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Abstract 
 

Examination of Phasic and Sustained Fear Responses  
Using a Novel Sustained Fear Conditioning Paradigm 

 
By: Leigh Miles 

 
 
 Basic research has greatly improved our understanding of the neural mechanisms 
underlying emotional disorders such as fear and anxiety. Preclinical research has shown 
that while fear- and anxiety- like responses share similar physiological symptoms, they 
are mediated by different neural substrates. The medial division of the central nucleus of 
the amygdala (CeAM) is necessary for the expression of fear-like responses to short-
duration, predictable threats (operationally defined as phasic fear), and the bed nucleus of 
the stria terminalis (BNST) is necessary for the expression of anxiety-like responses to 
more long-duration, less predictable threats (operationally defined as sustained fear).  
 Experiments within this dissertation used fear-potentiated startle procedures to 
further examine the neural mechanisms mediating phasic and sustained fear responses in 
rats. Studies were designed to measure within-subject phasic and sustained fear, to 
pharmacologically dissociate fear responses using treatments that either are or are not 
clinically effective anxiolytics, and to evaluate if the selective serotonin reuptake 
inhibitor fluoxetine mediates its effects through serotonin within the BNST. 
 Rats received a single pre-test injection of the benzodiazepine chlordiazepoxide 
(10 mg/kg), the 5-HT1A partial agonist buspirone (5 mg/kg), the selective serotonin 
reuptake inhibitor fluoxetine (10 mg/kg), or chronic (21-day) fluoxetine treatment and 
were tested for phasic and sustained fear. The role of serotonin within the BNST in 
chronic fluoxetine treatment was assessed in rats given chronic fluoxetine and then tested 
for sustained fear 48 hrs after bilateral BNST infusions of the serotonin lesioning agent, 
5,7-dihydroxytryptamine (2µg/side). 
 Acute chlordiazepoxide (clinically effective treatment) blocked sustained but not 
phasic responses, acute buspirone (not clinically effective) did not affect sustained, but 
did disrupt phasic responses, chronic fluoxetine (clinically effective treatment) blocked 
sustained responses and unreliably reduced phasic responses, and acute fluoxetine (not 
clinically effective) affected neither. The results provide further evidence that phasic and 
sustained fear are mediated by different neural mechanisms and suggest that sustained 
fear may have greater predictive validity as a model of clinical anxiety as compared to 
phasic fear. Finally, although not statistically significant, results suggest that serotonin 
within the BNST may be important for the anxiolytic effects of chronic fluoxetine in this 
model.   
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General Introduction: 

 

The National Institute of Health estimates that in a given year, up to 40 million adults are 

affected by a type of emotional disorder (e.g., generalized anxiety disorder, post-

traumatic stress disorder (PTSD)), making anxiety disorders a national public health 

concern (Kessler et al., 2005). The Diagnostic and Statisical Manual of Mental Disorders-

IV characterizes certain anxiety disorders as a slowly developing fear of diffuse threats or 

situations that remind the individual of a past traumatic event. Anxiety disorders are 

commonly treated with behavioral therapy and anti-anxiety medications that modulate an 

individual’s neurochemical (e.g., γ-aminobutyric acid (GABA), serotonin (5-HT)) 

activity. However, the neurobiology underlying the regulation and maintenance of certain 

emotional disorders, as well as the contribution of anxiolytics within specific anxiety-

related circuits are still poorly understood. A major aim within the psychiatric research 

field has been to develop a better understanding of the neural mechanisms underlying 

fear and anxiety disorders. 

 

The purpose of this dissertation is to explore the neural mechanisms mediating fear-like 

(phasic fear) and anxiety-like (sustained fear) responses in an attempt to further dissociate 

the two emotional states. In this chapter I will review prior work on fear conditioning and 

the differences between phasic and sustained fear.  In Chapter 2, I will discuss the 

modifications of two behavioral paradigms that elicit either phasic or sustained fear 

responses. In Chapter 3, I will discuss efforts made to pharmacologically dissociate 

phasic and sustained fear, as well as validation of sustained fear as a potential behavioral 



      3 

model of anxiety.  In Chapter 4, I will explore the role of 5-HT in sustained fear 

responses.  Finally, in Chapter 5 I will discuss how my work fits into the larger 

framework of fear and anxiety research and what further questions it raises.  

 

Fear is an evolutionarily conserved survival response, prompted by the presentation of an 

immediate threat.  It is an adaptive state of apprehension or dread, that motivates an 

individual to produce active defense responses (Davis et al., 2010). Unfortunately, in 

some cases, the intensity and/or duration of a fear response can become inappropriate, 

and develop into an emotional disorder. To address this mental health concern, 

biomedical researchers use operational models of fear to elucidate the neural mechanisms 

mediating fear-motivated learning and memory. 

 

Although in some animals there may be certain innate fears, fear generally results 

through associative learning processes. Pavlovian fear conditioning (a form of associative 

learning) is widely used as a behavioral model for examining the neurobiological 

mechanisms of fear (Davis, 1990; LeDoux, 2000). Conditioned fear is developed when a 

subject produces specific behavioral (e.g., increased startle), autonomic (e.g., increased 

blood pressure) and endocrine (e.g., elevated hormone release) responses--

characteristically expressed in the presence of danger--to a once neutral conditioned 

stimulus (CS - e.g., light) that has been paired with an aversive unconditioned stimulus 

(US - e.g., footshock - (Blanchard and Blanchard, 1969; Davis, 2000; Fanselow, 1980; 

Fendt and Fanselow, 1999). Over the years, researchers have developed several 

methodological techniques with which to measure the expression of conditioned fear. 
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One of the most widely used behavioral tests is the acoustic startle reflex. 

 

The acoustic startle reflex is a simple and effective method to indirectly measure fear 

memory in animals and humans (Davis and Astrachan, 1978; Grillon and Davis, 1997). 

In acoustic startle paradigms, fear memory is inferred from a quantifiable increase in 

startle amplitude to a startle-eliciting noise burst presented in the presence versus the 

absence of the CS. The increase in startle response in the presence of the CS is called 

fear-potentiated startle (Brown et al., 1951). In our laboratory, we use classical fear 

conditioning in combination with fear-potentiated startle to investigate the neural bases of 

fear memory (Davis, 1986; Davis et al., 1993; Hijzen et al., 1995).  Fear-potentiated 

startle has served as a useful behavioral technique in human (i.e., eye-blink component) 

and animal (i.e., whole body component) studies. When stressed, both human and animal 

subjects tend to produce elevated startle responses (Brown et al., 1951; Grillon and 

Davis, 1997; Grillon et al., 1997; Hamm et al., 1991). These elevated responses are 

correspondingly reduced by similar anti-anxiety medications (Baas et al., 2002; Davis et 

al., 1997; Grillon et al., 2006; Grillon et al., 2009a; Miles et al., 2011; Swerdlow et al., 

1986; Walker and Davis, 2002a), suggesting that preclinical fear-potentiated startle 

techniques are a potentially powerful translational approach for studying anxiety in 

healthy human subjects (Davis et al., 2010).  

 

Using fear-potentiated startle in learning and memory research has a number of 

significant advantages.  Briefly, it defines fear as a within-subject difference in startle 

amplitude (in the presence versus the absence of the CS), thereby reducing potential 
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between-subjects variability. Being able to measure fear in the absence of the CS allows 

the investigator to evaluate non-specific effects on startle amplitude per se (e.g., drug-

induced reduction of startle). No footshocks are given during fear test sessions and 

therefore drug effects seen during testing cannot be attributed to changes in sensitivity to 

shocks. Additionally, there is a separation between training and testing sessions, which 

allows researchers to evaluate drug effects on acquisition versus expression of fear 

memory. Fear-potentiated startle takes advantage of an individual’s innate startle reflex 

and thus does not involve any obvious operant behavior.  This removes the potential for 

drug-induced effects that might alter subjects’ ability to make or withhold a voluntary 

response. Moreover, in tests for fear or anxiety, fear-potentiated startle does not involve a 

suppression of on-going behavior, a major experimental benefit in that certain anxiolytic 

treatments themselves may alter behavior without affecting anxiety itself (Thiebot, 1983). 

Fear-potentiated startle is a useful experimental technique, allowing the investigator to 

observe both increases as well as decreases in fear expression due to pharmacological 

treatment (c.f.'s Davis, 1986; Davis, 1990). 

 

In our typical rodent fear-potentiated startle paradigm we fear condition animals to a 

short-duration (seconds) stimulus that co-terminates with a mild 0.5-sec footshock.  

During behavioral testing, animals show a highly time-locked increase in startle during 

the CS, with a fast onset and fast offset that coincides with the timing in which the shock 

occurred during training (Davis et al., 1989; de Jongh et al., 2003). We operationally 

define this fear response to a short-duration, imminent threat as ‘phasic fear’.   
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Over the last few decades, using a number of experimental manipulations, researchers 

have characterized key brain areas and anatomical connections responsible for regulation 

of phasic fear learning and memory (c.f. Davis, 1992b; Fendt and Fanselow, 1999; 

LeDoux, 2000; Maren and Fanselow, 1996). These brain areas and anatomical 

connections now define the standard neural circuit model of fear.   Briefly, the neural 

model of fear involves sensory input from the thalamus and sensory cortices projecting to 

the amygdala complex. The amygdala is a forebrain structure found to be critical in fear 

memory processing (Amorapanth et al., 2000; Davis, 2000; Nader et al., 2001; Pitkanen 

et al., 1997). After sensory information is paired with an aversive US, output projections 

from the lateral division of the amygdala to the medial division of the central amygdala 

(CeAM) activate target areas known to mediate specific behaviors that collectively define 

a state of conditioned fear (e.g., Gray and Magnuson, 1987; Hopkins and Holstege, 1978; 

Moga and Gray, 1985; Schwaber et al., 1982; Veening et al., 1984). Figures and a more 

detailed description of the neural circuit model of fear can be found in Chapter 2. 

 

Both human and animal studies have confirmed that the amygdala regulates many aspects 

of the fear response.  Lesions or inactivation of various amygdala nuclei produce deficits 

in the acquisition and expression of conditioned fear responses (e.g., fear-potentiated 

startle, freezing - (Davis, 1992b; Feinstein et al., 2010; LeDoux, 1992).  Positron 

emission tomography and functional magnetic resonance imaging studies in humans 

show increased amygdala activation when subjects are presented with fear stimuli such as 

fear-conditioned cues, fearful faces, and fear-inducing images (LaBar et al., 1998; Phan 

et al., 2002; Whalen et al., 2001).   
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Somewhat more recently, an additional brain structure called the bed nucleus of the stria 

terminalis (BNST) has been added to the now modified neural circuit model of fear.  The 

BNST, like the amygdala, is also a forebrain structure that receives afferent projections 

from cortical brain areas as well as specific amygdala nuclei, and like the CeAM, projects 

to a number of the same anatomical sites known to elicit fear-like behavior (Alheid et al., 

1998; Alheid et al., 1999; de Olmos and Heimer, 1999; Dong et al., 2001; Gray and 

Magnuson, 1987; Gray and Magnuson, 1992; Holstege et al., 1985; Ju et al., 1989; Moga 

and Gray, 1985; Moga et al., 1989; Pitkanen et al., 1997; Schwaber et al., 1982; 

Sofroniew, 1983; Veening et al., 1984). In addition, the BNST and the amygdala share a 

number of structural and neurochemical similarities (de Olmos and Heimer, 1999).  

These findings have led researchers to investigate the BNST’s role in fear learning and 

memory. Figures and a more detailed description of the neural circuit model of fear can 

be found in Chapter 2. 

 

By means of various classical fear conditioning paradigms and lesion/local inactivation 

techniques (detailed in Chapter 2), researchers have found that the amygdala (specifically 

the CeAM) is necessary in mediating fear responses to short-duration, imminent threats 

(phasic fear), while the BNST seems to be necessary in mediating anxiety-like responses 

to more long-duration, less predictable threats, that we operationally define as ‘sustained 

fear’ (Campeau and Davis, 1995; Hitchcock and Davis, 1987; Lee et al., 1996; Resstel et 

al., 2008; Sullivan et al., 2004; Walker and Davis, 1997a; Walker and Davis, 1997b; 

Walker et al., 2009b). We view phasic fear as a more specific fear response and sustained 
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fear as more of a diffuse anxiety-like response (Walker et al., 2003).  Efforts to more 

directly compare phasic and sustained fear responses are discussed in Chapter 2.  

 

A number of localization studies have identified significant differences in morphology 

and peptide content between the CeAM versus the lateral division of the central nucleus of 

the amygdala CeAL and the BNST (Cassell et al., 1986; Day et al., 1999; Gray and 

Magnuson, 1987; Moga and Gray, 1985; Otake and Nakamura, 1995; Shimada et al., 

1989; Veening et al., 1984; Wray and Hoffman, 1983).  For example, high levels of the 

stress hormone corticotropin-releasing factor (CRF) are found in neurons in the BNST 

and CeAL vs. the CeAM (Chalmers et al., 1995; De Souza et al., 1985; Phelix et al., 

1992b). CRF containing neurons in the CeAL project to and act on CRF receptors in the 

BNST (De Souza et al., 1985; Phelix et al., 1992b; Sakanaka et al., 1986). Our laboratory 

found that excitotoxic lesions of the BNST or local infusions of a CRF antagonist into the 

BNST blocked the increase in startle amplitude caused by CRF given 

intracerebroventricularly (CRF-enhanced startle), whereas neither excitotoxic lesions of 

CeA or local CeA infusions of a CRF antagonist produced similar effects (Lee and Davis, 

1997; Swerdlow et al., 1986). In addition, our lab also found that local infusion of 

calcitonin gene-related peptide (CGRP) into the BNST, which has high levels of CGRP 

receptors in close apposition to CRF neurons (Christopoulos et al., 1995; Kruger et al., 

1988; Skofitsch and Jacobowitz, 1985), increased anxiety measures in the elevated plus 

maze and that intra-BNST infusions of a CGRP antagonist decrease sustained startle 

potentiation produced by a predator odor (Sink et al., 2011). These data support our 

efforts in further dissociating BNST-mediated sustained fear as a separate entity from that 
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of CeAM-mediated phasic fear. Efforts to pharmacologically dissociate phasic and 

sustained fear responses are discussed in Chapter 3. 

 

The BNST also plays an active role in stress/anxiety networks (Cullinan et al., 1993). 

Animal studies reveal a norepinephrine-induced increase in BNST Fos immunoreactivity 

and CRF expression following stress, as well as enhanced Fos expression within BNST-

hypothalamus projecting neurons (Cullinan et al., 1996; Santibanez et al., 2006). Lesions 

of the BNST reduce stress-induced Fos activation in the hypothalamic-pituitary-axis 

(HPA) and result in a decrease in stress hormone levels (Crane et al., 2003). Human 

fMRI studies suggest that the BNST monitors changes in environmental threat levels, and 

that there is a highly active BNST threat-monitoring process in individuals with high trait 

anxiety that may be associated with hypervigilance (Somerville et al., 2010). These 

studies and others suggest a critical role for the BNST in the regulation of stress/anxiety 

responses (Walker and Davis, 2008). 

 

Recently, a negative feedback loop between BNST CRF efferent projections and BNST 

5-HT afferent projections has been suggested to be an important modulator of BNST-

mediated anxiety-like responses (Hammack et al., 2009). Altered levels and functioning 

of 5-HT are hallmarks of certain mood disorders (e.g., depression, anxiety), suggesting 

that 5-HT is an active modulator of emotional states, but the literature remains unclear on 

the role of 5-HT within specific anxiety-circuits.  The BNST has dense innervation by 5-

HT neurons (Commons et al., 2003; Phelix et al., 1992a), expresses multiple 5-HT 

receptor subtypes (Cornea-Hebert et al., 1999; Hammack et al., 2009; Heidmann et al., 



     10 

1998; Kia et al., 1996; Mengod et al., 1990; Waeber et al., 1994; Wright et al., 1995), and 

is rich in 5-HT transporters (Commons et al., 2003; Hammack et al., 2009; Phelix et al., 

1992b), the site of action of the commonly used anxiolytic, selective serotonin reuptake 

inhibitors (SSRI). Hence, the BNST may serve as a potential site of action of SSRI 

treatment; efforts to explore this notion are detailed in Chapter 4. 

 

In this dissertation, I present experiments designed to further dissociate phasic and 

sustained fear.  In Chapter 2, I discuss my efforts in the modification of phasic and 

sustained fear paradigms.  In Chapter 3, I use the newly modified behavioral paradigms 

to pharmacologically dissociate phasic versus sustained fear using clinically-relevant 

drug treatments that either are or are not clinically effective anxiolytics. In Chapter 4, I 

examine the neurobiological underpinnings of sustained fear, investigating the role of 5-

HT (within the BNST) in the expression of sustained fear. I believe these experiments 

will contribute to the field of neuroscience to broaden our understanding of the complex 

story of fear and anxiety. 
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Abstract: 

 

A major aim within the psychiatric research field has been to develop a better 

understanding of the neural mechanisms underlying fear and anxiety disorders. 

