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Abstract 
 

Developing a Five-Biomarker Risk Score Model for 
Estimating Five-Year Risk of Myocardial Infarction or Death in a  

Sample of Subjects that Underwent Cardiac Catheterization 
By Eric Naioti 

 
 

Biomarkers of heat-shock protein 70 (HSP70), fibrin degradation products (FDP), soluble 
urokinase plasminogen activator receptor (suPAR), and C-reactive protein (CRP) have been 
shown to be associated with heart disease. A biomarker risk score (BRS) based on measures of 
circulating levels of these biomarkers has been shown to have utility in predicting adverse events 
in patients with coronary artery disease (CAD). High-sensitivity cardiac troponin I (HS-Trop) has 
been shown to indicate cardiomyocyte cell damage and could also be a predictor of heart disease. 
We examined how well a new BRS that included HS-Trop could be used in predicting an 
outcome of myocardial infarction (MI) or death in patients suspected of CAD. Two thousand 
eight hundred eighty-six participants were recruited from three Emory healthcare sites in Atlanta 
as part of the Emory Cardiovascular Biobank (EmCAB). Each participant had measures for each 
of these biomarkers. The five biomarkers were shown to be independent of each other and useful 
in predicting MI or all-cause death. It has been shown that using multiple cutoff points to stratify 
patients into multiple risk groups can be highly favorable. Therefore instead of only finding one 
cutoff point for each biomarker, optimal numbers and locations of cutoff points were found using 
the most significant splits of likelihood ratio tests. A BRS based on these stratified biomarkers 
was found, and a model was constructed using this BRS along with traditional risk factors to 
predict MI or all-cause death. In this cox proportional hazard model, BRS was found to be highly 
significant (β = 0.60, SE = 0.10, Z=6.03, p<0.001). When this model was compared to a model 
without BRS, we found using five-fold cross-validation that the model including our BRS 
improved prediction ability, with a mean increase in the concordance statistic (C-statistic) of 
0.0411 [95% CI = (0.0054, 0.0769)] and a mean net reclassification index (NRI) of 0.259 [95% 
CI =(0.143, 0.376)]. 
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Introduction 

Evaluating the risk factors of cardiovascular disease is an area of research with much interest [1, 

2] as heart disease remains the number one cause of death worldwide. [3] The ability to predict 

and quantify a subject’s risk of heart disease is highly desirable. This would allow clinicians to 

identify subjects at highest risk in order to use more aggressive treatment options, risk factor 

control, and behavioral modification counseling, while identifying low risk subjects could prevent 

unnecessary testing.[2] Diagnostic risk scores that summarize various risk factors is a practical 

clinical tool for clinicians and subjects. The Framingham Heart Study led the way in establishing 

a cardiovascular risk profile for use in a primary care setting.[1] However, there is no established 

risk scores for clinical or research use for subjects with stable coronary artery disease (CAD).  

 Given that subjects with CAD often have multiple risk factors, searching for novel and 

informative biomarkers has been an active research area.[4] A previous study showed that when 

four biomarkers of heat-shock protein 70 (HSP70), fibrin degradation products (FDP), soluble 

urokinase plasminogen activator receptor (suPAR), and C-reactive protein (CRP) are added to a 

model with traditional risk factors, an improved prediction ability was observed. [2] These 

biomarkers were chosen specifically as they all represent a problem in the human body that can 

be linked to heart disease. HSP70 is representative of cell stress and FDP represents the 

coagulation pathway, which could lead to blood clots.[2] CRP is representative of inflammation 

and suPAR is a marker of immune activation.[2] It has also been seen that high-sensitivity cardiac 

troponin I (HS-Trop) could be a predictive biomarker for CAD patient outcomes as it indicates 

cardiomyocyte cell damage and has been associated with heart failure. [5, 6]  

Previous biomarker studies such as Ghasemzadeh et al. have been limited due to their 

exclusion of HS-Trop from their biomarker calculations.[2] Another limitation of past biomarker 

studies is the use of biomarker cutoffs based on Youden’s index, which does not take censored 

data and follow-up time into account. In this study, we investigated the associations between 
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these biomarkers and adverse cardiovascular outcomes and further redefined the cutoff points by 

using likelihood ratios in a survival analysis context. Specifically, we adopted the method 

proposed by Chang et al. to identify the optimal number of cutoff points and locations of cutoff 

points for biomarkers. [7] Furthermore, we developed a biomarker risk score (BRS) based on 

these five biomarkers as a summary of a subject’s risk. Finally, we established a prognostic 

model that incorporates the BRS to predict the risk of adverse outcomes in subjects with CAD. 

