
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for
an advanced degree from Emory University, I hereby grant to Emory University and
its agents the non-exclusive license to archive, make accessible, and display my thesis
or dissertation in whole or in part in all forms of media, now or hereafter known,
including display on the world wide web. I understand that I may select some access
restrictions as part of the online submission of this thesis or dissertation. I retain
all ownership rights to the copyright of the thesis or dissertation. I also retain the
right to use in future works (such as articles or books) all or part of this thesis or
dissertation.

Signature:

Verena Kuhlemann Date

Iterative Methods and Partitioning Techniques for

Large Sparse Problems in Network Analysis

By

Verena Kuhlemann
Doctor of Philosophy

Mathematics and Computer Science

Michele Benzi, Ph.D.
Advisor

James Nagy, Ph.D.
Committee Member

Alessandro Veneziani, Ph.D.
Committee Member

Daniel B. Szyld, Ph.D.
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the James T. Laney School of Graduate Studies

Date

Iterative Methods and Partitioning Techniques for

Large Sparse Problems in Network Analysis

by

Verena Kuhlemann
Master of Science in Mathematics, Emory University, 2010

Advisor: Michele Benzi, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements of the degree of

Doctor of Philosophy
in Mathematics and Computer Science

2012.

Abstract

Iterative Methods and Partitioning Techniques for

Large Sparse Problems in Network Analysis

By Verena Kuhlemann

The analysis of networks is an important aspect in many fields. Here we consider
three di↵erent topics: the numerical solution of Markov chains, ranking of genes, and
parallel computations with large scale-free graphs.

First, additive Schwarz methods are a class of domain decomposition methods
that are suitable for the solution of large linear systems in serial as well as in parallel
mode. We adapt the Restricted Additive Schwarz (RAS) method to the computation
of the stationary probability distribution vector of large, sparse, irreducible stochastic
matrices. The convergence properties are analyzed and extensive numerical exper-
iments aimed at assessing the e↵ect of varying the number of subdomains and the
choice of overlap are discussed.

Next, the ranking of genes plays an important role in the identification of key
genes for a specific disease. A modification of the PageRank algorithm that is used
to rank web pages is the GeneRank algorithm. We assessed the performance of
additive Schwarz methods as well as that of Chebyshev iteration for the solution of
the GeneRank problem.

Finally, many large networks are scale-free. That is, the degree distribution fol-
lows a power-law. Currently available graph partitioners are not e�cient for such
an irregular degree distribution. The lack of a good partitioning leads to excessive
inter-processor communication requirements during each matrix-vector product on
parallel distributed-memory computers. We present an approach to alleviate this
problem based on embedding the original irregular graph into a more regular one by
disaggregating (splitting up) vertices in the original graph. Even though the latter
graph is larger, we are able to decrease the communication requirements considerably
and improve the performance of the matrix-vector product.

Iterative Methods and Partitioning Techniques for

Large Sparse Problems in Network Analysis

by

Verena Kuhlemann
Master of Science in Mathematics, Emory University, 2010

Advisor: Michele Benzi, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements of the degree of
Doctor of Philosophy

in Mathematics and Computer Science
2012.

Acknowledgments

First and foremost, I would like to thank my advisor, Dr. Michele Benzi, for his

patience and guidance throughout the process. He always seems to have the answer

for everything.

I also want to thank my committee members, Dr. James Nagy, Dr. Alessandro

Veneziani, and Dr. Daniel Szyld. The time and e↵ort that you spent to enhance my

work is truly appreciated.

Furthermore, I would like to express my gratitude to the faculty and sta↵ of the

Department of Mathematics and Computer Science at Emory University and the

Institut für Mathematik at the Technische Universität Berlin.

In addition, I thank Dr. Panayot Vassilevski and Dr. Van Emden Henson of

Lawrence Livermore National Laboratory for mentoring me during a summer in-

ternship, and introducing me to an interesting project. I would also like to thank the

other members of the Eigensolvers group at Lawrence Livermore National Laboratory

for all the help during my internship.

Last but not least, I would like to thank my family and friends for their support

and encouragement throughout the years. Special thanks go to Alexis: Mein Fels in

der Brandung der auch immer dann ruhig geblieben ist, wenn ich (wie üblich) dafür

gesorgt habe, dass alles andere um mich herum im Chaos versinkt.

Contents

1 Introduction and preliminaries 2

1.1 Background and motivation . 2

1.1.1 Networks . 2

1.1.2 Overview of the thesis . 3

1.2 Basic notions from graph theory and linear algebra 4

1.2.1 Background from graph theory 4

1.2.2 Linear algebra tools . 10

1.2.3 Markov chains . 15

1.2.4 Complex networks . 20

1.3 Overview of iterative methods and graph partitioning 23

1.3.1 Matrix splittings and stationary iterative methods 24

1.3.2 Krylov subspace methods . 27

1.3.3 Preconditioning techniques . 32

1.3.4 Graph partitioning . 34

2 Restricted Additive Schwarz Methods for Markov Chains 38

2.1 Introduction . 38

2.2 Definitions and auxiliary results . 39

2.3 Introduction to algebraic domain decomposition methods 40

2.4 Algebraic formulation of Schwarz methods 42

2.5 Nonsingularity of the RAS preconditioner 46

2.6 Properties of the RAS splitting . 50

2.7 Extension to inexact solves . 53

2.8 Two-level method . 55

2.9 Description of the test problems . 57

2.10 Numerical Experiments . 61

2.10.1 Serial results . 61

2.10.1.1 Results with incomplete LU factorization and small

amount of overlap 71

2.10.1.2 Results with incomplete LU factorization and large

amount of overlap 81

2.10.1.3 Results with incomplete LU factorization, small amount

of overlap, and edge weights during partitioning . . . 89

2.10.1.4 Results with the two-level method 97

2.10.2 Parallel results . 99

2.11 Summary and conclusions . 112

3 Iterative solvers for the GeneRank problem 114

3.1 Introduction . 114

3.2 Definitions and auxiliary results . 115

3.3 Symmetric formulation of GeneRank 116

3.4 Properties of the symmetric GeneRank matrix 117

3.5 Methods tested . 119

3.6 Description of test problems . 120

3.7 Numerical experiments . 121

3.8 Summary . 123

4 Disaggregation techniques for large scale-free graphs 124

4.1 Indroduction . 124

4.2 Disaggregation . 125

4.3 Parallel Disaggregation . 132

4.4 Numerical Results . 140

4.5 Conclusions . 148

5 Conclusions and suggestions for future work 150

Appendix A Algorithms 152

Appendix B Additional numerical experiments 154

List of Figures

1.1 Main connected component of the social network of injecting drug users

in Colorado Springs. The size of the nodes is proportional to the

degree. Two drug addicts are connected if they have exchanged a

needle. (Image courtesy of Ernesto Estrada [42].) 20

2.1 Nonzero patterns of matrices used to construct the coarse grid correc-

tion. Left: sparsity pattern of the matrix permuted by Luby’s maximal

independent set reordering. Right: sparsity pattern of the correspond-

ing Schur complement, also permuted by Luby’s maximal independent

set reordering. The original matrix comes from the ncd family. 57

2.2 Transition rate matrix for the reliability model. 59

2.3 Left: nonzero pattern of an ncd matrix. Right: nonzero pattern of

the same matrix when four subdomains are used and the matrix is

reordered accordingly by Metis. 62

2.4 Left: nonzero pattern of a mutex matrix. Right: nonzero pattern of

the same matrix when four subdomains are used and the matrix is

reordered accordingly by Metis. 62

2.5 Left: nonzero pattern of a block of an ncd matrix. Right: nonzero

pattern of the same matrix after reordering with reverse Cuthill–McKee. 64

2.6 Nonzero pattern of the ILU factorization of a block of an ncd matrix

without RCM reordering. Left: nonzero pattern L. Right: nonzero

pattern of U. 64

2.7 Nonzero pattern of the ILU factorization of a block of an ncd matrix

with RCM reordering. Left: nonzero pattern L. Right: nonzero pattern

of U. 65

3.1 Nonzero pattern of the SNPa matrix. 121

4.1 Disaggregating a node and using a circle as connections between the

new nodes. 126

4.2 Disaggregating a node and using a complete graph as connections be-

tween the new nodes. 126

4.3 Presenting the disaggregated graph as a combination of the graph with

internal and external edges. 127

4.4 Non-zero pattern of the original matrix, and the original matrix after

redistributing with ParMETIS. 137

4.5 Non-zero pattern after using disaggregation to limit communication to

75%, 50%, or 25% of the other processors. 138

4.6 Numerical results for matrices with average degree two. The matrices

have 10,000 nodes per processor. Before disaggregating the matrices,

we first repartitioned them with ParMETIS. The time needed for 10

matrix-vector products is given in seconds. 142

4.7 Numerical results for matrices with average degree five. The matrices

have 10,000 nodes per processor. Before disaggregating the matrices,

we first repartitioned them with ParMETIS. The time needed for 10

matrix-vector products is given in seconds. 143

4.8 Numerical results for matrices with average degree two. The matrices

have 10,000 nodes per processor. No repartitioning is used. The time

needed for 10 matrix-vector products is given in seconds. 144

4.9 Numerical results for matrices with average degree five. The matrices

have 10,000 nodes per processor. No repartitioning is used. The time

needed for 10 matrix-vector products is given in seconds. 145

4.10 Numerical results for the hollywood-2011 matrix. Before disaggregat-

ing the matrix, we first repartitioned it with ParMETIS. The time

needed for 10 matrix-vector products is given in seconds. 146

4.11 Time in seconds needed to find the 4 smallest eigenvalues with Lanczos

algorithm. The matrix has 100 nodes per processor and average degree

2. 147

List of Tables

2.1 Properties of the generator matrices 58

2.2 Subdominant eigenvalue, reliability models 60

2.3 ILUTH results, reliability models . 61

2.4 Time in seconds required for factoring the diagonal blocks. The result-

ing fill-in is given as the ratio of the number of non zeros in L · U and

the matrix. K is the number of domains. The matrix is of the ncd

family and has 12341 rows and columns. 66

2.5 Complete LU factorization vs. incomplete LU factorization. 70

2.6 Results for the ncd matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�4 was used. A small amount of

overlap was chosen. 71

2.7 Results for the ncd matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�4 was used. A small amount of

overlap was chosen. 72

2.8 Results for the twod matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�4 was used. A small amount of

overlap was chosen. 73

2.9 Results for the twod matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�4 was used. A small amount of

overlap was chosen. 74

2.10 Results for the tcomm matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�4 was used. A small amount of

overlap was chosen. 75

2.11 Results for the mutex matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�3 was used. A small amount of

overlap was chosen. 76

2.12 Results for the reliab1 matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�3 was used. A small amount of

overlap was chosen. 77

2.13 Results for the reliab1 matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�3 was used. A small amount of

overlap was chosen. 78

2.14 Results for the reliab2 matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�3 was used. A small amount of

overlap was chosen. 79

2.15 Results for the reliab2 matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�3 was used. A small amount of

overlap was chosen. 80

2.16 Results for the ncd matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�4 was used. A large amount of

overlap was chosen. 81

2.17 Results for the ncd matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�4 was used. A large amount of

overlap was chosen. 82

2.18 Results for the twod matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�4 was used. A large amount of

overlap was chosen. 83

2.19 Results for the twod matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�4 was used. A large amount of

overlap was chosen. 84

2.20 Results for the tcomm matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�4 was used. A large amount of

overlap was chosen. 85

2.21 Results for the reliab1 matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�3 was used. A large amount of

overlap was chosen. 86

2.22 Results for the reliab1 matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�3 was used. A large amount of

overlap was chosen. 87

2.23 Results for the reliab2 matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�3 was used. A large amount of

overlap was chosen. 88

2.24 Results for the ncd matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�4 was used. A small amount of

overlap was chosen, and we used weighted edges in Metis. 89

2.25 Results for the ncd matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�4 was used. A small amount of

overlap was chosen, and we used weighted edges in Metis. 90

2.26 Results for the twod matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�4 was used. A small amount of

overlap was chosen, and we used weighted edges in Metis. For each

matrix, the best overall timings are in boldface. 91

2.27 Results for the twod matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�4 was used. A small amount of

overlap was chosen, and we used weighted edges in Metis. For each

matrix, the best overall timings are in boldface. 92

2.28 Results for the twod matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�4 was used. A small amount of

overlap was chosen, and we used weighted edges in Metis. For each

matrix, the best overall timings are in boldface. 93

2.29 Results for the mutex matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�3 was used. A small amount of

overlap was chosen, and we used weighted edges in Metis. For each

matrix, the best overall timings are in boldface. 94

2.30 Results for the reliab1 matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�3 was used. A small amount of

overlap was chosen, and we used weighted edges in Metis. For each

matrix, the best overall timings are in boldface. 95

2.31 Results for the reliab1 matrices. K is the number of domains, ‘constr.’

the time (in seconds) needed to construct the preconditioner, ‘it’ the

number of iterations needed to reduce the 2-norm of the residual below

10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU

factorization with drop tolerance 10�3 was used. A small amount of

overlap was chosen, and we used weighted edges in Metis. 96

2.32 Results with the 2-level method for the ncd and twodmatrices. K is the

number of domains, ‘constr.’ the time (in seconds) needed to construct

the preconditioner, ‘it’ the number of iterations needed to reduce the

2-norm of the residual below 10�12, ‘solve’ the time (in seconds). For

local solves the incomplete LU factorization with drop tolerance 10�4

was used. 97

2.33 Results with the 2-level method for the reliability matrices. K is the

number of domains, ‘constr.’ the time (in seconds) needed to construct

the RAS preconditioner, ‘it’ the number of iterations needed to reduce

the 2-norm of the residual below 10�12, ‘solve’ the time (in seconds).

For local solves the incomplete LU factorization with drop tolerance

10�3 was used. 98

2.34 Results for the ncd(20) matrix. K is the number of subdomains,

‘constr.’ the time (in seconds) needed to construct the preconditioner,

‘it’ the number of iterations needed to reduce the 2-norm of the residual

below 10�12, ‘solve’ the time (in seconds). For the incomplete LU 3

levels of fill-in were used. 102

2.35 Results for the ncd(25) matrix. K is the number of subdomains,

‘constr.’ the time (in seconds) needed to construct the preconditioner,

‘it’ the number of iterations needed to reduce the 2-norm of the residual

below 10�12, ‘solve’ the time (in seconds). For the incomplete LU 3

levels of fill-in were used. 103

2.36 Results for the twod(14) matrix. K is the number of subdomains,

‘constr.’ the time (in seconds) needed to construct the preconditioner,

‘it’ the number of iterations needed to reduce the 2-norm of the residual

below 10�12, ‘solve’ the time (in seconds). For the incomplete LU 20

levels of fill-in were used. 104

2.37 Results for the twod(17) matrix. K is the number of subdomains,

‘constr.’ the time (in seconds) needed to construct the preconditioner,

‘it’ the number of iterations needed to reduce the 2-norm of the residual

below 10�12, ‘solve’ the time (in seconds). For the incomplete LU 20

levels of fill-in were used. 105

2.38 Results for the reliab1(1200) matrix. K is the number of subdomains,

‘constr.’ the time (in seconds) needed to construct the preconditioner,

‘it’ the number of iterations needed to reduce the 2-norm of the residual

below 10�12, ‘solve’ the time (in seconds). For the incomplete LU 20

levels of fill-in were used. 106

2.39 Results for the reliab1(2000) matrix. K is the number of subdomains,

‘constr.’ the time (in seconds) needed to construct the preconditioner,

‘it’ the number of iterations needed to reduce the 2-norm of the residual

below 10�12, ‘solve’ the time (in seconds). For the incomplete LU 20

levels of fill-in were used. 107

2.40 Results for the reliab1(2800) matrix. K is the number of subdomains,

‘constr.’ the time (in seconds) needed to construct the preconditioner,

‘it’ the number of iterations needed to reduce the 2-norm of the residual

below 10�12, ‘solve’ the time (in seconds). For the incomplete LU 20

levels of fill-in were used. 108

2.41 Results for the reliab2(1200) matrix. K is the number of subdomains,

‘constr.’ the time (in seconds) needed to construct the preconditioner,

‘it’ the number of iterations needed to reduce the 2-norm of the residual

below 10�12, ‘solve’ the time (in seconds). For the incomplete LU 20

levels of fill-in were used. 109

2.42 Results for the reliab2(2000) matrix. K is the number of subdomains,

‘constr.’ the time (in seconds) needed to construct the preconditioner,

‘it’ the number of iterations needed to reduce the 2-norm of the residual

below 10�12, ‘solve’ the time (in seconds). For the incomplete LU 20

levels of fill-in were used. 110

2.43 Results for the reliab2(2800) matrix. K is the number of subdomains,

‘constr.’ the time (in seconds) needed to construct the preconditioner,

‘it’ the number of iterations needed to reduce the 2-norm of the residual

below 10�12, ‘solve’ the time (in seconds). For the incomplete LU 20

levels of fill-in were used. 111

3.1 Results for the SNPa matrix. The matrix has n = 152, 520 rows and

columns. The tolerance used is 10�10. Here ex = (1/n)e, where e is

the vector of all ones. The number of iterations and the CPU time in

seconds (in brackets) are given. 122

3.2 Results for the SNPa matrix. The matrix has n = 152, 520 rows and

columns. The tolerance used is 10�10. Here ex = p, where p is a

random probability vector. The number of iterations and the CPU

time in seconds (in brackets) are given. 122

3.3 Results for the RENGA matrices. The tolerance used is 10�10. Here

ex = (1/n)e, where e is the vector of all ones. The number of iterations

and the CPU time in seconds (in brackets) are given. 122

3.4 Results for the RENGA matrices. The tolerance used is 10�10. Here

ex = p, where p is a random probability vector. The number of itera-

tions and the CPU time in seconds (in brackets) are given. 123

4.1 Ratio of the number of nodes of the disaggregated matrix and the

original matrix. 141

4.2 Ratio of the number of nodes of the disaggregated matrix and the

original matrix. The matrix was re-partitioned with ParMETIS before

applying disaggregation. 141

4.3 Ratio of the number of edges of the disaggregated matrix and the

original matrix. 141

List of Algorithms

3.1 Chebyshev iteration . 120

4.1 Parallel Disaggregation . 135

A.1 Arnoldi iteration (modified Gram-Schmidt variant) 152

A.2 Lanczos iteration . 152

A.3 Gaussian Elimination . 152

A.4 GMRES (basic form) . 153

A.5 GMRES(m) . 153

A.6 CG . 153

Chapter 1

Introduction and preliminaries

1.1 Background and motivation

1.1.1 Networks

Recently there has been a great interest in the field of networks. Networks are ubiq-

uitous. Broadly speaking, a network models interactions between components. As

such, they can be used to model many di↵erent real life problems. Family ties, collab-

orations between scientists, and other relations can be modeled by social networks.

Complex biological systems such as protein-protein interactions, gene regulations,

connections between neurons in the brain, just to name a few, are examples of net-

works as well. The size of these networks is increasing and they are becoming more

and more complex. This is mainly due to technical advances that make it possible

to gather larger and larger amounts of data. Social networking sites are widely used;

Facebook recently reached a billion users.

The need to analyze these networks as well as the discovery of properties that

are shared by many real life networks has led to an increased interest from scientists

from diverse fields such as biology, sociology, neuroscience, computer science, and

mathematics, to name a few [8]. There is a lot of information that can be deduced

2

3

from the structure of a network. Scientists are interested in finding the nodes in the

network that play a central role (centrality). For example, search engines rely on

ranking of web pages based on the network given by hyperlinks between web pages

[90]. Epidemiologists are interested in how a disease spreads in a social network [84].

Identifying central figures can be used to better focus treatment or immunization for

contagious diseases. The power grid, where generators and substations are connected

by transmission lines, is studied to prevent cascading failures from the failure of a few

substations. By identifying high-risk substations the network can be protected more

cost-e�ciently [96, 120]. Measures of centrality range from simple local measures such

as the number of connections of a component (degree centrality), to more complex

measures that rely on eigenvectors of a matrix that can be associated with the network

(eigenvector centrality) or on the number of shortest paths in the network that pass

through a node (betweenness centrality). Identifying groups or communities of closely

related components in a network is another important aspect of network analysis

(clustering). Applications of community detections range from tailoring of marketing

schemes to the identification of terrorist cells [70]. E�cient methods for network

analysis are in great demand. In this thesis we address a few fundamental issues of a

computational nature arising in the analysis of large-scale complex networks.

1.1.2 Overview of the thesis

This thesis is structured as follows. In the remainder of Chapter 1 we provide some

background information from graph theory, linear algebra, and iterative methods. In

the second chapter we investigate a restricted additive Schwarz (RAS) preconditioner

for computing the stationary distribution vector of Markov chains. We give the first

theoretical analysis of RAS in the context of Markov chains. In addition, we provide

an extensive collection of numerical experiments, including some experiments with

a two-level method, and parallel results. In Chapter 3 we consider the GeneRank

4

algorithm, a modification of Google’s PageRank algorithm, which was originally pro-

posed in [81] for the ranking of genes. Finally, in the last chapter we introduce a

new method to improve the performance of the parallel matrix-vector multiplication

for scale-free graphs. The results from Chapter 4 are joint work with Panayot S.

Vassilevski from the Lawrence Livermore National Laboratory in Livermore, CA.

1.2 Basic notions from graph theory and linear al-

gebra

1.2.1 Background from graph theory

Here we will review basic terminology and background related to graphs that will be

used throughout the thesis. A good introduction to graph theoretic concepts can be

found for example in [19, 20, 37].

A graph is a representation of a set of objects together with connections between

these objects. For example, each object could represent a person and the connection

between the objects represents a relationship between the two persons. This is referred

to as a social graph.

Mathematically, we will describe a graph as an ordered pair G = (V,E), where V

denotes a set of objects called nodes or vertices. The set E describes the connections

between the nodes. These connections, called edges, are given as a pair of nodes (u, v)

with u, v 2 V . These pairs can be ordered or unordered. Edges that are given by

ordered pairs of nodes are called directed edges, and a graph whose edges are directed

is called directed graph or digraph. For a directed edge e = (u, v), also denoted with

u 7! v, u is called the tail of the edge and v is called the head. Similarly, if the edges

are given by unordered pairs of nodes, the edges have no orientation and the graph

is called an undirected graph. We will usually omit the term undirected, and in the

5

following the term graph will be used interchangeably with the term undirected graph.

Both vertices and edges of a graph can have weights associated with them. For

example, in a graph that describes a road network, weights on the edges can describe

distances between points in the network, while weights on the nodes could describe

for example the price of gas at this location. In our case there will be weights on the

edges but not on the nodes of the graph. For an unweighted graph we will set each

edge weight to one.

An edge that starts and ends at the same vertex is called a loop. If a pair of nodes

is connected by more than one edge, we say the graph has multiple edges. If a graph

has no loops or multiple edges it is referred to as a simple graph. If two nodes u

and v are connected by an edge in the graph, that is e = (u, v) 2 E, we say that

the vertices u and v are adjacent. The edge e = (u, v) is said to be incident to both

nodes u and v. For every node the degree of the node is the number of edges that are

incident to this node. The degree of v 2 V will be denoted by deg(v). Since every

edge is incident to two nodes, the sum of the degrees of all nodes of a simple graph is

twice as large as the number of edges. That is,
P

v2V deg(v) = 2 · |E|. This result is
known as degree sum formula or handshaking lemma and is due to Leonhard Euler.

In the case of digraphs we can distinguish between the in-degree and out-degree of a

node. The in-degree deg�(v) of node v is the number of edges in the graph that have

node v as a head. Similarly, the out-degree deg+(v) of node v is the number of edges

in the graph that have node v as a tail. Since every edge has only one head and one

tail, the sum of all in-degrees or out-degrees in a simple graph is the number of edges

in this graph. That is,
P

v2V deg�(v) = |E| and P
v2V deg+(v) = |E|.

A walk from node u to node v is a sequence of adjacent vertices and edges incident

to these vertices of the form

u = v0, e1, v1, e2, . . . , vn�1, en, vn = v,

6

where each vi represents a node and ei = (vi�1, vi) represents an edge. A walk with

distinct vertices v1, . . . , vn�1 is called path. If a walk starts and ends at the same

vertex, that is, u = v0 = vn = v, it is called closed walk, while a path that starts and

ends at the same vertex is usually referred to as a cycle. The length of a walk (path)

equals the number of edges on the walk (path). In a directed graph walks are usually

directed as well. That is, a walk from u to v is given by

u = v0, e1, v1, e2, . . . , vn�1, en, vn = v,

where ei is a directed edge of the form vi�1 7! vi. Paths can also be used to determine

the distance between two vertices. The distance of two vertices u and v, denoted with

d(u, v), is the minimum length of a path between these two vertices. One is often

interested in the longest possible distance between two nodes in a graph. This is

referred to as diameter of the graph and is given by

diam(G) = max{d(u, v) | u, v 2 V }.

An important concept in graph theory is the connectivity of a graph. An undi-

rected graph is connected if for every pair of vertices u, v 2 V there exists a path in

the graph that starts with u and ends with v. For a directed graph we distinguish

between two forms of connectedness. We say a directed graph G is weakly connected

if the undirected graph that results from removing the directions on the edges in G is

connected. A directed graph is said to be strongly connected if every pair of vertices

in the graph lies on a common directed cycle.

If a graph is not connected, or disconnected, one is interested in the number of

connected maximal subgraphs. A graph H = (VH, EH) is a subgraph of G = (V,E),

if VH is a subset of V and EH is a subset of E. A subgraph H is called a connected

component of G if H is connected and there is no other connected subgraph of G

7

that has H as a subgraph. For a digraph we distinguish between weak and strong

components. H is called a strong component if it is strongly connected and there

is no strongly connected subgraph of G that has H as a subgraph. If H is weakly

connected and not contained in any weakly connected subgraph, it is called a weak

component. If a graph is partitioned into weak components, every node and every

edge is contained in exactly one weak component. On the other hand, if the graph

is partitioned into strong components, every node is contained in exactly one strong

component, but there might be edges that are not contained in any of the strong

components.

Properties of graphs can also be represented by matrices. For a graph G = (V,E)

the adjacency properties can be represented by the adjacency matrix. To derive the

adjacency matrix we number the vertices with 1, . . . , n where n = |V |. Then the

adjacency matrix AG is an n⇥ n matrix given by

[AG]ij =

8
><

>:

1 if (i, j) 2 E

0 otherwise.

For an undirected graph the adjacency matrix is symmetric, while for a digraph the

adjacency matrix is usually not symmetric. For a graph with weights on the edges

the weighted adjacency matrix is given by

[AG]ij =

8
><

>:

wi,j if (i, j) 2 E

0 otherwise,

where wi,j is the weight of edge (i, j). There is an interesting connection between

the powers of the unweighted adjacency matrix and the number of walks of a specific

length between two vertices. The (i, j) entry in AGr equals the number of walks

of length r from node i to node j. That also means that a graph with n nodes is

8

connected if and only if all entries of the matrix
Pn

r=1 AGr are positive. For a digraph

the (i, j) entry in AGr will give the number of directed walks of length r from i to j,

and it is strongly connected if and only if all entries of
Pn

r=1 AGr are positive.

Another matrix that can be used to represent the adjacency structure of a graph

is the incidence matrix. If the nodes of the graph are numbered from 1, . . . , n and the

edges are numbered from 1, . . . ,m, where n = |V | and m = |E|, then the incidence

matrix is an m ⇥ n matrix with exactly two entries per row. For an unweighted

digraph G the incidence matrix is given by

[EVG]e,i =

8
>>>><

>>>>:

1 if e = i 7! j,

�1 if e = j 7! i,

0 otherwise.

If the graph has weights on the edges we can define a weighted incidence matrix as

follows

[EVG]e,i =

8
>>>><

>>>>:

we if e = i 7! j,

�we if e = j 7! i,

0 otherwise,

where we denotes the weight of edge e. For an undirected graph a random direction

for the edges is chosen and the incidence matrix is then given as for the digraph.

Note that the incidence matrix is also called edge-vertex matrix, while the transpose

of the incidence matrix is referred to as vertex-edge matrix. The incidence matrix of

a graph can also be used to derive information about the connectivity of this graph.

