
	
  

 

Distribution Agreement 
 
In presenting this thesis or dissertation as a partial fulfillment of the requirements for an 
advanced degree from Emory University, I hereby grant to Emory University and its 
agents the non-exclusive license to archive, make accessible, and display my thesis or 
dissertation in whole or in part in all forms of media, now or hereafter known, including 
display on the world wide web.  I understand that I may select some access restrictions as 
part of the online submission of this thesis or dissertation.  I retain all ownership rights to 
the copyright of the thesis or dissertation.  I also retain the right to use in future works 
(such as articles or books) all or part of this thesis or dissertation. 
 
 
 
 
 
 
Signature: 
 
___________________________    _________________ 
William Campbell                  Date 



	
  

 

Prediction Impact Curve: A New Graphical Approach Integrating Intervention Effects in 
the Evaluation of Prediction Model Utility 

 
 
 

By 
 

William Campbell 
Master of Public Health 

 
 

Epidemiology 
 
 
 
 
 
 

_________________________________________  
A. Cecile J.W. Janssens 

Committee Chair 



	
  

 

Prediction Impact Curve: A New Graphical Approach Integrating Intervention Effects in 
the Evaluation of Prediction Model Utility 

 
 
 

By 
 
 

 
William Campbell 

 
B.A., Emory University, 2011 

 
 
 
 
 
 

Thesis Committee Chair:  A. Cecile J.W. Janssens 
 
 
 
 
 
 
 
 
 

An abstract of  
a thesis submitted to the Faculty of the  

Rollins School of Public Health of Emory University 
in partial fulfillment of the requirements for the degree of  

Master of Public Health  
in Epidemiology 

2014 
 



	
  

 

Abstract 

Prediction Impact Curve: A New Graphical Approach Integrating Intervention Effects in 
the Evaluation of Prediction Model Utility 

 
By William Campbell 

B.A., Emory University, 2011 
 
 
 
Traditional measures of model performance generally address discrimination and 

calibration, while novel measures focus on the potential for risk models to change 

medical decisions.   This document first provides a review of current traditional and 

novel model performance measures.  Then, we propose a graphical approach, the 

prediction impact curve, which evaluates the performance of risk models in terms of their 

expected preventive effect in the population.  Using simulated data and estimates from 

the literature, we illustrate how the prediction impact curve is used to estimate the 

expected reduction in events when using a risk model to assign individuals to a 

preventive intervention and how to compare nested risk models.  We apply the prediction 

impact curve to the Atherosclerosis Risk in Communities (ARIC) Study to illustrate its 

application toward primary prevention of coronary heart disease.  We estimated that if the 

ARIC cohort received statin intervention at baseline, 5% of events were expected to be 

prevented when evaluated at a cut-off threshold of 20% predicted risk.  Additionally, we 

estimated that an average of 15% of events were expected to be prevented when 

considering performance across all possible thresholds.  We conclude that the prediction 

impact curve is a useful and intuitive graphical approach for assessing the expected 

performance of risk models and is most beneficial when considered alongside existing 

measures of model performance.  
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CHAPTER I: LITERATURE REVIEW 

Risk models are used to predict individual risk of disease and hold great potential for 

clinical decision making. Current epidemiologic research is continually identifying new 

predictive markers and proposing their integration into existing risk models.  The current 

challenge is evaluating the utility of a new marker when added to a risk model with 

established predictors because strong association between the novel marker and outcome 

does not imply improved performance according to traditional measures. As a result, 

many researchers believe that traditional measurements of model performance are 

insufficient in capturing the utility of an additional risk marker (1, 2). 

 

TRADITIONAL MEASURES OF MODEL PERFORMANCE  

Overall performance measures and goodness-of-fit 

Overall measures of fit are fundamental in assessing model performance and are 

generally implemented during the model selection process.  Goodness-of-fit approaches 

are used to measure the distance between predicted outcomes and observed outcomes, 

with better models having smaller distances between predicted and observed values (3).  

For ordinary least squares (OLS) linear regression, R2 is the most common overall 

performance measure, which is the square of the Pearson correlation coefficient.  

Variations of R2 have been developed for nonlinear regression and generally fall 

under the umbrella of “pseudo R2” measures.  Pseudo R2 measurements can be 

approached in different ways depending on the particular modeling strategy (4, 5).  

Common pseudo R2 measures are often interpreted in terms of the “proportion of 
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explained variation” and as such, pseudo R2 measurements retain much of their 

interpretability when compared to R2 for OLS (6).   

A test of fit can be achieved using deviance values, which is performed on the 

base model and compared to a more complex model (e.g., saturated or fully 

parameterized model).  Another common test of fit is the Pearson χ2 test, which calculates 

the probability of observing a given distance between observed and expected values.  

Overall tests of fit, however, are unlikely to detect small disagreements between the fitted 

model and observed data and should be regarded as preliminary screening tools to reject 

grossly inadequate models (7). 

