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Abstract

The Effects of Projection on Iterative Methods in Image Deblurring
By James L. Herring

Applications of iterative regularization methods encompass a broad spectrum, in-
cluding image deblurring. One unique feature in image deblurring problems is the
non-negativity of the solution. In light of this knowledge, this thesis explores the
effectiveness of three projected iterative methods for image deconvolution: projected
successive over-relaxation method (SOR), projected Landweber method, and an in-
terior point gradient method. Specifically, this thesis compares the effectiveness of
these methods to the standard un-projected SOR method, comparing quality of image
reconstruction and the cost of each method. The thesis begins with an introduction
to the field of image deblurring problems, iterative regularization, and the methods
tested, and follows with experiments and analysis designed to determine the useful-
ness of these methods for image deblurring.
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Chapter 1

Introduction

Large-scale inverse problems are prevalent in numerous scientific fields, and as

such research and exploration into accurately solving these problems has burgeoned

in recent years. Frequently these problems cannot be solved analytically, and as a

result the bulk of the efforts for solving inverse problems focuses on the implementa-

tion of reliable, cost-effective numerical methods for computing solutions [20]. Image

deblurring represents one field where the need to efficiently solve large-scale inverse

problems consistently arises.

Image deblurring encompasses mathematical effort to recover an approximation of

an original, true image via the removal of the effect of blur and noise on a corrupted

image. This process plays an important role in numerous scientific applications in-

cluding biomedical imaging [4] [10] [13] [17] [20], seismic imaging [20], astronomy [1]

[4] [16] [19], and various other fields.

One example in biomedical imaging is the the technique of X-ray computed to-

mography (CT). First introduced into hospitals during the early 1970s, CT images

derive from solving ill-posed inverse problems [4]. Since then, the understanding and

treatment of such ill-posed-problems has progressed significantly, resulting in major

improvements in medical diagnosis and treatment. Today, improvements in computed

tomography continue.

Another field where image restoration frequently arises is astronomy, where scien-
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tists often encounter blurred images. For instance, an astronomer using a telescope

on earth to photograph an object in space must account for the impact of atmo-

spheric blurring and light randomly reflected off particles skewing the image. Thus,

astronomers must utilize methods in image restoration to obtain a more accurate

approximation of the true image.

The methods available are numerous for computing image deblurring solutions.

Due to the complexity and costliness of many image deblurring problems (often en-

compassing over one million equations), methods for computing a solution can be

specialized to focus on desired aspects of a solution particular to a given problem. As

such, the constant advent of new methods and applications necessitates large amounts

of time and exploration into the best choice for a given situation. However, despite

the breadth of methods and problems available, the end goal remains an accurate and

efficiently restored image.

With this goal in mind, this thesis explores the utility of projected iterative meth-

ods in the field of image deblurring. The rest of this chapter is devoted to establishing

the mathematical background and structure of image deblurring problems, as well as

the concept of iterative regularization. Chapter 2 deals with the specific iterative

methods tested in this thesis. Chapter 3 provides some analysis on the filtering char-

acteristics of iterative methods. Chapter 4 details the numerical experiments used to

determine regularization parameters, stopping criteria, and the effect of noise level

on the effectiveness of each method. Lastly, chapter 5 tests the effectiveness of each

method on simulated real world problems and draws conclusions about the usefulness

of each method in image deblurring.
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1.1 Mathematical Background

When solving a particular problem, the first step is the discretization of the problem

from real life into a mathematical problem. Many imaging problems are modeled as

the linear system

b = Axtrue + n (1.1)

where b is the blurred image, A is the blurring matrix, xtrue is true image, and

n represents random noise affecting the problem. Note that although the image is

originally given as a two dimensional array, it can be strung out column-wise as a

vector for computational purposes. That is, if x is an image of n× n pixels,

x = [x1x2 · · ·xn]

where xi is the ith column of x, then for mathematical and computational purposes,

we can vectorize x as:

x =




x1

x2
...

xn




where x is now an n2 × 1 vector.

After successfully modeling a given problem, invariably the next step is to acquire

a solution. In this case, that requires finding an accurate way to solve for the unknown

true image xtrue given b andA, and accounting for the noise n. At first glance, solving

system (1.1) seems a simple task, particularly if A−1 exists and the noise n is small.

However, this apparent solution,
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x = A−1b

= A−1(Axtrue + n)

= xtrue +A−1n (1.2)

does not account for several characteristics of the system, namely that A is typically

ill-conditioned and very large. Due to these characteristics, the straightforward naive

approach to solving the original system fails to produce any sort of useful reconstruc-

tion of the blurred image. This is illustrated in Figure 1.1.

True Image Blurred Image Naive Solution

Figure 1.1: Example of the algorithm’s instability in the presence of noise: Even in
the case of seemingly simple images with very little blur, the naive reconstruction
proves useless.

A deeper perspective on the specific challenges posed by A can be seen using the

singular value decomposition. Singular value decomposition is the factoring of the
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Figure 1.2: Example of the decay of singular values: The graphs above plot the
singular values of A for three increasingly blurred problems. Noting that cond(A) =
σmax/σmin, it can be observed that A quickly becomes ill-conditioned for problems
with increased blur.

matrix A into a product of three matrices

A = UΣVT (1.3)

where U and V are orthogonal matrices and Σ= diag(σ1, σ2, · · · , σn) is a diagonal

matrix with the singular values of A on the diagonal. The singular value decomposi-

tion provides a wealth of useful information about the matrix A. In the case of the

image deblurring problem, two facts present themselves as particularly important:

first, that σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 with the smaller σi clustering around zero (see

Figure 1.2); and second, that the orthogonal basis vectors vi corresponding to the

singular values σi become increasingly oscillatory for larger i.