A graph is connected if and only if the rank of the incidence matrix equals |V | � 1.

Furthermore, if the graph has c components, then the rank of the incidence matrix

equals |V |� c; see [26].

For an undirected graph G, the |V |⇥ |V | diagonal matrix DG with the degrees of

9

the vertices on the diagonal is called degree matrix. That is,

[DG]i,j =

8
><

>:

deg(i) if i = j

0 otherwise.

Note that the ith diagonal entry of DG is just the ith row sum of the adjacency matrix

AG. If the graph has weights on the edges the weighted degree matrix has the sum of

the weights of the edges incident to the corresponding node on the diagonal rather

than the degree of this node. Thus, the weighted degree matrix is given by

[DG]i,j =

8
><

>:

P
(i,k)2E wi,k if i = j

0 otherwise.

The Laplacian matrix of a graph, also called Kirchho↵ matrix, is given by

LG = DG � AG.

We can either use the unweighted degree and unweighted adjacency matrix to derive

an unweighted graph Laplacian, or the weighted matrices can be used to derive a

weighted graph Laplacian. The graph Laplacian can also be written in terms of the

edge-vertex and vertex-edge incidence matrix [17, 19, 55]. That is, the unweighted

graph Laplacian can be written as a product of the unweighted vertex-edge and edge-

vertex incidence matrix

LG = (EVG)TEVG,

while the weighted graph Laplacian can be written as a triple product of the un-

weighted vertex-edge incidence matrix, a weight matrix, and the unweighted edge-

vertex incidence matrix

LG = (EVG)T ·W · EVG,

10

where W is a |E|⇥ |E| diagonal matrix with the weight of the edges on the diagonal.

Similar to the other matrices associated with graphs, there is a relationship between

the graph Laplacian and the connectivity of the graph. The graph Laplacian has

n nonnegative eigenvalues 0 = �1  �2  · · ·  �n. The multiplicity of the zero

eigenvalue equals the number of connected components of the graph [79, 80].

1.2.2 Linear algebra tools

In this section we present background information and tools from the area of linear

algebra. We start with a few definitions related to matrices.

We say a real matrix A is positive or element-wise positive if all of its entries are

positive. Similarly, a matrix is called nonnegative if all of its entries are nonnegative.

We will use A > 0 to denote a positive matrix, and A � 0 to denote a nonnegative

matrix, and we write B � A if B � A � 0. The set of eigenvalues of a matrix A is

called spectrum and is denoted with �(A). The spectral radius ⇢(A) of A is given by

⇢(A) = max{|�|,� 2 �(A)}.

The spectral circle of A is a circle of radius ⇢(A) with the origin as its center. The

range of A is denoted by R(A).

Definition 1.2.1. A square matrix A is said to be a reducible matrix if there exists

a permutation matrix P such that

P TAP =

2

64
A11 A12

0 A22

3

75 ,

where A11 and A22 are square matrices. If a matrix is not reducible it is called

irreducible or nondecomposable.

Another characterization of irreducible matrices is given by the following. Let A

11

be an n ⇥ n matrix, and let G(A) denote the underlying digraph. That is, G(A) is

a graph with n nodes, v1, . . . , vn, and there is a directed edge from vi to vj if and

only if aij 6= 0. A matrix A is irreducible if and only if the digraph G(A) is strongly
connected. The connection between the irreducibility of a matrix and the strong

connectivity of the underlying digraph is not hard to see. The underlying digraph of

a matrix and that of a symmetric permutation of this matrix are the same up to a

relabeling of the nodes. If we consider the reducible matrix

A =

2

64
A11 A12

0 A22

3

75

with A11 2 Rr⇥r and A22 2 Rn�r⇥n�r, we can decompose the set of vertices V of the

underlying digraph G(A) into two subsets V (A11) and V (A22), where the set V (A11)

corresponds to the first r rows of the matrix and V (A22) to the last n� r rows. Since

aij = 0 for i > r and j  r, there is no edge in G(A) that connects a node from

V (A22) with a node from V (A11). Thus, there is no path from node u to node v if

u 2 V (A22) and v 2 V (A11), and G is not strongly connected. On the other hand,

if G is not strongly connected we can decompose the graph into strong components.

There must be a strong component that has only outgoing edges. If we number the

nodes from this component first, the adjacency matrix has the form

2

64
A11 A12

0 A22

3

75 ,

where A11 is the adjacency matrix of the strong component with only outgoing edges.

For nonnegative matrices, irreducibility can be characterized by the following result

[16].

Theorem 1.2.2. A nonnegative matrix A is irreducible if and only if for every (i, j)

12

there exists a natural number q such that

[Aq]ij > 0.

The following well known theorem gives useful information about the spectra of

nonnegative irreducible matrices. It can be found with proof for example in [16, 78,

110].

Theorem 1.2.3 (Perron-Frobenius Theorem). If A � 0 is an n⇥n irreducible matrix,

then each of the following is true.

1. r = ⇢(A) > 0.

2. r 2 �(A) (r is called the Perron root).

3. The algebraic multiplicity of the eigenvalue r is one, that is, the Perron root is

simple.

4. There exists an eigenvector x > 0 such that Ax = rx.

5. The Perron vector is the unique vector defined by

Ap = rp, p > 0, kpk1 = 1,

and, except for positive multiples of p, there are no other nonnegative eigenvec-

tors of A, regardless of the eigenvalue.

6. r need not be the only eigenvalue on the spectral circle of A.

The Perron-Frobenius Theorem for nonnegative irreducible matrices is a gener-

alization of the Perron Theorem for positive matrices. For positive matrices it can

be guaranteed that there is only one eigenvalue on the spectral circle. For nonneg-

ative irreducible matrices this cannot be guaranteed. Thus, the set of nonnegative

13

irreducible matrices is divided into two classes, those that have only one eigenvalue

on the spectral circle and those that have multiple eigenvalues on it. Nonnegative

irreducible matrices with only one eigenvalue on the spectral circle are called primi-

tive. If a nonnegative irreducible matrix has more than one eigenvalue on its spectral

circle it is referred to as imprimitive, and the number of eigenvalues on the spectral

radius is called index of imprimitivity. For a nonnegative irreducible matrix A the

primitivity can be determined by its diagonal entries. The matrix is primitive if it

has at least one nonzero diagonal entry. Another su�cient condition for primitivity

is that there is a constant m such that Am > 0.

An important class of matrices is that of M-matrices, defined below.

Definition 1.2.4. A square (real) matrix A is called an M-matrix whenever there

exists a matrix B � 0 and a real number r � ⇢(B) such that A = rI � B.

The Laplacian matrix LG is an example of a symmetric M-matrix. Recall that

LG is given by LG = DG � AG where AG � 0 is the adjacency matrix of the graph

and DG � 0 is a diagonal matrix with the degrees of the nodes on the diagonal. We

can write LG as LG = �(G)I � B with B = AG + (�(G)I � DG), where �(G) is

the maximum degree of G. Since AG and �(G)I � DG are nonnegative matrices, B

is nonnegative as well. From the Gershgorin Circle Theorem [48, Theorem 7.2.1] it

follows that ⇢(B)  �(G). Thus, LG is an M-matrix.

M-matrices have several useful properties. First, we note that if A = rI �B is an

M-matrix with r < ⇢(B), then A is nonsingular. If r = ⇢(B), then A is singular. The

graph Laplacian LG is a singular matrix and it is easy to see that�(G) is an eigenvalue

of B = AG +(�(G)I�DG). For the vector of all ones e, Be = (AG�DG)e+�(G)e =
�(G)e. Thus, �(G) is an eigenvalue of B, and with ⇢(B)  �(G) it follows that

⇢(B) = �(G). That is, for the graph Laplacian, �(G) = kAk1 = kAk1 = ⇢(A)

The following gives some characterization of nonsingular M-matrices [93].

14

Theorem 1.2.5. Suppose A is a square real matrix with positive diagonal entries and

nonpositive o↵-diagonal entries. Then the following statements are equivalent.

1. A is a nonsingular M-matrix.

2. A = rI � B for some nonnegative B and real r > ⇢(B).

3. The real part of of each eigenvalue of A is positive. In particular, if A is a

symmetric nonsingular M-matrix then A is positive definite.

4. All principal minors of A are positive.

5. A�1 exists and A�1 � 0.

6. There exists a vector x > 0 such that Ax > 0.

7. If B is a matrix with positive diagonal entries and nonpositive o↵-diagonal en-

tries and B � A, then B�1 exists.

In our applications we will also deal with singular M-matrices. Several equivalent

characterizations of singular M-matrices are given next [93].

Theorem 1.2.6. Suppose A is a square real matrix with positive diagonal entries and

nonpositive o↵-diagonal entries. Then the following statements are equivalent.

1. A is a singular M-matrix.

2. A = rI � B for some nonnegative B and real r = ⇢(B).

3. All principal minors of A are nonnegative.

4. The real part of each nonzero eigenvalue of A is positive. In particular, if A is

a singular symmetric M-matrix, it is positive semidefinite.

In the next section we will see that irreducible singular M-matrices are of particular

interest to us.

15

1.2.3 Markov chains

In this part we will review basic material on Markov chains. For additional informa-

tion about Markov chains, see [106]. We start with a few definitions from the theory

of stochastic processes.

A row-stochastic matrix is a nonnegative matrix in which each row sum is equal

to one, and a column-stochastic matrix is a nonnegative matrix in which each column

sum is equal to one. A stochastic or random process is a collection of random variables

{X(t)}t2T , where T is a time parameter set, that take on values from the same set S,

called the state space. The time parameter set can be discrete or continuous and we

distinguish between discrete-time stochastic processes and continuous-time stochastic

processes. A special class of stochastic processes are Markov chains defined below.

Definition 1.2.7. A Markov chain is a stochastic process with a finite or countable

state space that satisfies the Markov property. A collection of random variables

{X(t)}t2T with state space S = {S1, S2, . . . } satisfies the Markov property if, for all

integers m and t0 < t1 < · · · < tm < t, the following holds true:

P (X(t) = Sj | X(tm) = Si
m

, . . . , X(t0) = Si
0

) = P (X(t) = Sj | X(tm) = Si
m

).

That is, a Markov chain is memoryless in the sense that the state of the chain

at the next time period only depends on the current time period and not on the

previous states of the chain. If the time parameter set is discrete we refer to the

Markov chain as a discrete-time Markov chain (DTMC), otherwise it is referred to as

a continous-time Markov chain (CTMC). We are mainly interested in discrete-time

Markov chains with finite state space. However, a new discrete-time Markov chain,

called the embedded Markov chain (EMC), can be defined for a CTMC; see [106,

Chapter 1.4.3]. The embedded Markov chain is constructed by ignoring the time

spent in any state and considering only the state transitions that are being made.

16

The EMC can be used to deduce many of the properties of the CTMC.

A discrete-time finite state space Markov chain can be represented by a matrix.

Let pij(t) denote the probability that the chain is in state Sj at time t provided it

was in state Si at time t� 1. That is,

pij(t) = P (X(t) = Sj | X(t� 1) = Sj),

and pij(t) is called transition probability. The transition probability matrix P (t) =

[pij(t)] is an n ⇥ n matrix, where n is the number of states, and each row of P (t)

sums up to one. That is, P (t) is a row-stochastic matrix for all t. If the transition

probabilities do not vary over time the Markov chain is called stationary. In the

following we will only consider stationary Markov chains, and the matrix P denotes

the transition probability matrix of the chain.

A Markov chain is called ergodic or irreducible if it is possible to get from every

state to every other state. The transition probability matrix of an ergodic Markov

chain is irreducible. If the transition probability matrix P is also imprimitive, the

Markov chain is called periodic. This terminology is motivated by the following. For

each imprimitive matrix A with index of imprimitivity h there exists a permutation

matrix ⇡ such that

⇡tA⇡ =

2

66666666664

0 A12 0 . . . 0

0 0 A23 . . . 0

...
...

.
...

0 0 . . . 0 Ah�1,h

Ah1 0 . . . 0 0

3

77777777775

.

In [71] this is called the Frobenius form. A consequence of this form is that we can

partition the chain into h clusters in such a way that it is only possible to move from

17

state Si to Sj if i is in the kth cluster and j is in the (k + 1)th cluster, or if i is in

the last cluster and j is in the first cluster. Thus, each state can only be visited at

periodic points in time, where the period is the index of imprimitivity of the matrix.

Otherwise, if P is primitive, the Markov chain is called aperiodic.

A nonnegative vector ⇡ = (⇡1, ⇡2, . . . , ⇡n)t whose entries sum up to one, that

is,
Pn

i=1 ⇡i = 1, is called a probability distribution vector. A probability distribution

vector can be used to describe the evolution of a Markov chain at a given time step.

The ith entry in the vector ⇡(k) is the probability that the chain is in state Si at time

step k, that is,

⇡

(k)
i := P (X(k) = Si).

We adopt the convention that probability distribution vectors are row vectors. Given

⇡

(k), the evolution of the chain in the next time step is given by

⇡

(k+1) = ⇡

(k)P, k = 0, 1, . . .

Thus, ⇡

(k+1) can be given in terms of the initial state distribution ⇡

(0) and the

transition probability matrix

⇡

(k+1) = ⇡

(0)P k+1, k = 0, 1, . . .

The vectors ⇡

(k) are called the transient distributions of the Markov chain. If a

transient distribution does not change from one time step to the next, it is called a

stationary probability distribution. That is, a stationary probability distribution is a

probability distribution vector ⇡ such that ⇡ = ⇡P . The existence and uniqueness of

a stationary probability distribution depends on the properties of the Markov chain.

Of particular interest is what happens to the Markov chain in the long run. If

18

limk!1 P k exists, then the probability distribution

⇡ = lim
k!1

⇡

(k) = ⇡

(0) lim
k!1

P k

exists, and is called a limiting distribution of the Markov chain. If a limiting distri-

bution exists, is unique and does not depend on the initial distribution, it is called

the steady-state distribution of the Markov chain. In that case the steady-state dis-

tribution is also the only stationary distribution. A Markov chain that is ergodic

and aperiodic always has a unique steady-state distribution. Note that if the chain is

ergodic and periodic no limiting distribution exists, but a consequence of the Perron-

Frobenius Theorem (see Theorem 1.2.3) is that the chain has a unique and positive

stationary distribution. The ith entry of the unique stationary distribution ⇡ may

be interpreted as the proportion of time that the chain spends in state Si in the long

run.

Finding the stationary distribution of a Markov chain amounts to solving the

linear system (I � P t)⇡t = 0. The matrix A = I � P t is a singular M-matrix. First

note that P � 0, and 1 2 �(P), since Pe = 0, where e is the vector of all ones.

Furthermore, from the Gershgorin Circle Theorem it follows that ⇢(P)  1. Hence,

⇢(P) = 1 and A is singular.

An important application of Markov chains is the PageRank algorithm [90]. The

algorithm is based on the world wide web graph that models web pages as nodes

and hyperlinks from one page to another as edges. Each edge e = (u, v) is weighted

depending on the out degree deg+(u) of u. We set we = 1/deg+(u) so that the

weights of the outgoing edges of every node sum up to one. This leads to a weighted

adjacency matrix H, called hyperlink matrix, where every row either sums up to one

or is an all zero row. The idea is that a random walk on this graph models the

behavior of a random surfer. At every page the surfer randomly follows one of the

19

hyperlinks to another page. A Markov chain based on this model is constructed, and

the steady-state distribution of this chain is used to find a ranking of the web pages.

Recall that the chain needs to be ergodic and aperiodic to guarantee the existence

of a steady-state distribution. With this model a surfer would get stuck whenever he

reaches a web page that does not have any outlinks. These nodes in the graph are

called dangling nodes. In addition, this model also does not incorporate the possibility

that a surfer might not follow a hyperlink, but chooses a random web page as the

next destination. To remedy these shortcomings, two modifications are made. The

matrix H is modified to a row-stochastic matrix H̄ as follows:

h̄ij =

8
><

>:

hij if
Pn

k=1 hik = 1,

1/n otherwise,

where n is the number of nodes in the graph. This means that for a page with no

outlinks the next page is chosen at random. Note that H̄ is a row-stochastic matrix,

but it might not be irreducible. To ensure irreducibility a constant 0 < ↵ < 1 is

introduced. This constant represents the probability that a surfer does not follow a

hyperlink, but instead goes to any web page with a predefined probability. Using this

idea we can define a row-stochastic matrix

P = ↵H̄ + (1� ↵)ev.

Here, v is a probability vector and e is the column vector of all ones. Often, v is

chosen as v = (1/n)et, and a common value for ↵ is 0.85. Note that if v > 0, then

P > 0 which guarantees that the Markov chain is ergodic and aperiodic.

Markov chains also have applications in a variety of other fields. In biology and

neuroscience, population processes or simulation of brain activities can be modeled

with a Markov chain. In economics, Markov chains can be found in asset pricing

20

Figure 1.1: Main connected component of the social network of injecting
drug users in Colorado Springs. The size of the nodes is proportional to
the degree. Two drug addicts are connected if they have exchanged a
needle. (Image courtesy of Ernesto Estrada [42].)

models. Queueing theory and game theory both depend heavily on Markov chain

models.

1.2.4 Complex networks

There is no formal definition of a complex network. A network can broadly be de-

scribed as a number of interacting entities. A complex network usually is very large,

has nontrivial topological features, and is dynamically changing. A snapshot of a

network at a given time can be modeled by a graph. An example of such a graph can

be seen in Figure 1.1. For an excellent survey on complex networks, see [85].

Examples of complex networks are social, information, technological, and biolog-

ical networks. Social networks may describe relationships between humans, such as

21

collaborations between scientists. An example of a very large information network

is the world wide web, where interactions between webpages are given by hyper-

links. Examples of technological networks are power grids, road, airline, and railway

networks. In biology, complex networks appear in the form of neural networks, or

protein-protein interaction networks.

Early on, real life networks were assumed to be approximately random. More

recent work has led to the realization that many real life complex network share some

properties that distinguish them from random networks. In a random network nodes

are randomly connected, and thus, the degree distribution of the network follows a

bell-shaped curve. In 1999 Barabási and Albert analyzed the topology of a portion of

the world wide web and found the degree distribution of this network to follow a power

law [9]. That is, the number of nodes of a certain degree decreases exponentially with

the degree. If P (k) denotes the number of nodes with degree k, then P (k) ⇠ k�� ,

for some � > 0. Thus, these networks have a fairly small average degree while the

maximum degree is very large. The parameter � typically lies in the range between

1.5 and 4. Networks with this property are called scale-free or power-law networks.

The term scale-free is motivated in this case by the fact that the variance of the

degree distribution has no scale and does not depend on the size of the graph. Scale-

free networks appear in a variety of applications including social network analysis

[6, 31, 40, 86, 87, 88], web mining [21, 32, 69, 100], and bioinformatics [82, 58].

Examples include the world wide web, and protein-protein interaction networks. For

additional information refer to [8, 114].

The degree distribution of scale-free networks makes this type of network desirable

in some applications. For example, scale-free networks are robust in the sense that

the random removal of a node has very little likelihood of having a negative e↵ect

on the diameter of the network. On the other hand, the removal of highly connected

nodes has a strong e↵ect on the lengths of the shortest paths in the network. That

22

is, these networks are very sensitive to coordinated attacks [33].

Another property that is shared by many complex networks is the small world

property, discussed for example by Watts and Strogatz [115]. Here each node is

connected to any other node by a fairly short path, and the graph shows a fairly high

clustering (see below). In addition, the average degree of the graph is bounded. In

particular, complete graphs, where every node is connected to every other node, are

not called small-world. Measures for the small world property are the diameter or

mean shortest distance, and the clustering coe�cient. The mean shortest distance is

given by

l =
1

n(n� 1)

X

u,v2V
d(u, v),

where n is the number of nodes in the graph. Note that the mean shortest distance

is bounded above by the diameter of the graph. The clustering coe�cient c is a

measure of the density of the graph. For v 2 V the local clustering coe�cient cv

is a measure of the local density in the sense that a relatively high local clustering

coe�cient suggests that relatively many of the direct neighbors of v in the graph

are also connected. That means, two neighbors of a node v are more likely to be

connected that two nodes that do not share a common neighbor. This is a feature

that is not found in random graphs, where every possible pair of vertices is connected

with the same likelihood. The local clustering coe�cient is given by

cv =
2 · |{(u, w) 2 E | u, w 2 N (v)}|

|N (v)| · (|N (v)|� 1)
,

where N (v) is the neighborhood of v given by

N (v) = {u | (u, v) 2 E}.

The clustering coe�cient is given as the mean of the local clustering coe�cient of the

23

nodes, that is,

c =
1

n

X

v2V
cv.

Note that the above coe�cient is sometimes referred to as network average clustering

coe�cient, and the global clustering coe�cient is described as the ratio of three times

the number of triangles in the graph to the number of connected triples in the graph

(that is, paths of length 2).

Formally, a graph is said to have the small-world property, if the following three

conditions hold:

1. There is a constant C1 � 0 such that the average degree of the graph is bounded

from above by C1log(n) where n is the number of nodes.

2. There is a constant C2 > 0 such that the the mean shortest distance is bounded

from above by C2log(n).

3. The clustering coe�cient c is bounded away from zero as n!1. In particular,

it is higher than the clustering coe�cient of a random graph.

While many scale-free networks are also small-world, the small-world property is not

unique to scale-free networks. That is, there are small-world networks that are not

scale-free; see [114].

1.3 Overview of iterative methods and graph par-

titioning

In this section we will give an overview of iterative methods and graph partitioning.

Many matrices that arise from applications are large and sparse. Direct methods are

often too expensive to solve linear systems with these types of matrices. In the follow-

ing we will first introduce matrix splittings and stationary iterative methods, give an

24

overview of Krylov subspace methods, and comment on preconditioning techniques to

improve the convergence of iterative methods. Lastly, we will give some background

on graph partitioning, an important method for parallel computations with large and

sparse matrices.

1.3.1 Matrix splittings and stationary iterative methods

Stationary iterative methods are methods to solve a linear system Ax = b. A station-

ary iterative method has the form

x(k+1) = Tx(k) + c,

where k � 0 is an integer, and x(0) is a given initial guess. T is a matrix, called the

iteration matrix, c is a vector, and both only depend on the linear system and do not

change with k.

Stationary iterative methods can be derived by a suitable splitting A = M � N ,

with M nonsingular. Given a splitting A = M �N , the stationary iterative method

has the form

Mx(k+1) = Nx(k) + b,

or equivalently,

x(k+1) = M�1Nx(k) +M�1b.

For any nonsingular matrix A and stationary iteration with iteration matrix T such

that I � T is nonsingular, there exists a unique splitting A = M � N such that

T = M�1N [72]. The splitting is given by M = A(I � T)�1 and N = M � A.

If A is singular, then there exists a splitting A = M � N with T = M�1N , if

N (A) = N (I � T) [14]. Note that the splitting is not unique in the case of singular

matrices.

25

The stationary iterative method converges for all choices of x(0) if either T is

zero-convergent, that is limk!1 T k = 0, or if ⇢(T) = 1 and T is convergent, that

is, limk!1 T k exists. If a splitting A = M � N induces a zero-convergent iteration

matrix T = M�1N , then we say it is a zero-convergent splitting, if it induces a conver-

gent iteration matrix we say it is a convergent splitting. The terminology regarding

convergent and zero-convergent matrices is not uniform in the literature. In [83],

zero-convergent matrices are called convergent, and convergent matrices are called

semiconvergent. The following well known theorem gives an equivalent condition for

the zero-convergence of a matrix.

Theorem 1.3.1. A matrix T is zero-convergent, that is limk!1 T k = 0, if and only

if ⇢(T) < 1.

We distinguish between di↵erent types of splittings. Varga [109, 110] introduced

regular splittings, and the following definition gives an overview of other types of

splittings.

Definition 1.3.2. Let A = M �N be a splitting, and T = M�1N the corresponding

iteration matrix. Then the splitting is called

• regular if M�1 � 0 and N � 0 [109, 110],

• weak regular if M�1 � 0 and T � 0 [16],

• nonnegative if M�1 � 0, M�1N � 0, and NM�1 � 0 [116],

• weak if T � 0 [75],

• M-splitting if M is an M-matrix and N � 0 [101],

• P-regular if M t +N is positive definite [89].

Splittings can be used to determine if an iteration matrix is zero-convergent. The

following gives an overview of convergence results.

26

Lemma 1.3.3. Let A be nonsingular. A splitting A = M � N is zero-convergent,

that is, ⇢(M�1N) < 1, if

1. The splitting is regular and A�1 � 0. The spectral radius of M�1N is given by

⇢(M�1N) = ⇢(A�1N)
1+⇢(A�1N)

< 1. Conversely, if A = M � N is a regular splitting

with ⇢(M�1N) < 1, then A�1 � 0 [110].

2. The splitting is weak regular and A�1 � 0. The spectral radius of M�1N is given

by ⇢(M�1N) = ⇢(A�1N)
1+⇢(A�1N)

< 1. Conversely, if A = M � N is a weak regular

splitting with ⇢(M�1N) < 1, then A�1 � 0 [116].

3. A is nonnegative, M�1N � 0, and A�1N � 0. The spectral radius of M�1N is

given by ⇢(M�1N) = ⇢(A�1N)
1+⇢(A�1N)

< 1 [116].

4. The splitting is weak, and A�1M � 0. The spectral radius of M�1N is given by

⇢(M�1N) = ⇢(A�1M)�1
⇢(A�1M)

< 1. Conversely, if A = M �N is a weak splitting with

⇢(M�1N) < 1, then A�1M � 0 [104].

Splittings can also be used to determine if an iteration matrix is convergent. For A

SPD, a splitting A = M �N is convergent if the splitting is P-regular [67]. Note that

this is a su�cient but not a necessary condition and a splitting might be convergent

even if it is not P-regular [73].

Many stationary iterative methods start with a decomposition of the matrix into

its diagonal part D, strictly upper triangular part U , and strictly lower triangular

part L. That is, A = D + U + L. The splittings are then defined in terms of D, U ,

and L. The following are a few stationary iterative methods than can be derived in

this form.

Jacobi iteration: M = D, N = �(L+ U),

Gauss-Seidel iteration: M = L+D, N = �U,

27

SOR iteration: M = D + !L, N = (! � 1)L� U , where 0 < ! < 2.

Of particular interest for us are block iterative methods. The n ⇥ n matrix A is

partitioned into K blocks as follows

A =

2

66666666664

A11 A12 A13 . . . A1K

A21 A22 A23 . . . A2K

A31 A32 A33 . . . A3K

...
...

...
. . .

...

AK1 AK2 AK3 . . . AKK

3

77777777775

where Aii 2 Rn
i

⇥n
i , for i = 1, . . . , K, and

PK
i=1 ni = n. Then the block Jacobi, block

Gauss-Seidel, and block SOR iterations can be derived with the same splittings as

above by taking D as the block diagonal, U as the strictly upper block triangular,

and L as the strictly lower block triangular part of A.

1.3.2 Krylov subspace methods

Stationary iterative methods often converge slowly. In contrast to stationary iter-

ative methods, non-stationary iterative methods use steps that di↵er from iteration

to iteration. These methods often show more potential in solving large sparse linear

systems. Here we give an introduction to Krylov subspace methods, a special class of

non-stationary iterative methods. For more details, refer to [98]. We start with some

motivation. As before, we want to solve a large and sparse linear system Ax = b.

Consider a simple stationary iterative method x(k+1) = (I � A)x(k) + b. Note that

this stationary iterative method is induced by the splitting A = I � (I � A). In

particlar, the iterative method is not preconditioned. We can rewrite the iterates as

x(k+1) = (I �A)x(k) + b = x(k) �Ax(k) + b = x(k) + r(k), where r(k) = b�Ax(k) is the

28

residual generated by the kth iterate. Continuing in the same fashion we get

x(k+1) = x(0) + r(0) + r(1) + · · ·+ r(k). (1.1)

We can also rewrite the residuals as r(k) = b � Ax(k) = b � A
⇥
(I � A)x(k�1) + b

⇤
=

b�Ax(k�1)�A(b�Ax(k�1)) = (I�A)r(k�1). Thus, if we continue the same procedure

iteratively, every residual can be rewritten in terms of the residual generated by

the initial guess and powers of the iteration matrix, that is r(k) = (I � A)kr(0).