 

Calibration 

Calibration measures quantify the agreement between predicted probabilities and 

observed outcomes (8).  The main difference between goodness-of-fit and calibration is 

that the former is employed during the model selection process while the latter is an 

assessment of the final model. Calibration can be viewed graphically by plotting 

predictions on the x-axis and observed outcomes on the y-axis.  “Calibration-in-the-large” 

refers to the intercept, a, of the calibration curve, which indicates predictions that are 

systematically too low or too high.  The calibration slope, b, is equal to 1 for a perfectly 

calibrated model and a calibration slope less than 1 suggests an overestimation of model 

coefficients (9).  A common method of calibration for binary outcomes is the Hosmer-

Lemeshow (H-L) statistic, which groups deciles of predictions and compares the mean 

observed outcome against the mean predicted probability for each group (10).   This 

grouping strategy, however, is arbitrary and can be imprecise (11).  
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Discrimination 

An effective risk model will discriminate between those with and without the outcome.  

The most frequently used discrimination measure is the concordance statistic, which is 

equal to the area under the receiver operating characteristic (ROC) curve (AUC).  The 

receiver operating characteristic curve plots sensitivity over ‘1-specificity’ for every 

possible cut-off risk threshold (12).  The number of risk thresholds corresponds to the 

number of unique combinations of predictors in the model that yield unique predicted 

risk scores.  For each unique risk score, the sensitivity is estimated as the proportion of all 

events that are correctly classified by the model and ‘1-specificity’ is the proportion of 

nonevents that are incorrectly classified as events.  Therefore, the ROC can be seen as a 

graphical representation of the tradeoff between true and false positive classifications 

when considering a risk model over all possible thresholds. 

AUC is the integral of the ROC and can be directly estimated from the data.  The 

value of AUC is equal to the probability that the model will assign a higher risk score to a 

randomly chosen event than to a randomly chosen nonevent (13).  However, in clinical 

settings, individuals are never presented in pairs and it can be argued that AUC is not 

clinically relevant (14).   

 

Limitations of AUC   

Current research often judges the performance of risk models solely based on AUC, 

however, this practice is discouraged due to inherent limitations of the measurement.   As 

a rank statistic, AUC is not a function of the actual predicted probabilities. AUC 
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describes how well a model can rank order individuals, however, the probabilities 

themselves may not be useful (15).  For example, a model that predicts a risk of 0.51 for 

all events and 0.50 for all nonevents would achieve perfect discrimination even though 

the probabilities themselves are not indicative of true underlying risk.  Another limitation 

of AUC is that the distribution of risk in the population is not taken into account. That is, 

AUC does not consider the distance between predicted risks of ranked individuals.  

Therefore, a model that can significantly separate low vs. high-risk individuals does not 

yield a higher AUC than a model that can barely separate them.      

 The limitations of AUC are most clear in the context of model selection or when 

contemplating the integration of a novel risk factor into an existing model. The main 

criticism of AUC is that it is unresponsive to strong predictors when compared to 

likelihood- or deviance-based measures of fit.  A novel predictor with a large effect size, 

for example, generally does not cause a large increase in AUC when added to an existing 

model with established predictors.  Cook demonstrates this characteristic using the 

Framingham risk model for cardiovascular disease (CVD) as an illustration (15).   Based 

on likelihood-based ratios, systolic blood pressure (SBP) was found to be the second 

strongest predictor of CVD after age. However, when constructing models with and 

without SBP, the AUC of the model only increased 1% (from 73% to 74%).  Because of 

the relative unresponsiveness of AUC, it is poorly suited for determining inclusion of 

individual predictors.   

 

NOVEL MEASURES OF MODEL PERFORMANCE  

Reclassification measures 
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Limitations of AUC have caused investigators to turn to novel measures of model 

performance, such as reclassification measures. Reclassification measures are a response 

to the fact that AUC, and other traditional measures, do not reflect the model’s ability to 

change clinical decisions.  For example, a novel predictor may cause no change in AUC 

given existing predictors, but it may modify the predicted risks of certain individuals in 

such a way that classifies them into different treatment groups.  Thus, reclassification 

measures attempt to measure the importance of a predictor in terms of how the updated 

model changes treatment decisions. 

The crudest forms of reclassification measures can be calculated from 

classification tables. After grouping predicted risk scores into clinically meaningful 

categories, the investigator can calculate the percentage of individuals that change 

categories due to updating the model.  Measuring the crude change in classification, 

however, is insufficient because it is ambiguous whether the direction of movement is 

appropriate given the individual’s case status.  

 

Net reclassification improvement 

Net reclassification improvement (NRI), proposed by Pencina et al., considers separately 

individuals with and without the outcome of interest (16).  NRI, like other reclassification 

measures, can be viewed as a modification of discrimination measures. NRI requires two 

nested models in which one or more predictors have been added. NRI is evaluated at a 

specific risk threshold and requires the specification of clinically meaningful risk groups 

based on absolute predicted risk.   “Upward” movement is defined as a change to a higher 

risk category based on the updated model and “downward” movement is defined as a 
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change to a lower risk category.  As such, upward movement for events indicates 

improved classification and downward movement implies worse classification (the 

opposite is true for nonevents).   When using sample data to estimate probabilities, NRI 

can be expressed:   

 

  𝑁𝑅𝐼 = 𝑝!",!"!#$% −   𝑝!"#$,!"!#$%   − (𝑝!",!"!#$#!%& −   𝑝!"#$,!"!#$#!%&)         (1) 

 

Where the estimated probability, 𝑝, equals the number of individuals moving in the 

specified direction divided by the total number of events or nonevents, as appropriate.  