This information provides an explanation as to why the inverse solution provides

a poor reconstruction of the true image. Assuming A to be invertible, it is apparent

that the naive approach used in equation (1.2) gives a solution which contains the
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true solution xtrue, but also contains the inverted noise A−1n. Using the singular

value decomposition, we can more closely observe the characteristics of the inverted

noise portion of the solution,

xnaive = xtrue +A−1n

= xtrue +VΣ−1UTn

= xtrue +
n∑

i=1

uT
i n

σi

vi (1.4)

Since σi tends to zero for large i, it follows that
uT
i n

σi
becomes very large as i increases.

Combined with the increasingly oscillatory vi vectors, the inverted noise overwhelms

the desired xtrue portion of the solution, leading to an incorrect and undesirable

solution (Figure 1.1).

Having established that a simple inverse solution is of no use, finding alternative

methods to produce an accurate solution is the next step. An ideal solution would

simply extract some information about xtrue while omitting the inverted noise. For

this, it is useful to introduce two ideas. The first is to reformulate equation (1.1) into

the least-squares problem:

min‖b−Ax‖22 (1.5)

This presentation is common in the case of large, ill-posed problems, particularly in

cases when equation (1.1) is inconsistent. Throughout our discussion of solving the

initial problem, particularly in determining stopping criteria, the least-squares form

of the problem will frequently be referenced.

The second useful idea for heading towards a good solution once again builds on

knowledge of the singular value decomposition of A. While a solution completely

devoid of inverted noise is unattainable, a good solution attempts an accurate recon-
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struction of xtrue while limiting the negative effect of inverted noise on the image.

From the singular value decomposition, we know inverted noise is amplified for smaller

singular values σi and their corresponding vi, thus a good solution would exclude or

limit the influence of these portions of the inverted noise from the solution. This pro-

cess of filtering out the unwanted portion of the solution is known as regularization,

and can be written as

xfilt =
n∑

i=1

φi
uT
i b

σi

vi (1.6)

where the filter factors φi are chosen such that φi ≈ 1 for large singular values and

φi ≈ 0 for small singular values. Some iterative methods have an inherent filtering

behavior, which will be discussed further in chapter 3.

1.2 Structure and Sparsity

In choosing a method for regularization, one must first consider the discretization of

a problem. In the case of image deblurring, the discretization of the problem into

form (1.1) commonly results in characteristics which often influence the selection and

efficient implementation of regularization methods. In particular, the blurring matrix

A is often structured, sparse, or both.

Structure in the composition of A arises from the implementation of the two

dimensional point spread function (PSF) to model the spatially invariant convolution

of each point in the initial image xtrue. The PSF stems from the idea that a point in

an image is blurred according to the points in its vicinity. Obviously, the composition

of the PSF varies with the type of blur introduced in the problem. Three PSFs

commonly seen in image deblurring are Gaussian blur, Moffat blur, and atmospheric

turbulence blur (common in astronomical imaging problems). After the PSF for the
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blur is identified, the blurring matrix A can be constructed accordingly. In the case of

our problems, the modeling of the convolution using the PSF results in the matrix A

being a Toeplitz matrix (constant on each diagonal). Specifically, a Toeplitz matrix

arises in the case of a one dimensional problem. For 2-D imaging, A is a block Toeplitz

matrix with Toeplitz blocks. Furthermore, some problems involve separability, e.g the

horizontal and vertical blur of the image are separable from one another. Separability

implies further structure, and A can be represented as a Kronecker product of two

matrices in addition to the block structure associated with its boundary conditions

[14].

The selection of boundary conditions further complicates things. Boundary condi-

tions make assumptions about the pixels outside of the image x. These assumptions

are necessary due to the logical assumption that points near the edge of an image

will be affected by others near the edge but not included in the image. The most

frequently implemented boundary conditions are periodic, reflexive, and zero. Each

of these assigns different quantities to the points outside the image, and each results

in a different type of structured matrix A. Zero boundary conditions assume all ele-

ments outside the given image to be zero, resulting in the general block Toeplitz with

Toeplitz blocks (BTTB) structure mentioned previously. Periodic boundary condi-

tions assume the given image repeats itself endlessly in all directions, and the resultant

matrix structure is block circulant with circulant blocks (BCCB) where circulant ma-

trices represent a specific class of Toeplitz matrices. Reflexive boundary conditions

assume the image to reflect itself over the edge of the given image and result in A be-

ing modeled as a sum of block Toeplitz with Toeplitz blocks (BTTB), block Toeplitz

with Hankel blocks (BTHB), block Hankel with Toeplitz blocks (BHTB), and block

Hankel with Hankel blocks (BHHB) matrices, where Hankel matrices represent ma-

trices which are constant on the anti-diagonal. Further information on structure due
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to boundary conditions can be found in [14].