Interestingly, while there is great overlap in the physiological symptoms of fear and 

anxiety, pre-clinical studies suggest that the two aversive emotional states are mediated 

by different neural substrates.  Research has shown that the medial division of the central 

nucleus of the amygdala (CeAM) is necessary in the expression of fear-like responses to 

short-duration, predictable threats (i.e., phasic fear), and that the bed nucleus of the stria 

terminalis (BNST) is necessary in the expression of anxiety-like responses to more long-

duration, less predictable threats (i.e., sustained fear). The present chapter describes our 

attempts to develop reliable procedures to model phasic and sustained fear using identical 

training procedures. These behavioral models will allow us to more directly compare the 

two fear states in the hopes of further dissociating their unique neuronal processes. 
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Introduction: 
 
 
Fear is a highly adaptive emotional response that serves as an internal alarm system to 

prepare an individual for an impending, potentially life-threatening danger within the 

immediate environment. Unfortunately, in some cases the intensity and/or duration of this 

fear response can become inappropriate and develop into an emotional disorder, which may 

compromise an individual’s quality of life.   

 

Excessive fear is thought be a key component underlying certain anxiety disorders. Not 

surprisingly, the emotional states of both fear and anxiety share many of the same 

physiological symptoms (Shin and Liberzon, 2010).  Nevertheless, as discussed in the 

General Introduction, a number of recent findings suggest that although similar, fear and 

anxiety-like responses are mediated by different brain areas, using unique neuronal 

processes (c.f., Walker et al., 2009b).  

  

Over the last few decades, a number of experimental manipulations have characterized key 

brain areas and anatomical connections responsible for regulation of fear learning and 

memory (c.f.'s Davis, 1992b; Fendt and Fanselow, 1999; LeDoux, 2000; Maren and 

Fanselow, 1996). These studies and many others have assisted in the development of the 

standard neural circuit model of fear (Figure 2.1; bold black lines); a model that involves 

sensory input from the thalamus, sensory cortex, and association areas being projected 

down to the basolateral complex of the amygdala, which includes the lateral (LA), 

basolateral (BLA), and the basomedial (BMA) nuclei 
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     Figure 2.1 

 

 

 

Figure 2.1.  The neural circuit model of fear.   

Following an emotional event, sensory inputs from afferent areas (e.g., the cortices, 

thalamus) project to the basolateral complex of the amygdala.  If the informational input 

is processed as a threat signal, the information is relayed to the medial division of the 

central nucleus of the amygdala as well as the bed nucleus of the stria terminalis.  These 

areas in turn project to a set of common target areas known to be key in mediating fear-

associated behavior.   
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(McDonald et al., 1999; Turner and Herkenham, 1991). If these sensory inputs have been 

paired with an aversive event, outputs from the basolateral amygdala exceed some threshold 

so as to activate the medial division of the central amygdala (CeAM), which then projects to 

a set of target areas known to mediate specific behaviors that underlie fear expression (e.g., 

Gray and Magnuson, 1987; Hopkins and Holstege, 1978; Moga and Gray, 1985; Schwaber 

et al., 1982; Veening et al., 1984). 

 

More recently, a modified version of this neural circuit model of fear (Figure 2.1; dashed 

black lines) has been developed (c.f.'s Davis, 1992b; Fendt and Fanselow, 1999; LeDoux, 

2000; Maren and Fanselow, 1996). It incorporates the bed nucleus of stria terminalis 

(BNST) (Dong et al., 2001; Pitkanen et al., 2000), a region often referred to as part of the 

‘extended amygdala’, (Alheid et al., 1998; Ju et al., 1989) which projects to many of the 

same target areas as the CeAM (Gray and Magnuson, 1987; Gray and Magnuson, 1992; 

Holstege et al., 1985; Moga and Gray, 1985; Moga et al., 1989; Schwaber et al., 1982; 

Sofroniew, 1983; Veening et al., 1984). The BNST shares both structural and 

neurochemical similarities, as well as reciprocal connections to that of the amygdala 

(specifically to the lateral division of the CeA and the BLA) (de Olmos and Heimer, 1999).  

Based on the similar afferent and efferent projections (Alheid et al., 1999) one might 

assume that experimental manipulations to the CeA would elicit comparable effects on fear 

learning and memory as would the same manipulations to the BNST. However, as described 

below, this is not always the case.  
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In rat studies, fear responses to a short-duration conditioned stimulus (CS) (i.e., phasic fear) 

were blocked by post-training lesions of the CeA or by pre-test infusions of the AMPA 

receptor antagonist, NBQX into the CeA (Campeau and Davis, 1995; Hitchcock and Davis, 

1987; Lee et al., 1996; Walker and Davis, 1997b). However, these fear responses were not 

disrupted by post-training lesions of the BNST or by pre-test intra-BNST NBQX infusions 

(Sullivan et al., 2004; Walker and Davis, 1997b) (Table 2.1; Column 2). In contrast, 

inactivation of the BNST blocks slowly-developing, long-duration unconditioned increases 

in startle produced by sustained exposure to bright light, or infusion of the stress hormone 

corticotropin-releasing factor (CRF) into the lateral ventricle (i.e., light-enhanced and CRF-

enhanced startle: unconditioned anxiogenic responses), while inactivation of the CeA did 

not (Table 2.1; Columns 3 and 4) (Swerdlow et al., 1986; Walker and Davis, 1997a; Walker 

and Davis, 1997b; Walker et al., 2009b). These observations provide direct support for the 

argument that phasic fear responses can be successfully dissociated from those that are more 

sustained. 

 

Based on the above findings, there are two possibilities, 1) the CeA is necessary for 

producing fear responses to short-duration (seconds), discrete stimuli, while the BNST 

mediates fear responses to long-duration (minutes), more diffuse stimuli or 2) the CeA is 

necessary for producing conditioned fear responses, while the BNST is responsible for 

unconditioned responses. To disentangle these possibilities, Dr. David Walker from our 

laboratory developed a behavioral paradigm that could produce a fear-potentiated startle 

response to a stimulus that was both conditioned and long in duration. His studies (using a 

8-min filtered white noise CS) found that inactivation of the CeA using NBQX 
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Table 2.1 

 

 

 

Table 2.1. Summary of lesion and/or NBQX infusion effects on fear-potentiated startle. 

 Data suggests that the CeA mediates fear responses to short-duration stimuli and the BNST 

mediates fear responses to longer-duration stimuli.  
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reduced fear-potentiated startle at the very beginning, but not the later portions of the 8-min 

CS presentation, and that the inactivation of the BNST blocked fear-potentiated startle 

during the later, but not earlier portions of the 8-min CS presentation (Table 2.1; column 5 - 

(Walker et al., 2009b). These data supported the view that the CeA contributes to emotional 

responses following short-duration stimuli, and that the BNST controls emotional responses 

to more sustained fear stimuli, but it fails to support the other view that the CeA mediates 

conditioned fear responses and the BNST mediates unconditioned fear responses. 

Furthermore, these studies suggest that the neural basis of sustained fear could be 

experimentally evaluated using this novel sustained fear conditioning paradigm.  

  

Although Dr. Walker’s preliminary sustained fear paradigm yielded some very exciting 

findings, which elucidated important distinctions in the role of the CeA and the BNST in 

fear expression, it did not reliably produce robust sustained fear responses. Hence, more 

research was needed to strengthen this model. 

 

In this project, we attempted to modify Dr. Walker’s phasic and sustained fear paradigms, in 

an effort to reliably produce two different types of fear responses to the same fear stimulus. 

Our goal was to more directly compare and contrast the unique neuronal processes 

mediating phasic and sustained fear.   

 

Materials and Methods: 

 

Animals: 
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Male Sprague-Dawley rats (200–250 g at arrival; Charles River, Raleigh, NC) were 

housed 4/cage on a 12-hr light-dark cycle in a temperature- and humidity-controlled room 

with food and water freely available.  Behavioral procedures began approximately one 

week after arrival, and were conducted in accordance with USDA, NIH, and Emory 

University guidelines. 

 

Apparatus: 

 

Rats were trained and tested in 8 x 15 x 15-cm Plexiglas and wire mesh cages with four 

6.0-mm diameter stainless steel floorbars, located within a sound-attenuated behavior 

chamber. Startle responses were evoked by 50-ms (95 dB) white-noise bursts generated 

by a computer sound file, amplified by a Radio Shack amplifier (Tandy, Fort Worth, TX, 

USA), and delivered through Radio Shack Supertweeter speakers located ~12 cm in front 

of the cage. The same speakers delivered background noise (60 dB, 1-20 kHz) provided 

by an ACO Pacific, Inc. (Belmont, CA, USA) noise generator. All sound level 

measurements were made from the center of the cage.  

 

Startle amplitude and shock reactivity were quantified using a PCB Piezotronics (Depew, 

NY, USA) accelerometer affixed to the bottom of the cage. The accelerometer produces a 

voltage output proportional to the velocity of cage movement (e.g., produced by the rats’ 

startle response), which is integrated by a PCB Piezotronics signal conditioner and 

digitized by a GW Instruments (Somerville, MA, USA) InstruNet device.  Startle 
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amplitude was defined as the maximum peak-to-peak voltage during the first 200 ms 

after each noise burst. Shock responses were similarly quantified, using a 500-ms 

sampling window concurrent with shock delivery. 

 

The conditioned stimulus (CS) was either a 70-dB filtered noise or 60-Hz clicker 

stimulus (dependent on the experiment) delivered through speakers located 25 cm behind 

each chamber. The unconditioned stimulus was a 0.5-sec, 0.25 mA, 0.3 mA, 0.35 mA, or 

0.4 mA footshock (dependent on the experiment) delivered through the floor bars. The 

sequencing of all stimuli was controlled by a desktop computer using custom-designed 

software (The Experimenter; Glass Bead Software, New Haven, CT, USA). 

 

Common Behavioral Procedures:  

 

Experimental Sequence: Rats received two acclimation sessions followed by a pre-

conditioning test for sustained or phasic fear, followed by conditioning sessions, followed 

48 hrs later by a post-conditioning test.  

 

Acclimation: Rats were placed into the test cage and, after 5 minutes, presented with the 

first of 48 startle-eliciting white-noise bursts (inter-stimulus interval (ISI) = 30 seconds).  

 

Pre-Conditioning Sustained Fear Test: Rats were placed into the test cage and, after 5 

minutes, presented with the first of 32 startle-eliciting noise bursts (ISI = 30 sec). The first 

16 were presented in the absence, and the next 16 in the presence of the CS.  
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Pre-Conditioning Phasic Fear Test: Rats were placed into the test cage and, after 5 minutes, 

presented with the first of 75 startle-eliciting noise bursts (ISI = 30 sec). Thirty of the final 

60 were presented 3.2 seconds after onset of a 3.7-sec CS and another 30 were presented in 

its absence in a balanced irregular sequence across the session. 

 

Fear Conditioning: The varying details of these procedures for each experiment are 

described below. 

 

Post-Conditioning Phasic and Sustained Fear Tests: Rats were tested after conditioning, 

using procedures identical to those described for the pre-conditioning tests. 

 

Context: During conditioning, a cotton gauze pad wetted with 0.4 ml of 70% ethanol 

solution was placed in front of the test cage. A fluorescent light placed on the back of the 

cage (150-lux as measured from the middle of the cage) provided constant illumination. 

During testing, to minimize context-potentiated startle, the cage was dark and no explicit 

olfactory stimuli were introduced. In addition, two 5-cm chains hung from the top of the 

test cage and a sandpaper insert was placed over the floorbars.  

  

Statistical analyses:  

Sustained Fear: Each rat tested for sustained fear received a sustained fear-potentiated 

startle score. Because our analysis of the control dataset indicated that the first startle 

response after CS onset was markedly higher than all those that followed, and that 
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sustained fear diminished with time, becoming unreliable after approximately the 4th 

minute of CS presentation, we calculated a sustained fear-potentiated startle score by 

dividing mean startle amplitude during the first 4 minutes of the CS (beginning with the 

2nd CS test trial) by the mean startle amplitude during the last 4 minutes of the pre-CS 

period (see Figure 2.2). For presentation purposes, these ratios were converted to percent 

change scores. 

 

Phasic Fear Measure: Each rat tested for phasic fear received a phasic fear-potentiated 

startle score, defined as the ratio between the mean startle amplitude of all CS test trials 

and the mean startle amplitude of all intermixed non-CS test trials. For presentation 

purposes, these ratios were converted to percent change scores. 

 

Exclusion Criteria: Fear conditioning using these relatively weak footshocks depends on 

the rats actually receiving the shock through their footpads.  Some rats largely avoid this 

by lying on the bars or putting their legs through them.  Based on reactivity to footshock 

measured by cage output during the 500-msec shocks we excluded from further analysis 

the data obtained from rats with footshock reactions of 1.0 or less on 12 or more of the 24 

conditioning trials. Because meaningful ratios cannot be calculated for rats that do not 

show a baseline startle response, the data from rats with a mean accelerometer output of   

 

 

Figure 2.2 
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Figure 2. Representative trial-by-trial raw startle data during sustained fear tests 

(modified sustained fear paradigm with clicker CS).  

Conditioning data are plotted for both the pre- (open circles) and post- (filled triangles) 

conditioning test sessions. Startle responses were evoked every 30 seconds during the 8 

minutes prior to CS onset (trials 1-16) and for the 8 minutes during which the CS was 

presented (trials 17-32). Before conditioning, there appears to be some effect of the 60-

Hz clicker stimulus on pre-CS startle, but this habituated to baseline prior to CS onset. 

After conditioning, potentiation by the clicker CS was clearly evident and especially 

pronounced on the first test trial after CS onset (i.e., trial 17). Potentiation dropped 

precipitously from the 1st to the 2nd CS test trial and more gradually thereafter, becoming 

statistically unreliable approximately halfway through the 8-minute CS. 

 

< 0.1 (i.e., what we observe when cage output is sampled in non-startled rats) on baseline 
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test trials were also excluded. 

 

Inferential Statistics: The primary analyses were between-group comparisons of fear-

potentiated scores. Because normality tests indicated significant deviations from 

normality for a number of datasets, between-group differences were evaluated using 

distribution-free (non-parametric) Mann-Whitney or Kruskal-Wallis tests and also, to 

establish statistical robustness, by using t-tests and ANOVA on log-transformed scores 

(Keene, 1995).  For all tests, the criterion for significance was 0.05 (two-tailed). 

 

Procedures Specific to Individual Experiments: 

 

Experiment 1: Replicate preliminary sustained fear paradigm  

The preliminary sustained fear procedure was originally performed by Dr. David Walker 

in a different behavioral room, using a similar (but not identical) behavioral apparatus. In 

the first experiment I tried to replicate Dr. Walker’s earlier finding.  Using the 

preliminary sustained fear paradigm (Figure 2.3) 12 rats were fear conditioned for 3 

consecutive days. On each conditioning day, animals were exposed to two presentations 

of an 8-minute continuous 70-db filtered-noise stimulus. Each presentation was paired 

with 8 randomized 0.4 mA, 500-msec footshocks. The first CS of each session occurred 5 

minutes after the rat was placed into the conditioning chamber. On each day, 8-min 

periods of silence and no shocks occurred after the first and second noise-shock periods.  

 

Figure 2.3 
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Figure 2.3. Preliminary sustained fear procedures and timeline.  

Acclimation, a pre-conditioning test, each of 3 conditioning sessions in which two 8-min 

presentations of the conditioned stimuli (gray) were paired with randomized footshock 

(arrows), and a post-conditioning test, took place on separate days. For sustained fear 

testing, startle was measured before and then during presentation of an 8-minute clicker 

stimulus. Session and event lengths are not drawn to scale. For a detailed description, see 

the Methods section. 

 

 

 

For this and the experiments that follow, testing was performed as described above in the 
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Common Behavioral Procedures. 

   

Experiment 2: Modify sustained fear paradigm: Varied-CS duration during conditioning  

In attempts to enhance the reliability and duration of the sustained fear responses during 

post-conditioning tests, a modified sustained fear paradigm was tested (Figure 2.4).  

Twenty-three rats were fear conditioned for 3 consecutive days. On each conditioning day, 

rats received 8 presentations of variable-duration continuous 70-db filtered-noise stimuli (3 

sec, 10 sec, 20 sec, 1 min, 2 min, 4 min, 6 min, and 8 min long), each co-terminating with a 

0.4 mA 500-msec footshock. The first CS of each session occurred 5 minutes after the rat 

was placed into the conditioning chamber. The interval between offset of one CS and onset 

of the next was 3 minutes. During the first conditioning session, the clicker stimuli were 

presented in order of increasing duration. During the second and third, they were sequenced 

randomly.  

 

Experiment 3: Modify sustained fear paradigm: Varied-CS duration during conditioning 

(using a clicker CS) 

In attempts to enhance the strength and duration of the sustained fear responses during 

post-conditioning tests, we tested the effect of using a more salient stimulus (i.e., a 

clicker stimulus) within the modified sustained fear paradigm. Sixteen rats were fear 

conditioned using the modified sustained fear paradigm (described in Experiment 2) 

replacing the filtered-noise CS with a 70-db 60-Hz clicker stimulus. 

 
 

Figure 2.4 
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Figure 2.4. Modified sustained fear procedures and timeline.  