Substituting in (1.1) we get

x(k+1) = x(0) + r(0) + (I � A)r(0) + · · ·+ (I � A)kr(0), (1.2)

that is, x(k+1) is of the form

x(k+1) = x(0) + x̂(k+1),

where x̂(k+1) 2 span{r(0), Ar(0), A2r(0), . . . , Akr(0)}. One can ask, if there is a better

choice for x̂(k+1) in span{r(0), Ar(0), A2r(0), . . . , Akr(0)} than the one given in (1.2).

This motivates the idea behind Krylov subspace methods, where in the kth iteration

a suitable x̂(k) is chosen from a specific subspace of dimension k. The subspace used

belongs to a specific kind called a Krylov subspace. Given a matrix A, and a vector

v, the rth Krylov subspace generated by A and v is given by

Kr(A, v) = span{v, Av,A2v, . . . , Ar�1v}.

Note that K1(A, v) ⇢ K2(A, v) ⇢ · · · ⇢ Kd(A, v) = · · · = Kn(A, v) for some d. A gen-

eral description of a Krylov subspace method is as follows. If v, Av,A2v, . . . , Ar�1v

are linearly independent, they form a basis of Kr(A, v). This basis is usually not very

29

good, that is, it can be ill-conditioned. For a point of view of design and implemen-

tation an orthonormal basis is often preferred. That is, a Krylov subspace method

generates an orthonormal basis {v1, v2, . . . , vr�1} of Kr(A, v). Popular methods to

generate such a basis are the Arnoldi iteration [5] or the Lanczos iteration for sym-

metric matrices. Details of the methods can be found in Appendix A in Algorithm

A.1 and A.2. Assuming exact arithmetic, after m iterations the Arnoldi iteration

produces an m⇥m upper Hessenberg matrix

Hm =

2

66666666664

h11 h12 h13 . . . h1m

h21 h22 h23 . . . h2m

h32 h33 . . . h3m

.
...

hm,m�1 hmm

3

77777777775

(1.3)

and the vectors vi (i = 1, . . . ,m) form the columns of a n ⇥ m matrix Vm with

V t
mVm = Im, such that

Hm = V t
mAVm. (1.4)

The Lanczos iteration uses the symmetry of the matrix A. Thus, it produces a

tridiagonal matrix

Tm =

2

66666666664

↵1 �2

�2 ↵2 �3

.

�m�1 ↵m�1 �m

�m ↵m

3

77777777775

(1.5)

and the vectors vi (i = 1, . . . ,m) form the columns of a n ⇥ m matrix Vm with

V t
mVm = Im, such that

Tm = V t
mAVm. (1.6)

30

In both cases the new iterate xm will be given by xm = x0 + Vmum, where um 2 Rm

is a vector that has to be determined.

In general, a Krylov subspace method is a projection method, where two spaces

Km(A, r0) and Lm are given, and um is chosen such that rm = b�Axm is orthogonal

to Lm, where xm = x0+Vmum. We will briefly describe two Krylov subspace methods

that will be used later on.

The generalized minimum residual (GMRES) algorithm [99] uses Lm = A·Km(A, r0),

and can be used for any type of matrix. An (m + 1) ⇥m matrix H̄m is constructed

as follows

H̄m =

2

64
Hm

0 . . . 0 hm+1,m

3

75 , (1.7)

and satisfies

AVm = Vm+1H̄m. (1.8)

Thus, the residual generated by the mth iterate is given by

rm = b� A(x0 + Vmum)

= r0 � AVmum

= �1v1 � Vm+1H̄mum

= Vm+1(�1e1 � H̄mum),

where �1 = kr0k2, and e1 = (1, 0, . . . , 0)t. Since the columns of Vm+1 are orthogonal,

krmk2 = k�1e1� H̄mumk2. A unique solution for um that minimizes k�1e1� H̄mumk2
can be found, since H̄m has full rank. A summary of GMRES can be found in

Appendix A in Algorithm A.4. One disadvantage of GMRES is that we have to save

the vectors v1, . . . , vm. For large matrices the memory demand can become too large

as m increases. For this purpose a restarted GMRES method, denoted GMRES(m),

can be used. After m iterations the vectors v1, . . . , vm are discarded and the methods

restarts with xm as initial guess. The details can be seen in Appendix A in Algorithm

A.5. The GMRES algorithm usually shows a good convergence rate if the eigenvalues

31

of A are clustered away from zero. However, characterizing the rate of convergence

of GMRES is a di�cult matter.

The conjugate gradient (CG) method [57] uses Lm = Km(A, r0) and can be used for

symmetric (Hermitian) positive definite matrices. Similarly to the GMRES algorithm,

rm = r0 � AVmum. Since rm is orthogonal to Km(A, r0), it follows that V t
m(r0 �

AVmum) = 0. Thus, V t
mAVmum = Tmum = V t

mr0 = �1e1, and um can be found by

um = T�1
m (�1e1).

Using the LU factorization of Tm

Tm = LmUm

=

2

66666666664

1

�2 1

.

�m�1 1

�m 1

3

77777777775

⇥

2

66666666664

⌘1 �2

⌘2 �3

.

⌘m�1 �m

⌘m

3

77777777775

a set of coupled recurrences of the form

xm = xm�1 + ↵m�1pm�1,

rm = rm�1 � ↵m�1Apm�1,

pm = rm + �m�1pm�1

can be found. Here, ↵m = ⌘m + �m�m. Thus, for the conjugate gradient algorithm

we do not need to store the vectors v1, . . . , vm. A summary of CG can be found

in Appendix A in Algorithm A.6. The rate of convergence of CG depends on the

distribution of the eigenvalues of A. A clustering of the eigenvalues around 1, or a

relatively small spectral condition number, imply fast convergence.

32

1.3.3 Preconditioning techniques

Here we will give an overview of preconditioning techniques. For additional back-

ground on preconditioning, see [11].

Preconditioning techniques are used to modify a linear system. The goal of this

modification is to improve the performance and stability of Krylov subspace methods.

A preconditioner is a matrix that is used in this modification. By (implicitly) applying

a matrix to the linear system, the spectral properties of the coe�cient matrix can be

improved. For a linear system Ax = b there are several ways to apply a preconditioner.

The preconditioner can be applied simultaneously on both sides of the equation. This

is called left preconditioning, and the linear system has the form

M�1Ax = M�1b,

where M is the preconditioner. One can also apply the preconditioner to the right

of the matrix, that is, use right preconditioning. In this case the linear system is

modified to

AM�1y = b,

and the solution of the original system is given by x = M�1y. Also possible is a split

preconditioning

M�1
1 AM�1

2 y = M�1
1 b,

where the solution of the original system is given by x = M�1
2 y, and the preconditioner

is M = M1M2.

The type of preconditioning that should be used depends on the underlying prob-

lem and the chosen iterative method. For example, CG requires a symmetric positive

definite matrix. In general, a good preconditioner should make the system easier to

solve, and the construction of the preconditioner should be relatively cheap.

33

A matrix splitting defines a preconditioner in a natural way. If we consider a

splitting A = M � N , M is nonsingular and can be used as preconditioner. Thus,

common preconditioners arise from the splittings that we have seen in section 1.3.1.

Jacobi preconditioner: M = D,

Gauss-Seidel preconditioner: M = L+D,

SOR preconditioner: M = D + !L, with 0 < ! < 2.

Other popular precoditioners correspond to the block versions of these splittings.

Another common class of preconditioners comes from incomplete LU factorization

(ILU). The ILU factorization was first introduced by Varga [109], but it became

popular only after the work of Meijerink and van der Vorst [77]. In general, an

incomplete LU factorization of a matrix A computes a sparse lower triangular matrix

L̂ and a sparse upper triangular matrix Û so that L̂Û is the complete LU factorization

of a perturbed matrix A+R, where R is called the residual matrix. There are di↵erent

forms of ILU factorizations that are based on di↵erent constraints on the residual

matrix or the nonzero pattern of L̂ · Û . One of the simplest versions of ILU is the

zero fill-in ILU, denoted ILU(0). In this case the o↵-diagonal nonzero pattern of L̂ · Û
is the same as the o↵-diagonal nonzero pattern of A. However, the zero fill-in ILU

is usually fairly inaccurate. A more accurate version allows new non-zeroes based

on the levels of fill-in. Initially, each pair (i, j) receives a level of fill of levij = 0 if

aij 6= 0 and levij =1 otherwise. Each time aij is updated in step 5 in the Gaussian

Elimination (see Algorithm A.3 in Appendix A) the level of fill levij is updated to

levij = min{levij, levik + levkj + 1}. An entry is only kept if levij is smaller than a

given level of fill-in. Note that with this construction the level of fill of the nonzero

entries of A is kept at 0. Thus, entries in the nonzero locations of A are always kept.

This ILU factorization is denoted ILU(k), were k is the level of fill-in. Incomplete

LU factorizations that depend on levels of fill-in only consider the nonzero structure

34

of the matrix but not the numerical values. An ILU factorization that depends on

the numerical values of the entries is a threshold-based scheme. The factorization

is computed row by row. Entries in each row are dropped if their absolute value

falls below a certain threshold. An exception are the diagonal entries, which are

always kept. We refer to this factorization as ILUTH. To control the amount of

memory needed, an additional dropping based on the number of entries per row can

be introduced. In every row only the largest p entries from the ones that have not

been dropped based on the threshold property are kept. This dual threshold-based

factorization is referred to as ILUT preconditioning [97].

1.3.4 Graph partitioning

In graph partitioning problems we are interested in dividing the graph’s vertex set

into a fixed number of subsets so that every set has roughly the same number of

vertices and the number of edges connecting vertices from di↵erent subsets is mini-

mized. Applications for graph partitioning can be found in image processing [102],

VLSI circuit layout [41], domain decomposition of unstructured graphs, and parallel

computing. In parallel scientific computing, graph partitioning is used to balance

the workload among the processors while at the same time limit the communication

between the processors. Graph partitioning is an NP-hard problem [47], but there are

good heuristics for many types of graphs. For a graph G = (V,E), a k-way partition-

ing is a partitioning of the vertex set V into k subsets V1, . . . , Vk, such that Vi\Vj = ;,
1  i < j  k, and

S
1ik Vi = V . The number of edges whose incident vertices

belong to di↵erent subsets is called edge-cut. Most available partitioners try to ap-

proximately minimize the edge-cut while balancing the size of every subset. There

are several readily available software packages for graph partitioning. In serial mode

one can choose among the following: Metis [61], Scotch [91], Party [94], and Jostle

[113]. In parallel mode, well known graph partitioning libraries include ParMETIS

35

[65], PT-Scotch [30], Chaco [54], and Zoltan [36].

We are particularly interested in using graph partitioning methods to speed up

matrix-vector multiplication for a sparse matrix A in parallel. A k-way partitioning

gives rise to a symmetric permutation of A such that

P tAP =

2

66666666664

A11 A12 A13 . . . A1K

A21 A22 A23 . . . A2K

A31 A32 A33 . . . A3K

...
...

...
. . .

...

AK1 AK2 AK3 . . . AKK

3

77777777775

,

where Aii is an ni ⇥ ni matrix and ni is the size of the ith subset in the partitioning.

Since in a k-way partitioning the edge-cut is minimized (subject to balanced domains),

the submatrices that are not on the block diagonal are very sparse. In a parallel

environment the matrix is distributed row-wise among the processors, that is, the

first n1 rows of P tAP are assigned to the first processor, the next n2 rows are assigned

to processor two, and so on.

A k-way partitioning can also be found for weighted graphs. In that case, rather

than trying to minimize the number of edges whose incident vertices belong to dif-

ferent subsets, the sum of the weights of the edges in the edge-cut is minimized. If

there are weights on the nodes of the graph, a k-way partitioning balances the sum

of the weights of the nodes in every subset instead of the number of nodes in each

subset. If we weigh every vertex according to its degree (or out-degree for digraphs),

we can balance the number of edges that have to be stored on every processor. Note

that only integer weights may be used.

Instead of partitioning the vertex set of a graph one can also partition the edge

set. The resulting partitioning of the matrix is a 2D partitioning where both the rows

and columns of the matrix are distributed among the processors. This partitioning

36

is particularly useful for dense matrices. In our case the matrices are sparse, and we

partition the nodes of the underlying graph.

Chapter 2

Restricted Additive Schwarz

Methods for Markov Chains

2.1 Introduction

Domain decomposition methods are widely used for solving large-scale linear systems

of equations arising from the discretization of partial di↵erential equations (PDEs)

on parallel computers [108]. Of particular importance among domain decomposition

schemes are variants of the additive and multiplicative Schwarz methods, with or

without overlap. These algorithms can be cast as stationary iterations associated

with matrix splittings, making a purely algebraic analysis possible; see, e.g., [45, 12].

Although there are situations where Schwarz-type methods exhibit rapid convergence,

they are usually more e�cient when used as preconditioners for Krylov subspace meth-

ods. Our goal is to investigate the application of various additive Schwarz methods as

solvers and as preconditioners for computing the stationary probability distribution

vector of ergodic Markov chains with large and sparse transition matrices. In partic-

ular, we give the first analysis and implementation of the restricted additive Schwarz

(RAS) method in the Markov chain context. The RAS method, first proposed in [28]

38

39

as a preconditioner for nonsingular linear systems Ax = b, is a variant of the additive

Schwarz method that requires less communication and is therefore better suited for

parallel implementation. Somewhat surprisingly, this method tends to exhibit con-

vergence rates that are no worse and often better than those of the standard additive

Schwarz method; see [46] for an algebraic analysis in the nonsingular case. We note

that RAS is the default Schwarz preconditioner for linear systems in the popular

PETSc package [7]. Additive Schwarz methods (but not RAS) for Markov chains

have been analyzed in [23, 76]. The focus of these papers is primarily theoretical,

and the use of Krylov subspace acceleration is not considered. Here we present some

analysis and the results of computational experiments on realistic Markov models,

including a selection of problems from the MARCA collection [105] and certain reli-

ability models. Our results show that RAS preconditioning (with inexact subdomain

solves) is a promising approach to the solution of large, sparse Markov chain models.

This chapter is based in part on the publication [13].

2.2 Definitions and auxiliary results

First we introduce some additional terminology. For � 2 �(A) the index of A with

respect to �, denoted by ind�(A), is the smallest integer k for which R((�I�A)k+1) =

R((�I � A)k). Note that this is the size of the largest Jordan block associated with

the eigenvalue � in the Jordan normal form of A.

We are interested in computing the stationary probability distribution vector of

finite, ergodic Markov chains. Following [16], we identify ergodic chains with irre-

ducible ones; in particular, we allow periodic chains. The problem amounts to finding

a non-trivial solution to a homogeneous system of linear equations Ax = 0, where A

is a singular, irreducible M-matrix and x = ⇡

t. As we saw in Section 1.2.3, up to

normalization, such solution vector x is unique. This formulation applies to Discrete-

40

Time (DT) as well as to Continuous-Time (CT) Markov Chains. For a DTMC, we

have A = I � P t where P is the row-stochastic matrix of transition probabilities.

A matrix A is weak semipositive if there exists a vector x > 0 (i.e., an entry-

wise positive vector) such that Ax � 0; see [83]. By the Perron-Frobenius Theorem

(see Theorem 1.2.3) it is then clear that any singular, irreducible M-matrix is weak

semipositive. The standard stationary iteration associated with the splitting A =

M �N is of the form x(k+1) = Tx(k) + c, k = 0, 1, . . . , where T = M�1N , c = M�1b,

and x(0) is arbitrary. In the cases of interest to us, T has unit spectral radius. Such a

matrix is convergent if and only if ind1(T) = 1 and � 2 ⇢(T)\{1} implies |�| < 1. For

T � 0, the latter condition can be replaced with T having positive diagonal entries

[3]. Also observe that in the Markov chain context we have c = 0, and that the

sequence {x(k)} converges to a nontrivial solution of Ax = 0 only if x(0) /2 R(M�1A).

Finally, we will need the following result from [83, Thm. 6] in our analysis of

convergence.

Theorem 2.2.1. Let A = M � N be a weak regular splitting of A 2 Rn⇥n, and let

T = I �M�1A = M�1N . If A is weak semipositive and singular, then ⇢(T) = 1 and

ind1(T) = 1.

2.3 Introduction to algebraic domain decomposi-

tion methods

Domain decomposition methods are widely used for solving large-scale linear systems

of equations arising from the discretization of PDEs. The basic idea is to partition

the physical domain ⌦ of the PDE into K subdomains, that is, ⌦ =
SK

i=1⌦i. The

PDE is then solved on every ⌦i with appropriate boundary conditions, and a global

solution is approximated using the local solutions (see for example [29, 95, 103, 108]).

General sparse linear systems do not have an associated physical domain. In this

41

case an algebraic approach to domain decomposition can be used [27]. That is, the

domains are defined by a partitioning of the matrix. A partitioning can be achieved

for example by applying a graph partitioner to the underlying graph of the matrix.

In section 1.3.1 we have seen block iterative methods such as the block Jacobi and

block Gauss-Seidel methods. Those two methods are examples of algebraic domain

decomposition methods. We first want to motivate why these methods can be viewed

as domain decomposition methods. In the algebraic case the domain is the set of

indices S = {1, . . . , n}, where n is the size of the matrix. For the block Jacobi and

block Gauss-Seidel method a domain decomposition is given by a partition of the

index set into K subsets Si, i = 1, . . . , K, such that S =
SK

i=1 Si and Si \ Sj = ;
for i 6= j. Thus, if ni = |Si|, then n =

PK
i=1 ni. Assume the subsets are given

by Si = {si1, . . . , si,n
i

}, i = 1, . . . , K, and let ⇡ be the matrix presentation of the

permutation that maps (1, . . . , n) to (s11, . . . , s1,n
1

, s21, . . . , s2,n
2

, . . . , sK1, . . . , sK,n
K

).

Then

⇡A⇡t =

2

66666666664

A11 A12 A13 . . . A1K

A21 A22 A23 . . . A2K

A31 A32 A33 . . . A3K

...
...

...
. . .

...

AK1 AK2 AK3 . . . AKK

3

77777777775

.

Thus, the block Jacobi method applied to ⇡A⇡t can be written as a stationary iterative

method with iteration matrix

TBJ = I �

2

66664

A�1
11

. . .

A�1
KK

3

77775
⇡A⇡t. (2.1)

Each iteration of the block Jacobi method involves solving systems of the form Aiixi =

yi. These are the local subdomain solves.

42

Block Jacobi and block Gauss-Seidel iterations are often fairly slow to converge

or do not converge at all, since the domains are non-overlapping and information

derived from the local solves only slowly propagate to other domains. To o↵set

this drawback, overlapping methods can be considered. If we introduce overlap the

methods are referred to as Schwarz methods. Block Jacobi with overlap corresponds to

additive Schwarz, while Gauss-Seidel with overlap describes multiplicative Schwarz.

In the next section we will describe the algebraic formulation of Schwarz methods.

We adopt the notation and the approach developed in [23, 76].

2.4 Algebraic formulation of Schwarz methods

As before, we consider the set of indices S = {1, . . . , n}. To distinguish between

overlapping and non-overlapping subdomains we introduce some additional notation.

Let S = [Ki=1Si,0 be a partition of S into K disjoint, non-empty subsets. For each

Si,0 consider Si,� with Si,0 ✓ Si,� ⇢ S. Thus, S = [K
i=1Si,� for all values of �, with not

necessarily pairwise disjoint Si,�. For � > 1 this notation introduces overlap. Thus, if

ni,0 = |Si,0| and ni,� = |Si,�|, then

n =
KX

i=1

ni,0 <
KX

i=1

ni,�. (2.2)

One way to find this overlap is by considering the underlying undirected graph of A.

If A does not have a symmetric pattern, we use the graph of A+At instead. To each

set of nodes Si,0 we add all nodes with distance at most � in the underlying graph.

Here, as usual, the distance is defined as the length of the shortest path in the graph

connecting a given node to any node in Si,0.

Next, we define a restriction operator Ri,� from the whole space Rn to the subspace

defined by Si,�. Let ⇡i,� be the matrix representation of a permutation that relabels

the states in S = {1, . . . , n} in such a way that Si,0 is ordered first, Si,�\Si,0 is ordered

43

next, and S\Si,� is ordered last. Then, the first ni,0 rows of ⇡i,� form the restriction

operator Ri,0, and the restriction operator Ri,� is given by the first ni,� rows of ⇡i,�.

Ri,� is an ni,�⇥n matrix such that Ri,�⇡t
i,� = [Ii,�|0], where Ii,� is the ni,�⇥ni,� identity

matrix. For example if n = 7, Si,0 = {3, 5}, and Si,� = {3, 5, 1}, then Ri,0 and Ri,�

are given by

Ri,0 =

2

64
0 0 1 0 0 0 0

0 0 0 0 1 0 0

3

75 and Ri,� =

2

66664

0 0 1 0 0 0 0

0 0 0 0 1 0 0

1 0 0 0 0 0 0

3

77775
. (2.3)

The matrix

Ai,� = Ri,�AR
t
i,� (2.4)

is the restriction of A to the subspace corresponding to Si,�. Thus, Ai,� is an ni,�⇥ni,�

principal submatrix of A. In the case of ergodic Markov chains, A is an irreducible

singular M-matrix. Since principal minors of irreducible singular M-matrices are

nonsingular M-matrices, Ai,� is a nonsingular M-matrix [106]. The additive Schwarz

method can be given in the form of a stationary iteration, x(k+1) = TAS,�x(k) + c,

where

TAS,� = I �
KX

i=1

Rt
i,�A

�1
i,�Ri,�A (2.5)

and c is a certain vector. Note that for the solution of Markov chains c will be zero.

The additive Schwarz method might not converge. To ensure convergence, a damping

parameter ✓ with 0 < ✓  1 is introduced. The damped additive Schwarz method

has an iteration matrix of the form

T✓
AS,�

= I � ✓
KX

i=1

Rt
i,�A

�1
i,�Ri,�A; (2.6)

see [29, 38, 39, 50, 103]. The damping parameter depends on the chosen overlap. Note

44

that if we use the same notation for the block Jacobi method, the iteration matrix

for block Jacobi is of the form

TBJ = I � ✓
KX

i=1

Rt
i,0A

�1
i,0Ri,0A. (2.7)

The additive Schwarz method can be used as a preconditioner for a Krylov subspace

method. In that case

MAS,� =
KX

i=1

Rt
i,�A

�1
i,�Ri,� (2.8)

is used as preconditioner and no damping parameter is needed.

In the kth iteration, the additive Schwarz method follows the following steps for

every subdomain:

I. Restrict y(k) = Ax(k�1) to the space defined by Si,�. That is, compute yi,� =

Ri,�y(k).

II. Solve a linear system of the form Ai,�xi,� = yi,�.

III. Prolongate xi,� to the whole space. That is, compute ŷ(k) = Rt
i,�xi,�.

In a parallel implementation, the matrix is distributed among the processors according

to the non-overlapping domains. That is, processor p holds row i if i 2 Sp,0. Thus, the

overlap of a domain, Sp,�\Sp,0, is stored on a di↵erent processor, and communication

between the processors is needed in step I and III of the above method. In 1999

Cai and Sarkis described a modification of this method that converges as fast as

additive Schwarz but avoids communication in step III [28]. Instead of prolongating

ŷ(k), only the part of ŷ(k) that corresponds to the local non-overlapping domain Si,0

is prolongated. This method was named restricted Additive Schwarz method. The

advantage of the method in the parallel case is that no communication is needed in

step III.

45

For the restricted additive Schwarz iteration the prolongation operator Rt
i,� will

be replaced by a prolongation operator that does not consider overlap. Define Ei,0 as

Ei,0 = Rt
i,0Ri,0 = ⇡t

i,0

2

64
Ii,0 0

0 0

3

75 ⇡i,0. (2.9)

Ei,0 is an n ⇥ n diagonal matrix with a one on the diagonal for every row where

Rt
i,0 has a one, and zeros otherwise. Thus,

PK
i=1Ei,0 = I. Note that if we define

Ei,� = Rt
i,�Ri,�, then

KX

i=1

Ei,� =

2

66666664

q1

q2
. . .

qn

3

77777775

 qI, (2.10)

where qi denotes the number of subdomains that contain index i, and q = max{qi}.
The parameter q plays a role in the convergence theory for the damped additive

Schwarz method. In fact, it has been shown that for M-matrices the method converges

for ✓  1/q [46].

We can use the matrix Ei,0 to define the “restricted” operator R̃i,� as

R̃i,� = Ri,�Ei,0. (2.11)

Using the same example as in (2.3), the restricted operator is given by

R̃i,� =

2

66664

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

3

77775
. (2.12)

46

That is, all rows corresponding to overlap are set to zero. Thus, R̃i,� is a ni,� ⇥ n

matrix of the form

R̃i,� =

2

64
Ii,0 0

0 0

3

75 ⇡i,0. (2.13)

With this notation, the restricted additive Schwarz method has the form of a station-

ary iteration, x(k+1) = TRAS,�x(k) + c, where

TRAS,� = I �
KX

i=1

R̃t
i,�A

�1
i,�Ri,�A. (2.14)

For the restricted additive Schwarz method no damping parameter is needed. The

restricted additive Schwarz preconditioner is given by

M�1
RAS,� :=

KX

i=1

R̃t
i,�A

�1
i,�Ri,�. (2.15)

We will use the restricted additive Schwarz preconditioner as a right preconditioner

for GMRES. That is, we will use GMRES to solve AM�1
RAS,�y = 0, with y = MRAS,�x.

With the same notations we can write the block Gauss-Seidel, multiplicative

Schwarz, and restricted multiplicative Schwarz methods as follows:

TGS =
1Y

i=K

(I �Rt
i,0A

�1
i,0Ri,0A), (2.16)

TMS,� =
1Y

i=K

(I �Rt
i,�A

�1
i,�Ri,�A), (2.17)

TRMS,� =
1Y

i=K

(I � R̃t
i,�A

�1
i,�Ri,�A). (2.18)

2.5 Nonsingularity of the RAS preconditioner

The notation M�1
RAS,� only makes sense if

PK
i=1 R̃

t
i,�A

�1
i,�Ri,� is a nonsingular matrix.

Guaranteeing the nonsingularity of this matrix is not entirely straightforward. A

47

simple solution would be to construct the RAS preconditioner not using the original

singular matrix A, but a slightly perturbed matrix Ã = A + ✏I for some ✏ > 0.

Since this matrix is guaranteed to be a nonsingular M-matrix, it follows from the

general results in [46] that the corresponding RAS preconditioner is well-defined, i.e.,

nonsingular. The resulting ✏-dependent RAS preconditioner would then be applied,

of course, to the original (singular) system, Ax = 0. This approach, however, besides

not being very elegant requires the introduction of an additional parameter ✏.

An alternative approach is to work with the original matrix A, but to impose some

conditions on the decomposition (graph partition) that will automatically produce a

nonsingular RAS preconditioner. We begin by writing

⇡i,�A⇡i,�
t =

2

64
Ai,� Ki,�

Li,� A¬i,�

3

75 , (2.19)

where A¬i,� is the principal submatrix of A “complementary” to Ai,�. Thus, A¬i,�

is a nonsingular M-matrix. Let D¬i,� = diag(A¬i,�) and note that since A¬i,� is an

irreducible nonsingular M-matrix, D¬i,� is nonnegative with positive diagonal entries.

We construct a matrix Mi,� corresponding to Ri,� as follows:

Mi,� = ⇡t
i,�

2

64
Ai,� 0

0 D¬i,�

3

75 ⇡i,� . (2.20)

Since Ai,� is nonsingular and D¬i,� has positive entries on the diagonal, Mi,� is invert-

ible. It has been proven by Frommer and Szyld [46] that

R̃t
i,�A

�1
i,�Ri,� = Ei,0M

�1
i,� . (2.21)

48

Thus, M�1
RAS,� can be written as

M�1
RAS,� =

KX

i=1

Ei,0M
�1
i,� , (2.22)

and we will use this representation in our analysis of the restricted additive Schwarz

method for Markov chains in the remainder of this section and the next.

We will make use of the following lemma from [66].