The PSF and boundary conditions give the matrix A a unique structure which

can frequently be manipulated and utilized to facilitate more efficient methods for

regularizing and solving a given problem. In addition to this useful structuring, A

frequently is a sparse matrix. Sparse matrices are matrices where the number zero

entries is significantly large or the zero entries are structured in such a way that

they can be exploited by efficient implimentation, thus making various computations

far more efficient than is the case for general, dense matrices. In particular, sparse

matrices are particularly efficient for matrix-vector multiplications. This advantage

can also be lost, as factorizations of sparse matrices often lead to a loss of sparsity and

increased computational cost in addition to the already costly factorization. Thus,

for large problems, the choice of a regularization method should take advantage of the

increased efficiency of matrix-vector multiplication of sparse matrices while avoiding

the potential loss of sparsity and increased cost associated with matrix factorization.

Based on this observation, we introduce iterative regularization as an efficient method

to effectively utilize the matrix A’s structure and sparsity.

1.3 Iterative Regularization

Numerous regularization methods exist, and different applications require varying

types of regularization methods. Common techniques often include truncated singular

value decomposition (TSVD), selective singular value decomposition, and Tikhonov

regularization [9]. However, these methods rely on factorization of the matrix A via

singular value decomposition. As discussed in the previous section, factorizations

typically result in a loss of sparsity and structure of A common in image deblurring

problems, making calculations for a solution inefficient due to increased cost and
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storage [9]. Instead, regularization techniques which exploit matrix sparsity should

be utilized to reduce cost and storage while obtaining a solution. One way to exploit

matrix sparsity uses iterative regularization.

It should be noted that some of the regularization methods above can be also

be put in terms of iterative regularization. In particular, Tikhonov regularization

can be implemented in the form min(‖b−Ax‖22 + α2‖x‖22) and solved using an it-

erative method. This allows for the exploitation of matrix sparsity and structure.

Unfortunately, in the case of Tikhonov regularization, two problems arise: firstly,

implementing the non-negativity constraint is non-trivial, and secondly, a good es-

timate of α must be known. For these reasons, iterative solutions using Tikhonov

regularization are not explored in this thesis.

Iterative regularization uses iterative methods for solving systems of equations to

regularize the solution of ill-posed linear problems [4]. One essential characteristics of

iterative regularization is that it is dependent on the number of iterations performed.

That is, given an initial guess for a solution x[0], each iteration will produce better

approximation of xtrue up to some iteration k[opt], at which point each subsequent

iteration will produce solutions increasingly close to the naive solution x̂ given earlier

[9]. This phenomenon is called semi-convergence, and is based on the fact that itera-

tive regularization tends to reproduce the parts of the solution corresponding to large

singular values in the earlier iterations, with the undesirable small singular values and

their corresponding highly oscillatory vectors overwhelming the solution later in the

iterative process. An excellent diagram illustrating the principle of semi-convergence

can be found in [9], and a discussion on the criteria for choosing k[opt] in a subsequent

section 1.5.

It is important to make note of the difference in cost associated with iterative

regularization and matrix decomposition based methods. Matrix factorizations such
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as the singular value decomposition incur a computational cost of order n3 multi-

plicative and additive operations for an n× n matrix A [7]. In the case of very large

problems, such as imaging, such a cost is deemed too expensive for practical use. For

this reason, iterative methods are generally preferred for any sort of efficient image

deblurring. Because they are composed entirely of matrix-vector multiplications and

additions, each iteration has a cost of order n2. Thus, if the total number of itera-

tions k for a given method to converge is significantly less than the size of system n,

iterative methods provide a substantially cheaper, more efficient alternative to direct

methods via factorizations. It can be observed that all of the methods presented in

this thesis have a cost per iteration of order n2 at most. However, this associated cost

benefit will only become useful provided the methods converge to a useful solution in

relatively few iterations. Subsection 1.5 will establish criteria for the regularization

parameter (stopping the method to obtain a desirable solution), while the details of

the iterative methods investigated in this thesis will be discussed in Chapter 2.

1.4 Projection: Additional Regularization

One characteristic associated with the discretization of imaging problems is non-

negativity of the solutions. The entries in the vector x represent the color or grayscale

intensities of the pixels in the image. Since these should not be negative, we know

a priori that a desirable solution x[opt] will be non-negative (x
[opt]
i ≥ 0 for i = 1 : n).

Utilizing this information, the projection of solutions to ensure non-negativity pro-

vides a valuable additional source of regularization for imaging problems. Fortunately,

as will be discussed later, for the methods presented in this thesis projection can be

implemented relatively easily and provide additional regularization without compro-

mising rate of convergence or quality of the solution. For these reasons, projection
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stands out as a viable option for image deblurring problems.

1.5 Regularization Parameters and the Discrep-

ancy Principle

Having established the existence of a k[opt], the next step is to locate the iteration at

which it occurs, i.e. where the calculated solution x[k] is closest to xtrue. This itera-

tion index is known as a regularization parameter. Unfortunately, a flawless technique

for choosing the ideal stopping parameters for general problems does not exist. In-

stead, there exist multiple methods which under certain assumptions tend to produce

satisfactory solutions. These methods typically fall into two categories: methods

based on knowledge about the error in the regularized solution and methods based

on the analysis of the system [9]. For the experiments and tests in this paper, we will

use an error-based regularization parameter known as the discrepancy principle. To

introduce the discrepancy principle, it is first necessary to reference the least-squares

form of the problem given in equation (1.5). First impulses would suggest iterat-

ing until the residual becomes tiny, that is until ‖b−Ax‖22 ≈ 0. But, as was the

case with straightforward inverse solution, this represents a naive approach. Instead,

notice that rearranging equation (1.1) gives b−Axtrue = n. It follows that a desir-

able solution to the least squares problem above does not solve ‖b−Ax‖22 = 0, but

rather a desirable solution would give ‖b−Ax‖22 ≈ ‖n‖22. This idea forms the basis

of the discrepancy principle. The discrepancy principle determines the regularization

parameter by the following criterion:

