we compute that the constant is largest for the class (1, 1), with a = 2/3,
b = 40, and d = 1.572 . . . . This yields that

c ≥ 31480 · n−1/2 log2 n
√
L(1, E ⊗ χ−10n)

will be problematic. As mentioned above, using Chandee’s theorem, it is
possible to bound the L-value by rns, where each of r and s depend upon a
parameter x. In particular, we have that

s =
1 + λ

log x
(4.69)

and

log r=<
∑
m≤x

a(m)

m
1
2

+ λ
log x logm

log x
m

log x
+

2(λ2 + λ)

log2 x
+

8e−λ

x
1
2 log2 x

+
1 + λ

2 log x
log

(
800

π2

)
,

(4.70)
where log x

2
≥ λ ≥ λ0, λ0 = 0.4912 . . . is the unique positive solution to

e−λ0 = λ0 + λ2
0/2, and the a(m)’s are the coefficients of the Dirichlet series

−L
′

L
(s, E ⊗ χ−10n).

By taking λ = λ0 and x = 1000, we obtain that s = 0.215 . . . and r =

118.285 . . . . Thus, if c ≥ 342395 · n−0.392 log2 n, this yields a contradiction.
However, we have assumed that c ≤ 1/8, and we note that this bound is only
below that if n ≥ 2.8 · 1025. This is the stated result.
Moreover, the bounds on a, b, and d are all worst when a = (1, 1). Using

the same values of λ and x, and that log n ≤ e1/εnε for every ε > 0, we find
that if

n ≥ 8.179 · 1024 · c−2.793,

then some Dirichlet L-function must have a Siegel zero. This establishes
Theorem 4.20.
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4.4.3 Tate-Shafarevich groups: Proof of Theorem 4.22

We now turn our attention to the proof of Theorem 4.22. The starting point
is again the inequality

h(−bn) ≤ d

a

√
L(1, E ⊗ χ−Dn),

which must hold if n is in the locally represented square class a but n is
not globally represented. Here, we have assumed that Q is associated to the
elliptic curve E. Instead of proceeding as we did in the proof of Theorem
4.20, however, we now assume GRH for Dirichlet L-functions, from which we
obtain a lower bound for the central critical value of the modular L-function
of the form

L(1, E ⊗ χ−Dn) ≥ a2α2b

64d2e2

n

log4(bn)
� n

log4 n
,

which should be compared to the Ramanujan bound L(1, E ⊗ χ−d)�E,ε d
ε.

This inequality immediately guarantees that the analytic rank of E⊗χ−Dn is
0, which in turn yields that the arithmetic rank is 0 and the Tate-Shafarevich
group X(E⊗χ−Dn) is finite. However, if we want more control over the size
of the Tate-Shafarevich group, we must assume the strong form of the Birch
and Swinnerton-Dyer conjecture for rank 0 curves, which asserts, for any
elliptic curve E ′ of rank 0, that

L(1, E ′) =
#X(E ′) · Tam(E ′) · Ω(E ′)

#E ′tors(Q)2
,

where X(E ′) denotes the Tate-Shafarevich group of E ′/Q, Ω(E ′) is the real
period of E ′, Tam(E ′) is the Tamagawa number of E ′, and E ′tors(Q) denotes
the rational torsion subgroup of E ′. As E ′ varies over the family of quadratic
twists of E, the torsion subgroup E ′tors(Q) is bounded by Mazur’s theorem.
In fact, a stronger bound can be obtained – apart from possible 2-torsion,
there are only finitely many twists with non-trivial torsion subgroup – but
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this is essentially irrelevant for our theorem. Moreover, the real period varies
in a predictable manner; namely, we have that

Ω(E ⊗ χ−d)
Ω(E ⊗ χ−4)

= d−1/2.

While the Tamagawa numbers are harder to control, the general bound

Tam(E ⊗ χ−d)� d1/2

holds uniformly in E (see, e.g., [26]). The net effect of this is that, if n is
locally represented but not globally, the inequality

#X(E ⊗ χ−Dn)�E
n

log4 n

must hold, where the implied constant can be made explicit. As mentioned
in the introduction, this contradicts standard conjectures about the size of
the Tate-Shafarevich group in the family of quadratic twists.
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Chapter 5

The pretentious view of analytic

number theory

In a recent series of papers, Granville and Soundararajan ([29], [31], [32],
[33], [34] as a few examples) introduced the notion of pretentiousness in
the study of multiplicative functions taking values in the complex unit disc,
essentially the idea that if two functions are “close" in some sense, they
should exhibit the same behavior. One striking example of this philosophy
is a theorem of Halász [38], which can be interpreted as saying that given a
multiplicative function f(n) with |f(n)| ≤ 1 for all n, the partial sums

Sf (x) :=
∑
n≤x

f(n)

are large if and only if f(n) “pretends" to be nit for some t ∈ R (possibly 0).
To make this precise, define the distance between two multiplicative functions
f(n) and g(n) taking values in the complex unit disc to be

D(f, g)2 :=
∑
p

1−<(f(p)ḡ(p))

p
,

where here and throughout, the summation over p is taken to be over primes.
This distance is typically infinite, but in the event that it is finite, we follow
Granville and Soundararajan and say that f(n) and g(n) are pretentious to
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each other, or that f(n) is g(n)-pretentious. Halász’s theorem then says that
if Sf (x)� x, then f(n) must be nit-pretentious for some t. In other words,
Halász’s theorem classifies those f(n) for which Sf (x) is as large as possible.
Halász’s theorem, in essence, tells a beautiful story about those functions

exhibiting exceptionally little cancellation (read: essentially no cancellation
at all) in their partial sums, so what about those functions which exhibit
exceptionally large amounts? Since for generic f(n) taking values in the
complex unit disc, the best we can typically hope for is Sf (x)�ε x

1/2+ε, we
are interested in when Sf (x) exhibits more than square root cancellation. In
particular, we ask the following question.

Question 5.1. If f(n) is a completely multiplicative function, bounded by 1

in absolute value, such that both
∑

n≤x |f(n)|2 � x and Sf (x)� x
1
2
−δ hold

for some fixed δ > 0, must f(n) be χ(n)nit-pretentious for some Dirichlet
character χ and some t ∈ R?

The reason for the condition that∑
n≤x

|f(n)|2 � x

is twofold. First, we wish to exclude functions like f(n) = n−a for some
a > 0, and second, this condition is necessary for D(f, f) to be finite, and
therefore for f(n) to be pretentious to any function. In other words, this
condition is necessary for f(n) to fit into the context of pretentiousness.

5.1 Multiplicative functions dictated by Artin

symbols

Question 5.1 appears to be intractable at present. Not all is lost, however,
as we are able to provide an answer for a certain, natural class of functions,
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which moreover seems like a not unreasonable place to look for conspiracies
akin to the periodicity of Dirichlet characters.
This class of functions will be defined via the arithmetic of number fields,

with Dirichlet characters arising from cyclotomic extensions. Thus, let K/Q
be a finite Galois extension, not necessarily abelian, and let

(
K/Q
·

)
denote

the Artin symbol, so that for each rational prime p unramified in K,
(
K/Q
p

)
is the conjugacy class in Gal(K/Q) of elements acting like Frobenius modulo
p for some prime p of K dividing p. We let SK denote the class of complex-
valued completely multiplicative functions f(n) satisfying the following two
properties.
First, we require that |f(p)| ≤ 1 for all primes p, with equality holding for

all unramified primes, so that f both fits into the context of pretentiousness
and is of the same size as a Dirichlet character. Secondly, generalizing the
dependence of χ(p) only on the residue class of p (mod q), we require f(p) to
depend only on the Artin symbol

(
K/Q
p

)
. That is, if p1 and p2 are any two

unramified primes such that(
K/Q
p1

)
=

(
K/Q
p2

)
,

we must have that f(p1) = f(p2). We note that if K = Q(ζm), the m-th
cyclotomic extension, SK includes all Dirichlet characters modulo m, and
by taking K to be a non-abelian extension, we can obtain other functions
of arithmetic interest which are intrinsically different from Dirichlet charac-
ters; see the examples following Theorem 5.3. We are now interested in the
following reformulation of Question 5.1 to the class of functions in SK .