We showed that this BRS-based model significantly improved prediction ability, compared to the 

one with only clinical risk factors.  

Methods 

Study Sample 

Our study sample was 2,886 subjects with existing coronary artery disease enrolled in the Emory 

Cardiovascular Biobank (EmCAB). The EmCAB is a prospective cohort that was established in 

2003 to identify novel factors associated with heart disease and allow for the discovery of unique 

predictive factors of subject outcomes such as protein biomarkers. [8] Participants were recruited 

from subjects that underwent heart catheterization at one of three Emory Healthcare sites in 

Atlanta. 

Demographic information, medical history, medication use, and health behaviors such as 

cigarette use were collected at enrollment into the cohort. Medical records were reviewed to 

confirm medical history and medication use. One and five years of follow up were planned and 

follow up events of death and cardiovascular events were recorded via follow up phone 

interviews, combined with chart review and national death index verification. 
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Inflammatory Biomarkers 

Circulating levels of our five protein biomarkers were measured in a subset of the EmCAB 

participants. Levels of high-sensitivity troponin-I were measured by Abbott Laboratories. A 

sandwich immunoassay by FirstMark was used to determine levels of serum CRP and FDP. HSP-

70 measurements were determined by a sandwich ELISA (R&D Systems). Finally, plasma 

suPAR levels were determined using a commercially available suPARnostic kit (Virogates). [8] 

All of the 2,886 participants had measurements for the five biomarkers at enrollment. 

 

Analysis Plan 

The sample of 2,886 subjects was split randomly into two equal datasets of 1,443 patients: a 

training dataset, and a testing dataset. A map of the analysis plan can be seen in Figure 1.  

 

 
Figure 1. Analysis plan using equal, random samples of our full data set split into a training and a testing 

set.  

 

 

 

Training 
1. Check whether the 

Biomarkers are Independent 
Predictors 

2. Derive Optimal Cutoff 
Points for each Biomarker 

3. Visualize Survival Curves 

Testing 

4. Categorize Biomarkers 
Using Cutoff Points 

5. Find Biomarker Risk Score 
(BRS) 

6. Develop a Prognostic Model 
Using BRS 

7. Evaluate Model Prediction 
Performance 
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Check whether the Biomarkers are Independent  

First, we used the training dataset to investigate the correlations among the five biomarkers (HS 

Troponin, Hsp-70, FDP, suPAR, CRP). The distributions of all five biomarkers appear to stray 

significantly from a normal distribution, and we verified this using a Shapiro-Wilk normality test. 

The normality tests were performed in R using the Shapiro test function.[9] Because of the non-

normal nature of our distributions, Spearman correlations were used to evaluate associations 

between biomarkers. Spearman correlations (𝜃) were determined using the following formula via 

the cor function in R.[9] In the formula, Ri represents the rank of the ith observation for one 

biomarker, and Si is the rank of the same individual’s observation of their second biomarker.  

 

𝜃 =
𝑅! − 𝑅 𝑆! − 𝑆!

𝑅! − 𝑅 !
! 𝑆! − 𝑆 !

!
 

 

We were further interested in seeing how each biomarker is associated with time to death or 

myocardial infarction. To do this we constructed a Cox proportional hazards model. The lowest 

measurement of each biomarker was considered as the limit of detection (LOD); values of zero 

were replaced with the LOD divided by the square root of two. [10] To better characterize the 

associations between biomarkers and outcomes, our model was fit using the log-transformed 

biomarkers, along with the following covariates: age, BMI, gender, race, estimated glomerular 

filtration rate (eGFR), Gensini score, smoking history, hypertension, diabetes, hypercholesteria, 

history of heart failure, and previous myocardial infarction. We also included statin use and 

angiotensin-receptor blocker/angiotensin-converting enzyme inhibitor use (ARB/Ace inhibitor). 