Acclimation, a pre-conditioning test, each of 3 conditioning sessions in which the 

conditioned stimuli (gray) of variable duration were paired with co-terminating footshock 

(arrows), and a post-conditioning test, took place on separate days. For sustained fear 

testing, startle was measured before and then during presentation of an 8-minute clicker 

stimulus.  Session and event lengths are not drawn to scale. For a detailed description, see 

the Methods section. 
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Experiment 4: Test modified sustained fear paradigm (using a clicker CS) for 

sensitization effects 

Because the sustained fear procedure is new, it was important to determine if the 60-Hz 

clicker itself induced any unconditioned startle changes. In three large studies we trained 

and tested 48 rats in either the presence or absence of the clicker CS.  

 

Experiment 5: Modified sustained fear paradigm (using a clicker CS): Varied number of 

conditioning days:  

Using the more salient conditioned stimulus (i.e., 70-db 60-Hz stimulus), it was important 

to ensure that we are not unnecessarily overtraining the animals.  Using the modified 

sustained fear paradigm, different groups of 12-16 rats were given either 1, 2, or 3 days 

of sustained fear training.   

 

Experiment 6: Modified sustained fear paradigm (using a clicker CS): Varied footshock 

intensity: 

To ensure that the shock intensity of 0.4 mA was of an appropriate strength (thereby 

avoiding less fear-potentiated startle at high shock intensities - (Davis and Astrachan, 

1978), we trained different groups of 10-11 rats each in the modified sustained fear 

paradigm using shock intensities of either a 0.25 mA, 0.3 mA, 0.35 mA, or 0.4 mA shock 

intensity.  

 

Experiment 7: Replicate preliminary phasic fear paradigm with a clicker CS: 

The purpose of this experiment was to determine if the conventional phasic fear paradigm 
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(Davis, 1986) could reliably produce phasic fear using a 60-Hz clicker conditioned 

stimulus. Using the preliminary phasic fear paradigm (Figure 2.5), on each of 2 

conditioning days, 20 animals were exposed to ten 3.5-sec presentations of a 60-Hz 

clicker CS, each presentation co-terminating with a 0.35 mA, 500-msec footshock 

presented at 2, 3, or 4-min randomly ordered intertrial intervals.  

 

Experiment 8: Modified phasic fear paradigm with a clicker CS: 

To more directly compare and contrast sustained versus phasic fear responses, we needed 

to minimize experimental confounds between the two paradigms. We modified the 

preliminary phasic fear paradigm (Figure 2.6) to ensure that the animals received 

identical training as those of our sustained fear animals.  The only experimental 

difference between our sustained and phasic fear animals was how are they were tested 

(i.e., exposed to either a long-duration or short-duration fear stimulus). Sixteen animals 

were trained with the modified phasic fear paradigm to ensure that we could still produce 

reliable phasic fear response to a 60-Hz clicker conditioned stimulus. 

 

Results: 

Experiment 1: Replicate preliminary sustained fear paradigm  

During testing for sustained fear, rats failed to produce any robust sustained fear response 

(Figure 2.7; left bar). 

 

Experiment 2: Modify sustained fear paradigm: Varied-CS duration during conditioning  

By changing the conditioning procedures (i.e., shaping the CS-US exposures), rats  
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Figure 2.5 

 
 

 
Figure 2.5. Preliminary phasic fear procedures and timeline. 

Acclimation, a pre-conditioning test, each of 2 conditioning sessions in which ten 3.5-sec 

presentations of a 60-Hz clicker (gray) of variable duration were paired with co-

terminating footshock (arrows), and a post-conditioning test, took place on separate days. 

For phasic fear testing, startle was measured in the presence and in the absence, on 

intermixed test trials, of 3.7-second conditioned stimuli. Session and event lengths are not 

drawn to scale. For a detailed description, see the Methods section. 
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  Figure 2.6  
 

 

 

Figure 2.6. Modified phasic fear procedures and timeline.  

Acclimation, a pre-conditioning test, each of 3 conditioning sessions in which the 

conditioned stimuli (gray) of variable duration were paired with co-terminating footshock 

(arrows), and a post-conditioning test, took place on separate days. With the exception of 

testing, the sustained and phasic fear procedures were identical. For phasic fear testing, 

startle was measured in the presence and in the absence, on intermixed test trials, of 3.7-

second clicker stimuli. Session and event lengths are not drawn to scale. For a detailed 

description, see the Methods section. 
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Figure 2.7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 2.7. Sustained fear responses (preliminary versus modified sustained fear 

paradigms).  
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Modification of the preliminary sustained fear paradigm produced greater sustained fear.  

 (* = p < 0.05 vs continuous 8 minute filterd noise CS presentation) showed an 

approximately 60% increase in the percent change in startle from the pre-CS to the CS test 

trials (Figure 2.7; middle bar). However, the percent change score was not significantly 

different from Experiment 1’s results. 

 

Experiment 3: Modify sustained fear paradigm: Varied-CS duration during conditioning 

(using a clicker CS) 

By using a clicker CS (instead of the preliminary filtered-noise CS), rats showed an 

approximately 100% increase in the percent change in startle from the pre-CS to the CS 

test trials (Figure 2.7; right bar). An ANOVA on the log-transformed scores indicated a 

significant Treatment effect, F(2, 42) = 4.29, p < 0.05 which was due to the difference 

between the preliminary and modified (with a clicker CS) sustained fear paradigm groups 

(p < 0.05 Tukey post-hoc comparisons). Non-parametric analyses yielded similar results.  

 

Experiment 4: Test modified sustained fear paradigm (using a clicker CS) for 

sensitization effects 

Results showed no significant change in startle in the presence of the clicker even after 

getting footshocks during training, indicating that the prior increase in startle during the 

clicker could not be attributed to sensitization (Figure 2.8; middle group no-clicker in 

training, clicker in testing). In addition, animals trained in the presence of the clicker but 

tested in its absence also did not show any sensitization based on their lack of increased 

startle during testing. An ANOVA on the log-transformed scores showed a significant  
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Figure 2.8 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.8. Sensitization to the clicker CS.  

Results showed no significant effect on startle elicited in the presence of the clicker itself. 

ANOVA on the log-transformed scores showed a significant Treatment effect between 

groups, F(2, 45) = 3.37. Animals trained in the presence, but tested in the absence of the 

clicker CS had significantly lower sustained fear than the control group that was trained 

and tested in the presence of the clicker CS (* = p < 0.05, Tukey post-hoc comparisons). 

A non-parametric Kruskal Wallis analysis on percent change scores yielded non-

significant results, H=5.7, 2 d.f., p= 0.06. 
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Treatment effect between groups, F(2, 45) = 3.37, p < 0.05. A Tukey’s posthoc revealed 

a significant difference between the sustained fear startle response of animals trained in 

the presence, but tested in the absence of the clicker CS from control animals trained and 

tested in the presence of the clicker CS, p < 0.05. A non-parametric Kruskal Wallis 

analysis yielded borderline non-significant results, H=5.7, 2 d.f., p= 0.06.   

 

Experiment 5: Modified sustained fear paradigm (using a clicker CS): Varied number of 

conditioning days:  

Animals trained with three days of conditioning produced a more robust sustained fear 

response than those trained for one or two days (although not a significant effect - Figure 

2.9). Based on the results we feel that three consecutive days of training is beneficial to 

the expression of a sustained fear response.  

 

Experiment 6: Modified sustained fear paradigm (using a clicker CS): Varied footshock 

intensity: 

Rats trained with a shock intensity of 0.35 mA showed the most robust sustained fear 

response as compared to the other shock intensities used (Figure 2.10). ANOVA on the 

log-transformed scores showed a significant Treatment effect, F(3, 39) = 4.34, p < 0.05.  

There was a significant difference between the percent change scores in animals trained 

with a 0.25 mA shock intensity as compared to those trained with a 0.35 mA (p < 0.05 

Tukey post-hoc comparisons). Non-parametric analyses yielded similar results. 

 

Experiment 7: Replicate preliminary phasic fear paradigm with a clicker CS: 

A clicker CS (in place of the preliminary filtered-white noise CS) was able to  
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Figure 2.9 

 

 
 
 
 
 
Figure 2.9. Varied number of conditioning days.  

Although not a significant effect, data suggest that three days of conditioning (as opposed 

to one or two) produced higher sustained fear responses.  Three days of training did not 

prove to be detrimental to the expression of a sustained fear response.  

 

 

 

 

 

 

 



     43 

 
Figure 2.10 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 2.10. Varied shock intensities.  

Rats trained with a shock intensity of 0.35 mA showed the most robust sustained fear 

response as compared to the other shock intensities.  ANOVA on the log-transformed 

scores showed a significant Treatment effect, F(3, 39) = 4.34 with a significant difference 

between the percent change scores in animals trained with a 0.25 mA shock intensity as 

compared to those trained with a 0.35 mA  (* = p < 0.05, Tukey post-hoc comparisons). 
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successfully produce a robust phasic fear response (Figure 2.11; left bar). A paired t-test 

yielded a significant difference between the log-transformed scores of the pre- vs post-

conditioning tests, t(39) = -21.9, p < 0.05. Non-parametric analyses yielded similar 

results. 

 

Experiment 8: Modified phasic fear paradigm with a clicker CS: 

Animals produced robust phasic fear responses, using the varied-duration conditioning 

regime of the sustained fear paradigm (Figure 2.11; right bar). ANOVA indicated a 

significant Session effect (pre- vs post-conditioning test) F(3, 68)=12.9, p < 0.05 with no 

significant interaction. Non-parametric analyses yielded similar results. 

 

Discussion: 

 

We have successfully modified two behavioral fear paradigms (i.e., phasic and sustained) 

and are now able to consistently and reliably produce short- and longer-duration fear 

responses (respectively) to the same conditioned fear stimulus using the same training 

procedures and measured with an increase in the startle reflex.  Based on the 

experimental results described above, we feel that our most robust sustained fear 

responses are reliably produced when we condition animals for 3 consecutive days, using 

varied duration presentations of a 60-Hz Clicker CS co-terminating with 0.35 mA 

footshocks. Moreover, the fact that sustained fear was produced using a conditioning 

procedure indicates that sustained fear is not restricted to only unconditioned stimuli. 
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Figure 2.11 

 
 
 
 

 
 

 

Figure 2.11. Phasic fear responses (preliminary versus modified phasic fear 

paradigms). 

Animals were able to reliably produce robust phasic fear responses, using either the 

preliminary or the modified conditioning procedures. ANOVA indicated significant a 

significant Test effect (pre- vs post-conditioning test) F(3, 68)=12.9, p < .05 with no 

significant interaction. Non-parametric analyses yielded essentially the same results. 
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A proven sustained fear paradigm would serve as an excellent translational research tool 

for studying anxiety-related behaviors. Studies in humans suggest that sustained fear 

responses may bear a special relationship to clinical anxiety, more so than that of phasic 

fear (Davis et al., 2010). For example, researchers observed that startle potentiation to 

short-duration stimuli that had been paired with shock are no greater in post-traumatic 

stress (Grillon et al., 2009b) and panic disorder patients (Grillon et al., 2008) than in 

healthy controls. In contrast, potentiated startle responses between CS presentations (a 

type of sustained fear), are greater in these clinical groups (c.f., Davis et al., 2010). 

Hence, a pre-clinical sustained fear paradigm might provide a more suitable approach 

with which to study clinically relevant aversive emotional disorders (e.g., post-traumatic 

stress disorder).   

 

A number of laboratories have used a wide-range of sustained fear paradigms in conjunction 

with phasic fear paradigms to successfully dissociate the contributions of the CeA versus 

the BNST (e.g., Hammack et al., 2004; Sullivan et al., 2004; Waddell et al., 2006). 

Unfortunately, the phasic and sustained fear procedures used in these studies had varied and 

sometimes complex conditioning and testing components, thus not directly comparing 

phasic versus sustained fear responses to the same fear stimulus.  Our modified sustained 

fear paradigm appears to be behaviorally consistent (as opposed to light-enhanced startle), 

needs no exogenous hormonal application (e.g., CRF-enhanced startle), uses an innate 

behavioral reaction (as opposed to operant behavior/conditioned suppression), and is 

controlled by a discrete, unimodal stimulus (as opposed to the multimodal representation in 

conventional context conditioning). In addition, testing can be done in both the presence and 
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absence of the conditioned stimulus (as opposed to conventional context conditioning), and 

both the training and testing context can be varied (as opposed to conventional context 

conditioning). 

 

Hence, I believe that our modified fear paradigms provide us with a unique opportunity 

to dissociate the neural processes mediating two very similar, yet different types of fear 

responses after identical training.  These paradigms could potentially play an important 

role in examining the clinical validity of current and putative anxiolytics.   
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Chapter 3 
 

Phasic and Sustained Fear are Pharmacologically Dissociable in Rats 
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 pharmacologically dissociable in rats. Psychopharmacology  (in press) 
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Abstract: 

 

Previous findings suggest differences in the neuroanatomical substrates of short (seconds) 

versus longer-duration (minutes) fear responses. In this chapter I report that phasic and 

sustained fear can also be differentiated pharmacologically, based on their response to 

several treatments that either are or are not clinically effective anxiolytics. For these 

experiments, short- or long-duration clicker stimuli were paired with footshock. Acoustic 

startle amplitude was later measured in the absence of the clicker, or within seconds 

(phasic fear) or minutes (sustained fear) of its onset. Before testing, rats received a single 

injection of vehicle, the benzodiazepine chlordiazepoxide, the 5HT1A agonist and 

dopamine D2 antagonist buspirone, the selective serotonin reuptake inhibitor (SSRI) 

fluoxetine, or a 3-week treatment with either vehicle or fluoxetine. Chlordiazepoxide 

blocked sustained but not phasic startle potentiation. Acute buspirone, which is not 

anxiolytic in humans, did not affect sustained startle potentiation, but did disrupt phasic 

increases. Chronic fluoxetine blocked sustained startle potentiation and unreliably 

reduced phasic increases. Acute fluoxetine affected neither. The results indicate that 

phasic and sustained fear responses can be pharmacologically dissociated, further 

validating this distinction, and suggest that sustained startle potentiation may be 

especially useful as an anxiety model and anxiolytic screen. 
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Introduction: 

 

A major aim of psychiatric research is to better understand the neural mechanisms of 

psychiatric disorders, including anxiety.  Because the physiological symptoms of healthy 

fear and clinical anxiety are highly similar, and because it is generally believed that 

clinical anxiety reflects maladaptive activity within fear circuitry, experimentally-induced 

fear in healthy controls and in research animals has been used extensively to pursue this 

goal. 

 

We have used changes in the amplitude of the acoustic startle reflex as a fear measure 

and anxiety surrogate (Davis, 1986), and have described the neural circuitry that mediates 

this effect (c.f., Davis, 2006). When evoked by brief presentations of stimuli previously 

paired with shock, fear-potentiated startle is mediated by direct and indirect projections 

from the medial central nucleus of the amygdala (CeA) to the primary startle reflex 

pathway in the pontine reticular formation (Hitchcock and Davis, 1991; Meloni and 

Davis, 1999; Rosen et al., 1991; Zhao and Davis, 2004). However, when evoked by other 

treatments, including intra-cerebroventricular infusions of the stress-related peptide 

corticotropin releasing factor (Lee and Davis, 1997), by startle testing in illuminated 

versus darkened test chambers (Walker and Davis, 1997b), or by repeated footshock 

stress (Gewirtz et al., 1998), such increases appear to be mediated not by the medial CeA 

but instead, by a more rostral extension of the extended amygdala known as the bed 

nucleus of the stria terminalis (BNST).  
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In reviewing these and possibly-related findings from other laboratories (e.g., Hammack 

et al., 2004; Sullivan et al., 2004; Waddell et al., 2006), we have noted that CeA 

manipulations more consistently disrupt short-duration, rapid-onset/offset fear responses 

to distinct and imminent threats (phasic fear), whereas BNST manipulations more 

consistently disrupt longer-duration responses to more sustained stimuli (c.f., Walker et 

al., 2009b). 

 

To explicitly compare the neurobiological substrates of phasic versus sustained startle 

potentiation, and to further evaluate the validity of this distinction, I developed a 

modified conditioned fear-potentiated startle paradigm in which clicker stimuli of 

variable duration (from 3 sec to 8 min) are paired with co-terminating footshocks. During 

testing, rats are presented with startle-eliciting noise bursts delivered within seconds (for 

phasic fear testing) or minutes (for sustained fear testing) of CS onset. In the present 

study, I used this paradigm to compare the effect on phasic and sustained fear of several 

pharmacological treatments that are clinically useful for anxiety reduction (i.e., acute 

chlordiazepoxide, chronic fluoxetine) and others that are not (i.e., acute buspirone, acute 

fluoxetine). The results are discussed with respect to their implications for the validity of 

the phasic versus sustained fear distinction, and for the utility of phasic versus sustained 

fear procedures as anxiety models and anxiolytic screens. 

 

Materials and Methods: 

 

Animals: 
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Male Sprague-Dawley rats (200–250 g at arrival; Charles River, Raleigh, NC) were 

housed 4/cage on a 12-hr light-dark cycle in a temperature- and humidity-controlled room 

with food and water freely available.  Behavioral procedures began approximately one 

week after arrival, and were conducted in accordance with USDA, NIH, and Emory 

University guidelines. 