Question 5.2. Suppose f ∈ SK is such that Sf (X) = Of (X
1/2−δ) as X →∞

for some fixed δ > 0. Must f(n) coincide with a Dirichlet character? That
is, must f(p) = χ(p) for all but finitely many primes?

Modifying techniques of Soundararajan [74] that were developed to show
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that degree 1 elements of the Selberg class arise from Dirichlet L-functions,
we are able to answer this question in the affirmative.

Theorem 5.3. If f ∈ SK is such that Sf (X) = Of (X
1/2−δ), then f(n)

coincides with a Dirichlet character of modulus dividing the discriminant of
K.

Three remarks: First, while Question 5.1 fits nicely into the pretentious
philosophy, the proof of Theorem 5.3 is highly non-pretentious, as it relies
critically on L-function arguments. However, we still consider this proof to
be of merit, as it highlights the interface between pretentious questions and
techniques relying on L-functions.
Second, as the proof will show, the conditions on the class SK are not

optimal in two ways. In particular, first, the assumption that f(n) is com-
pletely multiplicative is not necessary. What is required is that f(p2) is also
determined by Artin symbols and that |f(pk)| � 1 for all k ≥ 3. Second,
the assumption that |f(p)| ≤ 1 is not necessary for primes which do not split
completely in K, provided one has |f(pk)| � 1. We have chosen the defintion
of SK as we did principally for aesthetic purposes.
Third, a restriction on the size of f(p) is unlikely to be necessary for an

interesting result to be obtained. In particular, the condition of constancy on
primes with the same Frobenius implies that Sf (X) = Õ(X) for all f(n), and
Sf (X) = Õ(X1/2+ε) for almost all f(n) (where the notation Õ indicates the
statement is valid up to powers of logX). Thus, the question of more than
square root cancellation would still be of interest here. We would expect an
analogue of Theorem 5.3 to hold, with Dirichlet characters replaced by the
coefficients of any Artin L-function associated to K/Q, but a proof would
require significant progress toward understanding the nature of the Selberg
class, among other things, and so is likely unobtainable.
We conclude this section with three examples of functions in some SK which

we believe to be of arithmetic interest.
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Example 5.4. Let F (x) = x3 + x2 − x + 1, and let K be the splitting field
of F (x), which has Galois group G ∼= S3 and discriminant −21296 = −24 ·
113. Let ρ(p) denote the number of inequivalent solutions to the congruence
F (x) ≡ 0 (mod p), and define the function f ∈ SK by

f(p) =


−1 if p - 22 and ρ(p) = 0,

0 if p | 22 or ρ(p) = 1,

1 if p - 22 and ρ(p) = 3.

There is a unique Dirichlet character χ in SK , which corresponds to the
alternating character of S3, and is given by χ(p) =

(
−11
p

)
. Alternatively, we

can write χ(p) in terms of ρ(p) by

χ(p) =


−1 if p 6= 11 and ρ(p) = 1, or p = 2,

1 if p - 22 and ρ(p) = 0 or 3,

0 if p = 11.

Since f(p) 6= χ(p) for those primes p such that ρ(p) = 0 or 1 and since such
primes occur a positive proportion of the time by the Chebotarev density
theorem, we should not expect to see more than square root cancellation in
the partial sums of f(n) by Theorem 5.3, and indeed, we find the following.

X Sf (X) |Sf (X)|/
√
X |Sf (X)|/(X/ log7/6X)

10 0 0 0
102 −4 0.4 0.238
103 −12 0.379 0.114
104 −102 1.02 0.136
105 −736 2.327 0.127
106 −5757 5.757 0.123

In the next example, we discuss the apparent convergence in the fourth
column.
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Example 5.5. The astute reader may object to the above example by noting
that f(n) as constructed has mean −1/6 on the primes as a consequence of
the Chebotarev density theorem. By using the Selberg-Delange method [76,
Chapter II.5], we would expect that Sf (X) should have order X/(logX)7/6,
which indeed matches the data more closely (and explains the fourth column).
The Selberg-Delange method breaks down when the mean on the primes is
0 or −1, with the latter possibility essentially corresponding to the Möbius
function µ(n). Thus, the most interesting case occurs when the mean on the
primes is 0. It is a simple exercise to see that any such function g ∈ SK
(where K is as in Example 5.4) arises as the “twist" of χ(n) – we must have
that g(p) = ωχ(p) for all primes p - 22 and some ω satisfying |ω| = 1. Taking
g(p) = iχ(p) for all primes p, we compute the following.

X Sg(X) |Sg(X)|/
√
X

10 1 + i 0.447
102 2 + i 0.224
103 6 + 2i 0.2
104 13 + 6i 0.143
105 36 + 50i 0.195
106 −260 + 215i 0.337

Here, the fact that Sg(X) is not O(X1/2−δ) for some δ > 0 is less apparent
than was the case in Example 1 (there is even more fluctuation than is visi-
ble in the limited information above – for example, Sg(810000)/

√
810000 ≈

0.059), but nevertheless, since g(n) does not coincide with a Dirichlet char-
acter, Theorem 5.3 guarantees that the partial sums are not O(X1/2−δ).

Example 5.6. Let F (x) = x4 + 3x + 3, and let K be the splitting field of
F (x), which has Galois group G ∼= D4 and discriminant 1750329 = 36 · 74.
There are five conjugacy classes of G, three of which, each of order two, can
be determined by exploiting the quadratic subfields Q(

√
−3) and Q(

√
−7).
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To distinguish the remaining two conjugacy classes, each of which consists
of a single element, we exploit the factorization of F (x) modulo p. As in the
previous examples, let ρ(p) denote the number of inequivalent solutions to
the congruence F (x) ≡ 0 (mod p), and additionally define l(p) to be the pair((
−3
p

)
,
(
−7
p

))
. We now consider f ∈ SK defined by

f(p) =



1, if l(p) = (1, 1) and ρ(p) = 4,

−1, if l(p) = (1, 1) and ρ(p) = 0,

1, if l(p) = (−1,−1),

ζ3, if l(p) = (−1, 1),

ζ2
3 , if l(p) = (1,−1),

0, if p | 21.

We note that f(n) is neither a Dirichlet character nor its twist – each of the
three Dirichlet characters

(−3
·

)
,
(−7
·

)
, and

(
21
·

)
has the same value on the

singleton conjugacy classes, and these are the unique characters in SK – yet
it has mean 0 on the primes. We find the following.

X Sf (X) |Sf (X)|/
√
X

10 0 0
102 4.5− 2.598i 0.520
103 −11 + 6.928i 0.411
104 0.5− 2.598i 0.026
105 −34− 71.014i 0.249
106 −21 + 124.708i 0.126

As with Example 5.5, we find the fact that Sf (X) is not O(X1/2−δ) to be not
entirely clear, yet it is guaranteed to be so. In this case, there is even more
fluctuation in the values of |Sf (X)|/

√
X. For example, when X = 7.61 · 105,

we have that |Sf (X)|/
√
X ≈ 0.012, yet when X = 7.69 · 105, we have that



126

|Sf (X)|/
√
X ≈ 0.186. Thus, without knowledge of Theorem 5.3, it would

be difficult to guess the correct order of Sf (X), although if one were forced
to speculate, O(X1/2) would probably be the most reasonable guess. In fact,
under the generalized Riemann hypothesis, we have that Sf (X) = Oε(X

1/2+ε)

for all ε > 0, so that by Theorem 5.3, square root cancellation is the truth in
this case.

5.1.1 Proof of Theorem 5.3

We begin by recalling the setup in which we are working. K/Q is a finite
Galois extension with Galois group G := Gal(K/Q), and f ∈ SK if and only
if |f(p)| ≤ 1 for all primes p, with equality holding if p is unramified in K,
and f(p1) = f(p2) for all unramified primes p1 and p2 such that(

K/Q
p1

)
=

(
K/Q
p2

)
.