Choose the largest k such that ‖b−Ax[k]‖22 ≥ δ‖n‖22
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where 0 < δ ≤ 1 is a weighting parameter used to counteract the discrepancy princi-

ple’s tendency to stop after too few iterations. Like all methods that choose regular-

ization parameters, the discrepancy principle has strengths and weaknesses. Often, it

is favored due to its simplicity and relative ease in implementation. However, prob-

lems in imaging tend to be sensitive to the accuracy of ‖n‖22, and the discrepancy

principle can provide errant results in cases where a good estimate of the error is not

known [9].
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Chapter 2

Methods

The following section introduces the four methods that are implemented for the ex-

periments in this thesis. First, the standard successive over-relaxation (SOR) method

is presented as a baseline method for comparison. This method was chosen due to

its relative simplicity as well as its frequent use as a commonly presented iterative

method in multiple texts and papers [7],[6],[18]. Subsequently, three projected it-

erative methods are presented: projected SOR, projected Landweber method, and

interior point gradient method. We note that this thesis does not consider conjugate

gradient type methods often implemented for image deblurring due to the nontrivi-

ality of incorporating non-negativity constraints.

2.1 Successive Over-Relaxation

Successive over-relaxation is a commonly implemented stationary iterative method,

derived as a weighted variation of the Gauss-Seidel method [7]. It is based on the

matrix splitting A = L+D+U where L is strictly lower triangular, D is diagonal,

andU is strictly upper triangular. Frequently, SOR is applied to the normal equations

ATAx = ATb with the splitting ATA = L+D+ LT. Using this splitting, we can
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derive the following iteration:

x[k+1] = (D+ ωL)−1[(1− ω)D− ωLT]x[k] + ω(D+ ωL)−1ATb

(D+ ωL)x[k+1] = [D− ωD+ ωL− ωL− ωLT]x[k] + ωATb

= [(D+ ωL)− ω(L+D+ LT)]x[k] + ωATb

= [(D+ ωL)− ω(ATA)]x[k] + ωATb

= (D+ ωL)x[k] − ω(ATA)x[k] + ωATb

x[k+1] = x[k] + ω(D+ ωL)−1AT(b−Ax[k]) (2.1)

where ω is a weighting parameter. For general convergence to be possible, 0 < ω < 2

must hold. Additionally, it can be proven that ω in this interval is necessary and

suffices for convergence in the case of a symmetric positive definite coefficient matrix

[7]. This is particularly relevant in the case of the normal equations, in which if A

is full rank, then ATA is symmetric positive definite (xTATAx > 0 for any x 6= 0).

In reference to terminology, note that although the name SOR stands for successive

over-relaxation, ω < 1 is in fact under-relaxation while 1 < ω is over-relaxation.

This distinction will prove useful in later discussions of the experimental results and

optimal ω selection.

It also often useful to view SOR applied to the normal equations in the following

form, written component-wise:

(D+ ωL)x
[k+1]
i = ((1− ω)D− ωLT)x

[k]
i + ωb̃i

ãiix
[k+1]
i + ω

i−1∑

j=1

ãijx
[k+1]
j = (1− ω)ãiix

[k]
i − ω

n∑

j=i+1

ãijx
[k]
j + ωb̃i
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and thus,

x
[k+1]
i = (1− ω)x

[k]
i +

ω

ãii

[b̃i −
i−1∑

j=1

ãijx
[k+1]
j −

n∑

j=i+1

ãijx
[k]
j ] (2.2)

We remark that the matrix form of the iteration is useful for analysis purposes, while

the component-wise form is used for efficient implementation. It should be noted that

for efficient implementations of SOR, ATA and ATb need not be computed explicitly

[5]. At this point, it is useful to make some pertinent remarks as to the cost of the

SOR method. Note that by counting the multiplicative and additive operations in

equation (2.2) it is easily observable that the cost of each SOR iteration is at most

n2. However, in image deblurring problems, matrix sparsity often makes the cost per

iteration significantly less. This characteristic along with its relative simplicity, makes

SOR a useful measuring stick by which other iterative methods for image deblurring

can be judged.

2.2 Projected SOR

Projected successive over-relaxation (SOR+) follows simply from the unprojected

method, and can be implemented with minimum additional work. Calculations for

each step are identical to those in unprojected SOR, and the only addition involves

checking each calculated xi for its sign after the calculation of (2.2). If xi is negative,

it is set to zero; otherwise, all calculations are identical to the unprojected SOR

method.

After implementation, the next logical concern about projected SOR pertains to

its cost and convergence. Checking for negativity introduces no new operations, and

consequently the cost per iteration is identical to that of SOR. Despite the relative
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ease of implementing projected SOR, detailed analysis of the relaxation parameter

ω and the convergence rate proves to be much more difficult than in the standard

case. Fortunately, it is known that projected SOR, like unprojected SOR, converges

for 0 < ω < 2 [6],[18].

Projected SOR can be used in a number of applications. Cryer proposed pro-

jected SOR as a means for solving the quadratic programming problem: maximize

f(x) = bTx− (xTAx)/2 subject to the constraint x ≥ 0 [2],[6]. This equation can

be used to approximate the solution in the case of solving free boundary problems

for journal bearings using Christopherson’s method and also in the linear comple-

mentarity problem. It should be noted in both of these cases that the matrix A is

often large and sparse. This suggests that projected SOR may be useful in the case

of image deblurring due to the known non-negativity of solutions and the size and

frequent sparsity of the matrix A in these problems.