Lemma 2.5.1. Assume that A is an irreducible singular M-matrix, the splittings

A = Ml � Nl, l = 1, . . . K, are regular, and that El, l = 1, . . . , K are nonnegative

diagonal matrices such that
PK

l=1 El = I. If there exist indices 1  i, j  n such

that the (i, j)-entry in Nl is nonzero for each l = 1, . . . , K, then for su�ciently small

✏ > 0, the splittings

A+ ✏Ei,j = Ml � (Nl � ✏Ei,j), l = 1, . . . , K

are regular splittings of a nonsingular M-matrix. Thus M =
PK

l=1 ElM
�1
l is nonsin-

gular regardless of the choice of the weighting matrices El.

We emphasize that in the above lemma, the matrices Ml are independent of ✏.

We can now state su�cient conditions that guarantee the nonsingularity of the RAS

preconditioner.

Theorem 2.5.2. Given any set of overlapping subdomains S1,�, . . . , SK,�, there ex-

ists a set of overlapping subdomains Ŝ1,�, . . . , ŜK,� such that Si,0 ✓ Ŝi,� ✓ Si,� and

the preconditioning matrix M�1
RAS =

PK
l=1 El,�M

�1
l,� corresponding to Ŝ1,�, . . . , ŜK,� is

nonsingular.

Proof. Since A is irreducible, there exist i 2 S1,0 and j /2 S1,0 such that the (i, j)-entry

of A is nonzero. Now we construct the sets Ŝ1,�, . . . , ŜK,� from the sets S1,�, . . . , SK,�

as follows. Set Ŝ1,� = S1,�\{j}. Let s be the index of the set such that j 2 Ss,0. Set

49

Ŝs,� = Ss,�\{i}. Also, we remove i and j from all other sets, that is Ŝl,� = Sl,�\{i, j}
for l 2 {2, . . . , K}\{s}. Consider the matrix splittings A = Ml,� �Nl,� corresponding

to the new subdomains. With

A = ⇡t
l,�

2

64
Al,0 Kl,�

Ll,� A¬l,�

3

75 ⇡l,� and Ml,� = ⇡t
l,�

2

64
Al,0 0

0 D¬l,�

3

75 ⇡l,� ,

it follows that

Nl,� = ⇡t
l,�

2

64
0 �Kl,�

�Ll,� �A¬l,� +D¬l,�

3

75 ⇡l,�.

Since A has nonpositive o↵-diagonal entries it follows that Nl,� � 0. Since M�1
l,� � 0,

the splittings A = Ml,� � Nl,� are regular. With the updated set of overlapping

subdomains Ŝ1,�, . . . , ŜK,� the conditions for the previous lemma are satisfied. If the

(i, j)-entry of A is given by ai,j (6= 0 by the choice of i and j), then the (i, j)-entry in

Nl,�, l = 1, . . . , K, is given by �ai,j, since i and j are never in the same subdomain.

It follows from the previous lemma that M =
PK

l=1 El,�M
�1
l,� is nonsingular.

It is worth stressing that the conditions expressed in the foregoing result are suf-

ficient, but not necessary. In practice we have not found any cases where a given

overlapping set of subdomains produced a singular preconditioner, and therefore we

have not needed to modify any subdomains so as to satisfy the theorem’s conditions.

On the other hand, we have been unable to prove nonsingularity of the RAS precondi-

tioner without any additional assumptions. Since nonsingularity of the preconditioner

is an essential requirement for the analysis in the next sections, we henceforth assume

that the conditions in the previous theorem are satisfied.

In addition, we would like to note that the nonsingularity of the additive Schwarz

preconditioner for Markov chainsMAS,� has also been proven with some restrictions on

the choice of overlap. Bru, Pedroche, and Szyld showed that a MAS,� is nonsingular if

the overlap is chosen from consecutive domains [23]. That is, the overlapping domains

50

Si,� are chosen such that Si,� \ Si+k,� = ;, for k � 2.

2.6 Properties of the RAS splitting

In this section we analyze the convergence of the restricted additive Schwarz iteration

for irreducible singular M-matrices. In particular, we will formulate su�cient condi-

tions under which the stationary RAS iteration converges to a nontrivial solution of

the linear system Ax = 0 for almost all initial guesses—i.e., conditions under which

the iteration matrix of the RAS method is convergent.

Recall that the iterative method x(k+1) = Tx(k) is convergent if the limk!1 T k

exists. As is well known (see, e.g., [83]), a matrix T is convergent if and only if (i)

⇢(T)  1, and if ⇢(T) = 1 then (ii) 1 2 �(T) and there are no other eigenvalues on

the unit circle, and (iii) ind1T = 1, i.e., T has only Jordan blocks of size 1 associated

with the eigenvalue 1. Note that given an iteration matrix T = M�1N = I �M�1A

associated with a splitting A = M �N with A singular, one necessarily has 1 2 �(T)

and thus ⇢(T) � 1.

We begin our discussion of convergence by first showing that the iteration matrix

of the RAS method satisfies ⇢(T) = 1 and ind1T = 1. Because of Theorem 2.2.1, it

su�ces to show that the RAS splitting is weak regular.

Theorem 2.6.1. Let A be an irreducible singular M-matrix, and let M�1
RAS,� be given

by (2.22). Then the splitting A = MRAS,� �NRAS,� is weak regular.

Proof. With Ei,0 � 0 and M�1
i,� � 0 it follows that M�1

RAS,� =
PK

i=1Ei,0M
�1
i,� � 0. Let

51

Ni,� = Mi,� � A, then

M�1
RAS,�NRAS,� = I �

KX

i=1

�
Ei,0M

�1
i,� A

�

= I �
KX

i=1

Ei,0 +
KX

i=1

Ei,0M
�1
i,� Ni,�

=
KX

i=1

Ei,0M
�1
i,� Ni,�.

The last equality holds since
PK

i=1Ei,0 = I. Since M�1
i,� Ni,� � 0 and Ei,0 � 0, we

obtain M�1
RAS,�NRAS,� � 0.

The previous result, combined with Theorem 2.2.1, implies that the iteration ma-

trix T of the RAS method is semiconvergent. For it to be convergent, we additionally

need to show that � = 1 is the only eigenvalue of T on the unit circle. As mentioned

in section 2, this is equivalent to T having no zero diagonal entries, see [3]. In gen-

eral, T may not have all positive entries along the diagonal. There are essentially

two ways to enforce this condition. One approach (see, e.g., [23, 76]) is to slightly

modify the splittings of A so as to ensure positive diagonals. Adding a small positive

constant to the diagonal entries of Mi,� makes the splittings A = Mi,� �Ni,� regular,

and the diagonal entries of Ti,� = M�1
i,� Ni,� positive [76]. The following two results

show that with this modification, the RAS iteration matrix T = M�1
RAS,�NRAS,� has

positive diagonal entries.

Proposition 2.6.2. Let A be an irreducible singular M-matrix, and let MRAS,� and

Mi,� be defined as in (2.22) and (2.20). Set Ni,� = Mi,� � A and NRAS,� = MRAS,� �
A. Assume that M�1

i,� Ni,� has positive entries on the main diagonal. Then, T =

M�1
RAS,�NRAS,� has positive entries on the main diagonal.

52

Proof. As seen in the proof of Theorem 2.6.1,

M�1
RAS,�NRAS,� =

KX

i=1

Ei,0M
�1
i,� Ni,�.

For a row in which Ei,0 is zero, the diagonal entry of Ei,0M
�1
i,� Ni,� is zero. For a row in

which Ei,0 has a one, the diagonal entry of Ei,0M
�1
i,� Ni,� equals the diagonal entry of

M�1
i,� Ni,� which is positive by assumption. Since

PK
i=1 Ei,0 = I, for each row exactly

one of the Ei,0 has a one. Thus, the diagonal entries of M�1
RAS,�NRAS,� are positive.

The following proposition describes the modification that is needed to ensure that

M�1
i,� Ni,� has positive entries along its diagonal. The result can be found in [76].

Proposition 2.6.3. Let B � 0, Bte = e. Let K > 1 be a positive integer and let

↵1, . . . ,↵K be any positive real numbers. Let A = I � B = Mi,� �Ni,�, i = 1, . . . , K,

be defined by

Mi,� = ⇡t
i,�

2

64
↵iI + Ai,� 0

0 ↵iI +D¬i,�

3

75 ⇡i,�,

and Ni,� = Mi,� � A where ⇡i,�, Ai,�, and D¬i,� are defined as before. Then, the

splittings A = Mi,��Ni,� are regular, and the diagonals of Ti,� = M�1
i,� Ni,� are positive,

for i = 1, . . . , K.

Another way to ensure convergence was already proposed in [83]. The idea is to

replace T by T↵ = ↵I + (1 � ↵)T for some ↵ 2 (0, 1). Such a matrix is guaranteed

to be convergent if T � 0, ⇢(T) = 1 and ind1(T) = 1; indeed, such a T↵ has positive

diagonal entries.

In concluding this section, we emphasize that such modifications are needed only

when the RAS iteration is used as a stationary iterative method. No modifications are

necessary if Krylov subspace acceleration is used, since in this case the convergence

of T is not required.

53

2.7 Extension to inexact solves

In this section we extend the convergence results to the case of inexact local solves.

Instead of solving the linear systems Ai,�yi = zi exactly, we want to approximate the

matrices Ai,� by Âi,� so that the systems Âi,�yi = zi are easier to solve. The diagonal

modifications mentioned above can also be regarded as a type of inexact solve. The

following propositions shows that under certain assumptions the restricted additive

Schwarz method is also convergent in the case of inexact local solves.

Proposition 2.7.1. If Âi,� is a nonsingular M-matrix with Âi,� � Ai,� and

M̂i,� = ⇡t
i,�

2

64
Âi,� 0

0 D¬i,�

3

75 ⇡i,�,

then the splittings A = M̂i,� � N̂i,� are weak regular.

Proof. First, note that M̂�1
i,� is nonnegative, since Âi,� has a nonnegative inverse.

Second, we will consider M̂�1
i,� N̂i,� and show that it is nonnegative. Recall that A can

be written as

A = ⇡t
i,�

2

64
Ai,� Ki,�

Li,� A¬i,�

3

75 ⇡i,�,

and it follows that

M̂�1
i,� N̂i,� = I � ⇡t

i,�

2

64
Â�1

i,�Ai,� Â�1
i,�Ki,�

D�1
¬i,�Li,� D�1

¬i,�A¬i,�

3

75 ⇡i,�.

With Âi,� � Ai,�, and the fact that both matrices are M-matrices it follows that

Â�1
i,�  A�1

i,� and I � Â�1
i,�Ai,�. Furthermore, I � D�1

¬i,�A¬i,� is nonnegative, since

D¬i,� = diag(A¬i,�). With Â�1
i,� , D

�1
¬i,� � 0, and Ki,�, Li,�  0 we can conclude that

M̂�1
i,� N̂i,� is nonnegative and that the splittings A = M̂i,� � N̂i,� are weak regular.

54

Consider the splitting A = M̂RAS,��N̂RAS,� with M̂RAS,� =
PK

i=1Ei,0M̂
�1
i,� . As seen

in the proof of Theorem 2.6.1, M̂�1
RAS,�N̂RAS,� =

PK
i=1Ei,0M̂

�1
i,� N̂i,�. From the proposi-

tion above it follows that A = M̂RAS,�� N̂RAS,� is weak regular as well. Following the

idea of adding a positive value to the diagonal of each M̂i,� as seen in Section 2.6 will

lead to positive diagonal entries in M̂�1
RAS,�N̂RAS,�. Alternatively, the corresponding

iteration matrix can be shifted and scaled using a parameter ↵ 2 (0, 1), as shown

at the end of Section 2.6. With either of these modifications, the restricted addi-

tive Schwarz method with inexact local solves associated with matrices Âi,� � Ai,� is

convergent.

We are particularly interested in the case where an incomplete LU factorization is

used for approximating the solution of Ai,�yi = zi. Meijerink and van der Vorst [77]

showed that for an M-matrix A and every zero pattern Q ⇢ Pn = {(i, j) | 1  i, j  n}
not containing the diagonals (i, i), there is a unique lower triangular matrix L with

unit diagonal, a unique upper triangular matrix U with positive diagonals, and a

matrix R with

lij = 0 if (i, j) 2 Q,

uij = 0 if (i, j) 2 Q,

rij = 0 if (i, j) /2 Q,

such that the splitting A = LU � R is regular. Note that Q can always be chosen

such that diag(R) = 0. So, in our case Ai,� = Li,�Ui,��Ri,� and we use Âi,� = Li,�Ui,�

instead. Since the splitting Ai,� = Li,�Ui,� � Ri,� is regular, Ri,� is nonnegative and

Âi,� � Ai,�. Varga showed in [110] that if A is a nonsingular M-matrix and B is a

matrix satisfying

aij  bij  0, for i 6= j and

0 < aii  bii,

then B is also a nonsingular M-matrix. If the drop tolerance in the ILU factorization

is su�ciently small, Âi,� will satisfy both of the above conditions. In this case Âi,� is a

55

nonsingular M-matrix and the previous discussion shows that replacing Ai,� with Âi,�

will preserve the convergence results. Again, this is only needed if the inexact RAS

method is used as a stationary iteration. If Krylov acceleration is used, the above

conditions are not needed for convergence.

2.8 Two-level method

The rate of convergence of the additive Schwarz method may be improved with the

help of a ‘coarse grid’ correction, leading to a two-level approach. This correction

can be formed algebraically, without any reference to an actual grid; for simplicity,

however, we will use the same terminology in use in the field of numerical PDEs. The

correction can be applied in two ways, additively or multiplicatively; see for example

[12, 29, 45, 95, 103].

In this section we describe the use of a coarse grid correction for the restricted

additive Schwarz method in the case of irreducible Markov chains. Let P0, R0 denote

prolongation and restriction operators (respectively), and let A0 = R0AP0 be the

resulting coarse representation of A. Let Â0 denote an invertible approximation of

A0. The additive variant of the two-level method corresponds to the iteration matrix

T = I � ✓(P0Â
�1
0 R0 +M�1

RAS)A,

where ✓ > 0 is a parameter. For the multiplicative variant the iteration matrix is

given by

T = (I � P0Â
�1
0 R0A)(I �M�1

RASA).

Here we consider the additive approach only. For use as a preconditioner, the param-

eter ✓ has no e↵ect and can be set to 1.

One way to construct a coarse grid problem is to use independent sets of the

56

underlying undirected graph of the matrix and the Schur complement. A subset F of

the nodes of a graph is an independent set if no pair of nodes from F is connected by

an edge. We proceed as follows. First a maximal independent set F in the underlying

graph of A is found. An independent set F is maximal if there is no independent set

that has F as a subset. We can partition A such that

⇡A⇡t =

2

64
AFF AFC

ACF ACC

3

75 .

Since F is an independent set, AFF is a diagonal matrix. Note that AFF is non-

singular, since A has positive entries along its diagonal. We define the restriction

operator

R0 = [�ACFA�1
FF I]

and the prolongation operator as

P0 =

2

64
�A�1

FFAFC

I

3

75 .

With these operators A0 = R0(⇡A⇡t)P0 is given by the Schur complement

A0 = ACC � ACFA�1
FFAFC.

Note that A0 is a singular, irreducible M-matrix [15, Lemma 1], and that an ILU

factorization can be used to inexactly solve systems of the form A0z = y. In other

words, we set Â0 = L̂0Û0, where L̂0 and Û0 are incomplete factors of A0, which can

be assumed to be nonsingular; see [25] for some su�cient conditions that guarantee

the existence of nonsingular ILU factors of singular M-matrices. In our experiments,

the ILU factors were always nonsingular.

57

0 50 100 150 200 250

0

50

100

150

200

250

nz = 1606

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 1535

Figure 2.1: Nonzero patterns of matrices used to construct the coarse
grid correction. Left: sparsity pattern of the matrix permuted by Luby’s
maximal independent set reordering. Right: sparsity pattern of the corre-
sponding Schur complement, also permuted by Luby’s maximal indepen-
dent set reordering. The original matrix comes from the ncd family.

To reduce the size of the coarse grid correction we apply the above scheme twice.

That is, a maximal independent set in the underlying graph of A0 is found and

the Schur complement of A0 is used. We refer to Figure 2.1 for an example. A few

numerical results using our two-level method with additive correction using the above

independent set approach are given in Section 2.10. A greedy algorithm was used to

find the maximal independent sets [74].

For a discussion of di↵erent coarsening strategies within algebraic multi-level

methods for Markov chain problems we refer the reader to, e.g., [35, 112].

2.9 Description of the test problems

For our numerical experiments we used the generator matrices of some Markov chain

models provided in the MARCA (MARkov Chain Analyzer) collection [105]. These

matrices are infinitesimal generators of CTMCs. For our purposes we converted them

to the form A = I � P t, with P row-stochastic. A corresponds to the embedded

Markov chain. In Table 2.1 the dimensions, the number of non-zeroes and the chosen

58

Table 2.1: Properties of the generator matrices

Matrix Number of rows/cols Number of nonzeroes Parameter
ncd(07) 62,196 420,036 N = 70
ncd(10) 176,851 1,207,051 N = 80
ncd(15) 585,276 4,028,076 N = 150
ncd(20) 1,373,701 9,494,101 N = 200
ncd(25) 2,667,126 18,480,126 N = 250

mutex(09) 65,535 1,114,079 N = 15, R = 15
mutex(12) 263,950 4,031,310 N = 20, R = 8
tcomm(47) 603,201 3,009,401 K

1

= 200, K
2

= 3000
tcomm(49) 1,204,301 6,012,601 K

1

= 300, K
2

= 4000
twod(06) 66,049 263,169 N

x

= 256, N
y

= 256
twod(10) 263,169 1,050,625 N

x

= 512, N
y

= 512
twod(12) 591,361 2,362,369 N

x

= 768, N
y

= 768
twod(14) 1,050,625 4,198,401 N

x

= 1024, N
y

= 1024
twod(17) 2,563,201 10,246,401 N

x

= 1600, N
y

= 1600
reliab

1

(m)
m2 5m2 � 4m

�
1

= 2, �
2

= 3, µ
1

= 5, and µ
2

= 6
reliab

2

(m) �
1

= 2, �
2

= 0.9, µ
1

= 0.5, µ
2

= 6

parameters of our selected test matrices are shown. Note that some of the larger

matrices are only used in parallel mode. Each matrix is named by its family and

an index. The matrices from the ncd family come from a queuing network of the

central server type. The size of the matrices depends on the number of terminals N .

The ncd matrices are structurally symmetric and nearly completely decomposable.

A description of the model can be found in [92]. The matrices from the twod family

come from a 2D epidemic model. Only transitions to the South, East and North-West

are permitted, therefore the matrices are structurally non-symmetric. The size of the

matrices depends on the size of the dimensions; Nx is the size of the first dimension

and Ny is the size of the second dimension. The matrices from the mutex family

come from a resource sharing model. N processes alternate between a sleeping state

and a resource using state. The number of processes that may concurrently use a

resource is limited to R where 1  R  N . The matrices from the mutex family

are structurally symmetric. The model has been discussed in [44]. The matrices

from the tcomm family come from a telecommunication model that has been used to

determine the e↵ect of impatient telephone customers on a computerized telephone

exchange. The model includes two server stations and the parameters K1 and K2

59

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Q =

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

�

����������������

�
µ2

µ1

3�2

�
2µ2

µ1

2�2

�
3µ2

µ1

�2

�

µ1

3�1

�
µ2

2µ1

3�1

3�2

�
2µ2

2µ1

3�1

2�2

�
3µ2

2µ1

3�1

�2

�

2µ1

2�1

�
µ2

3µ1

2�1

3�2

�
2µ2

3µ1

2�1

2�2

�
3µ2

3µ1

2�1

�2

�

3µ1

�1

�
µ2

�1

3�2

�
2µ2

�1

2�2

�
3µ2

�1

�2

�

�

����������������

.

1

Figure 2.2: Transition rate matrix for the reliability model.

are the maximum number of customers permitted in each station. The matrices are

close to being structurally symmetric. The model has been described for example in

[92]. A description of all of the models can also be found in [106]. Refer to [105] for

information on the transition probabilities for all of the models.

We also run some test with matrices that arise from a reliability problem. We

consider a simple reliability model with two di↵erent classes of machines. We as-

sume that each class has the same number of machines. Each machine is subject to

breakdown and a subsequent repair. A state is completely specified by the ordered

pair (n1, n2), where n1 denotes the number of intact machines of the first class and

n2 denotes the number of intact machines of the second class. Thus, if there are m

machines in each class, the total number of possible states is (m+1)2. We order these

states such that state (i, j) has index (m+1)(m� i)+m� j+1. The times between

successive breakdowns and successive repairs are both exponentially distributed. The

breakdown rates of class 1 machines and class 2 machines are respectively �1 and �2.

Similarly, the repair rates of the two classes of machines are µ1 and µ2. The transition

rate matrix for the described reliability model is then given by Q; see Figure 2.2. Here

m = 3 machines per class where used. The diagonal elements indicated by asterisks

are the negated sums of the o↵-diagonal elements in their corresponding rows. We

60

note that the stationary distribution for these models is known analytically (i.e., a

closed form solution exist), which makes them well suited for testing codes and for

checking the accuracy of computed solutions. Our goal is to solve the singular system

⇡Q = 0 subject to k⇡k1 = 1 (the normalization condition). However, one can solve

the equivalent system �Qt
⇡

t = 0 instead. Here, the coe�cient matrix is a singular

irreducible M-matrix and the theory developed in the previous sections applies. From

this point on, we let A = �Qt and x = ⇡

t, so that we can use the notation introduced

in the earlier sections. We tested two di↵erent reliability matrices. We choose di↵er-

ent parameters to vary the di�culty. The first corresponds to a reliability problem

with parameters �1 = 2, �2 = 3, µ1 = 5, and µ2 = 6, while the second corresponds

to a reliability problem with parameters �1 = 2, �2 = 0.9, µ1 = 0.5, and µ2 = 6.

In serial mode the largest reliability matrix tested has 1, 440, 000 rows and columns,

and 7, 195, 200 non-zeros. In parallel mode the largest reliability matrix tested has

7, 840, 000 rows and columns, and 39, 188, 800 non-zeros.

Table 2.2: Subdominant eigenvalue, reliability models

Matrix subdominant eigenvalue
reliab1(100) 0.9807
reliab1(400) 0.9952
reliab1(700) 0.9972
reliab1(1000) 0.9981
reliab1(1200) 0.9984

reliab2(100) 0.9894
reliab2(400) 0.9974
reliab2(700) 0.9985
reliab2(1000) 0.9989
reliab2(1200) 0.9991

In Table 2.2 we report the value of the subdominant eigenvalue (i.e., the second

largest eigenvalue) of the stochastic matrices for the embedded Markov chains describ-

ing the reliability models. The fact that the gap between the dominant eigenvalue

61

Table 2.3: ILUTH results, reliability models

Matrix ILUTH time Its
reliab1(100) 0.23 32
reliab1(400) 10.0 43
reliab1(700) 70.1 50
reliab1(1000) 195. > 500
reliab1(1200) 325. > 500

� = 1 and the subdominant eigenvalue shrinks as the number of states is increased

indicates that these problems become increasingly di�cult as their size grows. In

Table 2.3 we report results for a few reliability models from the first class using GM-

RES(50) with the drop tolerance-based ILUTH preconditioner [106]. In all cases, the

drop tolerance was 10�3. Note the high construction costs and very slow convergence

behavior in the case of su�ciently large problems.

2.10 Numerical Experiments

2.10.1 Serial results

In this section we provide the results of our numerical experiments on a single compute

node. The primary goal of these tests is to study the convergence behavior of RAS

and of RAS-preconditioned GMRES for large Markov chain problems as a function

of algorithmic parameters like the amount of overlap and the number of subdomains,

and to carry out a comparison with standard additive Schwarz (AS). We also present

some experiments with the two-level method.

The implementation was done in Matlab 7.8.0 on a 2.3 GHz Intel Core i7 Processor

with 4GB main memory. We performed a large number of tests on numerous matrices.

Here we present a selection of these results to show our overall findings. For additive

Schwarz one has di↵erent options to handle local results in the overlapping regions.

62

0 50 100 150 200 250

0

50

100

150

200

250

nz = 1320

0 50 100 150 200 250

0

50

100

150

200

250

nz = 1320

Figure 2.3: Left: nonzero pattern of an ncd matrix. Right: nonzero
pattern of the same matrix when four subdomains are used and the matrix
is reordered accordingly by Metis.

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

nz = 5568

Student Version of MATLAB

0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

700

800

900

nz = 9392

Student Version of MATLAB

Figure 2.4: Left: nonzero pattern of a mutex matrix. Right: nonzero
pattern of the same matrix when four subdomains are used and the matrix
is reordered accordingly by Metis.

One can simply add the di↵erent results from the subdomains in the overlapping

regions, or combine them in a weighted way. We used the average of the results on

the overlapping regions as it reduces the number of iterations needed. The Krylov

method used was GMRES [99] with restart m = 50. As initial vector we used a unit

basis vector.

63

For the partitioning of our matrices we used the Metis library [61]. In our tests

we used K = 2, 4, 8, 16, 32, 64, and 80 domains. Note that a partitioning that only

considers the non-zero pattern of the matrix but not the actual coe�cients might

not be a good domain decomposition for Schwarz methods [111]. For this reason

we also use Metis with weights on the edges of the underlying graph of P + P t.

The edge weights may only be integers. Each edge e = (i, j) is given the weight

we = 1+ 1000 · bpij + pjic. The idea is that two nodes that are connected by an edge

with a high weight are more likely to be in the same non-overlapping domain than

nodes that are connected by an edge with a very low weight. Now, the number of

edges between the non-overlapping domains might be higher, but these edges have

relatively low weights and may be not as important. See Figure 2.3 for the sparsity

pattern of an ncd matrix and Figure 2.4 for the sparsity pattern of a mutex matrix

before and after the reordering induced by Metis.

Metis requires the matrices to be structurally symmetric. Therefore we applied

Metis to the underlying graph of P + P t for the twod matrices. The amount of

overlap was chosen according to the distance to the domain. For a small choice of

overlap, we chose all vertices within a distance of 1 in the underlying graph, that is,

all vertices that are connected to a vertex in the domain. The mutex matrices have

a large separator set and choosing the overlap in the described way leads to domains

that are close to the size of the matrix. For these matrices we restricted the total size

of a domain, that is the partition and the overlap, by 4
3
· n
K , where n is the size of

the matrix and K is the number of domains. For a large choice of overlap we chose

all vertices that lie within a distance of ten in the underlying graph. In a parallel

implementation it is important to reduce the amount of communication between the

processors. Therefore, we also run experiments where the overlap was only chosen

from neighboring domains. That is, the first domain can only overlap with the second

domain, the second with the first and the third, and so on. Thus, the domains Si,�

64

satisfy Si,� \ Si+k,� = ;, for k � 2.

0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

nz = 457

Student Version of MATLAB

0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

nz = 457

Student Version of MATLAB

Figure 2.5: Left: nonzero pattern of a block of an ncd matrix. Right:
nonzero pattern of the same matrix after reordering with reverse Cuthill–
McKee.

0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

nz = 368

Student Version of MATLAB

0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

nz = 381

Student Version of MATLAB

Figure 2.6: Nonzero pattern of the ILU factorization of a block of an ncd
matrix without RCM reordering. Left: nonzero pattern L. Right: nonzero
pattern of U.

To reduce fill-in during the ILU factorization we first reorder each block with a

symmetric reverse Cuthill–McKee reordering [34]. See Figure 2.5 for the sparsity pat-

tern of a block of an ncd matrix before and after the reordering. The e↵ect on the

65

0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

nz = 315

Student Version of MATLAB

0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

nz = 314

Student Version of MATLAB

Figure 2.7: Nonzero pattern of the ILU factorization of a block of an ncd
matrix with RCM reordering. Left: nonzero pattern L. Right: nonzero
pattern of U.

sparsity pattern of the ILU factorization can be seen in Figure 2.6 and Figure 2.7. We

factored the blocks using an incomplete LU factorization with threshold parameter

⌧ = 10�3 for the mutex and reliability matrices and ⌧ = 10�4 for the other matrices.

