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Abstract

Variable Selection of Neuroimaging Features in Mild Cognitive Impairment
By Lingyi Peng

Mild cognitive impairment (MCI) is often a precursor to Alzheimer’s disease (AD),
and early detection of MCI may facilitate treatment to prevent the onset of AD. One
of the characteristics AD pathology is beta-amyloid (Aβ) plaques, which is detected
using positron emission tomography (PET). However, PET imaging is expensive and
invasive. We investigate whether low-cost, non-invasive structural magnetic resonance
imaging (MRI) might be an alternative to detect brain atrophy and predict the
subjects at risk of AD. Hundreds of features are typically derived from structural MRI,
which makes variables selection difficult. We adopted a recently introduced method,
Knockoffs filter, to select features from MRI while controlling the false discovery rate
(FDR). To investigate the hypothesis of effectiveness of MRI in AD research, we have
two main goals in our study: 1) to conduct three FDR-controlled methods of features
selection between Aβ positive and negative for CN and MCI population; 2) evaluate
feature selection procedures that predict MCI. The signals of feature for predicting
MCI are much stronger than in predicting Aβ status. Although knockoff filter does
not many features in Aβ pathology or in predicting MCI, some biologically plausible
variables are selected in multiple initializations of the knockoff filter, which indicates
left hippocampus volume is particularly important in predicting MCI. We propose
to run many initializations of the knockoff-filter, which may improve the stability of
feature selection.
keywords: Alzheimer’s disease, High-dimensional feature selection, False discovery
rate, Knockoffs filter.
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1 Introduction

Alzheimer’s disease is a common type of dementia among older people along that

is associated with problems of memory, thinking and behavior. Before developing

Alzheimer’s disease (AD), patients usually have prodromal stage, mild cognitive

impairment (MCI). In this MCI stage, some symptoms will appear, like noticeable

cognitive decline and those problems become more severe along with aging. However,

Alzheimer’s does not only occur in elder people, but also people younger than age

65. Therefore, how to predict the pre-state of Alzheimer’s accurately become more

and more important for early intervention. One of the characteristics AD pathology is

beta-amyloid (Aβ) plaques. (Scheltens et al., 2016). Higher Aβ plaques concentration

in specific brain region will result in functional impairment and then increase the

risk of developing AD. Also, MCI patients are more like to have Aβ positive than

Cognitive Normal population (CN).

Usually the status of Aβ plaques concentration can be measured by amyloid

positron emission tomography (PET) (Forsberg et al., 2008; Chételat et al., 2003).

However, PET scan is a costly and invasive imaging technique. Alternatively, structural

magnetic resonance imaging (MRI) might serve as a potential non-invasive prediction

method for Aβ status, since MRI is able to assess brain atrophy and deterioration

caused by the high concentration of Aβ plaques (Ten Kate et al., 2018; Chetelat and

Baron, 2003). The extent to which structural MRI can capture the information in

PET is still largely unknown. The statistical problem is to select which features from

structural MR Imaging are related to a binary indicator of Aβ status, wherein the Aβ

status is determine from PET.

Feature selection from medical imaging is very challenging, as there are typically

hundred of predictors and a relatively small sample size. Familywise error rate (FWER)

and false discovery rate (FDR) were introduced to measure Type I error when con-

ducting hundreds of hypothesis tests (Nichols and Hayasaka, 2003). Methematically,
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we define the number of false discovery as V and the number of true discovery as S.

Then we have definitions that

FWER = P (V ≥ 1) , FDR = E

(
V

V + S

)

Based on the definitions, it is easy to show a very important property that FWER ≥

FDR (Y. and Y., 1995; Bennett et al., 2009), which indicates that FDR is more

powerful than FWER. In voxel (volumetric pixel) analyses, a common approach is to

use random field theory (Nichols and Hayasaka, 2003) and permutation tests (Winkler

et al., 2014) to control FWER. Surprisingly, the FDR is less commonly used in medical

imaging.