2.3 Projected Landweber Method

Projected Landweber method involves attaching non-negativity constraints to a gen-

eral Landweber iteration. The Landweber method is a simple iterative scheme com-

monly applied to find the solutions to least squares problems [4]. It is presented in

a number of texts as a fundamental example of a stationary iterative methods and

is employed in various capacities including seismic topography and image deblurring

[3] [4], [9], [15]. A general Landweber iteration takes the form:

x[k+1] = x[k] + ωAT(b−Ax[k]) (2.3)



18

where ω is a weighting parameter. Convergence analysis shows that standard Landwe-

ber iterations converge for 0 < ω < 2‖ATA‖−1
2 when A is full rank [9]. We also

remark that several iterative methods exist which are similar to the basic Landweber

iteration, notably Cimmino’s method [3].

Similarly to projected SOR, implementing a non-negativity constraint on the

Landweber method proves relatively simple. However, unlike projected SOR, where

non-negativity was enforced on each xi within the iteration, the Landweber method

completes each iteration then checks the entire vector x[k+1], changing negative en-

tries to zero. Fortunately, as was the case with SOR, the addition of projection

to the Landweber method does not change the criteria for convergence and 0 < ω <

2‖ATA‖−1
2 suffices once again [15]. Also, implementing the non-negativity constraint

introduces no multiplicative or additive operations, keeping the costs of the projected

Landweber iteration comparable with those of the regular iteration.

2.4 Interior-Point Gradient Method

The final method introduced for this thesis is the interior-point gradient method

(IPGM), a scaled gradient descent method for non-negative problems such as occur

in image deblurring [11]. Implementation of the IPGM algorithm is slightly more

complicated than either SOR or Landweber, where given x[0] > 0, each iteration is

calculated by the following algorithm [11]:

Step 1 Compute p[k] = −d[k] ◦ ∇q[k] (◦ denotes component-wise multi-

plication), where∇q[k] = ATAx[k] −ATb and d
[k]
i = x

[k]
i /(ATAx[k])i

for i = 1 : n.

Step 2 Choose τk ∈ [τ,1) and let αk = min(τkα̂k, α
∗
k), where

α̂k = max(α : xk + αp[k] ≥ 0) and α∗
k = −(p[k])T∇q[k]/p[k])TATAp[k].
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Step 3 Set x[k+1] = x[k] + αkp
[k].

The τ parameter serves as a weighting that measures the maximum step size of a

given iteration. It can be shown that IPGM converges for 0 < τ < 1, and a detailed

proof of this convergence can be found in Merritt and Zhang’s paper on the algorithm

[11]. Like the projected Landweber and projected SOR methods, the IPGM method

also utilizes projection. This adds slightly more regularization to the solution and

suggests IPGM’s applicability to image deblurring problems. The cost of the IPGM,

while slightly higher than either of the SOR methods or projected Landweber, is still

of order n2 per iteration.
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Chapter 3

Filtering Properties

We mentioned in the discussion of the mathematical background that several

iterative methods display inherent filtering behavior. This characteristic enables suc-

cessive approximate solutions obtained by these methods to automatically filter out

portions of the solution corresponding to smaller singular values σi and the corre-

sponding oscillatory vi vectors which pollute the solution. For the basic Landweber

iteration, this inherent filtering is easily observable and applies also in the case of the

projected method. The analysis of the filtering behavior for the SOR method is not

straightforward, but rather instead the possible filtering will be discussed in the form

of the symmetric SOR method (SSOR). We remark that analysis of the behavior of

IPGM is significantly more difficult and is not attempted in this thesis.

3.1 Filtering in Landweber

From equation (2.3), it can be seen that the Landweber method can be rearranged

to the basic iteration,

x[k+1] = ωATb+ (I− ωATA)x[k]
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It then follows that if we use the initial solution x[0] = 0, then each successive iteration

yields,

x[1] = ωATb

x[2] = ω[I+ (I− ωATA)]ATb

x[3] = ω[I+ (I− ωATA) + (I− ωATA)2]ATb (3.1)

and in general,

x[k+1] = Pk(A
TA)ATb (3.2)

where Pk(λ) is a polynomial given by the expression:

Pk(λ) = ω[1 + (1− ωλ) + (1− ωλ)2 + · · ·+ (1− ωλ)k]

=
k∑

j=0

ω(1− ωλ)j (3.3)

Using our knowledge of geometric series it can easily be shown that equation (3.3)

simplifies to the expression:

λPk(λ) = 1− (1− ωλ)k+1 (3.4)

Next, we use the singular value decomposition of ATA. Firstly, it should be noted

that due to the orthogonality of U and V,

ATA = VΣTUTUΣVT = VΣTΣVT
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and furthermore,

(ATA)k = V(ΣTΣ)kVT

Using this knowledge, we can then write any kth degree polynomial Pk(A
TA) in the

following form:

Pk(A
TA) = V[Pk(Σ

TΣ)]VT (3.5)

Combining equations (3.2),(3.4) and (3.5), we finally see that the standard Landweber

iteration can be written as the following,

x[k+1] = VPk(Σ
TΣ)VTATb

= VPk(Σ
TΣ)ΣUTb

=
n∑

i=1

σiPk(σ
2
i )(u

T
i b)vi

=
n∑

i=1

σ2
i Pk(σ

2
i )
uT
i b

σi

vi

=
n∑

i=1

[1− (1− ωσ2
i )

k+1]
uT
i b

σi

vi (3.6)