 

Apparatus: 

 

Rats were trained and tested in 8 x 15 x 15-cm Plexiglas and wire mesh cages with four 

6.0-mm diameter stainless steel floorbars, located within a sound-attenuated behavior 

chamber. Startle responses were evoked by 50-ms (95 dB) white-noise bursts generated 

by a computer sound file, amplified by a Radio Shack amplifier (Tandy, Fort Worth, TX, 

USA), and delivered through Radio Shack Supertweeter speakers located in front of the 

cage. The same speakers delivered background noise (60-dB, 1-20 kHz) provided by an 

ACO Pacific, Inc. (Belmont, CA, USA) noise generator. All sound level measurements 

were made from the center of the cage.  

 

Startle amplitude and shock reactivity were quantified using a PCB Piezotronics (Depew, 

NY, USA) accelerometer affixed to the bottom of the cage. The accelerometer produces a 

voltage output proportional to the velocity of cage movement (e.g., produced by the rats’ 

startle response), which is integrated by a PCB Piezotronics signal conditioner and 

digitized by a GW Instruments (Somerville, MA, USA) InstruNet device.  Startle 
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amplitude was defined as the maximum peak-to-peak voltage during the first 200 ms 

after each noise burst. Shock responses were similarly quantified, using a 500-ms 

window concurrent with shock delivery. 

 

The conditioned stimulus (CS) was a 70-dB, 60-Hz clicker stimulus delivered through 

speakers located behind each chamber. The unconditioned stimulus was a 0.5-sec, 0.35 

mA footshock delivered through the floor bars. The sequencing of all stimuli was 

controlled by a desktop computer using custom-designed software (The Experimenter; 

Glass Bead Software, New Haven, CT, USA). 

 

Behavioral Procedures: 

 

Experimental Sequence: Rats received two acclimation sessions (days 1 and 2) followed by 

a pre-conditioning test for sustained or phasic fear (day 3), followed by 3 conditioning 

sessions (days 4-6), followed 48 hrs later by a post-conditioning test. Thus, some rats were 

tested for sustained and others for phasic fear, but all rats received the same conditioning 

procedure. These procedures are described below, and presented graphically in Figure 3.1.  

 

Acclimation: Rats were placed into the test cage and, after 5 minutes, presented with the 

first of 48 startle-eliciting white-noise bursts (inter-stimulus interval (ISI) = 30 seconds).  

 

Pre-Conditioning Sustained Fear Test: Rats were placed into the test cage and, after 5 

minutes, presented with the first of 32 startle-eliciting noise bursts (ISI = 30 sec). The first  
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Figure 3.1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Behavioral procedures and timeline 

 Acclimation, a pre-conditioning test, each of 3 conditioning sessions in which clicker 

stimuli (gray) of variable duration were paired with co-terminating footshock (arrows), 

and a post-conditioning test, took place on separate days. With the exception of testing, 

the sustained and phasic fear procedures were identical. For sustained fear testing, startle 

was measured before and then during presentation of an 8-minute clicker stimulus. For 

phasic fear testing, startle was measured in the presence and in the absence, on 

intermixed test trials, of 3.7-second clicker stimuli. Session and event lengths are not 

drawn to scale. For a detailed description, see the Methods section. 
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16 were presented in the absence, and the next 16 in the presence of a 60-Hz clicker 

stimulus.  

 

Pre-Conditioning Phasic Fear Test: Rats were placed into the test cage and, after 5 minutes, 

presented with the first of 75 startle-eliciting noise bursts (ISI = 30 sec). Thirty of the final 

60 were presented 3.2 seconds after onset of a 3.7-sec clicker stimulus and another 30 

(intermixed) were presented in its absence. 

 

Fear Conditioning: On each conditioning day, rats received 8 presentations of variable-

duration clicker stimuli (3-sec, 10-sec, 20-sec, 1-min, 2-min, 4-min, 6-min, and 8-min), 

each co-terminating with footshock. The first CS of each session occurred 5 minutes after 

the rat was placed into the conditioning chamber. The interval between offset of one CS and 

onset of the next was 3 minutes. During the first conditioning session, the clicker stimuli 

were presented in order of increasing duration. During the second and third, they were 

sequenced randomly.  

 

Post-Conditioning Phasic and Sustained Fear Tests: Rats were tested after conditioning, 

using procedures identical to those described for the pre-conditioning tests. 

 

Context Manipulations: During conditioning, a cotton gauze pad wetted with 0.4 ml of 70% 

ethanol solution was placed in front of the test cage. A fluorescent light placed behind the 

cage (150-lux as measured from the middle of the cage) provided constant illumination. 

During testing, to minimize context-potentiated startle, the cage was dark and no explicit 
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olfactory stimuli were introduced. In addition, two 5-cm chains hung from the top of the test 

cage and a sandpaper insert was placed over the floorbars. We have previously found 

similar changes to be effective in producing discriminable contexts (McNish et al., 1997). 

 

Statistical analyses:  

 

Sustained Fear: Each rat tested for sustained fear received a sustained fear-potentiated 

startle score. Because our analysis of the control dataset indicated that the first startle 

response after CS onset was markedly higher than all those that followed, and that 

sustained fear diminished with time, becoming unreliable after approximately the 4th 

minute of CS presentation (see Figure 3.2), we calculated a sustained fear-potentiated 

startle score by dividing mean startle amplitude during the first 4 minutes of the CS 

(beginning with the 2nd CS test trial) by the mean startle amplitude during the last 4 

minutes of the pre-CS period (see Figure 3.2). For presentation purposes, these ratios 

were converted to percent change scores. 

 

Phasic Fear Measure 1: Each rat tested for phasic fear received a phasic fear-potentiated 

startle score, defined as the ratio between the mean startle amplitude of all CS test trials 

and the mean startle amplitude of all intermixed non-CS test trials. For presentation 

purposes, these ratios were converted to percent change scores. 

 

Phasic Fear Measure 2: An additional measure of phasic fear was computed for rats that 

received sustained fear testing. This was defined as the ratio between startle amplitude to  
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Figure 3.2 
 

 

 

 

 

 

 

 

 

Figure 3.2. Trial-by-trial raw startle data during sustained fear tests. The raw startle 

data for all control rats used in these studies are plotted for both the pre- (open circles) 

and post- (filled triangles) conditioning test sessions. Startle responses were evoked every 

30 seconds during the 8 minutes prior to CS onset (trials 1-16) and for the 8 minutes 

during which the CS was presented (trials 17-32). Before conditioning, there was little if 

any effect of the 60-Hz clicker stimulus on startle. After conditioning, potentiation by the 

clicker CS was clearly evident and especially pronounced on the first test trial after CS 

onset (i.e., trial 17), which we consider more akin to phasic than sustained fear. 

Potentiation dropped precipitously from the 1st to the 2nd CS test trial and more gradually 

thereafter, becoming statistically unreliable approximately halfway through the 8-minute 

CS. The percent change scores are based on the ratio (mean startle amplitude across CS 

test trials 18-25 / mean startle amplitude across pre-CS test trials 9-16) for sustained fear, 

and (mean startle amplitude on trial 17 / mean startle amplitude across pre-CS test trials 

9-16) for phasic fear measure 2.  = p < 0.05 (paired t-test)  
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the very first noise burst after CS onset (i.e., on trial 17 which occurred 19.2 seconds after 

CS onset) and the pre-CS baseline (i.e., trials 9-16). 

 

For all measures, ratio rather than absolute difference (i.e., startle in presence of clicker – 

startle in absence of clicker) were used because we have previously found that when fear 

levels remain constant, ratio, but not difference scores remain stable as well (Walker and 

Davis, 2002b).  We also note that our use of startle responses elicited 19.2 seconds or less 

as opposed to 49.2 seconds or more, for phasic and sustained fear respectively, is 

somewhat arbitrary (as would almost certainly be true for any specific time-point), as the 

transition from one to the other is most likely gradual rather than abrupt. Our aim here 

was to have one set of measures which was more phasic and less sustained than the other, 

but we recognize that each may have elements of both. As will be seen from the results 

that follow, the data obtained with these scoring methods generally appear to confirm 

their validity. 

 

Exclusion Criteria: Fear conditioning requires that rats perceive the aversive stimulus. 

Therefore, we excluded from further analysis the data obtained from rats with footshock 

reactions of 1.0 or less (the mean of all rats was 3.5) on 12 or more of the 24 conditioning 

trials. The potentiation data from control rats validated this criterion. Thus, for sustained 

fear, the mean (+ s.e.m.) fear-potentiated startle score of rats exceeding this threshold was 

83.1 + 19.5 % (N=55) versus 11.5 + 16.4 % for those that did not (N=12). For the phasic 

fear experiments, the mean fear-potentiated startle score of shock-responsive rats was 

107.7 + 38.9 (N=21) versus -26 + 23.4 (N=3) for excluded rats.  
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Also, because meaningful ratios cannot be calculated for rats that do not show a baseline 

startle response, the data from rats with a mean accelerometer output of < 0.1 (i.e., what 

we observe when cage output is sampled in non-startled rats) on baseline test trials were 

also excluded. Only two rats failed to meet this criterion. Both had received 

chlordiazepozide prior to sustained fear testing. 

 

Inferential Statistics: The primary analyses were between-group comparisons of fear-

potentiated scores. Because D’Agostino and Pearson omnibus normality tests indicated 

significant deviations from normality for both the sustained (K2 = 51.78) and phasic fear 

(K2 = 45.53) datasets, and because Grubb’s test identified several outliers, between-group 

differences were evaluated using distribution-free (non-parametric) Mann-Whitney or 

Kruskal-Wallis tests and also, to establish statistical robustness, by using t-tests and 

ANOVA on log-transformed scores (see Keene, 1995). Follow-up comparisons were 

made using Dunn’s (non-parametric) or Dunnett’s t-test (parametric) for multiple 

comparisons with a control. Other analyses intended to address specific questions or 

issues are included where relevant. For all tests, the criterion for significance was 0.05 

(two-tailed).  

 

Procedures Specific to Individual Experiments: 

 

Experiment 1: No-Shock Control. Because the sustained fear procedure is new, we 

wished to determine if the clicker-induced startle changes observed in control rats were 
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indeed due to conditioning. To this end, 12 rats underwent the sustained fear procedure 

exactly as described above, but without shock administration during clicker presentations. 

For this and the experiments that follow, testing was performed as described above in the 

Common Behavioral Procedures. 

 

Experiment 2: Acute benzodiazepine effect on phasic fear-potentiated startle. 10 minutes 

prior to the post-conditioning test, rats received an intra-peritoneal (i.p.) injection of 

either saline (N=5), 7.5 mg/kg chlordiazepoxide (N=6) or 10 mg/kg chlordiazepozide 

(N=5), doses based on weight of salt. Chlordiazepozide was obtained from Sigma-

Aldrich Chemical Co. (St. Louis, MO).  

 

For this and all other acute drug administration experiments, rats received the same drug 

and dose prior to the pre-conditioning test which allowed us to evaluate drug effects on 

unconditioned startle amplitude. The sole exception was rats that received 7.5 mg/kg 

chlordiazepoxide prior to the post-conditioning test but 2.5 mg/kg prior to the pre-

conditioning test (we had anticipated using 2.5 mg/kg prior to both, but increased to the 

higher dose based on the initial potentiation data from rats that received 10 mg/kg 

chlordiazepoxide).  

 

For all experiments, drugs were administered at 0.1 ml saline/100 g body weight. 

 

Experiment 3: Acute benzodiazepine effects on sustained fear-potentiated startle. 10 

minutes prior to the pre- and post-conditioning tests, rats received an intra-peritoneal 
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(i.p.) injection of saline (N=12) or chlordiazepoxide (N=11; 10 mg/kg).  

 

Experiment 4: Acute buspirone and fluoxetine effects on phasic fear-potentiated startle. 

10 minutes prior to the pre- and post-conditioning tests, rats received a subcutaneous 

(s.c.) injection of buspirone (N=7; 5 mg/kg; Sigma-Aldrich Chemical Co.), an i.p. 

injection of fluoxetine (N=16; 10 mg/kg; Spectrum Chemical, Gardena, CA, USA) or 

saline (N=6, i.p.; N=7, s.c.). All doses based on weight of salt. 

 

Experiment 5: Acute buspirone and fluoxetine effects on sustained fear-potentiated 

startle. 10 minutes prior to the pre- and post-conditioning tests, rats received buspirone 

(N=13; 5 mg/kg s.c.), fluoxetine (N=22; 10 mg/kg, i.p.), or saline (N=13, i.p.; N=12, s.c.). 

All doses based on weight of salt. 

 

Experiment 6:  Chronic fluoxetine effects on phasic fear-potentiated startle. Rats received 

the first of 21 treatments of either saline (N=8) or fluoxetine (N=7; 10 mg/kg) by oral 

gavage approximately 3 hrs after the final conditioning session and for each of the 

following 20 days.  The post-conditioning test was conducted approximately 24 hr after 

the final injection.  

 

Experiment 7:  Chronic fluoxetine effects on sustained fear-potentiated startle. Rats 

received the first of 21 treatments of saline (N=18) or fluoxetine (N=20; 10 mg/kg) by 

oral gavage approximately 3 hrs after the final conditioning session and for each of the 

following 20 days.  The post-conditioning test was conducted approximately 24 hr after 
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the final injection.  

 

Results: 

 

Sustained fear in control animals. Before presenting results from the individual 

experiments, I first provide a descriptive account of sustained fear in control rats. Figure 

3.2 illustrates the trial-by-trial data pooled from all control rats used in the sustained fear 

experiments. As shown in this figure, startle amplitude mostly habituated to a stable 

baseline within the first few trials of the pre-CS conditioning phase and remained 

relatively stable thereafter. Introduction of the clicker stimulus, between trials 16 and 17, 

had little if any effect on startle prior to conditioning (open circles), but caused a marked 

enhancement of startle after conditioning (filled triangles).  This enhancement was 

especially pronounced on the first trial after CS onset (trial 17), which we have scored 

independently as an ancillary measure of phasic fear (i.e., phasic fear measure 2). By the 

5th minute after CS onset, potentiation began to wane and was no longer statistically 

reliable.  

 

Figure 3.2 also shows a modest increase in pre-CS startle amplitude from the pre- to post-

conditioning test (i.e., compare open circles to filled triangles on left side of Figure 3.2). 

Although significant overall (ANOVA on the first 16 trials that preceded CS onset 

indicated a main effect of Session (i.e., pre- versus post-conditioning), F(1, 51)=8.54, p < 

0.05, the increase was only observed in rats from Experiment 7 – i.e., the group that had a 

25-day delay interposed between the two tests (see also Table 3.1). As such, we believe  
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this increase most likely reflects weight gain or something associated with the daily 

gavage procedure, as opposed, for example, to a generalized context fear response.    

 

The figures that follow show percent change (i.e., from non-CS or pre-CS test trials to CS 

test trials) scores only. The absolute startle amplitudes from which these change scores 

are derived are provided in Table 3.1.  

 

Experiment 1: Clicker-induced startle changes require conditioning. During testing, rats 

that did not receive clicker-shock pairings did not show either phasic or sustained startle 

potentiation (see Table 3.1).  

 

Experiment 2: Pre-test chlordiazepoxide did not disrupt phasic startle potentiation. Phasic 

fear-potentiation was not reduced, but was nominally (although not significantly) greater 

in the chlordiazepozide compared to saline groups (Figure 3.3) based on ANOVA. 

Baseline startle was reduced however, as indicated by a significant Group effect, F(2, 13) 

= 4.40. A Dunnett’s t-test indicated a significant baseline difference between the vehicle 

and 10 mg/kg group, q(9) = 2.95, but not between the 0 and 7.5 mg/kg group (see also 

Table 3.1). 

 

Experiment 3: Pre-test chlordiazepoxide blocked the sustained but not initial 

componentof startle potentiation. As shown in Figure 3.4 (and see also Table 3.1), acute 

pre-test chlordiazepoxide administration blocked startle potentiation to the long-duration 

clicker CS. The disruption was statistically robust, being detected by parametric,  
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Figure 3.3 

 
 

 
 
 
Figure 3.3. Acute chlordiazepoxide effects on phasic startle potentiation  

Pre-test chlordiazepoxide did not disrupt phasic startle potentiation to 3.7-sec clicker 

stimuli.  
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   Figure 3.4 

 
 
 

 
 
 
 
 
Figure 3.4. Acute chlordiazepoxide effects on sustained startle potentiation  

Pre-test chlordiazepoxide (10 mg/kg, i.p.) blocked sustained startle potentiation, but not 

the initial potentiation to the first startle stimulus after CS onset. * = p < 0.05 vs saline 
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t(21) = 3.15, as well as non-parametric, U=23, analyses. When limited to the first startle 

response after CS onset (phasic fear measure 2), a between-group difference was not 

found using either analysis, consistent with the lack of effect on explicitly trained phasic 

fear in Experiment 2. There were no between-group differences in baseline startle.  