Knockoffs filtering may provide a more effective way to control FDR of variable

selection on medical imaging and then improve the accuracy of predicting Aβ plaques

and MCI. Knockoffs procedure is to construct knockoff variables that share a correlation

structure similar to that of the original variables. The second step is to calculate a

test statistic to depict the strength of existing variables versus knockoff variables.

(Barber and Candés, 2015; Candès et al., 2018). As for how to how to construct

knockoff variables, Barber and Candes (2015) first introduced fixed-X frame which

generates knockoff variables relying on the conditional distribution Y | X1, . . . , Xp

is fixed. Candes and Fan (2018) came up with a Model-X frame to generalized the

conditional distribution Y | X1, . . . , Xp to be arbitrary and complete unknown. Shen

(2019) implemented this method on a cancer study for identifying genes associated with

Breslow thickness and selected seven genes out of 4171 genes at a target FDR of 0.2

(Shen et al., 2019). Arun and Zhan (2019) utilize knockoffs filter on association between

host gene expression and mucosal microbiome. (Srinivasan et al., 2019) Despite the

usefulness of the knockoff procedure in genomics studies, to our knowledge it has not

been applied in neuroimaging widely.
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The main goals of this study were the following: 1) to utilize the knockoff filter

as a new strategy to select structural features brain images data that are related to

Aβ status while controlling the false positives, and to compare the knockoff variable

selection to other common approaches; and 2) to conduct the same procedure on

detecting features for CN versus MCI study.

Our contributions are the following:

1. Discovered MRI features related to Aβ pathology and MCI diagnosis, in partic-

ular, hippocampus volume for distinguishing controls and MCI.

2. Novel application of an FDR-controlled feature selection method to brain imaging

and designed a procedure for stabilizing results.

2 Data and Methods

2.1 Features and Participants

We included participants from the Alzheimer’s Disease Prediction Of Longitudinal

Evolution (TADPOLE) challenge dataset (Marinescu et al., 2018). In this dataset,

1737 subjects have multiple visits. We only applied our research on their first-time

visit data. We have total 523 CN and 872 MCI initial subjects (1395) with 274 MRI

variables. Demographic data according to diagnosis are presented in table 1. In MCI,

there are more male subjects (59.1%). CN subjects receive longer education than MCI

subjects. There are no difference in age between CN and MCI. However, this dataset

has a complex missing pattern (figure 1). We excluded 13 subjects (11 due to no

available MRI screening at first-time visit, and 2 due to abnormal MRI screenings). To

simplify, we also excluded 29 MRI variables (16 due to complete missing, and 13 due

to over 35% of missing). All the deleted MRI variables listed in table A in appendix.
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CN MCI

Age(years) 74.2 ± 11.0 73.0 ± 12.2
Male gender 253 (48.4%) 515 (59.1%)

Education (years) 16.4 ± 4.9 15.9 ± 5.6

Table 1: Baseline characteristics of TADPOLE challenge dataset according to diagnosis.

Figure 1: missing pattern

The final clean dataset included 1382 subejects with 245 MRI variables in total.

The variables in the clean dataset are cortical thickness average (TA), surface area

(SA), and cortical volume (CV) for 68 regions in the Desikan-Killiany atlas (204)

and , as well as 40 regions with volume from the white matter volume (SV), which

were estimated using Freesurfer by the investigators in the TADPOLE challenge. In

addition, there is another cortical volume, intracranial volume, which is closely related

to whole brain size (Im et al., 2008).

For the analysis of the Aβ status, we have 282 CN and 453 MCI participants.

Those participants were included based on availability of both MRI scan and Aβ
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status measured on PET. Aβ status indicator was defined by one measure on PET,

SUMMARYSUVR WHOLECEREBNORM 1.11CUTOFF, which provided an overall

amyloid concentration level. The cut-off value for Aβ positive was 1.1. For CN versus

MCI study, there were 518 CN and 864 MCI participants, with inclusion criterion

that availability of MRI scan.

