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Abstract

Advanced Statistical Methods for Brain Connectivity Analysis
By Jialu Ran

The analysis of brain network connectivity has become an important tool for
investigating brain function and various disease characteristics. However, this type
of analysis is challenging due to the complex structure and high dimensionality of
brain imaging data. To extract meaningful information from these data, sophisticated
analytical methods are required. This dissertation focuses on the development of
statistical methods to enhance our understanding of the human brain.

In Chapter 1, we introduce the background of brain connectivity analysis, discuss
the associated challenges, review existing solutions and their drawbacks, and highlight
our contributions to the field.

In Chapter 2, we introduce dyna-LOCUS, a method for identifying neural circuits
in dynamic brain functional connectivity. This method performs dynamic connectome
source separation using low-rank modeling of connectivity traits with sparsity and
temporal smoothness regularization. We validate the performance of dyna-LOCUS
through simulations and apply it to the Philadelphia Neurodevelopmental Cohort
(PNC) study. This application identifies latent neural circuits underlying observed
dynamic connectivity, reveals key brain regions that drive each of these circuits,
investigates their temporal expression profiles, and identifies neural circuits associated
with gender and neurodevelopment.

In Chapter 3, we develop a longitudinal-LOCUS method to study changes in brain
connectomes over time. This method decomposes longitudinal functional connectivity
(FC) measures using blind source separation with low-rank structures and angle-based
sparsity regularization. We present an efficient iterative node-rotation algorithm to
solve the non-convex optimization problem for learning longitudinal-LOCUS. Simula-
tions demonstrate superior accuracy in recovering latent sources and mixing coefficients
compared to existing methods. We apply the method to the Adolescent Brain Cogni-
tive Development (ABCD) data to investigate developmental changes in neural circuits
and their differences between genders.

In Chapter 4, we address a challenge that arises in brain imaging data when
participants move their heads during a brain scan. This motion can cause spurious
associations when studying differences between functional connectivity across groups.
We propose decomposing neural and motion-induced sources of group differences
under a causal mediation framework. We establish the theoretical properties of our
proposed estimators and validate the theory using simulation studies. The framework is
applied to estimate the difference in functional connectivity between autism spectrum
disorder (ASD) children and typically developing children in the ABIDE study. Our
analyses indicate that some long-range connections between a seed region in the default
mode network and frontal-parietal regions exhibit hyperconnectivity in ASD. Naively
including high-motion children appears to cause spurious connectivity differences.
Naively excluding high-motion children removed group differences.



In Chapter 5, we expand on the second project by developing MoCo, an R package
for motion control in MRI studies. In addition to motion control, MoCo allows for
missingness in MRI data due to collection or preprocessing issues. We demonstrate
MoCo with examples related to ASD and attention-deficit/hyperactivity disorder
(ADHD), showing it effectively mitigates motion artifacts, enhances data utilization,
addresses selection biases, and is more robust to preprocessing pipelines.
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pant removal, and the näıve approach including all participants. MoCo

has lower bias in all regions, lower type I error in regions in which the

true association is zero, and higher power in the regions where true

association is non-zero. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

xvi



5.1 Demographic characteristics: Continuous variables are described using

mean and standard deviation, and diagnostic groups are compared using

the Kruskal-Wallis rank-sum test. Binary and categorical variables

are reported as frequencies and percentages, and differences between

diagnostic groups are assessed using either the Chi-square test or Fisher’s

exact test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.1 Age and Gender effects for all 30 connectivity traits extracted from the

PNC study by dyna-LOCUS and the existing connICA and dictionary

learning (DL) methods. Effects that are significant after controlling

for the false discovery rate (FDR) at the 0.05 level are marked with

asterisks in the table. . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.2 Simulation results for comparing dyna-LOCUS with connICA and DL

for source signals with a medium sparsity level, based on 100 simulation

runs conducted under three variance (Var.) settings. Values presented

are mean and standard deviation of correlations between the true and

estimated latent sources and loading/mixing matrices. . . . . . . . . . 168

7.3 Simulation results for comparing dyna-LOCUS with connICA and DL

for source signals with a low sparsity level, based on 100 simulation

runs conducted under three variance (Var.) settings. Values presented

are mean and standard deviation of correlations between the true and

estimated latent sources and loading/mixing matrices. . . . . . . . . . 170

7.4 Simulation results for comparing dyna-LOCUS with connICA and DL

based on 100 simulation runs conducted under three variance (Var.)

levels. Values presented are mean and standard deviation of correlations

between the true and estimated latent sources and loading/mixing

matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173



xviii

7.5 Confirming theoretical properties of estimators: All nuisance parameters

are consistently estimated at appropriate rates with the use of MoCo

(with cross-fitting). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.6 Confirming theoretical properties of estimators: All nuisance parameters

are consistently estimated at appropriate rates without the use of cross-

fitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.7 Bias and standard deviation(sd) of MoCo (with cross-fitting). The

settings column indicates which nuisance parameters are consistently

estimated based on assumption (B2) in Theorem 3.2 as outlined in the

main manuscript. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.8 Bias and standard deviation(sd) of the one-step estimator without

the use of cross-fitting. The settings column indicates which nuisance

parameters are consistently estimated based on assumption (B2) in

Theorem 3.2 as outlined in the main manuscript. . . . . . . . . . . . 200

7.9 Demographic characteristics: Continuous variables are described using

mean and standard deviation, and diagnostic groups are compared using

the Kruskal-Wallis rank-sum test. Binary and categorical variables

are reported as frequencies and percentages, and differences between

diagnostic groups are assessed using either the Chi-square test or Fisher’s

exact test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203



Chapter 1

Introduction

In recent decades, there has been a growing interest among researchers in exploring

the interconnections across the brain through brain connectivity analysis (Bullmore

and Sporns, 2009; Van Den Heuvel and Pol, 2010; Deco et al., 2011; Lang et al., 2012;

Shi and Guo, 2016; Wang et al., 2016; Wang and Guo, 2023). Research in this field not

only sheds light on the human brain’s functionality but also reveals neurodevelopment

(DeCarli et al., 2012; Hoff et al., 2013; Satterthwaite et al., 2015; Iannilli et al., 2017;

Chai et al., 2017) and provides insights into mental health disorders (Mayberg, 2003;

Sorg et al., 2007; Seeley et al., 2009; Demirtaş et al., 2016; Miller et al., 2016). To

measure brain connectivity, functional magnetic resonance imaging (fMRI), developed

in the 1990s, has emerged as a cornerstone technique. In resting-state fMRI (rs-fMRI),

individuals lie inside a scanner while their brain activity is recorded. rs-fMRI captures

spontaneous neural activity in the absence of specific external stimuli (Biswal et al.,

1995; Lv et al., 2018). The scanner records blood oxygenation level-dependent (BOLD)

signals from hundreds of thousands of locations in the brain, producing a time series of

brain images that reflect changes in activity over time for each brain region. Functional

connectivity (FC), which is statistical association between the time series of different

brain regions, is calculated subsequently (Friston et al., 1993). This association can

1
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be quantified using metrics such as correlation, partial correlation (Wang et al., 2016),

mutual information (Hlinka et al., 2011), coherence (Chai et al., 2017), and others. By

analyzing FC, researchers can comprehensively delineate and quantify the dynamic

interactions between brain regions, gaining valuable insights into how brain networks

function and evolve over time (Fox and Raichle, 2007).

Among various topics in brain connectivity analysis, network-oriented approaches

have emerged as pivotal tools for investigating brain organization, neurodevelopmental

processes, and mental disorders (Greicius et al., 2003; Bastos and Schoffelen, 2016;

Van Den Heuvel and Pol, 2010). The analysis focuses on studying whole-brain

connectivity, characterized by a symmetric functional connectivity matrix, where

each element represents the functional connectivity between pairs of brain regions.

However, analyzing FC matrices presents several major challenges. Firstly, the issue

of high dimensionality. rs-fMRI captures a time series of brain images that depict

changes in activity over time for each brain region, known as voxels. With the human

brain containing nearly a million voxels, the FC matrix can expand to hundreds of

thousands of dimensions (Chung, 2018). Previous studies have attempted to mitigate

this dimensionality by grouping voxels into brain regions based on atlases or node

systems (Tzourio-Mazoyer et al., 2002; Power et al., 2011; Glasser et al., 2013a; Schaefer

et al., 2018). However, even after such grouping, the matrix size remains substantial,

typically in the range of hundreds by hundreds (Wu et al., 2013; Solo et al., 2018).

Secondly, these FC matrices capture complex underlying structures and aggregate

information from diverse neural circuits (Cai et al., 2017; Wang and Guo, 2023). These

underlying circuits can be considered latent sources or connectivity traits, representing

a collection of connections between different brain regions that tend to occur together

during neural processing. Understanding these latent connectivity traits is crucial for

gaining valuable insights into the architecture and dynamics of brain organization.

Advanced methods are needed to decompose FC matrices and recover the underlying
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neurocircuitry subsystems reliably. Lastly, the presence of mixed signals and noise

during data collection, exacerbated by motion artifacts during scanning sessions,

complicates and may introduce biases into brain connectivity analysis (Birn, 2012;

Van Dijk et al., 2012; Satterthwaite et al., 2013c; Birn et al., 2014).

Regarding the first two challenges, various dimension reduction techniques have

been developed to extract useful information from high-dimensional, complex datasets.

Some of the most commonly used methods include principal component analysis

(PCA) (Wold et al., 1987), support vector machines (SVM) (Cortes and Vapnik, 1995),

and independent component analysis (ICA) (Hyvärinen and Oja, 2000). However,

these methods need to be specifically tailored to accommodate unique characteristics

and requirements of brain connectivity data, which are not only high-dimensional but

also symmetric. Specifically, the self-connections represented by diagonal elements are

not of interest in the FC matrix. Thus, the relevant information is effectively captured

by either its lower or upper triangular form (Amico et al., 2017). Moreover, the FC

matrix demonstrates a dependence structure across edges in the brain connectome

and requires careful modeling. For example, ICA stands out as one of the most

popular techniques among the various blind source separation methods developed

for decomposing neuroimaging data. However, existing ICA methods have mainly

focused on decomposing observed neural activity signals such as the blood oxygen

level-dependent (BOLD) series from fMRI or the electrode signal series from EEG

(Calhoun et al., 2001; Beckmann and Smith, 2004; Shi and Guo, 2016; Wang and

Guo, 2019). The distinct properties of brain connectivity matrices, in contrast to

activity data, limit the applicability of many existing methods. Recently, Amico et al.

(2017) introduced connICA, a framework for connectivity-independent component

analysis that vectorizes connectivity matrices and applies existing ICA algorithms for

decomposition. While it offers a valuable tool for decomposing connectivity matrices,

it treats each connection as an independent sample, which disregards the dependence
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structure across edges in the brain connectome. Meanwhile, this approach results in a

large number of edge-wise parameters for estimation, leading to reduced accuracy. In

the absence of sparsity regularization, connICA tends to produce densely connected

components, thereby increasing the likelihood of spurious findings.

An extended follow-up challenge related to the first two challenges is the decompo-

sition of more complex FC matrices, such as those in dynamic or longitudinal cases.

Much of the research on brain connectome analysis has focused on stationary or static

functional connectivity, which are association measures obtained using the whole

fMRI BOLD series. However, studies have shown that brain connections dynamically

reconfigure over seconds and are better captured dynamically (Chang and Glover, 2010;

Cribben et al., 2012; Ekman et al., 2012). Various techniques have been developed to

analyze dynamic functional connectivity (dFC), including the sliding window method

(Chang and Glover, 2010; Sakoğlu et al., 2010; Kiviniemi et al., 2011; Allen et al., 2014),

Hidden Markov Model (HMM) (Baker et al., 2014; Eavani et al., 2013), dynamic con-

ditional correlations (Lindquist et al., 2014), dynamic connectivity regression (DCR)

(Cribben et al., 2012, 2013), and time-frequency approaches (Chang and Glover, 2010;

Demirtaş et al., 2016; Yaesoubi et al., 2015). These methods produce sequences of

symmetric connectivity matrices, with each entry representing connectivity measures

like correlations between brain regions, enabling the investigation of non-stationary

changes in brain connectivity during imaging. There is a need to develop methods for

decomposing these dFC matrices to study the temporal profiles of connectivity traits

across time and investigate non-stationary changes in brain connectivity throughout

the imaging acquisition. In the meantime, while most FC analyses consider data from

a single time point, contemporary neuroimaging research is increasingly embracing

longitudinal data collection, involving multiple scans over time (Weiner et al., 2017;

Garavan et al., 2018). Notable examples include the Adolescent Brain Cognitive

Development (ABCD) Study (Garavan et al., 2018), the largest longitudinal study on
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adolescent brain development, and the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) (Petersen et al., 2010), which collects longitudinal resting-state fMRI images

to study Alzheimer’s progression. To fully harness the potential of longitudinal brain

connectivity data, there is a growing need to develop methodologies that effectively

decompose longitudinal brain connectivity, enabling a deeper understanding of changes

in connectivity patterns over time.

Regarding the third challenge, participant head motion during scanning sessions

presents a pervasive issue in neuroimaging (Van Dijk et al., 2012; Baum et al., 2018),

contributing to artifacts in brain connectivity analysis (Maknojia et al., 2019). Early

studies found that brain connections change during neurodevelopment, with short-range

connections weakening and long-range ones strengthening. However, these patterns can

be confounded by the discovery that motion causes the same patterns (Van Dijk et al.,

2012; Power et al., 2014a). Careful handling of motion artifacts is crucial, especially in

studies involving children with conditions like Autism Spectrum Disorder (ASD) (Deen

and Pelphrey, 2012) and Attention-deficit/hyperactivity disorder (ADHD) (Castellanos

and Aoki, 2016; Aoki et al., 2018). Neglecting to address these artifacts can lead to

spurious differences in brain connectivity measures between groups of interest (Power

et al., 2012; Deen and Pelphrey, 2012). There is extensive literature on methods to

mitigate motion artifacts in neuroimaging. In resting-state fMRI studies, multiple

steps are typically applied. During preprocessing, confound regression is commonly

applied to remove the effects of motion parameters, global signal, cerebral spinal fluid

signal, and white matter from the fMRI time series (Ciric et al., 2017). Despite these

efforts, residual relationships between motion and functional connectivity may persist

due to potential nonlinear associations (Deen and Pelphrey, 2012). Consequently,

motion quality control (QC) procedures are implemented, often involving the exclusion

of scans with excessive motion based on various criteria outlined in the literature

(Power et al., 2014a; Ciric et al., 2017). However, although removing scans may help
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mitigate motion artifacts across modalities, it can result in drastic data loss, some

studies of more than 60% (Marek et al., 2022) and introduce selection bias due to the

alteration of the study population (Cosgrove et al., 2022; Nebel et al., 2022). There is

a need to develop a statistical method that makes more efficient usage of the data and

avoids selection bias in order to draw unbiased inferences about brain development.

Topic I of my dissertation addresses challenges in analyzing brain functional con-

nectivity matrices, focusing on dynamic and longitudinal FC analysis. For dynamic

FC, we introduce dyna-LOCUS, a novel regularized blind source separation (BSS)

method to decompose matrices and reveal latent connectivity traits and their tempo-

ral expression profiles. Using low-rank factorization and innovative regularizations,

dyna-LOCUS efficiently maps dynamic brain connectome traits, characterizes tem-

poral changes in observed dFC, and identifies whole-brain dFC states. We propose

an iterative Node-Rotation algorithm for learning dyna-LOCUS, validated through

simulations. Applying dyna-LOCUS to the Philadelphia Neurodevelopmental Cohort

(PNC) uncovers latent traits, identifies key brain connections, and explores gender

differences in executive function-related connectivity during neurodevelopment. For

longitudinal FC matrices, we develop longitudinal-LOCUS, using blind source separa-

tion with low-rank structures and angle-based sparsity regularization. An iterative

node-rotation algorithm solves its non-convex optimization problem, showing superior

accuracy in recovering latent sources and coefficients. Applied to Adolescent Brain

Cognitive Development (ABCD) data, longitudinal-LOCUS identifies time-specific

neural circuits and captures neurodevelopmental differences between genders in brain

connectivity traits.

Topics II and III of my dissertation address the challenge of head motion during

brain scans, which can introduce spurious associations in studies comparing functional

connectivity across groups. In Topic II, we propose a causal mediation framework

to disentangle neural and motion-induced group differences. Our approach leverages
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machine learning to understand how motion influences brain connectivity, validated

through theoretical analysis and simulations. We apply this framework to the Autism

Brain Imaging Data Exchange (ABIDE) study, investigating connectivity differences

between children with and without autism spectrum disorder (ASD). In Topic III, we

expand on the second project by developing MoCo, an R package for motion control in

MRI studies. In addition to motion control, MoCo allows for missingness in MRI data

due to collection or preprocessing issues. We demonstrate MoCo with examples related

to ASD and attention-deficit/hyperactivity disorder (ADHD), showing it effectively

mitigates motion artifacts, enhances data utilization, addresses selection biases, and is

more robust to preprocessing pipelines.



Chapter 2

Unveiling Hidden Sources of

Dynamic Functional Connectome

through a Novel Regularized Blind

Source Separation Approach

2.1 Introduction

The human brain is a complex network consisting of a large number of functionally

linked regions and their connections (Rubinov and Sporns, 2011; Van Den Heuvel and

Pol, 2010). The analysis of brain connectomes has emerged as a key area of focus

in neuroscience research, providing unprecedented insights into the organization of

the brain and its crucial role in neurodevelopment, aging, behavior, as well as the

progression and treatment of brain-related diseases. (Bullmore and Sporns, 2009;

Deco et al., 2011; Satterthwaite et al., 2014; Kemmer et al., 2018; Wang et al., 2016;

Wang and Guo, 2023). Functional connectivity (FC) derived from functional imaging

such as fMRI has been measured and studied in most neuroimaging studies nowadays.

8



9

Much of the research on brain connectome analysis has focused on studying stationary

or static functional connectivity. Studies have shown that the brain connections

undergo dynamic reconfiguration over seconds (Chang and Glover, 2010; Cribben

et al., 2012; Ekman et al., 2012), indicating that it is better characterized dynamically.

Network reconfigurations may occur when the brain responds to external stimuli,

and are potentially even more prominent in the resting state when mental activity

is unconstrained (Leonardi et al., 2014; Allen et al., 2014). In recent years, various

techniques have been developed to analyze dynamic functional connectivity (dFC).

These include the widely used sliding window method (Chang and Glover, 2010;

Sakoğlu et al., 2010; Kiviniemi et al., 2011; Allen et al., 2014), as well as other

approaches such as Hidden Markov Model (HMM)(Baker et al., 2014; Eavani et al.,

2013), dynamic conditional correlations (Lindquist et al., 2014), dynamic connectivity

regression (DCR) (Cribben et al., 2012, 2013), time-frequency approaches (Chang and

Glover, 2010; Demirtaş et al., 2016; Yaesoubi et al., 2015), and more. Generally, the

dFC methods produce a sequence of symmetric connectivity matrices. Each entry in

these matrices corresponds to a connectivity measure, such as the correlation between

pairs of brain regions or nodes. These dFC matrices are analyzed to investigate

non-stationary changes in brain connectivity over the course of imaging acquisition.

The organization of the brain is a highly intricate system that involves a vast

network of neural circuits. The observed dFC matrices reflect collected connectivity

patterns across the brain, representing aggregated information contributed by various

underlying neural circuits. These underlying circuits can be considered as latent

sources or connectivity traits, which represent a collection of connections between

different brain regions that tend to occur together during neural processing. The

observed dFC data are a combination of these latent connectivity traits. The network

reconfigurations in dFC are a result of temporal changes in the expression levels of

these latent traits. Gaining a reliable understanding of these latent connectivity traits
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is crucial for obtaining valuable insights into the architecture and dynamics of brain

organization, both in healthy and diseased conditions. For instance, in the field of

neurodevelopmental and aging research, studies have demonstrated that different

neural circuits undergo maturation at distinct ages during early brain development

(Hoff et al., 2013), and they also experience varying rates of deterioration as the brain

ages in the elderly population (DeCarli et al., 2012; Iannilli et al., 2017). Additionally,

research studies have revealed that demographic or disease-related alterations in the

brain connectome typically manifest within specific neural circuits rather than affecting

the entire brain connectome as a whole (Mayberg, 2003; Sorg et al., 2007; Williams,

2016). Furthermore, these connectivity traits demonstrate different characteristics.

Investigations into dynamic connectivity have uncovered considerable variations in

the temporal expressions of different neurocircuitry subsystems. Certain subsystems

demonstrate a higher degree of persistence over time, while others exhibit more

transient characteristics (Chai et al., 2017; Baker et al., 2014; Karahanoğlu and

Van De Ville, 2015). To gain insights into the brain connectome, it is essential to

comprehend the composition and temporal expression profiles of its latent connectivity

traits, as well as the ways in which they synchronize and interact with each other.

This understanding is critical for unraveling the complex dynamics and functional

organization of the brain.

Existing methods for dFC primarily focus on identifying whole brain dFC states

that deviate from stationary FC patterns, without explicitly revealing the underlying

connectivity traits and their interplay that give rise to different dFC states (Allen

et al., 2014; Leonardi et al., 2013; Karahanoğlu and Van De Ville, 2015). There is a

critical need for reliable methods to uncover the latent connectivity traits within dFC

and characterize their temporal expressions, which drive the reconfiguration of dFC

patterns. Several significant challenges arise in addressing this need. Firstly, whole

brain dFC matrices are high dimensional, often comprising hundreds of nodes and
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hundreds of thousands of connections (Chung, 2018; Solo et al., 2018; Wu et al., 2013;

Wang et al., 2016). This enormous number of connections increases the likelihood

of spurious findings when identifying significant edges within the connectivity traits

and when examining brain-behavior associations. Moreover, there is a lack of suitable

methods to decompose observed dFC matrices and uncover the underlying connectivity

traits and their temporal expressions. Most existing source separation methods, such as

Independent Component Analysis (ICA) (Calhoun et al., 2001; Beckmann and Smith,

2004; Shi and Guo, 2016; Wang and Guo, 2019) have mainly focused on decomposing

observed neural activity signals such as the blood oxygen level-dependent (BOLD)

series from fMRI or the electrodes signal series from EEG. The distinct properties

of brain connectivity matrices, in contrast to activity data, limit the applicability of

many existing methods. In recent years, Miller et al. (2016) applied tICA, sICA, and

PCA methods to decompose dFC data to reveal underlying basis correlation patterns

(CPs). Amico et al. (2017) introduced a connectivity-independent component analysis

framework (connICA), which vectorizes connectivity matrices and utilizes existing

ICA algorithms for decomposition. While the existing ICA, PCA methods, and

connICA provide a valuable tool for decomposing connectivity matrices, it has certain

limitations that affect the accuracy and reliability of extracting latent connectivity

components. For instance, the method treats each connection as an independent

sample, disregarding the dependence structure across edges in the brain connectome.

This results in a large number of edge-wise parameters for estimation and loss of

accuracy. Additionally, without sparsity regularization, the method generates densely

connected traits, increasing the likelihood of spurious findings.

In this paper, we propose dyna-LOCUS which is a novel low-rank decomposition

of brain connectivity with uniform sparsity for dynamic FC. dyna-LOCUS is a fully

data-driven blind source separation method that decomposes dFC matrices to extract

latent connectivity traits and characterize their dynamic temporal expression profiles.
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dyna-LOCUS is a general dFC source separation method that is applicable to con-

nectivity measures derived from various aforementioned dFC techniques. Specifically,

dyna-LOCUS decomposes temporally concatenated dFC measures into a combination

of latent source signals weighted by temporal mixing coefficients. Each latent source

signal corresponds to an underlying connectivity trait and can be mapped back to

a connectivity matrix. The mixing coefficients characterize the dynamic temporal

expression profile of the connectivity trait. To enhance the accuracy and reliability of

recovering the connectivity traits and their temporal profiles, dyna-LOCUS incorpo-

rates several innovative and neurobiologically-motivated strategies. Firstly, we employ

a low-rank structure to model the connectivity traits. This approach is motivated by

the observation that brain connectivity trait patterns often exhibit specific structures,

such as block-diagonal or banded structures, which can be effectively captured using

low-rank matrix factorization techniques (Zhou et al., 2013). By incorporating a

low-rank structure, we significantly reduce the number of parameters involved in

the estimation process, leading to improved accuracy in extracting the underlying

connectivity traits. We then propose a novel angle-based sparsity regularization on

the recovered connectivity traits which further increases the reliability of the results

by effectively reducing the presence of spurious edges and identifying connections that

are genuinely relevant to a specific trait. Furthermore, to improve the accuracy in

estimating the temporal expression profiles of the connectivity traits, we propose to

include a temporal smoothness regularization in the optimization function. This is

motivated by the observation that dynamic FC series typically exhibit a certain degree

of temporal coherence, with general patterns displaying continuity across adjacent

time windows.

Another major advantage of the dyna-LOCUS is that it provides a highly efficient

and convenient approach for brain-behavior modeling and characterization of whole

brain dFC states, which are two major research focuses in dynamic connectome studies.
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In dyna-LOCUS, the extracted connectivity traits can be viewed as a set of basis

connectivity matrices and the mixing coefficients are trait loadings by projecting

the observed dFC matrices onto the connectivity trait basis matrices. These trait

loadings are essentially low-dimensional representations of the original dFC matrices,

characterizing the temporal expression profiles of the connectivity traits. By linking

trait loadings with individual demographics, behavioral and clinical measures, we

can perform brain-behavior modeling based on dFC to investigate age, gender, or

disease-related distinctions in particular dynamic connectome traits. Furthermore,

we introduce a novel approach for detecting whole-brain dFC states by employing

techniques, such as clustering, on low-dimensional trait loadings. This method is not

only computationally efficient but also generates dFC states that are sparser, more

reliable, and easier to interpret.

To learn the dyna-LOCUS model, we formulate an optimization function that

possesses the desirable property of block multi-convexity. This property ensures the

existence of multiple convex subproblems within the optimization framework, facilitat-

ing more efficient and reliable parameter estimation. Furthermore, we introduce an

efficient node-rotation algorithm, which enhances the effectiveness and computational

efficiency of the estimation process. The proposed model and the estimation algorithm

demonstrate superior performance in recovering the underlying connectivity traits

through extensive simulation studies. We apply dyna-LOCUS to investigate latent con-

nectivity traits underlying resting state fMRI of the Philadelphia Neurodevelopmental

Cohort (PNC) study. dyna-LOCUS successfully identifies latent connectivity traits

that exhibit sparse and easily interpretable patterns, many of which demonstrate high

reproducibility. Using the temporal mixing coefficients from dyna-LOCUS, we are able

to characterize the temporal expression profiles of each of the connectivity traits. This

allows us to investigate the dynamic properties of the traits including their energy

level and temporal variation and how connectivity traits are synchronized with each
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other in their dynamics. By employing our novel procedure based on dyna-LOCUS,

we successfully identify seven whole-brain dFC states in the PNC study. Notably,

our findings exhibit nice agreement with the results obtained using existing whole-

brain dFC methods. However, our method and results offer several key advantages

including significantly reducing computation time, generating more parsimonious

and interpretable whole-brain dFC states, and providing deeper insights into the key

latent connectivity traits that drive each state. Furthermore, leveraging results from

dyna-LOCUS analysis of the PNC study, we find significant gender differences in the

developmental changes in the temporal expression of a connectivity trait driven by the

executive function network. This finding introduces new insights to previous research

on developmental changes in executive function from childhood to adolescence.

The rest of the paper is organized as follows. In Section 2, the proposed model,

estimation, and tuning parameter selection steps are introduced. Section 3 illustrates

the strength of our method compared with other decomposition methods via simu-

lation studies. In Section 4, we apply the proposed method to investigate dynamic

connectivity for the PNC study. Finally, discussions and conclusions are presented in

Section 5.

2.2 Materials and Methods

In this section, we introduce dyna-LOCUS, a regularized blind source separation

method designed to decompose dynamic functional connectivity (dFC) matrices into

a product of latent connectivity traits and temporal mixing matrices. It models the

latent traits using a low-rank matrix factorization which is well-suited for connectivity

matrices. To reduce spurious findings due to large number of edges in brain networks,

we develop a novel angle-based element-wise sparsity regularization on the extracted

connectivity traits. In addition, we propose a smooth regularization for the temporal
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mixing time series to account for the similarity in temporally adjacent dynamic

connectivity matrices.

2.2.1 dyna-LOCUS model

dyna-LOCUS is applicable to decomposing dynamic FC measures derived from var-

ious methods such as sliding window method (Allen et al., 2014; Hutchison et al.,

2013), jackknife correlation (Thompson et al., 2017a,b), temporal derivatives (Shine

et al., 2015), wavelet coherence (Betzel et al., 2017), dynamic conditional correlation

(Lindquist et al., 2014), and more. These methods generate connectivity matrices rep-

resenting connections between different brain regions at a sequence of time points. For

illustration purposes, we present dyna-LOCUS for decomposing connectivity matrices

derived from the sliding window approach. The sliding window approach is a widely

adopted strategy for investigating dynamic changes in resting-state FC. This technique

involves partitioning the scanning time into small windows of fixed duration. These

windows can be constructed using either a rectangular window with equal weights

or a tapered window that gradually reduces the weights toward the edges. Within

each time window, the fMRI BOLD series is utilized to compute the dFC matrix.

The window is then shifted in time by a specified number of data points, with partial

overlap between consecutive windows. By sliding these windows across the entire

scanning session, the method calculates a series of dFC matrices that characterize

the time-varying connectivity throughout the scan. Suppose we have N subjects, and

each subject has fMRI BOLD signal series from V nodes or regions of interest at nt

time points. For subject i, we slide a tapered window (Allen et al., 2014; Rashid et al.,

2014) to obtain a series of V × V connectivity matrices denoted as Yi1,Yi2, ...,YiT

with T being the total number of windows. Yit(t = 1, . . . , T ) is the connectivity

matrix based on the tth sliding window, where Yit(u, v) ∈ R represents the connection

between node u and v which is obtained by a proper transformation of the brain
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connectivity measure. Since the connectivity matrix Yit is symmetric, and the diag-

onal, which represents self-relationships in the network, is typically not of interest,

we define a vector yit based on the upper triangular elements of Yit, i.e. yit = L(Yit)

where L(Yit) = [Yit(1, 2),Yit(1, 3), ...,Yit(V − 1, V ))]′. Here, L : RV×V −→ Rp with

p = V×(V−1)
2

.

We propose the following dyna-LOCUS model to decompose the multi-subject

dynamic connectivity matrices to extract latent connectivity traits. Specifically, dyna-

LOCUS separates the observed connectivity data for the ith subject at the tth time

window as combinations of q latent connectivity sources/traits, that is:

yit =

q∑
ℓ=1

aitℓsℓ + eit, (2.1)

where sℓ ∈ Rp(ℓ = 1, ..., q) is the source signal of the ℓth latent connectivity source or

trait, which is assumed to be independent across the q traits. A connectivity trait

represents a set of brain connections that tend to occur together. The source signal sℓ

includes the weights of each of the p brain connections in the ℓth connectivity trait.

By mapping connectivity trait sℓ back to the V × V connectivity matrix form, we

can recover the spatial composition of the underlying connectivity pattern. {aitℓ} are

the mixing coefficients or trait loadings. They represent the presence or prominence

of the ℓ’s connectivity trait in ith subject at time point t. eit ∈ Rp is an error term

independent of source signals. The number of latent sources, i.e. q, can be determined

using methods such as the Laplace approximation (Minka, 2000) or based on the

reproducibility and interpretability of the extracted latent sources. We can also rewrite

the model (3.1) in the following matrix form aggregating across time windows and

subjects:

Y = AS +E, (2.2)

where Y =

[
y11, . . . ,y1T , . . . ,yN1, . . . ,yNT

]′

∈ RNT×p is the multi-subject dynamic
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connectivity data, S = [s1, . . . , sq]
′ ∈ Rq×p is the connectivity trait matrix, A =

{aitℓ} ∈ RNT×q is the mixing or trait loading matrix, andE =

[
e11, . . . , e1T , . . . , eN1, . . . , eNT

]′

∈

RNT×p.

Motivated by the observations that brain connectivity matrices often have block

or banded structures, we model connectivity traits with a low-rank structure which

can efficiently capture such kind of characteristics (Zhou et al., 2013) using a much

smaller number of parameters. Specifically,

sℓ = L(XℓDℓX
′
ℓ) = L(

Rℓ∑
r=1

d
(r)
ℓ x

(r)
ℓ x

(r)
′

ℓ ), ℓ ∈ 1, 2, ..., q. (2.3)

Here, the source signal sℓ is modeled via a low-rank factorization where Xℓ =

[x
(1)
ℓ , . . . ,x

(Rℓ)
ℓ ] ∈ RV×Rℓ with rank Rℓ < V and each tensor factor x

(r)
ℓ (r = 1, . . . , Rℓ)

is a V × 1 vector with unit norm, i.e. ∥x(r)
ℓ ∥2 = 1 for identifiability purpose. Dℓ is a

diagonal matrix with diagonal elements dℓ = (d
(1)
ℓ , .., d

(Rℓ)
ℓ ). The low-rank factorization

implies the V nodes reside in a reduced subspace with the dimension of Rℓ, i.e.

sℓ = L(
∑Rℓ

r=1 d
(r)
ℓ x

(r)
ℓ x

(r)′

ℓ ) where the rth tensor factor x
(r)
ℓ ∈ RV×1 represents the

latent coordinates of the V nodes in the rth dimension and each row of Xℓ, i.e.

xℓ(v) ∈ RRℓ×1, represents the latent coordinates of the vth node in the Rℓ-dimensional

latent subspace. d
(r)
ℓ reflects the contribution of the rth dimension in generating

sℓ. Note that we specify trait-specific rank Rℓ in our low-rank model (2.3) which

provides the flexibility to accommodate various connectivity traits with different

network properties and topological structures.

The proposed low-rank model offers several advantages for modeling the brain

connectome. Firstly, by incorporating a low-rank structure, the model achieves a

substantial reduction in the number of parameters required to represent the brain

connections. The number of parameters decreases from a quadratic complexity of

O(V 2) to a linear complexity of O(V ). This reduction in parameter space improves
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computational efficiency and alleviates the risk of overfitting, particularly in scenarios

where the number of brain regions (V ) is large. Secondly, the low-rank factorization

offers appealing neuroscience interpretations in modeling brain connectivity. In

the low-rank model, a node v is characterized by its latent coordinates in the Rℓ-

dimensional subspace, i.e. xℓ(v), which potentially reflect the node’s underlying

neural activity. The connection between two nodes in the ℓth trait is modelled as

Sℓ(u, v) = xℓ(u)
′Dℓxℓ(v), which is the inner product between their latent coordinates.

This implies the connection between the nodes depends on the similarity between the

neural activity of the nodes characterized by their latent coordinates, which aligns with

the understanding of brain connectivity in neuroscience (Friston et al., 1993; Friston,

2011). Another desirable property of this model is that all the brain connections

involving a node v are based on the node’s latent coordinate xℓ(v) and hence are

inherently related. This appropriately accounts for the dependence structure across

edges in the brain connectome, which is disregarded by many existing methods. Finally,

the latent coordinate xℓ(v) can help identify key nodes driving each connectivity trait.

To this end, we propose the following node contribution index to characterize a node’s

contribution to a connectivity trait,

gℓ(v) = ||D̃
1
2
ℓ xℓ(v)||22, (2.4)

where D̃ℓ is a scaling matrix based on Dℓ that scales node v’s Rℓ-dimensional latent

coordinate xℓ(v) with the dimensions’ contribution in generating the source signals.

The index gℓ(v) measures the scaled magnitude of the node v in the latent subspace

of the connectivity trait and reflects the contribution of this node to generating the

connectivity trait. The node contribution index can be used to identify key nodes

driving each connectivity trait.

We present a schematic plot of the proposed dyna-LOCUS model in Figure 2.1. The



19

model decomposes observed dFC measures to generate two key results: (1) the source

signals {sℓ} that can be mapped back to the brain to depict the spatial composition

of the connectivity traits, and (2) the trait loadings {aitℓ} that characterize the

temporal expression profiles of the connectivity traits. The information provided by

dyna-LOCUS model offers valuable information that can assist in understanding the

intricate dynamics and underlying organization of the brain connectome.

Figure 2.1: Schematic plot of dyna-LOCUS

2.2.2 Regularizations in dyna-LOCUS learning

To enhance the reliability in mapping dynamic functional connectivity traits, we inte-

grate regularizations in dyna-LOCUS learning. These include a sparsity regularization

for recovering the spatial source maps of the connectivity traits to reduce spurious

connections and a temporal smoothness regularization for recovering the temporal

expression profiles of the connectivity traits. The motivation for the spatial sparsity

regularization derives from existing findings that functional connections in neural
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circuits exist only in a proportion of region pairs across the brain (Bullmore and Sporns,

2009; Lee et al., 2011; Huang et al., 2010). Given the enormous number of region pairs

in a connectivity matrix, appropriate sparsity control is needed in order to obtain

parsimonious results in recovering the spatial source maps of the connectivity traits.

To this end, we propose a novel sparsity method that aims to achieve element-wise

sparsity on the reconstructed connectivity traits based on the low-rank structure.

Another observation from previous studies (Monti et al., 2017; Zhang et al., 2021)

and our experiments is that the overall pattern of dynamic functional connectivity

matrices generally demonstrates temporal similarity between adjacent time windows.

To account for this, we include a temporal smoothness regularization on the trait

loading series.

With the regularizations, the proposed dyna-LOCUS model is learned via the

following optimization,

min
N∑
i=1

T∑
t=1

||yit−
q∑

ℓ=1

aitℓL(XℓDℓX
′
ℓ)||22+ϕ

q∑
ℓ=1

∑
u<v

|xℓ(u)
′Dℓxℓ(v)|+λ

N∑
i=1

T∑
t=2

||ait−ai(t−1)||22

(2.5)

where ϕ is the tuning parameter for the sparsity control and λ is the tuning parameter

for the temporal smoothness regularization, ait ∈ Rq is the tth row of the ith

participant’s trait loading matrix representing the ith participant’s loadings on the

q connectivity traits at time t. The first term in the optimization function (3.4)

measures the closeness between the observed dFC and the reconstructed dFC based

on the dyna-LOCUS model. The second term is the sparsity regularization aiming

to achieve element-wise sparsity on the connectivity traits modeled via the low-rank

structure, i.e. Sℓ(u, v) = xℓ(u)
′Dℓxℓ(v). The sparsity penalty term in our model aims

to minimize the sum of inner products of the latent coordinates for all pairs of nodes

in the brain. This inner product corresponds to the angle between two nodes in the
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latent subspace. Consequently, our sparsity penalization can be understood as an

angle-based regularization. By using an angle-based sparsity regularization, we are

able to induce sparsity in the dependencies between pairs of nodes. This approach is

both intuitive and theoretically sound, because our objective is to achieve sparsity in

the connections between nodes. It is worth noting that in addition to the L1 norm

specified in (3.4), alternative penalization functions such as SCAD (Fan and Li, 2001)

can also be adopted for our sparsity regularization. The third term in (3.4) is the

regularization for temporal smoothness in the mixing matrix and is based on the

differences in the temporal mixing coefficients at adjacent time points.

Prior to the decomposition, several preprocessing steps, including centering, dimen-

sion reduction, and whitening, that are commonly adopted in blind source separation,

are applied to the multi-subject connectivity data Y . These preprocessing steps

facilitate the subsequent decomposition by reducing the computational load and avoid-

ing overfitting (Hyvärinen et al., 2001). Following the preprocessing procedures of

the previous work (Beckmann and Smith, 2004; Shi and Guo, 2016; Wang and Guo,

2023), we first demean Y and then perform the dimension reduction and whitening

as Ỹ = HY with H being the whitening matrix. The detailed description of H

is available in Appendix A. The preprocessed data Ỹ is of dimension q × p where

the columns correspond to p connections in the brain. With the preprocessing, the

dyna-LOCUS model in (2.2) can be rewritten on the reduced and sphered space as

follows:

Ỹ = ÃS + Ẽ, (2.6)

where Ã = HA = {ãiℓ} ∈ Rq×q, Ẽ = HE. Note that the dimension reduction in the

preprocessing is performed on the row space of Y , which corresponds to the subject

and time domain, and does not affect the column space of Y which corresponds to

the connectivity domain. Therefore, the connectivity trait S is unaffected by the

preprocessing. As in previous blind source separation methods (Hyvärinen and Oja,
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2000; Beckmann and Smith, 2004), the whitening in the preprocessing leads to an

orthogonal mixing matrix on the reduced space Ã which facilitates the subsequent

model estimation. With the preprocessed data and the orthogonal mixing matrix, the

final optimization function for dyna-LOCUS is

minÃ,{Xℓ,Dℓ}

q∑
l=1

||Ỹ ′
ãℓ − L(XℓDℓX

′
ℓ)||2F + ϕ

q∑
ℓ=1

∑
u<v

|xℓ(u)
′Dℓxℓ(v)|+ λ||WÃ||2F

(2.7)

where ãℓ is the ℓth column of Ã, H∗ is the dewhitening matrix, andW = R∗H∗ where

R∗ is a temporal contrasting matrix that measures the differences in the temporal

mixing coefficients at adjacent time points. The closed forms of the whitening matrix

H and the dewhitening matrix H∗, as well as the derivation of the final optimization

function (2.7), are provided in Appendix 2.5.1.