NRI can be interpreted as the net sum of improved classification due to updating the 

model. 

 

Integrated discrimination improvement 

The integrated discrimination improvement (IDI) is an extension of NRI that considers 

discrimination across all possible risk thresholds (16).  If IS denotes the integral of 

sensitivity over all possible thresholds and IP denotes the integral of ‘1-specificity’ then 

IDI is defined as follows (see (16) for derivation): 

 

IDI = (ISnew − ISold) − (IPnew − IPold)   (2) 

 

Where ‘new’ signifies the updated model and ‘old’ signifies the original model.  Since an 

integral over the interval (0, 1) signifies an average, IDI can be interpreted as the 

difference between increased average sensitivity and increased average ‘1-specificity’ for 
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the original and updated models.  IDI has been shown to be equivalent to the difference 

in discrimination slopes of two models, and to the difference in Pearson R2 values (2).  

The popularity of NRI and IDI is due in part because the metrics are more 

responsive when evaluating the impact of novel predictors.  This becomes more clear 

when IDI is examined alongside change in AUC.  Change in AUC and IDI can both be 

viewed as average sensitivities adjusted for the undesirable increase in ‘1-specificity’ that 

occurs during classification of individuals. AUC adjusts for ‘1-specificity’ by weighting 

the sensitivities at each risk threshold with the corresponding derivatives of ‘1-

specificity’. IDI, however, adjusts for ‘1-specificity’ by means of subtraction, which 

accounts for the increased responsiveness of IDI when compared to change in AUC (11).  

 

Limitations of NRI and IDI 

Net reclassification improvement and integrated discrimination improvement were 

quickly adopted, but more research is needed to evaluate and refine the measurements. 

Pepe points out that NRI and IDI do not measure the size of movement between 

categories (14).  A few large upward movements, for example, are indistinguishable from 

a medium number of small upward movements.  A scatterplot of ‘new’ verses ‘old’ 

predictions, however, can reveal these characteristics.  The author also notes that certain 

classifications may be more important than others. Being correctly classified into a high-

risk category, for example, may be of more importance than being classified into a 

medium-risk category.  NRI, however, treats all reclassifications equivalently if 

movement occurs in the correct direction.  
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A second limitation of reclassification measures is that “correct” classification is 

determined based on observed case status as opposed to true underlying risk (which is 

impossible to measure).   In theory, the correctness of classification for an individual 

should be based on movement towards a category that better reflects his or her true 

underlying risk (17).   NRI and IDI, however, define correct classification as movement 

toward a category that better reflects the individual’s observed outcome.  Therefore, 

“correct” classification, as proposed by Pencina, et al., may in reality be incorrect when 

considering true underlying risk.  

A third limitation of reclassification measures is that improved classification does 

not necessarily imply improvement in model performance when compared to traditional 

measures (14).  The amount of reclassification is determined in part by the choice in risk 

categories as well as correlation between risk predictors (18).  As mentioned earlier, 

reclassification measures are often used because of their responsiveness to changes in the 

base model, however, this responsiveness also has the potential to yield overly optimistic 

results compared to other measures (17).  Lastly, reclassification measures depend on the 

existence of clinically meaningful risk categories, which are rarely available or agreed 

upon.     

 

Traditional decision analysis 

Decision analysis addresses the fact that AUC, sensitivity, and specificity do not directly 

measure the clinical value of the model. AUC is concerned with predictive accuracy of 

the model and is weighted against the consequence of false positive classification.  AUC 

does not account for additional harms, however, such as false negative classification and 
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cost of the intervention.  Traditional decision analysis generally cannot be accomplished 

without gathering additional data, such as cost of the intervention or quality adjusted life-

years saved (19).  Typically, decision analysis requires a binary outcome (or 

dichotomization) in order to calculate rates of negative and positive classifications.   

 

Decision curve analysis and net benefit  

Decision curve analysis was developed by Vickers, et al. in order to quantify model 

performance in clinically appropriate terms (19).  Decision curve analysis compensates 

for the limitations of traditional decision analysis by using the theoretical relationship 

between benefits and harms rather than collecting additional data.  The relationship 

between benefits and harms requires the specification of a threshold of predicted risk (pt) 

at which the benefits of treatment are equal to the harms from the perspective of the 

analyst or clinician.  

The net benefit of using a risk model is calculated as follows (see (19) for full 

explanation): 

 

𝑁𝑒𝑡  𝐵𝑒𝑛𝑒𝑓𝑖𝑡 = 𝑇𝑃𝑅 − 𝐹𝑃𝑅   !!
!!!!