Table 2 is the description table of our clean dataset. We included 735 subjects

divided over 2 diagnostic groups for Aβ study: CN (n=283) and MCI (n=452). Within

the CN group, 91 (32.27%) subjects have Aβ positive, while in the MCI group, 249

(54.97%) subjects have Aβ positive. for CN versus MCI study, we included 1382

subjects divided over 2 diagnostic groups: CN (n=518) and MCI (n=864). Both two

studies have 245 MRI variables (p=245). Standardization transformation was applied

to every MRI variables before feature selection.

study CN MCI

Aβ study
Aβ + 91 249
Aβ - 191 204

282 453
CN versus MCI study 518 864

Table 2: Description table of dataset

2.2 Statistical Methods

Univariate analysis

Univariate logistic regression was applied on each MRI measure grouping by Aβ

positive and negative. After each test on MRI measures, we extracted the p-values and

then did both Bonferroni correction and FDR correction on raw p-values to control

FWER and FDR respectively. The adjusted p-values would be used for analysis

on feature screening. Furthermore, in order to find the important features depicted
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difference between CN and MCI diagnose, we used the similar analysis procedure on

each MRI measures grouping by CN and MCI.

Multivariate analysis

Similarly, we utilized multivariate logistic regression with all MRI measures and

extracted the p-values after grouping by Aβ positive and negative. FWER controlled

with Bonferroni procedure and FDR controlled procedure were also used for this

multiple testing problem. In addition, we conducted such analysis the analysis on

feature screening on CN versus MCI study.

Knockoffs analysis

Knockoffs procedure is a recent breakthrough that can identify features in multivariate

model while controlling FDR in theory. The key of the knockoffs filter is to generate a

matrix X̃(knockoff matrix) that shares the same correlation structure with that of the

features in the original design matrix X, but with X̃ as uncorrelated with as possible

(Barber and Candés, 2015). Then a test statistic vector W is computed to measure

the importance of the original and the knockoffs vectors. The knockoff matrix has a

deterministic solution for the case when n > 2p, where n is the number of subjects

and p is the number of variables. The assumption the n > 2p allows the construction

of a knock-off matrix orthogonal to (Barber and Candés, 2015). For the case where

p� n, Note that with Model-X knockoffs, different realizations of X̃ can produce a

different set of selected variables. In our data applications, p > n/2, and consequently,

we apply Model-X knockoffs. The procedure of Model-X knockoffs consists of three

main steps.

Step 1: Generate Model-X knockoffs (Candès et al., 2018). For original design

matrix X = (X1, . . . , Xp), Model-X knockoffs are a new family of random variables

X̃ = (X̃1, . . . , X̃p) to satisfy the two properties:
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1. for any subset K ⊂ {1, . . . , p}, we obtain the vector (X, X̃){swap(K)} by swapping

the entries Xj and X̃j, ∀j ∈ K, and such vector (X, X̃)swap(K) satisfies

(X, X̃)swap(K)
d
=(X, X̃)

2. X̃ ⊥⊥ Y | X, where Y is a response vector.

Under the assumptions on X̃, the distribution of knockoffs X̃ is Gaussian with a

covariance given by the original X and properties. Thus, we can construct knockoffs

X̃ by random sampling from that Gaussian distribution.

Step 2: Compute test statistics. Taking lasso model as the example, the l1-norm

penalized estimated coefficients β has formula that

β̂(λ) = argmin
b

{
1

2
‖y −Xb‖22 + λ‖b‖1

}
.

Then seek the point Zj = λ on the lasso path when Xj first enters the model, and

define Zj as the test statistic of feature Xj.

Zj = sup
{
λ : β̂j(λ) 6= 0

}
.

Finally, replace X by [X X̃] and calculate the importance difference between original

and knockoffs variables by

Wj = Zj − Z̃j ∀j ∈ {1, . . . , p}.

Wj illustrate whether original variable Xj enters the model earlier than knockoffs

variable (Wj > 0). Hence, this is a strong signal that this original variable belongs to

model and this variable is likely to be an important feature.
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Step 3: Find the threshold for statistics to control target FDR. If we wish to

control target FDR at q, a data-dependent threshold T can be defined as

T ∗ = min

{
t ∈ W :

# {j : Wj ≤ −t}
# {j : Wj ≥ t} ∨ 1

≤ q

}
W = {|Wj| : j = 1, . . . , p} .