2.2.3 Estimation Algorithm and Tuning parameters selection

The objective function in (2.7) is non-convex but can be shown to be block multi-

convex. A function is block multi-convex if there exists a partition of the set of

parameters satisfying that the function is convex with respect to each of the indi-

vidual arguments in the partition, while holding the others fixed. We can show the

optimization function (2.7) is block multi-convex with respect to the partition of

P = {x1(1), ..,x1(V ), . . . ,xq(V ),d1, ..,dq, Ã}. Based on the block multi-convexity

property, we derive an efficient node-rotation learning algorithm with closed-form

solutions in each updating step. We initialize the algorithm with
ˆ̃
A

(0)

, {X̂(0)
ℓ , D̂

(0)
ℓ }

derived from estimates based on existing methods such as connICA. The algorithm

then estimates the parameters by iterating the following updating steps: Step 1:

Updating Xℓ. Following Wang and Guo (2023), we develop a node-rotation algorithm

that updates Xℓ at one of the node v while conditioning on the rest of the nodes

and then rotating across the nodes. Specifically, at the kth iteration, we update
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x̂
(k)
ℓ (v), v = 1, .., V , conditioning on

ˆ̃
A

(k−1)

, D̂
(k−1)
ℓ and X̂ℓ(−v)(k−1). Step 2: Updat-

ing Dℓ. The second step updates the diagonal estimates of the diagonal of Dℓ, i.e.

dℓ, ℓ = 1, ..., q, conditioning on the estimates of X̂
(k)
ℓ and

ˆ̃
A

(k−1)

.Step 3: Updating Ã.

An advantage of our proposed temporal smoothness regularization is that it admits an

analytical form of solution to the temporal mixing matrix Ã. With that, we obtain

the updated mixing matrix
ˆ̃
A

(k)

based on the estimates of {X̂ℓ

(k)
, D̂ℓ

(k)
}. The details

of the node-rotation estimation algorithm are provided in Appendix 2.5.2. Devel-

oped based on the block multi-convexity of the objective function, the node-rotation

algorithm has the appealing theoretical property that updating each block of the

parameters can be performed via convex optimization. Though being a highly efficient

algorithm with analytic solutions, the node-rotation algorithm does involve rotating

across the nodes to update the latent coordinates of each node. To further increase

computation efficiency in learning dyna-LOCUS, we also develop an alternative esti-

mation algorithm that simultaneously updates the latent coordinates of all the nodes

using an eigenvalue decomposition. This alternative estimation algorithm could help

reduce computation time for studies with large sample sizes and brain atlases involving

a large number of nodes. Details on the alternative algorithm are presented in Section

7 of the Supplementary Material.

The optimization function in (2.7) involves three sets of tuning parameters: the

rank parameters {Rℓ}qℓ=1 that control the dimension of the subspace of the connectivity

traits, ϕ which regulates the influence of the sparsity penalization for the connectivity

traits, and λ which regulates the influence of the temporal smoothness in the mixing

matrix. In the dyna-LOCUS model, we specify trait-specific rank parameters {Rℓ}qℓ=1

in the low-rank factorization in order to accommodate the difference in the topology

and structure across connectivity traits. However, selecting the appropriate rank

parameter for each trait can be challenging using conventional approaches. To address

this challenge, we propose an adaptive selection approach (Wang and Guo, 2023)
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to efficiently choose {Rℓ} for the q latent sources. One of the main objectives of

incorporating a low-rank structure is to utilize fewer parameters while effectively

capturing the connectivity source signals. Therefore, our approach chooses the rank

parameter Rℓ to achieve a desired level of similarity between the estimated source

signals with the low-rank structure, i.e. ŝℓ, and the unconstrained source signal

estimate obtained without assuming the low-rank structure, which is denoted as ŝ∗ℓ .

The unconstrained estimate ŝ∗ℓ can be conveniently obtained from our algorithm as an

intermediate result before we project the estimates onto the reduced subspace spanned

by the low-rank structure. Specifically, Rℓ is selected to be the smallest integer value

such that,

∥ŝℓ − ŝ∗ℓ∥22/∥ŝ∗ℓ∥22 ≤ 1− ρ, (2.8)

where ρ ∈ (0, 1) is a proportion parameter controlling the desired level of similarity

between the unconstrained and low-rank structured estimates for the latent sources.

Once the proportion parameter ρ is specified, the proposed approach adaptively selects

the rank for each of the latent sources. The proposed method not only allows us to

adaptively select an appropriate rank parameter to capture the varying patterns of

each connectivity trait but also considerably simplifies the challenging task of selecting

q rank parameters to only select a single parameter ρ. With the proposed adaptive

selection approach, we propose to select ρ and ϕ, which are parameters related to

learning the latent connectivity sources, via a BIC-type criterion,

BIC = −2

q∑
i=1

log(g(ỹi;

q∑
j=1

ˆ̃aij ŝj; ˆ̃σIp)) + log(N)

q∑
j=1

||ŝj||0, (2.9)

where ỹi, i = 1, ..., q is the ith row in Ỹ , {ˆ̃aij} are the estimated mixing coefficients

of preprocessed connectivity data, ŝj, j = 1, ..., ℓ, is the estimated connectivity trait,

ˆ̃σ
2
= 1

qp

∑q
i=1 ||ỹi −

∑q
j=1

ˆ̃aij ŝj||22, g is the pdf of a multivariate Gaussian distribution

and ||.||0 denotes the L0 norm which evaluate the number of non-zero elements in a
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vector. The BIC criterion seeks to achieve a balance by maximizing the likelihood

of the observed dFC data while simultaneously minimizing the non-zero elements

in the latent connectivity sources for the purpose of sparsity. The BIC criterion

serves as a valuable guide in selecting the tuning the parameters ϕ and ρ. However,

it is worth noting that the choice may not always be straightforward solely based

on BIC in practice. Therefore, besides the BIC criterion, users can also employ

supplementary selection strategies, such as specifying tuning parameters based on

the desired sparsity level and the neuroscience interpretations they aim to achieve in

the extracted connectivity traits. After obtaining ϕ and ρ, we select λ based on the

goodness-of-fit of the model by computing the mean-squared reconstruction error, i.e.

||Y − ÂŜ||2F .

2.2.4 Reproducibility/Reliability of the extracted connectiv-

ity traits

One important criterion for evaluating the connectivity traits extracted from the

imaging data is the reproducibility of the traits across replicated samples which

reflects the reliability of the traits (Amico et al., 2017; Wang and Guo, 2023). To this

end, we assess the reproducibility of the connectivity traits extracted by dyna-LOCUS

from the PNC study across replicated bootstrap data samples using the following

reliability index for blind source separation methods (Kemmer et al., 2018),

RIℓ =

1
B

∑B
b=1{h(ŝℓ, ŝ

(b)
ℓ )} − 1

Bq

∑B
b=1

∑q
j=1{h(ŝℓ, ŝ

(b)
j )}

1− 1
B

∑B
b=1{h(ŝℓ, ŝ

(b)
ℓ )}

, (2.10)

where h is a similarity measure such as the correlation coefficient or Jaccard Index,

B is the total number of replicated samples (i.e. bootstrap data samples), ŝℓ is the

latent sources extracted from the original data, and ŝ
(b)
ℓ is the latent source estimated

from the bth bootstrap data sample that is matched with ŝℓ from the original data.
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Following previous work (Keeratimahat and Nichols, 2022; Wu et al., 2022), we employ

a greedy matching algorithm to match the latent sources from the bootstrap sample

and the original data.

The reliability index RIℓ(ℓ = 1, . . . , q), provides a scaled and chance-corrected

measure to assess the reproducibility of each latent source. The index reflects the

similarity of an extracted latent source from the original data and its matching

estimates across the replication samples, removing by-chance similarity between the

original latent source and any of the q extracted latent sources estimates. It is further

scaled by its maximum possible value so that it typically ranges from 0 to 1, where RIℓ

= 0 indicates the ℓth latent source is not reproducible across replication samples after

correcting for by-chance similarity and RIℓ close to 1 indicates that the latent source

is highly reproducible across replication samples. The reliability index is formulated

in a similar way as the Cohen’s kappa coefficient (Cohen, 1960). We can follow the

kappa’s guideline to interpret the reliability index. That is, we interpret RIℓ ≤ 0 as

none reproducibility, 0.01–0.20 as slight, 0.21–0.40 as fair, 0.41– 0.60 as moderate,

0.61–0.80 as substantial and 0.81–1.00 as almost perfect reproducibility. As a scaled

and chance-corrected measure, RIℓ is comparable across different latent sources, i.e.

connectivity traits, making it a desirable reliability measure for blind source separation

methods (Kemmer et al., 2018; Wang and Guo, 2023).

2.2.5 Investigating brain dynamic connectome using dyna-

LOCUS

In this section, we present several analysis strategies that leverage the results obtained

from dyna-LOCUS to provide a detailed understanding of the complex dynamics of the

brain’s functional connectome. These include understanding the temporal expression

variations and properties of the connectivity traits, exploring the interactions between

different connectivity traits, and identifying and characterizing whole-brain dFC states.
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Temporal expression of the latent connectivity traits

A valuable output from dyna-LOCUS is individual-level time-dependent loadings of

each connectivity trait. These trait loadings contain information on the temporal

expression of each of the latent connectivity traits in an individual’s brain connectivity.

We explore the dynamics of latent connectivity traits by examining two key aspects:

the energy and variation of their temporal expression. Additionally, we investigate

whether and how the connectivity traits synchronize with each other by studying the

associations between their temporal loadings.

To identify highly expressed connectivity traits, we quantify the overall dynamic

activation across the time windows of a connectivity trait expression by evaluating

the energy of the temporal loading of the trait over the scanning session for each

individual. Specifically, for individual i, the energy of connectivity trait ℓ is defined as∑T
t=1 a

2
itℓ. Furthermore, to assess how stable or transient a connectivity trait is, we

quantify the variation of the temporal expression of a connectivity trait by evaluating

the mean of the absolute relative change of trait loadings throughout the scanning

session. In particular, for individual i, the variation of connectivity trait ℓ is defined

as
∑T−1

t=1
1

T−1
|ai(t+1)ℓ−aitℓ

aitℓ
|.

To investigate the interaction and synchronization between connectivity traits,

we propose to evaluate the cross-correlation function (CCF) between trait loading

time series. Denote {xt}, {yt}, (t = 1, . . . , T ) as the trait loading time series of two

connectivity traits of an individual. To facilitate notation, we order them by denoting

the trait with higher reproducibility, i,e. higher RI index, as xt and the trait with lower

reproducibility as yt. For a pair of traits, the CCF with a lag of k is CCFk(xt, yt) =
1
n

∑n−k
t=1 (xt+k−x̄)(yt−ȳ)

SDxSDy
, and CCF with a lag of −k is CCF−k(xt, yt) =

1
n

∑n−k
t=1 (xt−x̄)(yt+k−ȳ)

SDxSDy
,

where x̄ and ȳ are the mean value of {xt} and {yt} respectively, and SDx and SDy are

their standard deviations. A large magnitude of CCF between a pair of connectivity

traits indicates synchronized temporal expressions either in the same or opposite
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direction. For each pair of connectivity traits, we identify the lag on the population-

level when they achieve the highest level of synchronization by taking the mode of the

lags when the highest synchronization is achieved among individuals.

Identifying whole-brain dFC States

Another major contribution of dyna-LOCUS is that it provides a highly efficient and

reliable approach for the identification and characterization of whole-brain dynamic

connectivity states. In current neuroimaging studies, whole-brain dFC states are often

obtained by clustering the observed dFC matrices (Allen et al., 2014; Damaraju et al.,

2014; De Lacy et al., 2017; Geng et al., 2020). Using dyna-LOCUS, we propose a

new approach by conducting the analysis on subjects’ trait loadings, which are low

dimensional representations of the observed dFC matrices, and then obtain the whole-

brain dFC states via reconstruction. This method not only dramatically improves the

computational efficiency but also generates dFC states that are sparser, more reliable,

and easier to interpret.

We illustrate our new pipeline for investigating whole-brain dFC states in Figure

2.2. First, we apply dyna-LOCUS to decompose the observed dFC matrices to extract

connectivity traits and individual-level trait loading time series. Here, connectivity

traits can be viewed as a set of basis matrices for observed dFC data, and the trait

loadings are low-dimensional representations of the observed dFC matrices obtained

by projecting them onto the basis. Therefore, rather than clustering the dFC matrices

to identify dFC states, we can cluster the low-dimensional trait loadings to identify

cluster centroids, i.e. cluster medians. The whole-brain dFC states can then be

reconstructed by multiplying the centroid trait loadings with the connectivity trait

basis matrices.
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Figure 2.2: Schematic plot of the pipeline for identifying whole-brain dFC states based
on dyna-LOCUS

2.3 Simulation

In this section, we investigate the performance of our model based on simulation

studies. We compare the performance of dyna-LOCUS with two other source separation

methods: connICA (Amico et al., 2017), which is a recently developed connectivity

ICA method, and the dictionary learning (DL) method (Mairal et al., 2009), which is

a popular sparse decomposition method. DL minimizes the L1 norm of sℓ, and aims

to achieve sparse estimates for the connectivity traits.

We specify V = 50, q = 8, consider two sample sizes N = 20, 50 and T = 36

windows. We generate the eight latent connectivity source signals based on specific

connectivity patterns that we observe from the connectivity traits extracted from real

imaging data including the PNC study. The mixing coefficients are also sampled from

estimates from real imaging data. Furthermore, we add zero mean Gaussian noises

to the mixture of signals where the variance is specified based on the signal-to-noise

ratio observed from real data. Specifically, we consider three variance settings with
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Term N Var. dyna-LOCUS connICA DL

Latent Source Corr. (SD)

20
Low 0.955 (0.005) 0.805 (0.018) 0.947 (0.000)

Mid 0.943 (0.005) 0.749 (0.014) 0.882 (0.017)

High 0.828 (0.015) 0.626 (0.019) 0.772 (0.016)

50
Low 0.956 (0.004) 0.784 (0.005) 0.955 (0.000)

Mid 0.955 (0.005) 0.763 (0.007) 0.927 (0.001)

High 0.932 (0.005) 0.716 (0.004) 0.884 (0.002)

Loading Matrix Corr. (SD)

20
Low 0.988 (0.002) 0.801 (0.011) 0.962 (0.000)

Mid 0.950 (0.002) 0.771 (0.010) 0.930 (0.012)

High 0.839 (0.011) 0.684 (0.018) 0.848 (0.020)

50
Low 0.989 (0.001) 0.790 (0.005) 0.960 (0.000)

Mid 0.956 (0.002) 0.764 (0.007) 0.928 (0.001)

High 0.885 (0.003) 0.710 (0.004) 0.870 (0.002)

Table 2.1: Simulation results for comparing dyna-LOCUS and the existing connICA
and DL methods based on 100 simulation runs conducted under three variance (Var.)
settings. Values presented are mean and standard deviation of correlations between
the true and estimated latent sources and loading/mixing matrices.

σ2 = 0.52, 1.52, and 2.52, corresponding to low, medium, and high variance levels,

respectively. In summary, we have 2 × 3 simulation settings with combinations of

sample sizes and variance levels. For each setting, we generate 100 simulation runs to

capture the variations in performance. Based on BIC and the goodness-of-fit criteria,

we selected the following tuning parameters: ρ = 0.95, λ = 0.01, and ϕ = 1.5.

Following previous work (Beckmann et al., 2005; Wang and Guo, 2019, 2023), we

evaluate the performance of each method based on the correlations between the truth

and the model-based estimates on the source signals and mixing coefficients. We

further examine the standard deviation of the correlations across 100 simulation runs

to evaluate the robustness of the methods.

Results are summarized in Table 2.1 and Figure 2.3. Table 2.1 shows dyna-

LOCUS consistently demonstrates better accuracy in recovering the latent sources and



31

mixing coefficients as compared with connICA and DL. The standard deviation of dyna-

LOCUS is generally lower than the other two methods, indicating our proposed method

has better stability. Figure 2.3 shows that dyna-LOCUS demonstrates considerably

better performance in recovering the spatial compositions of the connectivity traits.

Compared with the results by the two existing methods, the source signal maps by

dyna-LOCUS are more accurate, sparser with much fewer false positive findings, and

show little crossing talking problems. Specifically, connICA, being a decomposition

method without sparsity constraints and the low-rank structure, tends to yield noisy

and inaccurate estimates. As a sparse decomposition method, DL minimizes the L1

norm of sℓ to achieve sparse estimates for the source signals. However, it doesn’t

model the source signals using the low-rank structure disregards the interdependence

among brain connections. Instead, it treats connections as independent parameters,

leading to a large number of parameters for DL to learn. As a result, DL estimations

may lack accuracy compared to the proposed dyna-LOCUS approach, as evidenced by

simulation results.

In addition to the simulation results presented in Table 2.1 and Figure 2.3, we

further consider two additional scenarios featuring decreasing lower levels of sparsity

and an increased number of connections in the true source signals. These additional

simulations aim to evaluate the performance of dyna-LOCUS across varying degrees of

source signal sparsity. Across the different sparsity levels, dyna-LOCUS consistently

exhibits superior accuracy in recovering the underlying source signals and their

respective temporal loadings compared to the other two methods. Please refer to

Section 4 of the Supplementary Material for the additional simulation studies.
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Figure 2.3: Results from the simulation study. The figures illustrate the true source
signals and the estimated signals by dyna-LOCUS, connICA, and dictionary learn-
ing(DL) in three randomly selected simulation runs conducted under the low level
variance setting

.

2.4 Investigating dynamic functional connectome

for the Philadelphia Neurodevelopmental Co-

hort (PNC) study

2.4.1 Data acquisition and preprocessing

We apply dyna-LOCUS to analyze the resting state fMRI (rs-fMRI) data from the

Philadelphia Neurodevelopmental Cohort (PNC) project (Satterthwaite et al., 2016,
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2014). Children and adolescents between 8–21 at enrollment underwent multimodal

neuroimaging which included rs-fMRI. Images were acquired using a single 3T Siemens

TIM Trio whole-body scanner. Resting-state fMRI scans were acquired on a single-

shot, interleaved multi-slice, echo planar imaging (GE-EPI) sequence. The nominal

voxel size is 3 × 3 × 3mm with full brain coverage achieved with parameters of

TR/TE=3000/32ms, flip=90, and FOV=200x220 mm. Detailed descriptions of the

inclusion and exclusion criteria, and the settings for the scanning session can be found

in Satterthwaite et al. (2014)

Prior to analysis, we perform quality control procedures on the rs-fMRI. We remove

subjects who had more than 20 volumes with relative displacement > 0.25mm to

avoid images with excessive motion (Satterthwaite et al., 2015; Wang et al., 2016).

514 participants’ rs-fMRI data meet the quality criterion and are used in our analysis.

Among these subjects, 289 (56%) are female and the mean age is 15.28 years (SD =

3.11). For rs-fMRI preprocessing, skull stripping is performed on the T1 images to

remove extra-cranial material. The first four volumes of the functional time series

are removed to stabilize the signal, leaving 120 volumes for subsequent preprocessing.

The anatomical image is registered to the 8th volume of the functional image and

subsequently spatially normalized to the MNI standard brain space. The normalization

parameters from MNI space are used for the functional images, which are smoothed

with a 6 mm FWHM Gaussian kernel. Motion corrections are applied on the functional

images. A validated confound regression procedure (Satterthwaite et al., 2015) is

performed on each subject’s time series data to remove confounding factors including

motions, global effects, white matter (WM), and cerebrospinal fluid (CSF) nuisance

signals. Furthermore, motion-related spike regressors are included to bind the observed

displacement. Lastly, the functional time series data are band-pass filtered to retain

frequencies between 0.01 and 0.1 Hz which is the relevant frequency range for rs-fMRI.
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2.4.2 Dynamic connectivity analysis using dyna-LOCUS

In this study, we adopt Power’s 264-node brain parcellation system (Power et al., 2011)

for connectivity analysis. Each node in this node system is a 10 mm diameter sphere in

the standard MNI space representing a putative functional area, and the collection of

nodes provides good coverage of the whole brain. To facilitate interpretation, we assign

the nodes to the functional networks of Smith’s major resting-state network system

(Smith et al., 2009). Specifically, the nodes are assigned to medial visual network

(“Med Vis”), occipital pole visual network (“OP Vis”), lateral visual network (“LAT

Vis”), default mode network (“DMN”), cerebellum (“CB”), sensorimotor network

(“SM”), auditory network (“Aud”), executive control network (“EC”), and right and

left frontoparietal networks (“FPR” and “FPL”). For the nodes whose assignments is

uncertain in Smith’s system, we interpret them using Power’s resting-state network

labels (Power et al., 2011).

For each subject, dynamic connectivity is assessed with the commonly used sliding

window approach. We use a tapered window, created by convolving a rectangle

(width = 15TRs = 45s) with a Gaussian kernel (σ = 3TRs) and slide in steps of

1TR, resulting in 106 windows. Our specification of the sliding window length of 45

seconds is based on the findings in the existing literature which recommend selecting

a window length within the range of 30-60 seconds for fMRI (Hutchison et al., 2013;

Shirer et al., 2012). This range of window length is shown to produce robust dynamic

connectivity results by striking a balance between ensuring a sufficient number of

time points in a window for reliable connectivity estimation and having an adequate

number of windows across time to capture dynamic changes in brain connectivity.

Within this recommended range, we select a window length of 45 seconds, similar to

the one employed in numerous fMRI studies (Allen et al., 2014; Yang et al., 2014;

Marusak et al., 2017). We extract the fMRI time series from each node and obtain

264× 264 dynamic connectivity matrices for each subject by evaluating the pair-wise
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correlations between the node-specific fMRI series in each sliding window. Fisher’s Z

transformation is applied to the correlations to obtain the dynamic connectivity data

for decomposition.

We apply dyna-LOCUS to decompose the dynamic connectivity data to reveal

underlying connectivity traits. The choice of the number of latent sources q has

been an open topic in blind source separation research. Typically, the number of

sources is selected based on a specific objective function or the interpretability of

the extracted latent sources. In our study, we select q based on the reproducibility

and interpretability of the extracted sources. We evaluate the reproducibility of the

extracted latent sources for a range of q values (Figure 4). The reproducibility of the

extracted sources initially increases with q and then starts to level off at around q = 30.

Although the reproducibility still rises slightly with q > 30, the interpretability of the

extracted sources becomes less ideal when q becomes too large. Therefore, we choose

q = 30 which achieves a good balance between the model size, reproducibility, and

interpretability. Using the proposed tuning parameter selection method, we choose

ρ = 0.95, ϕ = 2, and λ = exp(−2) for the dyna-LOCUS optimization.

Regarding the computation time of the analysis, the most computationally intensive

phase is the preprocessing step prior to the dyna-LOCUS decomposition, which involves

dimension reduction and whitening of the dFC data through singular eigenvalue

decomposition (SVD) of dFC across all subjects. The preprocessing of dFC data from

the 514 subjects in the PNC study was conducted on the Emory Rollins School of

Public Health High-Performance Computing (HPC) cluster, using a single compute

node with 32 cores and 256GB of RAM. This process takes approximately 4 hours

to complete. It’s worth noting that the preprocessing step is a one-time procedure

that only needs to be carried out once for a given dataset. Subsequently, the dyna-

LOCUS decomposition of the preprocessed dFC data from the PNC study can be

readily executed on a personal laptop. With a specific tuning parameter setting,
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the dyna-LOCUS decomposition of the PNC data took approximately 1 hour on

a MacBook laptop equipped with an Apple M2 Chip and 16 GB of memory. For

selecting tuning parameters, one can execute dyna-LOCUS decomposition in parallel

for multiple parameter settings, requiring a computation time similar to that of a

single decomposition.

Figure 2.4: Boxplot of the reproducibility of the extracted latent sources from dyna-
LOCUS under different choices of the number of latent sources q. The overall reliability
across latent sources is close to 0.95 when q equals 30.

2.4.3 Results

Spatial composition of the latent connectivity traits

dyna-LOCUS uncovers 30 dynamic latent connectivity traits as well as the corre-

sponding subject-level temporal trait loadings for each connectivity trait. The mean

(SD) of the rank parameter Rℓ across the latent traits is 4.2 (1.3), with the minimum,

median, and maximum values being 2, 4, and 7, respectively. We first present source

signal maps that reveal the key brain connections and brain nodes contributing to the

connectivity traits. We label the traits in the order of their reproducibility based on

the reliability index. Across these 30 traits, the reliability index ranges between 0.31



to 0.94, indicating all traits have at least fair reproducibility. In specific, 3 traits have

fair reproducibility, 9 traits have moderate reproducibility, 11 traits have substantial

reproducibility, and 7 traits have almost perfect reproducibility. We present the source

signal maps for the most reproducible connectivity traits in Figure 3.1 (Part I and

II). The results for all 30 extracted connectivity traits are presented in Figure S1

of the Supplementary Material. For a comprehensive analysis, we also visualize the

30 dynamic connectivity traits uncovered by connICA and DL in Section 2 of the

Supplementary Material. To assess the effect of the window length selection on the

results, we conduct a sensitivity analysis by considering alternative window lengths

of 30 seconds (10TR) as well as 60 seconds (20TR). We calculate the correlations

between the connectivity traits derived from our selected window size of 45 seconds

and their matched traits obtained from the alternative window sizes. The median

correlation is 0.75 for comparison with the window length of 30 seconds and 0.89 for

the window length of 60 seconds, demonstrating a reasonable consistency in findings

across varying window lengths.

Figure 3.1 presents the 12 most reproducible connectivity traits with a reliability

index greater than 0.7. In the figure, the top 0.5% brain connections with the highest

magnitude of source signal intensity in each of the connectivity traits are mapped onto

the brain. Node contribution indices that help identify key brain nodes and networks

that drive each connectivity trait are also shown in boxplots arranged by networks.

An interesting discovery is that 8 out of the 12 most reproducible traits involve visual

networks. This finding aligns well with earlier research (Zuo et al., 2010; Kang et al.,

2011), which showed connections involving visual networks are highly reproducible

and consistently observed over time across individuals. Results from dyna-LOCUS

provide new insights and comprehensive information about the specific neural circuits

involving the visual networks that exhibit a remarkably high level of reproducibility

in brain connectome, shedding new light on their functional significance and potential
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Figure 2.5: Part I: Twelve most reproducible connectivity traits extracted from the
PNC study with reliability index greater than 0.7. The top 0.5% brain connections and
significantly expressed nodes based on node contribution index are displayed in the
brain maps. Node contribution index that help identify key brain nodes and networks
that drive each connectivity trait are shown in the boxplot arranged by network.
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Figure 2.5: Part II: Twelve most reproducible connectivity traits extracted from the
PNC study with reliability index greater than 0.7. The top 0.5% brain connections and
significantly expressed nodes based on node contribution index are displayed in the
brain maps. Node contribution index that help identify key brain nodes and networks
that drive each connectivity trait are shown in the boxplot arranged by network.
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implications. In specific, Trait 1 (Med vis-Aud-DMN-EC-CB), Trait 3 (Med vis-SM-

Aud-FPR), and Trait 8 (Med vis-DMN-EC-FPL-FPR) are connectivity traits driven

by the medial visual (Med vis) network including connections between Med Vis and

other brain regions. Trait 2 (Vis-SM-Aud) Trait 4 (Vis-EC) and Trait 7 (Vis-Aud-

DMN-EC) mainly feature connectivity between the other two visual networks, i.e.

Op Vis/Lat Vis, and other brain regions. Specifically, Trait 2 (Vis-SM-Aud) features

connectivity between Op Vis/Lat Vis and the sensory-motor and auditory networks.

Trait 4 (Vis-EC) mainly consists of connections within and between the Op Vis and

Lat Vis, connections within the executive control network, and connections between

Op Vis/Lat Vis and the executive control networks. Trait 7 (Vis-Aud-DMN-EC)

mainly consists of connections between nodes in Op Vis/Lat Vis and nodes in auditory,

DMN, and executive control networks. Trait 5 (Vis-FPR-FPL) mainly consists of

connections within the three visual networks and connections between the visual

networks and other brain regions, i.e., executive control, left and right frontopartial,

and cerebellum networks. Trait 12 (Vis-DMN-EC) involves connectivity between the

three visual networks and cognitive networks, particularly DMN and executive control

networks.

Among the 12 most reproducible traits, Trait 6 (CB) is a cerebellum-driven

connectivity trait including connections within the cerebellum and also between the

cerebellum and many other brain networks such as auditory, visual, DMN, executive

control, etc.. Cerebellum is traditionally known for its role in movement coordination

and motor learning, but recently increasing evidence suggests it may also be involved

in higher-order functions, including emotional and cognitive processing (Schmahmann,

2004; Beuriat et al., 2020). Our finding provides exciting new evidence that the

cerebellum has highly consistent neural connections with not only motor and sensory

networks but also with higher-order emotional and cognitive networks in brain dynamic

connectome. In addition, the source signal maps of dyna-LOCUS allow investigators to
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identify specific brain regions that have highly reliable connections with the cerebellum,

which provide valuable information to advance the new understanding of this important

part of the brain. For the rest of the 12 most reproducible traits, Trait 9 (SM-Aud-

DMN-EC) involves connections within and between sensory-motor, auditory, DMN,

and executive control networks. Trait 10 (SM-Aud-EC) is driven by the sensory-motor

and auditory networks, and their connections with the executive control network.

Trait 11 (FPR-FPL-SM-EC) mainly consists of the connections within the frontal

partial networks and their connection with other brain networks.

Temporal expression of the latent connectivity traits

In addition to unveiling the spatial composition of connectivity traits, dyna-LOCUS

also generates trait loadings that capture the temporal expression of these traits in

brain dynamic connectome. These trait loadings offer new insights into the distinctive

features exhibited by each connectivity trait throughout its dynamic profiles (Figure

2.6). Figure 2.6(A) plots the variation against the logarithm of energy of each connec-

tivity trait. Our analysis reveals the presence of certain traits that exhibit distinctive

characteristics in terms of one or both of these measures. We observe a diverse range

of energy and variation patterns across these identified traits, encompassing distinct

combinations of high-energy and high-variation, high-energy and medium-variation,

medium-energy and high-variation, medium-energy and medium-variation, as well

as low-energy and low-variation. These traits are denoted with different colors in

Figure 2.6(A). In Figure 2.6(B), we display the trait loading series of these traits, and

their source signal maps are presented in Figure 2.7. Among these traits, Trait 27

(SM-DMN-Aud) demonstrates particular high energy and high temporal variation. It

mainly consists of connections between the sensorimotor network and other regions,

especially the default mode network. Its temporal loading series in Figure 2.6(B)

reveals that it is highly expressed during certain periods and then not expressed in
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others. On the other hand, Trait 6 (CB), the cerebellum-driven trait, demonstrates

the lowest energy and also low variability across the scanning session, indicating it is

a stable trait with a modest expression level across time. As another type of pattern,

Trait 14 (EC-Aud-DMN-FPR), which includes connections within executive control

and also between executive control and auditory, default mode, and frontal-parietal

right networks, demonstrates high energy and only medium variation. The temporal

loading series in Figure 2.6(B) reveals Trait 14 remains at a high level of expression

for a good proportion of time during the scanning and is more stable in its tempo-

ral expression as compared to other high energy connectivity traits, indicating it is

generally highly expressed across time. Traits 5 (Vis-FPR-FPL), which involve the

frontal-parietal networks and their connections with other networks, exhibit medium

energy and medium variation. It displays intermittent expression across scans, but

not very frequently switching between the on and off status. Finally, Trait 8 (Med

vis-DMN-EC-FPL-FPR), driven by the medial visual network, has medium-energy

and high-variation. The loading pattern for this trait shows frequent switches between

no expression and exhibiting expression.
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Figure 2.6: (A) Averaged variation against log(energy) of connectivity traits
across subjects. Colored traits represent several types of energy and variation
patterns including high-energy and high-variation(red), high-energy and medium-
variation(yellow), medium-energy and high-variation(purple), medium-energy and
medium-variation(green) and low-energy and low-variation(blue). (B) Temporal load-
ing series of representative traits from sample subjects: high-energy and high-variation
(Trait 27), high-energy and medium-variation signal (Trait 14), medium-energy and
high-variation (Trait 8), medium-energy and medium-variation (Trait 5), and low-
energy and low-variation (Trait 6).

In addition to examining the temporal expressions of each trait, we also investigate

the interaction and synchronization between connectivity traits using the CCF measure.

Every pair of connectivity traits exhibits their peak synchronization at a lag of either

one or zero, indicating the rapid interactions and synchronization between these traits.

This finding suggests that the expression of these connectivity traits are characterized

by swift and efficient information exchange, facilitating seamless coordination and

integration within the brain connectome. Among all pairs of connectivity traits, we

identify six pairs that demonstrate a strong relationship with a median CCF magnitude

greater than 0.35 across individuals. Figure 2.8 displays trait loading series of the

trait pairs of example individuals to illustrate their synchronization. For example,

Trait 13 (EC-FPL) and Trait 15 (Vis-SM-Aud) have a median CCF of -0.55 with a

lag of zero, indicating that these two traits tend to be synchronized in the opposite
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Figure 2.7: Connectivity traits with different types of energy and variation patterns.
The top 0.5% brain connections and significantly expressed nodes based on the node
contribution index are depicted in the brain maps.

direction, which is observed in their trait loading series in Figure 2.8. Trait 6 (CB)

and Trait 14 (EC-Aud-DMN-FPR) have a median CCF of 0.40 with a lag of minus

one, indicating they are synchronized in the same direction and Trait 14 is leading.

Gender and age differences in the connectivity traits

dyna-LOCUS offers an efficient and convenient method for modeling brain-behavior

relationships, enabling investigation of variations in connectivity traits linked to

demographics, behavior, and disease. This is achieved through analyzing associations

between individual trait loadings obtained from dyna-LOCUS and an individual’s

demographic attributes, behavior, or clinical symptoms.

In the PNC study, we are interested in exploring the maturation of neural circuits
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Figure 2.8: Temporal loading time series of six synchronized connectivity trait pairs
from example individuals. Median CCF across individuals is displayed for each trait
pair. Traits with higher reproducibility in each pair is shown in red and traits with
lower reproducibility in a pair is in blue.

throughout adolescence and potential developmental differences between genders.

Previous neurodevelopmental studies have reported developmental changes in the

executive function and network from childhood to adolescence (Best and Miller, 2010;

Chai et al., 2017). Here, we leverage results from dyna-LOCUS analysis of the PNC

study to investigate age and gender differences in the connectivity traits involving

executive function. To this end, we categorize participants into three age groups:

middle and late childhood (ages 8 - 11), adolescence (ages 12 - 17), and early adulthood

(ages 18 - 21), with 69, 291, and 143 participants in each group, respectively. We then

employ regression models to investigate the relationship between the logarithm of
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energy of individual’s trait loadings on Trait 14 (EC-Aud-DMN-FPR) (Figure 2.9),

which is primarily driven by the executive function network, and the individual’s

gender and age group.

Trait 14 (EC-Aud-DMN-FPR) consists of connections within the executive control

(EC) network and connections between the executive control network and the auditory,

default mode, and frontal-parietal right networks. Our analysis of the traits’ temporal

expression in section 2.4.3 shows that Trait 14 (EC-Aud-DMN-FPR) is a stable and

high energy connectivity trait that is often highly expressed across time (Figure 2.6),

indicating the significance of this executive function related connectivity trait in the

brain dynamic connectome. The association analysis between its trait loadings and

individuals’ age and gender reveals the energy, representing the expression level of the

trait, increases with age in both gender groups (Figure 2.9). This observation suggests

the presence and prominence of this particular trait become more pronounced during

the process of neurodevelopment in childhood and adolescence. An interesting finding

from our analysis is that males and females demonstrate distinctive developmental

trajectories for this trait, with a significant gender×age interaction (p = 0.03). Specif-

ically, females exhibit a notable increase in energy from late childhood to adolescence,

and then a gradual upswing from adolescence to early adulthood. In contrast, males

show relatively stable energy levels for Trait 14 between late childhood and adolescence,

followed by a substantial increase upon entering early adulthood. This indicates the

expression level of Trait 14 reaches higher levels earlier in females compared to males.

To assess the reliability of this finding, we implement the data resampling validation

method to evaluate the reproducibility of the result using replication samples generated

through data resampling. The results provide supporting evidence for the robustness

of the significant interaction effect between age and gender in the neurodevelopment

of Trait 14 (Section 3 of the Supplementary Material). Notably, as young adults,

males display significantly higher expression levels of Trait 14 compared to females
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(p < 0.01), indicating that Trait 14 is more prominent among young adult males. The

gender difference in the expression level of Trait 14 is not significant during childhood

(p = 0.782) and adolescence (p = 0.113).

Figure 2.9: Gender differences in the development of an executive function related
connectivity Trait 14 (EC-Aud-DMN-FPR). The left of the figure displays the con-
nectivity source signals and its brain map (showing the top 0.5% brain connections).
The right of the figure displays the logarithmic energy of the trait’s temporal expres-
sion for males and females across three age groups: middle and late childhood (ages
8-11), adolescence (ages 12-17), and early adulthood (ages 18-21). Males and females
demonstrate different developmental patterns for this trait.

Whole-brain dFC states

We implement the new dyna-LOCUS pipeline to identify whole-brain dFC states in

the PNC study. After obtaining results from dyna-LOCUS, we perform clustering

analysis on the trait loadings to identify brain state cluster centroids. To properly

initialize the clustering analysis, we adopt an initializing strategy similar to the one

in the previous dFC state analysis (Allen et al., 2014). Specifically, we randomly

select 20 trait loading vector exemplars from each subject and perform clustering

on the set of subject exemplars. This procedure is repeated 100 times with random

initializations in order to escape local minima. The resulting centroids based on

subject exemplars are then used to initialize the clustering of all trait loading data.
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We determine the number of clusters by applying the elbow criterion to the ratio

between the within-cluster distance and the between-cluster distance (Thorndike,

1953). After obtaining the trait loading centroids based on all data, we reconstruct

whole-brain dFC states by multiplying the centroid trait loadings with the connectivity

trait basis matrices derived from dyna-LOCUS. The top panel of Figure 2.10 displays

the whole-brain dFC states, their percentage of occurrence, and their corresponding

trait loading centroids for the PNC study. As a comparison, we derive the dFC states

by directly clustering observed dFC matrices using the procedure in Allen et al. (2014).

Following their paper, we randomly select 6 dFC matrices exemplars from each subject

and perform clustering on all subjects exemplars. This procedure is repeated 100

times with random initializations to escape local minima. The resulting centroids

are utilized to initialize the clustering of all dFC matrices. The number of clusters is

chosen using the approach in Allen et al. (2014). The bottom panel of Figure 2.10

illustrates the clustering results using Allen’s method.

Our findings demonstrate a notable level of concordance between the results

obtained by dyna-LOCUS and Allen’s method. Specifically, both methods identify

seven whole-brain dFC states. We are able to readily match each of the dFC states

identified by dyna-LOCUS with a corresponding dFC state identified by Allen’s

method, based on their connectivity patterns. Additionally, we observed a high degree

of consistency in the percentage of occurrence of the matching dFC states between

the two methods. The correspondence between the results obtained by dyna-LOCUS

and Allen’s method, which is a well-established approach for identifying dFC states,

provides validation that the novel dyna-LOCUS pipeline is a reliable method for

identifying whole-brain dFC states.

Our new dyna-LOCUS pipeline offers several key advantages over existing methods.

Firstly, by clustering the low-dimensional trait loadings obtained from dyna-LOCUS,

our method achieves a substantial improvement in computational efficiency compared
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to existing methods that perform clustering on the original dFC matrices. For example,

for the PNC study, Allen’s method takes 8 hours and 26 minutes to conduct clustering

analysis on the 264× 264 dFC matrices, whereas our dyna-LOCUS pipeline only uses

15.73 seconds to perform the analysis on the 30× 1 trait loading vectors. Secondly,

benefiting from dyna-LOCUS’s sparsity regularization, our pipeline generates much

sparser dFC states as compared to the existing method. Therefore, the new pipeline

is able to reveal the most relevant edges in the dFC states, while effectively filtering

out a large amount of less crucial connections. This results in more parsimonious and

interpretable representations of the dFC states. Thirdly, our pipeline goes beyond solely

identifying the dFC states; it also provides valuable information on the corresponding

trait loadings. These trait loadings elucidate the contribution of the underlying

connectivity traits to the whole-brain dFC states, revealing the key connectivity traits

that drive each specific dFC state. Hence, researchers can gain deeper insights into

the specific neural mechanisms and processes associated with different dFC states.

Comparison between the static and dynamic FC analysis

In this section, we compare the results between the static FC analysis using LOCUS

(Wang and Guo, 2023) and the dynamic FC analysis using the proposed dyna-LOCUS.

LOCUS assumes brain functional connectivity (FC) is stationary and extracts latent

sources underlying static FC measures obtained using the whole fMRI BOLD series

(Wang and Guo, 2023), ignoring changes in brain connectivity over time. In comparison,

dyna-LOCUS models dynamic changes in functional connectivity and uncovers latent

sources underlying the series of dynamic FC measures obtained using fMRI BOLD

signals within short time windows that slide across the session.