      (3) 

 

where TPR denotes the proportion of true positives, FPR denotes the proportion of false 

positives, and pt signifies the threshold of evaluation.  FPR is subtracted from TPR and 

weighted by the relative harm of a false positive and false negative classification.  To 

construct a decision curve, pt is first specified at a value of predicted risk where the 

benefits and harms of intervention are perceived to be equal.  Second, net benefit is 
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calculated and recorded.  Third, the analyst varies pt and records resulting values of net 

benefit.  Lastly, the analyst plots values of net benefit over pt and compares the curve to 

hypothetical situations in which all or none of the patients are treated.  The resulting 

graph shows the estimated values of net benefit across multiple values of pt.   

 

Limitations of decision curve analysis 

Decision curve analysis has not been widely adopted in prediction research due in part to 

its inherent limitations and assumptions.  First, determining pt requires a comprehensive 

understanding of the benefits and harms of the intervention.  Second, decision curve 

analysis assumes that the relationship between benefits and harms is approximately equal 

for all individuals.  And third, predicted probabilities are assumed to be independent of pt 

(19).  
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ABSTRACT 
 
Traditional measures of model performance generally address discrimination and 

calibration, while novel measures focus on the potential for risk models to change 

medical decisions.   We propose a graphical approach, the prediction impact curve, which 

evaluates the performance of risk models in terms of their expected preventive effect in 

the population.  Using simulated data and estimates from the literature, we illustrate how 

the prediction impact curve is used to estimate the expected reduction in events when 

using a risk model to assign individuals to a preventive intervention and how to compare 

nested risk models.  We apply the prediction impact curve to the Atherosclerosis Risk in 

Communities (ARIC) Study to illustrate its application toward primary prevention of 

coronary heart disease.  We estimated that if the ARIC cohort received statin intervention 

at baseline, 5% of events were expected to be prevented when evaluated at a cut-off 

threshold of 20% predicted risk.  Additionally, we estimated that an average of 15% of 

events were expected to be prevented when considering performance across all possible 

thresholds.  We conclude that the prediction impact curve is a useful and intuitive 

graphical approach for assessing the expected performance of risk models and is most 

beneficial when considered alongside existing measures of model performance.  
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INTRODUCTION 

The performance of risk models is evaluated in terms of clinical validity and clinical 

utility. To assess the clinical validity and utility of risk models, several traditional and 

novel measurements are used (see (20) for a review). The most frequently used measure 

of clinical validity is the area under the receiver operating characteristic (ROC) curve 

(AUC or c-statistic) (12).  AUC quantifies the ability of a risk model to discriminate 

between individuals who will or will not manifest the outcome of interest, and the 

increase in AUC between two nested models indicates the improvement in discrimination 

offered by additional predictors. Although widely used, the measure is criticized for 

unresponsiveness when used to detect the added value of major risk factors (1).  

Reclassification measures were proposed in order to quantify the influence of an 

updated model on treatment decisions (16). A commonly reported measure of 

reclassification, net reclassification improvement (NRI), considers reclassification 

separately for individuals with and without the outcome. NRI requires the formation of 

clinically meaningful risk categories based on absolute predicted risk and “upward” 

movement is defined as a change to a higher risk category and “downward” movement is 

defined as a change to a lower risk category.  As such, upward movement for events 

indicates improved classification and downward movement implies worse classification 

(the opposite is true for nonevents).  NRI can then be interpreted as the net sum of 

improved classification due to updating the model.   

 AUC and NRI are widely reported summary statistics, although these measures 

can lack intuitive interpretations. We propose a new curve, the prediction impact curve 
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(PIC), which is intended as an intuitive graph of the expected preventive effect that 

results from using a risk model to assign at-risk individuals to an intervention.   

In this paper, we illustrate how the PIC is constructed, demonstrate its 

interpretation, and propose to calculate the area underneath as a summary statistic. 

Second, we investigate the properties of the area under the prediction impact curve 

(AUPIC) in relation to its determinants.  Lastly, we apply the PIC to data from the 

Atherosclerosis Risk in Communities (ARIC) Study and illustrate how this graphical 

approach can be used to calculate the expected reduction in coronary heart disease (CHD) 

events when using a risk model to assign statin treatment at baseline.  

 

MATERIALS AND METHODS 

Constructing the prediction impact curve 

The prediction impact curve plots the size of the risk group against event reduction, 

which is the percentage of events expected to be prevented when the intervention is given 

to the risk group (Figure 1).  Event reduction is obtained for every possible risk group 

size, which is the percentage of total individuals with predicted risks that are higher than 

the risk threshold. The smallest increment in risk group size is achieved by adding the 

next ranked individual to the risk group (individuals are ranked by decreasing predicted 

risk). Three parameters must be considered in order to construct the prediction impact 

curve: the sensitivity of the risk model, the preventive fraction (PF) of the intervention, 

and the event incidence in the population.  

First, the sensitivity for a given threshold is the proportion of events that the risk 

model correctly classifies as being in the risk group. When the entire risk group receives 
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the intervention, the sensitivity is also interpreted as the proportion of events that is 

assigned to the intervention.  