We can therefore regard f as a class function of G, and as such, it can be
decomposed [62] as

f =
∑

χ∈Irr(G)

aχχ, (5.1)

where Irr(G) denotes the set of characters associated to the irreducible rep-
resentations of G and each aχ ∈ C. To establish Theorem 5.3, we wish to
show that aχ = 1 for some one-dimensional χ and aχ′ = 0 for all other χ′. We
do so incrementally, first establishing that each aχ is, in fact, rational, then,
using techniques due to Soundararajan [74] developed to study elements of
the Selberg class of degree 1, we prove the result.
Let L(s, f) denote the Dirichlet series associated to f(n), so that we have

L(s, f) :=
∞∑
n=1

f(n)

ns
=
∏
p

(
1− f(p)

ps

)−1

,
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recalling that f(n) is completely multiplicative. By matching the coefficients
of p−s in each Euler factor, the decomposition (5.1) then guarantees the Euler
product factorization

L(s, f) =
∏
χ

L(s, χ)aχ
∏
p

(
1 +O(p−2s)

)
,

valid in the region of absolute convergence <(s) > 1, and where L(s, χ) is
the Artin L-function associated to the representation attached to χ. In fact,
we will need to go further with this factorization. The coefficient of p−2s

in the Euler product is again essentially a class function of G, so it can be
decomposed as a linear combination of the characters χ, and we obtain

L(s, f) =
∏
χ

L(s, χ)aχ
∏
χ

L(2s, χ)bχA(s), (5.2)

where A(s) is analytic and non-zero in the region <(s) > 1/3. We note
that for each non-trivial χ, the L-function L(2s, χ) is analytic and non-zero
in some neighborhood of the region <(s) ≥ 1/2, and for the trivial charac-
ter χ0, we have that L(2s, χ0) = ζ(2s) is again analytic and non-zero in a
neighborhood of <(s) ≥ 1/2, except at s = 1/2. Thus, the product∏

χ

L(2s, χ)bχA(s)

is analytic and non-zero in some neighborhood of <(s) ≥ 1/2, except possibly
at s = 1/2. Now, the condition that∑

n≤X

f(n) = O(X1/2−δ)

guarantees that L(s, f) has an analytic continuation to <(s) > 1/2 − δ, so
by the above, we must have that∏

χ

L(s, χ)aχ
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is analytic in a neighborhood of <(s) ≥ 1/2, except possibly at s = 1/2. In
particular, we must have that

ords=s0L(s, f) =
∑
χ

aχords=s0L(s, χ) (5.3)

for any s 6= 1/2 with <(s) ≥ 1/2.
Recall now that we wish to show that each aχ is rational. This would follow

from (5.3) above if there are n := #Irr(G) choices s1, . . . , sn such that the
vectors

(ords=siL(s, χ1), . . . , ords=siL(s, χn))

are linearly independent over Q. If this is not the case, then there must be
integers nχ, not all zero, such that, for all s0 6= 1/2 with <(s0) ≥ 1/2, we
have ∑

χ

nχords=s0L(s, χ) = 0.

Completing the L-functions and using the functional equation, this implies
that the product,

Λ(s) :=
∏
χ

Λ(s, χ)nχ ,

is entire and non-vanishing, except possibly at s = 1/2. We note that this
is, essentially, an L-function of degree d :=

∑
χ nχ dimχ and conductor q :=∏

χ q
nχ
χ , where each qχ is the conductor of L(s, χ). Where this breaks from

standard definitions of L-functions is in the gamma factor,

G(s) :=
∏
χ

Γ(s, χ)nχ ,

where Γ(s, χ) is the gamma factor for L(s, χ), as typically one does not allow
negative exponents. Nevertheless, much of the formalism carries through,
and in particular, it is possible to show, for example by following Iwaniec
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and Kowalski [45, Theorem 5.8], that the number of zeros of height up to T
is

N(T ) =
T

π
log

qT d

(2πe)d
+O(log qT ).

Since Λ(s) is non-vanishing except possibly at s = 1/2, there can be no main
term, and so we see that d = 0 and q = 1. Moreover, since Λ(s) is entire and
of order 1, we have the factorization

Λ(s) = (s− 1/2)meA+Bs,

where m ∈ Z and A,B ∈ C. Since d = 0 and q = 1, by considering the
functional equation, first as s → ∞ with s ∈ R, we see that <(B) = 0, and
by s = 1/2 + it, t→∞, that B = 0. Writing G(s) as

G(s) = Γ(s)aΓ
(s

2

)b
Γ

(
s+ 1

2

)c
and applying Stirling’s formula, we see that

logG(s) =
2a+ b+ c

2
s log s−

(
a+ (b+ c)

(
1 + log 2

2

))
s−(

a+ b

2

)
log s+ (a+ b+ c) log

√
2π + b

log 2

2
+O(|s|−1).

Because Λ(s) = C · (s− 1/2)m, the coefficients of both s log s and s must be
zero. The fact that 2a+ b+ c = 0 is a restatement of the fact that the degree
is zero, but the condition that

a+ (b+ c)

(
1 + log 2

2

)
= 0

implies that a = 0 and b = −c, since each of a, b, and c is an integer. We
thus have that

G(s) = (2s)b/2(1 +O(|s|−1)),

whence ∏
χ

L(s, χ)nχ = (s− 1/2)m(2s)−b/2(1 +O(|s|−1)).
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Upon taking the limit as s → ∞, we find that b = m = 0, so, in fact,∏
χ L(s, χ)nχ = 1. But this, of course, cannot happen, so no such nχ exist,

and each of the quantities aχ must be rational.
At this stage, we are now able to prove the theorem. The advantage gained

by knowing that each aχ is rational, is that the function

F (s) :=
∏
χ

L(s, χ)aχ

enjoys nice analytic properties. In particular, apart from a possible branch
along the ray (−∞, 1/2], it will be entire. To see this, let k be the denomi-
nator of the aχ, and note that we must have∏

χ

Λ(s, χ)kaχ = (s− 1/2)mh(s)k

for some entire function h(s). Ignoring the branch, F (s) essentially behaves
as an L-function of degree

∑
aχ dimχ. However, we note that this is also the

evaluation of f(p) at a prime that splits completely in K – or, equivalently,
at the identity of Gal(K/Q) – by (5.1). Thus, it is a rational number of
absolute value 1, and so is either 1 or −1. However, there are no holomor-
phic L-functions of negative degree, as can be seen, for example, by a zero
counting argument (which can be modified simply to account for the possible
branch), and so the degree must be 1. Moreover, it is known that a degree
1 element of the Selberg class must come from a Dirichlet L-function, a fact
which is originally due to Kaczorowksi and Perelli [49] and was reproved by
Soundararajan [74]. However, as before, F (s) does not satisfy the axioms of
the Selberg class, as its gamma factor may have negative exponents, so we
must modify Soundararajan’s proof to our situation.
There are only two key components in Soundararajan’s proof – an approx-

imate functional equation for F (s) and control of the gamma factors on the
line <(s) = 1/2. The proof of the approximate functional equation naturally
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requires the analytic properties of F (s), and as it may have a branch in our
situation, we must modify the proof slightly; we do so in Lemma 5.7 below.
On the other hand, the control over the gamma factors is provided from our
assumption on the degree, so in particular, the same estimates hold. We
state these estimates in (5.4) and we give the idea of Soundararajan’s proof
below, after the proof of Lemma 5.7.

Lemma 5.7. For any t ∈ R such that |t| ≥ 2 and any X > 1, we have that

F (1/2 + it) =
∞∑
n=1

a(n)

n1/2+it
e−n/X +O

(
X−1+ε(1 + |t|)1+ε + e

logX
log |t|−|t|

)
.

Proof. Consider the integral

I :=

∫
(1)

F (1/2 + it+ w)XwΓ(w)dw.

On one hand, replacing F by its Dirichlet series and directly computing, we
find that I is given by

I =
∞∑
n=1

a(n)

n1/2+it
e−n/X .