We compare the latent connectivity sources extracted from the LOCUS and

dyna-LOCUS from the PNC study. The static connectivity traits extracted from

PNC study using LOCUS are presented in Section 6 of the Supplementary Material.
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Figure 2.10: Whole-brain dynamic functional connectivity (dFC) states estimated by
dyna-LOCUS and Allen’s method, along with the corresponding proportions of their
occurrence. dyna-LOCUS also provides the loadings of the underlying connectivity
traits in each of the dFC states.
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Our comparison reveals both similarities and differences in the results from the two

methods. For certain dynamic latent sources extracted by dyna-LOCUS, we identify

corresponding static latent sources extracted from LOCUS, which exhibit similar spatial

compositions. Figure 2.11(A) illustrates three dynamic traits from dyna-LOCUS (Trait

6, 14 and 18) that have the most similar corresponding static traits from LOCUS.

The temporal trait loading analysis of dyna-LOCUS (Figure 2.6) reveals that these

dynamic traits display a low or medium level of variation in their temporal expression.

This suggests a consistently stable presence over time in the brain connectome,

elucidating why these dynamic traits closely resemble static traits identified by LOCUS.

Furthermore, we notice situations where a combination of multiple dynamic traits

is identified as a single static trait. For instance, the combination of dynamic Trait

2 and Trait 3 corresponds to a static trait identified by LOCUS (Figure 2.11(B)).

The temporal trait loading analysis (Figure 2.8) reveals that Traits 2 and 3 exhibit

strong synchronization in their temporal expression with a medium CCF of 0.39

across subjects. This synchronization explains their aggregation as a single static

trait in the LOCUS analysis. This aggregation phenomenon also occurs for dynamic

Trait 1 and 7 (Figure 2.11(B)). In addition to these consistent findings, dyna-LOCUS

also unveils dynamic traits that are not distinctly identified among the static traits

extracted by LOCUS (such as dynamic Trait 8, 15, and 29 displayed in Figure 2.11(C)).

The temporal trait loading analysis of dyna-LOCUS (Figure 2.6) reveals that these

dynamic traits exhibit high variation in their temporal expression. This variability

suggests that their presence across time fluctuates significantly, potentially accounting

for why these dynamic traits are not distinctly identified as static traits by LOCUS.

The similarities and differences observed in the results from dyna-LOCUS and LOCUS

highlight the potential of dyna-LOCUS to offer novel insights into brain functional

connectivity beyond the static FC findings obtained by LOCUS.
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Figure 2.11: (A) Three dynamic traits (Trait 6, 14, and 18) with highly similar static
trait matches. (B) Examples of static traits representing combinations of multiple
dynamic traits. (C) Examples of dynamic traits that are not clearly identified among
static traits.
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This research utilized data from the PNC study. All study procedures of the PNC study

were approved by the institutional review boards of the University of Pennsylvania

and the Children’s Hospital of Philadelphia.

Data and code availability

The PNC study data are publicly available to download from the database of Genotypes

and Phenotypes (dbGaP) via Authorized Access. To request data access, investigators

can login the dbGaP controlled-access portal at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study id=phs000607.v3.p2 and submit a Data Access Request. The

software package for dyna-LOCUS is available at https://github.com/Emory-CBIS/

dynaLOCUS.

2.5 Appendix

2.5.1 The derivation of the final optimization function

The original objective function for dyna-LOCUS model with the sparsity and temporal

smoothness regularization is,

min
N∑
i=1

||Yi −AiS||2F + ϕ

q∑
ℓ=1

∑
u<v

|xℓ(u)
′Dℓxℓ(v)|+ λ

N∑
i=1

T∑
t=2

||ait − ai(t−1)||22 (2.11)

where S =


s′1

. . .

s′q

 ∈ Rq×p and sℓ = L(XℓDℓX
′
ℓ).

Denote the loading matrix A = {aitℓ} ∈ RNT×q as A = [A′
1, . . . ,A

′
N ]

′ ∈ RNT×q,

and each Ai = [ai1, . . . ,aiT ]
′ ∈ RT×q, the temporal smoothness regularization term

https://github.com/Emory-CBIS/dynaLOCUS
https://github.com/Emory-CBIS/dynaLOCUS
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can be written in the matrix form:

N∑
i=1

T∑
t=2

||ait − ai(t−1)||22 =
N∑
i=1

||RAi||2F (2.12)

where R ∈ R(T−1)×T is defined as: Rij = 1 if i = j, Rij = −1 if i = j − 1, else

Rij = 0. Denote R∗ = I
⊗

R ∈ RN(T−1)×NT , where I ∈ RN×N , we can further write

the temporal smoothness regularization in terms of A. The original objective function

can then be represented as,

min
N∑
i=1

T∑
t=1

||yit −
q∑

ℓ=1

aitℓL(XℓDℓX
′
ℓ)||22 + ϕ

q∑
ℓ=1

∑
u<v

|xℓ(u)
′Dℓxℓ(v)|+ λ||R∗A||2F .

(2.13)

With the preprocessing, Ỹ = HY with H = (Λq − σ̃2
qI)

−1/2U
′
q. Here, Uq,Λq

contain the first q eigenvectors and eigenvalues based on singular value decomposition

(SVD) of Y . The residual variance, σ̃2
q , represents the variability in Y that are not

explained by the extracted q latent sources and is estimated by the average of the

smallest NT − q eigenvalues in Λq. The preprocessed data Ỹ is of dimension q × p

where the columns correspond to p connections in the brain. The whitening in the

preprocessing leads to an orthogonal mixing matrix on the reduced space Ã which

facilitates the subsequent model estimation. With the preprocessed data and the

orthogonal mixing matrix, the final optimization function for dyna-LOCUS is

minÃ,{Xℓ,Dℓ}

q∑
l=1

||Ỹ ′
ãℓ − L(XℓDℓX

′
ℓ)||2F + ϕ

q∑
ℓ=1

∑
u<v

|xℓ(u)
′Dℓxℓ(v)|+ λ||WÃ||2F

(2.14)

where ãℓ is the ℓth column of Ã, and W = R∗H∗, with H∗ = Uq(Λq − σ̃2
qI)

1/2 being

the dewhitening matrix.
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2.5.2 The Estimation Algorithm for dyna-LOCUS

Based on the block multi-convexity property, we derive an efficient algorithm with

closed-form solutions in each updating step. The algorithm estimates the parameters

by iterating three updating steps:

Step 1: Updating Xℓ We propose a node-rotation algorithm that updatesXℓ at a

node v while conditioning on the other nodes and then rotating across the nodes. Since

we have ||Ỹ ′ãℓ−L(XℓDℓX
′
ℓ)||22 = ||ã′

ℓỸ −s′ℓ||22 =
∑

u<v(ã
′
ℓỸ (u, v)−xℓ(u)

′Dℓxℓ(v))
2,

we can transform equation (3.6) to the edge-wise form.

minÃ,{Xℓ,Dℓ}

q∑
ℓ=1

∑
u<v

(ã′
ℓỸ (u, v)− xℓ(u)

′Dℓxℓ(v))
2 + ϕ

q∑
ℓ=1

∑
u<v

|xℓ(u)
′Dℓxℓ(v)|+ λ||WÃ||2F .

(2.15)

To update Xℓ at the kth iteration, we update the latent coordinate xℓ(v) for node v,

conditioning on Ã, Dℓ and Xℓ(−v) estimated from the k− 1 iteration, where Xℓ(−v)

is the sub-matrix of Xℓ which comprises the latent coordinates of nodes excluding v.

Specifically, we update xℓ(v) as follows,

minxℓ(v)||Ỹ
′
{v}

ˆ̃aℓ − X̂ℓ(−v)D̂ℓxℓ(v)||22 + ϕ

V∑
u=1,u̸=v

|x̂ℓ(u)
′D̂ℓxℓ(v)| (2.16)

where Ỹ{v} is a q × (V − 1) sub-matrix of Ỹ which includes the subset of columns in

Ỹ that correspond to connections involving node v.

Denote bℓ{v} = X̂ℓ(−v)D̂ℓxℓ(v) ∈ RV−1, objective function (2.16) can be rewritten

as
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minbℓ{v}||Ỹ
′
{v}

ˆ̃aℓ − bℓ{v}||22 + ϕ||bℓ{v}||1 (2.17)

We can derive an analytical solution for bℓ{v} fan2001variable and then obtain the

estimate for xℓ(v) as,

x̂
(k)
ℓ (v) = D̂−1

ℓ (X̂ℓ(−v)′X̂ℓ(−v))−1X̂ℓ(−v)′b̂ℓ{v}

After updating xℓ(v), we rotate to the next node and repeat the procedure described

above across all nodes to obtain an updated estimate for Xℓ. An advantage of the

proposed node-rotation algorithm is that it has analytic solutions and does not need

gradient-based numerical approximation which makes it highly efficient and reliable.

Step 2: Updating Dℓ

Our next step is to update the diagonal matrix Dℓ for ℓ = 1, ..., q, given the

estimate of Xℓ from the kth iteration and the estimate of Ã from the k − 1 iteration.

Based on the objective function (3.6), we update the estimate of the diagonal of Dℓ,

i.e. dℓ = diag(Dℓ) via the following,

mindℓ
||Ỹ ′ ˆ̃aℓ − Ẑℓdℓ||22 + ϕ||Ẑℓdℓ||1, (2.18)

where Ẑℓ ∈ Rp×Rℓ with the rth column of Ẑℓ being L(x̂(r)
ℓ x̂

(r)′

ℓ ) (r = 1, . . . , Rℓ). An

analytical solution for dℓ can be derived.

Step 3: Updating Ã

In this step, we update the mixing matrix Ã given the estimates of {Xℓ,Dℓ} from
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the kth iteration. The updated estimate for Ã is derived as follows,

minÃf = ||Ỹ − ÃŜ||2F + λ||WÃ||2F , (2.19)

where Ŝ is based on the estimates of Xℓ and Dℓ from the kth iteration. By setting

∂f

∂Ã
= 0, we have

ÃŜŜ′ + λW ′WÃ = Ỹ Ŝ′ (2.20)

We denote the eigen-decomposition of SS′ and W ′W as Q1Λ1Q
′
1 and Q2Λ2Q

′
2

respectively, where Λ1 = diag(λ
(1)
1 , . . . , λ

(q)
1 ) and Λ2 = diag(λ

(1)
2 , . . . , λ

(q)
2 ). The

equation (2.20) can be rewritten as:

Ã∗Λ1 + λΛ2Ã
∗ = Ỹ ∗

where Ã∗ = Q′
2ÃQ1, and Ỹ ∗ = Q′

2Ỹ Ŝ′Q1. Thus, the solution for the (i, j)th element

in Ã∗ is:

Ã∗
i,j =

Ỹ ∗
i,j

λλ
(i)
2 + λ

(j)
1

(2.21)

And Ã is updated as,

ˆ̃
A

(k)

= Q2Ã
∗Q′

1 (2.22)

The proposed iterative estimation algorithm is summarized in Algorithm 1.
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Algorithm 1: An Iterative Node-Rotation Algorithm

1 Initial: Initialize
ˆ̃
A

(0)

, {X̂(0)
ℓ , D̂

(0)
ℓ } based on estimates from existing methods

such as connICA. For ℓ = 1...q, For v = 1, . . . , V ,
2 Step 1. Update xℓ(v) :
3

b̂
(k)
ℓ{v} = argmin

bℓ{v}∈RV −1

∥∥∥Ỹ ′
{v}

ˆ̃aℓ − bℓ{v}

∥∥∥2

2
+ ϕ

∥∥∥bℓ{v}∥∥∥
1

4

x̂
(k)
ℓ (v) = D̂−1

ℓ (X̂ℓ(−v)′X̂ℓ(−v))−1X̂ℓ(−v)′b̂(k)ℓ{v}.

5 End for v Step 2. Update Dℓ:

d̂
(k)
ℓ = diag(D̂

(k)
ℓ ) = argmin

dℓ∈RRℓ

∥∥∥Ỹ ′ ˆ̃aℓ − Ẑℓdℓ

∥∥∥2

2
+ ϕ∥Ẑℓdℓ∥1,

6 End for ℓ

7 Step 3. Update Ã:
8

ˆ̃
A

(k)

= Q
(k)
2

ˆ̃
A

∗(k)
Q̂

(k)′

1 .

9 Perform an orthogonal transformation on
ˆ̃
A

(k)

10
∥ ˆ̃A

(k)
− ˆ̃
A

(k−1)
∥F

∥ ˆ̃A
(k−1)

∥F
< ϵ1 and ∥Ŝ(k)−Ŝ(k−1)∥F

∥Ŝ(k−1)∥F
< ϵ2



Chapter 3

Investigating latent neurocircuitry

traits underlying longitudinal brain

functional connectome

3.1 Introduction

The analysis of brain functional networks has become increasingly popular in neuro-

science research, unveiling insights into the organization of the human brain, its role

in neurodevelopment, aging, behavior, and the diagnosis or the understanding of the

neurological procession of various brain diseases (Bullmore and Sporns, 2009; Deco

et al., 2011; Kemmer et al., 2018; Satterthwaite et al., 2014; Wang et al., 2016; Wang

and Guo, 2023). To investigate brain networks, functional connectivity (FC) obtained

from functional magnetic resonance imaging (fMRI) or electroencephalogram (EEG)

is widely used, where FC is defined as the temporal dependence between the time

series of blood oxygen level-dependent signals originating from spatially distinct brain

regions (Friston et al., 1993). Various measures of FC, including pearson correlation,

partial correlation (Wang et al., 2016), mutual information (Hlinka et al., 2011),

59
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coherence (Srinivasan et al., 2007), and granger causality (Uddin et al., 2009) are

commonly studied by researchers. The whole brain FC matrix aggregates connectivity

patterns across the entire brain, representing the brain’s functional networks. There is

growing interest in decomposing this FC matrix to reveal underlying networks, known

as latent sources or connectivity traits. These traits represent interconnected brain

regions that tend to activate together during neural processing. Developing a reliable

understanding of these latent connectivity traits is crucial for gaining valuable insights

into the structure and dynamics of brain organization, as well as their association with

neurological disease progression (Sorg et al., 2007; Williams, 2016), neurodevelopment

(Hoff et al., 2013), and speeds of aging (DeCarli et al., 2012; Iannilli et al., 2017).

While most FC analyses typically consider data from a single time point, contem-

porary neuroimaging research is increasingly embracing longitudinal data collection,

which involves multiple scans over time (Garavan et al., 2018; Weiner et al., 2017). For

example, the Adolescent Brain Cognitive Development (ABCD) Study is the largest

longitudinal study on adolescent brain development and behavior, and it has offered

vast research possibilities to investigate developmental cognitive neuroscience (Garavan

et al., 2018). The ADNI database contains longitudinal resting-state fMRI images

collected at multiple time points, offering valuable data for studying the progression

of early Alzheimer’s disease (Petersen et al., 2010). To harness the full potential of

longitudinal brain connectivity data for FC sub-system analysis, there is a growing

need to develop methodologies capable of effectively decomposing longitudinal brain

connectivity, unlocking its full potential for understanding brain longitudinal changes

in connectivity patterns over time.

However, while methods for cross-sectional FC decomposition at a single time point

exist, there are relatively few methodologies available for longitudinal FC decomposi-

tion. Several challenges arise in developing such models. Firstly, the decomposition of

whole brain FC matrices is inherently challenging due to their high dimensionality.
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FC matrices typically consist of hundreds of nodes and hundreds of thousands of

connections, making reliable network estimation a significant challenge. Secondly,

in terms of modeling, while Independent Component Analysis (ICA) (Beckmann

and Smith, 2004; Calhoun et al., 2001) and its longitudinal extensions (Wang and

Guo, 2019) are commonly employed for source separation, they primarily address

the decomposition of observed series of neural activity signals, such as the blood

oxygen level-dependent (BOLD) series from fMRI or electrode signal series from EEG.

These methods are not ideally suited for decomposing brain connectivity matrices,

which exhibit a symmetric structure and require consideration of the dependence or

topological structure across edges in brain networks during decomposition. A recent

proposal by Amico et al. (2017) introduced a connectivity-independent component

analysis framework (connICA), which vectorizes connectivity matrices and utilizes

existing ICA algorithms to decompose FC matrices. A natural extension of connICA

stacks scans over time and applying the method for longitudinal FC decomposition.

However, this approach treats each connection as an independent sample, disregarding

the dependence structure across edges in the brain connectome. Additionally, it

results in a large number of edge-wise parameters to estimate, which can lead to a

loss of accuracy. Furthermore, it fails to capture differences in FC components across

various time points. Previous research has found that functional connectivity (FC)

exhibits aging effects that vary across different brain regions in cognitively normal

(CN) individuals (Chen et al., 2016). Ren et al. (2016) demonstrated abnormal FC at

various stages of Alzheimer’s disease using longitudinal data. Ideally, we need methods

that can model the changes in connectivity patterns over time, thereby providing

a more accurate and comprehensive understanding of brain connectivity dynamics.

Lastly, the absence of sparsity regularization in the aforementioned method leads to

the generation of densely connected traits, which increases the likelihood of spurious

findings.
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In this paper, we introduce longitudinal-LOCUS, a novel low-rank decomposition

method for brain connectivity that integrates uniform sparsity specifically for lon-

gitudinal functional connectivity (FC). Longitudinal-LOCUS is a fully data-driven

blind source separation technique that decomposes longitudinal matrices to extract

latent connectivity traits and characterize their dynamic changes in connectivity

patterns over time. Specifically, longitudinal-LOCUS decomposes longitudinal FC

measures into time-specific latent source signals, while accounting for their temporal

dependence. To enhance accuracy and reliability, we employ a low-rank structure

to model connectivity traits, capturing block-diagonal or banded patterns in brain

connectivity matrices (Zhou et al., 2013) and reducing estimation parameters. For

specific traits, our approach assumes shared eigenvectors across time while allowing

eigenvalue changes, thereby effectively incorporating temporal correlation and mod-

eling temporal differences. Additionally, we introduce a novel angle-based sparsity

regularization on connectivity trait sets. This regularization further improves reliability

by mitigating the presence of spurious connections and identifying connections that

genuinely relevant to specific traits. The model is then applied to the ABCD dataset

to capture the differences in FC related to neurodevelopment between females and

males.

The rest of the paper is organized as follows. In Section 2, the proposed model is

introduced. Section 3 discusses estimation and tuning parameter selection. Section 4

illustrates the superiority of our method compared to other decomposition methods

through simulation studies. In Section 5, we apply the proposed method to investigate

longitudinal connectivity in the ABCD study. Finally, discussions and conclusions are

presented in Section 6.
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3.2 Material and Methods

3.2.1 Longitudinal LOCUS Model

Let us consider a longitudinal study involving N participants, and each participant

undergoes T visits. Let Yit ∈ RV×V denote the observed FC matrix for individual i at

visit t, where i ∈ 1, . . . , N and t ∈ 1, . . . , T . Here, V represents the number of nodes in

the brain. Each element Yit(u, v) ∈ R quantifies the strength of the connection between

nodes u and v. The matrix Yit is symmetric, and the diagonal elements, which represent

self-connections, are typically not of interest. To extract relevant and nonredundant

information, we define a vector yit comprising the upper triangular elements of Yit.

Specifically, yit = L(Yit), where L(Yit) = [Yit(1, 2),Yit(1, 3), . . . ,Yit(V − 1, V )]′. Here,

L is a mapping function from RV×V to Rp, with p = V (V−1)
2

. We model yit as a linear

combination of q group-visit-level latent connectivity sources or traits.

yit =

q∑
ℓ=1

aitℓsgtℓ + eit, (3.1)

where aitℓ are the individual-specific loadings on the ℓ-th latent connectivity trait, sgtℓ

are the ℓ-th latent connectivity traits at visit t for individuals belonging to group g,

eit is the error term for individual i at visit t independent of the connectivity traits.

Here, g ∈ {1, 2, . . . , G} denotes the subgroup to which the individual belongs. These

groups are mutually exclusive and could be defined by various factors such as sex (e.g.,

female or male) in studies investigating sex differences in neurodevelopment, different

treatment conditions, or disease status in brain disorder analyses. If no grouping

is considered, G can be specified as 1, and the group index g can be omitted. The

model decomposes longitudinal connectivity matrices to extract group-visit-specific

latent connectivity traits, denoted as sgtℓ = L(Sgtℓ) ∈ Rp for ℓ = 1, . . . , q. These
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latent connectivity traits are assumed to be independent across the q traits. Each trait

represents a set of brain connections that tend to occur together, with the elements

indicating signal strength. The presence or prominence of the ℓ-th connectivity trait

in the i-th individual at time point t is represented by aitℓ.

We rewrite the model in matrix form by concatenating data from participants

within the same group and visit. Let Ygt =

[
y1t, . . . ,yNgt

]′

∈ RNg×p denote the

multi-subject connectivity data in group g at visit t, where group g consists of Ng

participants. The model can be expressed as:

Ygt = AgtSgt +Egt, (3.2)

where Sgt =

[
sgt1, . . . , sgtq

]′

∈ Rq×p denotes the group-visit-level connectivity trait

matrix. The model assumes that these connectivity traits are shared by a group

at a specific time while varying across different groups. Agt = {aigtℓ} ∈ RNg×q

represents the group-visit-level mixing or trait loading matrix. Additionally, Egt =[
e1t, . . . , eNgt

]′

∈ RNg×p denotes the group-visit-level error matrix.

We model connectivity traits using a low-rank structure. This low-rank structure

would effectively capture the block or banded patterns often observed in brain con-

nectivity matrices (Zhou et al., 2013). By employing such structure, we significantly

reduce the number of parameters required for estimation. Instead of estimating all

the elements in the upper triangular of the connectivity matrix, which has a quadratic

complexity of O(V 2), we only need to estimate parameters with a linear complexity

of O(V ). Specifically, the group-visit-level source signal sgtℓ is modeled by:

sgtℓ = L(Sgtℓ) = L(XℓDgtℓX
′

ℓ) = L(
Rℓ∑
r=1

d
(r)
gtℓx

(r)
ℓ x

(r)
′

ℓ ), ℓ ∈ 1, 2, ..., q. (3.3)

Here Xℓ = [x
(1)
ℓ , . . . ,x

(Rℓ)
ℓ ] ∈ RV×Rℓ is a matrix with rank Rℓ < V . We assume Xℓ is
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shared across groups and visits, in this way we can capture the correlation in latent

sources among groups and visits. This shared structure facilitates the identification

of common patterns and underlying similarities in the connectivity traits across the

entire dataset. Dgtℓ is a group-visit-specific diagonal matrix with diagonal elements

dgtℓ = (d
(1)
gtℓ, .., d

(Rℓ)
gtℓ ), which reflects variations in latent sources across groups and visits.

More specifically, in Xℓ, each tensor factor x
(r)
ℓ (r = 1, . . . , Rℓ) is a V × 1 vector with

unit norm, i.e. ∥x(r)
ℓ ∥2 = 1 for identifiability, and it represents the latent coordinates of

the V nodes in the rth dimension. d
(r)
gtℓ reflects the contribution of the rth dimension in

generating sgtℓ. Each row of Xℓ, i.e. xℓ(v) ∈ RRℓ×1 represents the latent coordinates

of the vth node in the a reduced Rℓ-dimensional latent subspace, which potentially

reflect the node’s underlying neural activity. The connection between two nodes in

the ℓth trait is modelled as Sgtℓ(u, v) = xℓ(u)
′Dgtℓxℓ(v), which is the inner product

between their latent coordinates. This implies the connection between the nodes

depends on the similarity between the neural activity of the nodes characterized by

their latent coordinates, which aligns with the understanding of brain connectivity in

neuroscience (Friston et al., 1993; Friston, 2011). All the brain connections involving

a node v are based on the node’s latent coordinate xℓ(v) and hence are inherently

related. This appropriately accounts for the dependence structure across edges in the

brain connectome, which is disregarded by many existing methods. We allow Rℓ to

vary across source signals, enabling us to accommodate diverse connectivity traits

with different network properties and topological structures.

3.2.2 Regularization

As functional connections in neural circuits exist only in a proportion of region pairs

across the brain (Bullmore and Sporns, 2009; Lee et al., 2011; Huang et al., 2010), we

incorporate element-wise sparsity regularizations in Longitudinal LOCUS learning.

This approach allows us to obtain parsimonious results and reduce spurious connections
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when recovering the spatial source maps of the connectivity traits. The optimization

function with these regularizations is as follows:

min
G∑

g=1

T∑
t=1

||Ygt −AgtSgt||22 + ϕ

G∑
g=1

T∑
t=1

|Sgt| (3.4)

where ϕ is the tuning parameter for sparsity control. The first term in the optimization

function (3.4) measures the closeness between the observed functional connectivity

(FC) and the reconstructed FC, which stands for the goodness-of-fit of the model. The

second term is the sparsity regularization, which penalizes each element of Sgtℓ, i.e.

Sgtℓ(u, v) = xℓ(u)
′Dgtℓxℓ(v). This inner product corresponds to the angle between two

nodes in the latent subspace. The sparsity penalty term in our model minimizes the sum

of these inner products for all pairs of nodes, making it an angle-based regularization.

This approach intuitively and effectively induces sparsity in the connections between

nodes.

3.3 Estimation Algorithm and Selection of Tuning

Parameters

3.3.1 Preprocessing

To optimize the subsequent decomposition process by reducing computational com-

plexity and mitigating overfitting (Hyvärinen et al., 2001), we apply several common

preprocessing procedures to the multi-subject connectivity data. These procedures

include centering, dimension reduction, and whitening. This results in the transformed

data, denoted as Ỹgt, computed as Ỹgt = HgtYgt. The matrix Hgt is calculated as

Hgt = (Λqgt − σ̃2
qgtI)

−1/2U
′
qgt. Here, Uqgt and Λqgt contain the top q eigenvectors and

eigenvalues based on the singular value decomposition of Ygt. The residual variance,

denoted as σ̃2
qgt, characterizes the unexplained variability in Ygt that is not accounted
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for by the extracted q latent sources. This value is estimated by the average of the

smallest Ng−q eigenvalues in Λqgt. The preprocessed data Ỹgt is of dimensions of q×p

where the columns correspond to p connections in the brain. With the preprocessing,

the Longitudinal LOCUS optimization function in (3.4) can be rewritten on the

reduced and sphered space as following:

min
G∑

g=1

T∑
t=1

||Ỹgt − ÃgtSgt||2F + ϕ

G∑
g=1

T∑
t=1

|Sgt| (3.5)

where Ãgt = HgtAgt ∈ Rq×q. It’s important to note that the dimension reduction

in the preprocessing occurs in the row space of Ygt. This space corresponds to the

subject domain within group g and visit t, impacting how the data is organized over

participants. However, it does not affect the column space of Ygt, which relates to the

connectivity domain and represents the relationships between various brain regions.

Therefore, the preprocessing does not impact the connectivity trait matrix Sgt. Taking

into account the orthogonal nature of the mixing matrix Ãgt’s, the final optimization

function can be expressed as follows:

minÃgt,{Xℓ,Dgtℓ}

G∑
g=1

T∑
t=1

q∑
l=1

||Ỹ ′

gtãgtℓ−L(XℓDgtℓX
′
ℓ)||22+ϕ

G∑
g=1

T∑
t=1

q∑
ℓ=1

∑
u<v

|xℓ(u)
′Dgtℓxℓ(v)|

(3.6)

where ãgtℓ is the ℓth column of Ãgt. The derivation of the final optimization function

(3.6) is provided in Appendix 2.5.1.

3.3.2 A Node-rotation Estimation Algorithm

The objective function defined in (3.6) is non-convex, but it can be shown to be block

multi-convex. This means the function can be divided into parameter subsets, such

that the function is convex with respect to each parameter subset when the others

are held constant. Using this property, we have developed an efficient node-rotation
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learning algorithm that provides closed-form solutions at each update step.

Initialization

We initialize the parameter values using LOCUS (Wang and Guo, 2023). We concate-

nate the FC matrices from different groups and visits into a single matrix, denoted as

Ỹ =

[
Ỹ11 . . . Ỹ1T . . . ỸG1 . . . ỸGT

]′
. Next, we decompose Ỹ using LOCUS to obtain a

common set of latent sources s∗1, . . . , s
∗
q and group-visit-specific loadings. For group g

visit t, we have,

Ỹgt = Ã∗
gtS

∗ + Ẽ∗
gt (3.7)

where S∗ =

[
s∗1, . . . , s

∗
q

]′

and s∗ℓ = L(X∗
ℓD

∗
ℓX

∗T
ℓ ). Then, we use a dual regression

procedure to get group-visit-specific latent sources S∗∗
gt =

[
s∗∗gt1, . . . , s

∗∗
gtq

]′

by regressing

group-visit-specific loadings Ã∗
gt back into the group-visit-level data Ỹgt. Finally, we

map s∗∗gtℓ to the common coordinate X∗
ℓ to get D∗

gtℓ. We initialize Ãgt using Ã∗
gt, Xℓ

using X∗
ℓ , and Dgtℓ using D∗

gtℓ.

Update Xℓ

We develop a node-rotation algorithm that updates Xℓ at one of the node v while

conditioning on the rest of the nodes and then rotating across the nodes. The objective

function that are relevant to xℓ(v) can be formatted as

min
G∑

g=1

T∑
t=1

||Ỹ ′

gt{v}ãgtℓ −Xℓ(−v)Dgtℓxℓ(v)||22 + ϕ
G∑

g=1

T∑
t=1

∑
u<v

|xℓ(u)
′
Dgtℓxℓ(v)| (3.8)
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where Ỹgt{v} is a q × (V − 1) matrix that represents (V − 1) edges that are relevant

to node v, and Xℓ(−v) is a (V − 1) × Rℓ matrix with the vth row removed. It is

straightforward to show that the optimization in (3.8) is convex.

We propose the following procedure for solving (3.8). First, we concatenate

Ỹ
′

gt{v}ãgtℓ and Xℓ(−v)Dgtℓxℓ(v) across groups and time, such that (3.8) can be

reformulated as the following problem:

min||zℓ{v} − bℓ{v}||22 + ϕ|bℓ{v}| (3.9)

where zℓ{v} =



Ỹ
′

11{v}ã11ℓ

. . .

Ỹ
′

1T{v}ã1Tℓ

. . .

Ỹ
′

G1{v}ãG1ℓ

. . .

Ỹ
′

GT{v}ãGTℓ



and bℓ{v} = Rℓ(v)xℓ(v) =



Xℓ(−v)D11ℓ

. . .

Xℓ(−v)D1Tℓ

. . .

Xℓ(−v)DG1ℓ

. . .

Xℓ(−v)DGTℓ



xℓ(v), and

both are vectors of length (V − 1)GT . We obtain analytical estimate bℓ{v} following

Fan and Li (2001),

bℓ{v} = diag(sgn(zℓ{v}))δ(|zℓ{v}| −
ϕ

2
1(V−1)GT )

where sgn represents sign function for each element and δ denotes a rectifier function

(δ(x) = x if x > 0 otherwise 0). In the kth iteration, we project b̂
(k)
ℓ{v} onto the low-rank

space spanned by R̂
(k−1)
ℓ (v) to obtain the estimate of xℓ(v), that is,

x̂
(k)
ℓ (v) = (R̂

′(k−1)
ℓ (v)R̂

(k−1)
ℓ (v))−1R̂

′(k−1)
ℓ b̂

(k)
ℓ{v}

After updating xℓ(v), we proceed to the next node, systematically reiterating



70

the aforementioned process across all nodes within the range of v = 1, ..., V . This

iterative approach yields updated estimations for Xℓ. A notable advantage of the

node-rotation algorithm is its use of analytical solutions, which eliminates the need

for gradient-based numerical approximations. This feature substantially enhances the

algorithm’s efficiency and reliability.

Update Dgtℓ

Given the estimate of Xℓ from the kth iteration and the estimate of Agtℓ from the

(k − 1)th iteration, we estimate the diagonal of Dgtℓ, that is, dgtℓ = diag(Dgtℓ) by

minimizing the following objective function:

min||Ỹ ′

gtãgtℓ −Zℓdgtℓ||22 + ϕ|Zℓdgtℓ| (3.10)

where Zℓ ∈ Rp×Rℓ with the rth column being L(x(r)
ℓ x

(r)′

ℓ ), r = 1, . . . , Rℓ. The process

for solving (3.10) is analogous to that employed for solving (3.9).

Update Ãgt

The mixing matrix Ãgt is updated using the estimates of Xℓ and Dgtℓ obtained in

the kth iteration as follows:

ˆ̃
A

(k)

gt = ỸgtŜ
′(k)
gt (Ŝ

(k)
gt Ŝ

′(k)
gt )−1 (3.11)

A summary of the algorithm is presented in Algorithm 2.
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Algorithm 2: An Iterative Node-Rotation Algorithm

1 Initial: Initialize
ˆ̃
A

(0)

gt , {X̂
(0)
gtℓ , D̂

(0)
gtℓ} obtained from LOCUS and dual

regression. For ℓ = 1...q, For v = 1, . . . , V ,
2 Step 1. Update xℓ(v) :
3

b̂
(k)
ℓ{v} = argmin

bℓ{v}∈R(V −1)GT

∥∥∥zℓ{v} − bℓ{v}

∥∥∥2

2
+ ϕ

∥∥∥bℓ{v}∥∥∥
1

4

x̂
(k)
ℓ (v) = (R̂

′(k−1)
ℓ (v)R̂

(k−1)
ℓ (v))−1R̂

′(k−1)
ℓ b̂

(k)
ℓ{v}.

5 End for v For g = 1 . . . G, t = 1 . . . T , Step 2. Update Dgtℓ:

d̂
(k)
gtℓ = diag(D̂

(k)
gtℓ) = argmin

dℓ∈RRℓ

∥∥∥Ỹ ′
gt
ˆ̃agtℓ − Ẑℓdgtℓ

∥∥∥2

2
+ ϕ∥Ẑℓdgtℓ∥1,

6 End for g, t
7 End for ℓ

8 For g = 1 . . . G, t = 1 . . . T , Step 3. Update Ãgt:
9

ˆ̃
A

(k)

gt = ỸgtŜ
′(k)
gt (Ŝ

(k)
gt Ŝ

′(k)
gt )−1

10 Perform an orthogonal transformation on
ˆ̃
A

(k)

gt

11 End for g, t

12
∥ ˆ̃A

(k)

gt − ˆ̃
A

(k−1)

gt ∥F

∥ ˆ̃A
(k−1)

gt ∥F
< ϵ1 and

∥Ŝ(k)
gt −Ŝ

(k−1)
gt ∥F

∥Ŝ(k−1)
gt ∥F

< ϵ2
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3.3.3 Tuning parameter selection

The optimization function in (3.6) involves two sets of tuning parameters: the rank

parameters {Rℓ}qℓ=1, which control the dimension of the subspace of the connectivity

traits, and ϕ, which regulates the influence of the sparsity penalization for the

connectivity traits. Following Wang and Guo (2023), we select Rℓ for each set

of {sgtℓ} during the initialization stage. Specifically, Rℓ is chosen based on the desired

level of similarity ρ between the estimated source signals initialized with the low-rank

structure and the unconstrained source signal estimate obtained without the low-rank

structure. Therefore, we determine the values of all sets of {Rℓ}qℓ=1 based on a single

parameter ρ that captures the desired similarity.

We propose the following BIC-type criteria to select ρ and ϕ,

BIC = −2
G∑

g=1

T∑
t=1

q∑
i=1

log(g(ỹgti;

q∑
j=1

ˆ̃agtij ŝgtj; ˆ̃σIp)) + log(N)
G∑

g=1

T∑
t=1

q∑
j=1

||ŝgtj||0,

(3.12)

where ỹgti, g = 1, . . . , G and t = 1, . . . , T is the ith row in Ỹgt, {ˆ̃agtij} are the estimated

mixing coefficients of preprocessed connectivity data, ŝgtj, j = 1, ..., ℓ, is the estimated

connectivity trait, ˆ̃σ
2
= 1

qpGT

∑G
g=1

∑T
t=1

∑q
i=1 ||ỹgti −

∑q
j=1

ˆ̃agtij ŝgtj||22, g is the pdf of

a multivariate Gaussian distribution and ||.||0 denotes the L0 norm.

3.4 Simulation

We conducted simulations with sample sizes of N = 20, 50, where each participant has

three visits: baseline, visit 1, and visit 2 (at time points t = 0, 1, and 2). Participants

were randomly assigned to either the treatment or control group with a probability of

p = 0.5.

We generated FC from three underlying source signals (q = 3) with dimensions of

50 × 50. These source signals were designed to mimic patterns found in real fMRI
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data, featuring a low-rank structure. Latent source 1 has two active regions, one

characterized by positive signals and the other by negative signals. The magnitude of

the positive signals remains consistent over time, with group 1’s magnitude lower than

group 2, while the negative correlation areas exhibit a progressive increase in both

groups. Latent source 2 consists of negative connections between modules (off-diagonal)

and positive connections within modules (diagonal). The positive correlations increase

over time, with group 2 displaying a lower magnitude compared to group 1, while the

negative correlation area remains consistently unchanged over time. In latent source

3, the strength of the source signals within negatively activated regions increases

over time, while within positively activated regions decreases over time. There are

no observable differences between groups. The mixing coefficients were drawn from

estimates obtained from real imaging data.

Furthermore, we incorporated zero-mean Gaussian noise into the signal mixture.

The variance of this noise was set to three different levels: σ2 = 22, 32, and 42,

representing low, medium, and high variance levels, respectively. In summary, we

have 2× 3 simulation settings with various combinations of sample sizes and variance

levels. For each setting, we generated 100 simulation runs to comprehensively evaluate

performance variations.

We compared our method with connICA and Dictionary Learning (DL) in terms of

the ability to recover group-visit-specific latent sources and loading matrix. Specifically,

we applied each method to the concatenated data, yielding a population-level S matrix.

Subsequently, we segregated the data into groups (treatment and control) and visits.

Dual regression was then employed to derive group-visit-specific latent sources. We

record these two method as ‘connICA + dualreg’ and ‘DL + dualreg’ respectively.

To assess the accuracy of each method, we evaluated the methods based on the

correlations between the ground truth and the model-derived estimates of both source

signals and mixing coefficients. Furthermore, we calculated the standard deviation
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of these correlations across the 100 simulation runs to evaluate the variability of the

estimations.

Results are summarized in Table 3.1. Our method consistently exhibits superior

accuracy in recovering latent sources and mixing coefficients compared to connICA and

DL. Meanwhile, the standard deviation of our method is notably lower than ‘connICA

+ dualreg’ and comparable to ‘DL + dualreg’, which underscores the enhanced stability

of our proposed approach.
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Term N Var. llocus connICA+dualreg DL+dualreg

Latent Source Corr. (SD)

20
Low

0.9863
(0.0015)

0.7032
(0.0224)

0.9091
(0.0016)

Mid
0.9588
(0.0083)

0.6453
(0.0230)

0.8466
(0.0023)

High
0.9360
(0.0046)

0.5890
(0.0220)

0.7828
(0.0029)

50
Low

0.9884
(0.0000)

0.8563
(0.0411)

0.9726
(0.0004)

Mid
0.9880
(0.0000)

0.8266
(0.0391)

0.9437
(0.0008)

High
0.9875
(0.0001)

0.7880
(0.0374)

0.9091
(0.0012)

Loading Matrix Corr. (SD)

20
Low

0.9958
(0.0014)

0.7726
(0.0435)

0.9862
(0.0004)

Mid
0.9857
(0.0054)

0.7757
(0.0476)

0.9852
(0.0006)

High
0.9781
(0.0040)

0.7784
(0.0492)

0.9837
(0.0008)

50
Low

0.9989
(0.0001)

0.8341
(0.0840)

0.9739
(0.0003)

Mid
0.9983
(0.0002)

0.8347
(0.0831)

0.9734
(0.0006)

High
0.9973
(0.0003)

0.8276
(0.0839)

0.9725
(0.0008)

Table 3.1: Simulation results for comparing longitudinal-LOCUS and the existing
connICA and DL methods with dual regression based on 100 simulation runs conducted
under three variance (Var.) settings. Values presented are mean and standard deviation
of correlations between the true and estimated latent sources and loading/mixing
matrices.
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3.5 Data analysis of longitudinal functional connec-

tivity in ABCD study

3.5.1 Dataset and methods

The Adolescent Brain Cognitive Development (ABCD) study is an extensive longitu-

dinal investigation using resting-state functional magnetic resonance imaging (fMRI)

data collected at baseline and follow-up visits (Volkow et al., 2018). It’s ideal for

longitudinal connectivity studies due to its large sample size, detailed phenotypic data,

standardized procedures, and data availability. We obtained minimally processed

imaging data from ABCD 4.0 on the National Institute of Mental Health Data Archive

(NDA), which includes standard registration and segmentation preprocessing steps

to extract global, white matter (WM), and cerebrospinal fluid (CSF) signals. We

then applied additional preprocessing steps adapted from the “DCANBOLDproc”

stage in the ABCD-HCP BIDS fMRI Pipeline (Feczko et al., 2021; Marek et al.,

2022). Framewise displacement (FD) (Power et al., 2012) was calculated using the

motion parameters from the minimally preprocessed data, and frames with FD greater

than 0.3 mm were censored. The remaining data were demeaned and detrended, and

linear interpolation was used to replace the motion-censored frames with low-motion

data. Next, the interpolated data were denoised using a general linear model (GLM)

with Friston’s 24 movement parameters (Friston et al., 1996), WM, CSF, and global

signals as nuisance regressors. Finally, a second-order Butterworth bandpass filter

between 0.009 and 0.08 Hz was applied to the residuals from the denoising step. We

computed the average time series for regions of interest defined by Power’s 264-node

brain parcellation (Power et al., 2011). Nodes were assigned to functional networks

based on Smith’s major resting-state network system for interpretation (Smith et al.,

2009). For nodes with ambiguous assignments in Smith’s system, we interpret them

using Power’s resting-state network labels (Power et al., 2011).
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We subsetted the preprocessed data to 3,869 children with complete 4 runs for both

baseline and follow-up visits. After motion quality control with retaining data with

FD < 0.2 mm for over 8 minutes, 2,672 children remained. The remaining children

included 1,257 females (47.04%) and 1,415 males (52.96%), aged 8.92 to 11 years

(mean 9.92, SD 0.63) in the baseline visit, and 10.75 to 13.83 years (mean 11.95, SD

0.65) in the follow-up visit. For each child, we extracted the fMRI time series from

each node and obtained 264× 264 longitudinal connectivity matrices by evaluating

the pairwise correlations between the node-specific fMRI series for the baseline and

follow-up visits. We then concatenated the upper triangular part of the matrices

across time and children. Fisher’s Z transformation was applied to the correlations to

obtain the longitudinal connectivity data for decomposition. Site harmonization of

functional connectivity (FC) matrices was performed using COVBAT (Chen et al.,

2022) to account for site effects respectively for each year, with “site” as a factor and

covariates including age, sex, and their interactions.