Age was treated as a continuous variable with knots at ages 60 and 70 using linear splines to 

assign different slopes for ages ≤60, 60-70, and >70 years. Continuous BMI was used in the 

model. About 10% of BMI data that were missing have been previously imputed using the entire 

EmCAB database. Gender and race were dichotomized into male/female and black/non-black, 

respectively. The data for eGFR were dichotomized into values above or below 60 mL/min/1.73 
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m2 and Gensini scores were divided into those above or below 20. Smoking status was 

categorized into past smoker, current smoking, and non-smoker.  

 

Deriving Optimal Cutoff Points 

To facilitate clinical use of the proposed biomarker risk score, we divided each biomarker into 

categories and the risk score was calculated based on these categories. Rather than simply using 

the median or previously identified cut points, we attempted to identify the ideal number and 

location of cutoff points for each protein biomarker.  For this we used a method described by 

Chang et al. [7] For each of our five biomarkers, the optimal number of cutoff points needed to be 

determined when modeling a survival analysis outcome of either death or a myocardial infarction. 

The optimal cutoff numbers were found by minimizing the Akaike information criterion (AIC), 

which takes into account both the model’s flexibility and complexity. [7]  

 To find the location of the cutoff points after determining the number of cutoff points (K) 

we split the biomarker risk factor (Z) into K+1 ordinal risk groups (Z*) represented by K dummy 

variables Z1,…, Zk.  A Cox proportional hazards model was then fit where β1,…, βk represent 

model coefficients.	  The hazard function at time t is 

ℎ 𝑡 𝑍∗ = ℎ! 𝑡 𝑒 !!!!!
!!!  

 

Furthermore, the most advantageous cutoff locations were defined to be those with the most 

significant likelihood ratio tests. This was all done using the findcutnum and findcut functions. 

[7] Cutoff numbers and locations for our five biomarkers were determined using the training 

dataset.  

Since it has been shown in the literature that sex influences how suPAR predicts heart 

disease, we decided to find separate suPAR cutoff points for men and women. [11] In order to 

make sure that no biomarker range would be too small or encompass too few subjects to be 

relevant in further uses, we forced each ordinal group of Z* to contain at least 100 subjects. For 
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suPAR cutoffs, since the data were split further into males and females, we forced only one cutoff 

value to be found in order to assure that we were not forcing too few patients into too many 

categories.  

 

Visualizing Survival Curves 

To examine the effects of the identified cutoff points for each biomarker, Kaplan-Meier survival 

curves were calculated and plotted (Figure 2.) for each risk group determined by the optimal 

cutoff points. [12] The Kaplan-Meier survival estimator at time t is calculated by the following 

equation, where di represents the number of events and ni represents the number of those in the 

risk set at time t.  

𝑆 𝑡 = 1 −
𝑑!
𝑛!!:!!!!

 

 

Categorizing Biomarkers Using Cutoff Points 

The cutoff points derived using the training data set were used to categorize biomarkers in the 

testing data set. The optimal number of cutoff points derived in the training data set determined 

the number of subgroups in the testing data set.  

 

Finding a Biomarker Risk Score (BRS) 

In order to develop a biomarker risk score (BRS), a Cox proportional hazards model was fit using 

covariates of only the dummy variables associated with the risk groups of each biomarker. At 

time t, the hazard is  

ℎ 𝑡 𝑋 = ℎ! 𝑡 𝑒 !!!!!
!!! . 

 

In this model, the number of X variables (K) was determined by the optimal number of cutoff 

points for each biomarker, where 𝑀! is the coefficient corresponding to group k. The BRS was 
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calculated for each individual by simply taking the sum of all S coefficients multiplied by the X 

values: 𝑀!𝑋!!
!!! .  