At last, the selected feature set given target FDR q is

Ŝ = {j : Wj ≥ T ∗} .

There are also other alternative ways to construct the test statistic Wj . For example,

elastic net model can be consider by recording penalty term λ. In addition, random

forests model has the term called feature importance (Pavlov, 2019), which records the

importance of each variables directly. In this paper, we applied three ways to calculate

test statistic Wj: the value of the penalty when a variable is first selected via lasso

regression, the value of the penalty in elastic net regression with a fixed mixing of the

lasso and Ridge penalties (α = 0.5), and the feature importance value random forests

model. Furthermore, we compared knockoffs filters with two target FDR, 0.2 and 0.5.

However, the generation process of knockoffs X̃ highly depends on which random

seed we use, and hence feature selection is not stable. In order to stabilize the results,

we repeated the knockoffs filter 100 times with different random seeds, and then take

the number of times that each variable was selected in 100 experiments.

3 Results

3.1 Aβ study

In this study, we were to find the MRI features who contain the most information of

difference between Aβ positive and negative within diagnose group.
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3.1.1 Univariate test results in Aβ study

Figure 2 represented the results on CN group. The left panel illustrated feature

selection with controlling FWER with Bonferroni correction, while the right panel

showed the selection procedure with controlling FDR. The red lines in the both

graphs were at alpha 0.05 level. It was clear that none of variables could survive with

controlling FWER at 0.05, while seven variables stood out with controlling FDR at

0.05. In addition, the seven variables were shown in table 3. All of seven survived

variables were from white matter volume measure (SV). Furthermore, white matter

volume measure is more prominent than other types of measure in both graphs.

Figure 2: Aβ study: univariate test on CN group

variables est. p-value p.fdr* description

ST124SV -0.50 0.000 0.032 SV of Right Ventral DC
ST128SV 0.84 0.001 0.032 SV of WM Hypo Intensities
ST18SV -0.56 0.000 0.032 SV of Left Cerebellum WM
ST1SV -0.50 0.000 0.032 SV of Brainstem
ST65SV -0.46 0.001 0.040 SV of Left Ventral DC
ST68SV 0.43 0.001 0.040 SV of Non WM Hypo Intensities
ST77SV -0.56 0.001 0.035 SV of Right Cerebellum WM

Table 3: Univariate test results with FDR correction p-values on CN
group. SV: white matter volume.

* p.fdr is the p-value after FDR correction.
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Results on the MCI group were shown in figure 3. 12 variables were selected

with controlling FWER. After FDR correction, more variables were able to survive.

few surface area variables were chosen, comparing to variables from other measures.

Moreover, the number of selected features on MCI group increased dramatically, which

supported the idea that MCI subjects tend to have a stronger signal of Aβ in MRI,

since they have severer brain atrophy than CN subjects.

Figure 3: Aβ study: univariate test on MCI group

3.1.2 Multivariate features results in Aβ study

Figure 4 and 5 showed the multivariate feature results on CN and MCI group with two

correction methods. Comparing to a few features from univariate tests, CN and MCI

group didn’t find any significant features for Aβ status no matter controlling FWER

or FDR. Besides, all multivariate tests gave few clues about the feature pattern unlike

what we inferred from univariate results.

3.1.3 Knockoffs features results in Aβ study

Both CN (n=283) and MCI (n=452) group didn’t satisfy the assumption for Knockoffs

n > 2p = 490, so we conducted knockoffs filter under p < n < 2p scenario (Candès
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Figure 4: Aβ study : multivariate test on CN group

Figure 5: Aβ study : multivariate test on MCI group

et al., 2018). Also, We compared three test statistic paths: elastics net model, random

forest, and lasso model with controlling two target FDR thresholds, 0.2 and 0.5.