Second, the preventive fraction is the proportion of events expected to be 

prevented by the intervention (21). PF is estimated as 1-RR, where RR is the risk ratio 

obtained from, e.g., randomized controlled trials (RCT) that investigated the intervention 

effect. Note that the choice of RCT implicitly dictates which treatment is assumed for the 

individuals that are not selected for the risk group, which may be alternative intervention, 

usual care, or no intervention. Event reduction is the product of PF and sensitivity for a 

given risk group size. PF is assumed to be independent of risk and remains constant 

across risk group sizes.  

Third, event incidence affects the PIC because it limits event reduction when the 

size of the risk group is smaller than the percentage of individuals that will develop the 

disease. Even a perfect model can only reach maximum event reduction when the 

percentage of individuals assigned to the intervention is equal to or larger than the event 

incidence (upper boundary in Figure 1).  In Figure 1, for example, when the size of the 

risk group was 10%, the perfect model could only achieve 10% event reduction even 

though the PF was 0.20.   

 

Quantifying the area under the prediction impact curve 

The area under the prediction impact curve can be estimated from existing data by 

averaging the sensitivities for all possible risk group sizes and multiplying by the 

preventive fraction. 
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                            𝐴𝑈𝑃𝐼𝐶     =    !"
!
∗ 𝑃𝐹                                         (4) 

 

Where Se denotes the sensitivity for a given risk group size, PF denotes the preventive 

fraction associated with the intervention, and the denominator is represented by n because 

the total number of risk group sizes is equal to the number of individuals in the 

population.    

It is necessary to consider the theoretical minimum and maximum AUPIC for a 

given scenario. The minimum AUPIC is the area under the PIC had no risk model been 

used (AUC=0.5, diagonal line in Figure 1) and is equal to PF divided by 2. The 

maximum AUPIC is the area under the PIC corresponding to a perfect model and is 

determined by event incidence and PF: 

 

𝐴𝑈𝑃𝐼𝐶!"# = 𝑃𝐹 −     !"#$%&"#&∗!"    
!

                              (5) 

 

Simulated data 

To investigate the properties of the prediction impact curve, we used a simulation method 

that allowed us to systematically vary all relevant parameters. To construct simulated 

datasets, we adopted a modeling procedure that is described in detail elsewhere (22), and 

for which the function is available in the R package PredictABEL (23). This procedure 

was originally created for simulating a dataset containing individual genotype data, but 

can be used to obtain risk data of any kind. It requires the specification of four 

parameters: frequencies and ORs of the predictors, population size, and event incidence. 

In order to obtain the desired AUC, we varied OR and frequencies of the predictors; that 
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is, we added as many predictors to the risk model until the AUC reached the predefined 

value.  

 

Analyses   

To demonstrate the interpretation of prediction impact curves, a scenario was simulated 

for a population of 100,000 individuals in which event incidence was specified at 20% 

and the hypothetical intervention had a PF of 0.20. Prediction impact curves 

corresponded to two risk models: one with AUC of 0.65 and another with improved AUC 

of 0.75.  The curves were interpreted and compared using various approaches.   

 To further investigate the effects of event incidence, PF, and AUC on the 

prediction impact curve, four scenarios (a, b, c, and d) were simulated, using populations 

of 100,000 individuals, that systematically varied the parameters of interest. Scenarios a 

and b considered a hypothetical intervention with PF of 0.20 and discordant event 

incidences (10% and 40%, respectively), whereas scenarios c and d considered an 

intervention with PF of 0.60 and discordant event incidences (10% and 40%, 

respectively).  Four prediction impact curves were plotted for each scenario, which 

corresponded to risk models with varying AUC (0.60-0.90).  The AUPIC was calculated 

for all prediction impact curves and trends were reported. 

 

Illustration for prevention of coronary heart disease 

In order to illustrate a practical application, we applied the prediction impact curve to 

data originating from the Atherosclerosis Risk in Communities (ARIC) Study.  The 

ARIC Study is a prospective study of cardiovascular disease in a cohort of 15,792 
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individuals sampled from four U.S. communities in 1987-1989.  Follow-up was 

conducted through 1998, for a median of 10.2 years.  The sample consisted of 45-64 

year-old men and women who underwent three follow-up examinations in 1990-1992, 

1993-1995, and 1996-1995.   

 A 10-year risk model for CHD was derived from these data by Chambless, et al., 

and included the following main predictors:  age, total cholesterol, HDL cholesterol, 

blood pressure, and smoking (24). Predicted risks for individuals were obtained from sex-

race-specific Cox regression models.  A CHD event was defined in detail by Chambless, 

et al. and can be simplified as an individual that experienced myocardial infarction or 

CHD related death (see (24) for a full review of event ascertainment).   