On the other hand, moving the line of integration to the left, we find that

I = F (
1

2
+it)+

∫
(−1+ε)

F (
1

2
+it+w)XwΓ(w)dw+

∫
C
F (

1

2
+it+w)XwΓ(w)dw,

where the curve C is the union of the segments (−1 + ε − it+,−r − it+)

and (−1 + ε − it−,−r − it−) – that is, above and below the branch – along
with the circle of radius r centered at w = −1/2. The contribution from
the line <(w) = −1 + ε is handled as in Soundararajan’s work via the
functional equation, yielding a contribution of O (X−1+ε(1 + |t|)1+ε). Upon
taking r = log−1 |t|, we find that the contribution from the circle to C is
O
(
e

logX
log |t| e−|t| loga−1 |t|

)
, where a = −ords=1/2F (s). Similarly, the contribu-

tion from the segments is O
(
e−|t| logb |t|

)
, even accounting for a possible

“trivial pole” of F (s) at s = 0 (recall that we may be dividing by gamma
factors), and we obtain the result.
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As mentioned above, we must also have some control over the gamma
factors on the line <(s) = 1/2. This is straightforward, as Stirling’s formula
yields, if G(s) =

∏
χ Γ(s, χ)aχ , that there are constants B,C ∈ R such that

G(1/2− it)
G(1/2 + it)

= e−it log t
2e

+iB+πi
4 C−it

(
1 +O(t−1)

)
. (5.4)

This is not the most natural representation, but it proves to be convenient
for the proof. Now, the idea of Soundararajan’s proof is to consider, for any
real α > 0, the quantities

F(α, T ) :=
1√
α

∫ 2αT

αT

F (1/2 + it)eit log t
2πeα

−πi
4 dt

and
F(α) := lim

T→∞

1

T
F(α, T ).

Armed with Lemma 5.7, one can evalute F(α) in two ways, either using
the functional equation or not. The first method shows that F(α) = 0

unless αCq ∈ Z, where q =
∏

χ q
aχ
χ and C is as in (5.4), in which case it is,

essentially, the coefficient a(αCq). The second method, on the other hand,
shows that F(α) is periodic with period 1, whence Cq ∈ Z and the coefficients
a(n) are periodic modulo Cq. As remarked above, the proof of this follows
Soundararajan’s [74] exactly, with the only modification necessary being the
replacement of his approximate functional equation with ours, Lemma 5.7.
In fact, this argument extends to show that, if we modify the definition of
the Selberg class to allow rational exponents on the gamma factors and for
there to be finitely many lapses of holomorphicity, then still, the only degree
1 elements are those coming from the traditional Selberg class.
To conclude the proof of Theorem 5.3, we note that since the coefficients

F (s) are periodic modulo some q0 and are also multiplicative, we must have
that, away from primes dividing q0, that they coincide with a Dirichlet char-
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acter χq0 (mod q0). Thus, we have that∏
χ

L(s, χ)aχ
.
= L(s, χq0),

where .
= means that equality holds up to a finite product over primes. The

only way this can happen is if χ = χq0 and aχ = 1 for some χ and aχ′ = 0

for all others. This is exactly what we wished to show, so the result follows.

5.2 Pretentiously detecting power cancellation

(The results in this section are joint work with Junehyuk Jung.)
To study Question 5.1, we first ask that if f(n) is χ(n)-pretentious for some

character χ, must Sf (x) be small? This turns out to not be the case - by
taking f(p) to be 1 for primes lying in one of a suitably sparse set of dyadic
intervals and to be χ(p) otherwise, one obtains a function which is χ(n)-
pretentious, but for which Sf (x)� x/ log x for infinitely many x. Thus, we
have a function, f(n), which is pretentious to a function, χ(n), which exhibits
as much cancellation as possible in its partial sums, and yet Sf (x) is almost
as large as possible. We therefore must ask whether there is a stronger notion
of pretentiousness which preserves power savings.
To this end, given any two multiplicative functions f(n) and g(n), not

necessarily bounded by 1, define the multiplicative function h(n) by

g(n) = (f ∗ h)(n),

where (f ∗ h)(n) represents the Dirichlet convolution of f(n) and h(n), and,
for any β > 0, define the (possibly infinite) quantity Hβ(f, g) by

Hβ(f, g) :=
∑
p

∞∑
k=1

|h(pk)|
pkβ

.

We caution that the convergence of this quantity is potentially asymmetric
in f(n) and g(n). Motivated by the idea that if f(n) and g(n) are close, then
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each should need to be modified only slightly to obtain the other, we say
that f(n) and g(n) are strongly β-pretentious to each other if both Hβ(f, g)

and Hβ(g, f) are finite. If f(n) and g(n) are strongly β-pretentious for each
β > 0, then we say that they are totally pretentious to each other.

Theorem 5.8. Suppose that f(n) and g(n) are multiplicative functions, and
that Sf (x)� xα for some α > 0. If f(n) and g(n) are totally pretentious to
each other, then Sg(x) � xα. If, however, f(n) and g(n) are only strongly
β-pretentious to each other, then we have that Sg(x)� xmax(α,β).

Two remarks: First, it is apparent that the first statement of Theorem 5.8
regarding total pretentiousness is an immediate corollary to the second state-
ment by taking β < α. However, we consider its merit to be that it presup-
poses no knowledge of α to deduce that Sg(x) and Sf (x) exhibit the same
level of cancellation.
Second, to obtain the conclusions of Theorem 5.8, it would suffice to sup-

pose only that Hβ(f, g) is finite, with no hypothesis necessary on Hβ(g, f).
We have chosen this formulation so that strong β-pretentiousness, and hence
also total pretentiousness, is an equivalence relation. However, it is only the
symmetry requirement that fails if we rely only on the finiteness of Hβ(f, g),
in that if both Hβ(f, g) and Hβ(g, r) are finite, then so is Hβ(f, r).
Now, we wish to consider the extent to which strong and total pretentious-

ness relate to the traditional notion defined by D(f, g). We begin with the
observation that, if f(n) and g(n) are bounded by 1 in absolute value, then
we have that(∑

p,k

∣∣g(pk)− f(pk)
∣∣

pkγ

)2

≤

(∑
p,k

1

pk(2γ−β)

)(∑
p,k

∣∣g(pk)− f(pk)
∣∣2

pkβ

)

�
∑
p,k

1−<
(
f(pk)g(pk)

)
pkβ

,
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assuming that γ > (1 + β)/2. This last quantity is a kind of generalized
distance considered by Granville and Soundararajan in their book [30], and
so the convergence of the initial series is, in this way, dictated by whether
f(n) and g(n) are pretentious in a more traditional sense (although this
observation is valid only if γ > 1/2). Moreover, since we have that h(p) =

g(p) − f(p), it is perhaps not unreasonable to hope that the convergence
of this series is also related to the convergence of Hβ(f, g). Thus, define a
distance D̂β,k(f, g) by

D̂β,k(f, g) :=
∑
p

∑
j≤k

|g(pj)− f(pj)|
pjβ

,

and additionally define D̂β := D̂β,∞. Our next theorem shows that, while
D̂β(f, g) < ∞ does not imply that Hβ(f, g) < ∞, it does imply the conver-
gence for sufficiently large primes. We also consider what power cancellation
can be deduced directly from assuming that D̂β,k(f, g) <∞.

Theorem 5.9. Let f(n) and g(n) be multiplicative functions satisfying f(n),
g(n) = o(nδ) for some δ > 0.
1. If D̂β(f, g) <∞, there is a Y > 0 such that if

Hσ(f, g;Y ) :=
∑
p<Y

∑
k

∣∣h(pk)
∣∣

pkσ

converges for some σ ≥ β and σ > δ, then Hσ(f, g) <∞.
2. Suppose that Sf (x) � xα and that D̂β,k(f, g) < ∞. There is a Y > 0

such that if Hσ(f, g;Y ) < ∞ for some σ > 1/(k + 1) + δ also satisfying
σ ≥ max(α, β), then Sg(x)� xσ.

While it is unfortunate that we are unable to go from D̂β(f, g) < ∞ to
Hβ(f, g) <∞ without checking the convergence of Hβ(f, g;Y ), it is, in fact,
generically necessary. If we let f(n) = (−1)n+1, so that f(2k) = −1 and
f(pk) = 1 for all p 6= 2 and all k ≥ 1, and we let g(n) = 1, then we of course
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have that Sf (x) � 1 and that Sg(x) � x. However, since neither function
is large and they differ only at the prime 2, we also have that D̂β(f, g) <∞
for every β > 0, and we do not want to deduce any cancellation in Sg(x).
The reason that the theorem does not apply is that |h(2k)| = 2k, so that
Hσ(f, g;Y ) diverges for every σ ≤ 1.
Despite the above discussion, for certain classes of functions, we do not have

to check the convergence of Hσ(f, g;Y ). We now present two such classes.
The first class is motivated by the properties of the normalized coefficients
of automorphic forms.