Table 4 showed the feature pattern under 6 knockoff filters on CN group under

one same random seed. Mark ”x” represented that variable was selected under the

particular knockoffs filter. All the variables who appeared in this table 4 were chosen

at least once with 6 knockoff filters. When controlling FDR at 0.2, none of statistic

paths could select features. Until increasing FDR threshold to 0.5, elastic net statistic

started to identified 17 features. Random forest statistic identified 7 features, and
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lasso statistic identified only 6 features. Furthermore, many features with Knockoffs

analysis (table 4) also existed in table 3 of univariate result with FDR controlled, like

Brainstem, Ventral DC, and Cerebellum. None of measures in Hippocampus were

chosen. In some context, the Hippocampus region of a Abeta positive CN subject

doesn’t seem to have much impact of Aβ. The selected features mainly fell into white

matter volume measure, which is similar to that of univariate results on CN.

description En 0.2En 0.5Rf 0.2Rf 0.5Ls 0.2Ls 0.5count

SV of WM Hypo Intensities x x x 3
SV of Non WM Hypo Intensities x x x 3

SV of Right Cerebellum WM x x x 3
SV of Brainstem x x 2

CV of Right Rostral Anterior Cingulate x x 2
TA of Left Transverse Temporal x x 2

TA of Right Bankssts x x 2
SV of Left Amygdala x 1

SV of Corpus Callosum Anterior x 1
TA of Left Isthmus Cingulate x 1
TA of Left Lateral Occipital x 1

SA of Left Lingual x 1
SV of Corpus Callosum Central x 1

TA of Left Middle Temporal x 1
SV of Left Vessel x 1

SV of Optic Chiasm x 1
SV of Right Amygdala x 1

SV of Right Cerebellum Cortex x 1
SA of Right Medial Orbitofrontal x 1

SV of Fourth Ventricle x 1

Table 4: Features selected by knockoffs in the CN group. SV: white matter volume.
CV: cortical volume. SA: surface area. TA: cortical thickness average. En : elastic net
model. Rf: random forest. Ls: lasso model. 0.2 and 0.5 stand for two FDR targets.

Table 6 showed the features pattern with 6 knockoff filters on MCI group. When

controlling FDR under 0.2, none of statistic paths could select features like the

result on CN group. Increasing FDR threshold to 0.5, elastic net statistic identified 6

features. Random forest statistic and lasso statistic identified only 4 features. Much

less measures could be selected after knockoff filter, comparing to univariate results
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and multivariate results. Moreover, Table 5 also revealed the similar pattern as that

of univariate results, that is surface area measure (SA) seems to have less influence

than other measures.

However, with Knockoff filters, the number of features on MCI group (table 5) was

less than that of CN group (table 4), which was different from the conclusions with

univariate results (figure 2 and 3).

description En 0.2 E 0.5 Rf 0.2 Rf 0.5 Ls 0.2 Ls 0.5 count

CV of Right Fusiform x x x 3
SV of Right Hippocampus x x x 3

TA of Right Rostral Anterior Cingulate x 1
SV of WM Hypo Intensities x 1

TA of Left Caudal Middle Frontal x 1
CV of Left Inferior Parietal x 1
CV of Left Middle Temporal x 1
SA of Left Parahippocampal x 1

TA of Right Bankssts x 1
TA of Right Entorhinal x 1

Table 5: selected features by knockoffs on MCI group. SV: white matter volume. CV:
cortical volume. SA: surface area. TA: cortical thickness average. En : elastic net model.
Rf: random forest. Ls: lasso model. 0.2 and 0.5 stand for two FDR targets.

3.2 CN versus MCI study

The aim of the CN versus MCI study was to obtain MRI features that convey the

information of difference between CN and MCI group.

3.2.1 Univariate test results in CN versus MCI study

Figure 6 represented the univariate test with controlling FWER and FDR respectively.

Many cortical thickness average, white matter volume and cortical volume variables

were selected with FWER controlled, while none of SA measures could survive. However,

after FDR correction, there were many SA measures chosen as features. Furthermore,
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No matter with which multiple tests correction, we were able to select much more

features than that of Aβ study. It implied that difference between Aβ negative and

positive within one diagnose group was smaller than difference between CN and MCI.