All individuals with missing outcome or predicted risk were excluded, which 

included those with missing values for predictors and those with preexisting CHD at 

baseline. Our illustration concerned the potential effect of statin treatment on the ARIC 

cohort if prescribed at baseline, which has a PF of 0.20 (RR=0.80) according to clinical 

trials (25).  Because of this, we further excluded individuals that used statins prior to 

baseline or follow-up visits. Outcomes and predicted risks from the resulting population 

were used to construct the PIC and calculate the AUPIC.   Due to the unavailability of an 

established cut-off threshold for this model, we chose an arbitrary threshold of 20% 

predicted risk at which to interpret the curve.   

 

RESULTS 

Interpreting the prediction impact curve 



	
  

 

19 

The prediction impact curve indicates the event reduction that is achieved when a certain 

percentage of the population receives the intervention, and vice versa. Figure 2 reflects a 

simulated scenario in which event incidence was specified at 20% and the hypothetical 

intervention had a PF of 0.20.  First consider the PIC corresponding to the risk model 

with AUC of 0.65 (solid curve).  Figure 2 shows that when the size of the risk group 

comprised 20% of the population, the expected event reduction was 7%. When no risk 

model was used, meaning that a random 20% of individuals received the intervention, the 

expected event reduction was 4% and when a perfect model was used, the expected event 

reduction was 20%. Thus, using the risk model reduced 3% more events than using no 

model. Alternatively, if the aim were to reduce 7% of events, 20% of the population 

needed treatment when using the model compared to 34% when no model was used.  

The PIC can also be used to quantify the change in event reduction that results 

from adding predictors to an existing model. Figure 2 shows that increasing the AUC 

from 0.65 to 0.75 led to an expected 2% increase in event reduction (from 7% to 9%) 

when the size of the risk group was 20%. Alternatively, if the aim were to reduce 7% of 

events, 7% fewer people (20% versus 13%) needed treatment using the updated model in 

order to achieve the same event reduction.  

 

The PIC in relation to its determinants 

Figure 3 demonstrates how the PIC varies with event incidence, PF, and AUC of the 

model. Three trends were apparent after systematically varying each parameter. First, 

event incidence inhibited the PIC and restricted the area underneath because prevention is 

suboptimal when the size of the risk group is lower than the incidence (Figures 3a and 3c 
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versus Figures 3b and 3d).  Second, PF determined the absolute event reduction but did 

not impact the overall shape of the prediction impact curve (Figures 3a and 3b versus 

Figures 3c and 3d).  Third, risk models with higher AUC obtained higher values of event 

reduction across the entire interval (0%-100%).   

 

The AUPIC in relation to its determinants 

Table 1 presents the areas under the prediction impact curves for the four scenarios 

presented in Figure 3.  Comparing between and within scenarios reveals certain trends 

regarding the AUPIC and its theoretical maximum and minimum.  The minimum AUPIC 

for a given intervention was based solely on PF and remained constant regardless of 

event incidence or AUC of the model.  The maximum AUPIC was constant for a given 

combination of incidence and PF, regardless of the AUC of the risk model.   

 When all other parameters were held constant, three conclusions were drawn 

regarding the AUPIC in relation to each of its determinants.  First, the AUPIC decreased 

as the event incidence increased.  Second, the AUPIC was larger for interventions with a 

larger preventive effect, or PF.  Third, the AUPIC increased as the AUC of the model 

increased, reflecting improved sensitivity over the entire interval (0%-100%).   

 

Illustration for prevention of coronary heart disease 

After exclusions (n=5,729), the final dataset contained outcomes and predicted risks for 

10,063 individuals from the ARIC cohort for a mean follow-up time of 10.9 years.  The 

10-year risk model had an AUC of 0.77 when applied to the final dataset.  Figure 4 

summarizes event reduction across all risk group sizes (0%-100%) for the 10-year risk 
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model.  By the end of 10.9 years CHD incidence was 5%, of which the model assigned 

24% to the risk group at baseline (sensitivity=24%) based on a threshold of 20% 

predicted risk.  Choosing a cut-off threshold of 20% predicted risk resulted in a risk 

group that comprised about 7% of the cohort.  When considering a statin intervention 

(PF=0.20) at baseline, 5% of events were expected to be prevented using the model 

compared to 1% when no model was used. 

 Alternatively, if the aim were to reduce 15% of events in the population, an 

expected 36% of the population would need to be treated using the model compared to 

75% when no model was used.  When considering performance across the entire interval, 

average event reduction was 15% (AUPIC=0.15), which suggests that using the model 

has the potential to prevent an additional 5% of events on average compared to using no 

model (AUPICmin=0.10).   

 

DISCUSSION 

The prediction impact curve quantifies the expected reduction in events due to an 

intervention program.  Similar to ROC, the prediction impact curve allows for 

calculations across multiple thresholds and, thus, allows for the calculation of a summary 

statistic. In contrast to existing measures of model performance, the PIC considers 

preventive effects of an intervention when examining a model’s utility.  

 The PIC has several limitations.  First, we assumed the PF of the intervention to 

be independent of risk. Second, the PIC is essentially a form of sensitivity analysis and 

does not consider possible harms of the intervention. Therefore, the PIC is not designed 
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to weigh benefits and harms of using a risk model, but rather to describe the sensitivity of 

the model in clinically relevant terms.    