We applied longitudinal LOCUS to decompose the connectivity data and uncover

underlying connectivity traits. We considered two groups based on gender and analyzed

data from two time points: the baseline visit and the follow-up visit. The number of

latent sources, q, was determined based on the reproducibility and interpretability

of the extracted sources. The parameters ϕ and ρ were selected using the proposed

BIC-type criteria. The reproducibility of the extracted sources increases with q,

reaching around 0.9 at q = 15. While reproducibility continues to rise slightly beyond

this point, the interpretability of the extracted sources diminishes as q becomes too

large. Therefore, we select q = 15, which strikes a good balance between model size,

reproducibility, and interpretability. Using the proposed tuning parameter selection

method, we choose ρ = 0.95 and ϕ = 10 for the longitudinal-LOCUS optimization.

After obtaining underlying longitudinal connectivity traits, we conducted statistical

inference to compare differences in neurodevelopment as reflected in discrepancies in
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brain connectivity traits between genders. To quantify neurodevelopment within each

gender, we subtracted the brain connectivity trait maps of the follow-up visit from

those of the baseline visit. To determine the differences in neurodevelopment between

genders, we further subtracted the difference trait maps between genders, resulting

in “difference-in-difference” trait maps. Next, to identify significant connectivity

differences, we constructed nonparametric statistical tests. For each bootstrap sample,

we randomly shuffled the gender group index for each child while preserving their time

order. We conducted a total of 5000 bootstrap iterations. In each iteration, we ran

longitudinal LOCUS and computed the “difference-in-difference” map for each trait,

determining the 99th percentile of the absolute values across all edges. For each trait,

the 95th percentile of these values across all iterations was used to establish the 95%

confidence band for the “difference-in-difference” maps.

3.5.2 Results

Spatial composition of the latent connectivity traits

Longitudinal-LOCUS uncovers 15 dynamic latent connectivity trait sets for both

females and males at the baseline visit and follow-up visit. The figure below presents

the retrieved source signal maps. An interesting finding is that 9 out of the 15

most reproducible traits involve visual networks. This finding aligns well with earlier

research on single time point analysis (Wang and Guo, 2023), which shows that

connections involving visual networks are highly reproducible and consistently observed

in circuitry traits. Specifically, we categorize connectivity traits driven by lower-level

sensory networks such as visual networks, auditory network (“Aud”), and sensorimotor

network (“SM”) as lower-level sensory connectivity traits. In contrast, traits driven

by the default mode network (“DMN”), fronto-parietal networks (“FPL, FPR”), and

cerebellum (“CB”), given its involvement in both motor and cognitive functions, are

classified as higher-order cognitive connectivity traits. Traits driven by lower-level



Figure 3.1: Part I: Fifteen connectivity traits extracted from the ABCD study for
females at baseline.

sensory networks include Trait 2 (Vis), Trait 5 (Vis-DMN-FPL-CB), Trait 6 (Aud-EC),

Trait 9 (Aud-SM), Trait 11 (Aud-SM-Vis), Trait 12 (Vis-Aud-SM), Trait 14 (Vis-

FPR), and Trait 15 (SM). The identified higher-order cognitive traits include Trait 1

(DMN-Vis-EC-FPR-FRL), Trait 3 (EC-FPL), Trait 4 (EC-Vis), Trait 8 (FPR-Vis),

Trait 10 (Vis-DMN), and Trait 13 (FPR-EC-DMN). Additionally, Trait 7 exhibits

overall connectivity patterns.

Neurodevelopmental differences in connectivity traits between males and

females

We identified three connectivity traits that demonstrate significant neurodevelopmental

differences between males and females. Trait 10 (Vis-DMN) (Figure 3.2) is a cognitive-

related connectivity trait primarily driven by the default mode and visual networks.

Stronger connections are observed in the FPL-Visual, FRL-DMN, and within the
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Figure 3.1: Part II: Fifteen connectivity traits extracted from the ABCD study for
females at the follow-up visit.
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Figure 3.1: Part III: Fifteen connectivity traits extracted from the ABCD study for
males at baseline.
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Figure 3.1: Part IV: Fifteen connectivity traits extracted from the ABCD study for
males at the follow-up visit.
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FPL regions as children mature. While males initially show weaker connections at

baseline, their development progresses more rapidly compared to females. Overall,

males exhibit greater developmental changes compared to females. Trait 14 (Vis-FPR)

(Figure 3.3) is a connectivity trait primarily driven by the visual network and the

frontal parietal network. Males show a decrease in connections within the visual and

sensory-motor-related networks, while females generally exhibit either an increase or

only a slight decrease in these connections. Trait 15 (SM) (Figure 3.4) is driven by

the sensory-motor network. Males display stronger connections, while females exhibit

slightly weaker connections during neural development. Significant differences are

observed within the sensory-motor network, within the visual network, and between

the sensory-motor and visual networks.
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Figure 3.2: Trait 10 demonstrates significant neurodevelopmental differences between
males and females
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Figure 3.3: Trait 14 demonstrates significant neurodevelopmental differences between
males and females
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Figure 3.4: Trait 15 demonstrates significant neurodevelopmental differences between
males and females



Chapter 4

Nonparametric Motion Control in

Functional Connectivity Studies in

Children with Autism Spectrum

Disorder

4.1 Introduction

Early studies on neurodevelopment using functional magnetic resonance imaging

found that short-range brain connections weakened and long-range brain connections

strengthened during development (Fair et al., 2008), but these findings were under-

mined by the discovery that motion causes the same patterns (Van Dijk et al., 2012;

Power et al., 2012; Colaço, 2024). This discovery led to the widespread adoption of

motion quality control scan removal, which can result in drastic data loss. For example,

multiple recent high-profile studies removed 60%-75% of approximately 11,500 children

due to excessive motion (Marek et al., 2022; Nielsen et al., 2019). Removal of these

children not only greatly decreases sample size, but also may introduce selection bias

88
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(Cosgrove et al., 2022). There is a need to develop a statistical method that makes

more efficient usage of the data and avoids selection bias in order to draw unbiased

inferences about brain development.

Appropriate methods for motion quality control are especially warranted in studies

of neurodevelopmental conditions. Autism spectrum disorder (ASD) is a neurode-

velopmental condition with a rising prevalence that affects 1 in 36 children in the

United States (Maenner, 2023). To study the neurobiology of ASD, investigators

often use resting-state functional magnetic resonance imaging (rs-fMRI) to derive mea-

sures of functional connectivity between regions in the brain. Functional connectivity

is commonly defined as the correlation between the blood oxygen level dependent

signal of different brain regions across time, which provides an indirect measure of

neuronal activity between those regions. Disruptions of functional connectivity have

been proposed as an endophenotype in autistic children (Yerys et al., 2015), with

decades of research reporting atypical patterns of functional connectivity in diverse

brain systems (Hull et al., 2017). However, obtaining high-quality rs-fMRI data for

functional connectivity analysis is challenging. Participants’ head motion during the

scanning session can induce motion artifacts, which can bias the analysis. The patterns

of correlation induced by motion artifacts mimic the connectivity theory of autism,

which predicts increased correlations between nearby brain regions and decreased

correlations between distant brain areas (Deen and Pelphrey, 2012). Artifact-driven

disruptions in brain networks can arise in comparisons of high and low motion rs-fMRI

scans (Power et al., 2012).

Current guidelines for handling motion in rs-fMRI involve four steps, but the

processing steps can introduce issues. First, rigid body motion correction is used

to align fMRI volumes across time. Second, confound regression is applied. Several

approaches to confound regression have been developed, which include regressing

motion alignment parameters, global signal, cerebral spinal fluid signal, and white
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matter from the fMRI time courses, which may be combined with the removal of

high-motion volumes or spike regression (Ciric et al., 2017). However, these approaches

are still insufficient, and it is recommended to remove scans in which motion is deemed

unacceptable (Power et al., 2014a). Nebel et al. (2022) found that 80% of autistic

children compared to 60% non-ASD children were removed during quality control,

and the removed autistic children had greater social deficits, worse motor control, and

lower generalized ability index. Fourth, the effect of diagnosis is estimated using linear

regression controlling for mean framewise displacement and demographic confounders

(Yan et al., 2013), where the effect is estimated using only data that pass motion

quality control.

Scan removal biases and inefficiencies have been largely unaddressed in the statisti-

cal and neuroimaging literature. Nebel et al. (2022) used an average-treatment effect

that conditions on group in which the excluded scans are treated as missing data,

which can address the selection bias issue. However, it does not utilize the outcome

(resting-state correlations) in the excluded data, which may be inefficient. Additionally,

it uses residuals from an initial linear regression of motion and demographic covariates

restricted to the included scans, whereas a unified framework that flexibly models

motion and demographic covariates has advantages. Sobel and Lindquist (2014)

formulated a causal framework for task fMRI activation studies that considers the

systematic error from motion, which is closely related to the nuisance regression step

in resting-state fMRI preprocessing, but it does not address the problem of quality

control in resting-state fMRI.

The objective of this study is to define and estimate an association between

functional connectivity and ASD diagnosis that appropriately controls for the impact

of motion. To this purpose, we use a causal mediation approach and consider motion

as a mediator. To quantify the association between ASD and functional connectivity

not related to motion, we conceptualize stochastic interventions (Muñoz and Van
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Der Laan, 2012) on children’s motion. Specifically, the stochastic intervention involves

assigning the motion value based on a random sample from a specified distribution

that corresponds to acceptable motion. By drawing children’s motion from the same

acceptable motion distribution across diagnostic groups, we are able to appropriately

control for the impact of motion when evaluating associations of ASD diagnosis and

functional connectivity. Our approach to motion control, which we call MoCo, is

a novel solution to motion artifacts that uses all participants and avoids selection

bias caused by motion quality control exclusion criteria. We propose an estimator

and inference based on the efficient influence function that has multiple robustness

properties. Our efficient estimator utilizes a data-adaptive ensemble of machine

learning algorithms to flexibly model motion and other confounders (Van der Laan

et al., 2007), while retaining
√
n-consistency (Van der Laan et al., 2011). Our analysis

examines functional connectivity between a seed region in the default mode network

and other brain regions in children in the Autism Brain Imaging Data Exchange

(Di Martino et al., 2017).

4.2 Methods

Notation. Let A ∈ {0, 1} denote the diagnosis group, which is equal to 1 if the

participant has ASD and 0 otherwise. Let M ∈ M denote the motion variable. In

our data application, we take M to be mean framewise displacement (FD), which

is a commonly used measure of motion during the resting-state fMRI scan. Let

∆ ∈ {0, 1} denote an inclusion indicator, which is equal to 1 if the participant meets a

pre-specified set of criteria for inclusion in the study, related to the aggregate amount

of movement during a child’s scanning session. In our data application, we use the

criteria from Power et al. (2014a), in which ∆ = 1 if a child has more than 5 minutes

of data after removing frames with FD > 0.2 mm. Let Y ∈ Y denote the functional
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connectivity between two locations in the brain. For clarity, we initially define Y for a

pair of regions, but in Section 7.4.2 we will extend it to the multivariate case with

family-wise error control. Let X ∈ X denote covariates that are putatively related to

functional connectivity and are possibly imbalanced across diagnosis groups. Such

covariates could include age, sex, and handedness. Let Z ∈ Z be variables related

to the diagnosis group and the pathophysiology of ASD. These are variables that

have substantially different distributions with little or no overlapping support in ASD

and non-ASD groups. Such variables could include scores on the autism diagnostic

observation schedule (ADOS, a measure of social disability), full-scale intelligence

quotient (FIQ) score, and current medication status. The distinction between X and

Z is important: X are variables that would be balanced in an ideal experiment, while

Z are variables that are related to diagnosis group, and thus have distributions that

depend on A.

Let O = (A,M,∆, X, Z, Y ) represent a random variable with distribution P .

Denote O1, . . . , On as n i.i.d. observations of O, where Oi = (Ai,Mi,∆i, Xi, Zi, Yi).

We assume P ∈ P , where P is a statistical model for probability distributions on the

support of O that is nonparametric up to certain positivity conditions that will be

defined later in Section 7.3.1.

In our notation, an uppercase letter with no subscript denotes a random variable,

an uppercase letter with an index, typically i, is an observed value of a random

variable, and a lowercase letter indicates a typical realization of the random variable.

For example, E(Y | A) is a random variable, while E(Y | A = a) is a scalar.

Let PM |∆=1,A,X(m | a, x) denote the probability distribution of M conditional

on ∆ = 1, A,X evaluated at value (m, a, x) ∈ M× {0, 1} × X . PM |∆=1,A,X is thus

the probability distribution of motion given fixed diagnosis status A and covariates

X, among children who meet the inclusion criteria. We use pM |∆=1,A,X(m | a, x)

to denote a density with respect to some dominating measure. For simplicity, we
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write this density and all subsequent densities as being defined with respect to the

Lebesgue measure. We follow similar conventions to define pM |A,X,Z(m | a, x, z) as the

conditional density of M given A,X,Z and pZ|A,X(z | a, x) as the conditional density

of Z given A,X.

Let µY |A,M,X,Z(a,m, x, z) denote the conditional mean functional connectivity given

diagnosis group A = a, motion level M = m, and covariates (X,Z) = (x, z). Define

πa(x) as the conditional probability that A = a given X = x. We use an n-subscript

to denote an estimate of the corresponding estimand, e.g., πn,a is an estimate of πa.

4.2.1 Defining target parameter for group comparisons in

fMRI studies

We propose a framework inspired by causal mediation analysis, whereby motion is

considered a mediating variable. We aim to disentangle the impact of motion in the

pathway between ASD and functional connectivity. To formalize our approach, we

imagine a hypothetical experiment in which we are able to manipulate the motion

of children during the scanning session. The hypothetical intervention is motivated

by empirical studies in which children complete training in a mock scanner (De Bie

et al., 2010). In the data set used in our analysis, children received at least one

mock training, but oftentimes this training was insufficient to adequately control

motion in the scanner. Therefore, we consider defining counterfactuals based on the

hypothetical intervention that could be given to children prior to scanning that would

successfully reduce motion during the scan. The hypothetical training program is

applied to all children irrespective of diagnosis category. Our methods mathematically

formalize the nature of the training program in terms of its impact on scanner motion,

define the counterfactual data that would be observed under the hypothetical training

program, describe assumptions under which inference can be made pertaining to the

counterfactual data, and provide estimators of associations between diagnosis and
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functional connectivity that appropriately account for motion artifacts.

We first define the total association between ASD diagnosis and functional con-

nectivity as θO,1 − θO,0, where θO,a = E(E(Y | A = a,X)), where the outer ex-

pectation is with respect to PX , the marginal distribution of X. The total asso-

ciation can be interpreted as the mean difference functional connectivity between

diagnosis groups after balancing measured confounders X and making no effort to

control for motion. If X were balanced across diagnosis groups, i.e., if XA, then

θO,1 − θO,0 = E(Y | A = 1)−E(Y | A = 0). Therefore, the total association is adjust-

ing for differences in the distribution of X across diagnosis groups, but nothing else.

The subscript O denotes that this is an association in the observed data distribution

that may include potentially inappropriate and imbalanced levels of motion.

Using a mediation-inspired approach, we then aim to isolate the associations of

biological interest between ASD and functional connectivity from the total association

by mitigating the influences of motion differences between diagnosis groups. This

association of biological interest, which we term a motion-controlled association

(MoCo), is an analogue to the classic direct effect in the causal mediation literature

(Pearl, 2014). However, in this case, we do not view ASD as something that is

inherently manipulable, so we restrict the interpretation of our analysis to describing

direct associations of ASD with functional connectivity. On the other hand, we can

view motion as something that is inherently manipulable.

We imagine a hypothetical training program where all children receive scanner

training that results in a reduction of the motion of all children to a tolerable level,

such that their data can be included in our analysis. The ideal motion distribution

may be one where there is no motion whatsoever during a scanning session. However,

such a choice is not practical since in the experimental data all children have at least

some motion during a scanning session. Therefore, as a practical alternative, we

suggest using an estimand inspired by a stochastic intervention on motion. In causal
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inference, static interventions imagine counterfactual scenarios wherein a variable is

set to the same fixed value for everyone. On the other hand, a stochastic intervention

is one in which the value of a variable is drawn at random from a user-specified

distribution (Dı́az et al., 2021). We define an acceptable motion distribution and

imagine a counterfactual scenario where all children, irrespective of diagnosis category,

receive sufficient training such that the distribution of motion that would be observed

in the counterfactual scenario corresponds to this acceptable motion distribution. The

acceptable motion distribution may be allowed to depend on covariates and should

be selected to represent a distribution of motion that, if present in the experimental

data, would still yield biologically meaningful readouts of functional connectivity.

One choice is to use PM |∆=1,X(· | x) to generate the motion value for a child with

covariates x. However, in our application, the distribution of motion in children that

pass motion quality control differs between diagnostic groups (Figure 4.1). We observe

that non-ASD children that pass quality control will generally only move within a

tolerable level during a scanning session, such that we can still recover biologically

meaningful signals from the resulting data. Thus, we suggest using PM |∆=1,A,X(· | 0, x)

as the acceptable distribution of motion. Let M0 ∼ PM |∆=1,A,X(m | 0, x) be the

counterfactual motion that would be observed for a child in the counterfactual scenario

under our stochastic intervention.

Let Y (M0) denote the counterfactual functional connectivity that would be mea-

sured under this training provided in our hypothetical experiment. The counterfactual

data unit generated in this scenario is OC = (A,M0, X, Z, Y (M0)) ∼ PC, where

the probability distribution of evaluated at an observation oc = (a,m0, x, z, y) can

be written PC(oc) = PC,Y (M0)|A,M,X,Z(y | a,m0, x, z)PM |∆=1,A,X(m0 | 0, x)PZ|A,X(z |

a, x)PA|X(a | x)PX(x). The scanner training program in our hypothetical experiment

leads to a motion distribution under PC that is described by PM |∆=1,A,X(· | 0, x) as

opposed to the motion distribution PM |A,X,Z(· | a, x, z) observed in the real experiment.
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The counterfactual motion is conditionally independent of diagnostic group (A) and

diagnosis-specific variables (Z) given demographic covariates (X), which is consistent

with our goal to control for the impact of motion in the two groups. Similarly, the

conditional distribution of measured functional connectivity Y (M0) may be altered

under PC relative to the measured functional connectivity Y under P .

Using this counterfactual construction, we can then define a motion-controlled

association θC,1 − θC,0, where θC,a = E{EC[Y (M0) | A = a,X]}, and we use EC to

denote expectation under PC and the subscript C to denote that this is an association

defined with respect to a counterfactual distribution. The motion-controlled association

provides a comparison of the ASD and non-ASD group that controls for (i) X

differences between diagnosis groups (as with the total association); and additionally

(ii) differences in motion between the two diagnosis groups by ensuring that the

X-conditional motion distribution is the same across diagnosis groups.

4.2.2 Identifying the motion-controlled association of ASD

and brain connectivity

Identifiability of θC,a for a = 0, 1 can be established under the following assumptions:

(A1) Positivity: (A1.1) for every x such that pX(x) > 0, we also have πa(x) > 0 for

a = 0, 1; (A1.2) for every (x, z,m) such that pX(x)pZ|A,X(z | a, x)pM |∆=1,A,X(m |

0, x) > 0, we also have that pM |A,X,Z(m | a, x, z) > 0 for a = 0, 1.

(A2) Mean exchangeability: for all m such that P{pM |∆=1,A,X(m | 0, X) > 0} > 0,

EC{Y (m) | A = a,X, Z} = EC{Y (m) | A = a,M = m,X,Z} a.e.-P .

(A3) Causal Consistency: for any child with observed motion value M = m, the

observed functional connectivity measurement Y is equal to the counterfactual

functional connectivity measurement Y (m).
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At the end of this section, we describe how our proposal yields biologically relevant

inference even when (A2) and (A3) do not hold.

Assumption (A1.1) states that, at a population level, there cannot be values of X

that are observed exclusively in the ASD group or exclusively in the non-ASD group.

In our application, X consists of age, sex, and handedness. These characteristics

do not perfectly predict ASD and therefore assumption (A1.1) is plausible. (A1.2)

stipulates that, for both ASD and non-ASD children with the same value x of X, it

is possible to observe the same range of motion values irrespective of the value of

Z. Recall that one of the components of Z is a measure of social disability, and we

expect that children with higher support needs will move more in the scanner. This

assumption requires that it is possible to obtain some low-motion data even in more

challenging cases. This assumption could be scrutinized empirically by studying the

distribution of an estimate of the ratio of motion distributions ra(M,X,Z) introduced

in equation (7.10). We show results of such an analysis in Supplementary Material

Section 7.2. The analysis indicates the positivity assumptions are plausible for the

real data analysis.

Assumption (A2) implies that conditioned on X, Z, and diagnosis status A, there is

no unmeasured confounding between Y (m) andM . The plausibility of this assumption

could be scrutinized, for example, by establishing conditional d -separation of Y and

M in a graph (Richardson and Robins, 2013). However, because this assumption is

fundamentally an assumption on the counterfactual distribution PC, it cannot be fully

verified empirically.

Assumption (A3) stipulates that the observed functional connectivity from children

who naturally have motion level m is the same as the functional connectivity that

would have been observed under our hypothetical experiment where children receive

training in the scanner. This assumption would be violated, for example, if the

hypothetical scanner training received by children had an impact on the underlying
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functional connectivity of the child’s brain. This assumption seems plausible but is

not verifiable empirically.

Under these assumptions, we have the following theorem.

Theorem 1. Under (A1)-(A3), the counterfactual θC,a is identified by θa, where

θa =
∫∫∫

µY |A,Z,M,X(a, z,m, x)pZ|A,X(z | a, x)pM |∆=1,A,X(m | 0, x)pX(x)dzdmdx.

The proof is in the Supplementary Material Section 1. The parameter θa in-

volves integrating the conditional mean functional connectivity µY |A,M,X,Z over the

distributions of Z, M , and X in a sequential manner. We note that the integration

over Z is specific to diagnosis group a, while the integration over M and X is the

same irrespective of diagnosis group. Thus, a comparison of θ1 and θ0 provides a

marginal associative measure that describes the joint impact of diagnosis category A

and diagnosis-specific variables Z on functional connectivity while controlling for both

motion M and covariates X.

We conclude this section by noting that inference on θ1 − θ0 may be biologically

relevant even in settings where the fundamentally untestable assumptions (A2) and

(A3) do not hold. To make this argument, we define

ηµ|A,M,X(a,m, x) =

∫
µY |A,M,X,Z(a,m, x, z)pZ|A,X(z | a, x)dz , (4.1)

and note that ηµ|A,M,X(1,m, x) − ηµ|A,M,X(0,m, x) describes an m- and x-specific

difference in functional connectivity between diagnosis groups. Thus,

θ1 − θ0 =

∫∫
{ηµ|A,M,X(1,m, x)− ηµ|A,M,X(0,m, x)}pM |∆=1,A,X(m | 0, x)pX(x)dmdx ,

simply standardizes these m- and x-specific associations over the selected acceptable

motion distribution and distribution of covariates, thereby controlling for motion and

covariate differences between diagnostic groups. We argue that this is likely still a
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biologically relevant parameter for describing differences in functional connectivity

between diagnosis groups even when (A2)-(A3) do not hold.

4.3 Estimation and Inference

4.3.1 Efficiency theory

In this section, we develop an efficient estimator of θa. A key step in developing our

estimator is deriving the efficient influence function of regular, asymptotically linear

estimators of θa. See Supplementary Material Section 2.1 for a short review of efficiency

theory. To characterize this efficient influence function, we define π∆=1|A,X(0, x) =

P (∆ = 1 | A = 0, X = x) as the probability of a non-ASD child with covariate value

x having usable data. We introduce the shorthand π̄0(x) = π0(x)π∆=1|A,X(0, x) as the

probability that A = 0 and ∆ = 1 conditional on X = x. We denote the indicator

function a(Ai) equal to 1 if Ai = a and zero otherwise; 0,1(Ai,∆i) equal to 1 if Ai = 0

and ∆i = 1 and equals zero otherwise. We also define for a = 0, 1

ra(m,x, z) =
pM |∆=1,A,X(m | 0, x)
pM |A,X,Z(m | a, x, z)

, (4.2)

ηµ|A,Z,X(a, z, x) =

∫
µY |A,M,X,Z(a,m, x, z)pM |∆=1,A,X(m | 0, x)dm , (4.3)

ξa,η|X(x) =

∫∫
µY |A,M,X,Z(a,m, x, z)pM |∆=1,A,X(m | 0, x)pZ|A,X(z | a, x)dmdz .

(4.4)

In these definitions, we use a subscript notation for the functional parameters η and ξ

that attempts to make explicit both the integrand in the parameter’s definition, as

well as the random variables that are arguments of the function. For example, the

definition of ηµ|A,Z,X (4.3) involves integrating µY |A,M,X,Z , while ηµ|A,Z,X is a function

of the random variables appearing in the subscript, A, Z and X. Note that Fubini’s

theorem allows us to write ξa,η|X equivalently in terms of either ηµ|A,Z,X or ηµ|A,M,X ,
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ξa,η|X(x) =
∫
ηµ|A,Z,X(a, x, z)pZ|A,X(z | a, x)dz =

∫
ηµ|A,M,X(a,m, x)pM |∆=1,A,X(m |

0, x)dm.

Theorem 2. (Efficient Influence Function). In a nonparametric model, the efficient

influence function for θa evaluated on a typical observation Oi is

DP,a(Oi) =
a(Ai)

πa(Xi)
ra(Mi, Xi, Zi)

{
Yi − µY |A,M,X,Z(a,Mi, Xi, Zi)

}
+

a(Ai)

πa(Xi)

{
ηµ|A,Z,X(a,Xi, Zi)− ξa,η|X(Xi)

}
+

0,1(Ai,∆i)

π̄0(Xi)

{
ηµ|A,M,X(a,Mi, Xi)− ξa,η|X(Xi)

}
+ ξa,η|X(Xi)− θa.

(4.5)

A proof is included in the Supplementary Material Section 2.2.

We use the one-step estimation framework to define efficient estimators of θa

(Bickel et al., 1993). Suppose we have an estimate of ξa,η|X available, say ξn,a,η|X . An

estimate of θa can be obtained by marginalizing ξn,a,η|X over the empirical distribution

of X, leading to an estimate of the form θn,a = n−1
∑n

i=1 ξn,a,η|X(Xi). We refer

to θn,a as a plug-in estimate. A one-step estimator of θa can be constructed as

θ+n,a = θn,a + n−1
∑n

i=1Dn,a(Oi), where Dn,a is an estimate of DP,a. Thus, to construct

a one-step estimate of θa, we require as an intermediate step estimates of the various

parameters of P that appear in DP,a. We refer to these quantities as nuisance

parameters ; they are parameters that need to be estimated as an intermediate step in

the estimation of θa.

Examining Theorem 2, we find that there are several nuisance parameters that

appear in DP,a for which we will require estimates to construct our estimate Dn,a

of DP,a. Estimation of several of these parameters is straightforward. For example,

µY |A,M,X,Z could be estimated using mean regression of Y on A,M,X,Z. On the other

hand, the η and ξ parameters involve integration and conditional densities, which

generally present practical challenges in implementation. Our approach for estimation
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outlined below emphasizes two key points: (i) wherever possible mean regression

with pseudo-outcomes is used to avoid numeric integration and conditional density

estimation and (ii) flexible estimation techniques are used.

We choose to emphasize the use of mean regression because it is a technique familiar

to many applied statisticians and there are widely available tools. In our application,

we focus on a flexible framework for regression, known as regression stacking or super

learning (Van der Laan et al., 2007). Super learning is implemented by pre-specifying a

so-called library of candidate regression estimators. Cross-validation is used to build a

weighted combination of these estimators, with large sample theory indicating that the

ensemble estimator will provide nuisance parameter estimates that are essentially as

good or better than any of the individual candidate regression estimators considered.

Unfortunately, mean regression cannot be used exclusively in our estimation process

for θa. We require estimates of certain conditional motion distributions described below.

For this, we utilize the highly adaptive lasso, a flexible semiparametric conditional

density estimator (Hejazi et al., 2022b).

To circumvent numerical integration, we make use of a technique proposed by

Dı́az et al. (2021) that re-casts these estimation problems that involve integrals and

densities as an estimation problem that can be solved using mean regression with

pseudo-outcomes. This technique is motivated by the fact that the definition of

ηµ|A,Z,X(a, z, x) in (4.3) is equivalent to

∫
µY |A,M,X,Z(a,m, x, z)

pM |∆=1,A,X(m | 0, x)
pM |∆=1,A,X,Z(m | a, x, z)

pM |∆=1,A,X,Z(m | a, x, z)dm

= E

[
µY |A,M,X,Z(A,M,X,Z)

pM |∆=1,A,X(M | 0, X)

pM |∆=1,A,X,Z(M | A,X,Z)
∣∣ ∆ = 1, A = a,X = x, Z = z

]
.

This equivalence suggests that ηµ|A,Z,X could be estimated using mean regression,

where a pseudo-outcome µn,Y |A,M,X,Z(A,M,X,Z)
pn,M|∆=1,A,X(M |0,X)

pn,M|∆=1,A,X,Z(M |A,X,Z)
is regressed

onto A,X, and Z using only the observations with ∆ = 1. In this way, we can



102

avoid both the challenges associated with numeric integration and instead utilize

super learning-based mean regression for estimation. Similar techniques involving

pseudo-outcomes can be applied for the estimation of ηµ|A,M,X and ξa,η|X , as described

below.

4.3.2 Detailed implementation

Our estimator can be implemented in the following steps.

1. Estimate mean functional connectivity µY |A,M,X,Z . Fit a super learner regression

using functional connectivity as the outcome and including diagnosis category A, mean

FD M , demographic covariates X, and diagnosis-specific covariates Z as predictors in

the super learner. Using this fit, evaluate the fitted value, µn,Y |A,M,X,Z(a,Mi, Xi, Zi)

for i = 1, . . . , n and for a = 0, 1. For a particular value of a, this can be achieved by

predicting from the fitted super learner using the observed values of M,X, and Z, but

replacing the observed value of A with the constant value a. Below we refer to this

process as evaluating the fitted value from the regression, setting A to a.

2. Estimate motion distributions pM |A,X , pM |∆=1,A,X , pM |A,X,Z , and pM |∆=1,A,X,Z . For

pM |A,X , using the highly adaptive LASSO, estimate the conditional density of M

given diagnosis A and demographic covariates X. The other three densities are

estimated by further conditioning on diagnosis-specific covariates Z and/or subsetting

to ∆ = 1. Using these fits, evaluate pn,M |A,X(Mi | a,Xi), pn,M |∆=1,A,X(Mi | a,Xi),

pn,M |A,X,Z(Mi | a,Xi, Zi), pn,M |∆=1,A,X,Z(Mi | a,Xi, Zi) for a = 0, 1 and i = 1, . . . , n.

3. Estimate motion-standardized functional connectivity ηµ|A,Z,X using pseudo-outcome

regression. Using estimates obtained in steps 1 and 2, for i = 1, . . . , n create the

pseudo-outcome ŶM,i = µn,Y |A,M,X,Z(Ai,Mi, Xi, Zi)
pn,M|∆=1,A,X(Mi|0,Xi)

pn,M|∆=1,A,X,Z(Mi|Ai,Xi,Zi)
. Using only

observations with ∆i = 1, fit a super learner regression using ŶM as the outcome

and including diagnosis category A, diagnosis-specific covariates Z, and demographic

covariates X as predictors. Evaluate the fitted value from this regression setting A to
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a to obtain ηn,µ|A,Z,X(a, Zi, Xi) for i = 1, . . . , n.

4. Estimate Z-standardized functional connectivity ηµ|A,M,X using pseudo-outcome

regression. Use estimates obtained in steps 1 and 2, and for i = 1, . . . , n to create

the pseudo-outcome ŶZ,i = µn,Y |A,M,X,Z(Ai,Mi, Xi, Zi)
pn,M|A,X(Mi|Ai,Xi)

pn,M|A,X,Z(Mi|Ai,Xi,Zi)
. Fit a super

learner regression using ŶZ as the outcome and includingM , demographic covariates X,

and diagnosis category A as predictors. Evaluate the fitted value from this regression

setting A to a to obtain ηn,µ|A,M,X(a,Mi, Xi) for i = 1, . . . , n.

5. Estimate motion- and Z-standardized functional connectivity ξa,η|X . Fit a super

learner regression using ηn,µ|A,Z,X as the outcome, include diagnosis category A and

demographic-specific covariates X as predictors in the super learner. For a = 0, 1,

evaluate the fitted value from this regression setting A to a to obtain ξn,a,η|X(Xi) for

i = 1, . . . , n.

6. Calculate plug-in estimate. Define the plug-in estimate θn,a = n−1
∑n

i=1 ξn,a,η|X(Xi).

7. Estimate diagnosis distribution πa and inclusion probability π∆=1|A,X . Fit a super

learner regression using the diagnosis category as the outcome and including demo-

graphic covariates X as predictors. Evaluate the fitted value πn,1(Xi) for i = 1, . . . , n

and set πn,0(Xi) = 1−πn,1(Xi). Then fit an additional super learner using ∆ as the out-

come and including diagnosis category A and demographic covariates X as predictors

in the regression. Evaluate the fitted value from this regression setting A to 0 to obtain

πn,∆=1|A,X(0, Xi) for i = 1, . . . , n. Compute π̄n,0(Xi) = πn,0(Xi)πn,∆=1|A,X(0, Xi) for

i = 1, . . . , n.

8. Evaluate estimated efficient influence function Dn,a(Oi). For a = 0, 1 and each

i = 1, . . . , n, evaluate Dn,a(Oi) by substituting the fitted values based on the estimated

nuisance parameters obtained in steps 1-7 into equation (7.13).

9. Compute the one-step estimator. For a = 0, 1, compute θ+n,a = θn,a+n
−1

∑n
i=1Dn,a(Oi).
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4.3.3 Inference

Below we present two theorems establishing the consistency and asymptotic linearity,

respectively, of the one-step estimator θ+n,a. We define ∥·∥ to be the L2(P ) norm of a

given function f defined as ∥f∥ = E[f(O)2]1/2. We note that for the purposes of this

definition, the function f is treated as given, even if it involves estimated quantities.

Theorem 3 assumes the following:

(B1) Boundedness: πn,a is bounded below by some ϵ1 > 0, π̄n,0 is bounded below by

some ϵ2 > 0, and pn,M |A,X,Z(m | a, x, z) is bounded below by some ϵ3 > 0.

(B2) op(1)-convergence of certain combinations of nuisance parameters : certain sub-

sets of the nuisance parameters are consistently estimated, as described in

Table 4.1.

µn,Y |A,M,X,Z ηn,µ|A,M,X ξn,a,η|X π̄n,0 πn,a pn,M |∆=1,A,X pn,M |A,X,Z

(B2.1) ✓ ✓ ✓

(B2.2) ✓ ✓ ✓

(B2.3) ✓ ✓ ✓ ✓

(B2.4) ✓ ✓ ✓

(B2.5) ✓ ✓ ✓

Table 4.1: Assumption (B2) of Theorem 3.2 (multiple robustness). Each row indicates
a setting for consistency, where check marks indicate the nuisance parameters which,
when they converge to true functions combined with assumptions (B1), (B3) and (B4),
result in the consistency of θ+n,a.

(B3) L2(P )-consistent influence function estimate: E[{DPℓ,a(O)−Dn,a(O)}2] = oP (1),

where DPℓ,a denotes the in-probability limit of Dn,a as n approaches infinity and

Dn,a is treated as a fixed function of O in this expression.

(B4) Glivenko Cantelli influence function estimate: the probability that Dn,a falls in

a P -Glivenko Cantelli class tends to one as n→ ∞.

Assumption (B1) guarantees that estimated propensities and motion densities are

appropriately bounded so that the one-step estimator is never ill-defined. Assumption
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(B2) stipulates consistent estimations of the nuisance parameters. Assumptions (B3)

and (B4) are necessary to ensure the negligibility of an empirical process term (Van

Der Vaart et al., 1996).

Theorem 3. (Multiple robustness of the one-step estimator). Under assumptions

(B1) - (B4), θ+n,a − θa = op(1).

According to Theorem 3, our one-step estimators will only require some of the

nuisance parameters to be consistently estimated to achieve consistency of our estimate

of θa. For example, assumption (B2.1) implies that obtaining consistent estimates of

the conditional motion densities, pM |∆=1,A,X(m | 0, x) and pM |A,X,Z(m | a, x, z), and

the conditional probability of ASD as a function of covariates πa is sufficient to ensure

a consistent estimator of θa. A proof of the theorem is in the Supplementary Material

Section 3.

The following theorem characterizes the large-sample behavior of the proposed

estimator.

Theorem 4. (Asymptotic linearity of the one-step estimator). Under (B1), (B3),

and

(C1) n1/2-convergence of second order terms:

∥ξn,a,η|X − ξa,η|X∥∥πn,a − πa∥ = oP (n
−1/2),

∥µn,Y |A,M,X,Z − µY |A,M,X,Z∥
{
∥pn,M |∆=1,A,X(· | 0, ·)− pM |∆=1,A,X(· | 0, ·)∥

+ ∥pn,M |A,X,Z − pM |A,X,Z∥
}
= oP (n

−1/2),

and

∥pn,M |∆=1,A,X(· | 0, ·)− pM |∆=1,A,X(· | 0, ·)∥
{
∥ηn,µ|A,M,X − ηµ|A,M,X∥

+ ∥πn,a − πa∥+ ∥π̄n,0 − π̄0∥} = oP (n
−1/2).

(C2) Donsker influence function estimate: the probability that Dn,a falls in a P -

Donsker class tends to one as n→ ∞.
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then θ+n,a − θa =
1
n

∑n
i=1DP,a(Oi) + oP (n

−1/2), and

n1/2(θ+n,a − θa) ⇒ N(0, E[DP,a(O)
2]) .

Assumption (C1) states that nuisance estimates converge to their true values at

a sufficiently fast rate (so-called quarter-rate conditions). Assumption (C2) ensures

large-sample negligibility of a certain second-order empirical process term (so-called

Donsker conditions, Bickel et al. 1993). The Donsker conditions can be eliminated

through the use of cross-fitting, as described in Section 7.4.2. A detailed discussion

of the assumptions and the proof of the theorem are in the Supplementary Material

Section 4.

When all nuisance regressions are consistently estimated, σ2
n = (n−1)−1

∑n
i=1{Dn,a(Oi)−

n−1
∑n

j=1Dn,a(Oj)}2 can be used as a consistent estimate of E[DP,a(O)
2]. Thus,

an asymptotically justified 1 − α confidence interval for θa may be constructed as

θ+n,a±n−1/2z1−α/2σn, where z1−α/2 denotes the (1−α/2)-quantile of a standard Normal

distribution.

By Theorem 4, we have (θ+n,1 − θ+n,0)− (θ1 − θ0) =
1
n

∑n
i=1 {DP,1(Oi)−DP,0(Oi)}+

oP (n
−1/2) and the limiting distribution of n1/2{(θ+n,1−θ+n,0)−(θ1−θ0)} is N(0, τ 2), with

τ 2 = Var(DP,1(O)−DP,0(O)). The estimate τ 2n = (n−1)−1
∑n

i=1{Dn,1(Oi)−Dn,0(Oi)−

n−1
∑n

j=1(Dn,1(Oj)−Dn,0(Oj))}2 will be consistent for τ 2 under the assumptions of

Theorem 4. Consequently, an approximate 1 − α confidence interval for the direct

association of ASD with brain connectivity in a single brain region is (θ+n,1 − θ+n,0)±

n−1/2z1−α/2τn.