Definition 5.10. Given a positive integer d, let Sd denote the set of “degree
d” multiplicative functions, those functions f(n) such that f(n) = (f1∗f2∗· · ·∗
fd)(n), where each fi(n) is a completely multiplicative function of modulus
bounded by 1.

As mentioned above, we are able to deduce a nice statement about pre-
tentiousness in the context of degree d functions. Moreover, since the values
at prime powers of a degree d function are determined by its values on the
first d, it should stand to reason that the convergence of D̂β(f, g) should be
dictated by the convergence of D̂β,d(f, g). We are able to show this as well.
Thus, we have the following.

Theorem 5.11. Let f(n) and g(n) be two degree d multiplicative functions
such that D̂β,d(f, g) < ∞. We then have that both D̂β(f, g) and Hβ(f, g)

are finite. In particular, if we also know that Sf (x) � xα, then Sg(x) �
xmax(α,β).

In the next class of functions, we return to the original setting of preten-
tiousness, functions of modulus bounded by 1.

Definition 5.12. Let f(n) be a mutiplicative function of modulus bounded
by 1. We say that f(n) is good at a prime p if there is no choice of g(n)
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with modulus bounded by 1 for which the series∑
k

|h(pk)|
pkσ

fails to converge for some σ > 0. We say that f(n) is good if it is good at
every prime p.

This definition is, of course, exactly what we need to remove the condition
on Hσ(f, g;Y ). However, we note two things: first, it is easy to give examples
of good functions – any completely multiplicative function, say, since we have
that |h(pk)| ≤ 2 – and, second, that it is possible to classify those functions
which are good, which we do in Theorem 5.13. Also, we note that for any
f(n) and g(n) bounded by 1, to check the convergence of D̂β(f, g), it suffices
to check the convergence of D̂β,β−1(f, g).

Theorem 5.13. Let f(n) and g(n) be multiplicative functions of modulus
bounded by 1.
1. If f(n) is good and D̂β(f, g) <∞, then Hβ(f, g) <∞. Thus, if Sf (x)�

xα, we have that Sg(x)� xmax(α,β).
2. f(n) is good at p if and only if the function

Fp(z) :=
∞∑
k=0

f
(
pk
)
zk

has no zeros in the open unit disc.

Finally, we return to the Granville-Soundararajan distance function, and
we ask to what extent the natural modification

Dβ(f, g)2 :=
∑
p

1−<(f(p)g(p))

pβ

allows one to detect power cancellation for multiplicative functions of mod-
ulus bounded by 1. For convenience, if Dβ(f, g) is finite, we say that f(n)
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and g(n) are β-pretentious. As in Theorem 5.9, given f(n) and g(n), we will
need a consideration of h(n) at small primes, so we define

H2
σ(f, g) :=

∑
p≤13

∞∑
k=0

|h(pk)|2

pkσ
,

although, strictly speaking, only the condition p ≤ 41/σ is necessary (only
σ > 1/2 will be used, so p ≤ 13 is, indeed, weaker). We have the following
result, establishing both that β-pretentiousness is sufficient to detect some
power cancellation, but that it is fundamentally unable to detect to the level
we desire.

Theorem 5.14. Let f(n) and g(n) be multiplicative functions bounded by 1
such that Sf (x) � xα for some α < 1, and suppose that Dβ(f, g) < ∞ for
some β ∈ (0, 1].
1. If σ > 3/4 is such that σ ≥ max(α, (1 + β)/2) and H2

2σ−1(f, g) < ∞,
then Sg(x)� xσ.
2. If f(n) and g(n) are both completely multiplicative, then Sg(x) �

xmax(α,(1+β)/2).
3. If f(n) is completely multiplicative and β ≥ 2α−1, there is a completely

multiplicative function f ′(n) that is β-pretentious to f(n) and is such that
Sf ′(x) is not Oε

(
x

1+β
2
−ε
)
.

Three remarks: While it’s perhaps unsatisfying that β-pretentiousness only
detects power savings down to O

(
x

1+β
2

)
even for completely multiplicative

functions, the conclusion of the theorem can be strengthened if f(n) and
g(n) are assumed to be real-valued. The reason for this is that our proof
of optimality relies crucially on the fact that 1 − <(f(p)ḡ(p)) can be much
smaller than |f(p)− g(p)|, which is not the case if f(n) and g(n) take values
in [−1, 1]. Thus, if f(n) and g(n) are β-pretentious and real-valued, then we
also have that D̂β,1(f, g) <∞, and so Theorem 5.9 applies.
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Second, as the proof of Theorem 5.14 will show, if we have the stronger
condition that Sf (x) = o(xα), then we may conclude that Sg(x) = o (xσ).
Third, there are quantitative versions of Halász’s theorem, due to Halász

[39], Montgomery [60], Tenenbaum [76], and Granville and Soundararajan
[30] and [32], but all of these theorems are essentially unable to detect can-
cellation below O

(
x log log x

log x

)
, and so are useless for the question of power

cancellation. There is also very recent work of Koukoulopoulos [51], who
establishes a variant of Halász’s theorem allowing detection of cancellation
down to the level of O

(
x exp

(
−c
√

log x
))
, but, again, this is insufficient for

our purposes.
In view of Theorem 5.14, which implies that β-pretentiousness is enough to

detect power savings down to O(x(1+β)/2), it’s natural to ask what happens
if (1 + β)/2 < α, so that we can detect below the order of magnitude of
Sf (x). That is, supposing we have precise information about Sf (x), can we
use β-pretentiousness to deduce precise information about Sg(x)? This is
the content of our final theorem. For convenience, we state the necessary
conditions on f(n) and g(n) here.
First, if f(n) and g(n) are both completely multiplicative, we only require

that they are β-pretentious to each other for some β > 0. If, however, either
is not completely multiplicative, we must also have that if Sf (x) �ε x

α+ε

for all ε > 0, then α > 3/4, and that both of the series H2
2σ−1(f, g) and

H2
2σ−1(g, f) are convergent for some σ < α.

Theorem 5.15. Let f(n) and g(n) be as above.
1. If Sf (x) = xαξ(x) for some function ξ(x) satisfying ξ(t) �ε t

ε, then
Sg(x) = xαξ̃(x) for an explicitly given function ξ̃(x) also satisfying ξ̃(t)�ε t

ε.
2. If ξ(t) satisfies the mean-square lower bound∫ T

1

|ξ(t)|2dt�ε T
1−ε,

then ξ̃(t) does as well.
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We have in mind the following two applications of Theorem 5.15: First, if
Sf (x) satisfies an asymptotic formula, then so does Sg(x). For example, if
the Dirichlet series associated to f , L(s, f), has a finite number of poles on
the line <(s) = α and is otherwise analytic on <(s) > α− δ for some δ, then
standard Tauberian theorems (for example, see [61]) show that

Sf (x) =
∑

ρ:<(ρ)=α
ords=ρL(s,f)<0

xρPρ(log x) +O(xα−δ+ε),

where each Pρ(log x) is a polynomial in log x. Thus, with the notation of
Theorem 5.15, we have that

ξ(x) =
∑

ρ : <(ρ)=α
ords=ρL(s,f)<0

x=(ρ)Pρ(log x) +O(x−δ+ε),

and it is easy to see that ξ(x) satisfies the required upper bound. Thus, we
can apply Theorem 5.15, and it turns out that in this application, ξ̃(x) works
out to be

ξ̃(x) =
∑

ρ : <(ρ)=α
ords=ρL(s,f)<0

x=(ρ)Qρ(log x) +O(x−δ
′
)

for some suitably small δ′ > 0, where Qρ(log x) is a polynomial in log x of
the same degree as Pρ(log x). Thus, the explicit nature of ξ̃(t) is of use.
Second, if Sf (x) exhibits a consistent level of cancellation, then so does

Sg(x). In the above situation, we made use of the explicit nature of ξ̃(x)

to deduce an asymptotic formula for Sg(x), but in many cases, we would
not be lucky enough to have an asymptotic formula for Sf (x) with which
to begin. However, it is often possible to deduce the weaker statement that
Sf (x) 6�ε x

α−ε for any ε > 0 – for example, L(s, f) may have infinitely
many poles on the line <(s) = α. In this situation, the use of the mean-
square lower bound becomes apparent - because Sf (x) exhibits cancellation
without satisfying an asymptotic formula, it is likely that Sf (x) could be
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exceptionally small, perhaps even 0, for some values of x, but it also seems
that this occurrence should be fairly rare. We can therefore deduce from
Theorem 5.15 that if xα is the right order of magnitude of Sf (x) in this
sense, then xα is also the right order of magnitude for Sg(x).
This paper is organized as follows: In Section 5.2.1, we consider strong

pretentiousness and its relation to the Granville-Soundararajan distances, as
discussed in the introduction. Thus, this is where Theorems 5.8-5.13 are
proved. In Section 5.2.2, we consider the notion of β-pretentiousness, and
establish Theorems 5.14 and 5.15

5.2.1 Strong pretentiousness

In this section, we consider the distances Hβ(f, g) and D̂β,k(f, g) and their
relation to each other. Thus, we prove Theorems 5.8-5.13, and we do so, in
order, in Sections 5.2.1-5.2.1.