Comparing equation (3.6) with equation (1.6), we see that the Landweber method

provides filtering within each iteration, with the iteration dependent filter factors,

φ
[k]
i = 1− (1− ωσ2

i )
k+1 (3.7)

Observe that, for instance, if we set ω = 1 and scale the problem such that 1 = σ1 ≥
σ2 ≥ · · · ≥ σn ≈ 0, then for large σi, φ

[k]
i ≈ 1, and for small σi, φ

[k]
i ≈ 0. Thus,

the Landweber method filters out components of the solution corresponding to small

singular values. This avoids the pollution of the solution by inverted noise and allows

the method to converge quickly.
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3.2 SOR Filtering

Next, we consider SOR. First, notice from equation (2.1) that the standard SOR

iteration can be rewritten as:

x[k+1] = x[k] +M−1AT(b−Ax[k]) (3.8)

where M = 1
ω
D+ L and ATA = L+D+ LT as discussed in section 2.1. Unfortu-

nately, it is difficult to analyze the filtering properties of the SOR iteration in this

form. One possible solution would be to view SOR as a preconditioned form of the

Landweber iteration, but this in still difficult because the matrix M is not symmetric

positive definite. So, rather than the standard SOR iteration, we will analyze the

filtering properties of the symmetric SOR method (SSOR). In this case the matrix

M takes the following form:

M =
ω

2− ω
(
1

ω
D+ L)D−1(

1

ω
D+ L)T

If ATA is symmetric positive definite and 0 < ω < 2, then M is symmetric positive

definite [12]. This fact allows us to make the following observations:

• If ATA is symmetric positive definite, then the diagonal entries of

D = diag(ATA) are all positive.

• Let R =
√

ω
2−ω

D−1/2( 1
ω
D+ L)T, where D1/2 = diag(

√
d11,

√
d22, · · · ,

√
dnn).

Then M = RTR is the Cholesky factorization of M.
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Applying these observations to the iteration in equation (3.8), we get

x[k+1] = x[k] + (RTR)−1(ATb−ATAx[k])

= x[k] +R−1R−T(ATb−ATAx[k])

Rx[k+1] = Rx[k] + (R−TATb−R−TATAx[k])

= Rx[k] + (R−TATb−R−TATAR−1Rx[k]) (3.9)

If we let Â = AR−1 and x̂ = Rx[k], then equation (3.9) is in the form of the basic

Landweber iteration:

x̂[k+1] = x̂[k] + (ÂTb− ÂTÂx̂[k]) (3.10)

Thus, the convergence and filtering associated with the SSOR iteration depends on

the singular values of the matrix Â = AR−1, and follows the same analysis applied

in the previous subsection to the Landweber method. It should be noted that each

SSOR iteration costs twice as much as a regular SOR or projected SOR iteration,

and although convergence is nearly twice as fast this is significant enough to deter us

from implementing SSOR for this thesis [12]. Also, whereas there has been previous

analysis on the behavior of the SOR and projected SOR methods in the case of ill-

posed problems, we do not know of any such analysis for SSOR. Instead, keeping in

mind the filtering properties of SSOR analyzed in this section, we will observe from the

semi-convergent behavior of the results for SOR and projected SOR in the subsequent

chapters that SOR and projected SOR also exhibit filtering in their solutions.
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Chapter 4

Numerical Experiments

In order to evaluate the four presented methods in the context of image deblurring,

we perform selected numerical experiments. Specific topics for testing include the

determination of optimal weighting parameter, the effect of random noise level on the

effectiveness of each method, number of iterations required for an optimal solution,

and general remarks as to the resultant usefulness of each method.

Experiments used the blur function from the Regularization Tools package for

Matlab [8]. The blur function is a test problem which simulates the deblurring

of images by atmospheric turbulence, modeled by a Gaussian point-spread function.

[A,b,x] = blur(n,band,sigma) results in anAmatrix which is a sparse, symmetric

(n2 × n2) block Toeplitz matrix with Toeplitz blocks. The band parameter controls

the bandwidth while sigma controls the shape of the Gaussian point-spread function.

Typically, experiments were run for blur(256,3,0.7), where the chosen band and

sigma values were the default values of the function.

In addition to the system created by the blur, random noise was added to the

system to create a realistic image deblurring problem. The noise added to the system

takes the form

noise =
nlevel ∗ ‖btrue‖2 ∗ n

‖n‖2
where n/‖n‖2 is a normalized vector of random noise values (chosen from a normal

distribution with mean = 0 and variance = 1), and nlevel amounts to a percentage
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value of btrue used to weight the noise for a given problem. Once the selected amount

of noise has been selected and added to btrue, we are ready to run experiments with

the blurred image.

4.1 Parameters

The first set of experiments were designed to determine good weighting parameters

for each method within the context of the test problem. For SOR and projected

SOR this constituted testing various 0 < ω < 2. For simplicity and comparison

projected Landweber was also run for the same ω parameter as SOR and projected

SOR rather than explicitly calculating 2‖ATA‖−1
2 . The τ for IPGM was chosen and

tested within the dictated range of convergence and held constant throughout each

full run of the method rather than using the optional reselection of τ detailed in step

2 of the algorithm. Figure 4.1 shows the results for each method. Note that for the

graphs in figure 4.1 and all subsequent graphs, the x axis represents the iteration of

each method, while the y axis measures the relative error of the solution given by

‖xk−xtrue‖
‖xtrue‖ .