 

Experiment 4: Pre-test buspirone but not fluoxetine (single injection) blocked phasic 

startle potentiation. ANOVA on the log-transformed scores indicated a significant 

Treatment effect, F(2, 33) = 4.25, which was due to the difference between the saline and 

buspirone groups, q(18) = 2.87 (Dunnett’s t-test). Non-parametric analyses yielded 

essentially the same results. Thus, a Kruskal-Wallis comparison also indicated significant 

between-group differences, H=7.74, with Dunn’s multiple comparison test indicating a 

significant difference between the saline and buspirone groups (rank sum difference = 

13.21), but not between the saline and acute fluoxetine groups. These results are shown in 

Figure 3.5. ANOVA also indicated a significant Group effect on baseline startle, F(2, 33) 

= 4.80. Dunnett’s t-test indicated a significant difference between the saline and 

buspirone groups, q(18) = 3.09, but not between the saline and fluoxetine groups (see 

Table 3.1). 

 

Experiment 5: Neither buspirone nor acute fluoxetine blocked sustained startle 

potentiation. These results are shown in Figure 3.6 (and see also Table 3.1). As in the 

preceding experiment, phasic potentiation was markedly lower in the buspirone 

compared to saline groups (i.e., using the first startle response after CS onset as a  
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Figure 3.5 

 
 

 
 

 

Figure 3.5. Acute buspirone and acute fluoxetine effects on phasic startle 

potentiation  

Pre-test buspirone (5 mg/kg, s.c.), but not fluoxetine (10 mg/kg, i.p.), disrupted startle 

potentiation to 3.7-second clicker presentations. High variance in the saline group, and 

the modest difference versus the fluoxetine group, was largely attributable to a single 

outlier with a fear-potentiated startle score of 826%. Without this rat, the mean (± s.e.m.) 

for the saline group was 71.8 ± 12.9. * = p < 0.05 vs saline (with outlier included). 
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Figure 3.6 

 
 
 

 
 
Figure 3.6. Acute buspirone and acute fluoxetine effects on sustained startle 

potentiation  

Neither buspirone nor fluoxetine (single injection) disrupted sustained startle 

potentiation. The lower level of phasic potentiation in the buspirone compared to saline 

group was roughly comparable to that seen in Experiment 4, but did not reach 

significance in this experiment when corrected for multiple comparisons.  
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supplemental phasic fear measure) – in this case, 47 + 34% vs. 152 + 35%, respectively – 

but this was not statistically significant using either ANOVA or Kruskal-Wallis analyses. 

The between-group difference with respect to baseline startle was also comparable to the 

preceding experiment and this was significant, F(2, 57) = 4.91. As before, this was due to 

a higher baseline in the buspirone group compared to saline group, q(18) = 2.47, 

Dunnett’s t-test, which we have found previously (Kehne et al., 1988). 

 

Experiment 6:  Chronic fluoxetine does not affect startle potentiation to phasically 

presented fear stimuli. Neither Mann-Whitney nor t-test analyses indicated significant 

between-group differences (p > 0.05 for both). Baseline startle was similarly unaffected. 

These results are shown in Figure 3.7 (and see also Table 3.1). 

 

Experiment 7: Chronic fluoxetine disrupts startle potentiation to a sustained fear stimulus. 

As shown in Figure 3.8 and confirmed statistically by an independent-samples t-test on 

the log transformed scores, t(36)=2.69, as well as Mann-Whitney analysis of percent 

change scores (U=99), chronic fluoxetine significantly disrupted startle potentiation to 

the sustained fear stimulus. Fluoxetine also significantly reduced fear-potentiated startle 

to the first startle stimulus after CS onset (phasic fear measure 2), t(36)=1.71 and U=125, 

which was not predicted based on results from Experiment 6.  Baseline startle was 

significantly greater in the fluoxetine group, t(36) = 2.27 
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Figure 3.7 
 
 
 

 
 
 
 
Figure 3.7. Chronic fluoxetine effects on phasic startle potentiation  

Chronic fluoxetine (10 mg/kg, p.o., for 21 days beginning approximately 3 hours after the 

final conditioning session) did not significantly affect startle amplitude increases to 

phasically-presented fear stimuli  
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Figure 3.8 

 
 
 
     

 
 

 
 
Figure 3.8. Chronic fluoxetine effects on sustained startle potentiation  

Chronic fluoxetine (10 mg/kg, p.o., for 21 days beginning approximately 3 hours after the 

final conditioning session) blocked the sustained increase in startle and significantly 

attenuated the phasic increase (i.e., the first startle probe after CS onset). * = p < 0.05 vs 

saline 
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Discussion:  

 

I evaluated the effects on phasic and sustained startle potentiation of several 

pharmacological treatments that either are or are not clinically effective for anxiety 

reduction. Phasic and sustained startle potentiation responded differently, and in opposite 

directions to several of these treatments, lending support to the validity of the distinction. 

Moreover, the specific pattern of results suggested that sustained startle potentiation may 

have greater predictive validity, and might therefore be more useful as an animal model 

of clinical anxiety, than phasic startle potentiation (see Table 3.2 for a complete summary 

of findings). The results obtained with each compound are discussed in turn below.  

 

Benzodiazepines allosterically modulate GABAA receptors to increase the GABA 

conductance of this inhibitory channel. For many years, benzodiazepines have been the 

drug of choice for anxiety reduction, being partly supplanted more recently by 

monoamine reuptake inhibitors because of the greater potential for dependency and abuse 

with benzodiazepines. It is perhaps surprising then that the effect of benzodiazepines on 

phasic startle potentiation has been inconsistent, at least in humans, with positive (Bitsios 

et al., 1999; Graham et al., 2005; Patrick et al., 1996; Riba et al., 2001) as well as 

negative (Baas et al., 2002; Grillon et al., 2006; Scaife et al., 2005) results being reported, 

and suggestions that the positive effects that have been reported were secondary to 

sedative effects (Baas et al., 2002) – a problem which  
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Table 3.2 

 

 

Table 3.2. Pharmacological dissociation of phasic vs sustained fear 

Sustained fear appears to have greater predictive validity, and might therefore be more 

useful as an animal model of clinical anxiety than phasic fear. 
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may be especially pronounced when using absolute difference scores (i.e., from trials 

without to those with the fear stimulus) rather than percent change scores (Grillon and 

Baas, 2002; Walker and Davis, 2002b).  

 

Using percent change scores, we found that the benzodiazepine chlordiazepoxide did 

block sustained startle potentiation, but at the same dose (10 mg/kg) did not significantly 

influence phasic startle potentiation using either a standard test for phasic startle 

potentiation (Experiment 2), or the first trial of sustained fear testing as an alternative 

measure (Experiment 3). It is possible of course that a higher dose might have been 

effective. Doses above 10 mg/kg are generally avoided however due to the emergence of 

‘non-specific’ behavioral effects. In fact, even at 10 mg/kg, baseline startle was reduced 

by approximately 50% in Experiment 2, which makes the preservation of phasic startle 

potentiation all the more remarkable. We do not believe that phasic startle potentiation is 

immune to benzodiazepine administration. Indeed, our lab, using a different protocol for 

phasic fear training (2 days of training with 10 pairings of a 3.7-sec light and co-

terminating footshock per day), has previously observed such effects (Davis, 1979; 

Walker and Davis, 2002a). However, the current results, in which phasic and sustained 

startle potentiation data were measured after identical training and, in Experiment 3, in 

the same rats in the same test session in response to the same CS, seem especially 

compelling in demonstrating a differential sensitivity. Indirect evidence for a greater 

sensitivity can be found in several other studies. For example, (Guscott et al., (2000) 

reported a statistically significant disruption of fear-potentiated startle to a 3.7-sec CS by 

10 but not 3 mg/kg chlordiazepoxide in rats trained and tested in different contexts, but 



     80 

significant effects on potentiated startle to the training context itself (sustained fear) at 

doses as low as 1 mg/kg (i.e., 10-fold difference). In humans, Grillon et al, (2006) 

reported that startle potentiation to an 8-sec CS were not affected by the benzodiazepine 

alprazolam, whereas startle potentiation to the experimental context during the same test 

session were significantly reduced.  

 

It is possible that phasic startle potentiation are simply more robust than sustained startle 

potentiation, and therefore less sensitive to disruption by any means (i.e., a quantitative 

rather than qualitative difference). However, this explanation would not account for the 

opposite pattern of results (i.e., a disruption of phasic but not sustained fear) that we 

observed for buspirone, which we turn to next.  

 

Buspirone, known primarily as a 5HT1A partial agonist and dopamine D2 antagonist, 

potently disrupts phasic startle potentiation in rats when administered shortly before 

testing (Kehne et al., 1988; Mansbach and Geyer, 1988). In humans however, acute 

administration is not anxiolytic, and in a non-human primate model, does not reduce 

phasic fear (Winslow et al., 2007). For clinical anxiolysis, chronic administration is 

required (Goa and Ward, 1986; Goodman, 2004; Jacobson et al., 1985), suggesting that 

the mechanism of action for effects on phasic startle potentiation in rats (which may not 

involve serotonin - (Davis et al., 1988)) and for clinical efficacy in humans may be 

different. In Experiment 4, we replicated the frequently reported effect observed in rats 

and, in Experiment 5, observed a quantitatively similar difference. In both experiments, 

an effect on baseline startle was also observed. These baseline effects frequently 
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accompany (Mansbach and Geyer, 1988; Walker and Davis, 1997a) but are not required 

(Kehne et al., 1988; Melia and Davis, 1991) for buspirone effects on phasic fear.  

 

In contrast, we saw no evidence for a disruption of sustained fear by buspirone 

(Experiment 5). As always, it is conceivable that a higher dose might have been effective. 

However, we previously found that doses as low as 1.25 mg/kg (versus the 5 mg/kg used 

here) markedly disrupt phasic startle potentiation and that doses half that used here 

completely abolish the effect (Kehne et al, 1988). Note also that the effect on baseline 

startle provides a positive control for drug activity. Thus, we believe it unlikely that the 

failure to disrupt sustained startle potentiation was due to insufficient dosing. Instead, the 

effect of acute buspirone on sustained startle potentiation appears to reflect more 

accurately the effect of acute buspirone on clinical anxiety (no effect), than the effect of 

acute buspirone on phasic startle potentiation.  

 

I should note that buspirone does disrupt light-enhanced startle, which is also a sustained 

increase in startle, albeit to an unconditioned stimulus (Walker and Davis, 1997a; Walker 

and Davis, 1997b). Assuming that light-enhanced startle reflects anxiety, which we do, 

the results from that and the present study suggest there may be more than one type of 

sustained fear (perhaps, for example, conditioned versus unconditioned) with different 

neural substrates or sensitivity to anxiolytic compounds.  

 

Fluoxetine, a commonly used SSRI, inhibits the reuptake of the monoamine 

neurotransmitter, 5-HT into the presynpatic cell, thereby increasing the amount of 
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extracellular 5-HT available to act at pre- and post-synaptic 5-HT receptors. As 

previously mentioned, chronic monoamine reuptake inhibitors have largely supplanted 

the use of benzodiazepines for anxiety reduction. Here, we evaluated the effect of acute 

and also chronic fluoxetine on phasic as well as sustained startle potentiation. Acute 

fluoxetine, which does not reduce anxiety in humans, had no effect on phasic or sustained 

startle potentiation. In marked contrast, chronic fluoxetine did block sustained increases, 

but failed to consistently block phasic. As indicated in Table 3.1, chronic fluoxetine also 

increased baseline startle responses in Experiment 7 and, to a lesser degree, in 

Experiment 6. These increases on baseline startle amplitude might be a result of actions 

in the spinal cord. Previous studies indicate that intrathecal administration of serotonin 

and other serotonin agonists increases startle amplitude, most likely by activating 5-HT1A 

receptors on spinal motor neurons (Commissaris and Davis, 1982; Davis et al., 1980a; 

Davis et al., 1980b). It is possible that fluoxetine is increasing startle through a similar 

mechanism in the present study. Whatever the mechanism, we considered the possibility 

that these baseline increases could have occluded further fear-induced increases, without 

affecting fear itself. However, for several reasons, we do not believe this likely. First, the 

same rats did show potentiation to the first startle probe after CS onset (phasic fear) 

indicating that startle was not at a ceiling and that further increases were indeed possible. 

Moreover, we have found in other experiments that phasic startle potentiation are 

unaffected by much larger baseline elevations brought about by i.c.v. CRF infusions or 

systemic strychnine injections (Walker and Davis, 2002b). Finally, we found no evidence 

of a correlation between the effect on baseline startle and the effect on startle 

potentiation. For these analyses, and in keeping with the other analyses reported herein, 
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we again used parametric (Pearson’s) as well as non-parametric (Spearman’s) techniques 

to correlate the baseline increase (expressed as the ratio between the post-conditioning 

pre-CS baseline and the pre-conditioning pre-CS baseline, or the log transformation of 

that ratio) with our ratio and log-transformed measures of sustained fear. Neither analysis 

(conducted on data from fluoxetine-treated rats only) found evidence for a relationship 

between these variables (Spearman’s r = -0.113, p = 0.64; Pearson’s r = -0.11, p = 0.65). 

Overall then, we are confident that the abolition of sustained startle potentiation in 

Experiment 7 was not an artifact of the baseline startle increase.  

 

As previously noted, the effect of chronic fluoxetine on sustained startle potentiation was in 

contrast to the effect on phasic startle potentiation, which were more variable. Based on the 

explicit test of phasic fear (Experiment 6), in which startle was elicited 3.2 seconds after CS 

onset, there was no disruption at all. However, when startle was elicited 19 seconds after CS 

onset (i.e., to the first probe after onset of the sustained fear stimulus in Experiment 7), startle 

was significantly reduced but not abolished (as was the more sustained component of 

potentiation in these same rats).  

 

Disruptions of sustained fear (i.e., to context CSs) by chronic (Li et al., 2001) or sub-chronic 

(Santos et al., 2006) SSRI administration have previously been reported. In one study (Burghardt 

et al., 2004), chronic administration of the SSRI citalopram beginning prior to training also 

disrupted freezing to a relatively short 20-second fear stimulus. Because freezing is generally 

found to persist well beyond CS offset, even when elicited by phasically-presented fear stimuli 

(Quinn et al., 2002), it is likely that the fear response in that study was more sustained than 
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phasic. In humans, Grillon and colleagues (2009a) found that chronic citalopram administration 

had no effect on startle potentiation to an 8-sec fear stimulus, but did reduce the startle 

potentiation that occurred between stimulus presentations (a more sustained increase which may 

have reflected context fear). Thus, those results may reflect the same underlying time-dependent 

dissociation that we have observed in rats. 

 

In interpreting the pattern of results observed across our experiments, it is perhaps 

relevant that phasic fear potentiation is, in most cases, the stronger response. This could 

reflect the fact that, during conditioning, a greater number of shocks were experienced by 

the rats during the early part of the 8-min CS. For example, using these training 

procedures for sustained fear, half of all footshocks occurred during the first minute of 

CS presentation (i.e., at 3, 10, 20, and 60 seconds after CS onset). In developing this 

paradigm, we explored a number of different conditioning protocols, including one in 

which the ordering of shocks was reversed (i.e., a mirror image of the shock schedule 

used here in which shock density was greater towards the end of the CS). Invariably 

however, we find that startle potentiation immediately following the CS onset is greater 

than potentiation at later times after CS onset.  

 

In any case, and as noted earlier, the greater magnitude of phasic compared to sustained 

startle potentiation does allow for the possibility that chlordiazepozide and chronic 

fluoxetine disrupted sustained but not phasic potentiation simply because sustained startle 

potentiation was the weaker of the two responses. This makes the results obtained with 

buspirone – which disrupted the stronger phasic response and not the weaker sustained 
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response – all the more important and highly suggestive of the possibility that phasic and 

sustained fear are fundamentally, not just quantitatively, different.  

 

To our knowledge, these are the first explicit comparisons of drug effects on short- versus 

longer duration fear responses. Based on the compounds tested here, the results suggest 

that sustained fear paradigms may have greater predictive validity, and that the sustained 

fear itself may be more homologous to at least some types of clinical anxiety than phasic 

fear. In this regard, other findings by Grillon and colleagues are also relevant. In 

particular, they observed that startle potentiation to short-duration stimuli that have been 

paired with shock are no greater in post-traumatic stress (Grillon et al., 2009b) and panic 

disorder patients (Grillon et al., 2008) than in healthy controls, but that the startle 

responses that occur between stimulus presentations, which as noted earlier may reflect a 

more sustained type of anxiety to the less-predictive threat context, are greater (c.f., 

Davis et al., 2010). These results lend support to the view that drugs that reduce sustained 

startle potentiation may be more clinically efficacious than those that preferentially 

reduce phasic startle potentiation. 