4.3.4 Cross-fit one-step estimation

As mentioned above, cross-fitting avoids the necessity of Donsker conditions in the

proof of Theorem 4, which may afford us the ability to utilize more aggressive machine
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learning techniques as part of the super learner, while still generating well-calibrated

confidence intervals and hypothesis tests. Cross-fitting can also reduce finite-sample

bias and improve confidence interval coverage in some settings (Zivich and Breskin,

2021).

The cross-fitting process involves randomly dividing the data set into K parts,

followed by separate cross-validation routines on each part. K−1 parts of the data are

used to estimate the nuisance parameters appearing in the efficient influence function

using super learner with K ′-fold cross-validation. In practice, we use K = 5 and

K ′ = 10. Cross-fitting is used for all nuisance regressions and conditional density

estimates. Consider the example of ξa,η|X . We denote by ξn,k,a,η|X the estimate

of ξa,η|X obtained when the k-th part of the data is withheld from the nuisance

estimation stage. Similarly, we denote by Da,n,k the efficient influence function

evaluated at the nuisance parameters estimated without using the k-th part of the

data. Denote by Ik the indices of observations in the k-th part of the data and

denote the number of observations in this set by nk. The cross-fit estimate of

θa is θcfn,a = 1
K

∑K
k=1

[
1
nk

∑
i∈Ik ξn,k,a,η|X(Xi) +

1
nk

∑
i∈Ik Da,n,k(Oi)

]
. The asymptotic

linearity of the cross-fit one-step estimator follows using the same arguments as in

Theorem 4, where nuisance estimates are replaced by their k-specific counterparts and

assumption (C2) is removed (van der Laan et al., 2011; Chernozhukov et al., 2018).

4.3.5 Simultaneous inference for associations

In order to control the family-wise error rate for tests of direct associations between

ASD and brain connectivity across hundreds of regions, we conduct hypothesis testing

using simultaneous confidence bands (Ruppert et al., 2003). Let j = 1, . . . , J index the

region. In our application, J = 399, and we use θa,j to denote the motion-controlled

average functional connectivity in diagnosis group a between a seed region and region

j, based on a 400-region parcellation. Similarly, we denote by DP,a,j the efficient
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influence function for diagnosis group a and region j, and by τ 2n,j the region-specific

estimate of the asymptotic variance. By Theorem 4,

n1/2




θ+n,1,1 − θ+n,0,1

...

θ+n,1,J − θ+n,0,J

−


θ1,1 − θ0,1

...

θ1,J − θ0,J


 ⇒ N




0

...

0

 ,Cov


DP,1,1(O)−DP,0,1(O)

...

DP,1,J(O)−DP,0,J(O)


 ,

(4.6)

where θ+n,a,j is the estimator at A = a at location j ∈ {1, ..., J}. An approxi-

mate 1 − α simultaneous confidence interval is (θ+n,1,1 − θ+n,0,1, . . . , θ
+
n,1,J − θ+n,0,J)

⊤ ±

zmax,1−α(τn,1, . . . , τn,J)
⊤, where zmax,1−α is the 1− α quantile of the random variable

max1≤j≤J{n1/2|(θ+n,1,j − θ+n,0,j)− (θ1,j − θ0,j)|/τn,j}, which depends on the covariance

matrix in (7.14).

To approximate zmax,1−α, Monte-Carlo integration is performed by taking 105

independent draws of a J-dimensional mean-zero multivariate normal random variable

with covariance matrix equal to an empirical estimate of the correlation matrix

derived from the covariance matrix on the right-hand side of (7.14). This correlation

matrix can be estimated via the empirical correlation of the vector (Dn,1,1(O) −

Dn,0,1(O), . . . , Dn,1,J(O)−Dn,0,J(O))⊤. For each of the 105 random draws, the maximal

absolute value of the components of the vector is calculated. The critical value zmax,1−α

is approximated by calculating the empirical (1−α)-quantile of these maximum values.

Wald hypothesis tests controlling family-wise error rate at level α are conducted by

rejecting the null hypothesis of no association between diagnosis group and functional

connectivity in the j-th region whenever n1/2|θ+n,1,j − θ+n,0,j|/τn,j is larger than the

estimated value of zmax,1−α.
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4.4 Simulation study

We compared MoCo to two näıve approaches: one that mimics the removal of high-

motion participants and one that does not remove any participants. We fixed the

sample size to n = 400 and simulated covariates that are similar in distribution to

the covariates in the observed data. We summarize our simulation design here, with

details provided in Supplementary Material Section 5. The simulated demographic

covariates X had three dimensions corresponding to sex, age, and handedness. Given

covariates X = x, diagnosis A was drawn from a Bernoulli distribution with success

probabilities defined by coefficients from logistic regression of the real data. Next,

four diagnosis-specific covariates Z were generated to mimic the autism diagnostic

observation schedule (ADOS), full-scale IQ (FIQ), a binary variable indicating the

use of stimulant medication, and a binary variable for non-stimulants. The natural

logarithm of mean FD M was generated from a normal distribution with mean defined

from estimated coefficients of A = a,X = x, Z = z. Tolerable motion ∆ was equal to

1 for M ≤ 0.2.

We simulated the functional connectivity between a seed region equal to the default

mode network and the six other parcels defined in the Yeo 7 parcellation (Yeo et al.,

2011). We denote by Y1, . . . , Y6 the simulated functional connectivity for these six

parcels. We simulated 1000 data sets such that the true associations between the

diagnosis group and functional connectivity for parcels Y1, . . . , Y4 were set to zero, while

Y5 and Y6 were simulated to have non-zero associations with diagnosis. This allowed us

to evaluate both the type I error and the power. We simulated functional connectivity

such that large and small negative associations existed between the diagnosis group

and Y5 and Y6, respectively. The data generating process also included quadratic

associations between motion and observed functional connectivity to examine the

ability of super learner to account for possible non-linear relationships in the data.

The covariance matrix for the multivariate normal was set equal to the covariance
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matrix of the errors obtained when fitting the functional connectivity using Super

Learner. See Supplementary Material Section 5 for details.

We included the mean of the outcome, multivariate adaptive regression splines,

LASSO, ridge regression, generalized additive models, generalized linear models (with

and without interactions, and with and without forward stepwise covariate selection),

random forest, and xgboost as candidate regressions in super learner (Polley et al.,

2023). We compared MoCo to two näıve approaches. First, we calculated the sample

mean difference in average functional connectivity between the ASD group and the

non-ASD group and conducted a Welch’s two-sample t-test. Second, we excluded

high-motion participants (∆ = 0).

MoCo demonstrated advantages in terms of bias, MSE, type I error, and power

(Table 4.2). For regions with zero associations, the bias and type I error were lower in

MoCo compared to the two näıve methods for all four regions, and the MSE was lowest

in three of four regions. In regions with associations, MoCo exhibited greater power

and lower bias in detecting these differences compared to the näıve methods. Figure

4.2 illustrates the results of MoCo with cross-fitting on one simulated dataset. The

true association was that children with ASD had a decreased correlation between the

default mode network and two large brain regions, marked in dark green and purple,

with an association of zero for other brain regions. MoCo successfully recovered one of

the two true associations. However, using the näıve method with participant removal

resulted in missing both regions, while using the näıve method with all data picked

up false positives and failed to recover any of the regions with true associations.

In the Supplementary Material Section 6, we include an additional simulation

study examining the multiple robustness property of our estimators. The simulation

demonstrates that the theoretical multiple robustness result has the practical impact

that bias of the estimators may be well controlled even in settings in which some of

the nuisance parameters are inconsistently estimated.



111

4.5 Data analysis of functional connectivity in ASD

4.5.1 Data and methods

We conducted a functional connectivity analysis using a seed region in the default

mode network to investigate selection bias and motion impacts in ASD. The default

mode network is a collection of brain regions that tend to co-activate during wakeful

rest, including daydreaming or mind wandering. Hypoconnectivity between anterior

and posterior parts of the default mode network was previously found in the Autism

Brain Imaging Data Exchange (ABIDE) dataset (Di Martino et al., 2014). The default

mode network has been identified as a possible endophenotype of ASD (Yerys et al.,

2015). However, hypoconnectivity in the default mode network also arises from motion

artifacts (Power et al., 2012). We applied our method to resting-state fMRI data

from school-age children in the ABIDE dataset (Di Martino et al., 2014, 2017). We

subset to 377 scans corresponding to 8 to 13-year-old children from the Kennedy

Krieger Institute (KKI) and New York University (NYU) from ABIDE I and ABIDE II

(Supplement Table 5). Imaging data were preprocessed using fMRIprep (Esteban et al.,

2019) as described in Supplement Section 7. We included the following covariates:

diagnosis (A); age, sex, and handedness (X); Autism Diagnostic Observation Schedule

(ADOS) score, Full-scale Intelligence Quotient (FIQ) score, stimulant medication

status, and non-stimulant medication status (Z); and mean FD (M). The ADOS

score is a standardized assessment tool used to diagnose ASD, with higher scores

indicating greater social disability. Although ASD is more prevalent in males than

females (Maenner, 2023), we treated sex as a confounder (X) rather than diagnosis-

specific variable (Z) because sex-specific differences in functional connectivity have

been previously documented (Shanmugan et al., 2022), which could mask ASD-related

differences in this cohort. Mean FD is an average of the frame-to-frame displacement

calculated from the rigid body motion correction parameters used in quality control
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and motion correction (Esteban et al., 2019; Power et al., 2014a; Di Martino et al.,

2014).

We calculated the average time series for regions of interest defined using Schaefer’s

400-node brain parcellation, which associates each node with the resting networks

from Yeo-7 (Schaefer et al., 2018). We then regressed the six parameters from motion

alignment, the global signal (mean signal across all voxels), white matter (WM), and

cerebrospinal fluid (CSF) calculated from fMRIPrep. We used COMBAT (Yu et al.,

2018) for site harmonization to account for three protocols. For COMBAT, “site” is

a factor with three levels (NYU, KKI-8 channel, KKI-32 channel) and the following

covariates: diagnosis, age, sex, handedness, ADOS score, FIQ, stimulant medication

status, non-stimulant medication status, and mean FD.

We calculated Fisher z-transformed correlations of every brain region with region

14 (‘17networks LH DefaultA pCun 1’), which is a hub of the posterior default mode

network (Pham et al., 2022). We defined the indicator of data usability ∆ equal to

one if a child had more than 5 minutes of data after removing frames with FD >

0.2 mm (Power et al., 2014a). This resulted in ∆ = 0 for 98/132 ASD (74.2%) and

119/245 non-ASD children (48.6%).

We compared the näıve estimate with participant removal (retaining ∆ = 1), the

näıve estimate with no participant removal, and the group difference estimated from

MoCo with cross-fitting. We determined the FWER-critical values using simultane-

ous confidence intervals derived from the multivariate efficient influence functions

(Section 7.4.2). For the näıve approaches, the critical values were derived from the

sample correlation matrices of residuals of the regression Y ∼ A. Nuisance regressions

involved in our method are estimated using the same super learner library as the

simulations. To handle Monte Carlo variability resulting from cross-validation, we

generated estimates 50 times and calculated the averaged estimates and z-statistics

across runs.
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We examined positivity assumptions by making histograms of the inverse proba-

bility weights and density ratios that appear in the efficient influence function (see

Supplementary Material Section 7.2). Positivity issues arise if inverse weights or

density ratios are very large. Assumptions appear to be adequately met, as the values

of the estimated density ratios evaluated on the observed data never exceeded 4.

4.5.2 Results

Both MoCo and the näıve approach use data from 377 participants, including 132 with

ASD, while the näıve approach with participant removal uses 160 participants, and only

34 with ASD. MoCo reveals four regions that differ in connectivity with the posterior

default mode seed region in ASD versus non-ASD at FWER=0.05, including three

regions of hyperconnectivity with distant frontal-parietal regions (Figure 4.3). The

näıve approach indicates more extensive differences than MoCo, including prominent

default mode hypoconnectivity in ASD in long-distance correlations. These are likely

spurious differences due to motion, as long-distance correlations tend to be attenuated

in high-motion participants (Satterthwaite et al., 2013b). These possible biases are

also prominent in the mean connectivity estimates (Supplement Figure 3). The näıve

approach also selects some regions of hyperconnectivity in ASD with lateral regions

of the frontal lobe. Overall, MoCo results are more similar to the näıve approach

with participant removal, although the näıve with participant removal only identifies

two regions at FWER=0.05. At FWER=0.20, MoCo selects four additional regions

of hypoconnectivity with the far anterior part of the frontal lobe (plus one region of

hyperconnectivity with ventral attention), but much less extensive than in the näıve

approach.
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Figure 4.1: Distributions of mean framewise displacement (FD) in the school-age
children dataset. Panel A shows the distribution of mean FD over all children. Panel
B shows the distribution of mean FD over children who meet the inclusion criteria.
The distribution of motion in non-ASD children that pass motion quality control
differs from the distribution of motion in children with ASD that pass motion quality
control.

Figure 4.2: Example from one simulated dataset. The true association is marked in
dark green and purple, while other regions have zero associations. MoCo identified
one of the two true associations correctly. However, the näıve method with participant
removal missed both regions; the näıve method with all data caused false positives
and failed to detect any of the true associations.
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Figure 4.3: Z-statistics for the group difference (ASD − non-ASD) for a seed in the
posterior default mode network (fuchsia point) in the ABIDE dataset. Extensive
hypoconnectivity between the seed region and anterior parts of the default mode
network in the näıve approach are likely due to motion artifacts. MoCo appears to
effectively control motion artifacts, as the likely spurious differences are removed, and
the results look more similar to the näıve approach with participant removal. At
FWER=0.05, MoCo also identifies frontal-parietal hyperconnectivity not detected in
the näıve approaches.
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True association MoCo
näıve with
participant removal

näıve

Region 1 0
Bias 0.0005 -0.0190 -0.0644
sd 0.0372 0.0191 0.0204
MSE×103 1.3839 0.7283 4.5657
Type I error 0.0110 0.1070 0.8670

Region 2 0
Bias 0.0048 0.0176 0.0611
sd 0.0238 0.0234 0.0221
MSE×103 0.5894 0.8576 4.2200
Type I error 0.0100 0.0730 0.7220

Region 3 0
Bias 0.0044 0.0153 0.0553
sd 0.0183 0.0179 0.0182
MSE×103 0.3554 0.5542 3.3941
Type I error 0.0080 0.0680 0.8320

Region 4 0
Bias -0.0034 -0.0179 -0.0663
sd 0.0204 0.0199 0.0204
MSE×103 0.4275 0.7180 4.8182
Type I error 0.0100 0.1160 0.8870

Region 5 -0.0484
Bias 0.0065 0.0213 0.0695
sd 0.0214 0.0208 0.0212
MSE×103 0.4990 0.8848 5.2748
Power 0.3790 0.1700 0.1260

Region 6 -0.0682
Bias 0.0063 0.0241 0.0796
sd 0.0203 0.0178 0.0214
MSE×103 0.4523 0.8979 6.7937
Power 0.8690 0.5280 0.0670

Table 4.2: Simulation results comparing MoCo, the näıve approach with participant
removal, and the näıve approach including all participants. MoCo has lower bias in all
regions, lower type I error in regions in which the true association is zero, and higher
power in the regions where true association is non-zero.



Chapter 5

MoCo: A package for removing

motion artifacts in brain phenotype

analysis

5.1 Introduction

Participant head motion during scanning sessions is a pervasive issue and has con-

sistently posed a challenge in neuroimaging (Van Dijk et al., 2012; Baum et al.,

2018). Head motion causes artifacts in functional connectivity (Maknojia et al., 2019),

white matter microstructure (Yendiki et al., 2014), and cortical thickness (Reuter

et al., 2015). Careful handling of motion artifacts is especially crucial in research

involving children with developmental conditions associated with increased movements,

such as Autism Spectrum Disorder (ASD) (Deen and Pelphrey, 2012) and Attention-

deficit/hyperactivity disorder (ADHD) (Castellanos and Aoki, 2016; Aoki et al., 2018),

etc. Failing to rigorously address motion artifacts may result in spurious differences

in brain connectivity measures between the disease groups of interest (Power et al.,

2012).

117
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There is extensive literature on methods to mitigate motion artifacts in neu-

roimaging. Prospectively, techniques such as mock scanner training, providing clear

instructions, and head fixation are utilized (Epstein et al., 2007; Van Dijk et al.,

2012; Reuter et al., 2015). After image collection, retrospective quality control is

conducted. In resting-state fMRI studies, multiple steps are typically applied. During

preprocessing, confound regression is commonly applied to remove the effects of motion

parameters, global signal, cerebral spinal fluid signal, and white matter from the fMRI

time series (Ciric et al., 2017). Despite these efforts, residual relationships between

motion and functional connectivity may persist due to potential nonlinear associations

(Deen and Pelphrey, 2012). Consequently, motion quality control (QC) procedures are

implemented, often involving the exclusion of scans with excessive motion based on

various criteria outlined in the literature (Power et al., 2014a; Ciric et al., 2017). In

diffusion MRI studies, motion correction is conducted by aligning diffusion volumes to

a common reference, and outliers due to movement are corrected using Gaussian Pro-

cess prediction (Andersson and Sotiropoulos, 2016; Andersson et al., 2016). Scan are

recommended for exclusion if they fail inspection based on factors such as registration

to the T1-weighted image, image quality, and field-of-view cutoff (Hagler Jr et al.,

2019). In structural MRI studies, quality control involves assessing motion artifacts,

including ringing, blurring, and adequate gray/white matter contrast, and removing

scans with severe artifacts (Reuter et al., 2015; Backhausen et al., 2016).

However, although removing scans may help mitigate motion artifacts across

modalities, it can result in significant reductions in sample size and introduce selection

bias due to the alteration of the study population. For example, the Adolescent Brain

Cognitive Development (ABCD) team performed quality control by manually reviewing

structural MRI images and FreeSurfer cortical surface reconstructions (Hagler Jr et al.,

2019). In ABCD Release 5.1, 1,332 non-randomly chosen T1 weighted images, 451 were

marked as unacceptable due to severe ghosting, blurring, and/or ringing, rendering
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accurate brain segmentation impossible. In a related rs-fMRI analyses of ABCD data,

Cosgrove et al. (2022) reported that motion control resulted in a 41% reduction in

participants. The remaining sample exhibited demographic and clinical differences,

including fewer females, older age, better neurocognitive skills, and fewer externalizing

and neurodevelopmental problems.

To control for potential selection bias, Nebel et al. (2022) treated rs-fMRI scans that

were excluded due to motion quality control as missing data. They employed a causal

inference-informed approach to estimate the deconfounded difference in functional

connectivity between children with ASD and those without ASD. However, the

method’s overlook of rs-fMRI data from motion QC may compromise the efficiency of

the outcome model. Additionally, the absence of integration of covariate balancing into

the estimation process might lead to unrealistic assumptions regarding the missingness

mechanism. Furthermore, dichotomizing the continuous motion values into inclusion

or exclusion indicators may underutilize information. Ran et al. (2024+) developed a

motion-controlled estimator to quantify average functional connectivity differences

between autistic and non-ASD children. By treating motion values as a mediator

between diagnostic groups and functional connectivity, the method standardizes motion

relative to low-motion scans across groups, thereby controlling for its impact. However,

Ran et al. (2024+) only deals with scans that pass preprocessing quality control.

Scans with issues in preprocessing pipelines, such as T1-weighted image segmentation

and volume registration, are discarded. In their analysis of ASD data from the Autism

Brain Imaging Data Exchange (ABIDE) dataset (Di Martino et al., 2014), 19 children

were excluded due to these issues. We believe that the demographic and motion data

from these individuals can be utilized to maximize data usage.

In this paper, we introduce an extended version of Ran et al. (2024+), now available

as an R package called MoCo, to address more generalized scenarios. Our approach

leverages demographic information from all participants, regardless of preprocessing
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quality control status, to address selection biases arising from quality control and

missing data. Specifically, for scans with preprocessing issues due to T1-weighted

image segmentation and volume registration, we treat the rs-fMRI data as missing

but still utilize their demographic and behavioral information. Moreover, MoCo can

accommodate multiple imaging modalities, including structural MRI and diffusion MRI,

as the same analytical framework applies to them. Notably, the package incorporates

an ensemble of machine-learning methods in the estimation process, ensuring efficient

and robust estimators of motion-controlled average brain phenotypes and associations.

When motion data is unavailable, we provide an enhanced covariate-balanced approach,

extending the method proposed by Nebel et al. (2022), to estimate the association.

5.2 Background and theory

5.2.1 Overview of MoCo

Figure 5.1: Illustration of MoCo using the ADHD200 dataset as an example.
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The pipeline of MoCo and the distinction of it from naive methods are depicted in

Figure 5.1 using the ADHD200 dataset (Brown et al., 2012) as an example. Panel

(A) describes the data structure, where each column represents a child’s data, and

three sets of scenarios are indicated by color. The blue set includes all children, while

the distinction between blue and purple denotes those with missing brain images

due to preprocessing quality control. We denote the brain phenotype value for each

participant as Y , which represents functional connectivity between a seed region

and one other brain region in this example. Children who fail preprocessing quality

control have Y as NA, indicated by brain phenotype usability ∆Y = 0. This occurs

when T1-weighted image segmentation and volume registration are problematic, as

diagnosed by visual assessment using fMRIPrep (Esteban et al., 2019). The green set,

further subset from the purple, represents children with tolerable motion, determined

through motion quality control. We use M to denote a numeric motion value, such as

mean framewise displacement (FD) in this example. ∆M is an indicator of whether

motion M meets inclusion criteria, with ∆M = 1 indicating eligibility for inclusion,

and 0 represents excessive motion or lack of motion data.

In Panels (B) and (C), we compare the green and purple sets to illustrate the

selection bias introduced by motion quality control. Here, we introduce the notation

A as a group indicator: in this example, A = 1 represents the ADHD diagnostic

group, while A = 0 represents the non-ADHD control group. In Panel (B), there’s

a discrepancy in the proportion of excluded children across diagnostic groups, with

a higher proportion of ADHD children being excluded. In Panel (C), we observe

that children with more excessive motion and more severe ADHD are excluded from

the ADHD group compared to the non-ADHD group. Therefore, as shown in panel

(D), if we compare compare the naive difference in brain phenotype between the two

diagnostic groups using the purple data, the results will be contaminated by motion

artifacts. However, if we compare the naive difference using just the green data after
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motion quality control, there will be selection bias, as scan exclusion due to motion

quality control alters the distribution of participant characteristics related to brain

phenotype.

Panel (E) illustrates the solution proposed by MoCo. The MoCo framework

consists of three primary models: the propensity model, the tolerable motion density,

and the outcome model. Details of the MoCo estimator will be covered in the

next section. To highlight how MoCo works, it leverages demographic data from

all participants to estimate the propensity model, ensuring that the distribution of

covariates is accurately assessed and controlled for in subsequent analyses. We denote

the vector of demographic confounders as X, which includes variables such as age,

sex, and handedness. Behavioral phenotypes are denoted as Z, which include disease

severity score, full-scale Intelligence Quotient (FIQ) score, and medication status. All

participants’ X and Z data are included in the propensity model. In the outcome

model, brain phenotypes from all participants who pass preprocessing quality control

are used. These brain phenotypes are regressed on motion values and diagnostic

groups, while controlling for demographic confounders and behavioral phenotypes.

Lastly, to effectively control for the motion effect, we estimate the tolerable motion

density using motion values that pass quality control from the control group. This

density is then used to standardize motion in the outcome model for both diagnostic

groups, ensuring that differences in brain phenotypes between the groups are not

attributable to motion.

5.2.2 Defining the target parameter for group comparison in

brain phenotype

MoCo is established in a causal context. Let us imagine a scenario where every

participant has usable brain phenotype data and reasonable motion levels during

scanning. In reality, maintaining stillness and avoiding preprocessing issues, such
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as T1-weighted image segmentation and volume registration errors, is challenging.

However, in this counterfactual scenario, we assume data can be manipulated. This

manipulation is not nonsense, as participants are expected to undergo training before

the actual scanning. Specifically, we assume all scans are usable with ∆Y = 1, and

each participant’s motion is a realization of M0 ∼ PM |∆M=1,A=0,X , representing the

control group’s motion distribution that meets quality control criteria. This ensures

data eligibility for analysis.

We denote the counterfactual brain phenotype as Y (1,M0). Here, 1 stands for

∆Y = 1, indicating that all participants have usable brain phenotype data, and M0

represents that they all have an appropriate motion value sampled from the conditional

motion distribution. Our proposed motion-controlled target parameter is denoted as

ψC = E(EC(Y (1,M0) | A = 1, X))− E(EC(Y (1,M0) | A = 0, X)) (5.1)

where EC denotes an expectation with respect to the counterfactual data.

The motion-adjusted association ψC estimates the difference in average brain

phenotype between diagnosis groups while accounting for the impact of excessive

motion. This is accomplished by sampling motion from the conditional distribution

that satisfies the inclusion criteria for both groups, such that the association difference

is not attributed to motion discrepancies. Furthermore, the parameter accounts for

variations in demographic confoundersX between diagnostic groups by integrating over

the same X distribution in the outer expectation during the comparison. Consequently,

the observed difference between the two groups is solely attributed to the diagnosis

group A and behavior phenotypes.

The identification of the target parameter using observational data involves three

assumptions. The technical statements are provided in the Web Supplement (Section

1). We summarize below:
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(A1) Mean exchangeability (assumption of no missing confounders): The demographic

confounders X and behavioral phenotypes Z contain all confounding variables

of the (M,∆Y ) and Y relationship.

(A2) Positivity: (A2.1) At a population level, there cannot be values of X that are

observed exclusively in one diagnostic group. Secondly, it is possible for a control

group participant to meet the inclusion criteria across any demographic values

X. Thirdly, it is possible to obtain data for both control and diagnostic group

participants across all demographic values X and Z. (A2.2) It is possible to

observe low motion across any diagnosis, demographic and behavioral values.

(A3) Causal Consistency: This is a technical assumption that the observed brain

phenotype Y from participants with complete data and a natural motion level

m is the same as the brain phenotype that would have been observed in the

hypothetical world where participants have tolerable motion in the scanner and

have no missing data.

Under (A1)-(A3), the counterfactual motion-controlled target parameter in equa-

tion (5.1) is identified by

∫∫∫
(µY |∆Y =1,A,M,X,Z(1,m, x, z)pZ|A,X(z | 1, x)− µY |∆Y =1,A,M,X,Z(0,m, x, z)pZ|A,X(z | 0, x))

pM |∆=1,A,X(m | 0, x)pX(x) dz dmdx

(5.2)

µY |∆Y =1,A,M,X,Z(a,m, x, z) represents the average brain phenotype in the sub-

group defined by diagnosis status A = a, motion level M = m, and covariates

(X,Z) = (x, z), among participants with usable brain phenotype values (∆Y = 1).

Then, this conditional average brain phenotype is standardized by the conditional

Z distribution pZ|A,X(z | a, x) in each subgroup (A,X) = (a, x). The compari-

son
∫
(µY |∆Y =1,A,M,X,Z(1,m, x, z)pZ|A,X(z | 1, x)−µY |∆Y =1,A,M,X,Z(0,m, x, z)pZ|A,X(z |
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0, x))dy quantifies a motion- and demographic confounder-conditional group difference

in brain phenotype. Next, the target parameter averages the conditional group differ-

ence twice: first over the demographic confounder-conditional distribution of motion

in the control group (A = 0) that passes motion quality control pM |∆M=1,A,X(m | 0, x),

and then over the marginal distribution of demographic confounders pX(x) in the

population. To understand the motivation for this target parameter, we note that the

conditional brain phenotype for both groups is averaged over the same conditional

distribution of M and the marginal distribution of X. Thus, we are appropriately

controlling for the impact of motion M and demographic confounders X, while report-

ing a marginal difference in brain phenotype. Thus, our choice of distributions for

this standardization should recover an objective comparison of the groups. Details

about the identification can be found in the Supplementary Material Section 1.

5.2.3 Estimation and inference of the motion-controlled group

difference

Our target motion-controlled group difference parameter in equation (5.2) requires

multiple integrations. To estimate this parameter, we propose to use a sequential re-

gression approach to express the integration as regressions, and then employ regression

models to obtain the estimates.

To fit regression models, rather than relying on parametric models like generalized

linear regression, which may be susceptible to misspecification, we adopt a more flexible

approach known as Super Learner. Super Learner constructs a weighted combination

of predictors from a user-specified library of candidate estimators. Examples of these

estimators include multivariate adaptive regression splines, LASSO, ridge regression,

generalized additive models, generalized linear models, random forest, and XGBoost

(Polley et al., 2023). The weights are assigned to minimize the cross-validated risk of

the resulting combination. According to large sample theory, the ensemble estimator



126

is expected to yield nuisance parameter estimates that are at least as good as, if not

better than, those from any individual candidate regression estimator considered.

To enhance the robustness of the estimator, we incorporate an efficient influence

function (EIF)-based correction in addition to evaluating the regression models.

Details of the EIF can be found in Supplementary Material Section 2. Evaluating

the EIF involves estimating the density of M , for which we propose using the highly

adaptive lasso, a flexible semiparametric conditional density estimator (Hejazi et al.,

2022b). Furthermore, we integrate cross-fitting into the estimation process to mitigate

overfitting and impose less restrictive complexity conditions on the machine learning

algorithms embedded in Super Learner. The final estimator exhibits asymptotic

linearity under certain assumptions and includes an analytical confidence interval,

facilitating subsequent statistical inference.

When multiple Y variables are considered simultaneously, MoCo can make inference

adjusting for multiple comparisons. To control the family-wise error rate for multiple

tests, MoCo conducts hypothesis testing using simultaneous confidence bands based

on EIF. For instance, in seed-based functional connectivity analysis, MoCo can jointly

evaluate the functional connectivity of different brain regions with the seed region to

identify regions with significant differences between groups. Details of the construction

of simultaneous confidence bands can be found in Supplementary Material Section 2.

5.3 Tutorial

In this section, we demonstrate the application of MoCo with a straightforward

example analysis. We generate a simulated dataset based on the Autism Brain

Imaging Data Exchange (ABIDE) (Di Martino et al., 2014, 2017), which we previously

analyzed (cite our preprint). Our seed region of interest is the default mode network

(DMN). We are interested in studying the functional connectivity between DMN and
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the other six regions defined using the Yeo 7 parcellation (Yeo et al., 2011). We use

MoCo to compute the motion-controlled mean functional connectivity and associations.

Additionally, we identify regions exhibiting significant associations and use ciftiTools

for visualization (Pham et al., 2022). The tutorial consists of four steps: (1) reading the

dataset; (2) defining variables and specifying parameters for MoCo, and running moco

function to calculate motion-controlled mean functional connectivity and associations;

(3) determining regions with significant associations based on simultaneous confidence

bands; (4) visualizing the motion-controlled functional connectivity, associations, and

significant regions using ciftiTools. Please note that a rs-fMRI cifti template needs to

be downloaded and placed in the Data folder for ciftiTools visualization. In addition,

plot images are written to a subfolder named Plots. To rerun this code, make sure

to create these two directories. Additionally, download the cifti template from the

supplementary material and place it in the Data folder.

5.3.1 Input to the MoCo function

We start by loading the MoCo package and the example dataset. The data contains

simulated covariates and functional connectivity data designed to mimic real-life

patterns observed in the ABIDE dataset.

# library

library(MoCo)

# load data

data(data)

The dataset includes a total of n = 400 participants. The left side of Figure 5.2

illustrates the data structure of the input variables. A, M, Delta M, Delta Y are

vectors of length n: Each element of A denotes a participant’s diagnostic status, with

1 representing ASD and 0 representing non-ASD. M represents continuous motion

values corresponding to mean FD. Participants are classified as having high motion if
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Figure 5.2: Input and output for the MoCo package.

M exceeds 0.2 (Delta M = 0), consistent with the threshold used in the analysis of real

data. The binary indicator Delta Y is a binary indicator equal to 0 for participants

with poor-quality preprocessed images and 1 otherwise. The proportion of participants

with Delta Y=0 is 7%.

Demographic confounders X and behavioral phenotypes Z are represented as data

frames, each containing multiple variables. Data frame X is of size n× 3, containing

three demographic dimensions: sex (X1), age (X2), and handedness (X3). In X1,

females are coded as 0 and males as 1. X2 represents age as a continuous numeric value.

X3 indicates handedness, with left-handed individuals coded as 0 and right-handed

individuals as 1. Data frame Z is of size n× 4, containing four behavior phenotypes.

Z1 represents scores from the Autism Diagnostic Observation Schedule (ADOS), which

measures social disability. Z2 contains the FIQ scores. Medication status is captured in

two dimensions: Z3 indicates stimulant medication use, and Z4 indicates non-stimulant

medication use. For both Z3 and Z4, a value of 0 denotes that the individual is not
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currently taking the respective medication.

The functional connectivity matrix Y has dimensions n× 7. Each row represents

the z-transformed functional connectivity derived from rs-fMRI between the seed

region and the other regions for a given participant. The 7th column, representing

the functional connectivity of the seed region with itself, is filled with NA values to

indicate its position. For participants with Delta Y = 0, the corresponding rows in

Y contain all NAs, as their functional connectivity data is not available. The true

differences in functional connectivity between each region and region 7 are as follows:

for regions 1-4, the association is 0; for region 5, it is -0.0485; and for region 6, it is

-0.0682. Region 5 and 6 are set to have significant associations.

5.3.2 Calculating motion-controlled functional connectivity

and associations

Now that we have loaded the package and imported the data, we can use MoCo to

calculate motion-controlled functional connectivity and associations. We begin by

defining the variables and specifying parameters for nuisance parameter calculation.

# specify covariates

X = data$X

Z = data$Z

A = data$A

M = data$M

Y = data$Y

Delta_M = data$Delta_M

Delta_Y = data$Delta_Y

Note that if Delta M is not available, leave it blank or setting it as Delta M =

NULL and specify thresh. The motion value M will be truncated by thresh to produce

Delta M. By default, thresh is set to NULL.

Next, we specify the method for nuisance regressions. Nuisance regressions are
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regressions for calculating parameters that need to be estimated as an intermediate

step in the estimation of motion-controlled functional connectivity. There are two

options: basic generalized linear models or Super Learner, an ensemble machine

learning algorithm. MoCo set the default as SuperLearner, which we highly recommend

as it combines multiple prediction algorithms to create a more accurate and robust

model. To use Super Learner, users have the option to either specify a recycled

set of algorithms for all nuisance regressions using the SL library argument, or set

SL library to NULL and customize the set of algorithms for each nuisance regression

using SL library customize. By default, a recycled SL library is used, and the

default algorithms include multivariate adaptive regression splines, LASSO, ridge

regression, generalized additive models, generalized linear models (with and without

interactions, and with and without forward stepwise covariate selection), random

forest, xgboost, and the mean of the outcome as below. Further details about these

algorithms can be found in Polley et al. (2023).

# default SL_library in MoCo

SL_library = c("SL.earth","SL.glmnet","SL.gam",

"SL.glm", "SL.glm.interaction",

"SL.step","SL.step.interaction",

"SL.xgboost","SL.ranger","SL.mean")

The application of generalized linear models requires the user to specify the

glm formula for each nuisance regression. The glm formula requires a comprehensive

understanding of each nuisance regression throughout the estimation process. The

detailed steps of the estimation, accompanied by an example illustrating the corre-

sponding notation for glm formulas, are available in the Supplementary Material. By

default, the formulas are set to NULL, as we recommend the use of Super Learner for

its robustness and accuracy, which alleviates the need for users to manually define

glm formulas.

In addition to nuisance regression, MoCo includes two additional parameters:
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HAL pMX and HAL pMXZ. These parameters control the use of the highly adaptive

lasso, a flexible semiparametric conditional density estimator designed for motion

density estimation (Hejazi et al., 2022b). By default, MoCo sets these parameters to

TRUE, indicating the utilization of haldensify. Users have the option to customize hy-

perparameters in haldensify such as max degree, lambda seq, and num knots through

the HAL options argument. MoCo has initialized default values for these hyperparam-

eters. For further details, please refer to the documentation Hejazi et al. (2022a). If

set to FALSE, a generalized linear model will be used for motion density estimation.

We assume the conditional motion distributions follow a Log-normal distribution. A

generalized linear model will be fitted by specifying pMX and pMXZ in the glm formula

argument to estimate the conditional density of the logarithm of motion. The standard

deviation is set equal to the sample standard deviation. Subsequently, the estimated

conditional density will be transformed into the conditional density of motion.

Examining the overall framework, MoCo employs an efficient influence function-

based nonparametric approach to estimate motion-controlled mean functional con-

nectivity. By default, estimators are fitted using cross-fitting, specified with the

arguments cross fit = TRUE and cv folds = 5. The parameter cv folds specifies

the utilization of K-fold cross-fitting for estimation, with the default value of K being

5. In this setting, the data are divided into five segments, with one segment held out

for evaluation while the others are used for fitting. The final result is an average of

five fitting runs. Alternatively, users can opt out of cross-fitting by setting cross fit

= FALSE.

Finally, for those interested in running the entire cross-fitting process multiple

times, the seed rgn argument allows for this specification. By default, it is set to

1, which means that the seed is set to 1 when running the SuperLearner regression.

However, as the SuperLearner estimation process is built upon cross-validation, it

introduces Monte Carlo variability. To address this, users can input a vector into
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seed rgn, such as seed rgn = 1:10. In this case, MoCo will execute the entire fitting

process 10 times based on each specified seed rgn value and return the average of

the results to mitigate potential Monte Carlo errors. It’s important to note that this

procedure can be time-consuming.

By combining variable definition and parameter specification, the moco function is

utilized to compute motion-controlled functional connectivity and associations. For

illustrative purposes, we choose a simple setting. Here we select a basic SL Library,

employ cross-fitting with cv folds = 5, and utilize glm for motion density estimation.

In the end, we provide a suggested setting for conducting a more comprehensive

analysis based on more accurate density estimation using highly adaptive lasso density

estimation.

# computing motion -controlled functional connectivity and

associations

result = moco(

X = data$X ,

Z = data$Z ,

A = data$A ,

M = data$M ,

Y = data$Y ,

Delta_M = data$Delta_M ,

Delta_Y = data$Delta_Y ,

SL_library = c("SL.mean", "SL.glm","SL.glm.interaction"),

glm_formula = list(pMX = ".",

pMXZ = "."),

HAL_pMX = FALSE ,

HAL_pMXZ = FALSE ,

cross_fit = TRUE ,

cv_folds = 5,

seed_rgn = 1,

test = FALSE
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)

The result object contains a list of 2. The motion-controlled mean functional

connectivity is stored in the est element. The first row corresponds to the adjusted

mean functional connectivity for the non-ASD group (A = 0), and the second row

corresponds to the ASD group (A = 1). The first six columns represent the results

for six regions with the seed region, respectively, and the last column is NA, as the

seed region is at the 7th position. The motion-controlled association is stored in the

adj association vector of length seven, where the first six elements represent the

adjusted association for the corresponding region. MoCo achieves satisfactory accuracy

when comparing the estimated motion-controlled association with the ground truth.

# motion -controlled mean functional connectivity

round(result$est , 4)

# est_A0 -0.2180 -0.1632 -0.1823 0.0535 0.0388 0.0828 NA

# est_A1 -0.2194 -0.1654 -0.1813 0.0513 -0.0084 0.0141 NA

# motion -controlled association

round(result$adj_association , 4)

# -0.0014 -0.0023 0.0010 -0.0022 -0.0472 -0.0687 NA

5.3.3 Determining significant associations based on simulta-

neous confidence band

To identify regions with significant associations, MoCo enables conducting multiple

hypothesis tests based on simultaneous confidence bands. The test can be performed

by setting test = TRUE and specifying the desired value for the family-wise error rate

(fwer). By default, fwer = 0.05.

result = moco(

X = data$X ,

Z = data$Z ,
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A = data$A ,

M = data$M ,

Y = data$Y ,

Delta_M = data$Delta_M ,

Delta_Y = data$Delta_Y ,

SL_library = c("SL.mean", "SL.glm","SL.glm.interaction"),

glm_formula = list(pMX = ".",

pMXZ = "."),

HAL_pMX = FALSE ,

HAL_pMXZ = FALSE ,

cross_fit = TRUE ,

cv_folds = 5,

seed_rgn = 1,

test = TRUE ,

fwer = 0.05

)

Now, the result will be a list of 4 elements. In addition to the motion-controlled

functional connectivity and association, it contains 2 other elements: z-scores and a

binary indicator indicating significance for each of the regions.

# z-scores

round(result$z_score , 4)

# -0.0586 -0.0853 0.0413 -0.0933 -1.9196 -3.3033 NA

# significant regions

result$significant_regions

# FALSE FALSE FALSE FALSE FALSE TRUE NA

Recall that according to the ground truth, the fifth and sixth regions have a

significant association with the seed region. Upon inspecting the results, when using

the simple setting, MoCo successfully captures a significant region without introducing

false positives.
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Below is the code for a comprehensive setting recommended for running MoCo.