Figure 6: CN versus MCI: univariate test.

3.2.2 Multivariate test results in CN versus MCI study

Figure 7 showed the results with multivariate tests. Multivariate procedure still only

selected few features in CN versus MCI study. Controlling FWER procedure couldn’t

select any feature, while FDR correction only select three 3 features.

Figure 7: CN versus MCI: multivariate test
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3.2.3 Knockoffs features results in CN versus MCI study

Table 6 listed the feature results under 6 knockoff filters. With controlling FDR at

0.2, lasso statistic and random forest statistic started to select some features. The

white matter volumes of left and right hippocampus were chosen by 5 out of 6 filters.

Surface area measure tended to be less important than other measures. Recall the

performances of knockoff filter in Aβ study, most filters were not able to select features

with FDR at 0.2. We confirmed the idea further, there are stronger signals in predicting

MCI than in predicting Aβ status.

description En 0.2En 0.5Rf 0.2Rf 0.5Ls 0.2Ls 0.5count

SV of Left Hippocampus x x x x x 5
SV of Right Hippocampus x x x x x 5

SV of Optic Chiasm x x x x 4
TA of Left Middle Temporal x x x 3

SV of Right InferiorLateral Ventricle x x x 3
SV of Left Amygdala x x 2

CV of Left Inferior Temporal x x 2
TA of Left Temporal Pole x x 2

SV of Right Amygdala x x 2
TA of Right Entorhinal x x 2
SA of Right Precuneus x x 2

TA of Left Lateral Occipital x x 2
TA of Left Entorhinal x 1

SV of Corpus Callosum Central x 1
SA of Right Caudal Anterior Cingulate x 1

SV of Right Choroid Plexus x 1
SV of Left Cerebellum Cortex x 1

CV of Left Postcentral x 1

Table 6: selected features by knockoffs in CN versus MCI study. SV: white matter
volume. CV: cortical volume. SA: surface area. TA: cortical thickness average. En :
elastic net model. Rf: random forest. Ls: lasso model. 0.2 and 0.5 stand for two FDR
targets.

Furthermore, we conducted an experiment to examine the frequency with which

features were selected using different intializations of the Model-X knockoffs. In this

experiment, we repeated the knockoff procedures 100 times with different random
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seeds. The target FDRs were at 0.1 and 0.2. Table 7 aggregated the results of all six

filters and listed the top 15 most-selected variables. The white matter volume of left

hippocampus was chosen 27 times out of 100 under Lasso 0.2 and 18 times under

ElasticsNet 0.2. When the target FDR was at 0.1, three regularization knockoffs filters

were hardly to select many variables. Increasing FDR to 0.2, we had a much more

stabilized feature selection result.

description En 0.1En 0.2Rf 0.1Rf 0.2Ls 0.1Ls 0.2count

SV of Left Hippocampus 0 18 0 24 1 27 70
SV of Right Hippocampus 0 18 0 24 1 24 67

TA of Left Middle Temporal 0 15 0 6 1 26 48
SV of Right Inferior Lateral Ventricle 0 14 0 16 0 0 30

CV of Right Entorhinal 0 0 0 3 1 25 29
TA of Right Entorhinal 0 16 0 12 0 0 28

TA of Left Lateral Occipital 0 0 0 0 1 26 27
SV of Optic Chiasm 0 2 0 10 1 9 22

TA of Left Entorhinal 0 12 0 7 0 0 19
SA of Right Precuneus 0 1 0 0 1 11 13

CV of Left Inferior Temporal 0 0 0 0 1 11 12
SV of WM Hypo Intensities 0 0 0 11 0 0 11

SV of Left Amygdala 0 0 0 8 0 0 8
SV of Right Amygdala 0 0 0 8 0 0 8

TA of Left Temporal Pole 0 0 0 5 0 0 5

Table 7: Stability analysis: repeat knockoff in CN versus MCI study 100 times. SV:
white matter volume. CV: cortical volume. SA: surface area. TA: cortical thickness
average. En : elastic net model. Rf: random forest. Ls: lasso model. 0.1 and 0.2 stand
for two FDR targets.