Compared to exact LU factorization the timings and storage requirements were dra-

matically reduced, while the number of iterations remained essentially unchanged. In

Table 2.4 we compare the time needed for factoring the domains of a matrix of the

ncd family with ILU and LU. The amount of fill-in is also given.

We found that RAS usually performs as well or better than the standard additive

Schwarz preconditioner in terms of number of iterations, whereas in terms of total run-

time the standard additive Schwarz preconditioner tends to perform slightly better.

This can be explained by observing that in RAS we have to keep track of the nodes

that are in the non-overlapping domains and the ones that are in the overlap. This

needs some extra “book-keeping” which might lead to RAS performing slightly slower

than AS for the same number of iterations, at least with our implementation. Note,

however, that AS requires more interprocessor communication and thus we expect it

to be less e�cient than RAS in a parallel implementation with many processors. Our

66

Table 2.4: Time in seconds required for factoring the diagonal blocks.
The resulting fill-in is given as the ratio of the number of non zeros in L ·U
and the matrix. K is the number of domains. The matrix is of the ncd
family and has 12341 rows and columns.

K
without RCM with RCM
time fill-in time fill-in

ILU

2 0.15 2.41 0.15 1.51
4 0.13 2.35 0.13 1.53
8 0.14 2.44 0.14 1.62
16 0.13 2.39 0.13 1.66
32 0.11 2.29 0.11 1.59
64 0.09 2.17 0.09 1.49
80 0.08 2.08 0.08 1.44
96 0.08 2.05 0.08 1.43

LU

2 26.06 32.78 4.49 12.34
4 21.09 28.05 2.05 8.50
8 13.49 21.20 1.39 6.58
16 6.95 14.58 0.79 4.76
32 3.47 9.89 0.46 3.47
64 1.41 6.37 0.24 2.52
80 1.02 5.51 0.20 2.27
96 0.76 4.88 0.16 2.05

results are presented in the following tables. We compare both runtime and iteration

counts for GMRES preconditioned with RAS and AS, and the stationary versions

of RAS and AS. For every example we also compare the e↵ect on the restriction of

domains from which overlap may be chosen. In the “no restr.”case overlap may be

chosen from any of the domains, while in the “consec.”case overlap may only be cho-

sen from neighboring domains. Results in bold indicate the best total runtime, that

is the time to construct the preconditioner plus the time taken by the Krylov method.

We first give a comparison of the construction time for the complete LU factorization

vs. the incomplete LU factorization, and compare the change in number of iterations.

The results can be seen in Table 2.5. In Section 2.10.1.1 we use the unweighted Metis

version and a small amount of overlap, in Section 2.10.1.2 a large amount of overlap

67

was used. The e↵ect of using weighted graphs during the graph partitioning are given

in Section 2.10.1.3 Results using the two-level method are given in Section 2.10.1.4.

Our results indicate many favorable properties of the RAS preconditioner for

the numerical solution of Markov chains. In particular, we focused on the rate of

convergence depending on the size of the problem, the number of domains used, and

the amount of overlap chosen. First of all, note that the time needed to compute

the incomplete LU factorizations is considerably lower than the time needed for the

complete LU factorizations (see Table 2.5). The di↵erence is most notable the ncd(07)

example, where the construction time for two domains dropped from about 28 seconds

to 0.20 seconds. Also note that there is only a small increase in the number of

iterations. Due to a cheaper application of the incomplete LU factorization the time

to solve the problems was in most cases lower when an incomplete LU was used, even

though the number of iterations was slightly higher.

In general, the time required to construct the preconditioner, when incomplete

LU factorizations are used, is very small. Also note that with an increased number

of domains the size of the submatrices that require an incomplete LU factorization

decreases, and thus the construction time for the preconditioner decreases. This can

be best observed in the largest example of the first reliability problem (reliab1(1200),

see Table 2.13). Here the time to construct the preconditioner can be cut from 40

seconds for two domains to about 8 seconds for 80 domains. Furthermore, the con-

struction expenses mainly consist of the work needed to compute the incomplete LU

factorizations as the time spent to find the non-overlapping domains with the Metis

software is almost negligible. The task of computing several incomplete LU factor-

izations of di↵erent submatrices is trivial to parallelize, and we expect an even better

construction time in a parallel setting. Another observation that can be made from

our results is that there is only a slight increase in the number of iterations when the

size of the problem is increased. This property is particularly desirable for precondi-

68

tioners. The choice of number of domains also has an influence on the convergence.

As the number of domains increases so does the number of iterations. This behavior

is not surprising, since the propagation of information across the computational do-

main takes longer for an increased number of subdomains. Note, however, that for

several matrices the increase in the number of iterations is moderate. As mentioned

earlier, the construction time is faster if more domains are used. In most cases the

time saved during the construction is smaller than the increase in the time required

by the Krylov method, and thus the overall time needed increases with the number

of domains. This behavior seems to be reversed for some very large problems. Here

the overall time needed is reduced for a large number of domains, since the decreased

construction time outweighs the larger time needed to solve the linear system. See

for example the results for larger problems from the reliability models, Table 2.13.

The time to construct the preconditioner was cut from about 40 to 8 seconds, while

the time required to solve the system increased from 13 to 30 seconds as the number

of domains increased from 2 to 80 subdomains.

Another aspect that is worth mentioning is that for most of the problems the

number of iterations increased quite a bit if overlap was only chosen from neighbor-

ing domains (an exception are the tcomm matrices, see Table 2.10). This e↵ect is

more noticeable for a large number of domains, as the restriction on the overlap is

more rigid. For example for the first reliability model of size n = 360, 000 the number

of iterations increased from 40 to about 80 when overlap was restricted to neighbor-

ing domains and 80 domains were used, see Table 2.12 The increase in number of

iterations is not surprising as less information among the subdomains is shared. An

advantage of choosing overlap only among neighboring subdomains lies in the reduced

communication in a parallel environment.

Also interesting is the e↵ect of the amount of overlap on the convergence. While

larger overlap leads to an increase in construction time, the number of iterations is

69

decreased. For a large problem from the first reliability model, 43 iterations were

needed for 80 subdomains (see Table 2.13), while for a large amount of overlap only

22 iterations were needed (see Table 2.22). The construction time only increased

slightly from 4.49 to 6.16 seconds, but the time required for the solving decreased

sharply from about 18 to 8 seconds.

Next, we comment on our results if edge weights were used in Metis. While the

usage of edge weights neither hurts or helps in general, for some examples there can

be a big improvement, most notably for the ncd matrices, especially when overlap is

chosen from consecutive subdomains; compare Table 2.6 and 2.7 with Table 2.24 and

2.25.

We also compared GMRES with RAS (AS) preconditioner with the stationary

version of RAS (AS). While the number of iterations is generally higher without

the acceleration of a Krylov subspace solver, the cost per iteration is much cheaper.

Sometimes the stationary versions outperform the preconditioned Krylov subspace

method in terms of solution times. This happens for the ncd matrices, see Table 2.6

and Table 2.7. Also, for the tcomm matrices the number of iterations did not improve

when using a Krylov subspace accelerator, see Table 2.10. For other problems the

Krylov subspace method showed a better convergence, and the number of iterations

increased more slowly than for the iterative version as the number of subdomains

increased. Also note that in any case the stationary version seems to be more sen-

sitive to a smaller choice of overlap. See for example for the first reliability model

(Tables 2.12 and 2.13). For the second reliability model the stationary methods failed

to converge within 500 iterations (see Tables 2.14, 2.15, 2.23).

Finally, we comment on the results obtained with the two-level method. The

number of iterations could be reduced (except for the tcomm examples) with our

two-level approach. Unfortunately, the increased construction time in the two-level

method almost outweighs the time saved during the iterative solve. In most cases we

70

could only observe a very small reduction in the overall time needed, if any. In gen-

eral, a better choice of overlap or domain decomposition seems to be more e↵ective

than a two-level method. We should mention that a number of attempts were made

to find more cost-e↵ective coarsening strategies, but we were unable to obtain better

results.

Table 2.5: Complete LU factorization vs. incomplete LU factorization.

Matrix K

LU ILU
GMRES precond. with GMRES precond. with

constr
AS RAS

constr
AS RAS

solve it solve it solve it solve it

ncd(07)

2 27.40 0.92 8 0.80 7 0.17 0.14 12 0.14 12
4 16.05 0.73 8 0.65 7 0.16 0.14 12 0.15 12
8 9.43 0.60 8 0.53 7 0.18 0.14 12 0.15 12
16 5.50 0.62 10 0.63 10 0.18 0.18 14 0.17 13
32 3.09 0.47 10 0.48 10 0.18 0.18 13 0.18 13
64 1.95 0.56 15 0.57 15 0.19 0.30 19 0.27 18
80 1.69 0.51 14 0.44 12 0.20 0.28 18 0.26 16

twod(06)

2 6.09 0.41 6 0.36 5 1.80 0.15 8 0.13 7
4 2.59 0.31 7 0.30 7 0.46 0.12 9 0.12 9
8 1.55 0.28 9 0.28 9 0.36 0.14 11 0.14 11

16 1.04 0.34 13 0.35 13 0.31 0.19 14 0.20 14
32 0.64 0.35 16 0.35 16 0.25 0.24 17 0.23 16
64 0.45 0.49 23 0.51 22 0.22 0.35 23 0.39 23
80 0.38 0.50 25 0.62 25 0.19 0.40 26 0.48 26

tcomm(46)

2 28.69 1.49 3 1.42 3 3.26 0.43 4 0.43 4
4 33.41 1.34 3 1.31 3 2.55 0.35 4 0.32 4
8 29.83 1.20 3 1.20 3 2.32 0.33 4 0.32 4
16 19.36 0.98 3 0.94 3 2.01 0.35 4 0.33 4
32 9.01 0.75 3 0.74 3 1.56 0.34 4 0.34 4
64 6.13 0.63 3 0.59 3 1.42 0.40 4 0.35 4
80 5.00 0.59 3 0.55 3 1.30 0.37 4 0.37 4

reliab1(300)

2 5.49 0.75 11 0.76 11 0.76 0.28 15 0.28 15
4 3.13 0.56 11 0.57 11 0.64 0.28 15 0.28 15

8 1.87 0.85 21 0.84 20 0.53 0.56 26 0.63 26
16 1.18 0.85 25 0.91 24 0.39 0.62 30 0.76 30
32 0.80 0.85 27 0.92 27 0.37 0.72 33 0.93 33
64 0.58 0.87 29 0.95 29 0.32 0.81 35 1.01 34
80 0.55 0.84 30 1.06 30 0.28 0.85 36 1.04 35

reliab2(300)

2 6.60 0.81 10 0.89 10 0.52 0.35 18 0.35 18

4 3.24 0.75 14 0.76 14 0.61 0.41 20 0.41 20
8 1.90 0.89 22 0.98 22 0.40 0.81 38 1.08 38
16 1.21 1.38 38 1.66 38 0.34 0.95 42 1.27 42
32 0.85 1.01 32 1.11 31 0.31 1.98 84 2.45 82
64 0.58 1.17 39 1.50 39 0.27 2.21 90 2.83 90
80 0.53 1.08 36 1.32 36 0.27 2.19 87 2.69 85

71

2.10.1.1 Results with incomplete LU factorization and small amount of

overlap

Table 2.6: Results for the ncd matrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner,
‘it’ the number of iterations needed to reduce the 2-norm of the residual
below 10�12, ‘solve’ the time (in seconds). For local solves the incomplete
LU factorization with drop tolerance 10�4 was used. A small amount of
overlap was chosen.

Overlap K constr.
GMRES precond. with without Krylov accel.

AS RAS AS RAS
solve it solve it solve it solve it

ncd(07)

no restr.

2 0.17 0.14 12 0.15 12 0.21 29 0.25 29
4 0.17 0.14 12 0.15 12 0.13 18 0.16 19
8 0.19 0.14 12 0.15 12 0.14 18 0.15 18
16 0.18 0.19 14 0.17 13 0.21 24 0.21 23
32 0.18 0.18 13 0.19 13 0.22 25 0.24 24
64 0.19 0.32 19 0.31 18 0.49 44 0.48 43
80 0.19 0.28 18 0.27 16 0.41 34 0.32 25

consec.

2 0.17 0.14 12 0.15 12 0.22 29 0.23 29
4 0.17 0.29 22 0.29 22 1.72 225 2.10 254
8 0.20 0.33 26 0.35 26 >3 >500 >4 >500
16 0.17 0.35 27 0.36 26 2.26 284 2.57 293
32 0.15 0.46 31 0.48 30 >4 >500 >4 >500
64 0.16 0.79 46 0.88 46 >4 >500 >5 >500
80 0.18 0.86 49 0.99 48 >4 >500 >5 >500

ncd(10)

no restr.

2 0.56 0.37 11 0.40 11 0.34 17 0.38 17
4 0.52 0.35 10 0.38 10 0.25 12 0.28 12
8 0.49 0.40 11 0.43 11 0.54 25 0.59 25
16 0.48 0.41 12 0.43 12 0.45 21 0.46 20
32 0.50 0.51 14 0.54 14 0.47 21 0.50 20
64 0.50 0.65 17 0.61 15 0.61 25 0.67 25
80 0.50 0.65 16 0.61 15 0.61 24 0.65 24

consec.

2 0.57 0.37 11 0.40 11 0.35 17 0.39 17
4 0.51 0.50 14 0.53 14 1.39 72 1.55 72
8 0.49 0.53 15 0.60 15 1.34 68 1.52 68
16 0.44 1.03 27 1.11 27 >9 >500 >10 >500
32 0.44 1.34 32 1.41 32 >10 >500 >11 >500
64 0.42 2.42 48 2.53 48 >10 >500 >12 >500
80 0.42 1.96 40 2.23 39 >11 >500 >12 >500

72

Table 2.7: Results for the ncd matrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner,
‘it’ the number of iterations needed to reduce the 2-norm of the residual
below 10�12, ‘solve’ the time (in seconds). For local solves the incomplete
LU factorization with drop tolerance 10�4 was used. A small amount of
overlap was chosen.

Overlap K constr.
GMRES precond. with without Krylov accel.

AS RAS AS RAS
solve it solve it solve it solve it

ncd(15)

no restr.

2 2.88 1.63 9 1.75 9 2.28 24 2.48 24
4 1.68 1.57 9 1.63 9 1.19 13 1.27 13
8 1.69 2.06 11 1.86 10 1.29 14 1.35 14
16 1.80 1.94 11 2.04 11 1.48 16 1.59 16
32 1.57 2.42 13 2.50 13 1.66 18 1.69 17
64 1.61 3.13 16 2.70 14 1.96 20 2.10 20
80 1.78 3.13 16 3.02 15 1.88 20 1.90 19

consec.

2 2.94 1.62 9 1.75 9 2.34 24 2.50 24
4 1.74 1.68 9 1.70 9 0.97 10 0.99 10
8 1.58 2.93 15 3.09 15 >47 >500 >51 >500
16 1.82 4.01 19 3.86 18 >47 >500 >51 >500
32 1.55 7.26 29 7.44 29 >47 >500 >50 >500
64 1.53 6.11 26 6.36 26 >47 >500 >51 >500
80 1.45 13.07 42 13.39 42 >48 >500 >52 >500

ncd(20)

no restr.

2 5.69 5.17 10 5.72 10 3.12 11 3.14 10
4 4.80 4.84 10 4.64 9 3.00 12 2.99 11
8 4.84 4.49 10 5.14 10 2.72 12 2.88 12
16 4.53 5.49 12 4.94 11 3.06 14 3.33 14
32 4.58 5.88 13 6.20 13 3.75 17 3.78 16
64 4.12 7.78 16 7.65 15 4.04 18 4.40 18
80 4.07 7.57 16 7.01 15 4.47 20 4.25 18

consec.

2 5.87 4.88 10 5.35 10 2.92 11 3.05 10
4 5.00 8.82 17 8.99 17 >122 >500 >127 >500
8 4.13 7.93 17 8.57 17 >110 >500 >118 >500
16 4.08 6.08 14 6.49 14 17.32 81 20.44 88
32 3.89 12.32 24 12.96 24 >107 >500 >116 >500
64 3.80 15.28 27 16.46 27 >114 >500 >123 >500
80 3.82 16.71 28 17.35 28 110.21 473 114.41 452

73

Table 2.8: Results for the twod matrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner,
‘it’ the number of iterations needed to reduce the 2-norm of the residual
below 10�12, ‘solve’ the time (in seconds). For local solves the incomplete
LU factorization with drop tolerance 10�4 was used. A small amount of
overlap was chosen.

Overlap K constr.
GMRES precond. with without Krylov accel.

AS RAS AS RAS
solve it solve it solve it solve it

twod(06)

no restr.

2 1.89 0.16 8 0.16 7 0.11 8 0.12 8
4 0.48 0.13 9 0.14 9 0.47 56 0.58 57
8 0.38 0.14 11 0.16 11 0.47 58 0.54 59
16 0.36 0.19 14 0.23 14 0.32 38 0.37 39
32 0.25 0.23 17 0.23 16 0.50 52 0.52 53
64 0.21 0.35 23 0.38 23 5.72 443 6.45 450
80 0.25 0.42 26 0.49 26 1.23 117 1.39 118

consec.

2 1.93 0.15 8 0.15 7 0.11 8 0.12 8
4 0.32 0.18 15 0.19 15 0.42 56 0.47 57
8 0.37 0.23 17 0.24 17 1.48 162 1.62 162
16 0.31 0.26 19 0.27 19 0.80 95 0.93 95
32 0.24 0.31 22 0.34 22 0.78 86 0.82 87
64 0.20 0.50 30 0.52 30 5.23 460 5.96 466
80 0.20 0.51 31 0.59 31 1.76 178 1.95 180

twod(10)

no restr.

2 2.99 0.42 7 0.48 7 0.37 10 0.38 9
4 4.59 0.60 9 0.65 9 0.52 11 0.53 11
8 4.59 0.78 11 0.82 11 1.18 25 1.32 25
16 3.30 0.88 12 0.92 12 1.31 26 1.31 26
32 1.82 1.41 20 1.43 20 2.45 54 2.58 54
64 1.64 1.93 26 2.02 26 5.48 118 6.15 120
80 1.62 2.47 31 2.45 30 19.31 343 20.75 348

consec.

2 2.95 0.40 7 0.47 7 0.37 10 0.39 9
4 4.43 0.62 9 0.65 9 0.48 11 0.51 11
8 4.39 1.14 16 1.20 16 1.30 29 1.49 29
16 3.01 1.54 20 1.62 20 3.30 67 3.50 67
32 1.61 1.97 28 2.12 28 3.76 92 4.14 92
64 1.49 2.91 37 3.01 37 14.46 324 15.72 324
80 1.41 3.45 41 3.63 41 16.42 352 18.34 356

74

Table 2.9: Results for the twod matrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner,
‘it’ the number of iterations needed to reduce the 2-norm of the residual
below 10�12, ‘solve’ the time (in seconds). For local solves the incomplete
LU factorization with drop tolerance 10�4 was used. A small amount of
overlap was chosen.

Overlap K constr.
GMRES precond. with without Krylov accel.

AS RAS AS RAS
solve it solve it solve it solve it

twod(12)

no restr.

2 17.24 2.11 9 2.11 9 1.41 11 1.50 11
4 10.42 1.98 10 2.04 10 1.89 18 2.07 18
8 11.86 2.98 13 2.90 12 2.51 20 2.66 20
16 12.19 3.85 16 4.05 16 4.80 37 5.05 37
32 6.88 4.89 20 5.16 20 4.90 43 5.21 43
64 5.40 7.25 27 7.32 27 8.78 78 9.16 77
80 4.43 7.96 30 8.26 30 8.83 82 9.30 80

consec.

2 17.24 1.92 9 2.12 9 1.33 11 1.45 11
4 8.62 3.46 17 3.62 17 2.18 23 2.29 22
8 11.28 4.83 20 5.02 20 5.48 48 5.81 48
16 11.05 4.57 19 5.09 20 4.54 38 4.84 38
32 6.56 10.06 34 10.53 34 12.02 108 12.84 108
64 4.84 14.97 45 15.25 45 20.94 193 22.20 193
80 4.12 14.78 45 15.08 45 22.49 199 24.86 199

twod(14)

no restr.

2 30.00 3.85 9 4.20 9 3.22 13 3.60 13
4 27.91 4.44 12 4.70 12 3.31 16 3.45 16
8 31.33 5.50 13 5.79 13 4.18 17 4.38 17
16 18.22 6.28 16 6.54 16 9.00 43 9.41 43
32 14.00 9.49 22 9.83 22 11.82 57 12.51 56
64 12.98 17.83 34 18.28 34 20.77 93 21.89 92
80 9.82 15.65 32 15.36 31 22.34 111 24.03 112

consec.

2 29.85 3.70 9 4.13 9 3.23 13 3.61 13
4 23.97 8.81 21 9.24 21 5.38 28 6.04 28
8 31.84 11.24 23 11.81 23 9.68 39 10.04 39
16 17.38 13.55 28 13.88 28 24.22 114 26.25 114
32 13.98 16.87 33 17.61 33 19.70 97 21.31 97
64 12.35 36.55 61 37.01 60 30.42 140 32.61 140
80 9.15 27.38 47 28.13 47 27.04 141 29.07 143

75

Table 2.10: Results for the tcommmatrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner,
‘it’ the number of iterations needed to reduce the 2-norm of the residual
below 10�12, ‘solve’ the time (in seconds). For local solves the incomplete
LU factorization with drop tolerance 10�4 was used. A small amount of
overlap was chosen.

Overlap K constr.
GMRES precond. with without Krylov accel.

AS RAS AS RAS
solve it solve it solve it solve it

tcomm(47)

no restr.

2 6.76 0.80 4 0.90 4 0.43 4 0.53 4
4 4.77 0.66 4 0.68 4 0.28 4 0.33 4
8 4.73 0.66 4 0.72 4 0.30 4 0.39 4
16 4.02 0.65 4 0.69 4 0.32 4 0.33 4
32 2.69 0.64 4 0.67 4 0.29 4 0.35 4
64 2.38 0.65 4 0.72 4 0.29 4 0.32 4
80 2.14 0.68 4 0.68 4 0.29 4 0.33 4

consec.

2 6.72 0.84 4 0.87 4 0.43 4 0.48 4
4 4.49 0.65 4 0.72 4 0.31 4 0.34 4
8 4.34 0.71 4 0.68 4 0.31 4 0.34 4
16 3.69 0.64 4 0.71 4 0.29 4 0.32 4
32 2.55 0.69 4 0.69 4 0.29 4 0.33 4
64 2.23 0.63 4 0.68 4 0.32 4 0.38 4
80 2.03 0.64 4 0.71 4 0.29 4 0.34 4

tcomm(49)

no restr.

2 12.20 1.46 4 1.63 4 0.72 4 0.83 4
4 12.89 1.42 4 1.50 4 0.65 4 0.72 4
8 13.21 1.33 4 1.40 4 0.57 4 0.66 4
16 10.85 1.33 4 1.40 4 0.57 4 0.64 4
32 7.59 1.45 4 1.38 4 0.58 4 0.71 4
64 5.79 1.43 4 1.50 4 0.57 4 0.75 4
80 5.40 1.32 4 1.51 4 0.61 4 0.72 4

consec.

2 12.41 1.47 4 1.78 4 0.71 4 0.90 4
4 11.94 1.38 4 1.52 4 0.69 4 0.73 4
8 12.53 1.36 4 1.39 4 0.57 4 0.72 4
16 10.37 1.35 4 1.70 4 0.59 4 0.71 4
32 6.75 1.36 4 1.61 4 0.64 4 0.67 4
64 5.22 1.28 4 1.51 4 0.60 4 0.64 4
80 4.72 1.33 4 1.42 4 0.57 4 0.67 4

76

Table 2.11: Results for the mutex matrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner,
‘it’ the number of iterations needed to reduce the 2-norm of the residual
below 10�12, ‘solve’ the time (in seconds). For local solves the incomplete
LU factorization with drop tolerance 10�3 was used. A small amount of
overlap was chosen.

Overlap K constr.
GMRES precond. with without Krylov accel.

AS RAS AS RAS
solve it solve it solve it solve it

mutex(09)

no restr.

2 2.08 0.11 6 0.12 6 0.06 5 0.09 7
4 1.06 0.17 10 0.14 8 0.18 17 0.16 14
8 0.71 0.20 12 0.17 10 0.25 24 0.33 30
16 0.88 0.23 13 0.22 12 0.26 23 0.21 17
32 0.62 0.25 14 0.22 12 0.28 24 0.24 19
64 0.50 0.30 16 0.25 13 0.38 31 0.32 24
80 0.45 0.30 16 0.26 13 0.42 34 0.43 32

consec.

2 2.09 0.11 6 0.12 6 0.06 5 0.09 7
4 0.93 0.19 12 0.21 12 2.49 254 1.45 137
8 0.62 0.22 14 0.23 14 4.22 451 4.28 422
16 0.66 0.28 17 0.30 17 4.67 467 5.38 500
32 0.52 0.25 15 0.27 15 3.16 283 3.25 285
64 0.40 0.31 18 0.34 18 4.11 376 4.88 406
80 0.39 0.35 19 0.35 18 3.64 326 5.60 456

mutex(12)

no restr.

2 44.80 0.83 7 0.94 7 1.54 18 0.62 7
4 26.24 1.02 10 0.94 9 1.72 24 0.89 12
8 13.84 1.00 11 0.95 10 1.35 21 0.94 14
16 8.53 1.19 14 1.05 12 1.29 23 1.18 20
32 5.01 1.03 13 0.99 12 1.43 27 1.15 21
64 3.23 1.23 16 1.14 14 1.92 39 1.86 36
80 2.84 1.23 16 1.02 13 1.73 36 1.39 26

consec.

2 44.01 0.84 7 0.92 7 1.55 18 0.65 7
4 18.96 1.14 12 1.20 12 2.41 38 2.48 38
8 9.56 1.24 14 1.29 14 4.16 74 7.65 129
16 5.26 1.47 18 1.63 19 3.72 78 10.29 201
32 3.28 1.23 17 1.28 17 10.93 254 11.45 250
64 2.07 1.45 20 1.50 20 17.11 430 20.99 482
80 1.91 1.35 19 1.41 19 5.60 139 12.90 295

77

Table 2.12: Results for the reliab1matrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner,
‘it’ the number of iterations needed to reduce the 2-norm of the residual
below 10�12, ‘solve’ the time (in seconds). For local solves the incomplete
LU factorization with drop tolerance 10�3 was used. A small amount of
overlap was chosen.

Overlap K constr.
GMRES precond. with without Krylov accel.

AS RAS AS RAS
solve it solve it solve it solve it

reliab1(300)

no restr.

2 0.70 0.26 15 0.28 15 0.23 21 0.26 21
4 0.60 0.26 15 0.28 15 0.23 21 0.26 21
8 0.50 0.51 26 0.54 26 0.59 50 0.63 49
16 0.36 0.58 30 0.61 30 0.81 75 0.87 72
32 0.34 0.68 33 0.73 33 1.14 96 1.19 92
64 0.29 0.77 35 0.79 34 1.29 103 1.36 98
80 0.27 0.80 36 0.83 35 1.48 116 1.57 111

consec.

2 0.70 0.26 15 0.28 15 0.23 21 0.26 21
4 0.59 0.26 15 0.28 15 0.23 21 0.26 21
8 0.42 0.57 29 0.60 29 0.61 54 0.65 53
16 0.34 0.98 45 1.03 45 2.02 192 2.23 192
32 0.32 1.29 56 1.53 56 2.40 211 2.68 212
64 0.27 1.34 57 1.41 55 2.69 224 2.99 223
80 0.24 1.53 67 1.79 67 3.34 274 3.74 274

reliab1(600)

no restr.

2 5.10 1.38 15 1.63 15 1.81 34 2.09 34
4 3.95 1.28 15 1.48 15 1.79 34 1.94 34
8 3.18 4.14 33 4.30 33 3.50 59 3.63 57
16 2.23 1.92 22 2.02 22 2.91 57 3.09 56
32 1.84 2.80 26 2.73 26 4.45 78 4.70 76
64 1.62 5.27 41 4.77 41 8.11 142 8.51 137
80 1.46 4.96 40 4.31 39 7.13 130 7.45 125

consec.