 

Developing a BRS-based Risk Prediction Model 

Once BRS’s are assigned to each individual, we developed another Cox proportional hazards 

model using the BRS as a continuous variable. The single BRS replaced all of the continuous 

biomarkers previously used in the model, while the other covariates remained the same: age, 

BMI, gender, race, eGFR, Gensini score, smoking history, and histories of hypertension, diabetes, 

hypercholesteria, history of heart failure, previous myocardial infarction, and histories of statin 

use and ARB/Ace inhibitor use. In this model, however, we wanted to simplify future risk 

calculations for clinicians; therefore, age and BMI variables were stratified. Age cutoffs were set 

at 60 and 70 years of age, while BMI cutoffs were set at the standards for low(less than 18.5 

kg/m2), normal ( 18.5 to 25 kg/m2) , mildly obese ( 25 to 30 kg/m2), and obese (over 30 kg/m2). 

This model will provide an estimate of a patient’s chance of surviving 5 years without dying or 

suffering from a myocardial infarction given medical background and biomarker data.  

 

Calibrating the Model 

 We then checked whether the prediction model was well calibrated by dividing the test 

data set into deciles based on predicted risk using the BRS-based model, and comparing the 

average predicted risk of each group to (1 - Kaplan-Meier estimate) for each group. Predicted 

risks were calculated using the following formula,[1] where the baseline survival S0 is the 

estimated survival at t = 5 years.  

𝑝 = 1 − 𝑆! 𝑡 !"#  (   !!!!
!
!!! ! !!!!

!
!!! ) 

Evaluating Discrimination of the Risk Prediction Models 

To evaluate the prediction performance of the new model, we evaluated the difference in the 

concordance statistic (C-statistic) of the model, compared to a model using only the non-BRS 
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covariates. The C-statistic is commonly used to give a global assessment of the fitted survival 

function. [13] It measures the area under the receiver operating characteristic curve in order to 

measure the predictive accuracy of a model. [14] We used the method proposed by Uno et al. 

[REF], which calculates C-statistics and the inference of risk prediction models with censored 

survival data. To perform an internal validation for the change in the C-statisticis, the testing data 

set was split into five equal data sets in order to perform 5-fold cross validation. In this process 

we used four-fifths of the testing data set to find β coefficient estimates as in Step 5, to be used 

for defining the weight of each biomarker. These β estimates were applied to the final fifth of the 

testing data set to calculate the BRS of those individuals. A Cox proportional hazards model was 

then constructed as in Step 6, and this model was compared to a model on the same data set using 

only the non-BRS covariates. This process was repeated four more times, choosing a separate 

fifth of the testing data set each time to be left out for finding the β estimates and to be used in the 

model to calculate the C-statistic. The C-statistic for each model, and 95% confidence intervals 

were calculated using the Inf.Cval.Delta function in the SurvC1 R package. [15] 

 Commonly used alongside the C-statistic in the evaluation of a new risk score is the 

continuous net reclassification index (NRI) that offers an objective measurement in the 

improvement of risk classification.[2, 16] Thus, a NRI was also calculated for our model 

including the BRS against a model without our BRS. 

Results 

Baseline Characteristics of Study Participants  

The baseline characteristics of the study participants are summarized in Table 1. Means 

and standard deviations are reported for continuous variables and frequencies and percentages are 

given for binary variables. Our study population consisted of 2,886 participants aged 23 to 91 

years old. Sixty-three percent of participants were male, 17% of participants were black. The 
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mean BMI of all participants was 30 kg/m2. Thirty-one percent of participants had diabetes, 74% 

had hypertension, 8% were currently smokers, 58% had smoked in the past, and 70% had high 

cholesterol. Of our participants, 70% had a history of CAD, 22% had a history of an MI, and 27% 

had a history of heart failure. Fifty-eight percent of our participants had a history of ACE-

inhibitor/ARB use, and 71% had a history of statin use. At five years of follow-up, 3% of all 

study participants experienced a myocardial infarction, and 13% of participants died. In total, 

15% of participants experienced either death or MI at five years.  