Detecting power cancellation

We now let f(n), g(n), and h(n) be as in the hypotheses of Theorem 5.8.
Thus, f(n) and g(n) are multiplicative and h(n) is defined by g(n) = (f ∗
h)(n). We now prove Theorem 5.8.

Proof of Theorem 5.8. Suppose that Sf (x) � xα for some α > 0. We first
claim that the series

∑∞
n=1 |h(n)|/nβ is convergent. From this, we conclude

that ∑
n≤x

g(n) =
∑
m≤x

h(m)
∑
d≤x/m

f(d)

� xα
∑
m≤x

|h(m)|
mα

� xmax(α,β),
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by partial summation. Thus, to establish the theorem, it just remains to show
that the series above is convergent. However, this, too, is straightforward, as
we have that

∞∑
n=1

|h(n)|
nβ

=
∏
p

(
1 +

∞∑
k=1

|h(pk)|
pkβ

)

≤
∏
p

exp

(
∞∑
k=1

|h(pk)|
pkβ

)
= exp (Hβ(f, g)) <∞.

Thus, we have proved Theorem 5.8.

Relation to Granville-Soundararajan distances: Proof of Theorem

5.9

We now wish to relate the finiteness of the distance D̂β(f, g) to the finiteness
of Hβ(f, g). For convenience, we recall that

Hβ(f, g) :=
∑
p,k

|h(pk)|
pkβ

, D̂β,k(f, g) :=
∑
p

∑
j≤k

|g(pj)− f(pj)|
pjβ

,

and that D̂β(f, g) := D̂β,∞(f, g).
From the definition of h(n), we have that

g(pk)− f(pk) =
k∑
j=1

f(pk−j)h(pj),

which, by incorporating all the powers up to n, we may express in terms of
the n× n matrix A :=

(
f(pi−j)

)
i,j≤n, as

A · (h(p), · · · , h(pn))t = (g(p)− f(p), · · · , g(pn)− f(pn))t .

where we have set f(pj) = 0 if j < 0. For any k ≥ 1, define Df (k, p) to be
the determinant of the k × k matrix (aij) given by

aij =

{
f(pi−j+1) if i− j + 1 ≥ 0

0 otherwise,
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so that (−1)kDf (k, p) is the (n, n− k)-th entry of the matrix A−1. We now
have that

h(pn) =
n−1∑
k=0

(−1)k(g(pn−k)− f(pn−k))Df (k, p).

Therefore for σ > 0 sufficiently large, we have that

∞∑
n=1

|h(pn)|
pnσ

≤
∞∑
n=1

(
n∑
k=1

|f(pk)− g(pk)| · |Df (n− k, p)|

)
p−nσ

=

(
∞∑
n=0

|Df (n, p)|
pnσ

)(
∞∑
m=1

|f(pm)− g(pm)|
pmσ

)
.

Of course, at this stage, we would like to sum over p. Lemma 5.16 below
states that the first quantity on the right hand side is uniformly bounded
for p sufficiently large, say p > Y1, provided that f(n) is not too big, say
f(n) = o(nδ), and that σ > δ. Thus, if we assume that Hσ(f, g;Y1) is finite,
when we sum over p, the second summation on the right hand side will yield
D̂σ(f, g), and the first part of Theorem 5.9 follows.

Lemma 5.16. If f(n) = o(nδ) and σ > δ, then for all but finitely many p,
the series

∞∑
n=0

|Df (n, p)|
pnσ

is convergent and uniformly bounded.

Proof. LetM(k, p) be the maximum of the absolute value of the determinants
of the k × k matrices (aij) which satisfy

|aij| ≤

{
p(i−j+1)δ if i− j + 1 ≥ 0

0 otherwise.

Then, we observe that

M(k + 1, p) ≤ 2pδM(k, p)
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by cofactor expansion, and that M(1, p) = pδ. It therefore follows that

M(k, p) ≤ 2k−1pkδ,

which implies that the bound

|Df (n, p)| < (2pδ)n

holds for all but finitely many p.

Now, it remains to establish the second part of Theorem 5.9. To do so, we
must be able to control the contribution of large prime powers to the sum

∞∑
m=1

|f(pm)− g(pm)|
pmσ

.

This control is provided by our assumption that f(n), g(n) = o(nδ). In
particular, it is straightforward to see that

∑
p>Y2

∞∑
m=k+1

|f(pm)− g(pm)|
pmσ

must converge for some Y2, provided that σ > 1
k+1

+ δ. Thus, the second
part of Theorem 5.9 is obtained with Y = max(Y1, Y2).

Degree d functions: Proof of Theorem 5.11

Suppose that f(n) and g(n) are multiplicative functions of degree d, and that
D̂β,d(f, g) < ∞. We first show that D̂β(f, g) is finite, and then we consider
Hβ(f, g).

Lemma 5.17. Let f(n) and g(n) be degree d multiplicative functions, and
suppose that D̂β,d(f, g) <∞. Then D̂β(f, g) <∞.
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Proof. We begin with some general notation. For any given pair of integers
k, d ≥ 0, define the homogeneous symmetric polynomials rdk and qdk of degree
k in d variables by

rdk(x1, · · · , xd) :=


1, if k = 0∑
1≤i1<···<ik≤d

xi1xi2 · · · xik , if 1 ≤ k ≤ d

0, if k > d,

and
qdk(x1, · · · , xd) :=

∑
j1+···+jd=k

xj11 x
j2
2 · · ·x

jd
d .

Then for an auxiliary variable X, we have that

∞∑
k=0

qdkX
k =

d∏
j=1

(
∞∑
k=0

xkjX
k

)

=
d∏
j=1

(1− xjX)−1

=

(
d∑

k=0

(−1)krdkX
k

)−1

,

which implies that the identity

k∑
j=0

(−1)jrdk−jq
d
j = 0

holds for all k ≥ 1.
Now, if f(n) is a multiplicative function of degree d, so that f = f1 ∗
· · · ∗ fd where each fi is completely multiplicative, we have that f(pk) =

qdk(f1(p), . . . , fd(p)). Thus, if we set αk(f, p) = rdk(f1(p), . . . , fd(p)) for k =

0, · · · , d, we have that

d∑
k=0

(−1)kαk(f, p)f(pn−k) = 0
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for any n ≥ 0, where, of course, we have set f(pr) = 0 for r < 0. In
particular, for any multiplicative functions f(n) and g(n) of degree d, since
αk(f, p)�d 1, we have that

|αk(f, p)− αk(g, p)| �d |f(p)− g(p)|+ |f(p2)− g(p2)|+ · · ·+ |f(pd)− g(pd)|

for any k = 1, · · · , d. We are now ready to prove the lemma. Assume that
n ≥ d+ 1. Observing that f(pn)�d n

d−1 and αk(f, p)�d 1, we have

|f(pn)− g(pn)| =

∣∣∣∣∣
d∑

k=1

(−1)kαk(f, p)f(pn−k) + (−1)kαk(g, p)g(pn−k)

∣∣∣∣∣
�d

d∑
k=1

∣∣αk(f, p)f(pn−k) + αk(g, p)g(pn−k)
∣∣

�d

d∑
k=1

[∣∣αk(f, p) (f(pn−k)− g(pn−k)
)∣∣

+
∣∣g(pn−k) (αk(f, p)− αk(g, p))

∣∣]
�d

d∑
k=1

∣∣f(pn−k)− g(pn−k)
∣∣

+ nd−1
(
|f(p)− g(p)|+ · · ·+ |f(pd)− g(pd)|

)
,

Since
∞∑
n=1

|f(pn)− g(pn)|
pnσ

�d

∞∑
n=1

nd−1

pnσ

is convergent, this inequality leads to

∞∑
n=d+1

|f(pn)− g(pn)|
pnσ

�d

d∑
k=1

∞∑
n=d+1

|f(pn−k)− g(pn−k)|
pnσ

+
∞∑

n=d+1

nd−1

pnσ
(
|f(p)− g(p)|+ · · ·+ |f(pd)− g(pd)|

)
�d

1

pσ

∞∑
n=1

|f(pn)− g(pn)|
pnσ

.
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Therefore for all sufficiently large p, we have

∞∑
n=d+1

|f(pn)− g(pn)|
pnσ

�d

d∑
n=1

|f(pn)− g(pn)|
pnσ

.