This setting uses highly adaptive lasso for conditional density motion estimation,

offering more flexible modeling of the conditional motion distribution. It utilizes all

default parameters provided by the function, which uses the default Super Learner

library for flexible nuisance regression estimation. Users only need to specify the

definition of each variable to obtain results.

result = moco(

X = data$X ,

Z = data$Z ,

A = data$A ,

M = data$M ,

Y = data$Y ,

Delta_M = data$Delta_M ,

Delta_Y = data$Delta_Y

)

5.3.4 Visualization using ciftiTools

We demonstrate the visualization of the resulting significant regions using the Yeo 7

parcellation with ciftiTools. We provide a demo function for the plot, where users only

need to input the path to the workbench (wb path), to the template cifti file in the

Data folder (template path), and to the Plots folder (plots path). The generated

plots will be located in the Plots folder.

# visualization

plot_moco(result ,

wb_path = "/Applications/workbench",

template_path = "Data/template.dtseries.nii",

parcellation = "Yeo_7",

plots_path = "Plots")
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Figure 5.3: Estimated functional connectivity of the ASD group and non-ASD group
using MoCo for the example dataset. In this example, MoCo correctly identifies one
of the two true associations.

5.3.5 Handling absence of motion data

When motion values are not available, the package offers additional flexibility for

estimating the association. By setting X = NULL, M = NULL, the method aligns with

Nebel et al. (2022). If only M = NULL and demographic confounders X are provided,

the output extends Nebel et al. (2022) by incorporating covariate balancing based on

demographic confounders.

5.4 Dataset and analysis

5.4.1 Resting-state fMRI dataset

We illustrate the application of MoCo using resting-state fMRI data from school-age

children with Attention Deficit Hyperactivity Disorder (ADHD) (Brown et al., 2012).

ADHD is a prevalent mental health condition, impacting approximately 5% to 10%

of school-age children (Polanczyk et al., 2014). It is characterized by impulsive,

hyperactive, and inattentive behaviors, which may endure into adulthood, posing

substantial challenges for affected individuals, their families, and society. Children

with ADHD frequently encounter obstacles in learning and in maintaining typical

daily routines compared to their peers. In our analysis, we subset to the Kennedy

Krieger Institute (KKI), New York University (NYU) and Peking University (Peking)
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sites with full demographical data, 441 children aged 7 to 18. At the KKI site, rs-fMRI

scans were conducted using a Siemens Magnetom TrioTim syngo MR B13 scanner

with a repetition time(TR)/echo time (TE) of 2500/30 ms, a flip angle of 75◦, and

3.1×3.1×3.5 mm voxels, SENSE phase reduction was set to 1, and the duration of the

scan ranged from 5 to 6min. At the NYU site, rs-fMRI scans were conducted using a

Siemens Magnetom Avanto syngo MR B17 scanner with a repetition time (TR)/echo

time (TE) of 2000/15 ms, a flip angle of 90◦, and 3.5×3.5×3 mm voxels, SENSE

phase reduction was set to 1, and the scan duration was 6min. For the Peking site,

scans were conducted using a Siemens Magnetom TrioTim syngo MR B15 scanner

with a TR/TE of 2000/30 ms, a flip angle of 90◦, and 3×3×3 mm voxels. SENSE

phase reduction was set to 1, and the scan duration was 8min. The first four volumes

were removed for both sites. Additionally, all except 2 children from the NYU site

underwent the collection of an anatomical T1 scan. Further information on scan

parameters and other details can be found on the ADHD-200 webpage.

T1 anatomical and rs-fMRI data were processed with the cifti option for cortical

surface registration using fMRIPrep, including anatomical tissue segmentation, surface

construction, and surface registration, followed by fMRI motion correction, slice-time

correction, boundary-based coregistration, and resampling to the fsaverage template

(Esteban et al., 2019). See Supplement Section 3.1 for details. We visually inspected

the accuracy of the cortical segmentation and boundary-based registration using the

fMRIPrep quality control html files. Two participants from the NYU site do not have

rs-fMRI scans, and in total 70 participants failed cortical segmentation or exhibited

severe missingness in boundary-based registration, resulting in their rs-fMRI data

being marked as missing (∆Y = 0). Two example participants who failed this step

are included in the Supplement Section 3.2. Most of these cases involved children

with partial brain data missing in the alignment of functional and anatomical MRI

scans. The remaining cases involved poor-quality T1 images, for example, corrupted
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by motion, which led to cortical segmentation failure.

Our final study sample includes all 441 children, with 268 non-ADHD children

and 173 ADHD children (Table 7.9). In addition to functional connectivity data,

we included the following: diagnosis (A); age, sex, and handedness (X); ADHD

Index, measure of ADHD Index, the interaction between ADHD Index and measure

of ADHD Index, Full-scale Intelligence Quotient (FIQ) score, medication status (Z),

and mean framewise displacement (FD) in the analysis (M). The ADHD Index

measures ADHD severity. At the KKI and NYU sites, the ADHD Rating Scale

IV (ADHD-RS) was used, while the Peking site used the Conners’ Parent Rating

Scale-Revised, Long Version (CPRS-LV). Although ADHD is more prevalent in males

than females (Arnett et al., 2015; Willcutt, 2012), we treated sex as a confounder

(X) rather than diagnosis-specific variable (Z) because sex-specific differences in

functional connectivity have been previously documented (Shanmugan et al., 2022),

which could mask ADHD-related differences in this cohort. Mean FD is an average

of the frame-to-frame displacement calculated from the rigid body motion correction

parameters. We defined the indicator of data usability ∆M equal to one if a child

mean FD < 0.2 mm (Mummaneni et al., 2023). This resulted in ∆M = 0 for 50/173

ADHD (28.9%) and 42/268 non-ADHD children (15.7%).

We calculated the average time series for ROIs defined using Schaefer’s 400-node

brain parcellation, which associates each node with the resting-state networks from Yeo-

7 (Schaefer et al., 2018). We then explored multiple preprocessing options (Fox et al.,

2009): (1) 9-parameter (9p) nuisance regression: Regressing out the six parameters

from motion alignment (2) 36-parameter (36p) nuisance regression: Regressing out the

six parameters from motion alignment, their squared values, the lag-1 terms of these 12

regressors, the global signal (mean signal across all voxels), white matter (WM), and

cerebrospinal fluid (CSF) as well as their derivatives calculated from fMRIPrep. (3)

36-parameter (36p) spike regression: Applying a preprocessing approach that includes
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Table 5.1: Demographic characteristics: Continuous variables are described using
mean and standard deviation, and diagnostic groups are compared using the Kruskal-
Wallis rank-sum test. Binary and categorical variables are reported as frequencies and
percentages, and differences between diagnostic groups are assessed using either the
Chi-square test or Fisher’s exact test.
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spike regression following 36p nuisance regression. We used COMBAT (Yu et al., 2018)

for site harmonization to account for the seven protocols. For COMBAT, “site” is a

factor with seven levels (KKI, NYU, Peking 1 to Peking 5) and the following covariates:

diagnosis, age, sex, handedness, ADHD Index, ADHD measure, Interactions of ADHD

Index and ADHD measure, FIQ, medication status, and mean FD.

5.4.2 Data analysis and results

We conducted a correlation analysis using a seed region in the default mode network to

investigate selection bias and motion impacts on functional connectivity in ADHD. The

default mode network (DMN) is a collection of brain regions that tend to co-activate

during wakeful rest, including daydreaming or mind wandering. Most studies on

ADHD primarily focus on the DMN, and according to Sonuga-Barke and Castellanos

(2007), ADHD can be conceptualized as a disorder of the DMN. Hypoconnectivity

between anterior and posterior parts of the default mode network was previously found

(Castellanos et al., 2008). However, hypoconnectivity in the default mode network

also arises from motion artifacts (Power et al., 2012).

We computed Fisher z-transformed correlations of rs-fMRI time series for each

brain region with region 14, which is called ‘17networks LH DefaultA pCun 1’, a hub

of the posterior default mode network (Pham et al., 2022). We compared the näıve

estimate with participant passing motion QC (retaining ∆Y = 1 and ∆M = 1), the

näıve estimate (retaining ∆Y = 1), both while adjusting for demographic confounders,

and the group difference estimated from our method with cross-fitting. We determined

the FWER-critical values using simultaneous confidence intervals derived from the

efficient influence functions. For the näıve approaches, the critical values were derived

from the sample correlation matrices. Nuisance regressions involved in our method

are estimated using the default SuperLearner library in the MoCo package. To handle

Monte Carlo variability resulting from cross-validation, we generated estimates 50
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Figure 5.4: Estimated functional connectivity using the näıve approach excluding high-
motion participants, the näıve approach, and our proposed method for a seed region
in the posterior default mode network (fuchsia point) using 9p nuisance regression.

times and calculated the averaged estimates and z-statistics across runs.

The estimated functional connectivity using the naive approach with participants

passing motion QC, the naive approach, and our proposed method are illustrated

in Figure 7.12 for the preprocessing pipeline with 9p-parameter regression. The

corresponding figure for the 36p-parameter regression and 36p-parameter regression

with spike regression is included in the Supplementary Material Section 3.3. The seed

region in the posterior default mode network is defined by the fourteenth parcel but

is represented by the fuchsia point for clarity. Using Wald tests with simultaneous

confidence bands, our method reveals hyperconnectivity in ADHD between the poste-

rior default mode seed region and region in the salience or ventral attention network

(see Figure 5.5). The näıve approach including high-motion children seems to result

in spurious connectivity differences. These differences include apparent seed region
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hypoconnectivity in ADHD in long-distance correlations within the default mode

network (the connection between the posterior default mode and the medial anterior

default mode regions), which is consistent with the view that long-distance correlations

are attenuated in high-motion participants (Satterthwaite et al., 2013b). The näıve

approach also includes some regions of hyperconnectivity in ADHD in lateral regions

of the frontal lobe. The näıve approach with children passing motion QC reduces some

of the group differences compared to the näıve approach with all children. However,

spurious within default mode connectivity differences still persist. In contrast, MoCo

reveals that most default mode regions found to exhibit significant differences in

näıve approaches do not show hypoconnectivity after controlling for motion artifacts.

Specifically, MoCo only identifies significant hypoconnectivity between the seed region

and restricted anterior default mode regions, as well as hyperconnectivity between the

seed region and the salience and ventral attention networks. In the supplementary

materials, we include z-statistics for the group differences when using 36 parameters,

and 36 parameters and spike regression in preprocessing. MoCo demonstrates consis-

tent results regardless of preprocessing (Figure 5.6), whereas the naive approaches are

sensitive to the preprocessing pipeline with fewer significant regions identified with

the stringent preprocessing.
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Figure 5.5: Z-statistics for the group difference (ADHD − non-ADHD) for a seed in
the posterior default mode network (fuchsia point) in the ADHD200 dataset. The
“naive approach” includes participants that pass the preprocessing pipeline (∆Y = 1).
The naive approach that pass motion QC are participants that also pass motion QC
(∆Y = 1 and ∆M = 1). MoCo uses imaging data from all participants that pass
preprocessing (including those with excessive motion) and uses demographic data from
all participants (including those that failed preprocessing). Both naive approaches
appear to generate spurious findings, suggesting extensive anterior-posterior DMN
hypoconnectivity. Based on the results from MoCo, most of these regions do not differ
in hypoconnectivity when standardizing motion between groups. Network labels from
(Schaefer et al., 2018).
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Figure 5.6: MoCo consistently produces stable results regardless of preprocessing
pipelines, while the naive approaches are sensitive to the preprocessing pipeline,
identifying fewer significant regions under more stringent preprocessing conditions.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this dissertation, we developed several models and algorithms for brain connectivity

analysis to address the challenges of analyzing large-scale and complex functional

connectivity data in neuroimaging, as well as mitigating potential artifacts introduced

by motion during scanning. The key conclusions from this work are summarized

below.

Unveiling Hidden Sources of Dynamic Functional Connectome through

a Novel Regularized Blind Source Separation Approach We propose a general

latent source separation method for brain dynamic connectome. There has been a

strong interest in advancing the understanding of the dynamic reorganization of the

human brain. The proposed dyna-LOCUS method aligns with the broader framework

of analyzing dFC using clustering methods such as k-means or decomposition methods

such as ICA and PCA to unveil basis patterns underlying the observed dynamic

connectome (Miller et al., 2016). However, the distinguishing features of dyna-LOCUS

set it apart from the existing methods, enabling dyna-LOCUS to offer valuable

contributions to the field. Specifically, compared to the clustering methods such as

145
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k-means or fuzzy k-means, dyna-LOCUS is tailored toward a distinct objective and

produces different types of results. k-means methods cluster the observed dFC data

into a number of clusters, where the cluster centroids represent specific “states” of the

overall whole-brain connectivity patterns observed over time. In comparison, dyna-

LOCUS decomposes the observed dFCs to reveal the latent connectivity sources/traits

underlying the overall whole-brain connectivity, where each trait represents a subset of

brain connections that tend to occur together during neural processing. Furthermore,

dyna-LOCUS uncovers the temporal expression profiles of the latent connectivity

traits, Therefore, results from dyna-LOCUS provide new information to reveal the

underlying connectivity traits that constitute the whole-brain connectivity “states”

and further reveal the key connectivity traits that drive each whole-brain connectivity

“state”. Compared to decomposition methods such as ICA or PCA, dyna-LOCUS

shares the similar goal of decomposing dFC matrices to reveal underlying latent sources.

However, dyna-LOCUS incorporates several innovative methodology strategies that

lead to advancements over the existing ICA/PCA methods. Specifically, dyna-LOCUS

incorporates innovations such as a low-rank structure to improve estimation efficiency

and accuracy, an angle-based sparsity regularization for reliably recovering source

signal maps by reducing spurious edges, and a temporal smoothness regularization to

improve the estimation of temporal expression profiles of connectivity traits. A related

work that models dFC using sparse low-rank matrices is (Cai et al., 2017). In this

work, (Cai et al., 2017) decomposes dFC as a linear combination of a set of dynamic

sparse connectivity patterns (dSCPs), modeled via rank-one matrices with sparsity

imposed on the rank-one vector the dsCPs. There are several distinctions between

dyna-LOCUS and dSCPs. In comparison to dSCPs that uses rank-one matrices,

dyna-LOCUS uses a more flexible low-rank factorization where the rank parameters

are source-specific to accommodate different types of connectivity traits and can be

selected using our proposed adaptive selection method. To achieve sparsity, dyna-
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LOCUS utilizes a novel angle-based element-wise sparsity regularization, specifically

designed to achieve sparsity in the connectivity sources. Furthermore, (Cai et al.,

2017) focuses on identifying whole-brain dFC states which are combinations of the

underlying connectivity sources and investigating group differences in these dFC

states. Hence, (Cai et al., 2017) selects the number of sources based on classification

accuracy for subject groups. In comparison, our paper focuses on reliably uncovering

latent connectivity sources and revealing their temporal dynamics, interactions, and

synchronization with our proposed temporal metrics. We select the number of sources

based on the reproducibility of the extracted sources.

Another related method is the recently proposed LOCUS method for decomposing

static functional connectivity matrices (Wang and Guo, 2023). Both dyna-LOCUS

and LOCUS are designed to investigate brain functional connectivity(FC) and share

similarities such as modeling connectivity patterns using a low-rank structure and

sparsity regularization. However, the two methods have major differences in terms

of the type of functional connectivity data the methods are applied to, the results

generated from the methods, and the analytical approaches. LOCUS is designed for

decomposing stationary functional connectivity measures that are derived based on the

whole fMRI time series in a scanning session, ignoring the temporal changes in brain

connectivity. In comparison, dyna-LOCUS uncovers latent sources underlying the series

of dynamic FC measures obtained using fMRI BOLD signals within short time windows

that slide across the session. In addition to recovering the spatial compositions of the

underlying dynamic connectivity sources/traits, dyna-LOCUS also produces temporal

trait loading series and several novel temporal dynamic metrics to measure the energy

and variation of each dynamic trait and to reveal the interaction and synchronization

between traits. Furthermore, dyna-LOCUS offers an efficient and reliable approach to

identifying whole-brain dynamic connectivity states and elucidating the contribution

of each connectivity trait to the dynamic FC states. These temporal dynamic insights



148

into functional connectivity are not attainable using the LOCUS method. There are

also technical differences between the two methods. dyna-LOCUS models the temporal

expression profile of each connectivity trait and incorporates temporal smoothness

regularization. This leads to variations in optimization strategies, particularly for

updating the loading matrix in the decomposition model. The LOCUS method updates

the trait loading matrix using a simple regression method by regressing subjects’ static

FC against the estimated static sources. In comparison, dyna-LOCUS updates its

temporal loading matrix using a new and more sophisticated strategy that takes into

account the temporal smoothness regularization (Appendix B). The aforementioned

distinguishing features underscore the unique capabilities of dyna-LOCUS in probing

dynamic connectivity, thereby offering novel contributions beyond the LOCUS method.

Our dyna-LOCUS analysis of rs-fMRI data from the PNC study has led to

exciting insights into the latent sources that underlie the brain’s dynamic functional

connectome. Among the 30 dyna-LOCUS extracted latent connectivity traits, an

impressive 18 of them demonstrate substantial or almost perfect reproducibility with

the resampling of study participants. These traits represent consistent subsystems

in neural processing and brain organizations, reflecting the cohesive interactions

among specific neural circuits. The interplay among these subsystems results in the

dynamic reconfiguration of the brain’s functional connectivity patterns over time. The

sparse source signal maps generated by dyna-LOCUS allow us to reliably identify

the key neural connections and brain nodes that drive each of these subsystems. In

addition to unveiling the composition of the connectivity traits, dyna-LOCUS offers

important insights into the temporal expression characteristics of each trait, providing

a deeper understanding of how these traits manifest over time. For instance, Trait

6 (CB), known for its cerebellum-driven nature, emerges as a stable trait with a

modest expression level across time. This stability suggests a consistent and enduring

involvement of the cerebellum-driven connectivity pattern in the brain’s dynamic
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organization. In contrast, Trait 27 (SM-DMN-Aud), encompassing long-distance

connections between the sensorimotor and DMN networks, exhibits both the highest

energy and the greatest temporal variation. This trait displays periods of heightened

expression, followed by periods where it becomes less prominent or even disappears.

This dynamic behavior suggests the presence of transient interactions between the

sensorimotor and DMN networks, which may play crucial roles during specific cognitive

processes or behavioral states. The identification of such distinct dynamic features

within connectivity traits sheds light on the complexity and diversity of brain dynamics.

Understanding the temporal expression patterns of connectivity traits enriches our

knowledge of how different brain networks interact and adapt over time, unveiling the

intricate mechanisms that underlie various cognitive functions and behaviors.

The dyna-LOCUS analysis of the PNC study has uncovered previously unknown

latent connectivity sources within the dynamic connectome. Particularly noteworthy

is the discovery of Trait 14 (EC-AUD-DMN-FRP), which is mainly driven by the

executive control network and its connections with other cognitive networks. This

executive connectivity subsystem exhibits the highest expression level among the

connectivity traits, and it also demonstrates the best stability among the highly

expressed traits. These findings highlight the consistent and prevalent presence

of this executive connectivity subsystem throughout different time points in the

dynamic functional connectome. Additionally, the executive connectivity subsystem

demonstrates significant interaction with other connectivity traits. Notably, Trait 14

is involved in two out of the top six synchronized pairs of connectivity traits (Figure

2.8), indicating its active cooperation with other connectivity subsystems within the

connectome. Moreover, our analysis has uncovered seven distinct whole-brain dFC

states (Figure 2.10). Among these states, dFC state 1 emerges as the most frequently

observed, with Trait 14 standing out as the most influential connectivity subsystem,

displaying the highest expression level among all connectivity traits in this dFC
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state. These findings collectively emphasize the central role of Trait 14, the executive

connectivity subsystem, in the dynamic functional connectome. Upon conducting

a deeper investigation into the development of Trait 14, we made an intriguing

discovery regarding distinct developmental trajectories between genders. In females,

early development of this executive connectivity subsystem is observed, whereas in

males, its development occurs later, mostly from adolescence to early adulthood. As

young adults, males display a more pronounced presence of the executive connectivity

subsystem compared to females. This gender-specific variation adds another dimension

to our understanding of the executive connectivity subsystem.

Investigating latent neurocircuitry traits underlying longitudinal brain

functional connectome We develop a longitudinal-LOCUS method to study changes

in brain connectomes over time. This method decomposes longitudinal FC measures

using blind source separation with low-rank structures and angle-based sparsity

regularization. We present an efficient iterative node-rotation algorithm to solve

the non-convex optimization problem for learning longitudinal-LOCUS. Simulations

demonstrate superior accuracy in recovering latent sources and mixing coefficients

compared to existing methods. We applied it to the Adolescent Brain Cognitive

Development (ABCD) data to investigate developmental changes in neural circuits

and their differences between genders. In this work, we employ an L1 norm-based

sparsity penalty and our framework is adaptable to alternative norms like L2, MCP,

and SCAD. Longitudinal-LOCUS can be extended to support various connectivity

measures including structural connectivity from DTI and functional connectivity using

mutual information. The angle-based sparsity regularization in the method extends its

applicability to tensor-decomposition methods with low-rank structures, providing a

robust alternative to existing penalties. To facilitate wider use, we intend to release an

R package on CRAN, making the method more accessible for neuroimaging research.

Nonparametric Motion Control in Functional Connectivity Studies in
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Children with Autism Spectrum Disorder and MoCo

We introduce MoCo, a method for controlling motion in fMRI studies to estimate

the difference in functional connectivity between ASD and non-ASD children when

all children have a tolerable level of motion. Our theoretical framework enables the

use of flexible machine-learning techniques for parameter estimation. The method

allows the estimation of simultaneous confidence intervals for controlling FWER across

hundreds of brain connections. It shows improved statistical power in identifying the

true association and a lower type I error rate in the absence of an association. Our

approach avoids selection bias caused by motion quality control exclusion criteria.

Our findings differ greatly from the näıve approach, which suggested hypoconnec-

tivity across many DMN regions when including all participants. The näıve approach

with participant removal suggests these differences were due to motion artifacts, but

it is difficult to disentangle this from power loss and selection biases, as only 34 ASD

children passed motion quality control. MoCo contributes to the ASD literature by

flexibly modeling motion artifacts while including all the phenotypic variability in

the study sample, providing stronger evidence that the hypoconnectivity differences

were due to motion artifacts. MoCo recovered more regions than the näıve approach

with motion removal (four versus two at FWER=0.05), although the overall picture

suggests relatively minor differences between autistic and non-ASD children in this

study sample.

An important decision in the modeling process is to designate variables as possible

confounders X or variables related to diagnosis group Z. In the data analysis,

we consider age, sex, and handedness as possible confounders X, all of which can

potentially affect the associations between ASD and functional connectivity due to

an imbalanced study design. We treat FIQ as a diagnosis-specific variable, which on

average was lower in the ASD group. However, FIQ is highly variable in autism, and

whether or not it should be considered as a possible confounder or as a diagnosis-
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specific variable is debatable. In our dataset, the child with the highest FIQ was also

diagnosed with autism (Supplement Table 5). Neural diversity in autism is associated

with strengths like unique perspectives, problem-solving skills, intense focus, attention

to detail, and other traits that extend beyond a single measure of intelligence. A

limitation in our data analysis is that we only considered a limited set of behavioral

and diagnosis-specific covariates, which was driven by the covariates available in the

two ABIDE study sites. Additional research into the associations between functional

connectivity and neural diversity may help elucidate the neurological underpinnings

in ASD.

6.2 Future Work

Based on the findings of this dissertation, there are several potential avenues for future

research.

Although dyna-LOCUS and longitudinal-LOCUS are reliable methods for decom-

posing dFC/longitudinal-FC measures, a potential limitation is that both decompose

the FC matrices as a linear combination of latent connectivity traits, following the

common assumption in blind source separation. However, this assumption may not

always capture the complexity of real-world systems. A valuable direction for future

work is to extend these methods to accommodate nonlinear mixing cases, thereby

broadening their applicability across diverse data scenarios and enhancing their capac-

ity to capture complex relationships. Another potential extension is to incorporate the

spatial information of the nodes into modeling the latent coordinates in the low-rank

factorization. This can further increase the accuracy and reliability in recovering the

connectivity traits by accounting for the spatial dependence between the nodes.

For dyna-LOCUS, we are currently utilizing the PNC data to examine the results

of dynamic functional connectivity matrix decomposition. As we are embracing many
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sources of data nowadays, there is significant potential for a cross-dataset large-scale

study to compare the dynamic connectivity traits derived from datasets such as

PNC, Human Connectome Project (HCP), and ABCD. Such a study would require

a consistent preprocessing pipeline for all datasets and harmonization across sites.

Our group has completed the preprocessing and is working on dynamic connectivity

calculation. A thorough comparison will be part of future work.

For longitudinal functional connectivity analysis, instead of modeling the original

functional connectivity for consecutive visits, we could directly decompose the difference

in functional connectivity maps to identify the underlying neural circuitry reflected

in the difference map. Another option is to use a dyna-LOCUS-like model for this

analysis. Since the longitudinal imaging data also involves multiple time points, this

approach allows the study of temporal profiles while assuming that the connectivity

traits remain unchanged over time.

For MoCo, although we extend the method in Chapter 5 to incorporate behavioral

and demographic information from participants with missing fMRI data and other

neuroimaging modalities, several future directions remain possible. First, since the

method uses machine learning, particularly the Super Learner package, it is important

to investigate its robustness with regard to the seed when running SuperLearner, which

uses cross-validation for model weight tuning. One potential improvement is to develop

a probability measure for each brain region’s significance in the context of multiple

testing. Second, we currently fit functional connectivity for a seed-based analysis

rather than simultaneously analyzing the functional connectivity matrix. A matrix-

variate approach could be designed to exploit low-rank or sparse structures, potentially

improving efficiency. Third, instead of applying the method to correlations, we could

directly apply the logic to time series collected from fMRI before calculating functional

connectivity. This would require modeling the time series data and addressing how to

handle vector outcomes.
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Appendix
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7.1 Supplementary Material of Chapter 2

7.1.1 Latent dynamic connectivity traits extracted from the

PNC study using dyna-LOCUS

dyna-LOCUS uncovers 30 dynamic latent connectivity traits by decomposing dynamic

functional connectivity (dFC) measures derived from resting state fMRI (rs-fMRI)

data from the Philadelphia Neurodevelopmental Cohort (PNC) project. Figure A.1

(Part I - Part V) presents the source signal maps for all 30 connectivity traits ranked

by their reliability index. In the figure, the top 0.5% brain connections with the

highest magnitude of source signal intensity in each of the connectivity traits are

mapped onto the brain. Node contribution indices that help identify key brain nodes

and networks that drive each connectivity trait are also shown in boxplots arranged

by networks.
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Figure 7.1: Part I: Thirty connectivity traits extracted from the PNC study ordered
by their reliability index. The top 0.5% brain connections and top contributing nodes
are displayed in the brain maps. Node contribution indices that help identify key
brain nodes and networks driving each connectivity trait are shown in the boxplot
arranged by networks.
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Figure 7.1: Part II: Thirty connectivity traits extracted from the PNC study ordered
by their reliability index. The top 0.5% brain connections and top contributing nodes
are displayed in the brain maps. Node contribution indices that help identify key
brain nodes and networks driving each connectivity trait are shown in the boxplot
arranged by networks.
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Figure 7.1: Part III: Thirty connectivity traits extracted from the PNC study ordered
by their reliability index. The top 0.5% brain connections and top contributing nodes
are displayed in the brain maps. Node contribution indices that help identify key
brain nodes and networks driving each connectivity trait are shown in the boxplot
arranged by networks.
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Figure 7.1: Part IV: Thirty connectivity traits extracted from the PNC study ordered
by their reliability index. The top 0.5% brain connections and top contributing nodes
are displayed in the brain maps. Node contribution indices that help identify key
brain nodes and networks driving each connectivity trait are shown in the boxplot
arranged by networks.
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Figure 7.1: Part V: Thirty connectivity traits extracted from the PNC study ordered
by their reliability index. The top 0.5% brain connections and top contributing nodes
are displayed in the brain maps. Node contribution indices that help identify key
brain nodes and networks driving each connectivity trait are shown in the boxplot
arranged by networks.
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7.1.2 Latent dynamic connectivity traits extracted from the

PNC study using existing methods

In this section, we present the 30 dynamic latent connectivity traits uncovered by

connICA (Amico et al., 2017) (Figure 7.2) and dictionary learning (DL) (Figure

7.3) by decomposing dynamic functional connectivity (dFC) measures derived from

resting-state fMRI (rs-fMRI) data from the Philadelphia Neurodevelopmental Cohort

(PNC) project. For each method, the traits are matched one-to-one with dyna-LOCUS

traits presented in Supplementary Materials Section 1 and ordered accordingly.
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Figure 7.2: 30 dynamic latent connectivity traits uncovered by connICA using dFC
measures derived from rs-fMRI data from the PNC project. These traits are matched
one-to-one with the traits extracted by dyna-LOCUS and ordered accordingly.
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Figure 7.3: 30 dynamic latent connectivity traits uncovered by dictionary learning
(DL) using dFC measures derived from rs-fMRI data from the PNC project. These
traits are matched one-to-one with the traits extracted by dyna-LOCUS and ordered
accordingly.
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7.1.3 Gender and age differences in the connectivity traits

In this section, we first validate dyna-LOCUS’s finding of the age and gender effect

for the executive function related connectivity traits extracted from the PNC study.

Among the 30 extracted traits, Trait 14 (EC-Aud-DMN-FPR) consists of connections

within the executive control (EC) network and connections between the EC network

and several other networks. The regression analysis of the logarithm of energy of

individual’s trait loadings on Trait 14 shows a significant interaction effect between

age and gender. To validate this finding from dyna-LOCUS, Specifically, we generate

100 replication data samples, each consisting of a subset of 376 participants (75% of

the full sample size) randomly sampled from the PNC data. We then perform the

same regression analysis and test for the age and gender interaction effect in each

of the replication samples. Figure 7.4 shows the p-values across the 100 replication

samples. When there isn’t age by gender interaction effect, we expect the p-value

would approximately follow a uniform distribution between 0 and 1 (Moore et al.,

2018), meaning they should be evenly distributed within this range. The violin plot

reveals that the p-values are predominantly smaller than expected under the null

hypothesis. In approximately 40% of the replication samples, the results are significant

with p-values less than 0.05. And the results in approximately 60% of the replication

samples are significant at the significance level of 0.1. This indicates the presence

of an interaction effect between age and gender for Trait 14, validating the finding

reported in the paper.

Furthermore, we present gender and age effects for all 30 connectivity traits

extracted from the PNC study by dyna-LOCUS and the existing connICA and

dictionary learning (DL) methods. We match the traits from connICA and DL to

those from dyna-LOCUS. We then employ regression models to model the logarithm

of energy of an individual’s trait loadings in terms of age, gender, and their interaction.

The p-values for these effects from each method are presented in Table S7.1. Due
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Figure 7.4: Validation of the age-by-gender interaction effect the executive function
related connectivity trait (Trait 14 EC-Aud-DMN-FPR) using the data resampling
method. The violin plot displays the p-values of this effect in 100 replication data
samples from the PNC study.

to the simultaneous hypothesis testing across all 30 traits, we implement multiple

comparison corrections using the false discovery rate (FDR) method. Effects that are

significant after controlling for the FDR at the 0.05 level are marked with asterisks in

the table.



166

Trait dyna-LOCUS connICA DL
gender age interaction gender age interaction gender age interaction

1 0.466 0.240 0.889 0.055 0.609 0.801 0.378 0.446 0.642
2 0.921 0.682 0.369 0.517 0.023 0.498 0.658 0.162 0.280
3 0.938 0.159 0.296 0.489 0.203 0.577 0.089 0.010* 0.356
4 0.846 0.400 0.928 0.794 0.887 0.712 0.909 0.052 0.053
5 0.819 0.008* 0.526 0.437 0.051 0.463 0.831 0.060 0.218
6 0.333 0.063 0.175 0.414 0.208 0.617 0.326 0.293 0.169
7 0.794 0.887 0.712 0.003* 0.230 0.026 0.322 0.156 0.295
8 0.437 0.051 0.463 0.576 0.005* 0.586 0.031 0.000* 0.042
9 0.697 0.226 0.267 0.456 0.382 0.359 0.892 0.004* 0.933
10 0.055 0.609 0.801 0.938 0.159 0.296 0.503 0.066 0.706
11 0.104 0.233 0.276 0.823 0.574 0.517 0.780 0.003* 0.058
12 0.280 0.488 0.384 0.191 0.797 0.479 0.044 0.721 0.309
13 0.003* 0.230 0.026 0.090 0.002* 0.324 0.212 0.085 0.862
14 0.493 0.000* 0.030 0.466 0.240 0.889 0.146 0.000* 0.018
15 0.000* 0.531 0.598 0.545 0.023 0.210 0.132 0.434 0.886
16 0.130 0.677 0.458 0.036 0.001* 0.781 0.004 0.279 0.672
17 0.191 0.797 0.479 0.000* 0.531 0.598 0.834 0.000* 0.085
18 0.517 0.023 0.498 0.130 0.677 0.458 0.264 0.013* 0.252
19 0.036 0.001* 0.781 0.333 0.063 0.175 0.041 0.121 0.243
20 0.024 0.308 0.004 0.024 0.308 0.004 0.008 0.014* 0.056
21 0.456 0.382 0.359 0.394 0.171 0.261 0.052 0.079 0.102
22 0.545 0.023 0.210 0.697 0.226 0.267 0.075 0.360 0.976
23 0.090 0.002* 0.324 0.104 0.233 0.276 0.474 0.318 0.398
24 0.489 0.203 0.577 0.921 0.682 0.369 0.975 0.131 0.253
25 0.166 0.074 0.407 0.819 0.008* 0.526 0.054 0.027 0.732
26 0.576 0.005* 0.586 0.493 0.000* 0.030 0.121 0.001* 0.025
27 0.823 0.574 0.517 0.280 0.488 0.384 0.423 0.471 0.564
28 0.257 0.008* 0.007 0.257 0.008* 0.007 0.646 0.381 0.925
29 0.394 0.171 0.261 0.166 0.074 0.407 0.552 0.343 0.452
30 0.414 0.208 0.617 0.846 0.400 0.928 0.793 0.019 0.061

Table 7.1: Age and Gender effects for all 30 connectivity traits extracted from the
PNC study by dyna-LOCUS and the existing connICA and dictionary learning (DL)
methods. Effects that are significant after controlling for the false discovery rate
(FDR) at the 0.05 level are marked with asterisks in the table.



167

7.1.4 Additional simulation studies with varying levels of

sparsity in the source signals

In this section, we evaluate the performance of dyna-LOCUS across varying sparsity

levels of source signals. In addition to the simulation scenario presented in the main

manuscript where the sources have a high sparsity level, we consider two additional

settings where the sources exhibit decreasing levels of sparsity as the number of

connections increases. Table 7.2 and Figure 7.5 depict simulation results for a medium

sparsity level, while Table 7.3 and Figure 7.6 present results for a low sparsity level.

Overall, dyna-LOCUS exhibits better accuracy in recovering the underlying source

signals and their respective temporal loadings compared to the connICA and sparse

dictionary learning (DL) methods. Results from these two additional simulation

settings are consistent with the findings reported in the main manuscript for the high

sparsity level setting.
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Term N Var. dyna-LOCUS connICA DL

Latent Source Corr. (SD)

20

Low 0.936 (0.006) 0.801 (0.023) 0.908 (0.011)

Mid 0.911 (0.011) 0.762 (0.014) 0.890 (0.007)

High 0.829 (0.011) 0.675 (0.015) 0.783 (0.020)

50

Low 0.939 (0.002) 0.788 (0.001) 0.929 (0.004)

Mid 0.925 (0.006) 0.771 (0.005) 0.916 (0.002)

High 0.901 (0.008) 0.734 (0.010) 0.887 (0.003)

Loading Matrix Corr. (SD)

20

Low 0.987 (0.005) 0.799 (0.014) 0.917 (0.017)

Mid 0.959 (0.005) 0.782 (0.010) 0.930 (0.007)

High 0.889 (0.006) 0.730 (0.012) 0.857 (0.024)

50

Low 0.988 (0.003) 0.792 (0.002) 0.940 (0.003)

Mid 0.960 (0.005) 0.772 (0.007) 0.922 (0.002)

High 0.911 (0.006) 0.731 (0.011) 0.881 (0.003)

Table 7.2: Simulation results for comparing dyna-LOCUS with connICA and DL for
source signals with a medium sparsity level, based on 100 simulation runs conducted
under three variance (Var.) settings. Values presented are mean and standard deviation
of correlations between the true and estimated latent sources and loading/mixing
matrices.
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Figure 7.5: Results for the simulation study where the source signals exhibit a medium
sparsity level. Figures depict the true source signals and the estimated signals by
dyna-LOCUS, connICA, and DL in three randomly selected simulation runs.
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Term N Var. dyna-LOCUS connICA DL

Latent Source Corr. (SD)

20

Low 0.956 (0.002) 0.806 (0.017) 0.842 (0.029)

Mid 0.911 (0.005) 0.765 (0.020) 0.893 (0.012)

High 0.809 (0.012) 0.688 (0.020) 0.786 (0.024)

50

Low 0.958 (0.001) 0.787 (0.005) 0.903 (0.006)

Mid 0.937 (0.004) 0.772 (0.006) 0.913 (0.007)

High 0.885 (0.012) 0.742 (0.003) 0.883 (0.014)

Loading Matrix Corr. (SD)

20

Low 0.996 (0.002) 0.802 (0.011) 0.834 (0.029)

Mid 0.966 (0.004) 0.783 (0.013) 0.931 (0.013)

High 0.893 (0.011) 0.741 (0.016) 0.857 (0.032)

50

Low 0.997 (0.000) 0.791 (0.007) 0.922 (0.004)

Mid 0.969 (0.004) 0.775 (0.008) 0.916 (0.007)

High 0.914 (0.010) 0.742 (0.003) 0.883 (0.013)

Table 7.3: Simulation results for comparing dyna-LOCUS with connICA and DL for
source signals with a low sparsity level, based on 100 simulation runs conducted under
three variance (Var.) settings. Values presented are mean and standard deviation
of correlations between the true and estimated latent sources and loading/mixing
matrices.
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Figure 7.6: Results for the simulation study where the source signals exhibit a low
sparsity level. Figures depict the true source signals and the estimated signals by
dyna-LOCUS, connICA and DL in three randomly selected simulation runs.

7.1.5 Additional simulation study using source signals derived

from the PNC study

In this section, we simulate dFC data using true source signals derived from connectivity

traits extracted from the PNC study. We compare the performance of dyna-LOCUS

with two other source separation methods: connICA (Amico et al., 2017) which is a

recently developed connectivity ICA method, and the dictionary learning (DL) method

(Mairal et al., 2009) which is a popular sparse decomposition method with l1 sparsity

penalization.

We specify V = 264, q = 3, and consider two sample sizes N = 20, 50 and T = 26

windows. We generate three latent connectivity source signals based on the connectivity

traits derived directly from the PNC study (Figure 7.7). The mixing coefficients are

also sampled from the estimates from the PNC study. Furthermore, we add zero mean
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Gaussian noises to the mixture of signals where the variance is specified based on

signal-to-noise ratio observed from PNC data. Specifically, we consider three variance

settings with σ2 = 22, 32, and 42, corresponding to low, medium, and high variance

levels, respectively. In summary, we have 2 × 3 simulation settings with different

combinations of sample sizes and variance levels. For each setting, we generate 100

simulation runs.

Following previous work (Beckmann et al., 2005; Wang and Guo, 2019, 2023), we

evaluate the performance of each method based on the correlations between the truth

and the model-based estimates. We further examine the standard deviation of the

correlations across 100 simulation runs to evaluate the stability of the results.
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Term N Var. dyna-LOCUS connICA DL

Latent Source Corr. (SD)

20

Low 0.981 (0.000) 0.844 (0.001) 0.918 (0.001)

Mid 0.925 (0.001) 0.722 (0.001) 0.824 (0.002)

High 0.829 (0.002) 0.610 (0.002) 0.755 (0.003)

50

Low 0.994 (0.000) 0.927 (0.000) 0.969 (0.000)

Mid 0.983 (0.000) 0.854 (0.001) 0.955 (0.001)

High 0.949 (0.001) 0.774 (0.001) 0.924 (0.001)

Loading Matrix Corr. (SD)

20

Low 0.996 (0.000) 0.996 (0.000) 0.996 (0.000)

Mid 0.988 (0.001) 0.987 (0.000) 0.990 (0.000)

High 0.970 (0.001) 0.969 (0.001) 0.979 (0.001)

50

Low 0.997 (0.000) 0.996 (0.000) 0.997 (0.000)

Mid 0.991 (0.000) 0.991 (0.000) 0.993 (0.000)

High 0.981 (0.000) 0.980 (0.000) 0.986 (0.000)

Table 7.4: Simulation results for comparing dyna-LOCUS with connICA and DL based
on 100 simulation runs conducted under three variance (Var.) levels. Values presented
are mean and standard deviation of correlations between the true and estimated latent
sources and loading/mixing matrices.