Table 1. Baseline Characteristics 
Characteristics by Dataset Training Dataset Testing Dataset 
Baseline Characteristics Total (N=1,443) Total (N=1,443) 

Demographics 
Age, y 63±11 63±12 
Male sex, N (%) 916 (63%) 910 (63%) 
White, N (%) 1,184 (82%) 1,182(82%) 
Black, N (%) 243 (17%) 245 (17%) 
BMI, kg/m2 30±6 30±6 

Five-Year Follow-up Events 
MI, N (%) 52 (4%) 49 (3%) 
All-cause death, N (%) 196 (14%) 187 (13%) 
Death or MI, N (%) 222 (15%) 211 (15%) 

Biomarkers 
HS Troponin, pg/mL, median (IQR) 5.0 (2.8-11.4) 4.7 (2.7-10.9) 
HSP-70, ng/mL, median (IQR) 0.0 (0.0-0.0) 0.0 (0.0-0.0) 
FDP, µg/mL, median (IQR) 0.5 (0.4-0.8) 0.5 (0.4-0.8) 
suPAR, ng/mL, median (IQR) 3.0 (2.3-4.0) 3.0 (2.4-4.0) 
CRP, mg/L, median (IQR) 2.7 (1.1-6.4) 2.9 (1.3-6.7) 

Disease Histories 
Diabetes, N (%) 448 (31%) 448 (31%) 
Hypertension, N (%) 1,035 (72%) 1,086 (75%) 
Current Smoking, N (%) 107 (7%) 138 (10%) 
Past Smoking, N (%) 822 (57%) 839 (58%) 
High Cholesterol, N (%) 997 (69%) 1,037 (71%) 
History of CAD, N (%) 1,009 (70%) 1018 (71%) 
History of MI, N (%) 316 (22%) 329 (23%) 
History of Heart Failure, N (%) 391 (27%) 388 (27%) 
eGFR ≥ 60 mL/min/1.73 m2, N (%) 1,084 (75%) 1,081 (75%) 

Medications 
ACE-inh/ ARB use, N (%) 842 (58%) 857 (59%) 
Statin use, N (%) 1,029 (71%) 1,029 (71%) 

Angiographic Findings 
Gensini angiographic score, median (IQR) 60 (0-162) 80 (0-192) 
Gensini score ≥ 20, N (%) 830 (61%) 853 (63%) 
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Correlations of Biomarkers 

Spearman correlations among the five biomarkers are reported in Table 2. All the pairwise 

correlations are less than 0.33, suggesting the potential utility of five biomarkers. 

Table 2. Spearman correlations for each pair of biomarkers. 

 HS-Trop HSP70 FDP suPAR CRP 
HS-Trop 1.00 0.08 0.25 0.32 0.15 
HSP70 0.08 1.00 0.19 0.16 0.12 
FDP 0.25 0.19 1.00 0.30 0.23 
suPAR 0.32 0.16 0.30 1.00 0.28 
CRP 0.15 0.12 0.23 0.28 1.00 
The results of the Cox proportional hazards model showed that all biomarkers were significantly 

associated with the outcome (p<0.01) except for FDP (p=0.21). Since our primary aim was to 

have a model with improved prediction ability, it was not vital that each biomarker was 

significant in this model, so long as the model was a good fit. To evaluate the model good fit we 

visualized a Cox-Snell residual plot. [17]  

𝑟! = 𝐻! 𝑇! exp 𝛽!𝑍! , 𝑗 = 1,… , 𝑛 

In this equation rj’s are censored sample from a unit exponential distribution, given the assumed 

Cox model holds and 𝛽, 𝐻! close to the true values β, H0. When we plot 𝐻!(𝑟!) versus 𝑟! and see 

a straight line through the origin, with a slope of 1, this indicates a perfect model fit. Our residual 

plot can be seen in Figure 2. The plot diverges very little from the 𝐻!(𝑟!) = 𝑟! line, showing a 

good overall fit for our model. 
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Figure 2. Cox-Snell residual plot for full model using training data with all five biomarkers.  

 

We further examined the functional form of the FDP covariate using martingale residuals. [18] 

Figure 3 shows the martingale residual plot. The linear nature of the fitted line suggests that this 

is the correct functional form for the covariate.  