 The PIC offers information about risk models that may not be immediately 

apparent when using traditional measures, such as AUC and NRI.  The PIC adds 

interpretability to change in AUC and offers added information regarding the role of 

event incidence when assigning interventions. Additional research, however, is needed in 

regards to the statistical properties of the PIC.   

In conclusion, the prediction impact curve is an exceptionally intuitive form of 

sensitivity analysis based on the ultimate goal of risk models in public health. The 

additional information provided by the PIC may prove to be useful for researchers and 

clinicians when evaluating the performance of risk models and novel predictors.    
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CHAPTER III: DISCUSSION AND FUTURE DIRECTION 

The prediction impact curve addresses the current needs of prediction research by 

quantifying model performance in clinically relevant terms.  Unlike existing 

measurements of model performance, the PIC integrates the effect of an intervention by 

predicting the expected reduction in events due to its implementation at baseline.   

The PIC is likely to receive criticism for not incorporating harms in its calculation.  

This is a valid point because, given a situation without harms, it is most beneficial to treat 

all individuals in the population. In essence, the PIC describes the sensitivity of the model 

as a proportion of the preventive fraction of the intervention.  As such, the PIC has 

similar limitations as traditional sensitivity analysis and does not pretend to weigh 

benefits and harms of the intervention.  Since the values on the prediction impact curve 

correspond to specific risk thresholds, they can be directly compared to other 

measurements that assess harms of the model at one or more thresholds.   

 Among the main advantages of the PIC are its intuitive approach and 

straightforward interpretation.  The PIC and AUPIC may prove to be useful for 

researchers, clinicians, and students to conceptualize changes in sensitivity and the 

expected impact of such changes on the population.   Furthermore, the PIC could help 

bridge the gap between prediction research and the adoption of risk models in clinical 

practice.  

  The concept behind the PIC could potentially be applied at a broader level. For 

example, plotting ‘1-specificity’ as a proportion of total cost of the intervention could 

estimate the proportion of total cost that goes towards unnecessary treatment. The PIC 

could potentially be the first of a broader family of measurements that examine 
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sensitivity and specificity as proportions of clinically relevant factors.  Future research 

should focus on developing measures of model performance that are intuitive and 

applicable to clinical settings.    
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APPENDIX 

FIGURE LEGEND 

Figure 1. Prediction impact curve for one risk model. 
Legend: The plot represents a scenario in which event incidence was specified at 20% 
and the hypothetical intervention had a PF of 0.20.  Prediction impact curve corresponds 
to a risk model with AUC of 0.65.   
 
Figure 2. Prediction impact curve for two nested risk models with AUC of 0.65 and 0.75. 
Legend: The plot represents a scenario in which event incidence was specified at 20% 
and the hypothetical intervention had a PF of 0.20.  Prediction impact curves correspond 
to risk models with AUC of 0.65 and 0.75.   
 
Figure 3. Prediction impact curves for varying event incidence, PF, and AUC. 
Legend: The plots represent four different scenarios with varying event incidence and PF. 
Prediction impact curves correspond to risk models with varying AUC (0.60-0.90).   
 
Figure 4.  Prediction impact curve for 10-year CHD risk model derived from 
Artherosclerosis Risk in Communities Study data. 
Legend: The plot represents a scenario in which CHD incidence was 5% and the statin 
intervention had a PF of 0.20.  Prediction impact curve corresponds to the 10-year CHD 
risk model derived from the ARIC data.   
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        Figure 1. Prediction impact curve for one risk model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
AUC, Area under the receiver operating characteristic curve;  
PF, preventive fraction 

 
Legend: The plot represents a scenario in which event 
incidence was specified at 20% and the hypothetical 
intervention had a PF of 0.20.  Prediction impact curve 
corresponds to a risk model with AUC of 0.65.   
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Figure 2. Prediction impact curve for two nested risk 
models with AUC of 0.65 and 0.75. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
AUC, Area under the receiver operating characteristic curve; PF, 
Preventive fraction 

 
Legend: The plot represents a scenario in which event 
incidence was specified at 20% and the hypothetical 
intervention had a PF of 0.20.  Prediction impact curves 
correspond to risk models with AUC of 0.65 and 0.75.   
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Figure 3. Prediction impact curves for varying event  
incidence, PF, and AUC. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 

AUC, Area under the receiver operating characteristic curve; PF, 
Preventive fraction 

 
Legend: The plots represent four different scenarios with 
varying event incidence and PF. Prediction impact curves 
correspond to risk models with varying AUC (0.60-0.90).   
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Table 1. Area under the prediction impact curve for varying event 
incidence, PF, and AUC. 
 