2 5.03 1.45 15 1.55 15 1.81 34 2.10 34
4 3.26 1.42 15 1.51 15 1.75 34 1.90 34
8 3.12 3.58 33 4.23 33 3.39 59 3.52 57
16 2.14 3.69 36 3.87 36 7.69 152 8.41 152
32 1.77 4.75 38 4.58 38 5.37 96 5.62 94
64 1.52 10.90 76 9.16 73 15.01 277 16.19 274
80 1.38 11.62 82 10.13 82 16.35 314 17.78 314

78

Table 2.13: Results for the reliab1matrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner,
‘it’ the number of iterations needed to reduce the 2-norm of the residual
below 10�12, ‘solve’ the time (in seconds). For local solves the incomplete
LU factorization with drop tolerance 10�3 was used. A small amount of
overlap was chosen.

Overlap K constr.
GMRES precond. with without Krylov accel.

AS RAS AS RAS
solve it solve it solve it solve it

reliab1(900)

no restr.

2 17.29 5.15 17 5.41 17 7.05 45 7.38 45
4 11.84 4.71 17 4.91 17 5.90 45 6.35 45
8 8.53 8.76 27 8.51 26 14.00 107 14.60 104
16 6.87 10.59 31 10.91 31 14.05 109 14.70 106
32 5.52 10.21 30 10.70 30 11.57 84 11.91 81
64 4.15 18.80 45 19.21 45 22.64 175 23.49 169
80 4.11 17.78 43 18.26 43 18.42 135 19.01 131

consec.

2 17.39 5.23 17 5.49 17 7.11 45 7.46 45
4 11.58 4.79 17 4.93 17 5.92 45 6.31 45
8 9.47 8.75 27 8.47 26 14.14 107 14.82 104
16 6.78 17.08 42 17.78 42 14.64 114 15.39 111
32 5.12 10.94 31 11.27 31 10.65 79 11.11 77
64 4.01 30.24 75 30.34 74 36.83 290 39.03 286
80 3.90 27.51 68 28.23 67 39.36 299 42.20 298

reliab1(1200)

no restr.

2 39.92 13.03 22 14.06 22 17.61 61 19.71 61
4 30.28 15.97 26 16.43 26 22.23 83 22.67 81
8 23.89 15.77 26 16.17 26 21.87 83 22.83 81
16 14.78 18.08 30 18.84 30 22.90 97 23.99 94
32 10.84 15.81 28 16.45 28 13.09 61 14.18 61
64 8.64 35.97 47 35.36 46 46.06 197 48.05 191
80 8.36 28.59 41 28.40 40 30.27 131 31.55 127

consec.

2 40.09 13.06 22 14.13 22 17.58 61 19.69 61
4 29.92 15.60 26 16.18 26 21.94 83 22.76 81
8 22.65 28.31 39 28.91 39 53.30 206 56.98 206
16 14.64 30.90 43 31.71 43 49.72 212 53.69 212
32 10.56 28.31 41 28.86 41 21.65 101 23.50 101
64 8.61 122.76 106 124.85 106 >116 >500 >125 >500
80 8.02 68.97 65 70.63 66 53.33 232 56.41 228

79

Table 2.14: Results for the reliab2matrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner,
‘it’ the number of iterations needed to reduce the 2-norm of the residual
below 10�12, ‘solve’ the time (in seconds). For local solves the incomplete
LU factorization with drop tolerance 10�3 was used. A small amount of
overlap was chosen.

Overlap K constr.
GMRES precond. with without Krylov accel.
AS RAS AS RAS

solve it solve it solve it solve it

reliab2(300)

no restr.

2 0.50 0.33 18 0.37 18 >6.33 >500 >6.89 >500
4 0.61 0.39 21 0.42 21 >6.61 >500 >7.10 >500
8 0.34 0.78 38 0.81 38 >6.04 >500 >6.48 >500
16 0.32 0.94 44 1.00 44 >5.92 >500 >6.40 >500
32 0.29 1.80 82 1.83 80 >6.11 >500 >6.83 >500
64 0.26 2.11 91 2.33 90 >6.52 >500 >7.34 >500
80 0.26 2.14 89 2.24 88 >6.78 >500 >7.54 >500

consec.

2 0.51 0.33 18 0.34 18 >6.38 >500 >6.87 >500
4 0.58 0.39 21 0.42 21 >6.95 >500 >7.11 >500
8 0.36 1.16 51 1.21 51 >5.70 >500 >6.30 >500
16 0.32 1.79 82 1.87 82 >5.56 >500 >6.14 >500
32 0.28 4.53 200 4.80 200 >5.73 >500 >6.37 >500
64 0.25 >5.94 >250 >6.27 >250 >6.13 >500 >6.77 >500
80 0.23 >5.93 >250 >6.27 >250 >6.26 >500 >7.03 >500

reliab2(600)

no restr.

2 4.16 2.59 26 3.12 26 >30.90 >500 >34.16 >500
4 3.65 2.60 28 3.12 28 >29.82 >500 >31.93 >500
8 2.42 3.85 34 3.83 33 >28.56 >500 >31.09 >500
16 1.95 5.70 50 5.86 50 >28.03 >500 >30.56 >500
32 1.60 7.49 52 6.55 51 >27.95 >500 >30.44 >500
64 1.44 12.96 92 10.96 91 >27.26 >500 >29.88 >500
80 1.48 14.15 99 12.18 98 >27.88 >500 >30.10 >500

consec.

2 4.17 2.70 26 2.97 26 >30.74 >500 >34.52 >500
4 3.38 3.84 34 4.09 34 >28.66 >500 >30.92 >500
8 2.62 3.67 37 4.58 37 >26.76 >500 >29.18 >500
16 1.86 9.75 90 10.16 90 >25.84 >500 >27.95 >500
32 1.57 12.70 92 11.58 91 >24.36 >500 >26.65 >500
64 1.44 14.27 101 12.91 100 >24.49 >500 >26.82 >500
80 1.42 >33.55 >250 >32.76 >250 >24.84 >500 >27.17 >500

80

Table 2.15: Results for the reliab2matrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner,
‘it’ the number of iterations needed to reduce the 2-norm of the residual
below 10�12, ‘solve’ the time (in seconds). For local solves the incomplete
LU factorization with drop tolerance 10�3 was used. A small amount of
overlap was chosen.

Overlap K constr.
GMRES precond. with without Krylov accel.
AS RAS AS RAS

solve it solve it solve it solve it

reliab2(900)

no restr.

2 11.11 11.06 32 11.64 32 >78.24 >500 >85.96 >500
4 10.40 11.40 33 11.77 33 >72.60 >500 >78.44 >500
8 6.95 11.97 34 12.21 34 >69.92 >500 >74.66 >500
16 5.78 20.01 48 20.44 48 >68.34 >500 >73.48 >500
32 4.50 18.72 46 19.13 46 >65.56 >500 >71.59 >500
64 3.86 40.92 97 41.39 96 >63.35 >500 >67.58 >500
80 3.52 39.58 95 39.14 93 >65.47 >500 >70.82 >500

consec.

2 11.15 11.23 32 11.56 32 >79.25 >500 >86.08 >500
4 10.62 19.06 45 19.46 45 >73.43 >500 >78.43 >500
8 7.83 21.11 49 21.74 49 >64.13 >500 >68.70 >500
16 5.93 42.42 94 40.36 94 >59.95 >500 >65.02 >500
32 4.35 40.05 96 40.44 95 >59.65 >500 >64.62 >500
64 3.75 64.88 151 65.72 150 >58.37 >500 >63.11 >500
80 3.46 >107.62 >250 >109.35 >250 >66.16 >500 >147.90 >500

reliab2(1200)

no restr.

2 25.34 19.23 31 20.56 31 >129.18 >500 >150.70 >500
4 22.32 23.57 36 24.53 36 >136.55 >500 >150.71 >500
8 16.14 24.70 38 25.25 38 >130.15 >500 >140.54 >500
16 12.51 38.55 50 40.19 50 >122.01 >500 >132.14 >500
32 9.75 82.21 80 80.93 78 >114.82 >500 >123.98 >500
64 7.80 101.59 92 101.10 91 >117.12 >500 >128.00 >500
80 7.29 171.90 148 120.43 102 >118.15 >500 >129.21 >500

consec.

2 25.13 18.81 31 20.21 31 >128.09 >500 >149.61 >500
4 24.95 33.49 45 34.36 45 >138.80 >500 >150.80 >500
8 16.18 36.75 49 38.19 49 >108.72 >500 >118.54 >500
16 12.96 62.35 88 63.64 88 >106.32 >500 >115.47 >500
32 9.87 116.08 101 119.58 100 >103.49 >500 >112.64 >500
64 7.85 >290.01 >250 >296.18 >250 >104.75 >500 >112.95 >500
80 7.29 >295.30 >250 >300.85 >250 >103.81 >500 >111.98 >500

81

2.10.1.2 Results with incomplete LU factorization and large amount of

overlap

Table 2.16: Results for the ncd matrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner,
‘it’ the number of iterations needed to reduce the 2-norm of the residual
below 10�12, ‘solve’ the time (in seconds). For local solves the incomplete
LU factorization with drop tolerance 10�4 was used. A large amount of
overlap was chosen.

Overlap K constr.
GMRES precond. with without Krylov accel.

AS RAS AS RAS
solve it solve it solve it solve it

ncd(07)

no restr.

2 0.24 0.16 12 0.16 12 0.25 29 0.26 28
4 0.32 0.19 12 0.17 11 0.17 16 0.17 15
8 0.46 0.26 13 0.23 12 0.42 29 0.23 16
16 0.59 0.32 13 0.27 12 0.31 17 0.30 16
32 0.82 0.45 14 0.34 11 0.47 18 0.32 13
64 1.18 0.67 15 0.58 14 0.88 23 0.71 20
80 1.37 0.86 17 0.66 14 1.36 31 0.73 18

consec.

2 0.25 0.16 12 0.17 12 0.25 29 0.26 28
4 0.24 0.30 22 0.31 22 2.00 225 2.48 260
8 0.28 0.39 26 0.40 26 >4.86 >500 >5.08 >500
16 0.32 0.43 26 0.43 26 3.12 283 3.36 297
32 0.30 0.56 31 0.55 30 >6.15 >500 >6.39 >500
64 0.33 1.03 47 1.02 46 >7.21 >500 >8.11 >500
80 0.38 1.28 47 1.29 47 >8.71 >500 >8.83 >500

ncd(10)

no restr.

2 0.84 0.44 11 0.48 11 0.45 18 0.50 18
4 0.97 0.53 10 0.51 10 0.59 19 0.60 18
8 1.27 0.62 11 0.65 11 0.71 18 0.71 19
16 1.33 0.79 12 0.85 12 0.96 21 0.90 21
32 1.88 1.07 13 1.09 14 1.04 18 0.98 16
64 2.58 1.63 15 1.41 14 1.58 19 1.34 17
80 2.83 1.82 17 1.52 15 3.32 38 2.04 25

consec.

2 0.93 0.44 11 0.50 11 0.45 18 0.52 18
4 0.75 0.64 14 0.63 14 1.95 73 2.15 73
8 0.80 0.72 15 0.69 15 2.00 70 2.12 69
16 0.73 1.33 26 1.33 25 >14.54 >500 >15.17 >500
32 0.81 1.78 32 1.86 32 >15.90 >500 >16.38 >500
64 0.92 3.11 46 3.02 45 >18.12 >500 >18.23 >500
80 0.90 2.49 39 2.44 38 >18.07 >500 >18.71 >500

82

Table 2.17: Results for the ncd matrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner,
‘it’ the number of iterations needed to reduce the 2-norm of the residual
below 10�12, ‘solve’ the time (in seconds). For local solves the incomplete
LU factorization with drop tolerance 10�4 was used. A large amount of
overlap was chosen.

Overlap K constr.
GMRES precond. with without Krylov accel.

AS RAS AS RAS
solve it solve it solve it solve it

ncd(15)

no restr.

2 2.59 1.87 9 2.03 9 1.13 10 1.16 10
4 2.63 1.85 9 1.97 9 1.14 10 1.19 10
8 3.23 2.25 10 2.32 10 1.81 14 1.85 14
16 3.91 2.75 11 2.44 10 2.37 16 2.36 16
32 4.54 3.30 12 3.28 12 2.57 15 2.35 14
64 5.71 5.01 15 4.46 14 3.94 18 4.22 20
80 6.00 5.90 17 4.51 14 7.00 30 4.34 20

consec.

2 2.72 1.82 9 1.86 9 1.09 10 1.17 10
4 2.30 1.68 9 1.73 9 1.00 10 1.04 10
8 2.47 3.17 15 3.26 15 >54.43 >500 >59.82 >500
16 2.76 4.48 18 4.49 18 >60.92 >500 >62.67 >500
32 2.36 8.08 29 8.11 29 >58.82 >500 >61.24 >500
64 2.54 7.15 26 7.28 26 >63.25 >500 >65.85 >500
80 2.53 14.88 42 12.58 38 >64.06 >500 >66.08 >500

ncd(20)

no restr.

2 6.49 4.52 9 4.86 9 2.91 10 3.21 10
4 7.59 5.09 10 4.69 9 3.52 12 3.76 12
8 7.08 5.17 10 4.84 9 3.63 12 3.74 12
16 8.55 7.47 13 6.36 11 9.01 27 4.70 14
32 9.85 7.79 13 7.87 13 5.77 16 5.70 16
64 11.62 10.88 15 10.71 15 8.57 19 7.36 17
80 11.08 10.11 15 9.69 15 7.71 18 7.36 18

consec.

2 6.05 4.24 9 4.63 9 2.66 10 3.02 10
4 5.51 8.79 17 9.00 17 >131.52 >500 >136.49 >500
8 4.70 8.45 17 8.70 17 >126.14 >500 >128.84 >500
16 5.19 6.55 14 6.76 14 16.88 68 22.44 86
32 5.49 13.38 24 12.88 23 >130.28 >500 >135.82 >500
64 5.04 16.02 27 15.20 26 >133.58 >500 >139.25 >500
80 5.10 15.91 27 16.39 27 130.00 475 128.38 451

83

Table 2.18: Results for the twod matrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner,
‘it’ the number of iterations needed to reduce the 2-norm of the residual
below 10�12, ‘solve’ the time (in seconds). For local solves the incomplete
LU factorization with drop tolerance 10�4 was used. A large amount of
overlap was chosen.

Overlap K constr.
GMRES precond. with without Krylov accel.

AS RAS AS RAS
solve it solve it solve it solve it

twod(06)

no restr.

2 1.66 0.15 7 0.14 7 0.13 8 0.14 8
4 0.60 0.13 8 0.13 8 0.12 12 0.12 11
8 0.53 0.16 10 0.14 9 0.15 14 0.15 13
16 0.63 0.30 13 0.23 12 0.23 16 0.21 15
32 0.64 0.32 16 0.35 14 0.27 19 0.23 16
64 0.57 0.53 21 0.47 20 1.14 65 1.22 64
80 0.57 0.65 25 0.57 22 0.68 34 0.61 30

consec.

2 1.76 0.14 7 0.14 7 0.11 8 0.11 8
4 0.46 0.17 13 0.17 13 0.14 17 0.15 16
8 0.47 0.24 17 0.27 17 1.63 162 1.77 162
16 0.41 0.27 18 0.28 18 0.93 95 1.07 95
32 0.35 0.32 20 0.33 20 0.87 80 0.95 85
64 0.30 0.54 29 0.68 29 2.43 201 2.77 207
80 0.31 0.55 29 0.66 28 1.75 140 2.21 162

twod(10)

no restr.

2 3.06 0.41 7 0.49 7 0.28 8 0.31 8
4 4.96 0.58 8 0.64 8 0.41 9 0.45 9
8 5.80 0.82 10 0.82 10 0.68 12 0.72 12
16 4.12 0.94 11 0.89 11 0.72 13 0.69 12
32 2.52 1.30 17 1.27 16 1.14 21 1.16 19
64 2.90 1.96 22 1.91 21 1.82 29 2.00 30
80 2.79 2.37 25 2.51 24 4.61 67 4.71 65

consec.

2 3.17 0.41 7 0.43 7 0.32 8 0.32 8
4 4.75 0.61 8 0.57 8 0.41 9 0.43 9
8 4.36 1.12 15 1.25 16 1.34 27 1.34 26
16 3.41 1.54 20 1.60 20 3.41 67 3.66 67
32 1.86 1.91 26 2.39 27 4.12 88 4.42 89
64 1.83 2.98 35 3.65 35 17.53 327 18.88 327
80 1.73 3.23 37 4.17 38 7.04 140 8.15 144

84

Table 2.19: Results for the twod matrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner,
‘it’ the number of iterations needed to reduce the 2-norm of the residual
below 10�12, ‘solve’ the time (in seconds). For local solves the incomplete
LU factorization with drop tolerance 10�4 was used. A large amount of
overlap was chosen.

Overlap K constr.
GMRES precond. with without Krylov accel.

AS RAS AS RAS
solve it solve it solve it solve it

twod(12)

no restr.

2 13.22 1.91 9 2.09 9 1.41 11 1.57 11
4 9.31 1.97 10 1.85 9 1.27 12 1.33 12
8 10.95 2.66 12 2.45 11 1.81 14 1.85 14
16 12.10 3.25 14 3.28 14 2.35 17 2.49 17
32 8.76 4.17 17 4.57 17 2.79 21 2.87 20
64 7.90 6.37 23 6.14 22 4.18 29 4.03 27
80 6.55 6.61 24 6.44 23 4.42 31 4.16 29

consec.

2 13.25 1.87 9 1.89 9 1.33 11 1.40 11
4 7.82 3.63 17 3.60 17 2.12 22 2.30 22
8 11.81 4.73 20 4.89 20 5.92 50 6.23 50
16 11.39 4.24 18 4.30 18 3.42 27 3.63 27
32 7.01 9.63 33 11.54 34 13.05 108 13.75 108
64 5.63 14.70 45 18.41 45 23.27 199 25.40 197
80 4.85 13.90 43 16.45 43 23.45 197 25.07 199

twod(14)

no restr.

2 31.42 3.83 9 3.61 8 3.02 12 3.40 12
4 24.53 4.21 11 3.71 10 2.89 14 3.00 14
8 33.34 4.69 11 4.84 11 3.63 14 3.75 14
16 20.00 5.65 14 5.19 13 4.09 18 3.99 17
32 16.62 8.54 19 8.06 18 5.74 24 6.09 24
64 16.56 12.79 25 11.99 23 9.18 35 8.87 32
80 13.99 12.73 25 13.20 25 9.85 39 9.81 36

consec.

2 31.95 3.93 9 3.37 8 3.07 12 3.38 12
4 20.64 8.70 21 9.31 21 5.59 28 5.64 26
8 35.12 11.02 23 12.22 23 9.86 39 10.30 39
16 17.62 13.22 28 14.47 28 24.30 114 25.78 114
32 14.54 16.26 32 18.12 32 21.07 96 21.39 93
80 10.13 24.96 44 24.75 43 26.06 129 27.33 128

85

Table 2.20: Results for the tcommmatrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner, ‘it’
the number of iterations needed to reduce the 2-norm of the residual below
10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU
factorization with drop tolerance 10�4 was used. A large amount of overlap
was chosen.

Overlap K constr.
GMRES precond. with without Krylov accel.

AS RAS AS RAS
solve it solve it solve it solve it

tcomm(47)

no restr.

2 6.35 0.78 4 0.81 4 0.41 4 0.46 4
4 4.58 0.62 4 0.66 4 0.28 4 0.31 4
8 4.70 0.62 4 0.66 4 0.29 4 0.33 4
16 4.28 0.63 4 0.67 4 0.29 4 0.32 4
32 3.13 0.66 4 0.69 4 0.31 4 0.34 4
64 2.95 0.67 4 0.70 4 0.33 4 0.35 4
80 3.01 0.72 4 0.83 4 0.36 4 0.39 4

consec.

2 6.81 0.81 4 0.92 4 0.43 4 0.51 4
4 4.57 0.68 4 0.68 4 0.29 4 0.33 4
8 4.58 0.68 4 0.72 4 0.31 4 0.38 4
16 4.01 0.65 4 0.69 4 0.31 4 0.35 4
32 2.72 0.69 4 0.72 4 0.35 4 0.36 4
64 2.57 0.66 4 0.70 4 0.31 4 0.38 4
80 2.46 0.68 4 0.75 4 0.33 4 0.38 4

tcomm(49)

no restr.

2 12.36 1.48 4 1.76 4 0.70 4 0.82 4
4 13.06 1.44 4 1.64 4 0.70 4 0.76 4
8 13.72 1.36 4 1.40 4 0.58 4 0.68 4
16 12.03 1.33 4 1.56 4 0.65 4 0.68 4
32 8.70 1.36 4 1.66 4 0.67 4 0.69 4
64 7.27 1.49 4 1.69 4 0.65 4 0.73 4
80 6.69 1.50 4 1.66 4 0.71 4 0.72 4

consec.

2 12.22 1.49 4 1.76 4 0.67 4 0.84 4
4 11.76 1.42 4 1.71 4 0.67 4 0.71 4
8 12.21 1.30 4 1.41 4 0.59 4 0.64 4
16 10.98 1.39 4 1.62 4 0.61 4 0.68 4
32 6.87 1.36 4 1.58 4 0.58 4 0.70 4
64 5.76 1.33 4 1.37 4 0.58 4 0.67 4
80 5.12 1.33 4 1.44 4 0.61 4 0.67 4

86

Table 2.21: Results for the reliab1matrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner, ‘it’
the number of iterations needed to reduce the 2-norm of the residual below
10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU
factorization with drop tolerance 10�3 was used. A large amount of overlap
was chosen.

Overlap K constr.
GMRES precond. with without Krylov accel.

AS RAS AS RAS
solve it solve it solve it solve it

reliab1(300)

no restr.

2 0.80 0.24 12 0.25 12 0.26 20 0.28 20
4 0.74 0.24 12 0.25 12 0.26 19 0.27 19
8 0.82 0.33 15 0.30 13 0.38 25 0.35 22
16 0.64 0.37 16 0.30 13 0.42 27 0.37 23
32 0.69 0.45 18 0.37 14 0.58 32 0.45 24
64 0.71 0.50 17 0.43 14 0.87 39 0.67 29
80 0.67 0.65 19 0.50 16 0.99 40 0.77 29

consec.

2 0.84 0.24 12 0.25 12 0.26 20 0.30 20
4 0.72 0.26 12 0.26 11 0.26 19 0.27 19
8 0.55 0.61 27 0.69 26 0.64 49 0.66 47
16 0.45 1.00 40 1.03 40 2.94 222 3.13 220
32 0.46 1.43 50 1.54 51 3.41 219 4.59 279
64 0.41 1.72 55 1.61 49 4.96 285 5.05 284
80 0.37 1.84 65 2.17 66 5.13 318 6.09 350

reliab1(600)

no restr.

2 5.85 1.55 15 1.80 15 1.93 32 2.14 32
4 4.49 1.66 15 1.75 15 2.06 32 2.26 32
8 4.04 1.85 16 1.72 15 2.61 37 2.54 33
16 3.05 1.83 16 1.81 15 2.59 37 2.35 34
32 2.93 2.00 17 1.86 16 3.17 43 2.97 38
64 2.67 2.74 21 2.21 18 4.20 52 3.82 45
80 2.63 2.59 20 2.26 18 4.62 55 3.64 43

consec.

2 6.27 1.73 15 1.77 15 1.90 32 2.18 32
4 4.03 1.60 15 1.73 15 1.87 32 2.01 32
8 3.52 1.72 16 1.54 14 2.43 37 2.26 33
16 2.50 4.45 36 4.58 36 9.28 153 10.00 153
32 2.11 5.25 38 4.93 37 5.85 92 5.93 87
64 2.11 12.56 76 11.03 75 18.83 282 19.86 280
80 1.85 13.79 84 12.48 86 25.17 389 26.51 383

87

Table 2.22: Results for the reliab1matrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner, ‘it’
the number of iterations needed to reduce the 2-norm of the residual below
10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU
factorization with drop tolerance 10�3 was used. A large amount of overlap
was chosen.

Overlap K constr.
GMRES precond. with without Krylov accel.
AS RAS AS RAS

solve it solve it solve it solve it

reliab1(900)

no restr.

2 19.68 5.49 17 5.79 17 7.75 45 8.38 45
4 13.35 5.15 17 5.28 17 6.76 45 7.26 45
8 10.50 6.13 19 5.77 18 8.56 56 8.24 51
16 8.19 6.38 20 5.72 18 8.31 55 8.34 52
32 7.45 6.71 20 6.57 19 9.69 56 9.70 53
64 6.01 8.56 24 7.38 21 12.25 72 10.72 59
80 6.16 8.41 24 7.88 22 11.77 67 11.21 59

consec.

2 19.30 5.55 17 5.80 17 7.64 45 8.01 45
4 12.59 5.18 17 5.24 17 6.69 45 7.44 45
8 11.35 6.28 19 5.96 18 8.84 56 8.07 51
16 7.64 18.04 41 17.63 40 14.78 100 15.03 97
32 6.00 10.85 29 10.61 28 11.39 73 11.26 68
64 4.54 25.83 60 25.19 56 37.24 262 37.95 250
80 4.49 26.11 60 26.78 60 51.45 349 54.37 345

reliab1(1200)

no restr.

2 41.59 17.53 22 18.44 22 13.39 45 15.30 45
4 31.35 14.92 20 14.49 19 12.96 48 13.29 44
8 26.24 14.88 20 14.40 19 13.64 48 13.08 44
16 16.72 15.37 21 14.81 20 13.34 52 12.52 46
32 12.45 16.03 22 15.31 21 11.13 46 11.50 45
64 10.86 20.05 25 18.28 23 19.31 70 17.12 58
80 11.01 21.41 26 19.58 24 17.05 62 14.97 52

consec.

2 41.65 17.09 22 18.21 22 13.39 45 15.37 45
4 30.26 14.67 20 14.25 19 12.95 48 12.79 44
8 23.89 39.75 38 40.79 38 51.03 187 54.59 186
16 15.45 43.87 41 44.62 41 48.03 195 51.97 195
32 11.20 37.71 38 38.35 38 20.74 92 22.22 92
64 9.52 124.58 106 126.29 106 >123.32 >500 132.01 498
80 8.94 68.48 64 68.43 63 57.32 233 58.16 220

88

Table 2.23: Results for the reliab2matrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner, ‘it’
the number of iterations needed to reduce the 2-norm of the residual below
10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU
factorization with drop tolerance 10�3 was used. A large amount of overlap
was chosen.

Overlap K constr.
GMRES precond. with without Krylov accel.
AS RAS AS RAS

solve it solve it solve it solve it

reliab2(300)

no restr.

2 0.60 0.38 18 0.40 18 >6.71 >500 >7.36 >500
4 0.69 0.43 19 0.45 19 >7.23 >500 >7.64 >500
8 0.44 0.52 23 0.45 20 >6.95 >500 >7.43 >500
16 0.42 0.58 24 0.49 21 >7.32 >500 >7.59 >500
32 0.39 0.75 29 0.71 27 >7.49 >500 >8.04 >500
64 0.33 1.15 40 1.16 39 >7.64 >500 >8.40 >500
80 0.32 1.25 42 1.21 40 >7.76 >500 >8.56 >500

consec.

2 0.58 0.38 18 0.40 18 >6.73 >500 >7.37 >500
4 0.62 0.41 19 0.43 19 >6.86 >500 >7.40 >500
8 0.42 1.31 46 1.30 45 >6.32 >500 >6.74 >500
16 0.37 1.28 46 1.34 46 >6.11 >500 >6.64 >500
32 0.31 3.63 105 3.66 102 >6.31 >500 >7.00 >500
64 0.27 5.85 151 5.76 149 >6.65 >500 >7.24 >500
80 0.25 >9.58 >250 >10.21 >250 >6.62 >500 >7.37 >500

reliab2(600)

no restr.

2 4.48 3.04 24 3.87 24 >31.87 >500 >35.40 >500
4 3.86 3.35 24 3.43 24 >31.51 >500 >33.92 >500
8 2.75 3.25 24 3.34 24 >31.67 >500 >34.06 >500
16 2.31 3.50 28 3.49 27 >32.84 >500 >35.00 >500
64 1.81 5.67 32 2.42 19 >33.40 >500 >36.05 >500
80 1.89 6.52 38 5.09 36 >33.87 >500 >36.19 >500

consec.