 
Figure 3. Martingale residual plot for checking the functional form of FDP in the Cox proportional hazards 

model. 

 

We decided to keep FDP in the model in order to have improved prediction ability due to the 

model being such a strong fit, and FDP not being highly associated with other biomarkers.  
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 Additionally we checked the proportional hazard assumption of each of the biomarkers 

by visualizing the Schoenfeld residuals (Figure 4). [19] These plots show that the residuals of 

four of the five biomarkers (HS-Troponin, FDP, SuPAR, CRP) appear to be centered about zero, 

which means that the proportional hazards assumption holds. HSP-70 generate a banded residual 

pattern, which can be explained by the large amount of values for HSP-70 that were below the 

limit of detection (1,140/1,443 individuals). We concluded that the proportional hazards 

assumption still held for the biomarker.  

 

Figure 4. Schoenfeld residuals of the five biomarkers from the Cox proportional hazards model. Residuals 
centered around zero show that the proportional hazards assumption holds.   
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Deriving Optimal Cutoff Points 

The optimal number and locations of cutoff points for each of the five biomarkers are given in 

Table 3. The number of individuals from the training and the testing data set that fall into each 

subgroup after cuts are made can be seen in Table 4.  

Table 3. Locations of cutoff points for each of the five biomarkers to be used in calculating a BRS.  
Outcome: Death or MI 
Biomarker Name Scale Cutoff 

Points 
Cut 1 Cut 2 Cut 3 Cut 4 

HS Troponin  (pg/mL) 4 1.6 2.1 2.6 6.9 
Hsp-70  (ng/mL) 2 1.0 151.0 -- -- 
FDP  (µg/mL) 3 0.27 0.48 0.88 -- 
SuPAR (Men)  (ng/mL) 1* 3.2 -- -- -- 
SuPAR (Women)  (ng/mL) 1* 3.6 -- -- -- 
CRP  (µg/mL) 3 1.6 5.8 16.9 -- 
*We restricted SuPAR to one cutoff point for men and one for women, since it was shown that sex 
influences how SuPAR affects cardiovascular disease, and we did not want to have too few people 
represented in each of subgroup after cuts were made. 
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Table 4. The number of individuals in each data set that fall into the biomarker subgroups defined by the 
optimal cutoff points derived using the training data set. A minimum of 100 individuals from the training 
data set were forced into each subgroup to ensure no subgroup would be made too small. 

HS Troponin Training Dataset Testing Dataset 
< 1.6 106 99 

1.6-2.1 113 110 
2.1-2.6  114 146 
2.6-6.9 560 568 
≥ 6.9 550 520 

Hsp-70   
< 1.0 1145 1147 

1.0-151.0 150 154 
≥ 151.0 148 152 

FDP   
< 0.27 177 159 

0.27-0.48 432 440 
0.48-0.88 504 538 
≥ 0.88 330 306 

suPAR (Men)   
< 3.2 584 515 
≥ 3.2 332 395 

suPAR (Women)   
< 3.6 307 374 
≥ 3.6 219 156 

CRP   
< 1.6 526 472 

1.6-5.8 517 556 
5.8-16.9 282 302 
≥ 16.9 118 113 

 

Visualizing Survival Curves 

Kaplan-Meier survival curves will approximate differences in survival rates for the training group 

based on their biomarker subgroups. We expected to see steeper survival curves for those in the 

subgroups with the highest biomarker measures, and a more gradual curve for the low biomarker 

subgroups. This is exactly what we see when we look at the Kaplan-Meier curves in Figure 5. We 

can see that the four lowest groups of HS-Troponin have similar survival curves, and the two 

lowest groups of FDP have similar survival curves. Here, there is a possible concern, however, 

the groups with the highest measures clearly still have steeper survival curves.  
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Figure 5. Kaplan-Meier survival curves for subgroups of the five biomarkers for individuals in the training 
data set.  
 