3.3 Coefficients estimation

In order to detect which variables would have the strongest signal, we conducted

further coefficients study using cross-validation based lasso regression. The first step

was we chose the best penalty term λ for lasso regression from cross-validation across

λ. Then we applied such optimal λ in lasso regression to get the estimated coefficients.
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Figure 8: lasso regression with cross-validation

The left graph in figure 8 showed the process of choosing λ. In order to achieve the

best performance of model, we chose 0.011 as the optimal value of λ and 51 variables

were non-zero at λ = 0.011. The right graph in figure 8 depicted the estimated

coefficients across measure groups. Most of large absolute coefficients value appeared

in white matter volume (SV) and cortical thickness average (TA) group.

description coefficients

White Matter Volume of Left Hippocampus -0.4498
Cortical Thickness Average of Left Middle Temporal -0.2275
Cortical Thickness Average of Left Lateral Occipital 0.2173

Cortical Volume of Right Entorhinal -0.2064
White Matter Volume of Right Inferior Lateral Ventricle 0.1598

White Matter Volume of Right Hippocampus -0.156
Cortical Volume of Left Inferior Temporal -0.1337

Surface Area of Right Precuneus 0.1205
Surface Area of Left Pericalcarine 0.1094

White Matter Volume of Optic Chiasm 0.104
White Matter Volume of Right ChoroidPlexus -0.0996

Cortical Volume of Left Precentral 0.0891
Cortical Volume of Left Caudal Middle Frontal -0.078

White Matter Volume of Left Cerebellum Cortex 0.0772
Cortical Volume of Right Caudal Middle Frontal -0.0766

Table 8: estimated coefficients with lasso regression
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Moreover, table 8 listed the top 15 absolute coefficients values and their correspond-

ing variables. White matter volume of left hippocampus was the most influential in the

model with estimated coefficient -0.4498. White matter volume of right hippocampus

also has relative large estimated coefficient -0.156. Cortical thickness average of left

lateral occipital had the largest positive effect with estimated coefficient 0.2173, while

the counterpart of right lateral occipital was not listed in the top 15 variables.

4 Discussion

Using univariate test,More MRI features were deteced for predicting Aβ status in

MCI than in CN. Only one feature, white matter volume of Hypointensities, was

chosen both on CN and MCI. Multivariate test for Aβ positive and negative did

not select any features. The Knockoff filter did not to select any features in the CN

or MCI group until the FDR target was increased to 0.5. Univariate FWER with

Bonferroni at α = 0.05 tended to select fewer features than univariate FDR controlling,

which corresponds to the fact that FDR is more powerful than FWER. Surprisingly,

the number of features selected using univariate FWER was larger than the number

selected using lasso or elastic net with FDR controlled at 0.20 via Model-X knockoffs

on both CN and MCI.

In the univariate selection of the CN versus MCI study, there were more features

selected than selected when predicting Aβ status. FDR-controlled multivariate selection

selected three features. Controlling FDR at 0.2, knockoffs with random forest and

lasso regression started to detect features. Most of selected features with 100 times

knockoffs procedure overlapped with that of univariate procedure, like white matter

volume of hippocampus. The increasing number of features and the big overlaps among

different selection procedures strongly implied that the difference between CN and

MCI is larger than the differences between Aβ positive and negative.
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We found that feature selection with Model-X knockoffs was highly unstable. Note

there is a method to generate a fixed X̃ as described in the original knockoffs paper,

which is an alternative to the stochastically generated X̃. However, Model-X tends

to select more discoveries (Candès et al., 2018). Moreover, the fixed X̃ approach is

implemented in the R package only for the case where n > 2p. A special case with

fixed X̃ in which 2p > n > p (Barber and Candés, 2015) is not implemented. One

alternative but time-consuming way to use knockoffs in neuroimaging might be to

repeat the filters 1000 times, and count the times that features were chosen. Then

features selected the most can be seen as stable features. One drawback is that the

knockoff approach does not provide guidance on which statistical or machine learning

procedure (e.g., lasso, elastic net, random forests, forward selection, or backward

selection). One avenue for future research is to explore ensemble approaches that can

combine different prediction methods.