2 4.44 3.35 24 3.67 24 >32.05 >500 >35.44 >500
4 3.78 4.86 31 4.96 31 >30.80 >500 >32.54 >500
8 2.83 3.80 30 3.92 30 >30.53 >500 >32.75 >500
16 2.03 12.24 80 12.20 78 >29.23 >500 >31.03 >500
32 1.71 18.21 86 16.06 85 >27.75 >500 >29.87 >500
64 1.54 19.52 89 17.61 89 >27.19 >500 >29.50 >500
80 1.56 >57.24 >250 >54.43 >250 >26.81 >500 >28.90 >500

89

2.10.1.3 Results with incomplete LU factorization, small amount of over-

lap, and edge weights during partitioning

Table 2.24: Results for the ncd matrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner,
‘it’ the number of iterations needed to reduce the 2-norm of the residual
below 10�12, ‘solve’ the time (in seconds). For local solves the incomplete
LU factorization with drop tolerance 10�4 was used. A small amount of
overlap was chosen, and we used weighted edges in Metis.

Overlap K constr.
GMRES precond. with without Krylov accel.

AS RAS AS RAS
solve it solve it solve it solve it

ncd(07)

no restr.

2 0.16 0.12 11 0.13 11 0.20 29 0.22 29
4 0.18 0.14 12 0.13 11 0.12 17 0.13 16
8 0.18 0.13 11 0.14 11 0.13 17 0.14 16
16 0.18 0.17 14 0.16 12 0.28 34 0.29 33
32 0.19 0.23 17 0.21 15 0.34 37 0.33 33
64 0.20 0.32 21 0.31 19 0.50 47 0.39 34
80 0.20 0.32 20 0.27 16 0.43 39 0.28 23

consec.

2 0.17 0.12 11 0.13 11 0.20 29 0.22 29
4 0.17 0.13 12 0.14 12 0.39 57 0.38 50
8 0.17 0.14 12 0.15 12 0.37 51 0.41 51
16 0.16 0.19 16 0.20 16 0.56 75 0.62 75
32 0.15 0.24 19 0.27 19 0.84 104 0.80 89
64 0.15 0.32 23 0.34 23 0.67 76 0.76 76
80 0.15 0.31 22 0.32 21 0.58 64 0.65 64

ncd(10)

no restr.

2 0.51 0.26 8 0.29 8 0.45 23 0.50 23
4 0.42 0.34 10 0.37 10 0.51 25 0.56 25
8 0.48 0.43 12 0.42 11 0.46 22 0.50 22
16 0.46 0.52 15 0.52 14 0.60 28 0.65 28
32 0.49 0.50 14 0.53 13 0.43 19 0.41 16
64 0.51 0.68 17 0.62 15 0.78 31 0.72 25
80 0.52 0.74 18 0.75 16 0.99 38 0.84 30

consec.

2 0.52 0.28 8 0.29 8 0.46 23 0.50 23
4 0.42 0.38 10 0.38 10 0.51 25 0.55 25
8 0.47 0.42 12 0.46 12 0.62 30 0.68 30
16 0.42 0.55 15 0.57 15 0.76 37 0.82 37
32 0.44 0.52 15 0.56 15 0.87 41 0.93 41
64 0.41 0.61 17 0.62 16 0.99 46 0.94 39
80 0.41 0.70 19 0.77 18 1.25 57 1.11 45

90

Table 2.25: Results for the ncd matrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner,
‘it’ the number of iterations needed to reduce the 2-norm of the residual
below 10�12, ‘solve’ the time (in seconds). For local solves the incomplete
LU factorization with drop tolerance 10�4 was used. A small amount of
overlap was chosen, and we used weighted edges in Metis.

Overlap K constr.
GMRES precond. with without Krylov accel.

AS RAS AS RAS
solve it solve it solve it solve it

ncd(15)

no restr.

2 1.85 1.45 8 1.52 8 2.17 23 2.34 23
4 1.63 1.59 9 1.67 9 1.62 18 1.75 18
8 1.61 1.96 11 2.04 11 1.46 16 1.45 15
16 1.68 2.50 13 2.11 11 1.65 18 1.57 16
32 1.62 2.95 15 2.83 14 1.96 21 1.89 19
64 1.57 3.14 16 2.95 15 2.07 22 2.11 21
80 1.71 3.42 17 3.34 16 2.22 23 2.23 22

consec.

2 1.91 1.45 8 1.54 8 2.24 23 2.36 23
4 1.62 1.64 9 1.66 9 1.62 18 1.79 18
8 1.66 1.97 11 2.20 11 1.33 15 1.44 15
16 1.63 2.22 12 2.33 12 1.80 20 1.73 18
32 1.43 2.97 15 2.76 14 2.20 25 2.29 24
64 1.34 3.17 17 3.05 16 2.33 27 2.55 27
80 1.33 3.67 19 3.82 19 3.06 35 3.01 32

ncd(20)

no restr.

2 3.70 3.63 8 3.99 8 3.75 15 4.27 15
4 4.89 3.87 9 4.13 9 2.76 12 3.01 12
8 4.71 3.70 9 3.93 9 2.59 12 2.77 12
16 4.18 5.67 13 5.32 12 3.85 18 4.15 18
32 3.81 5.04 12 4.95 11 3.39 16 3.21 14
64 3.74 6.66 15 6.54 14 4.79 22 4.39 19
80 3.64 8.71 18 7.63 16 5.30 24 4.94 21

consec.

2 3.77 3.61 8 3.97 8 3.73 15 4.25 15
4 4.51 3.86 9 4.03 9 2.72 12 2.96 12
8 4.56 3.73 9 3.88 9 2.62 12 2.77 12
16 4.02 6.10 14 6.56 14 4.62 22 5.00 22
32 3.45 4.86 12 5.27 12 4.50 22 4.44 20
64 3.25 6.93 16 6.77 15 5.93 29 5.51 25
80 3.21 8.12 18 8.78 18 6.83 33 6.48 29

91

Table 2.26: Results for the twod matrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner,
‘it’ the number of iterations needed to reduce the 2-norm of the residual
below 10�12, ‘solve’ the time (in seconds). For local solves the incomplete
LU factorization with drop tolerance 10�4 was used. A small amount of
overlap was chosen, and we used weighted edges in Metis. For each matrix,
the best overall timings are in boldface.

Overlap K constr.
GMRES precond. with without Krylov accel.

AS RAS AS RAS
solve it solve it solve it solve it

twod(06)

no restr.

2 0.35 0.10 9 0.10 8 0.12 17 0.13 17
4 0.24 0.14 12 0.13 11 0.37 54 0.42 55
8 0.25 0.14 12 0.15 12 0.26 38 0.29 38
16 0.19 0.17 14 0.19 14 1.55 175 1.71 178
32 0.16 0.26 20 0.28 20 5.07 500 5.43 500
64 0.15 0.32 23 0.35 23 5.12 475 5.73 484
80 0.15 0.42 28 0.46 28 5.70 500 6.24 500

consec.

2 0.35 0.11 9 0.10 8 0.12 17 0.13 17
4 0.24 0.14 12 0.14 11 0.37 54 0.42 55
8 0.22 0.20 17 0.21 17 0.38 53 0.43 54
16 0.19 0.25 20 0.27 20 1.40 181 1.59 183
32 0.16 0.32 24 0.35 24 >4.65 >500 >5.03 >500
64 0.14 0.39 27 0.43 27 >4.97 >500 >5.58 >500
80 0.14 0.55 34 0.56 33 >5.13 >500 >5.69 >500

twod(10)

no restr.

2 2.70 0.43 8 0.50 8 0.53 16 0.67 17
4 1.64 0.61 11 0.65 11 1.71 52 1.87 52
8 1.94 0.64 12 0.68 12 1.04 31 1.14 31
16 1.42 0.82 15 0.85 15 1.97 59 2.16 59
32 1.05 1.17 21 1.23 21 8.63 212 9.62 216
64 1.00 1.40 24 1.41 23 7.83 192 8.84 197
80 0.93 1.66 27 1.76 27 >21.72 >500 >23.48 >500

consec.

2 2.71 0.43 8 0.49 8 0.53 16 0.62 17
4 1.66 0.61 11 0.66 11 1.71 52 1.87 52
8 1.93 0.84 15 0.91 15 1.03 31 1.17 32
16 1.36 1.39 23 1.44 23 3.15 95 3.67 97
32 1.00 1.92 31 2.06 31 8.35 230 9.25 233
64 0.91 2.01 32 2.12 32 >19.92 >500 >21.65 >500
80 0.88 2.70 39 2.85 39 >20.56 >500 >22.39 >500

92

Table 2.27: Results for the twod matrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner,
‘it’ the number of iterations needed to reduce the 2-norm of the residual
below 10�12, ‘solve’ the time (in seconds). For local solves the incomplete
LU factorization with drop tolerance 10�4 was used. A small amount of
overlap was chosen, and we used weighted edges in Metis. For each matrix,
the best overall timings are in boldface.

Overlap K constr.
GMRES precond. with without Krylov accel.

AS RAS AS RAS
solve it solve it solve it solve it

twod(12)

no restr.

2 9.41 1.63 9 1.88 9 1.56 16 1.64 16
4 7.48 2.20 12 2.38 12 2.62 29 2.84 29
8 6.78 2.41 13 2.54 13 3.77 41 4.04 41
16 4.83 2.81 15 3.01 15 3.27 36 3.67 37
32 3.64 4.96 23 5.16 23 5.95 67 6.36 66
64 2.92 6.95 29 7.19 29 12.50 136 13.96 139
80 2.98 9.02 34 9.19 34 9.00 98 9.62 96

consec.

2 9.49 1.65 9 1.78 9 1.52 16 1.62 16
4 7.53 3.13 16 3.35 16 4.38 48 4.88 49
8 6.93 4.24 20 4.48 20 10.72 110 11.44 110
16 4.90 5.92 25 6.14 25 5.21 54 5.69 55
32 3.37 6.77 29 6.93 29 7.88 90 8.58 90
64 2.74 13.58 45 13.60 45 15.97 180 17.29 180
80 2.73 19.81 69 20.29 69 20.87 231 22.67 231

twod(14)

no restr.

2 22.04 3.65 10 3.97 10 3.10 15 3.33 14
4 23.94 3.93 11 3.81 10 2.85 15 3.10 15
8 16.12 4.91 14 5.12 14 7.93 44 8.51 44
16 11.22 7.05 19 7.28 19 5.72 33 6.13 33
32 9.04 7.40 20 7.70 20 8.66 52 9.11 51
64 7.18 12.50 29 13.07 29 15.83 92 16.66 90
80 6.89 13.72 31 14.29 31 13.99 82 14.62 80

consec.

2 22.14 3.67 10 3.99 10 3.10 15 3.22 14
4 24.37 6.20 16 6.66 16 7.02 36 7.47 36
8 15.87 7.34 19 7.22 18 8.66 47 9.17 47
16 11.18 15.55 33 16.10 33 15.80 88 16.87 88
32 8.51 15.03 33 15.81 33 21.63 130 23.61 130
64 6.74 24.61 45 25.18 45 40.98 238 44.27 238
80 6.59 27.10 48 27.72 48 35.27 206 37.92 206

93

Table 2.28: Results for the twod matrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner,
‘it’ the number of iterations needed to reduce the 2-norm of the residual
below 10�12, ‘solve’ the time (in seconds). For local solves the incomplete
LU factorization with drop tolerance 10�4 was used. A small amount of
overlap was chosen, and we used weighted edges in Metis. For each matrix,
the best overall timings are in boldface.

Overlap K constr.
GMRES precond. with without Krylov accel.

AS RAS AS RAS
solve it solve it solve it solve it

tcomm(47)

no restr.

2 1.58 0.90 6 0.95 6 0.43 6 0.48 6
4 1.47 0.85 6 0.91 6 0.39 6 0.44 6
8 1.49 0.85 6 0.91 6 0.39 6 0.44 6
16 1.74 0.93 6 0.94 6 0.41 6 0.46 6
32 1.78 0.94 6 1.04 6 0.43 6 0.48 6
64 1.94 0.97 6 1.06 6 0.47 6 0.51 6
80 2.04 0.98 6 1.08 6 0.49 6 0.53 6

consec.

2 1.63 0.90 6 0.96 6 0.43 6 0.48 6
4 1.99 0.85 6 0.90 6 0.38 6 0.44 6
8 2.00 0.84 6 0.91 6 0.38 6 0.44 6
16 1.95 0.88 6 1.00 6 0.40 6 0.45 6
32 1.78 0.88 6 0.98 6 0.41 6 0.46 6
64 1.67 0.90 6 0.95 6 0.43 6 0.48 6
80 1.66 0.91 6 0.94 6 0.44 6 0.48 6

tcomm(49)

no restr.

2 8.34 2.01 6 2.20 6 1.01 6 1.20 6
4 2.66 1.79 6 1.91 6 0.83 6 0.95 6
8 2.68 1.68 6 1.78 6 0.75 6 0.85 6
16 3.80 1.71 6 1.81 6 0.77 6 0.87 6
32 3.03 1.78 6 1.86 6 0.82 6 0.91 6
64 3.63 1.90 6 2.12 6 0.88 6 0.97 6
80 3.76 1.91 6 1.99 6 0.91 6 0.99 6

consec.

2 8.51 2.05 6 2.22 6 1.02 6 1.21 6
4 4.14 1.81 6 1.91 6 0.83 6 0.95 6
8 4.31 1.74 6 1.88 6 0.75 6 0.85 6
16 4.73 1.69 6 1.80 6 0.75 6 0.86 6
32 3.50 1.79 6 1.98 6 0.78 6 0.88 6
64 3.38 1.77 6 1.86 6 0.81 6 0.90 6
80 3.36 1.88 6 2.00 6 0.82 6 0.92 6

94

Table 2.29: Results for the mutex matrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner, ‘it’
the number of iterations needed to reduce the 2-norm of the residual below
10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU
factorization with drop tolerance 10�3 was used. A small amount of overlap
was chosen, and we used weighted edges in Metis. For each matrix, the
best overall timings are in boldface.

Overlap K constr.
GMRES precond. with without Krylov accel.

AS RAS AS RAS
solve it solve it solve it solve it

mutex(09)

no restr.

2 3.13 0.14 6 0.16 7 0.11 7 0.13 8
4 3.43 0.32 11 0.26 9 0.44 20 1.01 46
8 3.46 0.43 12 0.38 11 0.82 29 1.28 47
16 3.66 0.57 13 0.50 12 1.28 37 1.65 49
32 3.32 0.67 14 0.63 14 1.86 47 3.63 98
64 3.45 0.82 15 0.72 14 2.71 59 2.06 48
80 4.59 0.96 16 0.79 14 3.07 60 3.11 65

consec.

2 3.11 0.14 6 0.16 7 0.11 7 0.13 8
4 2.46 0.27 12 0.29 12 8.12 500 8.55 500
8 2.24 0.33 13 0.36 14 5.45 291 5.42 290
16 1.88 0.37 15 0.37 15 8.43 461 8.08 451
32 1.43 0.42 17 0.42 17 5.37 299 4.99 277
64 0.99 0.44 18 0.45 18 8.71 500 8.95 500
80 1.01 0.44 18 0.45 18 6.43 349 6.24 337

mutex(12)

no restr.

2 55.34 0.99 7 1.07 7 0.88 9 1.11 11
4 59.98 1.55 9 1.92 11 2.05 16 6.87 54
8 52.16 2.36 12 2.39 12 4.57 29 9.32 59
16 40.78 2.88 13 2.47 12 6.11 37 5.77 36
32 34.01 3.14 14 2.90 13 9.84 54 13.04 74
64 27.57 3.60 15 3.19 13 12.35 62 13.71 73
80 25.39 3.60 15 3.32 14 12.55 63 13.56 71

consec.

2 55.05 0.99 7 1.00 7 0.88 9 1.11 11
4 31.61 1.62 12 1.66 13 6.24 69 12.32 136
8 19.88 1.70 14 1.73 14 15.80 187 16.99 192
16 11.16 1.79 16 1.78 16 19.65 262 23.49 308
32 7.74 1.63 16 1.64 16 8.16 118 16.76 236
64 5.27 1.64 17 1.66 17 9.85 150 18.96 280
80 4.64 1.71 18 1.80 18 20.58 317 23.85 356

95

Table 2.30: Results for the reliab1matrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner, ‘it’
the number of iterations needed to reduce the 2-norm of the residual below
10�12, ‘solve’ the time (in seconds). For local solves the incomplete LU
factorization with drop tolerance 10�3 was used. A small amount of overlap
was chosen, and we used weighted edges in Metis. For each matrix, the
best overall timings are in boldface.

Overlap K constr.
GMRES precond. with without Krylov accel.

AS RAS AS RAS
solve it solve it solve it solve it

reliab1(300)

no restr.

2 0.78 0.20 11 0.20 11 0.20 18 0.22 18
4 0.63 0.34 19 0.35 19 0.26 24 0.28 23
8 0.49 0.57 29 0.68 29 1.24 112 1.37 114
16 0.45 0.58 28 0.69 28 0.65 53 0.70 52
32 0.34 0.45 23 0.46 22 0.97 82 1.08 83
64 0.28 0.91 40 1.23 40 1.23 98 1.38 100
80 0.27 0.74 33 0.92 33 1.55 118 1.64 114

consec.

2 0.80 0.19 11 0.20 11 0.20 18 0.22 18
4 0.61 0.34 19 0.35 19 0.27 24 0.31 23
8 0.49 1.26 52 1.72 52 4.22 378 4.57 380
16 0.44 1.19 49 1.67 49 1.62 138 1.76 138
32 0.30 0.68 33 0.86 33 3.06 270 3.38 270
64 0.26 1.12 47 1.55 47 4.34 360 4.85 362
80 0.25 1.31 53 1.83 53 3.98 323 4.43 323

reliab1(600)

no restr.

2 5.43 1.54 15 1.73 15 2.04 32 2.32 32
4 3.63 2.51 27 3.13 26 2.29 46 2.43 45
8 2.52 3.99 38 5.66 38 6.13 124 6.47 121
16 2.29 2.44 26 2.75 26 4.02 78 4.21 76
32 2.04 4.48 36 5.06 36 5.66 97 5.89 94
64 1.59 4.49 37 4.63 36 8.75 155 9.18 151
80 1.52 4.71 38 4.82 37 7.30 129 7.58 124

consec.

2 5.33 1.60 15 1.65 15 2.01 32 2.27 32
4 3.58 2.55 27 3.07 26 2.29 46 2.44 45
8 2.52 4.57 40 5.79 40 6.33 129 6.66 125
16 2.09 3.91 37 4.92 37 8.65 165 9.69 165
32 2.02 8.86 57 10.31 57 11.40 205 12.30 203
64 1.50 8.33 53 8.97 53 15.08 283 16.28 283
80 1.40 8.47 56 8.93 56 16.86 316 18.24 315

96

Table 2.31: Results for the reliab1matrices. K is the number of domains,
‘constr.’ the time (in seconds) needed to construct the preconditioner,
‘it’ the number of iterations needed to reduce the 2-norm of the residual
below 10�12, ‘solve’ the time (in seconds). For local solves the incomplete
LU factorization with drop tolerance 10�3 was used. A small amount of
overlap was chosen, and we used weighted edges in Metis.

Overlap K constr.
GMRES precond. with without Krylov accel.

AS RAS AS RAS
solve it solve it solve it solve it

reliab1(900)

no restr.

2 16.68 5.32 17 5.35 17 7.16 45 7.53 45
4 11.93 5.41 18 5.61 18 6.66 45 7.12 45
8 8.10 5.78 20 5.48 19 6.93 53 7.31 52
16 7.07 11.34 32 13.06 32 10.21 80 10.82 79
32 5.31 11.37 32 13.26 32 14.66 109 15.24 106
64 4.15 17.97 43 21.54 43 25.29 186 26.38 181
80 3.87 17.05 42 19.79 41 18.66 145 19.66 142

consec.

2 16.72 5.25 17 5.37 17 7.20 45 7.57 45
4 11.97 5.48 18 5.56 18 6.69 45 7.21 45
8 7.53 6.15 21 6.39 21 6.88 53 7.30 52
16 6.47 24.23 56 28.16 55 26.43 210 28.52 210
32 5.23 19.37 45 22.64 45 37.60 284 40.35 284
64 3.99 36.92 87 41.73 87 66.43 500 71.10 500
80 4.01 27.48 67 29.56 71 42.33 329 45.29 328

reliab1(1200)

no restr.

2 37.74 10.73 19 11.74 19 16.01 57 18.05 57
4 33.47 10.71 19 11.25 19 16.18 57 17.09 57
8 22.89 17.00 28 17.59 28 32.37 123 33.64 120
16 13.32 27.60 40 28.39 40 29.68 133 30.94 130
32 12.06 18.20 30 17.84 29 19.32 80 20.12 78
64 8.65 30.20 42 30.83 42 42.58 185 44.76 180

consec.

2 37.52 10.69 19 11.96 19 16.33 57 18.50 57
4 32.61 10.64 19 11.16 19 15.70 57 17.13 57
8 17.91 17.15 28 17.41 28 30.61 123 31.86 120
16 13.55 32.08 44 32.88 44 32.25 147 33.98 144
32 11.36 36.85 48 38.00 48 46.76 198 50.80 198

97

2.10.1.4 Results with the two-level method

Table 2.32: Results with the 2-level method for the ncd and twod ma-
trices. K is the number of domains, ‘constr.’ the time (in seconds) needed
to construct the preconditioner, ‘it’ the number of iterations needed to re-
duce the 2-norm of the residual below 10�12, ‘solve’ the time (in seconds).
For local solves the incomplete LU factorization with drop tolerance 10�4

was used.

Matrix K
small overlap large overlap

constr solve it constr solve it

ncd(10)

2 1.94 0.56 9 2.05 0.59 9
4 1.90 0.50 8 2.26 0.56 8
8 1.86 0.56 9 2.52 0.68 9
16 1.85 0.63 10 2.61 0.85 10
32 1.88 0.70 11 3.05 1.07 11
64 1.86 0.87 13 3.63 1.40 12
80 1.89 0.88 13 3.88 1.55 13

ncd(15)

2 8.21 2.62 8 7.94 2.36 7
4 7.01 2.66 8 7.89 4.37 12
8 7.09 2.97 9 8.46 2.85 8
16 7.21 2.98 9 9.03 3.41 9
32 7.02 3.75 11 9.59 4.06 10
64 7.03 4.56 13 10.77 5.52 12

twod(10)

2 4.69 0.84 8 4.87 0.74 7
4 6.09 0.87 8 6.50 0.89 8
8 6.09 1.08 10 7.17 1.16 10
16 4.93 1.18 11 5.64 1.28 11
32 3.51 1.76 17 4.24 1.73 15
64 3.42 2.26 21 4.61 2.38 19
80 3.35 2.53 23 4.50 2.72 21

twod(12)

2 22.16 2.90 9 18.38 2.90 9
4 15.34 2.98 10 14.62 3.07 10

8 16.77 3.73 12 16.07 3.50 11
16 16.67 4.59 14 17.41 4.68 14
32 12.31 5.56 17 14.28 5.55 16
64 11.00 7.08 21 13.37 7.28 20
80 10.12 7.41 22 12.19 7.29 20

98

Table 2.33: Results with the 2-level method for the reliability matrices.
K is the number of domains, ‘constr.’ the time (in seconds) needed to
construct the RAS preconditioner, ‘it’ the number of iterations needed to
reduce the 2-norm of the residual below 10�12, ‘solve’ the time (in seconds).
For local solves the incomplete LU factorization with drop tolerance 10�3

was used.

Matrix K
small overlap large overlap

constr solve it constr solve it

reliab1(600)

2 10.37 2.65 14 10.65 2.67 14
4 9.26 2.49 14 9.53 2.52 14
8 8.54 3.87 20 9.04 2.65 14
16 7.59 2.66 16 8.10 2.56 14
32 7.21 3.52 18 7.85 2.78 14
64 6.93 4.31 21 7.74 3.36 16
80 6.78 4.52 22 7.62 3.35 16

reliab1(900)

2 32.86 7.45 16 33.17 7.45 16
4 27.17 7.25 16 27.60 7.31 16
8 23.81 8.46 19 24.78 7.04 16
16 22.06 9.60 21 23.00 7.58 17
32 20.62 8.54 19 21.97 7.97 17
64 19.23 14.10 24 20.69 10.81 19
80 19.37 13.19 23 20.71 11.07 19

reliab2(600)

2 10.18 4.43 21 10.40 4.48 21
4 9.62 4.07 21 9.91 4.16 21
8 8.44 4.44 23 8.82 4.11 21
16 8.02 5.41 29 8.43 4.59 23
32 7.63 6.53 29 8.17 5.04 23
64 7.57 7.57 32 8.24 5.80 25
80 7.49 7.96 33 8.34 6.17 26

reliab2(900)

2 26.72 14.84 25 27.22 14.16 24
4 26.09 14.87 25 26.38 14.16 24
8 22.70 14.39 25 23.63 14.45 25
16 21.57 16.76 28 22.12 14.51 25
32 20.14 17.67 29 21.13 15.50 26
64 19.45 22.25 34 20.73 17.52 28
80 19.19 21.10 33 20.46 16.44 27

99

2.10.2 Parallel results

Here we present the results of our numerical experiments on a high performance

cluster. The experiments were run on the puma cluster at Emory University. Puma

has 32 nodes and 128 processor cores. Each node has two dual core AMD 2214

2.2 GHz Opteron CPUs, 4 GB RAM and an 80 GB drive. We compare GMRES

preconditioned with RAS and AS with various restrictions on the chosen overlap.

As in the serial experiments we compare small and large amount of overlap, overlap

chosen from all domains, or only immediate neighbors, and domain decomposition

with and without weights on the edges of the underlying graph of P + P t.

The matrices are distributed using the parallel graph partitioner ParMETIS [65].

We are using 1, 2, 4, 8, 16, and 20 nodes with 4 processor cores each in our experi-

ments. That is, the number of domains used are 4, 8, 16, 32, 64, and 80. For some

of the larger example no results were obtained with 4 or 8 domains as the memory

requirements were too large.

The software library used is PETSc [7]. Due to the lack of a serial ILUT in PETSc

we use an ILU that depends on the levels of fill-in for the local solves. Similar to the

serial experiments, GMRES was restarted after 50 iterations and we used a tolerance

of 10�12.

Our results for the ncd matrices are given in Tables 2.34, and 2.35. The results for

the twodmatrices are given in Tables 2.36, and 2.37. The results for the first reliability

model are given in Tables 2.38, 2.39, and 2.40, and for the second reliability model

in Tables 2.41, 2.42, and 2.43. For better comparison, each table shows all di↵erent

chosen parameters for one specific example.

First of all, in the parallel case the restricted additive Schwarz preconditioner

outperforms the additive Schwarz preconditioner. The rather high di↵erence in num-

ber of iterations (see for example Table 2.34) may be due to a di↵erent handling

of the results on the overlap in the implementation of AS in PETSc and our serial

100

implementation of it.

Another observation is that in parallel mode a large choice of overlap is beneficial.

While the construction time and the time for each local solve increase, the number

of iterations usually decreases and so does the overall time needed, that is, the time

to construct the preconditioner and the time needed to solve the linear system. For

example for the reliab1(2000) matrix, we need 82 iterations to solve the system on

80 subdomains with a small choice of overlap, while for a large choice of overlap we

only need 34 iterations. The time to construct the preconditioner increases from 0.41

seconds to 1.22 seconds, but the time needed to solve the linear system decreases

from 24.15 seconds to 11.13 seconds (see Table 2.39). An exception are the matrices

from the ncd family. Here, the number of iterations decreases only slightly while the

time needed to construct the preconditioner and the time needed to solve the linear

system increase as we increase the amount of overlap (see Table 2.34 and 2.35).