Categorizing Biomarkers Using Cutoff Points 

The number of individuals in the testing data set that fall into each of the biomarker subgroup are 

outlined in Table 5. These subgroups will be used to define dummy variables in a Cox 

proportional hazards model for finding the BRS.  
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Finding the BRS 

A Cox proportional hazards model was constructed using only dummy variables defined by the 

biomarker subgroups. BRS was then calculated as BRS = 𝑀!𝑋!!
!!! . 

ℎ 𝑡 𝑋 = ℎ! 𝑡 𝑒 !!!!!
!!!  

Table 5. X values for the Cox proportional hazards model for finding a BRS. 

Dummy Variables (𝑋)  M coefficients  
X1 = 1 if HS-Troponin < 1.6,  o/w X1 = 0 Ref (0) 
X2 = 1 if 1.6 ≤ HS-Troponin < 2.1,  o/w X2 = 0 0.27 
X3 = 1 if 2.1 ≤ HS-Troponin < 2.6, o/w X3 = 0 0.34 
X4 = 1 if 2.6 ≤ HS-Troponin < 6.9,  o/w X4 = 0 1.00 
X5 = 1 if 6.9 ≤ HS-Troponin,  o/w X5 = 0 1.67 
X6 = 1 if HSP-70 < 1.0,  o/w X6 = 0 Ref (0) 
X7 = 1 if 1.0 ≤ HSP-70 < 151.0,  o/w X7 = 0 0.39 
X8 = 1 if 151.0 ≤ HSP-70 o/w X8 = 0 0.58 
X9 = 1 if FDP < 0.27,  o/w X9 = 0 Ref (0) 
X10 = 1 if 0.27 ≤ FDP < 0.48,  o/w X10 = 0 0.69 
X11 = 1 if 0.48 ≤ FDP < 0.88, o/w X11 = 0 0.76 
X12 = 1 if 0.88 ≤ FDP,  o/w X12 = 0 1.11 
X13 = 1 if suPAR < 3.2 (males) or < 3.6 (females) o/w X13 = 0 Ref (0) 
X14 = 1 if suPAR ≥ 3.2 (males) or ≥ 3.6 (females) o/w X14 = 0 0.73 
X15 = 1 if CRP < 1.6,  o/w X15 = 0 Ref (0) 
X16 = 1 if 1.6 ≤ CRP < 5.8,  o/w X16 = 0 0.17 
X17 = 1 if 5.8 ≤ CRP < 16.9, o/w X17 = 0 0.18 
X18 = 1 if 16.9 ≤ CRP,  o/w X18 = 0 0.49 

 

Developing a New Model Using BRS 

A Cox proportional hazards model for the outcome of death or MI with commonly used clinical 

variables along with the aforementioned BRS was fit. The results are shown in Table 6 and 

follow the equation below. Reference categories for the categorical variables were as follows: age 

< 60 years, 18.5 kg/m2 ≤ BMI < 25 kg/m2, eGFR < 60 mL/min/1.73 m2, Gensini < 20, female, 

non-black, non-smoker, with negative histories of hypertension, diabetes, hypercholesteria, heart 

failure, previous myocardial infarction, statin use, and ARB/Ace inhibitor. Subsequently, baseline 

hazard or baseline survival function was estimated using these reference categories to calculate 

the estimated risk for each patient according to his/her clinical risk profile and biomarker levels 
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(represented by BRS). In this model BRS was found to be highly significant (p<0.01) with an 

increase in BRS of 1 corresponding to a 1.81-fold increase in five-year risk of MI or death. 

ℎ 𝑡 𝑍 = ℎ! 𝑡 𝑒 !!!!!
!!!  

Table 6. Parameter estimates and corresponding P-values for coefficients of cox proportional hazard model 
including BRS.  