It is easily observed that the best results for SOR and projected SOR came for

ω ¿ 1, or severe under-relaxation of the system. Although this result seems coun-

terintuitive on the surface, other tests have found similar results in the application

of both projected and unprojected SOR methods to imaging problems [18]. On the

other hand, the projected Landweber method does not exhibit this trend, instead

tending to obtain the best solutions within the fewest iterations for ω > 1. Similarly,

IPGM achieves its most rapid convergence and minimum error for τ values nearer

to the upper bound required for convergence. Using the results obtained, preferable

parameters were chosen for each method, and will be used throughout the rest of the
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Figure 4.1: Relative error versus iteration for different parameter values. The relative
error of the chosen optimum parameter is plotted with the solid line, displayed along
with a few other tested parameters for the sake of comparison.
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thesis when running each method.

4.2 Noise Level

After testing each method to determine an optimal weighting parameter, the next

area of concern is the effect of noise on the quality of solution. For this, the methods

were first compared for the effect of different concentrations of noise on the solution

using a single method (Figure 4.2), and second to test each method versus the others

for different levels of noise (Figure 4.3).

As would be expected, each method obtained poorer results for higher noise values.

Despite this seemingly intuitive result, useful observations can be drawn. Firstly,

increased noise value tended to make the semi-convergence more severe. For 10%

percent noise, SOR, projected SOR, and projected Landweber reached a minimum

relative error after a few iterations, after which the error steeply rose, polluting the

solution. However, it was noticed that the projected methods, particularly projected

SOR and projected Landweber, seem less vulnerable to increased noise than regular

SOR.While regular SOR reaches its minimum relative error after only a few iterations,

it then begins to increasingly worsen at a quicker rate than the projected methods.

This makes the institution of stopping criteria and the location of the iteration k[opt]

much more sensitive, a potentially detrimental characteristic.

Also of interest, while the minimum relative error was poorer for higher noise

levels, IPGM did not exhibit semi-convergence. This suggests that the method has

some extra regularization, a characteristic which may be of interest if the stopping

criteria are volatile or difficult to determine.

The second set of tests compared each method’s minimum error for multiple se-

lected noise values. The results in Figure 4.2 show that the projected SOR and
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Figure 4.2: Relative error and semi-convergence as affected by noise levels.
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Figure 4.3: Relative error for each method for varying noise levels.
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Landweber methods tend to have the minimum errors and quickest convergence for

each noise value. However, projected SOR tends to achieve this minimum in fewer

iterations, making it preferable in terms of cost. This tends to be a common character-

istic of both projected and un-projected Landweber method, and other literature has

suggested the use of pre-conditioning to accelerate convergence and increase projected

Landweber method’s usefulness in the field of image deblurring [15]. We remark that

projected SOR can be viewed as a preconditioned version of projected Landweber.

4.3 Stopping Criterion

The final experiment run was to determine suitable weighting parameter δ for the

discrepancy principle to establish effective stopping criteria. Specifically, the exper-

iments were designed to test the tendency of each method to over-smooth (stop too

early) or under-smooth (stop too late) the reconstructed image. To accomplish this,

each method was tested on the blur function using ten percent random noise and

various levels of image convolution, produced by increasing the bandwidth and dis-

tribution of the PSF.

In general, using δ = 1 provided encouraging results for all methods. Interestingly,

SOR produced slightly under-smoothed solutions while projected SOR displayed a

tendency to over-smooth. However, it is notable that in most cases, particularly

for simulations with increased blur, the projected SOR solution method stopped at a

much lower relative error in fewer iterations. This suggests that for very blurry images,

projected SOR presents itself as a more viable alternative to SOR in terms of both

quality and cost. Similarly, projected Landweber produced slightly over-smoothed

solutions, but notably required fewer iterations to achieve its minimum relative error

than either SOR or projected SOR. This characteristic could prove useful to minimize
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Figure 4.4: These graphs display the effectiveness of the discrepancy principle as the
stopping criterion for each method. Each graph displays the results for the individual
method for δ = 1, 10% noise, and varying levels of blur.
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Figure 4.5: For problems with smaller bandwidth, δ = 0.1 proved ineffective and led to
significant under-smoothing of the solution. However, as bandwidth increased, δ = 0.1
proved useful, helping to correct over-smoothing while avoiding under-smoothing the
solution. This is particularly observable for the projected SOR method.

costs or in choosing a stopping iteration in cases when a good estimate of the noise

is unknown. IPGM also over-smoothed, and provided comparatively poor results in

the case of slightly blurred images, but displayed some potentially beneficial traits

for the tests with increased blur. In cases of more blurred problems, IPGM tended

to stop after fewer iterations while the relative error of the solutions increased only

moderately. This suggests that for highly blurred images, IPGM may be a viable

option in terms of cost and solution quality.

In order to alleviate the effects of over-smoothing on projected SOR and projected

Landweber methods, further tests were run for differing values of δ. Despite IPGM

solutions also being over-smoothed, no tests to limit the over-smoothing were made

due to the already high number of iterations required in many cases and the failure

of the relative error to exhibit semi-convergence. The results of the additional tests

for projected SOR and projected Landweber indicate that δ = 0.1 helped to alleviate
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the over-smoothing of solutions for both methods (see Figure 4.5). Although this im-

provement did not hold for problems with less blur, δ = 0.1 proved effective weighting

for more blurred images and may be useful in many cases.