By summing over p, we get the conclusion.

It remains to show that Hβ(f, g) is finite. Recall for each prime p, that

∞∑
n=1

|h(pn)|
pnβ

≤

(
∞∑
n=0

|Df (n, p)|
pnβ

)(
∞∑
m=1

|f(pm)− g(pm)|
pmβ

)
,

where Df (n, p) is as in Section 5.2.1. We will show that the first summation
on the right hand side is uniformly bounded, so that by summing over p and
using the finiteness of D̂β(f, g), the result follows.

Lemma 5.18. If f(n) is a degree d multiplicative function and σ > 0, then,
for all p, the series

∞∑
n=0

|Df (n, p)|
pnσ

converges and is bounded independent of p.

Proof. Recall that we defined Df (k, p) so that the equation,

h(pn) =
n−1∑
k=0

(−1)k(g(pn−k)− f(pn−k))Df (k, p),

holds. We may think of this as a linear polynomial in the variables g(pi) for
i = 1, . . . , n, and we note that the coefficient of g(pn−j) is Df (j, p) for all j.
On the other hand, from the definition of h(n), we have the Euler product
identity

∏
p

(
∞∑
n=0

h(pn)p−ns

)
=
∏
p

(
∞∑
n=0

g(pn)p−ns

)(
1− f1(p)p−s

)
. . .
(
1− fd(p)p−s

)
,
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where the fi(n) are the constituent completely multiplicative functions of
f(n). Thus, h(pn) can be expressed as a linear combination of the variables
g(pi) for i = n − d, . . . , n. Combining these two observations, we conclude
that Df (k, p) = 0 for k ≥ d + 1. The result follows by noting that each of
the Df (k, p) for k ≤ d can be bounded independent of p.

Good functions

Recall that a multiplicative function f(n) of modulus bounded by 1 is good
at p if there are no multiplicative functions g(n), of modulus bounded by 1,
such that the series

∞∑
k=0

|h(pk)|
pkσ

diverges for any σ > 0, and that f(n) is good if it is good at each prime p.
This condition ensures that Hσ(f, g;Y ) is finite for every Y > 0, so the first
part of Theorem 5.13 is immediate, that the finiteness of D̂β(f, g) implies the
finiteness of Hβ(f, g). The second part, the classification of functions which
are good at p, is proved along the following lines.
Recall that we defined

Fp(z) :=
∞∑
k=0

f
(
pk
)
zk,

and we wish to show that f(n) is good at p if and only if Fp(z) has no zeros
in the open unit disc. To do this, we observe that Gp(z) = Fp(z)Hp(z), where
Gp(z) and Hp(z) are defined analogously to Fp(z). Since g(n) is bounded by
1, we must have that Gp(z) is holomorphic in the disc. Now, the convergence
of

∞∑
k=0

|h(pk)|p−kσ

is equivalent to the statement that Hp(z) is holomorphic. Thus, the result
follows.
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5.2.2 β-pretentiousness

In this section, we consider the notion of β-pretentiousness in some detail.
Recall that two multiplicative functions f(n) and g(n), both of modulus
bounded by 1, are such that the series

Dβ(f, g) =
∑
p

1−<(f(p)ḡ(p))

pβ

converges, then they are said to be β-pretentious. In Section 5.2.2, we es-
tablish that if f(n) and g(n) are β-pretentious and if Sf (x) � xα, then we
can detect power cancellation in Sg(x). In Section 5.2.2, we construct a func-
tion f ′(n) which is β-pretentious to f(n) and exhibits as little cancellation
as possible in view of the estimates established in Section 5.2.2, thereby es-
tablishing their optimality. Thus, these two sections comprise the proof of
Theorem 5.14. In Section 5.2.2, we establish Theorem 5.15 regarding what
happens if we are permitted to detect more cancellation than exists.

Detecting power cancellation

The key result which we use to exhibit cancellation in Theorem 5.14 is the
following proposition, which of course is reminiscent of the proof of Theorem
5.8.

Proposition 5.19. Let f(n) g(n) be as above, and let h(n) be defined by
g(n) = (f ∗ h)(n). If the series

∞∑
n=1

|h(n)|2

nσ

is convergent for some σ > 0, then Sg(x) � xmax(α,(1+σ)/2). Moreover, if
Sf (x) = o(xα), then Sg(x) = o(xmax(α,(1+σ)/2)).
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Proof. From the definition of h(n), we have that∑
n≤x

g(n) =
∑
m≤x

h(m)
∑
d≤x/m

f(d)

� xα
∑
m≤x

|h(m)|
mα

≤ xα

(
∞∑
m=1

|h(m)|2

mσ

)1/2(∑
m≤x

1

m2α−σ

)1/2

� xmax(α,(σ+1)/2).

If we have the stronger assumption that Sf (x) = o(xα), by splitting the sum
over m on the first line according to whether m is large and proceeding in
the same way, it is easily seen that Sg(x) = o

(
xmax(α, 1+σ2 )

)
.

In light of Proposition 5.19, to prove the first part of Theorem 5.14, it
suffices to establish the following lemma.

Lemma 5.20. If f(n), g(n), and h(n) are as above, |f(n)|, |g(n)| ≤ 1 for
all n, f(n) and g(n) are β-pretentious for some β > 0, and σ > 1/2 is such
that σ ≥ β, then the series

∞∑
n=1

|h(n)|2

nσ

converges if the quantity

H(σ) =
∑
p≤41/σ

∞∑
k=0

|h(pk)|2

pkσ

is finite.

Proof. Since |g(n)| ≤ 1 and |f(n)| ≤ 1, we have that

|h(pk)| ≤ 2k
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for all p and all k. Therefore for p > 41/σ, one has

∞∑
k=1

|h(pk)|2

pkσ
≤ 1− Re(f(p)g(p))

pσ
+

16

p2σ
(1− 4/pσ)−1.

Thus, our assumption that σ ≥ β and that

Dβ(f, g) =
∑
p

1−<(f(p)g(p))

pβ

is finite, together with the assumptions of the lemma, guarantee that the
series

∞∑
n=1

|h(n)|2

nσ
=
∏
p

(
∞∑
k=0

|h(pk)|2

pkσ

)
is absolutely convergent.

To establish the cancellation for completely multiplicative functions claimed
in the second part of Theorem 5.14, we have the following lemma.

Lemma 5.21. If f(n),g(n), and h(n) are as in Lemma 5.20 and f(n) and
g(n) are completely multiplicative, then the series

∞∑
n=1

|h(n)|2

nβ

is convergent.

Proof. Since h(pk) = g(pk−1)(g(p)− f(p)) for all primes p and all k ≥ 1, we
have that

|h(pk)|2 ≤ |g(p)− f(p)|2 ≤ 2(1−<(f(p)ḡ(p))).
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Therefore, we have that

∞∑
n=1

|h(n)|2

nβ
=
∏
p

(
1 +

∞∑
k=1

|h(pk)|2

pkβ

)

≤
∏
p

(
1 +

2(1−<(f(p)ḡ(p)))

pβ
(1− p−β)−1

)

≤ exp

(∑
p

2(1−<(f(p)ḡ(p)))

pβ
(1− 2−β)−1

)
= exp

(
2(1− 2−β)−1Dβ(f, g)

)
<∞,

exactly as desired.