Covariate 𝛽 SE(𝛽) P-value 
Age 60-70 vs ≤60  0.27    0.21   0.19 
Age >70 vs ≤60  0.46     0.21   0.03 
Overweight -0.02  0.20  0.93 
Obese     -0.09 0.21  0.66 
Underweight     1.38 0.40  <0.01 
High eGFR  -0.63 0.16  <0.01 
High Gensini  0.01     0.17   0.95 
Male                  0.09     0.16   0.56 
Black                 -0.42 0.22  0.06 
Past Smoker  -0.31  0.16  0.06 
Current Smoker  0.55  0.25   0.02 
Hypertension                    0.12 0.19 0.53 
Diabetes                    0.26 0.16 0.10 
Hypercholesteria                    0.15     0.18 0.41 
MI history  0.05 0.17   0.75 
HF history 0.32    0.16   0.04 
Statin Use  -0.45  0.18  0.01 
ARB/Ace Use  -0.05 0.16  0.78 
BRS                    0.60     0.10   <0.01 

 

The average 5-year predicted risks of event of each decile of the testing group based on the model 

are shown in Figure 6. The predicted risk is plotted against Kaplan-Meier estimates for the actual 

proportion of individuals with events to show that this model is well calibrated.  
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Figure 6. Estimated 5-year risk based on BRS model versus actual proportion of individuals with events 
for each decile group sorted by increasing estimated risk. 
 

Finding the C-statistic and NRI for a New Model 

Five-fold cross validation as used in computing the C-statistic and the NRI of this model when 

compared to a model with no BRS. The changes in C-statistic (Δ) were calculated for each 

iteration. The positive Δ values for each iteration show that there is a better discrimination for 

each iteration when the model with BRS is used. The averaged improvement in C-statistic is 

0.0411, and the corresponding 95% confidence interval is (0.0054, 0.0769). 

Using the five-fold cross validation, comparing the model with BRS against the model 

without BRS, the average NRI was calculated to be 0.259 [95% CI =(0.143, 0.376)]. This shows 

that the addition of BRS to the model improves the risk classification significantly. Results from 

each iteration of the cross validation study are shown in Table 7.  

Table 7. Results from each iteration of our five-fold cross validation study. Estimates for concordance C-
statistics of each model, as well as their differences are shown, as well as estimates for NRI. 
Iteration C-stat, No BRS C-stat, with BRS Δ NRI 
1 0.753 0.784 0.031 0.173 
2 0.711 0.756 0.044 0.334 
3 0.742 0.746 0.004 0.206 
4 0.733 0.752 0.019 0.201 
5 0.701 0.810 0.109 0.385 
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Discussion 

Our results show that the BRS is statistically significant in our Cox proportional hazards model, 

even when adjusting for several other covariates that are known to affect patient outcomes. This 

model was also shown to give greater prediction ability than a model that did not include the BRS 

using a continuous NRI and C-statistic as metrics.   

Our results not only give a unique and improved prediction of death or myocardial 

infarction in our sample but also outlines new cutoff points for five biomarkers that could be used 

in future studies with similar outcomes. The use of optimal cutoff points in calculating the 

biomarker risk score is something that should be done in all future studies, and is why we believe 

our model is an improvement over similar BRS models that have been developed. [2]  

 Although we see significant results, and are confident in our BRS model, our study has 

many limitations. Our sample size was relatively small, having only 2,886 patients compared to 

the 8,491 patients used in the Framingham Heart Study. This limited our study in that we were 

unable to include a separate replication cohort for validation, instead only using internal 

validation methods. Participants in the study were all recruited from Emory Healthcare sites in 

Atlanta, and therefore our results may not be generalizable to the broader population. Cutoff 

points that were determined for our biomarkers may also not be conclusive for other patient 

populations.  

 Based on Figure 6 we can see that the observed risk of risk group 6 was not estimated 

very well, and we were skeptical of our model because of this. We verified our findings by using 

a model that combined our lowest two BMI categories (low and normal BMI) and by using a 

model that included an interaction term between BRS and gender. The results of these models 

were consistent with our model and we decided to keep the model at it is described, but further 

investigation may be useful. 

Future studies could utilize a much larger patient sample to have an additional validation 

data set. Moreover, collaborations with different institutions that have the same patient-level data 
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in the CAD patient population will provide a tremendous opportunity to conduct external 

replication studies. More importantly, it will allow for further improvement upon this risk 

prediction model to generate a simple model that provides good prediction accuracy for clinical 

use.  
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