 
 
Incidence  Min. AUPIC Max. AUPIC  AUC AUPIC 
     
PF=0.20   
     

10% 0.10 0.19 0.60 0.12 
 0.10 0.19 0.70 0.14 
 0.10 0.19 0.80 0.15 
 0.10 0.19 0.90 0.17 
     

     
40% 0.10 0.16 0.60 0.11 

 0.10 0.16 0.70 0.12 
 0.10 0.16 0.80 0.14 
 0.10 0.16 0.90 0.15 

     
PF=0.60   

     
10% 0.30 0.57 0.60 0.35 

 0.30 0.57 0.70 0.41 
 0.30 0.57 0.80 0.46 
 0.30 0.57 0.90 0.52 
  

 
   

40% 0.30 0.48 0.60 0.34 
 0.30 0.48 0.70 0.37 
 0.30 0.48 0.80 0.41 
  0.30 0.48 0.90 0.44 
AUC, Area under the receiver operating characteristic curve; AUPIC, Area 
under the prediction impact curve; PF, Preventive fraction 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
  

 

33 

Figure 4.  Prediction impact curve for 10-year CHD 
risk model derived from Artherosclerosis Risk in 
Communities Study data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
            

 
AUC, Area under the receiver operating characteristic 
curve; CHD, Coronary heart disease; PF, preventive fraction, 
ARIC, Arthrosclerosis Risk in Communities Study 
 
Legend: The plot represents a scenario in which CHD 
incidence was 5% and the statin intervention had a PF of 
0.20.  Prediction impact curve corresponds to the 10-year 
CHD risk model derived from the ARIC data.   
 



	
  

 

34 

4/8/2014 https://eresearch.emory.edu/Emory/Doc/0/T44T1NFCRQ8KB6EQLLNU9M9F78/fromString.html

https://eresearch.emory.edu/Emory/Doc/0/T44T1NFCRQ8KB6EQLLNU9M9F78/fromString.html 1/2

 

 

 

April 7, 2014 

William Campbell, 
Principal Investigator
Athletics and Recreation

     

RE: Exemption  of  Human  Subjects  Research

   IRB00072937

  
Prediction  impact  curve:  a  new  graphical  approach  integrating  intervention  effects  in

the  evaluation  of  prediction  model  utility.

Dear  Mr.  Campbell:

Thank  you  for  submitting  an  application  to  the  Emory  IRB  for  the  above-­referenced  project.  

Based  on  the  information  you  have  provided,  we  have  determined  on  4/7/2014  that  although  it

is  human  subjects  research,  it  is  exempt  from  further  IRB  review  and  approval.  

This  determination  is  good  indefinitely  unless  substantive  revisions  to  the  study  design  (e.g.,

population  or  type  of  data  to  be  obtained)  occur  which  alter  our  analysis.    Please  consult  the

Emory  IRB  for  clarification  in  case  of  such  a  change.    Exempt  projects  do  not  require

continuing  renewal  applications.

This  project  meets  the  criteria  for  exemption  under  45  CFR  46.101(b)(4).      Specifically,  you  will

develop  and  test  a  new  metric,  the  Prediction  Impact  Curve,  for  measuring  the  performance

of  disease  prediction  models.    You  have  requested  use  of    data  from  the  ARIC  Study

(atherosclerosis)  made  publicly  available  to  researchers  through  NLHBI  in  order  to  test  this

model  and  demonstrate  its  applications.  The  data  is  coded  and  you  have  indicated  that  you  will

not  have  access  to  the  key(s)  that  links  data  to  individual  identifiers  nor  seek  to  determine

individual  identities.  The  following  is  associated  with  this  approval:

Protocol  PIC,  4/5/2014

Please  note  that  the  Belmont  Report  principles  apply  to  this  research:  respect  for  persons,

beneficence,  and  justice.    You  should  use  the  informed  consent  materials  reviewed  by  the  IRB

unless  a  waiver  of  consent  was  granted.    Similarly,  if  HIPAA  applies  to  this  project,  you  should



	
  

 

35 

 

4/8/2014 https://eresearch.emory.edu/Emory/Doc/0/T44T1NFCRQ8KB6EQLLNU9M9F78/fromString.html

https://eresearch.emory.edu/Emory/Doc/0/T44T1NFCRQ8KB6EQLLNU9M9F78/fromString.html 2/2

use  the  HIPAA  patient  authorization  and  revocation  materials  reviewed  by  the  IRB  unless  a

waiver  was  granted.    CITI  certification  is  required  of  all  personnel  conducting  this  research.

Unanticipated  problems  involving  risk  to  subjects  or  others  or  violations  of  the  HIPAA  Privacy

Rule  must  be  reported  promptly  to  the  Emory  IRB  and  the  sponsoring  agency  (if  any).

In  future  correspondence  about  this  matter,  please  refer  to  the  study  ID  shown  above.    Thank

you.

Sincerely,

Regina  Drake,  M.Div,  CIP

Senior  Research  Protocol  Analyst

This  letter  has  been  digitally  signed

     

 

Emory  University

1599  Clifton  Road,  5th  Floor  -­  Atlanta,  Georgia  30322

Tel:  404.712.0720   -­  Fax:  404.727.1358   -­  Email:  irb@emory.edu  -­  Web:  http://www.irb.emory.edu/

An  equal  opportunity,  affirmative  action  university

 