Although univariate approaches selected far more variables, they are problematic

because they ignore possible confounding. More generally, there is an issue of collinear-

ity in high-dimensional models. Collinearity creates issues in all variable selection

approaches. Clearly, in the multiple logistic regression, there are too many variables

for precise estimation of the coefficient variances, which is reflected by the fact that

all p-values are large. The univariate approach circumvents this issue, but at the large

cost of omitted variable bias and confounding. Consider the simple case of two highly

correlated variables, where x1 has an effect on an outcome y but x2 does not. Then the

univariate approach will mistakenly identify both variables as related to y, whereas x2

is not directly related to y. In our data example, a univariate approach may select

features highly correlated with the hippocampus that are not directly related to the

outcome. Given a very large sample size (n� p), these would not be selected in mul-

tiple regression. In the presence of confounding in the Model-X framework, the feature

that is directly related to the outcome should enter the model first, such that its effect
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is partially accounted for when estimating the coefficients of the correlated features,

and hence should be more accurate than the univariate approach. In our study, the

collinearity problem may stem in part from the high correlation between left and right

regions, such as white matter volume of left hippocampus and right hippocampus.

Thus, a possible way to reduce collinearity is to average this contralateral regions.

However, there exist many correlations between regions that would still be present.

Applying hundreds of initializations in the Model-X may be a promising approach.

In our application, the knockoff approach does not consistently select any variables

even with FDR=0.2, which seems biologically unreasonable, and suggests Model-X

Knockoffs may be overly conservative. In our study, the highest number of times a

variable was selected at FDR=0.2 was 27 out of 100 times in predicting MCI, which

occurred for the left hippocampus volume. Even though this is a small frequency, it is

a biologically important region in AD pathology, and we suggest here that 0.27 may

be sufficient to declare the variable as “globally selected.” The left hippocampus also

had the largest coefficient in Table 8, which also indicates it is an important variable.

Future studies should evaluate theoretically and via simulations the proportion of

times a variable is selected in individual initializations in order to declare a variable

as selected across all initializations.
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A Deleted MRI variables with missing percentage

description missing percentage

White Matter Volume of Right WM Hypo Intensities 100%
White Matter Volume of Right Undetermined 100%

White Matter Volume of Right Non WM Hypo Intensities 100%
White Matter Volume of Right Interior 100%

White Matter Volume of Left WM Hypo Intensities 100%
White Matter Volume of Left Undetermined 100%

White Matter Volume of Left Non WM Hypo Intensities 100%
White Matter Volume of Left Interior 100%

Cortical Volume of Right HemisphereWM 100%
Cortical Volume of Right Corpus Callosum 100%

Cortical Volume of Left HemisphereWM 100%
Cortical Volume of Left Corpus Callosum 100%
Surface Area of Right Corpus Callosum 100%
Surface Area of Left Corpus Callosum 100%

Cortical Thickness Average of Right Corpus Callosum 100%
Cortical Thickness Average of Left Corpus Callosum 100%

White Matter Volume of Right CerebralWM 55.05%
White Matter Volume of Right Cerebral Cortex 55.05%

White Matter Volume of Left CerebralWM 55.05%
White Matter Volume of Left Cerebral Cortex 55.05%

Cortical Volume of Right Unknown 55.05%
Cortical Volume of Left Unknown 55.05%
Surface Area of Right Unknown 55.05%

Surface Area of Right Hemisphere 55.05%
Surface Area of Left Unknown 55.05%

Surface Area of Left Hemisphere 55.05%
Cortical Thickness Average of Right Unknown 55.05%
Cortical Thickness Average of Left Unknown 55.05%

White Matter Volume of Fifth Ventricle 36.34%

Table 9: Variables deleted with missing percentage in dataset.
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