 

The search for such compounds (i.e., drugs that reduce sustained startle potentiation) may 

be aided by evidence that sustained fear, including fear responses to static contexts, is 

especially dependent on the BNST (e.g., Hammack et al., 2004; Sullivan et al., 2004; 

Waddell et al., 2006; Walker and Davis, 1997b) whereas phasic fear responses are more 

dependent on the medial division of the CeA (c.f., Walker et al., 2009b).  Evidence 

supporting this view is derived primarily from lesion and inactivation studies, but is 
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consistent with the results of unit recording and imaging studies in rats (Quirk et al., 

1995) and humans (Phelps et al., 2001) which have indicated only a transient activation 

of the amygdala by threat stimuli, but perhaps a more sustained activation of the BNST, 

the latter which may be exaggerated in subjects with high trait anxiety (Somerville et al., 

2010). Perhaps also relevant are recent results from Klumpers et al., (2010) who reported 

a significant time-dependent correlation between amygdala activation and startle 

potentiation in healthy humans. 

 

One notable feature of the BNST as well as the lateral CeA (which projects to the BNST) 

is the abundance of so many different neuropeptide-positive cells and terminals (Arluison 

et al., 1994; Cassell et al., 1986; Gray and Magnuson, 1992; Ju et al., 1989; Roberts et al., 

1982; Shimada et al., 1989; Walter et al., 1991; Woodhams et al., 1983) which are not 

found in the medial CeA.  Because peptides often act for long periods of time, as we have 

found from local BNST infusions of either CRF (Liang et al., 1992) or CGRP (Sink et al., 

2011), we believe that accelerated development of small molecule ligands for these 

receptors, and their evaluation in anxiety models such as the one used here, may be a 

prudent strategy for the development of new anxiolytic compounds with novel 

mechanisms of action. We have found, for example, that oral administration of the non-

peptide CRF-R1 antagonist GSK876008 disrupts sustained but not phasic startle 

potentiation to conditioned fear stimuli (Walker et al., 2009a; Walker et al., 2009b), and 

also startle potentiation evoked directly by calcitonin gene-related peptide (CGRP) 

infusions into the BNST (Sink et al., 2011) and unpublished observations), where 

receptors for both peptides are abundant (Chalmers et al., 1995; Christopoulos et al., 
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1995; Kruger et al., 1988; Skofitsch and Jacobowitz, 1985).  We have also found that 

intra-BNST CGRP infusions increase anxiety measures in the plus maze, and that intra-

BNST infusions of a CGRP antagonist decrease sustained startle potentiation produced 

by the predator odor 2,5-dihydro-2,4,5-trimethylthiazoline (Sink et al., 2011). 

 

It is also noteworthy that the BNST expresses several types of serotonin receptors, is 

densely innervated by serotonergic afferents (Freedman and Shi, 2001; Hammack et al., 

2009) that in many cases project to CRF-positive BNST neurons (Phelix et al., 1992b), 

and is especially enriched in serotonin transporters (Smith et al., 1999). These findings 

suggest that the BNST may be one site of action for SSRI-mediated anxiolysis. The 

recent observation that anxious temperament in monkeys is correlated with serotonin 

transporter availability in the BNST is consistent with this view (Oler et al., 2009). 
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Chapter 4 

The Role of Serotonin (within the Bed Nucleus of the Stria Terminalis)  
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Abstract: 

 

The monoamine neurotransmitter, serotonin (5-HT) has been identified as an active 

modulator of emotional states. Altered levels and functioning of 5-HT are hallmarks of 

certain mood disorders (e.g., depression, anxiety). Some of the most commonly used 

medications to treat anxiety disorders are selective serotonin reuptake inhibitors (SSRI). 

Chronic SSRI treatment modulates levels of serotonin within the brain and produces an 

anxiolytic effect, but the literature remains unclear on 5-HT’s mechanisms of action 

within specific anxiety-related circuits.  

 

Previous studies in our laboratory have used a sustained fear behavioral paradigm (with 

which to elicit anxiety-like responses to a long-duration conditioned stimulus) to show 

that chronic, but not acute, administration of a SSRI (fluoxetine) reliably blocked the 

expression of anxiety-like responses, mimicking clinical observations (Miles et al., 2011). 

The BNST, a forebrain structure found to be necessary in mediating anxiety-like 

responses, has dense innervation by 5-HT neurons, expresses multiple 5-HT receptor 

subtypes, and is rich in 5-HT transporters, the site of action of SSRI’s. Thus, its 

physiological properties make the BNST an ideal structural candidate in which to explore 

serotonin’s role in anxiety-like responses. 

 

The goal of this chapter is to determine if systemic fluoxetine mediates its anxiolytic 

effect through actions within the BNST structure.  We trained rats using our sustained 

fear paradigm, then chronically (21 days) administered either saline or fluoxetine, and 
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then tested 48hrs after a localized BNST 5,7-Dihydroxytryptamine (5,7-DHT)-induced 

serotonergic lesion (or vehicle infusion) for the expression of anxiety-like responses.  The 

results suggest that localized serotonergic lesions within the BNST attenuate the 

anxioytic effect produced by chronic fluoxtine administration. However, localized 

serotonergic lesions in conjunction with chronic saline administration produced variable 

behavioral results. Overall the findings suggest that 5-HT within the BNST may be 

involved in the ability of chronic fluoxetine to reduce sustained fear and, by extension, its 

ability to reduce anxiety clinically.  
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Introduction:  

 

Anxiety disorders are a major public health concern, affecting more than 30 million 

Americans annually, making it one of the nation’s most common mental health disorders 

(DuPont et al., 1996).  Anxiety is characterized as a complex emotional state, associated 

with sustained autonomic, endocrine, and behavioral changes in arousal (Barlow, 2002; 

Grillon, 2008). Many of the physiological symptoms of anxiety (e.g., impulsivity, 

changes in cardiovascular/respiratory activity, irritability/mood, sleep dysregulation) are 

all central nervous system functions modulated by the neurotransmitter, serotonin (5-HT) 

(Hariri and Holmes, 2006; Ravindran and Stein, 2009). 5-HT is a widely distributed 

monoamine (Parent et al., 1981) that is synthesized from the amino acid, L-Tryptophan. 

Presentations of aversive stimuli lead to an immediate change in extracellular 5-HT levels 

and metabolism (Chaouloff, 1993; Inoue et al., 1993; Shimizu et al., 1992; Tao and 

Auerbach, 1995), suggesting that 5-HT is a key component in the stress response. 

Therefore it is not surprising that many effective anxiolytics treatments are those that 

modulate the body’s serotonergic system. There is a large body of literature suggesting a 

modulatory role of 5-HT in physiological and behavioral systems. However, these studies 

have shown that while the neurobiological role of 5-HT is important, it is also extremely 

complex, often producing different neuronal effects depending on target brain area and 

method of testing. Thus, more investigations are necessary to clarify the role of 5-HT 

within specific anxiety-related circuits.  
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Serotonergic neurons originate from within the raphe nuclei of the brainstem. The dorsal 

region of the raphe nucleus (DRN) is the region that most prominently projects to 

structures known to be active in aversive emotional states (e.g., the lateral septum, 

hippocampus, amygdala, BNST) (Commons et al., 2003; Geyer et al., 1976; Jacobs and 

Azmitia, 1992; Parent et al., 1981; Phelix et al., 1992a). In vivo microdialysis studies 

have shown that modulation of 5-HT levels within the DRN alters the extracellular 

concentrations of 5-HT in terminal regions (Adell and Artigas, 1991), suggesting that 

release of 5-HT into these terminal regions are flexible and thus well equipped for 

mediating the dynamic changes in 5-HT after stress.  Investigation of terminal areas rich 

in serotonin could thus provide insight on the localized mechanisms driving anxiety. 

 

One such terminal region is the bed nucleus of the stria terminalis (BNST), a limbic 

forebrain structure that has been found to be key in mediating anxiety-like responses in 

human (Somerville et al., 2010; Straube et al., 2007) and non-human animal subjects 

(e.g., Commons et al., 2003; Hammack et al., 2004; Kalin et al., 2005; Phelix et al., 

1992a; Resstel et al., 2008; Singewald et al., 2003; Somerville et al., 2010; Straube et al., 

2007; Sullivan et al., 2004; Waddell et al., 2006; Walker et al., 2009b).  The BNST not 

only receives dense innervation by serotonergic afferents, but also expresses multiple 5-

HT receptor subtypes (Commons et al., 2003; Cornea-Hebert et al., 1999; Hammack et 

al., 2009; Heidmann et al., 1998; Kia et al., 1996; Mengod et al., 1990; Phelix et al., 

1992a; Waeber et al., 1994; Wright et al., 1995). Immunohistochemical studies have 

shown that afferent fibers rich in 5-HTT target the anterolateral BNST and have terminals 

that surround the soma of corticotropin-releasing factor (CRF) containing neurons within 
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the BNST (Commons et al., 2003; Hammack et al., 2009; Phelix et al., 1992b). These 

findings suggest that 5-HT could play an important modulatory role within the BNST. 

 

The question then arises, what is the contribution of 5-HT within the BNST on the 

expression of anxiety-like responses? Previous studies in our laboratory have used a 

sustained fear conditioning paradigm to reliably produce sustained (minutes) fear 

responses to a 60-Hz clicker conditioned stimulus (CS). The sustained fear responses 

produced by earlier versions of this paradigm have shown to be mediated by the BNST 

and have proven to have greater predictive clinical validity (and therefore may be a more 

useful animal model of anxiety) than other types of fear paradigms (Davis et al., 2010; 

Walker et al., 2009b). As mentioned above, using this sustained fear paradigm we have 

shown that chronic, but not acute, administration of the SSRI, fluoxetine, reliably blocked 

sustained fear (Miles et al., 2011). The aim of this study was to determine if the 

anxiolytic effect of chronic fluoxetine would be altered by depletion of 5-HT in the 

BNST. Rats were trained using our sustained fear paradigm, chronically (21 days) treated 

with either saline or fluoxetine, and then tested 48 hrs after a localized bilateral BNST 

5,7-DHT-induced serotonergic lesion (or vehicle infusion) for the expression of anxiety-

like responses. 

 
 
Materials and Methods: 

 

Animals: 
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Male Sprague-Dawley rats (200–250 g at arrival; Charles River, Raleigh, NC) were 

housed 4/cage on a 12-hr light-dark cycle in a temperature- and humidity-controlled room 

with food and water freely available.  Behavioral procedures began approximately one 

week after arrival, and were conducted in accordance with USDA, NIH, and Emory 

University guidelines. 

 

Drugs and Drug Administration: 
 

Fluoxetine (Spectrum Chemical, Gardena, CA, USA) and desipramine hydrochloride 

(Sigma-Aldrich Chemical Co., St. Louis, MO, USA) were dissolved in physiological 

saline and delivered in a volume of 0.1 ml/100 g body weight via oral gavage or intra-

peritoneal (i.p.) injection (respectively). 5,7-Dihydroxytryptamine creatine sulfate (5,7-

DHT) was dissolved in distilled water containing 0.02% ascorbic acid, kept on ice, and 

was protected from light until BNST infusion. Despiramine hydrochloride is a 

norepinephrine reuptake inhibitor used to protect noradrenergic neurons from the toxic 

non-specific effects of 5,7-DHT (Bjorklund et al., 1975). 

 

Apparatus: 

 

Rats were trained and tested in 8 x 15 x 15-cm Plexiglas and wire mesh cages with four 

6.0-mm diameter stainless steel floorbars, located within a sound-attenuated behavior 

chamber. Startle responses were evoked by 50-ms (95 dB) white-noise bursts generated 

by a computer sound file, amplified by a Radio Shack amplifier (Tandy, Fort Worth, TX, 

USA), and delivered through Radio Shack Supertweeter speakers located in front of the 
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cage. The same speakers delivered background noise (60 dB, 1-20 kHz) provided by an 

ACO Pacific, Inc. (Belmont, CA, USA) noise generator. All sound level measurements 

were made from the center of the cage.  

 

Startle amplitude and shock reactivity were quantified using a PCB Piezotronics (Depew, 

NY, USA) accelerometer affixed to the bottom of the cage. The accelerometer produces a 

voltage output proportional to the velocity of cage movement (e.g., produced by the rats’ 

startle response), which is integrated by a PCB Piezotronics signal conditioner and 

digitized by a GW Instruments (Somerville, MA, USA) InstruNet device.  Startle 

amplitude was defined as the maximum peak-to-peak voltage during the first 200 ms 

after each noise burst. Shock responses were similarly quantified, using a 500-ms 

window concurrent with shock delivery. 

 

The conditioned stimulus (CS) used was either a 60-Hz clicker stimulus delivered 

through speakers located behind each chamber. The unconditioned stimulus was a 0.35 

mA footshock delivered through the floor bars. The sequencing of all stimuli was 

controlled by a desktop computer using custom-designed software (The Experimenter; 

Glass Bead Software, New Haven, CT, USA). 

 

Behavioral Procedures:  

 

Experimental Sequence: Rats received two acclimation sessions followed by a pre-

conditioning test for sustained fear, followed by conditioning sessions, followed 21 days 
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later by a post-conditioning test. These procedures are described below, and presented 

graphically in Figure 4.1. 

 

Acclimation: Rats were placed into the test cage and, after 5 minutes, presented with the 

first of 48 startle-eliciting white-noise bursts (inter-stimulus interval (ISI) = 30 seconds).  

 

Pre-Conditioning Sustained Fear Test: Rats were placed into the test cage and, after 5 

minutes, presented with the first of 32 startle-eliciting noise bursts (ISI = 30 sec). The first 

16 were presented in the absence, and the next 16 in the presence of the CS.  

 

Fear Conditioning: On each conditioning day, rats received 8 presentations of variable-

duration clicker stimuli (3-sec, 10-sec, 20-sec, 1-min, 2-min, 4-min, 6-min, and 8-min), 

each co-terminating with footshock. The first CS of each session occurred 5 minutes after 

the rat was placed into the conditioning chamber. The interval between offset of one CS and 

onset of the next was 3 minutes. During the first conditioning session, the clicker stimuli 

were presented in order of increasing duration. During the second and third, they were 

sequenced randomly.  

 

Rats received the first of 21 treatments of either saline (N=33) or fluoxetine (N=21; 10 

mg/kg) by oral gavage approximately 3 hours after the final conditioning session and for 

each of the following 20 days. 
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 Figure 4.1  
 
 

 
 
 
Figure 4.1. Behavioral procedures and timeline.  

Acclimation, a pre-conditioning test, each of 3 conditioning sessions in which clicker 

stimuli (gray) of variable duration were paired with co-terminating footshock (arrows), 

and a post-conditioning test, took place on separate days. With the exception of testing, 

the sustained and phasic fear procedures were identical. For sustained fear testing, startle 

was measured before and then during presentation of an 8-minute clicker stimulus. For a 

detailed description, see the Methods section. 
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Surgery:  On day 19 of chronic saline or fluoxetine treatment, animals were pre-treated with 

despiramine (25 mg/kg, i.p.) approximately 45 minutes before administration of 5,7-DHT 

(2mg, calculated as the free base). Rats were anesthetized with 75 mg/kg (i.p.) ketamine 

(Bioniche Pharma), 0.5 mg/kg (i.p.) Dexdomitor (Orion Pharma), and given an analgesic 

dose of 1.0 mg/kg (s.c.) meloxicam (Boehringer Ingelheim) to reduce postoperative 

discomfort rats. Once unresponsive to tail pinch, rats were placed in a Kopf Instruments 

stereotaxic frame with the nosebar set to –3.8 mm (flat-skull position). Gauge-23 cannulas 

were inserted bilaterally (20° coronal angle—to avoid the lateral ventricle, 0.3 mm caudal, 

5.8 mm ventral, and 3.8 mm lateral to bregma).  5,7-DHT solution (n=27) or ascorbic acid 

vehicle (n=27) was bilaterally infused in a volume of 1µl at a rate of 1 µl/min.   Cannulas 

remained implanted for 1 minute post-infusion to prevent drug spill out.  Head incisions 

were closed using surgical staples and iodine tincture solution was applied. Post-

conditioning tests were given 48 hrs post-surgery.   

 

Post-Conditioning Sustained Fear Test: Rats were tested after conditioning, using 

procedures identical to those described for the pre-conditioning tests. 

 

Context: During conditioning, a cotton gauze pad wetted with 0.4 ml of 70% ethanol 

solution was placed in front of the test cage. A fluorescent light placed behind the cage 

(150-lux as measured from the middle of the cage) provided constant illumination. 

During testing, to minimize context-potentiated startle, the cage was dark and no explicit 

olfactory stimuli were introduced. In addition, two 5-cm chains hung from the top of the 

test cage and a sandpaper insert was placed over the floorbars.  
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Statistical analyses:  

 

Sustained Fear: Each rat tested for sustained fear received a sustained fear-potentiated 

startle score. Because our analysis of the control dataset indicated that the first startle 

response after CS onset was markedly higher than all those that followed, and that 

sustained fear diminished with time, becoming unreliable after approximately the 4th 

minute of CS presentation, we calculated a sustained fear-potentiated startle score by 

dividing mean startle amplitude during the first 4 minutes of the CS (beginning with the 

2nd CS test trial) by the mean startle amplitude during the last 4 minutes of the pre-CS 

period (Figure 4.2). For presentation purposes, these sustained fear-potentiated startle 

scores were converted to percent change scores. 

 

Exclusion Criteria: Fear conditioning requires that rats perceive the aversive stimulus. 