To establish Theorem 5.14, it now remains to establish the optimality of
the bound for completely multiplicative functions.

Optimality

It is worth noting at this point that there is another natural approach to
proving the theorem, albeit one that is not entirely within the bounds of the
pretentious philosophy. From the relation g(n) = (f ∗ h)(n), we have the
Dirichlet series identity

L(s, g) = L(s, f)L(s, h).

The assumption that Sf (x)� xα translates to L(s, f) being analytic in the
right half-plane <(s) > α and the assumption that g(n) is β-pretentious to
f(n), in light of Lemma 5.20 and the Cauchy-Schwarz inequality, implies that
L(s, h) is analytic in the region <(s) > max

(
3/4, 1+β

2

)
. Standard arguments

(e.g. Perron’s formula) then imply the desired bound for Sg(x). Our proof of
optimality will proceed along similar lines. While it is somewhat unfortunate
that we have to use this mildly non-pretentious argument, it is not entirely
clear how to avoid its use.
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Lemma 5.22. Given any β > 0 and a completely multiplicative function
f(n) of modulus bounded by 1 such that f(n) is 1-pretentious to itself, there
is a completely multiplicative function g(n) that is β-pretentious to f(n), and
which does not satisfy Sg(x)� x(1+β)/2−ε for any ε > 0.

Proof. First, we may assume that L(s, f) is analytic in the region <(s) >

(1+β)/2−δ for some δ > 0, otherwise we could simply take g(n) to be f(n).
Let

g(p) := e

(
ωp

p
1−β
2 log log p

)
f(p),

where ωp = ±1 is a system of signs to be specified later and, as is standard,
e(x) := e2πix. It is easy to verify that g(n) is β-pretentious to f(n). Our goal
is to force L(s, h) to have a singularity at s = 1+β

2
. We compute the Euler

product for L(s, h) using the Taylor expansion of e(x), getting that

L(s, h) =
∏
p

(
1 +

g(p)− f(p)

ps
+O

(
p−2s

))

=
∏
p

(
1 +

2πiωpf(p)

ps+
1−β
2 log log p

+O
(
p−2s + p−s−1+β

))
.

The convergence of L(s, h) at s = 1+β
2

is thus dictated by the behavior of the
series

Pf (τ) :=
∑
p

iωpf(p)

pτ log log p

as τ tends to 1 from the right. In particular, L(s, h) will have a singularity
at s = 1+β

2
if we can force either the real part of Pf (τ) to tend to infinity,

accounting for a (possibly fractional order) pole, or, failing that, to have
the real part of Pf (τ) converge but the imaginary part diverge to infinity,
accounting for an essential singularity. Obviously, we now choose ωp to ensure
one of these situations. If the series∑

p

=(f(p))

p log log p
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is not absolutely convergent, we choose ωp = −sign(=(f(p))), forcing <(Pf (τ))

to diverge to infinity. If the series is absolutely convergent, we choose ωp =

sign(<(f(p))), observing that∑
p

|<(f(p))|
pτ log log p

+
∑
p

|=(f(p))|
pτ log log p

≥
∑
p

<(f(p))2 + =(f(p))2

pτ log log p

=
∑
p

|f(p)|2

pτ log log p

≥
∑
p

1

pτ log log p
− D1(f, f),

which tends to infinity as τ → 1+. We thus have that

=

(∑
p

iωpf(p)

p log log p

)
=
∑
p

|<(f(p))|
p log log p

=∞,

from which we conclude that =(Pf (x)) tends to infinity. We have thus con-
structed g(n) so that L(s, h) has a singularity at s = 1+β

2
, so provided that

L
(

1+β
2
, f
)
6= 0, we obtain the result. If L

(
1+β

2
, f
)

= 0, there is a t ∈ R
such that L

(
1+β

2
+ it, f

)
6= 0. We make the obvious modifications to the

construction above to force L(s, h) to have a singularity at s = 1+β
2

+ it.

Asymptotic formulae

We now suppose we are in the situation of Theorem 5.15. That is, we assume
that f(n) is multiplicative, of modulus bounded by 1, and is such that

Sf (x) = xαξ(x)

for some function ξ(x) satisfying ξ(t)�ε t
ε for all ε > 0, and we also assume

that β < 2α − 1. In addition, if f(n) is not completely multiplicative, we
assume that α > 3/4 and that the series H2

2σ−1(f, g) and H2
2σ−1(g, f) are
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convergent. To establish a formula for Sg(x), we note that∑
n≤x

g(n) =
∑
m≤x

h(m)
∑
d≤x/m

f(d)

= xα
∑
m≤x

h(m)

mα
ξ(x/m),

and so we naturally define ξ̃(x) to be the convolution

ξ̃(x) :=
∑
m≤x

h(m)

mα
ξ(x/m).

To see that ξ̃(x)� xε, we merely note that

|ξ̃(x)| ≤
∑
m≤x

|h(m)|
mα

|ξ(x/m)| �ε x
ε
∑
m≤x

|h(m)|
mα+ε

.

Our assumptions guarantee that the series on the right is convergent, whence
the claimed bound. Now, suppose that∫ T

1

|ξ(t)|2dt�ε T
1−ε.

Möbius inversion gives that

ξ(x) =
∑
m≤x

h̃(m)

mα
ξ̃(x/m),

where h̃(n) is the Dirichlet inverse of h(n) (i.e., (h∗h̃)(1) = 1 and (h∗h̃)(n) =

0 for n > 1). Using this and the Cauchy-Schwarz inequality in the above, we
obtain that

T 1−ε �ε

∫ T

1

(∑
m≤t

|h̃(m)|2

mβ

)(∑
m≤t

|ξ̃(t/m)|2

m2α−β

)
dt

≤
∞∑
m=1

|h̃(m)|2

mβ

∫ T

1

∑
m≤t

|ξ̃(t/m)|2

m2α−β dt

=
∞∑
m=1

|h̃(m)|2

mβ

∑
m≤T

1

m2α−β−1

∫ T/m

1

|ξ̃(t)|2dt

� T 2−2α+β

∫ T

1

|ξ̃(t)|2 dt

t2−2α+β
,
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where the infinite series is convergent by assumption, so we have absorbed it
into the implied constant. Now, let

I :=

∫ T

1

|ξ̃(t)|2dt,

and apply Hölder’s inequality to get that∫ T

1

|ξ̃(t)|2 dt

t2−2α+β
≤ I

2α−β−1
2

(∫ T

1

|ξ̃(t)|2

t
2(2−2α+β)
3−2α+β

dt

) 3−2α+β
2

�ε I
2α−β−1

2

(∫ T

1

t
−2(2−2α+β)

3−2α+β
+εdt

) 3−2α+β
2

� I
2α−β−1

2 T
2α−β−1

2
+ε.

Using this in the above, we obtain that

I
2α−β−1

2 T
3−2α+β

2
+ε �ε T

1−ε,

and so we have that
I

2α−β−1
2 �ε T

2α−β−1
2

−ε,

and the result follows, concluding the proof of Theorem 5.15.
Since the Dirichlet series L(s, h) for <(s) ≥ α plays a critical role in the

definition of ξ̃(x), it is useful to know whether it is 0. In particular, in ap-
plying Theorem 5.15 in the case when Sf (x) satisfies an asymptotic formula,
we might potentially lose a term in our formula if L(ρ, h) = 0 for some pole
ρ of L(s, f). However, we have the following simple observation.

Lemma 5.23. If f(n) and g(n) are completely multiplicative and as above,
then the Dirichlet series L(s, h) associated to h(n) is non-zero in the region
<(s) > (1 + β)/2.

Proof. Since h(n) is defined by the relation g = f ∗ h, we have the Dirichlet
series formula

L(s, h) =
L(s, g)

L(s, f)
.
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By Lemma 5.21, this is absolutely convergent in the region <(s) > (1+β)/2.
If we define h̃(n) by f = g ∗ h̃, the same argument applies to L(s, h̃). Since
we also have that

L(s, h̃) =
1

L(s, h)
,

this immediately yields the result.

Of course, if f(n) and g(n) are not completely multiplicative, the analog of
Lemma 5.23 can still be obtained with Lemma 5.20 replacing Lemma 5.21.
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