Results in Table 7.4 show that while the three methods show comparable accuracy

for estimating the mixing coefficients, dyna-LOCUS consistently yields more accurate

results in uncovering the latent connectivity sources. Figure 7.7 illustrates the true

source signals alongside the estimated signals generated by dyna-LOCUS, connICA,

and DL. In comparison with the two existing methods, dyna-LOCUS generates more

accurate results with fewer false positive findings. Specifically, connICA, being a

decomposition method without sparsity constraints and the low-rank structure, tends
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to yield noisy and inaccurate estimates. As a sparse decomposition method, DL

produces sparse estimates for the source signals. However, it doesn’t model the source

signals using the low-rank structure and disregards the interdependence among brain

connections. Instead, it treats connections as independent parameters, leading to a

large number of parameters for DL to learn. As a result, DL yields less accurate results

compared to the proposed dyna-LOCUS. For instance, for the second source signal,

dyna-LOCUS successfully recovers the connections between the Visual Networks and

EC, FPL, and FPR networks, while DL produces very weak or no signals for these

connections and generates false positive findings between lat vis and med vis networks.

Similarly, dyna-LOCUS successfully recovers the connections between SM and DMN,

EC and FPR for the first source signals and the connections between the visual

networks and FPL and FPR in the third source signals, while DL fails to achieve the

same level of recovery.

7.1.6 Latent dynamic connectivity traits extracted from the

PNC study using LOCUS

In this section, we present 30 static latent connectivity traits uncovered by LOCUS

when decomposing static functional connectivity measures derived from resting-state

fMRI (rs-fMRI) data from the PNC project (Figure 7.8). The traits are matched

one-to-one with dyna-LOCUS traits in Supplementary Materials Section 1 and ordered

accordingly.
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Figure 7.7: Results from the simulation study with source signals derived from the
PNC study. The figures illustrate the true source signals and the estimated signals
by dyna-LOCUS, connICA, and dictionary learning(DL) in three randomly selected
simulation runs conducted under the low level variance setting.

7.1.7 An alternative estimation algorithm

The proposed node-rotation algorithm presented in the Algorithm 1 of Appendix B of

the paper is developed based on the block multiconvexity of the objective function. It

has the appealing theoretical property that updating each block of the parameters

can be performed via convex optimization. Though being a highly efficient algorithm

with analytic solutions, the node-rotation algorithm does involve rotating across the

nodes to update the latent coordinates of each node xℓ(v)(v = 1, . . . , V ). Here, we

present an alternative estimation method to further accelerate computation in learning

dyna-LOCUS, especially for studies with large sample sizes and brain atlases involving

a large number of nodes. Instead of iteratively updating each node, the alternative
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Figure 7.8: 30 static latent connectivity traits uncovered by LOCUS using static FC
measures derived from rs-fMRI data from the PNC project. These traits are matched
one-to-one with the dyna-LOCUS results, as detailed in Supplementary Materials
Section 1.
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algorithm updates the latent coordinates of all the nodes Xℓ simultaneously using an

eigenvalue decomposition. Specifically, the objective function for dyna-LOCUS is:

minÃ,{Xℓ,Dℓ}

q∑
l=1

||Ỹ ′
ãℓ − L(XℓDℓX

′
ℓ)||2F + ϕ

q∑
ℓ=1

∑
u<v

|xℓ(u)
′Dℓxℓ(v)|+ λ||WÃ||2F .

(7.1)

We initialize the algorithm with
ˆ̃
A

(0)

, {X̂(0)
ℓ , D̂

(0)
ℓ } derived from estimates based

on existing methods such as connICA. The algorithm then iteratively updates the

parameters through the following steps: Step 1: Updating Xℓ,Dℓ. At the kth

iteration, denote bℓ = L(XℓDℓX
′
ℓ). We first derive a sparse solution for bℓ by solving

the following objective function:

minbℓ ||Ỹ
′
ãℓ − bℓ||22 + ϕ||bℓ||1 (7.2)

An analytical solution b̂ℓ can be obtained (Fan and Li, 2001). We map it back to

the connectivity matrix form using L−1, and then conduct eigenvalue decomposition

on the matrix L−1(b̂ℓ) to obtain {X̂ℓ

(k)
, D̂ℓ

(k)
}. Step 2: Updating Ã. We update

the mixing matrix
ˆ̃
A

(k)

based on the estimates of {X̂ℓ

(k)
, D̂ℓ

(k)
}, following the same

procedure as the node-rotation algorithm.

We compare the results of the node-rotation algorithm and the alternative estima-

tion algorithm using 50 datasets obtained by bootstrapping the PNC data, with each

dataset containing 514 subjects. Figure 7.9(A) presents the correlations of the con-

nectivity traits and their temporal loadings obtained using the two algorithms across

the 50 datasets. The results produced by the alternative algorithm are consistent

with those from the node-rotation algorithm. Figure 7.9(B) shows the computa-

tion time across the 50 datasets. On average, the alternative algorithm reduces the

computational time by 19.2%.
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Figure 7.9: Comparison of the results and computation time between the node-rotation
algorithm and the alternative algorithm based on 50 bootstrap datasets from the PNC
study.
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7.2 Supplementary Material of Chapter 3

7.2.1 The derivation of the final optimization function

The original objective function for the Longitudinal LOCUS model with the sparsity

regularization is,

min
G∑

g=1

T∑
t=1

||Ỹgt − ÃgtSgt||2F + ϕ

G∑
g=1

T∑
t=1

|Sgt| (7.3)

where Sgt =


s′gt1

. . .

s′gtq

 ∈ Rq×p and sgtℓ = L(XℓDgtℓX
′
ℓ).

Given the orthogonality on Ãgt, for group g visit t, we have

||Ỹgt − ÃgtSgt||2F =
∥∥∥Ãgt

(
Ã′

gtỸgt − Sgt

)∥∥∥2

F

=

∥∥∥∥[Ỹ ′
gtãgt1, . . . , Ỹ

′
gtãgtq

]′
− [sgt1, . . . , sgtq]

′
∥∥∥∥2

F

=

q∑
ℓ=1

∥∥∥Ỹ ′
gtãgtℓ − sgtℓ

∥∥∥2

2

=

q∑
ℓ=1

∥Ỹ ′
gtãgtℓ − L

(
XℓDgtℓX

′
ℓ)∥22

Therefore, the final objective function is

minÃgt,{Xℓ,Dgtℓ}

G∑
g=1

T∑
t=1

q∑
l=1

||Ỹ ′

gtãgtℓ−L(XℓDgtℓX
′
ℓ)||22+ϕ

G∑
g=1

T∑
t=1

q∑
ℓ=1

∑
u<v

|xℓ(u)
′Dgtℓxℓ(v)|

(7.4)

where ãgtℓ is the ℓth column of Ãgt.
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7.3 Supplementary Material of Chapter 4

7.3.1 Identifying motion-controlled association of ASD and

brain connectivity

Theorem 5. Under (A1)-(A3), the counterfactual θC,a is identified by θa, where

θa =
∫∫∫

µY |A,Z,M,X(a, z,m, x)pZ|A,X(z | a, x)pM |∆=1,A,X(m | 0, x)pX(x)dzdmdx.

Proof Let θC,a = E{EC[Y (M0) | A = a,X]}, where M0 ∼ PM |∆=1,A,X(m | 0, x).

We have:

θC,a = E{EC[Y (M0) | A = a,X]}

=

∫
EC(Y (M0) | A = a,X = x)pX(x)dx

tower rule
=

∫∫
EC(Y (m) | M0 = m,A = a,X = x)pM |∆=1,A,X(m | 0, x)pX(x)dmdx

defn
=

∫∫
EC(Y (m) | A = a,X = x)pM |∆=1,A,X(m | 0, x)pX(x)dmdx

tower rule
=

∫∫∫
EC(Y (m) | A = a,X = x, Z = z)pZ|A,X(z | a, x)pM |∆=1,A,X(m | 0, x)pX(x)dzdmdx

assumption (A2)
=

∫∫∫
EC(Y (m) | M = m,A = a,X = x, Z = z)pZ|A,X(z | a, x)pM |∆=1,A,X(m | 0, x)pX(x)dzdmdx

assumption (A3)
=

∫∫∫
E(Y | M = m,A = a,X = x, Z = z)pZ|A,X(z | a, x)pM |∆=1,A,X(m | 0, x)pX(x)dzdmdx .

The fourth equality results from the fact that by the construction of M0, we have

that Y (m)M0 | A,X for all m. The sixth equality results from the assumption that

Y (m)M | A,X,Z.

7.3.2 Efficient influence function Theorem 3.1

Overview of efficiency theory

The efficient influence function can be used to characterize the nonparametric efficiency

bound, i.e., the smallest asymptotic variance of any regular, asymptotically linear

estimator of θa (Bickel et al., 1993). An estimator θn,a of θa based on O1, . . . , On
i.i.d∼ P
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is said to be asymptotically linear if there exists a function o 7→ D̃P,a(o) such that

E[D̃P,a(O)] = 0, E[D̃2
P,a(O)] < ∞, and θn,a = θa + n−1

∑n
i=1 D̃P,a(Oi) + oP (n

−1/2).

We refer to D̃P,a as the influence function of θn,a. Under this representation, the

asymptotic study of θn,a reduces to the study of the sample mean n−1
∑n

i=1 D̃P,a(Oi)

whose large sample behavior can be described using standard results such as the weak

law of large numbers and the central limit theorem. The latter implies n1/2(θn,a − θa)

converges to a mean-zero normal random variable with variance equal to E[D̃2
P,a(O)].

Due to the fact that the asymptotic variance of an asymptotically linear estimator is

characterized by the variance of the influence function, the influence function that has

the smallest variance amongst all influence functions of regular estimators is called

the efficient influence function. An estimator with an influence function equal to the

efficient influence function is, by definition, asymptotically efficient.

Proof of Theorem 3.1

Proof Let P be the model for the true distribution. Let o = (a,m, δ, x, z, y) denote

values of the observed vector of variable O = (A,M,∆, X, Z, Y ), and O ∼ P ∈ P . We

use Ψa : P → R to denote a parameter as a functional that maps the distribution P

in the model P to the real number θa.

Ψa(P ) =

∫∫∫
µY |A,M,X,Z(a,m, x, z)pZ|A,X(z | a, x)pM |∆=1,A,X(m | 0, x)pX(x)dzdmdx

=

∫
ydPY |A,M,X,Z(y | a,m, x, z)dPZ|A,X(z | a, x)dPM |∆=1,A,X(m | 0, x)dPX(x) .

We consider a collection of submodels through P at ϵ = 0 in the direction S,

{Pϵ ∈ P, dPϵ = (1 + ϵS)dP} where S is an element of the Hilbert space L2
0(P ), the

space of all functions of O such that
∫
S(o)dP (o) = 0,

∫
S(o)2dP (o) < ∞ equipped

with inner product < f, g >=
∫
f(o)g(o)dP (o). We consider the derivative of the

parameter mapping along the path Pϵ. We can view this derivative as a bounded
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functional on L2
0(P ), which, by the Reisz representation theorem, will have an inner-

product form < s,DP > for a unique element DP ∈ L2
0(P ). DP is referred to as the

canonical gradient of Ψa. This gradient will also be the efficient influence function of

regular asymptotically linear estimators of Ψa. Thus, to derive the efficient influence

function, we may study the following derivative of Ψa and write that derivative

in an inner product form (Levy, 2019). Below, we use the notation
∫
f(o)dP0(o)

interchangably with
∫
f(o)P0(do) to denote the Lebesgue integral of a P0-measurable

function f with respect to probability measure P0.

∂

∂ϵ
Ψa (Pϵ)

∣∣∣∣
ϵ=0

=
∂

∂ϵ

∫
ydPϵ,Y |A,M,X,Z(y | a,m, x, z)dPϵ,Z|A,X(z | a, x)dPϵ,M |∆=1,A,X(m | 0, x)dPϵ,X(x)

∣∣∣∣
ϵ=0

=

∫
ySY |A,M,X,Z(y | a,m, x, z)dPY |A,M,X,Z(y | a,m, x, z)dPZ|A,X(z | a, x)dPM |∆=1,A,X(m | 0, x)dPX(x)

(2.1)

+

∫
ySZ|A,X(z | a, x)dPY |A,M,X,Z(y | a,m, x, z)dPZ|A,X(z | a, x)dPM |∆=1,A,X(m | 0, x)dPX(x)

(2.2)

+

∫
ySM |∆=1,A,X(m | 0, x)dPY |A,M,X,Z(y | a,m, x, z)dPZ|A,X(z | a, x)dPM |∆=1,A,X(m | 0, x)dPX(x)

(2.3)

+

∫
ySX(x)dPY |A,M,X,Z(y | a,m, x, z)dPZ|A,X(z | a, x)dPM |∆=1,A,X(m | 0, x)dPX(x)

(2.4)

where

dPϵ,Y |A,M,X,Z(y | a,m, x, z) =

∫
δ
(1 + ϵS(o))P (a,m, dδ, x, z, y)∫

δ,y
(1 + ϵS(o))P (a,m, dδ, x, z, dy)

,

SY |A,M,X,Z(y | a,m, x, z) =
∂ log dPϵ,Y |A,M,X,Z(y | a,m, x, z)

∂ϵ

∣∣∣
ϵ=0

= E(S(O) | y, a,m, x, z)− E(S(O) | a,m, x, z),

dPϵ,Z|A,X(y | a, x) =
∫
δ,m,y

(1 + ϵS(o))P (a, dm, dδ, x, z, dy)∫
δ,m,y,z

(1 + ϵS(o))P (a, dm, dδ, x, dz, dy)
,

SZ|A,X(z | a, x) =
∂ log dPϵ,Z|A,X(y | a, x)

∂ϵ

∣∣∣
ϵ=0

= E(S(O) | z, a, x)− E(S(O) | a, x),

dPϵ,M |∆=1,A,X(m | 0, x) =
∫
z,y 0,1(a, δ)(1 + ϵS(o))P (a,m, δ, x, dz, dy)∫

m,z,y 0,1(a, δ)(1 + ϵS(o))P (a, dm, δ, x, dz, dy)
,

SM |∆=1,A,X(m | 0, x) =
∂ logPϵ,M |∆=1,A,X(m | 0, x)

∂ϵ

∣∣∣
ϵ=0

= E(S(O)0,1(A,∆) | m, a, δ, x)− E(S(O)0,1(A,∆) | a, δ, x),

dPϵ,X(x) =

∫
δ,a,m,y,z

(1 + ϵS(o))P (da, dm, dδ, x, dz, dy),

SX(x) = E(S(O) | x) .
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Evaluating the derivative for the term (2.1), we have:

(2.1)

∫
ySY |A,M,X,Z(y | a,m, x, z)PY |A,M,X,Z(y | a,m, x, z)dPZ|A,X(z | a, x)dPM |∆=1,A,X(m | 0, x)dPX(x)

=

∫
a(a

′)

πa′(x)
ySY |A,M,X,Z (y | a′,m, x, z) dPY |A,M,X,Z (y | a′,m, x, z) dPZ|A,X (z | a′, x) dPM |∆=1,A,X(m | 0, x)

dPA,X (a′, x)

=

∫
a(a

′)

πa′(x)

pM |∆=1,A,X(m | 0, x)
pM |A,X,Z (m | a′, x, z)

ySY |A,M,X,Z (y | a′,m, x, z) dPY |A,M,X,Z (y | a′,m, x, z)

dPM |A,X,Z (m | a′, x, z) dPZ|A,X (z | a′, x) dPA,X (a′, x)

=

∫
a(a

′)

πa′(x)

pM |∆=1,A,X(m | 0, x)
pM |A,X,Z (m | a′, x, z)

ySY |A,M,X,Z (y | a′,m, x, z) dP (o)

*
=

∫
a(a

′)

πa′(x)

pM |∆=1,A,X(m | 0, x)
pM |A,X,Z (m | a′, x, z)

(
y − µY |A,M,X,Z(a,m, x, z)

)
SY |A,M,X,Z (y | a′,m, x, z) dP (o)

**
=

∫
a(a

′)

πa(x)

pM |∆=1,A,X(m | 0, x)
pM |A,X,Z (m | a, x, z)

(
y − µY |A,M,X,Z(a,m, x, z)

)
S(o)dP (o) .

The reason for (*) is:

∫
a(a

′)

πa′(x)

pM |∆=1,A,X(m | 0, x)
pM |A,X,Z (m | a′, x, z)

µY |A,M,X,Z(a,m, x, z)SY |A,M,X,Z (y | a′,m, x, z) dP (o) = 0 .

The reason for (**) is:

SY,A,M,X,Z (y, a′,m, x, z) = SY |A,M,X,Z (y | a′,m, x, z) + SA,M,X,Z (a′,m, x, z) ,∫
a(a

′)

πa(x)

pM |∆=1,A,X(m | 0, x)
pM |A,X,Z (m | a, x, z)

(
y − µY |A,M,X,Z(a,m, x, z)

)
SA,M,X,Z (a′,m, x, z) dP (o) = 0 ,

S(o) = SY,A,M,X,Z (y, a′,m, x, z) + S∆|Y,A,M,X,Z (δ | y, a′,m, x, z) .

The same logic can be applied to evaluate term (2.2)-(2.4). We have,



184

(2.2)

∫
ySZ|A,X(z | a, x)dPY |A,M,X,Z(y | a,m, x, z)dPZ|A,X(z | a, x)dPM |∆=1,A,X(m | 0, x)dPX(x)

=

∫
ηµ|A,X,Z(a, x, z)SZ|A,X(z | a, x)dPZ|A,X(z | a, x)dPX(x)

=

∫
a(a

′)

πa′(x)
ηµ|A,X,Z (a′, x, z)SZ|A,X (z | a′, x) dPZ|A,X (z | a′, x) dP (a′, x)

=

∫
a(a

′)

πa′(x)

(
ηµ|A,X,Z (a′, x, z)− ξa,η|X(x)

)
SZ|A,X (z | a′, x) dP (o)

=

∫
a(a

′)

πa(x)

(
ηµ|A,X,Z(a, x, z)− ξa,η|X(x)

)
S(o)dP (o) .

(2.3)

∫
ySM |∆=1,A,X(m | 0, x)dPY |A,M,X,Z(y | a,m, x, z)dPZ|A,X(z | a, x)dPM |∆=1,A,X(m | 0, x)dPX(x)

=

∫
ηµ|A,M,X(a,m, x)SM |∆=1,A,X(m | 0, x)dPM |∆=1,A,X(m | 0, x)dPX(x)

=

∫
0,1(a

′,∆)

π̄0(x)
ηµ|A,M,X(a,m, x)SM |∆=1,A,X(m | 0, x)dPM,∆=1,A,X (m, δ = 1, a′ = 0, x)

=

∫
0,1(a

′,∆)

π̄0(x)

(
ηµ|A,M,X(a,m, x)− ξa,η|X(x)

)
SM |∆=1,A,X(m | 0, x)dP (o)

=

∫
0,1(a

′,∆)

π̄0(x)

(
ηµ|A,M,X(a,m, x)− ξa,η|X(x)

)
S(o)dP (o) .

(2.4)

∫
ySX(x)dPY |A,M,X,Z(y | a,m, x, z)dPZ|A,X(z | a, x)dPM |∆=1,A,X(m | 0, x)dPX(x)

=

∫
ξa,η|X(x)SX(x)dPX(x)

=

∫ (
ξa,η|X(x)− θa

)
S(o)dP (o) .

Putting the results together, we have:

∂

∂ϵ
Ψa (Pϵ)

∣∣∣∣
ϵ=0

=

∫
a(a

′)

πa(x)

pM |∆=1,A,X(m | 0, x)
pM |A,X,Z (m | a, x, z)

(
y − µY |A,M,X,Z(a,m, x, z)

)
S(o)dP (o)

+

∫
a(a

′)

πa(x)

(
ηµ|A,X,Z(a, x, z)− ξa,η|X(x)

)
S(o)dP (o)

+

∫
0,1(a

′,∆)

π̄0(x)

(
ηµ|A,M,X(a,m, x)− ξa,η|X(x)

)
S(o)dP (o)

+

∫ (
ξa,η|X(x)− θa

)
S(o)dP (o) .
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Thus, we have expressed the derivative of Ψa along a path Pϵ as an inner product

between S and the gradient:

DP,a(Oi) =
a(Ai)

πa(Xi)

pM |∆=1,A,X(Mi | 0, Xi)

pM |A,X,Z(Mi | Ai, Xi, Zi)

{
Yi − µY |A,M,X,Z(a,Mi, Xi, Zi)

}
+

a(Ai)

πa(Xi)

{
ηµ|A,Z,X(a,Xi, Zi)− ξa,η|X(Xi)

}
+

0,1(Ai,∆i)

π̄0(Xi)

{
ηµ|A,M,X(a,Mi, Xi)− ξa,η|X(Xi)

}
+ ξa,η|X(Xi)− θa .

As the tangent space of our model is L2
0(P0), there is only a single gradient for Ψa.

Thus, this gradient is by definition the efficient gradient and the efficient influence

function for regular asymptotically Normal estimators of Ψa(P0).

7.3.3 Consistency of the one-step estimator

Proof of Theorem 3.2

Part I For fixed a, we define D∗
P,a = DP,a + θa. D

∗
P,a corresponds to the first three

lines and the first term of the fourth line in equation (3.5) of the main manuscript.

We rewrite D∗
P,a as

D∗
P,a(O) =

a(A)

πa(X)

pM |∆=1,A,X(M | 0, X)

pM |A,X,Z(M | A,X,Z)

{
Y − µY |A,M,X,Z(a,M,X,Z)

}
+

a(A)

πa(X)
ηµ|A,Z,X(a,X,Z)

+
0,1(A,∆)

π̄0(X)

{
ηµ|A,M,X(a,M,X)− ξa,η|X(X)

}
+ ξa,η|X(X)− a(A)

πa(X)
ξa,η|X(X) .

Consider a probability distribution P ′ ∈ P . Next we show that, if any one of the

conditions in assumption (ii) holds, then E[D∗
P ′,a(O)]− θa = 0.



186

E
[
D∗

P ′,a(O)
]
− θa = E

[
a(A)

π′
a(X)

p′M |∆=1,A,X(M | 0, X)

p′M |A,X,Z(M | A,X,Z)

{
Y − µ′

Y |A,M,X,Z(a,M,X,Z)
}]

+ E

[
a(A)

π′
a(X)

η′µ|A,Z,X(a,X,Z)

]
+ E

[
0,1(A,∆)

π̄′
0(X)

{
η′µ|A,M,X(a,M,X)− ξ′a,η|X(X)

}]
+ E

[
ξ′a,η|X(X)− a(A)

π′
a(X)

ξ′a,η|X(X)

]
− θa .

We derive the precise expression for each term:

E

[
a(A)

π′
a(X)

p′M |∆=1,A,X(M | 0, X)

p′M |A,X,Z(M | A,X,Z)

{
Y − µ′

Y |A,M,X,Z(a,M,X,Z)
}]

=

∫
a(a

∗)

π′
a(X)

p′M |∆=1,A,X(m | 0, x)
p′M |A,X,Z(m | a∗, x, z)

{
y − µ′

Y |A,M,X,Z(a,m, x, z)
}
pA,M,X,Z,Y (a

∗,m, x, z, y)da∗dmdzdxdy

=

∫
a(a

∗)

π′
a(X)

p′M |∆=1,A,X(m | 0, x)
p′M |A,X,Z(m | a, x, z)

{∫
ypY |A,M,X,Z(y | a,m, x, z)dy − µ′

Y |A,M,X,Z(a,m, x, z)

}
pA,M,X,Z(a,m, x, z)da∗dmdzdx

=

∫ ∫
a
(a∗)πa(x)da

∗

π′
a(X)

p′M |∆=1,A,X(m | 0, x)
p′M |A,X,Z(m | a, x, z)

{
µY |A,M,X,Z(a,m, x, z)− µ′

Y |A,M,X,Z(a,m, x, z)
}

pM |A,X,Z(m | a, x, z)pZ|A,X(z | a, x)pX(x)dmdzdx

=

∫
πa(x)

π′
a(x)

p′M |∆=1,A,X(m | 0, x)
p′M |A,X,Z(m | a, x, z)

{
µY |A,M,X,Z(a,m, x, z)− µ′

Y |A,M,X,Z(a,m, x, z)
}

pM |A,X,Z(m | a, x, z)pZ|A,X(z | a, x)pX(x)dmdzdx . (3.1)

E

[
a(A)

π′
a(X)

η′µ|A,Z,X(a,X,Z)

]
=

∫
a(a

∗)

π′
a(X)

η′µ|A,Z,X(a, x, z)pA,X,Z(a
∗, x, z)da∗dzdx

=

∫
a(a

∗)

π′
a(X)

η′µ|A,Z,X(a, x, z)pZ|A,X(a, x)πa(x)pX(x)da∗dzdx

=

∫ ∫
a
(a∗)πa(x)da

∗

π′
a(X)

η′µ|A,Z,X(a, x, z)pZ|A,X(a, x)pX(x)dzdx

=

∫
πa(x)

π′
a(x)

η′µ|A,Z,X(a, x, z)pZ|A,X(a, x)pX(x)dzdx . (3.2)
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E

[
0,1(A,∆)

π̄′
0(X)

{
η′µ|A,M,X(a,M,X)− ξ′a,η|X(X)

}]
=

∫
0,1(a

∗,∆)

π̄′
0(X)

η′µ|A,M,X(a,m, x)pA,∆,M,X(a∗,∆,m, x)da∗d∆dmdx

−
∫

0,1(a
∗,∆)

π̄′
0(X)

ξ′a,η|X(x)pA,∆,X(a∗,∆, x)da∗d∆dx

=

∫
0,1(a

∗,∆)

π̄′
0(X)

η′µ|A,M,X(a,m, x)pM |∆=1,A,X(m | 0, x)π̄0(x)pX(x)da∗d∆dmdx

−
∫

0,1(a
∗,∆)

π̄′
0(X)

ξ′a,η|X(x)π̄0(x)pX(x)da∗d∆dx

=

∫ ∫
0,1

(a∗,∆)π̄0(x)da
∗d∆

π̄′
0(X)

η′µ|A,M,X(a,m, x)pM |∆=1,A,X(m | 0, x)pX(x)dmdx

−
∫ ∫

0,1
(a∗,∆)π̄0(x)da

∗d∆

π̄′
0(X)

ξ′a,η|X(x)pX(x)dx

=

∫
π̄0(x)

π̄′
0(x)

η′µ|A,M,X(a,m, x)pM |∆=1,A,X(m | 0, x)pX(x)dmdx

−
∫

π̄0(x)

π̄′
0(x)

η′µ|A,M,X(a,m, x)p′M |∆=1,A,X(m | 0, x)pX(x)dmdx

=

∫
π̄0(x)

π̄′
0(x)

η′µ|A,M,X(a,m, x)
{
pM |∆=1,A,X(m | 0, x)− p′M |∆=1,A,X(m | 0, x)

}
pX(x)dmdx . (3.3)

E

[
ξ′a,η|X(X)− a(A)

π′
a(X)

ξ′a,η|X(X)

]
=

∫
ξ′a,η|X(x)pX(x)dx−

∫
a(a

∗)

π′
a(X)

ξ′a,η|X(x)pA,X(a∗, x)da∗dx

=

∫
ξ′a,η|X(x)pX(x)dx−

∫
πa(x)

π′
a(x)

ξ′a,η|X(x)pX(x)dx

=

∫
ξ′a,η|X(x)

{
1− πa(x)

π′
a(x)

}
pX(x)dx . (3.4)

−θa = −
∫

ξa,η|X(x)pX(x)dx . (3.5)
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Therefore,

E[D∗
P ′,a(O)]− θa = (3.1) + (3.2) + (3.3) + (3.4) + (3.5) .

First, note that

(3.4) + (3.5) =

∫
ξ′a,η|X(x)

{
1− πa(x)

π′
a(x)

}
pX(x)dx−

∫
ξa,η|X(x)pX(x)dx

=

∫ {
ξ′a,η|X(x)− ξa,η|X(x)

}{
1− πa(x)

π′
a(x)

}
pX(x)dx (3.6)

−
∫

ξa,η|X(x)
πa(x)

π′
a(x)

pX(x)dx .

Using the definition of ξa,η|X(x) in the main manuscript, we obtain

∫
ξa,η|X(x)

πa(x)

π′
a(x)

pX(x)dx =∫
πa(x)

π′
a(x)

pM |∆=1,A,X(m | 0, x)
pM |A,X,Z(m | a, x, z)

{
µY |A,M,X,Z(a,m, x, z)− µ′

Y |A,M,X,Z(a,m, x, z)
}
pM |A,X,Z(m | a, x, z)

pZ|A,X(z | a, x)pX(x)dmdzdx

+

∫
πa(x)

π′
a(x)

pM |∆=1,A,X(m | 0, x)µ′
Y |A,M,X,Z(a,m, x, z)pZ|A,X(z | a, x)pX(x)dmdzdx . (3.7)

Thus

(3.1) + (3.4) + (3.5) =(3.6)− (3.7)

+

∫
πa(x)

π′
a(x)

{
p′M |∆=1,A,X(m | 0, x)
p′M |A,X,Z(m | a, x, z)

−
pM |∆=1,A,X(m | 0, x)
pM |A,X,Z(m | a, x, z)

}
×

{
µY |A,M,X,Z(a,m, x, z)− µ′

Y |A,M,X,Z(a,m, x, z)
}

pM |A,X,Z(m | a, x, z)pZ|A,X(z | a, x)pX(x)dmdzdx . (3.8)

We also have
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(3.2)− (3.7) =

∫
πa(x)

π′
a(x)

{
p′M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)

}
µ′
Y |A,M,X,Z(a,m, x, z)

pZ|A,X(z | a, x)pX(x)dmdzdx ,

which yields

(3.2) + (3.3)− (3.7)

=

∫
π̄0(x)

π̄′
0(x)

η′µ|A,M,X(a,m, x)
(
pM |∆=1,A,X(m | 0, x)− p′M |∆=1,A,X(m | 0, x)

)
pX(x)dmdx

+

∫
πa(x)

π′
a(x)

{
p′M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)

}
µY |A,M,X,Z(a,m, x, z)pZ|A,X(z | a, x)pX(x)dmdzdx

+

∫
πa(x)

π′
a(x)

{
p′M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)

}{
µ′
Y |A,M,X,Z(a,m, x, z)− µY |A,M,X,Z(a,m, x, z)

}
pZ|A,X(z | a, x)pX(x)dmdzdx

=−
∫

π̄0(x)

π̄′
0(x)

η′µ|A,M,X(a,m, x)
{
p′M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)

}
pX(x)dmdx

+

∫
πa(x)

π′
a(x)

ηµ|A,M,X(a,m, x)
{
p′M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)

}
pX(x)dmdx

+

∫
πa(x)

π′
a(x)

{
p′M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)

}
{µ′

Y |A,M,X,Z(a,m, x, z)− µY |A,M,X,Z(a,m, x, z)}

pZ|A,X(z | a, x)pX(x)dmdzdx

=

∫ {
πa(x)

π′
a(x)

ηµ|A,M,X(a,m, x)− π̄0(x)

π̄′
0(x)

η′µ|A,M,X(a,m, x)

}
{
p′M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)

}
pX(x)dmdx (3.9)

+

∫
πa(x)

π′
a(x)

{
p′M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)

}{
µ′
Y |A,M,X,Z(a,m, x, z)− µY |A,M,X,Z(a,m, x, z)

}
pZ|A,X(z | a, x)pX(x)dmdzdx . (3.10)

Putting everything together yields

(3.1) + (3.2) + (3.3) + (3.4) + (3.5) = (3.6) + (3.8) + (3.9) + (3.10) .

Thus,
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E
[
D∗

P ′,a(O)
]
− θa

=

∫ {
ξ′a,η|X(x)− ξa,η|X(x)

}(
1− πa(x)

π′
a(x)

)
pX(x)dx

+

∫
πa(x)

π′
a(x)

{
p′M |∆=1,A,X(m | 0, x)
p′M |A,X,Z(m | a, x, z)

−
pM |∆=1,A,X(m | 0, x)
pM |A,X,Z(m | a, x, z)

}
×

{
µY |A,M,X,Z(a,m, x, z)− µ′

Y |A,M,X,Z(a,m, x, z)
}
pM |A,X,Z(m | a, x, z)pZ|A,X(z | a, x)pX(x)dmdzdx

+

∫ {
πa(x)

π′
a(x)

ηµ|A,M,X(a,m, x)− π̄0(x)

π̄′
0(x)

η′µ|A,M,X(a,m, x)

}
{
p′M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)

}
pX(x)dmdx

+

∫
πa(x)

π′
a(x)

{
p′M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)

}{
µ′
Y |A,M,X,Z(a,m, x, z)− µY |A,M,X,Z(a,m, x, z)

}
pZ|A,X(z | a, x)pX(x)dmdzdx .

Part II Let Pn denote the empirical measure of O1, . . . , On. Let P
′
n be any estimator

of P0 compatible with the nuisance models used in the estimation of DP,a, we have:

Ψa(P
′

n)−Ψa(P ) = (P
′

n − P )DP ′
n,a

+R2(P, P
′

n)

= −PDP ′
n,a

+R2(P, P
′

n)

= −PnDP ′
n,a

+ (Pn − P )DP,a + (Pn − P )(DP ′
n,a

−DP,a) +R2(P, P
′

n) ,

where R2(P, P
′
n) is the second-order remainder term. As the one-step estimator is

defined as Ψa(P
′
n) + PnDP ′

n,a
, we have:

θ+n,a − θa = (Pn − P )DP,a + (Pn − P )(DP ′
n,a

−DP,a) +R2(P, P
′

n) .

Next, we need to show (Pn − P )(DP ′
n,a

−DP,a) = oP (1) and R2(P, P
′
n) = oP (1). The

former will hold under conditions (B3) and (B4) of the theorem.

As for the second order reminder term, we have:

R2(P, P
′

n) = Ψa(P
′

n) + PDP ′
n,a

−Ψa(P ) = E
[
D∗

P ′
n,a

(O)
]
− θa .
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Referring back to Part I, we have

R2(P, P
′

n)

=

∫ {
ξn,a,η|X(x)− ξa,η|X(x)

}(
1− πa(x)

πn,a(x)

)
pX(x)dx

+

∫
πa(x)

πn,a(x)

{
pn,M |∆=1,A,X(m | 0, x)
pn,M |A,X,Z(m | a, x, z)

−
pM |∆=1,A,X(m | 0, x)
pM |A,X,Z(m | a, x, z)

}
×

{
µY |A,M,X,Z(a,m, x, z)− µn,Y |A,M,X,Z(a,m, x, z)

}
pM |A,X,Z(m | a, x, z)pZ|A,X(z | a, x)pX(x)dmdzdx

+

∫ {
πa(x)

πn,a(x)
ηµ|A,M,X(a,m, x)− π̄0(x)

π̄n,0(x)
ηn,µ|A,M,X(a,m, x)

}
{
pn,M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)

}
pX(x)dmdx

+

∫
πa(x)

πn,a(x)

{
pn,M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)

}{
µn,Y |A,M,X,Z(a,m, x, z)− µY |A,M,X,Z(a,m, x, z)

}
pZ|A,X(z | a, x)pX(x)dmdzdx .

Using Cauchy-Schwartz inequality and assumptions (B1) and (B2) of the theorem,

we can show R2(P, P
′
n) = oP (1). To be more specific, for the first line of the term,

∫ {
ξn,a,η|X(x)− ξa,η|X(x)

}(
1− πa(x)

πn,a(x)

)
pX(x) dx

≤
∫ ∣∣∣∣{ξn,a,η|X(x)− ξa,η|X(x)

}(
πn,a(x)− πa(x)

πn,a(x)

)
pX(x)

∣∣∣∣ dx
≤

{
sup
x

1

πn,a(x)

}∫ ∣∣{ξn,a,η|X(x)− ξa,η|X(x)} {πn,a(x)− πa(x)}
∣∣ pX(x) dx .

Then applying assumption (B1) to the supremum and Cauchy-Schwarz to the

integration, we have

≤ 1

ϵ1
∥ξn,η|a,X − ξa,η|X∥∥πn,a − πa∥

= oP (1) ,

where the last line follows from assumption (B2). The same reasoning can be extended

to the other terms in R2(P, P
′
n).

For the second line of the term,
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∫
πa(x)

πn,a(x)

{
pn,M |∆=1,A,X(m | 0, x)
pn,M |A,X,Z(m | a, x, z)

−
pM |∆=1,A,X(m | 0, x)
pM |A,X,Z(m | a, x, z)

}
×

{
µY |A,M,X,Z(a,m, x, z)− µn,Y |A,M,X,Z(a,m, x, z)

}
pM |A,X,Z(m | a, x, z)pZ|A,X(z | a, x)pX(x)dmdzdx

=

∫
πa(x)

πn,a(x)

{
pn,M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)

pn,M |A,X,Z(m | a, x, z)

}
×

{
µY |A,M,X,Z(a,m, x, z)− µn,Y |A,M,X,Z(a,m, x, z)

}
pM |A,X,Z(m | a, x, z)pZ|A,X(z | a, x)pX(x)dmdzdx

+

∫
πa(x)

πn,a(x)

{
pM |A,X,Z(m | a, x, z)− pn,M |A,X,Z(m | a, x, z)

pn,M |A,X,Z(m | a, x, z)

}
×

{
µY |A,M,X,Z(a,m, x, z)− µn,Y |A,M,X,Z(a,m, x, z)

}
pM |∆=1,A,X(m | 0, x)pZ|A,X(z | a, x)pX(x)dmdzdx

≤
{

sup
m,a,x,z

1

πn,a(x)pn,M |A,X,Z(m | a, x, z)

}∫ ∣∣∣{pn,M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)
}
×{

µY |A,M,X,Z(a,m, x, z)− µn,Y |A,M,X,Z(a,m, x, z)
}∣∣∣pM |A,X,Z(m | a, x, z)pZ|A,X(z | a, x)pX(x) dx

+
{

sup
m,a,x,z

1

πn,a(x)pn,M |A,X,Z(m | a, x, z)

}∫ ∣∣∣{pM |A,X,Z(m | a, x, z)− pn,M |A,X,Z(m | a, x, z)
}
×{

µY |A,M,X,Z(a,m, x, z)− µn,Y |A,M,X,Z(a,m, x, z)
}∣∣∣pM |∆=1,A,X(m | 0, x)pZ|A,X(z | a, x)pX(x) dx

≤ 1

ϵ1ϵ3
∥pn,M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)∥∥µY |A,M,X,Z(a,m, x, z)− µn,Y |A,M,X,Z(a,m, x, z)∥

+
1

ϵ1ϵ3
∥pM |A,X,Z(m | a, x, z)− pn,M |A,X,Z(m | a, x, z)∥∥µY |A,M,X,Z(a,m, x, z)− µn,Y |A,M,X,Z(a,m, x, z)∥

= op(1) .
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For the third line of the term,

∫ {
πa(x)

πn,a(x)
ηµ|A,M,X(a,m, x)− π̄0(x)

π̄n,0(x)
ηn,µ|A,M,X(a,m, x)

}
{
pn,M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)

}
pX(x)dmdx

=

∫
{πa(x)− πn,a(x)

πn,a(x)
ηµ|A,M,X(a,m, x) +

π̄n,0(x)− π̄0(x)

π̄n,0(x)
ηµ|A,M,X(a,m, x)

+
π̄0(x)

π̄n,0(x)

{
ηµ|A,M,X(a,m, x)− ηn,µ|A,M,X(a,m, x)

}
}×

{
pn,M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)

}
pX(x)dmdx

≤
{
sup
x

1

πn,a(x)

}∫ ∣∣{πa(x)− πn,a(x)}
{
pn,M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)

}∣∣
ηµ|A,M,X(a,m, x)pX(x)dmdx

+

{
sup
x

1

π̄n,0(x)

}∫ ∣∣{π̄n,0(x)− π̄0(x)}
{
pn,M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)

}∣∣
ηµ|A,M,X(a,m, x)pX(x)dmdx

+

{
sup
x

1

π̄n,0(x)

}∫ ∣∣{ηµ|A,M,X(a,m, x)− ηn,µ|A,M,X(a,m, x)
}{

pn,M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)
}∣∣

π̄0(x)pX(x)dmdx

≤ 1

ϵ1
∥πa(x)− πn,a(x)∥∥pn,M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)∥

+
1

ϵ2
∥π̄n,0(x)− π̄0(x)∥∥pn,M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)∥

+
1

ϵ2
∥ηµ|A,M,X(a,m, x)− ηn,µ|A,M,X(a,m, x)∥∥pn,M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)∥

= op(1) .

For the last line of the term,

∫
πa(x)

πn,a(x)

{
pn,M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)

}{
µn,Y |A,M,X,Z(a,m, x, z)− µY |A,M,X,Z(a,m, x, z)

}
pZ|A,X(z | a, x)pX(x) dmdzdx

≤
{
sup
x

1

πn,a(x)

}∫ ∣∣∣{pn,M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)
}
×{

µn,Y |A,M,X,Z(a,m, x, z)− µY |A,M,X,Z(a,m, x, z)
}∣∣∣pZ|A,X(z | a, x)πa(x)pX(x) dmdx

≤ 1

ϵ1
∥pn,M |∆=1,A,X(m | 0, x)− pM |∆=1,A,X(m | 0, x)∥∥µn,Y |A,M,X,Z(a,m, x, z)− µY |A,M,X,Z(a,m, x, z)∥

= op(1) .