Therefore, we excluded from further analysis the data obtained from rats with footshock 

reactions of 1.0 or less on 12 or more of the 24 conditioning trials (N= 15). Because 

meaningful ratios cannot be calculated for rats that do not show a baseline startle 

response, the data from rats with a mean accelerometer output of  < 0.1 (i.e., what we 

observe when cage output is sampled in non-startled rats) on baseline test trials were also 

excluded (N=1). Finally, animals within lesion treatment groups whose HPLC analysis 

revealed a lack of a 5-HT lesion effect (N= 4; preseumably due to misplacement of 

cannulae) were removed from data analysis.  
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Figure 4.2 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4.2. Trial-by-trial raw startle data during sustained fear tests.  

The trial-by-trial raw startle data for the Saline-Vehicle control group (N=16) used in 

these studies are plotted for both the pre- (open circles) and post- (filled triangles) 

conditioning test sessions. Startle responses were evoked every 30 seconds during the 8 

minutes prior to CS onset (trials 1-16) and for the 8 minutes during which the CS was 

presented (trials 17-32). Before conditioning, there was little if any effect of the 60-Hz 

clicker stimulus on startle. After conditioning, potentiation by the clicker CS was clearly 

evident. The percent change scores illustrated in Figure 3, are based on the ratio (mean 

startle amplitude across CS test trials 18-25 / mean startle amplitude across pre-CS test 

trials 9-16) for sustained fear.  = p < 0.05 (paired t-test) 
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Inferential Statistics: The primary analyses were between-group comparisons of fear-

potentiated scores. Because normality tests indicated significant deviations from 

normality for a number of datasets, between-group differences were evaluated using 

distribution-free (non-parametric) Mann-Whitney or Kruskal-Wallis tests and also, to 

establish statistical robustness, by using t-tests and ANOVA on log-transformed scores 

(Keene, 1995).  For all tests, the criterion for significance was 0.05 (two-tailed). 

 

Biochemical analysis: 

Animals were anesthetized with isoflurane and decapitated within 30 min of completing 

their post-conditioning test. Trunk blood was collected from a subset of fluoxetine treated 

animals (N=10). Plasma was separated from arterial blood by centrifugation, supernatant 

was extracted and stored at -20 oC until subsequently analyzed by the Dr. James Ritchie 

Clinical Pathology Translational Research Laboratory at Emory University according to 

the method described in Synder and Ritchie (2009). Fluoxetine, 10 mg/kg/day produced 

average serum concentrations of 104 ng/ml fluoxetine and 401 ng/ml of the active 

metabolite norfluoxetine.  These values are consistent with reported clinical serum 

concentrations (Amsterdam et al., 1997), and are consistent (and relatively low) when 

compared to other preclinical chronic fluoxetine studies (Czachura and Rasmussen, 2000; 

Stout et al., 2002). 

 

Brains were rapidly removed, flash frozen on dry ice, and stored in -80oC until analyzed. 

Within a week, all brains were sectioned by cryostat and BNST punches were collected 

from Bregma 0.42 to -0.98mm (Paxinos and Watson Rat Brain Stereotaxic Guide) and 
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stored in -80oC until processed by Vanderbilt University’s Neurochemistry Core. 

 

Endogenous monoamine levels within BNST punches were determined using High 

Performance Liquid Chromatography (HPLC). Tissue samples were homogenized using 

a tissue dismembrator, in 100-750 µl of 0.1M TCA, which contains 10-2 M sodium 

acetate, 10-4 M EDTA, 5 ng/ml isoproterenol (as internal standard) and 10.5 % methanol 

(pH 3.8).  Samples were spun in a microcentrifuge at 10000 g for 20 min (Cransac et al., 

1996) to isolate monoamines. The pellet was saved for protein analysis. Using an Antec 

Decade II (oxidation: 0.5) electrochemical detector operated at 33° C, 20 µl samples of 

the supernatant were injected using a Water 717+ autosampler onto a Phenomenex 

Nucleosil (5u, 100A) C18 HPLC column (150 x 4.60 mm).  Biogenic amines were eluted 

with a mobile phase consisting of 89.5% 0.1M TCA, 10-2 M sodium acetate, 10-4 M 

EDTA and 10.5 % methanol (pH 3.8).  Solvent was delivered at 0.6 ml/min using a 

Waters 515 HPLC pump.   

 

Results: 

 

In Figure 4.2, ANOVA indicated a significant Session effect (pre- vs post-conditioning 

test) F(3, 30)=12.9, p < 0.05. Tukey post-hoc comparisons indicate that post-conditioning 

startle responses during the CS presentation were significantly higher (p < 0.05) than 

startle responses during the pre-conditioning test (both pre-CS and CS test trials) and the 

post-conditioning pre-CS test trials. 
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Figure 4.3 compares the percent change in startle from pre-CS to CS test trials (i.e., 

sustained fear response) between the four treatment groups.  A Kruskal-Wallis test 

comparing Treatment (Saline vs. Fluoxetine) and Condition (Vehicle vs. 5,7-DHT lesion) 

yielded no significant interaction, likewise, a two-way ANOVA on log-transformed 

values showed similar results.  As shown in Figure 4.3, the Fluoxetine-Vehicle treatment 

group had decreased levels of sustained fear as compared to the Saline-Vehicle control 

group, replicating previous findings (Miles et al., 2011). The Fluoxetine-5,7-DHT 

treatment group showed higher levels of sustained fear compared to that of the 

Fluoxetine-Vehicle treatment group, suggesting that chronic fluoxetine might involve 5-

HT within the BNST. However, this effect was not significant as shown by a independent 

samples t-test on log values, t(23) = .49, p = 0.62 and a Mann-Whitney t-test on percent 

scores, U(25) = 61, p =  0.4.  

 

HPLC analysis was performed to confirm the extent of 5-HT depletion (and NE survival) 

after vehicle or 5,7-DHT (2mg intra-BNST) administration (Figure 4.4, norepinephrine 

(white bars) and serotonin (black bars)).   ANOVA confirms that in all lesion groups, 

norepinephrine levels were not significantly different than vehicle controls.  However, 

ANOVA analysis did indicate a Condition effect (vehicle vs. 5,7-DHT lesions), 

F(3,57)=32.36, p < 0.05. Tukey post-hoc comparisons of the four treatment groups 

indicate that the Saline-Vehicle control group had significantly higher levels of 5-HT  
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Figure 4.3 
 

 
 

 
 
 
 

 

 

 

 

 

 

 

Figure 4.3. The effect of intra-BNST 5,7-DHT lesions on rats treated with 21-days of 

saline or fluoxetine.  

Animals in the Fluoxetine-Vehicle treatment group (N=11) produced lower levels of 

sustained fear (i.e., an anxiolytic effect) as compared to the Saline-Vehicle control group 

(N=16). Animals in the Fluoxetine-5,7-DHT treatment group (N=14) produced non-

significantly higher levels of sustained fear than Fluoxetine-Vehicle treatment group, but 

lower levels of sustained fear than Saline-Vehicle controls.  
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Figure 4.4 

 

 
 
 
 

Figure 4.4. The effect of 5,7-DHT on 5-HT and NE Levels in the Bed Nucleus of the 

Stria Terminalis (BNST)  

The effect of lesions produced by 5,7-DHT (2mg intra-BNST) on norepinephrine (white 

bars) and serotonin (black bars) after 48hrs after neurotoxic treatment.  Mean ± S.E.M.,  

N = 11-19 in each group.  Significant differences between 5-HT expression in the Saline-

Vehicle control group vs 5,7-DHT treatment groups are indicated by #P<0.01, Tukey 

post-hoc comparison.  
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than the 5,7-DHT lesion groups (p < 0.05).  Comparisons between the Saline-Vehicle 

control and the Fluoxetine-Vehicle treatment group were not significantly significant (p > 

0.) 

 
Discussion: 
 

We have evaluated the contribution of 5-HT within the BNST on the anxiolytic actions of 

chronic fluoxetine administration. We were able to replicate our previous findings in that 

the Fluoxetine-Vehicle treatment group showed decreased levels of sustained fear as 

compared to the Saline-Vehicle control group (Miles et al., 2011).  Although not 

significant, the Fluoxetine-5,7-DHT treatment group showed higher levels of sustained 

fear compared to the Fluoxetine-Vehicle treatment group. These findings suggest that 5-

HT in the BNST might be involved in the anxiolytic effect of chronic fluoxetine, but 

clearly more animals would be needed to establish this with statistical significance 

(power analysis indicates an N = 32, a = 0.05, power = 0.50).  

 

The role of 5-HT in the regulation of anxiety-related circuits is complex.  Within the 

literature, the effects of 5-HT have been found to be dependent on a number of variables 

(e.g., the time course of 5-HT action, extracellular levels of 5-HT, type and subtypes of 5-

HT pre-synaptic and post-synaptic receptors (each mediating different G protein 

signaling pathways), populations of 5-HT receptors (which can change based on 

extracellular levels of 5-HT), neuronal interactions (post-synaptic signaling to GABA or 
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glutamatergic neurons)) (c.f., Lowry et al., 2005). In spite of these variables, the vast 

majority of studies agree that 5-HT plays some sort of role in modulating anxiety-like 

behaviors (c.f.'s, Griebel, 1995; Handley, 1995). 

 

As stated above, SSRI’s are the medication of choice for many types of anxiety disorders 

(Goldstein and Goodnick, 1998; Goodnick and Goldstein, 1998; Nutt et al., 1999; van der 

Kolk et al., 1994). Fluoxetine binds to pre-synaptic serotonin transporter on 5-HT 

neurons and inhibits the reuptake of 5-HT into the pre-synaptic cell, thereby generating 

an increase in extracellular levels of 5-HT available for pre- and post-synaptic receptor 

binding (Bel and Artigas, 1993; Bel and Artigas, 1999; Blier and de Montigny, 1987; 

Fuller, 1994; Goodnick and Goldstein, 1998; Kreiss and Lucki, 1995). Interestingly, 

acute fluoxetine administration does not reduce anxiety in animals and humans, but only 

after chronic do anxiolytic effects emerge (Burghardt et al., 2007; Goldstein and 

Goodnick, 1998; Griebel, 1995; Grillon et al., 2009a; Grillon et al., 2007; van der Kolk et 

al., 1994).  The question then arises, if both acute and chronic fluoxetine treatment block 

the reuptake of 5-HT and enhance extracellular levels, then why does chronic, but not 

acute treatment produce an anxiolytic effect? 

 

While there are some conflicting reports, likely due to the various brain regions studied 

(Beyer and Cremers, 2008; Smith et al., 2000), it is regularly believed that acute 

fluoxetine administration only transiently elevates extracellular concentration levels of 5-

HT as compared to the sustained increases seen after chronic administration (Bel and 

Artigas, 1993; Beyer and Cremers, 2008; Hjorth, 1993; Kreiss and Lucki, 1995; Rutter et 
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al., 1994; Smith et al., 2000; Tanda et al., 1996). Acute versus chronic increases in 

extracellular 5-HT can have differential effects on the desensitization of terminal 5-HT1B 

autoreceptors (Blier et al., 1988), regulation of 5-HT transporter expression (Dewar et al., 

1993; Hebert et al., 2001; Hrdina and Vu, 1993; Johnson et al., 2009), and how other 

local neurotransmitters function (Bymaster et al., 2002; Penttila et al., 2004; Szabo et al., 

1999).  

 

However, the leading explanation for the lack of therapeutic effect of acute SSRI 

treatment and for the delayed therapeutic effect of chronic SRRI treatment is centered on 

the increase of 5-HT activation at 5-HT1A autoreceptors on 5-HT neurons in the raphe 

(c.f., Gordon and Hen, 2004; Santarelli et al., 2003). Acute SSRI administration increases 

availability of 5-HT within the raphe and acts on the somodendritic 5-HT1A Gi-coupled 

autoreceptor to decrease in raphe cell firing (Andrade et al., 1986; Araneda and Andrade, 

1991; Artigas, 1993; Blier and de Montigny, 1987; Blier et al., 1990; Chaput et al., 1986; 

Hjorth and Auerbach, 1994; Sprouse and Aghajanian, 1987; Zifa and Fillion, 1992) 

which can limit 5-HT levels in forebrain terminal regions (levels vary depending on 

targeted brain region) (Invernizzi et al., 1992; Kreiss and Lucki, 1995; Rutter et al., 

1994). After chronic 5-HT activation (due to chronic fluoxetine administration), these 

cell body autoreceptors are believed to be desensitized, thereby causing an restoration of 

cell firing, and hence an increase in 5-HT availability in at post-synaptic sites (Artigas, 

1993; Blier and de Montigny, 1987; Godbout et al., 1991; Gordon and Hen, 2004; 

Handley, 1995). Post-synaptic 5-HT1A receptor agonists and partial agonists are found to 

consistently produce neuronal inhibition and downstream anxiolytic responses (Araneda 
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and Andrade, 1991; Graeff et al., 1996; Hammack et al., 2009; Levita et al., 2004; 

Rainnie, 1999). For example, there have been electrophysiological studies suggesting 

enhanced post-synaptic 5-HT1A receptor function after chronic anti-depressant 

administration (Blier et al., 1987).  Neuroimaging studies reveal that patients with lower 

levels of 11C 5-HT1A antagonist binding to 5-HT1A receptors had higher scores of anxiety 

(Tauscher et al., 2001); while binding studies demonstrate that after two weeks of 

fluoxetine administration there are increased 5-HT1A post-synaptic binding sites (Klimek 

et al., 1992; Klimek et al., 1994).  Additionally, 5-HT1A knock-out mouse studies show a 

robust increase in anxiety phenotype (not so for knock-outs for 5-HT1B, 2C, 4, 5A, 6, or 7 

receptors) (Gingrich et al., 2003). These data suggest that a decrease of BNST 5-HT1A 

receptor activation will attenuate the BNST’s inhibitory tone (Hammack et al., 2009). 

Please see Griebel (1995) for reviews of relevant studies regarding 5-HT1A receptor’s role 

in mediating anxiolytic effects.  

 

Related to our current study, the BNST receives dense serotonergic innervation from 

DRN afferents and expresses a number of post-synaptic 5-HT receptor types (i.e., 5-

HT1A, 5-HT2A, 5-HT2C, and 5-HT7) (Commons et al., 2003; Cornea-Hebert et al., 1999; 

Hammack et al., 2009; Heidmann et al., 1998; Kia et al., 1996; Mengod et al., 1990; 

Phelix et al., 1992a; Waeber et al., 1994; Wright et al., 1995). In electrophysiological 

studies, Levita et al (2004) and Rainnie (1999) have shown that local 5-HT infusions into 

the BNST preferentially activates 5-HT1A receptors, mediates an inhibitory response in 

the majority of BNST neurons, and decreases acoustic startle responses. It should be 

noted, however, that these studies infused very high concentrations of 5-HT (10-50mM), 
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promoting extracellular levels 1000 times higher than normally seen after chronic 

fluoxetine administration in representative areas such as the hippocampus (Smith et al., 

2000). Likewise, in vivo behavioral studies showed that a high concentration of a 5-HT1A 

agonist (10mM) infused into the BNST can significantly reduce the acoustic startle 

response, without affecting the general motor activity of the animals, suggesting an 

anxiolytic profile on this measure (Levita et al., 2004).  Studies from Hammack et al 

(2009) show that under a normal state of stress, the net effect of 5-HT release in the 

BNST is to dampen neural activity via 5-HT1A receptor activation, which in turn could 

promote an anxiolytic effect.  A recent behavioral study corroborates the above findings 

in that an infusion of a 5-HT1A receptor agonist locally into the BNST produced 

anxiolytic effects in the elevated plus-maze and Vogel conflict test, and this anxiolytic 

effect was blocked by pre-treatment of a the 5-HT1A receptor antagonist WAY100635 

(Gomes et al., 2011). These studies suggest that administration of chronic fluoxetine may 

have enhanced 5-HT levels within the BNST, thereby enhancing activation of the post-

synaptic 5-HT1A receptors, resulting in an inhibition of neurons in the BNST that led to a 

decrease in sustained fear responses (Figure 4.3, third bar).   

 

To directly determine the effect of BNST 5-HT on sustained fear responses, we locally 

infused the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) to selectively destroy 

serotonergic neurons. 5,7-DHT is a structural analog of 5-HT.  When infused into the 

brain, the toxin enters the pre-synaptic cells via the 5-HT reuptake receptor, forms 

hydrogen peroxide, denatures proteins, blocks the formation of ATP, causing destruction 

of projection neurons and a localized decrease in 5-HT levels (Bjorklund et al., 1975; 
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Choi et al., 2004; Sinhababu and Borchardt, 1988; Wrona et al., 1986).  As shown in 

Figure 4.4, 5-HT was not fully depleted from the BNST, likely due to our low dose 

administration. However, even at this low dose our HPLC data revealed siginificant 

changes in 5-HT and 5-HT’s main metabolite, 5-HIAA ratio levels as compared to 

controls (Figure 4.5). ANOVA indicated a significant Treatment effect F(3, 50)=8.6, p < 

0.05. Tukey post-hoc comparisons indicated significant increases in 5-HIAA /5-HT ratios 

in the Saline-5,7-DHT treatment group as compared to Saline-Vehicle group, as well as 

significant increases in the Fluoxetine-5,7-DHT treatment group as compared to 

Fluoxetine-Vehicle group. Although non-significant, the data also show decreases in 5-

HIAA /5-HT ratio levels in animals treated with chornic fluoxetine as compared to those 

given saline, suggesting elevated levels of tissue 5-HT due to fluoxetine treatment.  Our 

findings suggest that systemic fluoxetine treatment may be affecting local 5-HT levels 

within the BNST.   