35

Chapter 5

Experiments on Simulated

Problems

Having established good values for the weighting parameters and discrepancy

principle via experiment as well as experimenting with the effect of noise on each

of the methods, we will test the effectiveness of the methods on simulated problems

using real world images. The two images used are a satellite and an x-ray of a hand

such as might be found in astronomical or medical imaging respectively (see Figures

5.1,5.2). For the tests, both the satellite and x-ray image were tested for the same

type of blur modeled by the blur function. However, to test the effectiveness of each

method, the tests were run on more severely blurred images than used in experiments

for determining parameters, with bandwidth= 12, σ = 2.0 for the PSF, and 10 percent

noise.

5.1 Tests on Real Images

The tests run on the satellite image produced interesting results (see Figure 5.1). It

is easily observed that projected SOR represents an improvement over the regular

SOR method, both in terms of minimum error and reconstruction quality. While

some of this may be due to the under-smoothing of the regular SOR solution, the
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Figure 5.1: The reconstructions of the satellite image after blurring.
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Figure 5.2: The reconstructions of the xray image after blurring.
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Figure 5.3: Comparing the relative error and stopping iteration for both the satellite
and the x-ray image, projected SOR represents a marked improvement on regular
SOR, while projected Landweber and IPGM provide competitive alternatives in terms
of minimizing solution error.

graph of the relative error shows that projected SOR represents a better choice than

its unprojected alternative. Comparing projected SOR to projected Landweber and

IPGM, it is noticeable that both projected Landweber and IPGM produce over-

smoothed solutions while projected SOR produces a more grainy solution. However,

from Figure 5.3 we see that projected SOR stops near to its minimum relative error

and that all three methods stop at comparable relative error values. This suggests that

while all three may provide solutions that are equal in terms of mathematical accuracy,

each may be preferable for different applications depending on the characteristics of

a desirable reconstruction.

Looking at the graph of the relative error for the hand x-ray image, we see an

across the board improvement in the minimum relative error and relative error at the

stopping iteration (see Fig. 5.3). Comparisons between the methods themselves yield

similar results to those for the satellite image, with projected Landweber and IPGM
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attaining the lowest relative errors and taking the fewest iterations, while still pro-

ducing over-smoothed solutions. Projected SOR once again represented a significant

improvement over the regular SOR iteration in terms of cost and quality, but despite

stopping close to its minimum relative error, the projected SOR reconstruction of the

hand x-ray appears over-smoothed and grainy in comparison with the projected SOR

reconstruction of the satellite image. In contrast, the over-smoothed reconstructions

using projected Landweber and IPGM seem to show the joints and finer details of the

image more clearly. This once again suggests one method may be preferable based

on the particular types of images or desired characteristics of the reconstruction.

5.2 Conclusions

The results of the image restoration experiments enable us to make several conclu-

sions about the usefulness of projection for image deblurring. Firstly, both in terms

of the quality of image reconstruction and the relative error of the solution, the pro-

jected methods produced far better, more accurate solutions than the unprojected

SOR method. The projected methods were also preferable in terms of cost, taking

fewer iterations for convergence. This suggests that despite the non-triviality of im-

plementing non-negativity constraints for many methods, projection is a useful and

worthwhile constraint for image deblurring solutions.

With respect to individual methods, projected SOR, projected Landweber, and

IPGM each displayed useful characteristics. In comparison with the other projected

methods tested for this thesis, projected SOR was unique in that it did not over-

smooth solutions. This benefit is slightly counteracted by the increased cost and

higher relative error of the projected SOR solutions, but could prove useful in appli-

cations where over-smoothing needs to be avoided. Also of note, projected SOR’s re-
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construction of both the satellite and hand x-ray images show a lot of high frequency

oscillations. This suggests pollution by the inverted noise, a negative consequence

which may possibly be improved with the implementation of additional regulariza-

tion or filtering.

Projected Landweber produced the best solutions in terms of relative error and

cost, but tended to over-smooth solutions. In order to avoid this over-smoothing,

significantly higher cost would be incurred, decreasing the viability of the method for

practical purposes. One suggested way to avoid this additional cost and increase the

efficiency of the method is pre-conditioning, which would give quicker convergence,

allowing greater regularization within the same number of iterations [15]. It would

be interesting to investigate the SSOR method further as a pre-conditioner for the

projected Landweber method. Projected Landweber also displayed less severe semi-

convergence than projected SOR, suggesting that it may be preferable in instances

with higher noise values or when a good approximation of the noise is unknown.

The IPGM algorithm proved the most robust of the methods implemented for this

thesis, not exhibiting the semi-convergent behavior of the other methods. In the case

of the simulated image deblurring problems, IPGM produced comparable solutions in

terms of relative error, but like projected Landweber tended to over-smooth solutions.

This suggests that, if combined with pre-conditioning or some alternative method for

decreasing the iterations required for better solution, IPGM could prove useful for

problems with large or unknown amounts of noise.

In conclusion, while the implementation of non-negativity can prove non-trivial in

many cases, it represents a logical and useful constraint in image deblurring problems.

In addition, each of the three projected methods in this thesis displayed potential util-

ity for image deblurring, but the choice of a particular method may be determined

by the characteristics of the image, noise, and other characteristics of a given prob-
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lem. Finally, for each of the methods, further work may improve the efficiency and

regularization to improve upon the solutions produced by the projected methods.
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