Thus R2(P, P
′
n) = op(1), thereby concluding the proof.
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7.3.4 Theorem 3.3

Assumptions of theorem

Assumption (B1) guarantees that estimated propensities and motion densities are

appropriately bounded so that the one-step estimator is never ill-defined. Assumption

(C1) stipulates convergence rate conditions on nuisance estimates in terms of L2(P )

norms. This assumption would be satisfied, for example, if each nuisance estimate

achieved a rate of at least n−1/4 with respect to L2(P ) norm. However, it is also

possible for slower convergence rates attained by some nuisance estimators to be

compensated for by faster convergence rates attained by others. We note that the

n−1/4 rate is slower than the standard parametric rate, which potentially allows for

the use of flexible regression techniques. On the other hand, to achieve this rate if

X and/or Z are high-dimensional may require additional smoothness assumptions

on the underlying nuisance parameters. For example, the highly adaptive LASSO

estimator achieves a sufficiently fast rate of convergence if the underlying nuisance

parameters have a bounded variation norm (Benkeser and van der Laan, 2016), an

assumption that becomes more restrictive in higher dimensions. Assumptions (B3)

and (C2) are necessary to ensure the negligibility of an empirical process term (Van

Der Vaart et al., 1996). Assumption (C2) can be eliminated by utilizing cross-fitting

techniques (van der Laan et al., 2011; Chernozhukov et al., 2018).

Proof of Theorem 3.3

The proof of Theorem 3.3 closely parallels the proof of Theorem 3.2.

θ+n,a − θa = (Pn − P )DP,a + (Pn − P )(DP ′
n,a

−DP,a) +R2(P, P
′

n) .

For asymptotic linearity, we need to show (Pn − P )(DP ′
n,a

− DP,a) = oP (1/
√
n)

and R2(P, P
′
n) = oP (1/

√
n). The former holds under conditions (B3) and (C2) of the
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theorem. The structure of the second-order term is presented in the proof of Theorem

3.2, Part I, and the convergence of the second-order term is established using logic

similar to the proof of Theorem 3.2, Part II.

7.3.5 Simulation details

Sex X1 was generated from a Bernoulli distribution with a probability of 0.75 of female

sex, age X2 was generated by truncating a Gamma distribution with a shape of 25

and a rate of 2.5 to values between 8 and 13, and right-handedness X3 was simulated

from a Bernoulli distribution with success probability of 0.92. Given covariates X = x,

diagnosis A was drawn from a Bernoulli distribution with a success probability of

expit(−0.11 + 0.71x1 − 0.08x2 − 0.19x3), where these coefficients were derived from a

logistic regression fitted to the real data. Diagnosis-specific covariates Z included four

components: ADOS Z1 was assigned a value of 0 for simulated non-ASD participants,

while for simulated ASD participants, a value was drawn from a Poisson distribution

with mean 11.86; FIQ Z2 was sampled from a Normal(114.6, 11.62) distribution for

simulated non-ASD participants and a Normal(104.2, 17.42) distribution for simulated

ASD participants, where these means and standard deviations were calculated based

on the real data; stimulant and non-stimulant medication, Z3 and Z4, respectively,

were assigned a value of 0 for simulated non-ASD participants and had a value drawn

from a Bernoulli distribution with success probabilities of 0.2 and 0.17, respectively

for A = 1 participants. Given A = a,X = x, Z = z, the natural logarithm of mean

framewise displacement M was generated from a Normal(−1.26 + 0.095a+ 0.104x1 −

0.0535x2 − 0.12x3 + 0.00675z1 − 0.000255z2 + 0.324z3 + 0.064z4, 0.56
2) distribution.

We defined a tolerable motion level ∆ = 1 as the indicator that M ≤ 0.2.
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The conditional means of the six functional connectivity outcomes were

µY1|A,M,X,Z(a,m, x, z) = −0.22 + 0× a− 0.98m− 0.06x1 + 0.012x2 + 0.03x3,

µY2|A,M,X,Z(a,m, x, z) = −0.20 + 0× a+ 0.92m+ 0.06x1 − 0.009x2 − 0.03x3,

µY3|A,M,X,Z(a,m, x, z) = −0.37 + 0× a+ 0.86m+ 0.04x1 + 0.002x2 + 0.04x3,

µY4|A,M,X,Z(a,m, x, z) = 0.17 + 0× a− 1.02m− 0.06x1 + 0.002x3 + 0.04x3,

µY5|A,M,X,Z(a,m, x, z)

= −0.20− 0.03a+ 1.50m− 0.61m2 + 0.02(x1 − z4)− 0.002x2 + 0.03(x3 − z3)

− 0.0005z1 + 0.0003z2,

µY6|A,M,X,Z(a,m, x, z)

= −0.16− 0.05a+ 1.67m− 0.64m2 + 0.03(x1 − z4)− 0.001x2 + 0.02(x3 − z3)

− 0.0005z1 + 0.0003z2.

7.3.6 Additional simulations to confirm theoretical properties

of estimators

We evaluate the statistical properties of our estimators established by our theorems

through Monte Carlo simulation. These simulations were conducted purely to confirm

theoretical properties of the estimators and are not tied to the real data analysis context

in any way. In this simulation, we generated covariate X from Bernoulli(1/2). Given

X = x, we generated a binary variable A according to a Bernoulli distribution with

π1(x) = expit(x− 1/4). Given A = a, we drew Z from Bernoulli(expit(5a/4− 1/2)).

Given A = a,X = x, Z = z, we drew M from a normal distribution N(1 + a+ x/2−

z/4, 1). Finally, given A = a,X = x, Z = z,M = m, we drew Y is drawn from a

normal distribution N(−1 + x/2 − z/3 − a/4 +m/5, 1). We defined a tolerable M

level ∆ = 1 as the indicator that M ≤ 2. The true values of these parameters were

-0.717 and -1.068, respectively, with variance bound V ar{Da,P (O)} equal to 3.453 and
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7.151, respectively.

For each sample size n ∈ {200, 500, 1000, 2000, 4000}, we generated 1000 datasets

based on the above data generating process, and used the resultant data to compute

our proposed estimators along with their corresponding confidence interval, either

with cross-fitting or without the use of cross-fitting. We evaluated the estimators

based on their bias (scaled by n1/2), their standard error (scaled by n1/2), the ratio of

the scaled standard error to the square root of the efficient variance, and the coverage

of 95% Wald-style confidence interval.

We first evaluated estimators under the conditions of the theorem where all nuisance

parameters are consistently estimated at appropriate rates. To achieve this, we used

the logistic regression model for πa(x) and main term linear model µY |A,M,X,Z(a,m, x, z)

and fully saturated (all possible interactions) regression models for the remaining

nuisance parameters. In this scenario, the one-step estimators are expected to be

consistent and asymptotically linear.

When all the nuisance parameters are estimated consistently at appropriate rates,

the bias of the estimators decreases to 0 as the sample size increases, and the coverage

of the 95% confidence interval increases to 0.95 (Table 7.5). Even at a sample size of

200, the bias remains approximately 2% of the true value, and the worst-case coverage

of 95% confidence intervals is 86%. Similar results are achieved without the use of

cross-fitting (Table 7.6).

We also studied the impact of inconsistent estimation of different combinations of

nuisance parameters. We examined five situations in which only specific combinations

of the nuisance parameters were correctly specified, as defined in column 1 of Table 7.7.

Based on its multiple robustness properties, our one-step estimators are expected

to maintain consistency across these five scenarios. Nuisance regressions that were

incorrectly specified were modeled using only the intercept. Conditional densities that

were incorrectly specified were modeled using a Gaussian distribution in which the
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n
θcfn,0 θcfn,1

n1/2 bias n1/2 sd sd ratio cover n1/2 bias n1/2 sd sd ratio cover

200 -0.208 2.148 1.122 0.910 -0.143 2.391 1.382 0.860
500 -0.169 1.926 0.996 0.942 -0.165 2.319 1.172 0.912
1000 -0.149 1.918 0.987 0.945 -0.119 2.325 1.100 0.929
2000 -0.058 1.980 1.035 0.941 -0.072 2.421 1.093 0.928
4000 0.011 1.887 1.000 0.946 0.050 2.185 0.961 0.960

Table 7.5: Confirming theoretical properties of estimators: All nuisance parameters are
consistently estimated at appropriate rates with the use of MoCo (with cross-fitting).

n
θ+n,0 θ+n,1

n1/2 bias n1/2 sd sd ratio cover n1/2 bias n1/2 sd sd ratio cover

200 -0.136 2.035 1.053 0.946 -0.168 2.427 1.249 0.882
500 -0.149 2.007 1.035 0.929 -0.238 2.338 1.122 0.920
1000 -0.102 1.940 1.011 0.943 -0.169 2.331 1.080 0.935
2000 -0.052 1.995 1.049 0.933 -0.144 2.403 1.071 0.934
4000 0.037 1.867 0.989 0.956 0.066 2.251 0.982 0.951

Table 7.6: Confirming theoretical properties of estimators: All nuisance parameters
are consistently estimated at appropriate rates without the use of cross-fitting.

mean was equal to the sample mean and the standard deviation equal to the sample

standard deviation.

Our results indicate that as sample size increases, the bias and standard error

decrease across all settings considered, which supports the multiple robustness theory

(Table 7.7 and Table 7.8).
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Setting n biasθcfn,0
sdθcfn,0

biasθcfn,1
sdθcfn,1

(B2.1)

200 0.0500 0.1289 0.0681 0.1455
500 0.0341 0.1016 0.0558 0.0923
1000 0.0103 0.0710 0.0470 0.0710
2000 -0.0007 0.0475 0.0380 0.0504
4000 -0.0026 0.0170 0.0331 0.0368

(B2.2)

200 -0.0575 0.1164 -0.0510 0.1621
500 -0.0130 0.0865 -0.0206 0.1125
1000 -0.0087 0.0594 -0.0252 0.0800
2000 -0.0044 0.0405 -0.0223 0.0555
4000 -0.0008 0.0264 -0.0147 0.0400

(B2.3)

200 -0.0412 0.1199 -0.0561 0.1275
500 -0.0021 0.0892 -0.0073 0.1006
1000 -0.0019 0.0612 -0.0043 0.0743
2000 -0.0011 0.0429 -0.0027 0.0520
4000 0.0008 0.0272 0.0019 0.0375

(B2.4)

200 -0.0585 0.1189 -0.0488 0.1487
500 -0.0099 0.0915 -0.0087 0.1035
1000 -0.0092 0.0608 -0.0170 0.0756
2000 -0.0039 0.0429 -0.0161 0.0532
4000 -0.0004 0.0272 -0.0105 0.0383

(B2.5)

200 -0.0599 0.1217 -0.0505 0.1556
500 -0.0118 0.0885 -0.0143 0.1107
1000 -0.0107 0.0582 -0.0248 0.0794
2000 -0.0054 0.0397 -0.0230 0.0565
4000 -0.0008 0.0264 -0.0148 0.0399

Table 7.7: Bias and standard deviation(sd) of MoCo (with cross-fitting). The settings
column indicates which nuisance parameters are consistently estimated based on
assumption (B2) in Theorem 3.2 as outlined in the main manuscript.
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Setting n biasθ+n,0
sdθ+n,0

biasθ+n,1
sdθ+n,1

(B2.1)

200 0.0195 0.1164 0.0382 0.1646
500 0.0106 0.1045 0.0371 0.1020
1000 0.0002 0.0695 0.0363 0.0735
2000 -0.0059 0.0478 0.0330 0.0518
4000 -0.0058 0.0188 0.0308 0.0367

(B2.2)

200 -0.0277 0.1275 -0.0064 0.1982
500 -0.0125 0.0872 -0.0296 0.1214
1000 -0.0066 0.0596 -0.0212 0.0851
2000 -0.0048 0.0409 -0.0194 0.0603
4000 0.0016 0.0255 -0.0138 0.0413

(B2.3)

200 -0.0234 0.1248 -0.0094 0.1707
500 -0.0058 0.0883 -0.0112 0.1041
1000 -0.0035 0.0608 -0.0013 0.0770
2000 -0.0025 0.0425 -0.0003 0.0552
4000 0.0021 0.0259 0.0034 0.0389

(B2.4)

200 -0.0275 0.1289 -0.0014 0.1824
500 -0.0101 0.0895 -0.0221 0.1119
1000 -0.0062 0.0614 -0.0142 0.0803
2000 -0.0042 0.0428 -0.0135 0.0574
4000 0.0018 0.0260 -0.0096 0.0399

(B2.5)

200 -0.0277 0.1275 -0.0064 0.1982
500 -0.0125 0.0872 -0.0296 0.1214
1000 -0.0066 0.0596 -0.0212 0.0851
2000 -0.0048 0.0409 -0.0194 0.0603
4000 0.0016 0.0255 -0.0138 0.0413

Table 7.8: Bias and standard deviation(sd) of the one-step estimator without the
use of cross-fitting. The settings column indicates which nuisance parameters are
consistently estimated based on assumption (B2) in Theorem 3.2 as outlined in the
main manuscript.
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7.3.7 Additional details of data analysis

We subset to 377 scans corresponding to 8 to 13-year-old children from the Kennedy

Krieger Institute (KKI) and New York University (NYU) from ABIDE I and ABIDE

II . The ADOS score is a standardized assessment tool used to diagnose ASD, with

higher scores indicating greater social disability.

Although ASD is more prevalent in males than females, we treated sex as a con-

founder (X) rather than diagnosis-specific variable (Z) because sex-specific differences

in functional connectivity have been previously documented (Shanmugan et al., 2022),

which could mask ASD-related differences in this cohort. Mean FD is an average of

the frame-to-frame displacement calculated from the rigid body motion correction

parameters used in quality control and motion correction (Esteban et al., 2019; Power

et al., 2014a).

Resting-state fMRI scans were acquired using one of three protocols: 1) a 3T Philips

Achieva scanner, 8-channel head coil, repetition time (TR)/echo time (TE)=2500/30

ms, flip angle 75◦, 3×3×3 mm voxels, SENSE phase reduction=3, 2 dummy scans,

scan duration varied from 5m10s (one subject) to 6m45s (one subject) with most scans

at either 5m20s (n=46) or 6m30s (n=99) (KKI); 2) the same but with a 32-channel

head coil with most scans 6m30s (n=61) (KKI); 3) a 3T Siemens Allegra scanner,

8-channel head coil, TR/TE=2000/15 ms, flip angle=90◦, 3x3x4 mm voxels, scan

duration=6:00 (NYU), and we removed the first two volumes. All children also had

an anatomical T1 scan collected.

T1 anatomical and rs-fMRI data were processed with the cifti option for cortical

surface registration using fMRIPrep, including anatomical tissue segmentation, surface

construction, and surface registration, followed by fMRI motion correction, slice-time

correction, boundary-based coregistration, and resampling to the fsaverage template

(Esteban et al., 2019). The detailed output from fMRIPrep is included in Section 7.4.3.

We visually inspected the accuracy of the cortical segmentation using the fMRIPrep
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quality control html files. We excluded 19 participants due to issues with the cortical

segmentation. Issues with fMRIprep included image homogeneity issues, outliers in

brain morphology, and motion during the T1 scan. An example participant that failed

this step is included in Figure 7.14.

Figure 7.10: An example participant whose cortical segmentation failed in fMRIPrep.
The template T1-weighted image is shown with contours outlining the detected brain
mask and brain tissue segmentations. It is apparent from the middle and lower rows
that large parts of the brain, including most of the temporal lobe and parts of the
occipital lobe, were incorrectly excluded from the segmentation.

Our final study sample was 377 children, with 245 non-autistic children and

132 ASD children. Table 7.9 displays characteristics of the analysis cohort by ASD

diagnosis status.

We calculated the average time series for regions of interest defined using Schaefer’s

400-node brain parcellation, which associates each node with the resting networks

from Yeo-7 (Schaefer et al., 2018).

fMRIprep data preprocessing for ABIDE

Results included in this manuscript come from preprocessing performed using fM-

RIPrep 21.0.2 (Esteban et al. (2018b); Esteban et al. (2018a); RRID:SCR 016216),

which is based on Nipype 1.6.1 (Gorgolewski et al. (2011); Gorgolewski et al. (2018);
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Table 7.9: Demographic characteristics: Continuous variables are described using
mean and standard deviation, and diagnostic groups are compared using the Kruskal-
Wallis rank-sum test. Binary and categorical variables are reported as frequencies and
percentages, and differences between diagnostic groups are assessed using either the
Chi-square test or Fisher’s exact test.

RRID:SCR 002502). The text below is automatically produced by fMRIprep.

Anatomical data preprocessing A total of 1 T1-weighted (T1w) images were

found within the input BIDS dataset. The T1-weighted (T1w) image was

corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection

(Tustison et al., 2010), distributed with ANTs 2.3.3 (Avants et al., 2008,

RRID:SCR 004757), and used as T1w-reference throughout the workflow. The

T1w-reference was then skull-stripped with a Nipype implementation of the

antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as tar-
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get template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-

matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w

using fast (FSL 6.0.5.1:57b01774, RRID:SCR 002823, Zhang et al., 2001). Brain

surfaces were reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR 001847,

Dale et al., 1999), and the brain mask estimated previously was refined with a

custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived

segmentations of the cortical gray-matter of Mindboggle (RRID:SCR 002438,

Klein et al., 2017). Volume-based spatial normalization to two standard spaces

(MNI152 NLin6 Asym, MNI152 NLin 2009c Asym) was performed through non-

linear registration with antsRegistration (ANTs 2.3.3), using brain-extracted

versions of both T1w reference and the T1w template. The following templates

were selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical

template version 2009c [Fonov et al. (2009), RRID:SCR 008796; TemplateFlow

ID: MNI152NLin2009cAsym], FSL’s MNI ICBM 152 non-linear 6th Generation

Asymmetric Average Brain Stereotaxic Registration Model [Evans et al. (2012),

RRID:SCR 002823; TemplateFlow ID: MNI152NLin6Asym].

Functional data preprocessing For each of the 1 BOLD runs found per subject

(across all tasks and sessions), the following preprocessing was performed. First,

a reference volume and its skull-stripped version were generated using a custom

methodology of fMRIPrep. Head-motion parameters with respect to the BOLD

reference (transformation matrices, and six corresponding rotation and transla-

tion parameters) are estimated before any spatiotemporal filtering using mcflirt

(FSL 6.0.5.1:57b01774, Jenkinson et al., 2002). BOLD runs were slice-time cor-

rected to 1.22s (0.5 of slice acquisition range 0s-2.45s) using 3dTshift from AFNI

(Cox and Hyde, 1997, RRID:SCR 005927). The BOLD time-series (including

slice-timing correction when applied) were resampled onto their original, native

space by applying the transforms to correct for head-motion. These resampled
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BOLD time-series will be referred to as preprocessed BOLD in original space,

or just preprocessed BOLD. The BOLD reference was then co-registered to the

T1w reference using bbregister (FreeSurfer) which implements boundary-based

registration (Greve and Fischl, 2009). Co-registration was configured with six

degrees of freedom. Several confounding time-series were calculated based on the

preprocessed BOLD : framewise displacement (FD) and three region-wise global

signals. FD was computed following Power (absolute sum of relative motions,

Power et al. (2014b)) calculated using the implementation in Nipype (following

the definitions by Power et al., 2014b). The three global signals were extracted

within the CSF, the WM, and the whole-brain masks. The BOLD time-series

were resampled into standard space, generating a preprocessed BOLD run in

MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped

version were generated using a custom methodology of fMRIPrep. The BOLD

time-series were resampled onto the following surfaces (FreeSurfer reconstruction

nomenclature): fsaverage. Grayordinates files (Glasser et al., 2013b) containing

91k samples were also generated using the highest-resolution fsaverage as in-

termediate standardized surface space. All resamplings can be performed with a

single interpolation step by composing all the pertinent transformations (i.e. head-

motion transform matrices and co-registrations to anatomical and output spaces).

Gridded (volumetric) resamplings were performed using antsApplyTransforms

(ANTs), configured with Lanczos interpolation to minimize the smoothing ef-

fects of other kernels (Lanczos, 1964). Non-gridded (surface) resamplings were

performed using mri vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.8.1 (Abraham et al., 2014,

RRID:SCR 001362), mostly within the functional processing workflow. For more

details of the pipeline, see the section corresponding to workflows in fMRIPrep’s

documentation.

https://fmriprep.readthedocs.io/en/latest/workflows.html
https://fmriprep.readthedocs.io/en/latest/workflows.html
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Copyright Waiver The above boilerplate text was automatically generated by

fMRIPrep with the express intention that users should copy and paste this text into

their manuscripts unchanged. It is released under the CC0 license.

Positivity assumptions in the ABIDE data

For the dataset, the positivity assumption (A1.1) holds as no demographic character-

istics X can perfectly predict ASD. To assess the positivity assumptions (A1.2), we

examine the values of four ratios present in the estimation process and the efficient

influence function:

pn,M |∆=1,A,X(Mi | 0, Xi)

pn,M |∆=1,A,X,Z(Mi | Ai, Xi, Zi)
for ∆i = 1 (7.5)

pn,M |A,X(Mi | Ai, Xi)

pn,M |A,X,Z(Mi | Ai, Xi, Zi)
(7.6)

pn,M |∆=1,A,X(Mi | 0, Xi)

pn,M |A,X,Z(Mi | 0, Xi, Zi)
(7.7)

pn,M |∆=1,A,X(Mi | 0, Xi)

pn,M |A,X,Z(Mi | 1, Xi, Zi)
. (7.8)

There are no very large values for these ratios, which indicates the satisfaction of the

positivity assumption. Figure 7.11 displays the histogram depicting the distribution

of ratio values.

7.3.8 Estimated functional connectivity

The estimated functional connectivity using the näıve approach excluding high-motion

participants, the näıve approach including all participants, and MoCo are illustrated

in Figure 7.12. The seed region in the posterior default mode network is defined by

the fourteenth parcel but is represented by the fuchsia point for clarity.

https://creativecommons.org/publicdomain/zero/1.0/
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Figure 7.11: Histogram depicting the distribution of ratio values. Positivity assump-
tions appear reasonable since the ratios are not too large. Here, the ratios result in
reasonable weights in the pseudo-regressions.
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Figure 7.12: Estimated functional connectivity using the näıve approach excluding
high-motion participants, the näıve approach, and MoCo for a seed region in the
posterior default mode network (fuchsia point).
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7.4 Supplementary Material of Chapter 5

7.4.1 Assumptions and proof for identification

The identification of the target parameter using observational data involves three

assumptions. Below, we present the mathematical formulation in accordance with the

sequence in the main paper:

(A1) Mean exchangeability: for all m such that P{pM |∆M=1,0,X(m | X) > 0} > 0, we

have EC{Y (1,m) | A = a,X, Z} = EC{Y (1,m) | ∆Y = 1,M = m,A = a,X, Z},

a.e.-P ;

(A2) Positivity: (A2.1) for all possible x, we also have P (A = a | X = x) > 0 for

a = 0, 1, and P (∆M = 1 | A = 0, X = x) > 0. For all possible (x, z), we have

P (∆Y = 1 | A = a,X = x, Z = z) > 0 for a = 0, 1. (A2.2) for every (x, z,m)

such that pX(x)pZ|A,X(z | a, x)pM |∆M=1,A,X(m | 0, x) > 0, we also have that

pM |∆Y =1,A,X,Z(m | a, x, z) > 0 for a = 0, 1.

(A3) Causal Consistency: for any participant with brain phenotype data (∆Y = 1)

and motion value M = m, the observed brain phenotype measurement Y is

equal to the counterfactual brain phenotype measurement Y (1,m).

Theorem 6. We denote E{EC[Y (1,M0) | A = a,X]} as θC,a. Under (A1)-(A3), the

counterfactual θC,a is identified by θa, where

θa =
∫∫∫

µY |∆Y =1,A,M,X,Z(a,m, x, z)pZ|A,X(z | a, x)pM |∆=1,A,X(m | 0, x)pX(x)dzdmdx.

Proof Let θC,a = E{EC[Y (1,M0) | A = a,X]}, where M0 ∼ PM |∆=1,A,X(m | 0, x).

We have:
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θC,a = E{EC[Y (1,M0) | A = a,X]}

=

∫
EC(Y (1,M0) | A = a,X = x)pX(x)dx

tower rule
=

∫∫
EC(Y (1,m) | M0 = m,A = a,X = x)pM |∆M=1,A,X(m | 0, x)pX(x)dmdx

defn
=

∫∫
EC(Y (1,m) | A = a,X = x)pM |∆M=1,A,X(m | 0, x)pX(x)dmdx

tower rule
=

∫∫∫
EC(Y (1,m) | A = a,X = x, Z = z)pZ|A,X(z | a, x)pM |∆M=1,A,X(m | 0, x)pX(x)dzdmdx

assumption (A1)
=

∫∫∫
EC(Y (1,m) | ∆Y = 1,M = m,A = a,X = x, Z = z)pZ|A,X(z | a, x)pM |∆M=1,A,X(m | 0, x)

pX(x)dzdmdx

assumption (A3)
=

∫∫∫
E(Y | ∆Y = 1,M = m,A = a,X = x, Z = z)pZ|A,X(z | a, x)pM |∆M=1,A,X(m | 0, x)

pX(x)dzdmdx .

The fourth equality results from the fact that by the construction of M0, we have

that Y (1,m)M0 | A,X for all m. The sixth equality results from the assumption that

Y (1,m)(∆Y = 1,M) | A,X,Z.

Under Theorem 1.1, the motion-controlled target parameter ψC = θC,1 − θC,0 can

be identified by θ1 − θ0, that is,∫∫∫ (
µY |∆Y =1,A,M,X,Z(1,m, x, z)pZ|A,X(z | 1, x)− µY |∆Y =1,A,M,X,Z(1,m, x, z)pZ|A,X(z | 1, x)

)
pM |∆M=1,A,X(m | 0, x)pX(x) dz dmdx.

(7.9)

7.4.2 Details about the estimation and inference of the motion-

controlled group difference

EIF and the one-step estimator

We develop a nonparametric efficient one-step estimator of θa based on the efficient

influence function (EIF). The EIF-based estimator enjoys desirable properties such as
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asymptotic linearity with closed-form confidence intervals, and multiple robustness,

which allows for some components of the data distribution to be inconsitently estimated

while preserving the consistency of the estimator.

We define π∆Y =1|A,X,Z(a, z, x) = P (∆Y = 1 | A = a, Z = z,X = x) as the

probability of a participant in the group a with covariate value (z, x) having nonmissing

brain pheonotype data. We introduce the shorthand πa(x) = P (A = a | X = x), and

π̄0(x) = π0(x)P (∆M = 1 | A = 0, X = x) as the probability that A = 0 and ∆M = 1

conditional on X = x. We denote the indicator function a(Ai) equal to 1 if Ai = a

and zero otherwise; a,1(Ai,∆Y,i) equal to 1 if Ai = a and ∆Y,i = 1 and equals zero

otherwise. We also define for a = 0, 1

ra(m,x, z) =
pM |∆M=1,A,X(m | 0, x)

pM |∆Y =1,A,X,Z(m | a, x, z)
, (7.10)

ηµ|A,X,Z(a, x, z) =

∫
µY |∆Y =1,A,M,X,Z(a,m, x, z)pM |∆M=1,A,X(m | 0, x)dm (7.11)

ηµ|A,M,X(a,m, x) =

∫
µY |∆Y =1,A,M,X,Z(a,m, x, z)pZ|A,X(z | a, x)dz , (7.12)

The efficient influence function of θa, for a = 0, 1 evaluated on a typical observation

Oi is

DP,a(Oi) =
a(Ai,∆Y,i)

π∆Y =1|A,X,Z(a,Xi, Zi)πa(Xi)
ra(Mi, Xi, Zi){Yi − µY |∆Y =1,A,M,X,Z(Ai,Mi, Xi, Zi)}

+
a(Ai)

πa(Xi)
{ηµ|A,Z,X(a,Xi, Zi)− ξa,η|X(Xi)}

+
0,1(Ai,∆M,i)

π̄0(Xi)

{
ηµ|A,M,X(a,Mi, Xi)− ξa,η|X(Xi)

}
+ ξa,η|X(Xi)− θa.

(7.13)

The one-step estimator of θa is defined as θ+n,a = θn,a +
1
n

∑n
i=1Dn,a(Oi). Conse-

quently, the motion-controlled average group difference is given by θ+n,1 − θ+n,0.

Under similar assumptions as Ran (2024+), the one-step estimator is asymptotically
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linear: θ+n,a − θa =
1
n

∑n
i=1DP,a(Oi) + oP (n

−1/2), and

n1/2(θ+n,a − θa) ⇒ N(0, E[DP,a(O)
2]) .

Cross-fit one-step estimator

The cross-fitting process involves randomly dividing the data set into K parts. K − 1

parts of the data are used to estimate the nuisance parameters appearing in the

efficient influence function. Consider the example of ξa,η|X . We denote by ξn,k,a,η|X

the estimate of ξa,η|X obtained when the k-th part of the data is withheld from

the nuisance estimation stage. Similarly, we denote by Da,n,k the efficient influence

function evaluated at the nuisance parameters estimated without using the k-th part

of the data. Denote by Ik the indices of observations in the k-th part of the data and

denote the number of observations in this set by nk. The cross-fit estimate of θa is

θcfn,a =
1
K

∑K
k=1

[
1
nk

∑
i∈Ik ξn,k,a,η|X(Xi) +

1
nk

∑
i∈Ik Da,n,k(Oi)

]
.

Simultaneous inference for associations

When making inferences with multiple Y values simultaneously, we control the family-

wise error rate for multiple tests by conducting hypothesis testing using simultaneous

confidence bands (Ruppert et al., 2003). We illustrate the procedure with testing

associations between ADHD and brain connectivity across hundreds of brain regions.

Let j = 1, . . . , J index the region, and θa,j denote the motion-controlled average

functional connectivity in diagnosis group a between a seed region and region j.

Similarly, DP,a,j represents the efficient influence function for diagnosis group a and

region j, and by τ 2n,j denotes the region-specific estimate of the asymptotic variance.
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Leveraging the asymptotic linearity of the one-step estimator,


θ+n,1,1 − θ+n,0,1

...

θ+n,1,J − θ+n,0,J

−


θ1,1 − θ0,1

...

θ1,J − θ0,J

 ⇒ N




0

...

0

 ,Cov


DP,1,1(O)−DP,0,1(O)

...

DP,1,J(O)−DP,0,J(O)


 ,

(7.14)

where θ+n,a,j is the estimator at A = a at location j ∈ {1, ..., J}. An approxi-

mate 1 − α simultaneous confidence interval is (θ+n,1,1 − θ+n,0,1, . . . , θ
+
n,1,J − θ+n,0,J)

⊤ ±

zmax,1−α(τn,1, . . . , τn,J)
⊤, where zmax,1−α is the 1− α quantile of the random variable

max1≤j≤J{n1/2|(θ+n,1,j − θ+n,0,j)− (θ1,j − θ0,j)|/τn,j}, which depends on the covariance

matrix in (7.14).

To approximate zmax,1−α, Monte-Carlo integration is performed by taking 105

independent draws of a J-dimensional mean-zero multivariate normal random variable

with covariance matrix equal to an empirical estimate of the correlation matrix

derived from the covariance matrix on the right-hand side of (7.14). This correlation

matrix can be estimated via the empirical correlation of the vector (Dn,1,1(O) −

Dn,0,1(O), . . . , Dn,1,J(O)−Dn,0,J(O))⊤. For each of the 105 random draws, the maximal

absolute value of the components of the vector is calculated. The critical value zmax,1−α

is approximated by calculating the empirical (1−α)-quantile of these maximum values.

Wald hypothesis tests controlling family-wise error rate at level α are conducted by

rejecting the null hypothesis of no association between diagnosis group and functional

connectivity in the j-th region whenever n1/2|θ+n,1,j − θ+n,0,j|/τn,j is larger than the

estimated value of zmax,1−α.
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7.4.3 Additional details of data analysis

fMRIprep data preprocessing for ADHD200

Results included in this manuscript come from preprocessing performed using fM-

RIPrep 21.0.2 (Esteban et al. (2018b); Esteban et al. (2018a); RRID:SCR 016216),

which is based on Nipype 1.6.1 (Gorgolewski et al. (2011); Gorgolewski et al. (2018);

RRID:SCR 002502). The text below is automatically produced by fMRIprep.

Anatomical data preprocessing A total of 1 T1-weighted (T1w) images were

found within the input BIDS dataset.The T1-weighted (T1w) image was corrected

for intensity non-uniformity (INU) with N4BiasFieldCorrection (Tustison

et al., 2010), distributed with ANTs 2.3.3 (Avants et al., 2008, RRID:SCR 004757),

and used as T1w-reference throughout the workflow. The T1w-reference was then

skull-stripped with a Nipype implementation of the antsBrainExtraction.sh

workflow (from ANTs), using OASIS30ANTs as target template. Brain tis-

sue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-

matter (GM) was performed on the brain-extracted T1w using fast (FSL

6.0.5.1:57b01774, RRID:SCR 002823, Zhang et al., 2001). Brain surfaces were

reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR 001847, Dale et al.,

1999), and the brain mask estimated previously was refined with a custom

variation of the method to reconcile ANTs-derived and FreeSurfer-derived

segmentations of the cortical gray-matter of Mindboggle (RRID:SCR 002438,

Klein et al., 2017). Volume-based spatial normalization to two standard spaces

(MNI152NLin2009cAsym, MNI152NLin6Asym) was performed through nonlin-

ear registration with antsRegistration (ANTs 2.3.3), using brain-extracted

versions of both T1w reference and the T1w template. The following templates

were selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical

template version 2009c [Fonov et al. (2009), RRID:SCR 008796; TemplateFlow
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ID: MNI152NLin2009cAsym], FSL’s MNI ICBM 152 non-linear 6th Generation

Asymmetric Average Brain Stereotaxic Registration Model [Evans et al. (2012),

RRID:SCR 002823; TemplateFlow ID: MNI152NLin6Asym].

Functional data preprocessing For each of the 1 BOLD runs found per subject

(across all tasks and sessions), the following preprocessing was performed. First,

a reference volume and its skull-stripped version were generated using a cus-

tom methodology of fMRIPrep. Head-motion parameters with respect to the

BOLD reference (transformation matrices, and six corresponding rotation and

translation parameters) are estimated before any spatiotemporal filtering using

mcflirt (FSL 6.0.5.1:57b01774, Jenkinson et al., 2002). BOLD runs were slice-

time corrected to 1.22s (0.5 of slice acquisition range 0s-2.45s) using 3dTshift

from AFNI (Cox and Hyde, 1997, RRID:SCR 005927). The BOLD time-series

(including slice-timing correction when applied) were resampled onto their origi-

nal, native space by applying the transforms to correct for head-motion. These

resampled BOLD time-series will be referred to as preprocessed BOLD in original

space, or just preprocessed BOLD. The BOLD reference was then co-registered to

the T1w reference using bbregister (FreeSurfer) which implements boundary-

based registration (Greve and Fischl, 2009). Co-registration was configured

with six degrees of freedom. Several confounding time-series were calculated

based on the preprocessed BOLD : framewise displacement (FD), DVARS and

three region-wise global signals. FD was computed using two formulations

following Power (absolute sum of relative motions, Power et al. (2014b)) and

Jenkinson (relative root mean square displacement between affines, Jenkinson

et al. (2002)). FD and DVARS are calculated for each functional run, both

using their implementations in Nipype (following the definitions by Power et al.,

2014b). The three global signals are extracted within the CSF, the WM, and the

whole-brain masks. Additionally, a set of physiological regressors were extracted
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to allow for component-based noise correction (CompCor, Behzadi et al., 2007).

Principal components are estimated after high-pass filtering the preprocessed

BOLD time-series (using a discrete cosine filter with 128s cut-off) for the two

CompCor variants: temporal (tCompCor) and anatomical (aCompCor). tComp-

Cor components are then calculated from the top 2% variable voxels within the

brain mask. For aCompCor, three probabilistic masks (CSF, WM and combined

CSF+WM) are generated in anatomical space. The implementation differs

from that of Behzadi et al. in that instead of eroding the masks by 2 pixels on

BOLD space, the aCompCor masks are subtracted a mask of pixels that likely

contain a volume fraction of GM. This mask is obtained by dilating a GM mask

extracted from the FreeSurfer’s aseg segmentation, and it ensures components

are not extracted from voxels containing a minimal fraction of GM. Finally, these

masks are resampled into BOLD space and binarized by thresholding at 0.99

(as in the original implementation). Components are also calculated separately

within the WM and CSF masks. For each CompCor decomposition, the k

components with the largest singular values are retained, such that the retained

components’ time series are sufficient to explain 50 percent of variance across the

nuisance mask (CSF, WM, combined, or temporal). The remaining components

are dropped from consideration. The head-motion estimates calculated in the

correction step were also placed within the corresponding confounds file. The

confound time series derived from head motion estimates and global signals

were expanded with the inclusion of temporal derivatives and quadratic terms

for each (Satterthwaite et al., 2013a). Frames that exceeded a threshold of 0.5

mm FD or 1.5 standardised DVARS were annotated as motion outliers. The

BOLD time-series were resampled into standard space, generating a preprocessed

BOLD run in MNI152NLin2009cAsym space. First, a reference volume and its

skull-stripped version were generated using a custom methodology of fMRIPrep.
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The BOLD time-series were resampled onto the following surfaces (FreeSurfer

reconstruction nomenclature): fsaverage. Grayordinates files (Glasser et al.,

2013b) containing 91k samples were also generated using the highest-resolution

fsaverage as intermediate standardized surface space. All resamplings can

be performed with a single interpolation step by composing all the pertinent

transformations (i.e. head-motion transform matrices, susceptibility distortion

correction when available, and co-registrations to anatomical and output spaces).

Gridded (volumetric) resamplings were performed using antsApplyTransforms

(ANTs), configured with Lanczos interpolation to minimize the smoothing ef-

fects of other kernels (Lanczos, 1964). Non-gridded (surface) resamplings were

performed using mri vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.8.1 (Abraham et al., 2014,

RRID:SCR 001362), mostly within the functional processing workflow. For more

details of the pipeline, see the section corresponding to workflows in fMRIPrep’s

documentation.

Copyright Waiver

The above boilerplate text was automatically generated by fMRIPrep with the

express intention that users should copy and paste this text into their manuscripts

unchanged. It is released under the CC0 license.

https://fmriprep.readthedocs.io/en/latest/workflows.html
https://fmriprep.readthedocs.io/en/latest/workflows.html
https://creativecommons.org/publicdomain/zero/1.0/
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Examples of failed preprocessing in fMRIPrep

Figure 7.13: An example participant whose cortical segmentation failed in fMRIPrep.
The template T1-weighted image with contours delineating the detected brain mask
and brain tissue segmentations is shown. The top, middle and bottom rows indicate
that large part of brain, including large part of frontal lobe, some part of temporal
lobe and occipital lobe, were incorrectly excluded from the segementation.

Figure 7.14: An example participant whose fMRI alignment issue in fMRIPrep. The
alignment of functional and anatomical MRI data is shown and Freesurfer boundary-
based registration is used to generate transformation from EPI-space to T1w-space.
It is apparent from the top, middle and bottom rows that some parts of the brain
tissue, including parts of the frontal, parietal and temporal lobe, were missing from
functional data.



219

MoCo result using 36p and 36p spike regression

Figure 7.15: Estimated functional connectivity using the näıve approach excluding
high-motion participants, the näıve approach, and MoCo for a seed region in the
posterior default mode network (fuchsia point). Data are preprocessed using 36-
parameter regression.
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Figure 7.16: Estimated functional connectivity using the näıve approach excluding
high-motion participants, the näıve approach, and MoCo for a seed region in the
posterior default mode network (fuchsia point). Data are preprocessed using 36-
parameter regression with spike regression.
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Figure 7.17: Z-statistics for the group difference (ADHD − non-ADHD) for a seed
in the posterior default mode network (fuchsia point) in the ADHD200 dataset. The
“naive approach” includes participants that pass the preprocessing pipeline (∆Y = 1).
The naive approach that pass motion QC are participants that also pass motion QC
(∆Y = 1 and ∆M = 1). MoCo uses imaging data from all participants that pass
preprocessing (including those with excessive motion) and uses demographic data from
all participants (including those that failed preprocessing). Both naive approaches
appear to generate spurious findings, suggesting extensive anterior-posterior DMN
hypoconnectivity. Based on the results from MoCo, most of these regions do not differ
in hypoconnectivity when standardizing motion between groups. Network labels from
(Schaefer et al., 2018). Data are preprocessed using 36-parameter regression.
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Figure 7.18: Z-statistics for the group difference (ADHD − non-ADHD) for a seed
in the posterior default mode network (fuchsia point) in the ADHD200 dataset. The
“naive approach” includes participants that pass the preprocessing pipeline (∆Y = 1).
The naive approach that pass motion QC are participants that also pass motion QC
(∆Y = 1 and ∆M = 1). MoCo uses imaging data from all participants that pass
preprocessing (including those with excessive motion) and uses demographic data from
all participants (including those that failed preprocessing). Both naive approaches
appear to generate spurious findings, suggesting extensive anterior-posterior DMN
hypoconnectivity. Based on the results from MoCo, most of these regions do not differ
in hypoconnectivity when standardizing motion between groups. Network labels from
(Schaefer et al., 2018). Data are preprocessed using 36-parameter regression with spike
regression.
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