 

Microdialysis studies suggest that despite significant depletions of tissue monoamine 

levels, extracellular levels of monoamines can be maintatined at control levels 

(Abercrombie et al., 1990; Abercrombie and Zigmond, 1989; Castaneda et al., 1990; Hall 

et al., 1999; Kalen et al., 1988; Kirby et al., 1995; Rex et al., 2003; Robinson and 

Whishaw, 1988; Romero et al., 1998; Thomas et al., 2000). Findings suggest that until 

substantial 5-HT depletion (e.g., > 60%, dependent on area) is achieved (Hall et al., 

1999), control levels of extracellular 5-HT are likely maintained through multiple neural 

compensatory mechanisms (Kirby et al., 1995). 5,7-DHT deleptions may produce an 

increase in 5-HT precursors (Stachowiak et al., 1986), an enhancement in 5-HT synthesis 
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Figure 4.5 

 

Figure 4.5.  5-HIAA/5-HT ratios within the BNST  

HPLC data revealed siginificant changes in 5-HIAA /5-HT ratio levels in groups treated 

with 5,7-DHT. ANOVA indicated a significant Treatment effect F(3, 50)=8.6, p < 0.05. 

Tukey post-hoc comparisons indicated significant increases in 5-HIAA /5-HT ratios in 

the Saline-5,7-DHT  and Fluoxetine-5,7-DHT treatment groups as compared to their 

Vehicle controls. These data suggest changes in neural processes due to significant 

decreases in 5-HT.  * <  0.05 (vs Saline-Vehicle), #  <  0.05 (vs Fluoxetine-Vehicle).  

 

 

 

 



     119 

(Bendotti et al., 1990), and/or changes in serotonergic firing patterns (Hajos and Sharp, 

1996). Microdialysis was not performed in this study, and therefore changes in 

extracellular levels of 5-HT were not determined. However, it is concieveable that due to 

incomplete lesions, extracellular compensatory 5-HT actions may account for some of the 

variability in our behavioral data.  Future studies might use a higher dose of the toxin to 

produce more extensive lesions. However, 5,7-DHT also has affinity for NE transporters, 

and higher doses of 5,7-DHT could potentially decrease NE expression and function 

(Baumgarten and Bjorklund, 1976). Hence, we would need to do further biochemical 

studies to develop conditions for a more complete depletion of 5-HT within the BNST. 

 

Our HPLC data confirms that while 5,7-DHT significantly reduced levels of 5-HT within 

the BNST, this effect was not blocked by fluoxetine treatment.  Other studies have found 

similar results and have suggested this finding may be attributed to the acutely high 5,7-

DHT concentration (versus the SSRI) at the binding site (Breese and Mueller, 1978; 

Fuller, 1978; Fuxe et al., 1978) or that 5,7-DHT may in fact be mediating some of its 

effects through an alternate site (Choi et al., 2004).  Regardless of its mechanism of 

action, our 5,7-DHT work suggests that decreasing levels of 5-HT within the BNST 

attenuates chronic fluoxetine’s anxiolytic effect (Figure 4.4, fourth bar).   

 

HPLC results revealed a subset of animals in the Fluoxetine-5,7-DHT treatment group 

that were weakly lesioned (N=5; average 5-HT expression was 5% below control group 

mean); these animals produced an average 17.4 + 19.6 sustained fear response (i.e., weak 

sustained fear).  In comparison, another subset of the Fluoxetine-5,7-DHT treatment 
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group produced strong lesions (N=5; average 5-HT expression was 60% below control 

group mean) and produced an average 39.7 + 19.7 sustained fear response (i.e., average 

sustained fear).  These results suggest that chronic fluoxetine was able to maintain its 

anxiolytic action due to sufficient 5-HT presence in the weak lesioned animals, but that 

this anxiolytic response was attenuated in the Fluoxetine-5,7-DHT animals with strong 

lesions and a low 5-HT presence. In summary, our fluoxetine results suggest that 5-HT 

within the BNST may play an active role in modulating anxiety-like responses. 

 

Our data show that the Saline-5,7-DHT treatment group’s average sustained fear response 

is non-significantly different than that of the Saline-Vehicle control (Figure 4.3), 

however, data from our HPLC analysis presents a more complex situation. Weak lesioned 

rats within the saline-5,7-DHT treatment group (N=3; average 5-HT expression was 5% 

below control group mean) produced an average -6.4 + 5.6 sustained fear response (i.e., 

no sustained fear) (Figure 4.6). Interestingly, a subset of rats within the saline-5,7-DHT 

treatment group with strong 5-HT lesions (N=3; average 5-HT expression was 80% 

below control group mean) produced an average -1.2 + 10.6 (i.e., no sustained fear) 

(Figure 4.6).  It is difficult to determine why Saline-5,7-DHT animals with either weak or 

strong 5-HT lesions failed to produce appropriate sustained fear responses. Logically 

speaking, Saline-5,7-DHT animals with weak 5-HT lesions should behave like animals in 

the Saline-Vehicle control treatment group and produce normal sustained fear responses; 

however this was not the case. Furthermore, another subset of Saline-5,7-DHT animals 

with a relatively intermediate level of 5-HT lesion (N=3; average 5-HT expression was  
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     Figure 4.6 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. The effect of intra-BNST 5-HT depletion on sustained fear 

Rats in the Saline-5,7-DHT treatment group with intermediate BNST 5-HT lesions (33% 

decrease from control) expressed significantly more sustained fear than rats within the 

same treatment group with either weak or strong BNST 5-HT lesions (5% and 80% 

decrease from control, respectively), *= p < 0.05. The non-monotonic effect suggests that 

perhaps there is a threshold level of 5-HT needed to produce appropriate sustained fear 

responses.  
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33% below control group mean) produced an average 420 + 195 sustained fear response 

(i.e., extremely high sustained fear) (Figure 4.6). The non-monotonic effect suggests that 

perhaps there is a threshold level of 5-HT needed to produce appropriate sustained fear 

responses, which could account for the high variability in the Saline-5,7-DHT group seen 

in Figure 4.3.  

 

Supporting our findings of variability, electrophysiological studies show the response of 

BNST neurons to 5-HT application is not strictly an inhibitory one. Exogenous 5-HT and 

5-HT agonists mediate bi-directional modulation on BNST neurons, producing  

hyperpolarizaition (inhibitory actions via 5-HT1A receptors), depolarization (excitatory 

actions via 5-HT2 receptors), and biphasic activity (inhibitory then excitatory actions via 

5-HT1A, 5-HT2A and 5-HT7 receptors) (Hammack et al., 2009; Rainnie, 1999).  In 

addition, chronic stress can shift the balance of BNST 5-HT responses in favor of 

excitation via increased density of 5-HT2C receptors and a decrease of 5HT1A receptors 

(Ferretti et al., 1995; Lopez et al., 1999; McKittrick et al., 1995; Ossowska et al., 2001; 

Takao et al., 1997). To further complicate matters, increases and decreases of anxious 

behavior may be mediated by the expression of multiple receptors in different cell types, 

and that more than one receptor subtype may mediate actions of 5-HT in a single neuron 

(Araneda and Andrade, 1991; Davies et al., 1987). It is clear to see why there is such a 

strong consensus within the literature that sertonin’s role in anxiety is a complex one, 

further complicated by multiple forms of anxiety and potentially different, but 

overlapping anxiety circuits (c.f., Gordon and Hen, 2004). Nonetheless, we are confident 
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our study has provided a foundation with which to continue to study the effect of BNST 

5-HT on anxiety-like responses.  
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This dissertation used a rat model of fear-potentiated startle to investigate the neural 

processes mediating the expression of phasic and sustained fear startle responses. As 

discussed in previous chapters, fear-potentiated startle is a potentially powerful 

translational approach for studying anxiety in healthy human subjects (Davis et al., 

2010). Overall findings in this dissertation support the hypothesis that fear responses to 

short-duration cues (phasic fear) are mediated by different neural mechanisms than fear 

responses to long-duration cues (sustained fear). The predictive validity of the results 

suggests that sustained fear paradigms may serve as better models of certain types of 

human anxiety disorders than phasic fear paradigms.  

 

In chapter 2, I successfully modified two behavioral fear paradigms (i.e., phasic and 

sustained) to consistently and reliably produce short- and longer-duration fear responses 

to the same conditioned fear stimulus. In Chapter 3, I evaluated the effects of several 

pharmacological treatments that either are or are not clinically effective for anxiety 

reduction on the expression of phasic and sustained fear responses. As predicted, phasic 

and sustained fear responses (to the same fear stimulus) responded differently, and in 

opposite directions to several of the drug treatments. The specific pattern of results 

suggests that sustained fear may have greater predictive validity, serving as a better 

animal model of clinical anxiety than phasic fear. Cross-species use of sustained fear 

procedures could provide insights into neurological factors contributing to certain anxiety 

disorders, and lead to the development of new anxiolytic compounds with novel 

mechanisms of action. Finally, in Chapter 4, I evaluated the contribution of serotonin 

(within the BNST) on the anxiolytic actions of chronic fluoxetine. I was able to replicate 
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findings from Chapter 3 (in that the Chronic Fluoxetine-Vehicle treatment group showed 

decreased levels of sustained fear as compared to the Saline-Vehicle control group) and 

provide some suggestive, albeit non-significant, evidence that 5-HT within the BNST 

may be involved in the anxiolytic effects of chronic fluoxetine. 

  

In Chapter 2, a relevant issue in the design of our sustained fear paradigm is the use of an 

8-min CS (as opposed to 2, 4, or even 6-mins).  Although the selected time duration in 

which we measure a sustained fear response is somewhat arbitrary, we suspect there is a 

transition between phasic and sustained fear rather than an abrupt switch, so that early 

times of a long CS primarily reflect phasic fear whereas later time points reflect sustained 

fear. For example, some laboratories that have dissociated phasic and sustained fear 

responses have measured phasic fear using durations as short as 10-sec to as long as 60-

sec and measured sustained fear with time points as short as 5-min to as long as 10-min 

(Sullivan et al., 2004; Waddell et al., 2006).  Our goal in the design of these paradigms 

was to compare one fear measure that was more phasic to one more sustained. This was 

done using an explicit phasic fear paradigm as well as using an internal measure of phasic 

fear within the explicit sustained fear paradigm (Chapter 3).  

 

Chapter 3 showed a clear pharmacological dissociation of phasic and sustained fear 

responses. As previously stated, to our knowledge these are the first explicit comparisons 

of drug effects on short- versus longer duration fear responses. Based on the compounds 

tested, the findings suggest that sustained fear (versus phasic fear) may be homologous to 

certain types of clinical anxiety.  
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In support of our conclusions of predictive validity, Chapter 4’s results suggest that 5-

HT, as in clinical anxiety, modulates sustained fear responses (Handley, 1995). Although 

not significant, the data suggest that the normal anxiolytic effect of chronic fluoxetine on 

sustained fear was reduced by prior depletion of 5-HT in the BNST (produced by local 

infusion of the 5-HT neurotoxin, 5,7-DHT).  To verify this, additional rats would be 

required and control experiments, depleting 5-HT in a brain area other than the BNST 

would be necessary.  However, depletion of 5-HT in the BNST may not have been the 

best strategy to test this hypothesis given the opposite effects of BNST 5-HT1A and 5-HT2 

receptor activation, leading to either anxiolytic or anxiogenic effects, respectively.  This 

might explain why both of these results were seen in the Saline-5,7-DHT treatment 

group.  

 

In fact, it is often the case that behavioral effects in which the BNST has been implicated 

are often quite variable, as we generally find with sustained fear.  A study by Duvarci et 

al (2009) provides clear evidence of inter-individual heterogeneity in BNST-mediated 

responses. In this study, experimenters trained rats to discriminate between two fear 

CS’s.  One group of rats exhibited high discriminative abilities and spent less time in the 

closed arms of an elevated plus maze (a rodent model of anxiety), however another group 

of rats showed poor discriminative abilities and portrayed an anxious phenotype in the 

elevated plus maze.  Interestingly, following BNST lesions, the second group’s anxious 

phenotype was abolished and the rats now exhibited high discriminative abilities with 

little variability. A recent primate study has shown that individual variations in anxious 
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temperament were predicted by BNST pre-synaptic serotonin reuptake transporter 

binding (Oler et al., 2009). These observations corroborate clinical findings in anxiety in 

which a number of variables (e.g., genetic variability, sex differences, and early-life 

stress) influence individual vulnerability versus resilience in mood and anxiety disorders 

(Heim and Nemeroff, 2009).  I believe our study reflects the individual variations of the 

BNST-mediated stress response.  It would be interesting to perform a sustained fear study 

with rats grouped as high versus low stress responders to determine if this could 

potentially lower between subject variability.  

 

Enormous progress has been made in the understanding of the neural mechanisms driving 

the amygdala and fear (Davis, 1992a; LeDoux, 2000). However, in regards to the BNST 

and anxiety, many questions remain regarding the mechanisms regulating anxiety-like 

responses. One notable feature of the BNST is the abundance of different neuropeptide-

positive cells and terminals.  As mentioned, the BNST is densely innervated by 

serotonergic afferents (Freedman and Shi, 2001; Hammack et al., 2009) that in many 

cases project to CRF-positive BNST neurons (Phelix et al., 1992b).  There is a proposed 

negative feedback function in which CRF and 5-HT projections to and from the BNST 

modulate anxiety-like responses (Hammack et al., 2009). More recently, a pituitary 

adenylate cyclase-activating polypeptide (PACAP) is being explored in both clinical and 

preclinical anxiety research studies. Findings suggest that in women, PACAP is 

differentially associated in those who have post-traumatic stress disorder from those who 

may be resistant (Ressler et al., 2011). Preclinical studies suggest that PACAP and CRF 

work together within the BNST to modulate anxiety-like responses (c.f., Hammack et al., 
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2010).  Therefore, it is possible that among other neurotransmitters and neuropeptides, 5-

HT, CRF, and PACAP are working in conjunction within the BNST to modulate anxiety-

like responses. Anxiety-related circuits are a complex matter. 

 

Future directions for this research aim to further investigate the complex neural 

mechanisms mediating sustained fear responses. As discussed above, there are likely a 

number of overlapping systems working in conjunction to produce anxiety responses, 

however gaining a better understanding of individual systems will enhance our 

comprehension of the overall anxiety circuit.  

 

Chapter 4’s results provided a sufficient rationale for continuing to investigate the role of 

5-HT (within the BNST) in sustained fear.  Intra-BNST infusions of 5,7-DHT produced 

varied levels of 5-HT lesions within subject and treatment groups, thus complicating our 

interpretation of the behavioral results.  In future experiments, I propose to more directly 

investigate the role of 5-HT (within the BNST) in sustained fear by focusing on 5-HT1A 

receptor contributions.  As mentioned in the previous chapter, this specific receptor 

subtype has been shown to play a key role in 5-HT’s inhibitory action in this area. To 

determine the role of 5-HT1A receptors (within the BNST) in sustained fear, I propose to 

give a systemic injection of a specific 5- HT1A receptor agonist (or vehicle) followed by a 

bilateral, intra-BNST infusion of a 5-HT1A receptor antagonist (or vehicle) prior to the 

post-conditioning test.  The hypothesis is that systemic administration of the 5- HT1A 

receptor agonist will reduce sustained fear responses (anxiolytic effect) as compared to 

controls, presumably due to activation of 5-HT1A receptors within the BNST. If so, co-
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administration of an intra-BNST 5-HT1A receptor antagonist would be expected to block 

this anxiolytic effect induced by the agonist and restore sustained fear. In addition, I 

propose that localized BNST infusion of a 5-HT1A receptor antagonist alone will increase 

sustained fear responses (anxiogenic effect) as compared to controls, assuming there is a 

tonic release of 5-HT acting on 5-HT1A receptors in this area to suppress sustained fear. In 

fact, the degree to which tonic 5-HT release either does or does not occur in different rats 

could explain the wide levels of variability of sustained fear we typically see in this 

paradigm.  So, a second prediction would be that local infusion of a 5-HT1A receptor 

antagonist would significantly decrease variability across animals in this test. I believe 

these proposed experiments will allow for a direct evaluation of role of intra-BNST 5-

HT1A receptors in sustained fear responses, more so than a broad 5-HT depletion.    

 

Additional experiments could be proposed to once again investigate whether fluoxetine 

mediates its effects through 5-HT mechainisms within the BNST. Potential experiments 

could include chronic fluoxetine administration followed by intra-BNST infusions of a 5-

HT1A receptor antagonist prior to the post-conditioning test.  Based on previous studies 

mentioned in the above chapter, we would hypothesize that the antagonist would block 

the anxiolytic effect mediated by chronic fluoxetine treatment.  Findings from these 

proposed experiments, in either support or disagreement of our hypotheses, would 

provide exciting results and enhance the field of anxiety research. 
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