In our parallel implementation it sometimes seems to be an advantageous to use a

weighted graph during the domain decomposition. This is most noticeable for the ncd

matrices. The best case for this matrix was to use weights during the partitioning,

and choose a small amount of overlap from consecutive domains, see Table 2.35. This

is also the only class of examples were the best results were achieved when overlap was

chosen from consecutive subdomains. For the other examples it was not of benefit

to choose overlap only from neighboring subdomains. The increase in the number of

iterations was too large, so that the benefit in reduced communication (if any) was

out-weighted. Also note that for the cases were a weighted graph was used during the

partitioning an increased cost per iteration could be observed. This may be due to

higher communication requirements and/or an overall higher amount of overlap (so,

larger subdomain solves). For example, for the reliab1(2000) matrix the same number

of iterations is needed for the weighted and unweighted case to solve the system on

80 subdomains with a large choice of overlap. But both the time needed to construct

101

the preconditioner and the time needed to solve the linear system are smaller for the

unweighted case (see Table 2.38).

Lastly, we comment on the choice of the number of subdomains. The best case

for every tested matrix was always achieved with 80 subdomains (the largest number

of subdomains tested). Overall, we usually achieved a reduction in both the time

needed to construct the preconditioner and the time needed to solve the linear system.

However, for some examples there was a rapid jump in the number of iterations needed

when increasing the number of subdomains, so that the time needed to solve the linear

system also increased; see for example Table 2.39 for the cases when overlap is chosen

from consecutive subdomains.

102

Table 2.34: Results for the ncd(20) matrix. K is the number of sub-
domains, ‘constr.’ the time (in seconds) needed to construct the precon-
ditioner, ‘it’ the number of iterations needed to reduce the 2-norm of the
residual below 10�12, ‘solve’ the time (in seconds). For the incomplete LU
3 levels of fill-in were used.

K
unweighted weighted

constr.
AS RAS

constr.
AS RAS

solve it solve it solve it solve it

small overlap chosen from all subdomains

4 1.90 22.33 18 22.33 18 1.93 18.07 14 17.23 13
8 0.99 11.30 20 9.46 16 1.03 9.09 16 7.93 13
16 0.56 11.55 40 8.70 31 0.74 6.17 24 4.90 18
32 0.32 6.64 42 4.12 28 0.34 4.77 34 3.59 26
64 0.23 4.50 43 2.79 29 0.83 3.78 30 2.47 21
80 0.21 3.71 40 2.69 31 0.28 7.55 70 4.18 37

large overlap chosen from all subdomains

4 4.33 27.79 19 25.47 17 4.66 24.12 15 21.05 12
8 3.69 14.38 19 11.22 13 3.29 15.22 18 11.66 11
16 2.28 16.86 40 10.69 25 2.67 15.43 33 9.97 18
32 1.55 8.88 34 4.91 16 2.17 10.73 33 6.60 17
64 2.42 27.59 91 8.65 27 3.85 16.38 39 7.04 17
80 2.45 29.18 94 8.74 25 3.20 34.99 92 7.37 17

small overlap chosen from consecutive subdomains

4 1.85 24.48 19 23.41 18 1.66 17.97 14 17.09 13
8 0.90 15.82 28 14.06 25 0.79 12.23 25 11.73 24
16 0.47 53.31 197 12.79 44 0.42 5.08 20 4.85 19
32 0.26 70.78 >500 27.83 197 0.24 3.67 28 3.42 26
64 0.17 45.60 >500 13.32 146 0.16 3.23 35 3.18 33
80 0.17 45.01 >500 44.57 >500 0.16 2.87 32 2.66 30

large overlap chosen from consecutive subdomains

4 2.09 26.02 19 24.90 18 2.29 24.73 16 21.63 13
8 1.04 18.16 30 14.53 24 1.28 10.68 17 9.41 14
16 0.62 14.67 47 12.26 41 0.82 8.20 25 7.10 21
32 0.38 75.89 >500 23.14 150 0.47 5.24 28 4.13 21
64 0.19 43.65 >500 13.01 146 0.27 4.50 39 3.49 31
80 0.18 45.75 >500 45.70 >500 0.25 4.18 37 3.80 34

103

Table 2.35: Results for the ncd(25) matrix. K is the number of sub-
domains, ‘constr.’ the time (in seconds) needed to construct the precon-
ditioner, ‘it’ the number of iterations needed to reduce the 2-norm of the
residual below 10�12, ‘solve’ the time (in seconds). For the incomplete LU
3 levels of fill-in were used.

K
unweighted weighted

constr.
AS RAS

constr.
AS RAS

solve it solve it solve it solve it

small overlap chosen from all subdomains

4 3.77 38.87 15 36.96 14 3.81 31.02 10 29.38 9
8 1.97 20.11 15 18.15 13 2.01 18.69 13 16.62 11
16 1.07 14.47 23 11.97 19 1.08 12.11 20 10.01 16
32 0.59 9.74 30 7.91 25 0.81 11.27 35 8.29 27
64 0.38 9.39 44 7.19 33 0.44 7.53 35 5.73 25
80 0.74 7.21 44 5.00 32 0.47 7.05 33 5.30 26

large overlap chosen from all subdomains

4 8.00 45.20 15 38.98 12 8.89 40.85 12 38.71 11
8 6.16 32.34 20 22.76 12 6.69 25.01 12 20.54 8
16 3.94 21.43 26 14.99 17 4.96 24.94 25 16.42 14
32 2.69 26.01 50 9.72 18 3.62 29.70 50 13.37 22
64 3.86 16.50 33 12.07 25 6.58 22.14 38 12.26 21
80 4.80 38.05 93 11.13 27 5.19 24.30 43 11.25 20

small overlap chosen from consecutive subdomains

4 3.56 42.49 16 38.52 14 3.30 30.61 10 28.91 9
8 2.43 128.35 96 110.10 85 1.63 16.22 11 15.34 10
16 1.21 99.19 147 59.28 89 1.16 14.48 25 13.27 23
32 0.65 20.38 59 17.64 48 0.45 13.68 42 11.98 38
64 0.37 94.14 >500 93.93 >500 0.29 8.07 39 8.25 38
80 0.32 69.54 >500 70.84 >500 0.27 6.01 35 4.89 34

large overlap chosen from consecutive subdomains

4 3.69 53.90 20 47.24 17 4.46 82.39 30 68.92 25
8 2.62 125.63 92 109.55 82 2.73 22.98 15 20.75 13
16 1.29 38.72 51 29.81 42 1.33 16.17 23 13.10 18
32 0.69 22.43 65 18.65 49 0.67 18.03 48 13.63 39
64 0.46 97.82 >500 96.85 >500 0.48 8.99 42 7.67 37
80 0.39 71.36 >500 70.04 495 0.56 6.21 39 5.69 34

104

Table 2.36: Results for the twod(14) matrix. K is the number of sub-
domains, ‘constr.’ the time (in seconds) needed to construct the precon-
ditioner, ‘it’ the number of iterations needed to reduce the 2-norm of the
residual below 10�12, ‘solve’ the time (in seconds). For the incomplete LU
20 levels of fill-in were used.

K
unweighted weighted

constr.
AS RAS

constr.
AS RAS

solve it solve it solve it solve it

small overlap chosen from all subdomains

4 1.10 19.22 21 18.58 20 1.13 15.84 17 15.28 16
8 0.57 12.82 28 11.19 24 0.58 13.65 25 12.59 22
16 0.31 9.17 35 7.80 30 0.32 10.66 42 9.60 38
32 0.20 5.03 40 4.20 34 0.23 7.37 41 6.20 35
64 0.14 4.56 49 3.89 43 0.15 4.89 51 4.23 45
80 0.14 3.97 49 3.24 42 0.15 4.57 58 3.63 45

large overlap chosen from all subdomains

4 2.11 19.24 20 16.67 16 2.17 15.79 16 14.77 14
8 1.23 10.79 21 9.40 17 1.23 12.25 20 10.56 15
16 0.74 6.75 24 5.39 18 0.77 9.21 32 7.58 25
32 0.50 4.53 33 3.76 27 0.58 7.55 37 5.17 24
64 0.52 3.84 38 2.74 27 0.44 4.51 41 3.19 29
80 0.40 3.13 38 2.30 28 0.39 3.16 36 2.20 25

small overlap chosen from consecutive subdomains

4 0.92 19.06 21 18.34 20 0.98 17.91 21 17.86 21
8 0.49 17.09 38 16.55 37 0.49 23.51 48 22.51 46
16 0.26 14.83 54 14.58 52 0.25 18.15 82 17.75 80
32 0.18 7.64 67 7.50 66 0.17 14.44 88 13.74 85
64 0.11 6.93 84 6.65 81 0.11 7.54 88 7.13 83
80 0.12 6.29 89 5.88 84 0.11 6.76 93 6.36 89

large overlap chosen from consecutive subdomains

4 0.94 19.53 21 17.05 17 0.96 18.26 21 17.66 20
8 0.50 18.83 41 16.81 37 0.52 20.70 40 18.39 35
16 0.26 16.54 63 14.87 52 0.27 20.22 87 18.39 80
32 0.19 11.40 85 8.60 64 0.17 12.99 96 11.30 86
64 0.12 7.53 91 6.63 81 0.12 8.10 93 7.19 84
80 0.12 6.67 93 5.91 84 0.12 8.63 118 6.68 89

105

Table 2.37: Results for the twod(17) matrix. K is the number of sub-
domains, ‘constr.’ the time (in seconds) needed to construct the precon-
ditioner, ‘it’ the number of iterations needed to reduce the 2-norm of the
residual below 10�12, ‘solve’ the time (in seconds). For the incomplete LU
20 levels of fill-in were used.

K
unweighted weighted

constr.
AS RAS

constr.
AS RAS

solve it solve it solve it solve it

small overlap chosen from all subdomains

4 2.70 66.68 30 66.61 30 2.97 67.55 28 65.71 27
8 1.42 35.57 31 32.39 28 1.40 42.73 35 40.23 33
16 0.78 35.21 60 29.19 47 0.79 30.45 47 26.99 42
32 0.45 21.45 77 17.93 62 0.50 23.34 70 21.05 61
64 0.30 13.63 78 11.53 65 0.30 17.86 93 14.95 80
80 0.28 13.72 84 12.11 75 0.27 17.45 96 15.35 87

large overlap chosen from all subdomains

4 5.13 70.61 31 66.79 29 5.29 66.31 27 59.13 23
8 3.44 37.01 31 28.65 23 2.93 54.04 42 46.20 36
16 1.75 25.36 40 20.18 32 1.72 29.06 43 23.18 34
32 2.37 15.17 46 11.97 37 1.67 16.99 43 12.39 31
64 0.96 12.71 65 8.72 39 0.85 11.64 53 9.52 42
80 0.85 11.44 65 7.77 42 0.79 14.01 72 8.82 43

small overlap chosen from consecutive subdomains

4 2.37 66.26 30 65.96 30 2.36 93.65 41 93.60 41
8 1.15 61.36 51 58.59 49 1.25 73.53 61 73.65 61
16 0.67 52.02 92 50.61 90 0.66 41.57 73 40.18 70
32 0.36 31.92 110 30.98 105 0.42 34.99 100 33.83 98
64 0.24 22.94 134 22.73 132 0.24 25.31 141 22.44 129
80 0.21 24.80 148 23.55 145 0.22 26.35 147 24.58 140

large overlap chosen from consecutive subdomains

4 2.37 59.29 26 55.51 24 2.56 99.17 43 92.24 40
8 1.22 64.75 56 58.90 49 1.68 76.35 63 73.27 59
16 0.67 54.74 95 51.62 91 0.66 46.38 81 40.68 70
32 0.42 40.87 116 38.01 104 0.38 33.22 112 30.06 98
64 0.24 24.36 143 21.88 130 0.24 27.78 159 23.14 133
80 0.23 26.81 167 23.73 145 0.22 31.69 183 24.34 139

106

Table 2.38: Results for the reliab1(1200) matrix. K is the number
of subdomains, ‘constr.’ the time (in seconds) needed to construct the
preconditioner, ‘it’ the number of iterations needed to reduce the 2-norm of
the residual below 10�12, ‘solve’ the time (in seconds). For the incomplete
LU 20 levels of fill-in were used.

K
unweighted weighted

constr.
AS RAS

constr.
AS RAS

solve it solve it solve it solve it

small overlap chosen from all subdomains

4 1.69 45.70 36 45.66 36 1.65 31.92 23 31.90 23
8 0.82 16.75 24 17.34 25 0.85 14.17 20 14.61 21
16 0.46 15.55 36 13.31 32 0.47 18.52 48 16.23 43
32 0.27 14.03 68 13.17 63 0.27 14.40 69 12.64 59
64 0.20 8.35 79 7.49 71 0.22 10.24 91 8.56 78
80 0.19 9.75 72 9.05 67 0.18 8.46 66 7.42 57

large overlap chosen from all subdomains

4 3.21 29.09 20 28.06 19 3.15 31.59 22 26.60 17
8 1.77 16.86 23 15.10 20 1.78 12.04 14 10.65 11
16 1.06 13.16 28 9.52 21 1.06 10.36 26 7.98 19
32 0.81 7.88 34 5.86 26 0.80 7.76 34 6.12 27
64 0.56 4.85 38 3.68 29 0.64 6.20 46 4.38 34
80 0.52 5.16 35 3.64 26 0.73 5.66 37 4.44 26

small overlap chosen from consecutive subdomains

4 1.38 46.05 36 46.02 36 1.43 53.19 40 53.21 40
8 0.70 35.96 51 35.13 50 0.70 35.03 53 34.71 52
16 0.37 30.84 66 30.22 63 0.38 25.76 73 25.48 72
32 0.21 27.60 132 28.55 135 0.21 24.76 121 23.89 116
64 0.15 17.03 153 16.11 146 0.15 13.29 140 12.68 136
80 0.14 17.99 129 17.49 125 0.14 17.30 138 16.47 133

large overlap chosen from consecutive subdomains

4 1.43 28.76 20 27.78 19 1.45 49.29 37 49.32 37
8 0.70 38.10 56 36.36 52 0.72 32.51 48 30.24 45
16 0.38 34.74 75 32.65 67 0.39 28.09 79 25.32 71
32 0.22 32.91 150 29.26 137 0.35 27.50 133 25.33 123
64 0.15 16.71 156 15.82 146 0.15 14.79 153 12.10 131
80 0.14 19.11 135 17.19 124 0.14 20.66 148 17.20 131

107

Table 2.39: Results for the reliab1(2000) matrix. K is the number
of subdomains, ‘constr.’ the time (in seconds) needed to construct the
preconditioner, ‘it’ the number of iterations needed to reduce the 2-norm of
the residual below 10�12, ‘solve’ the time (in seconds). For the incomplete
LU 20 levels of fill-in were used.

K
unweighted weighted

constr.
AS RAS

constr.
AS RAS

solve it solve it solve it solve it

small overlap chosen from all subdomains

8 2.47 63.10 35 59.79 33 2.38 81.59 47 76.11 44
16 1.36 71.70 71 69.96 69 1.31 79.01 79 74.20 76
32 0.75 43.40 85 38.92 77 0.75 37.71 57 34.38 49
64 0.49 36.39 111 29.59 92 0.47 25.61 80 21.86 68
80 0.41 27.38 91 24.15 82 0.41 25.05 89 21.06 77

large overlap chosen from all subdomains

8 4.92 68.93 37 58.42 31 6.95 67.12 38 55.43 31
16 3.26 43.13 39 33.82 31 3.50 46.83 41 35.90 33
32 2.05 25.48 44 20.16 36 2.01 23.58 40 21.51 33
64 1.29 20.81 59 15.52 43 1.32 16.48 47 12.87 38
80 1.22 14.58 43 11.13 34 1.63 13.74 42 9.55 32

small overlap chosen from consecutive subdomains

8 2.00 74.91 41 74.93 41 1.99 83.41 48 81.63 47
16 1.10 122.11 122 121.12 120 1.10 139.29 133 136.82 131
32 0.59 85.68 171 81.41 163 0.61 58.78 91 56.27 88
64 0.36 43.12 158 42.67 155 0.36 37.90 143 35.86 136
80 0.34 57.23 155 55.51 149 0.32 40.84 146 39.51 142

large overlap chosen from consecutive subdomains

8 2.10 82.22 44 76.16 41 2.12 79.39 45 73.04 42
16 1.55 126.60 127 122.12 120 1.14 147.40 138 133.27 126
32 0.77 88.35 177 83.25 165 0.77 67.67 100 57.27 89
64 0.38 47.17 172 42.64 151 0.36 40.88 153 35.53 135
80 0.34 60.69 167 54.91 147 0.32 44.26 156 40.55 143

108

Table 2.40: Results for the reliab1(2800) matrix. K is the number
of subdomains, ‘constr.’ the time (in seconds) needed to construct the
preconditioner, ‘it’ the number of iterations needed to reduce the 2-norm of
the residual below 10�12, ‘solve’ the time (in seconds). For the incomplete
LU 20 levels of fill-in were used.

K
unweighted weighted

constr.
AS RAS

constr.
AS RAS

solve it solve it solve it solve it

small overlap chosen from all subdomains

16 2.58 110.84 61 101.75 53 2.55 86.26 45 79.76 42
32 1.46 77.96 81 72.84 76 1.48 86.43 98 78.73 91
64 1.11 36.65 71 32.90 62 1.16 67.67 146 64.38 139
80 0.82 43.44 83 40.62 78 0.86 54.87 93 44.39 78

large overlap chosen from all subdomains

16 6.54 88.72 45 71.61 37 6.63 72.54 37 60.54 31
32 4.08 51.06 47 39.99 38 4.05 49.00 49 39.05 40
64 3.02 33.93 51 24.24 41 3.23 42.50 81 31.32 56
80 2.83 35.39 63 24.13 42 2.78 45.16 74 26.19 42

small overlap chosen from consecutive subdomains

16 2.23 203.07 117 203.81 117 2.19 184.70 100 182.96 99
32 1.16 154.65 158 148.57 150 1.20 113.67 133 109.10 128
64 0.88 60.78 131 57.31 124 0.72 87.77 198 87.78 198
80 0.63 74.46 139 74.32 139 0.64 90.03 171 91.63 173

large overlap chosen from consecutive subdomains

16 2.18 207.48 117 204.68 117 2.79 199.68 111 184.35 99
32 1.16 176.02 181 150.18 150 1.21 121.78 142 108.59 128
64 0.85 65.56 140 55.24 119 0.71 133.13 300 105.17 238
80 0.63 80.83 148 74.56 139 0.68 117.05 199 96.91 167

109

Table 2.41: Results for the reliab2(1200) matrix. K is the number
of subdomains, ‘constr.’ the time (in seconds) needed to construct the
preconditioner, ‘it’ the number of iterations needed to reduce the 2-norm of
the residual below 10�12, ‘solve’ the time (in seconds). For the incomplete
LU 20 levels of fill-in were used.

K
unweighted weighted

constr.
AS RAS

constr.
AS RAS

solve it solve it solve it solve it

small overlap chosen from all subdomains

4 1.69 29.29 21 29.29 21 1.73 30.63 25 30.60 25
8 0.83 16.53 23 16.50 23 0.83 15.80 25 15.76 25
16 0.46 16.79 40 15.30 37 0.46 13.05 32 12.44 30
32 0.27 15.70 67 13.24 51 0.28 10.20 50 8.87 45
64 0.20 8.03 80 7.13 71 0.20 8.22 83 7.21 73
80 0.18 8.81 70 6.87 52 0.19 12.08 91 9.96 79

large overlap chosen from all subdomains

4 3.22 24.44 15 22.64 13 3.18 26.78 19 24.30 16
8 1.76 14.57 18 12.95 15 1.79 13.92 19 12.15 15
16 1.06 10.55 24 8.27 18 1.08 8.77 22 7.73 17
32 0.81 9.76 38 6.33 26 0.72 7.29 34 5.77 27
64 0.64 5.27 43 4.06 34 0.58 4.93 40 4.08 32
80 0.55 4.17 29 2.79 21 0.55 5.26 35 3.61 25

small overlap chosen from consecutive subdomains

4 1.37 43.59 34 43.59 34 1.40 30.61 25 30.62 25
8 0.70 21.48 31 20.76 30 0.71 29.95 49 29.96 49
16 0.36 30.20 76 29.70 75 0.38 26.27 71 26.65 70
32 0.21 26.34 106 25.71 101 0.22 16.24 91 15.32 87
64 0.14 16.27 166 16.04 161 0.15 11.64 127 11.16 120
80 0.15 15.91 129 15.50 123 0.14 21.28 164 20.30 155

large overlap chosen from consecutive subdomains

4 1.44 44.10 34 44.06 34 1.46 26.72 19 24.23 16
8 0.71 23.40 33 21.99 31 0.75 31.99 50 31.02 49
16 0.38 30.08 76 26.51 66 0.55 26.34 71 26.99 70
32 0.22 29.87 125 25.60 101 0.24 17.80 96 16.00 88
64 0.15 17.50 178 15.61 152 0.17 12.69 135 11.12 120
80 0.15 17.23 137 14.52 116 0.15 24.47 187 20.44 154

110

Table 2.42: Results for the reliab2(2000) matrix. K is the number
of subdomains, ‘constr.’ the time (in seconds) needed to construct the
preconditioner, ‘it’ the number of iterations needed to reduce the 2-norm of
the residual below 10�12, ‘solve’ the time (in seconds). For the incomplete
LU 20 levels of fill-in were used.

K
unweighted weighted

constr.
AS RAS

constr.
AS RAS

solve it solve it solve it solve it

small overlap chosen from all subdomains

8 2.48 41.64 20 40.15 19 2.48 46.69 26 46.66 26
16 1.32 78.78 75 76.73 72 1.34 32.13 32 30.12 30
32 0.72 57.76 121 51.05 104 0.75 33.94 88 30.83 81
64 0.47 23.50 91 22.25 87 0.47 22.89 95 20.70 87
80 0.41 23.04 77 20.88 70 0.41 12.16 42 10.77 38

large overlap chosen from all subdomains

8 4.90 43.28 20 40.18 18 4.96 42.68 22 38.66 19
16 3.34 28.96 25 26.43 23 3.41 28.69 27 22.23 20
32 1.85 28.96 52 24.27 44 1.92 18.96 41 16.20 35
64 1.34 14.62 47 12.25 41 1.47 14.51 49 11.83 41
80 1.33 13.09 39 10.30 31 1.48 10.54 35 7.46 25

small overlap chosen from consecutive subdomains

8 2.03 53.46 27 53.39 27 2.08 76.95 45 76.90 45
16 1.09 69.17 68 69.73 68 1.11 59.36 61 58.05 60
32 0.60 53.61 109 50.85 101 0.62 50.57 138 50.00 137
64 0.36 36.13 144 34.94 141 0.36 28.21 123 27.07 118
80 0.32 34.18 113 32.94 107 0.33 23.29 84 21.27 78

large overlap chosen from consecutive subdomains

8 2.94 54.59 27 54.42 27 2.15 78.45 45 77.97 45
16 1.56 52.06 47 51.30 46 1.14 64.42 68 59.01 61
32 0.61 52.60 104 45.95 92 0.89 54.32 142 49.36 132
64 0.39 43.82 177 35.51 141 0.40 26.56 112 24.01 98
80 0.33 31.14 99 27.05 89 0.32 24.63 88 20.26 75

111

Table 2.43: Results for the reliab2(2800) matrix. K is the number
of subdomains, ‘constr.’ the time (in seconds) needed to construct the
preconditioner, ‘it’ the number of iterations needed to reduce the 2-norm of
the residual below 10�12, ‘solve’ the time (in seconds). For the incomplete
LU 20 levels of fill-in were used.

K
unweighted weighted

constr.
AS RAS

constr.
AS RAS

solve it solve it solve it solve it

small overlap chosen from all subdomains

16 2.67 69.19 35 67.33 34 2.58 61.20 34 57.69 32
32 1.47 82.66 88 74.66 82 1.51 64.28 82 54.54 69
64 1.08 45.94 99 40.46 89 1.17 58.06 123 44.81 92
80 0.85 32.60 54 28.64 47 0.85 35.64 71 31.49 61

large overlap chosen from all subdomains

16 6.43 58.95 29 53.30 26 9.78 56.44 31 48.68 26
32 3.98 68.23 71 50.51 48 4.10 63.53 79 43.68 48
64 3.04 37.02 69 28.37 46 3.14 49.98 96 33.45 63
80 2.63 26.21 42 18.79 31 2.57 21.93 38 16.84 30

small overlap chosen from consecutive subdomains

16 2.14 149.26 80 149.73 80 2.23 83.79 46 80.90 45
32 1.19 116.65 129 115.44 129 1.20 65.86 84 61.21 78
64 0.92 102.64 199 100.36 197 0.85 63.51 138 61.12 133
80 0.64 55.59 98 53.16 95 0.62 58.51 119 58.82 119

large overlap chosen from consecutive subdomains

16 2.15 150.34 80 150.37 80 3.06 84.89 47 81.69 45
32 1.19 133.78 145 118.33 131 1.64 67.54 84 62.28 78
64 0.95 108.69 215 108.18 214 0.95 75.26 161 64.40 137
80 0.64 59.07 105 53.30 95 0.65 58.58 119 59.46 119

112

2.11 Summary and conclusions

We have extended the RAS method to the computation of the stationary vector of

large, sparse Markov chains. Our results suggest that when combined with GM-

RES acceleration and inexact solves, RAS is a promising approach for the solution

of Markov chains with large, sparse transition matrices. Although primarily designed

with parallel computing in mind, for su�ciently large problems the proposed tech-

nique is found to be superior to standard approaches (like ILU preconditioning) even

in a sequential implementation. In the parallel case the method also shows promising

results.

Chapter 3

Iterative solvers for the GeneRank

problem

3.1 Introduction

Advances in biotechnology make it possible to collect a vast amount of genomic data.

For example, using gene microarrays, it is now possible to probe a person’s gene

expression profile over the more than 30,000 genes of the human genome. Biomedical

researchers try to link signals extracted from these gene microarray experiments to

genetic factors underlying disease. One of the most important problems is to identify

key genes that play a role in a particular disease.

A gene microarray consists of a large number of known DNA probe sequences

that are put in distinct locations on a slide. Gene microarrays can be used for gene

expression profiling. The DNA in a cell does not change, but certain derivatives

of the DNA, the mRNA and tRNA, are produced as stimulation occurs through

environmental conditions, and treatments. For more details, see [10, 22].

In 2005 Morrison et al. proposed a new model called GeneRank [81]. It is a modifi-

cation of Google’s PageRank algorithm. The model shares many of the mathematical

114

115

properties of PageRank, and the ranking of genes is reduced to the solution of a large

linear system. Besides information gained from microarray experiments, GeneRank

also considers known connection between genes. Thus, errors in the microarray ex-

periments are less likely to influence the results than in methods which are based on

expression levels alone.

3.2 Definitions and auxiliary results

Connection between genes can be constructed via the Gene Ontology (GO) database

(http://geneontology.org). Let the set G = {g1, g2, . . . , gn} consist of n genes in

a microarray. Two genes gi and gj are connected if they share an annotation in

GO. Similar to PageRank, the idea of GeneRank is that a gene is significant if it is

connected to manly highly ranked genes. In contrast to PakeRank, the connection

are not directed. Thus, instead of an un-symmetric hyperlink matrix, GeneRank

considers the symmetric adjacency matrix W of the gene network. W is given by

wij =

8
><

>:

1 if gi and gj (i 6= j) share an annotation in GO,

0 otherwise.

Note that W is unweighted, while the hyperlink matrix in PageRank is weighted so

that each row sums up to one. A diagonal matrix D is constructed to provide such a

scaling. Since a gene might not be connected to any of the other genes, W may have

zero rows. We let degi denote the sum of the ith row (or column) of W , that is,

degi =
nX

j=1

wij =
nX

j=1

wji.

116

The diagonal matrix D is defined by D = diag(d1, . . . , dn), where

di =

8
><

>:

degi if degi > 0

1 otherwise.

Note that D is nonsingular and nonnegative by construction. Now, (D�1W)t corre-

sponds to the weighted hyperlink matrix in PageRank. In the case of GeneRank we

do not need to modify the matrix further, since irreducibility is not needed.

So far only the connection between genes are considered, but not the results from

the gene microarray experiment. Let ex =


ex1 ex2 . . . exn

�t

be a vector that is

obtained from such an experiment. The entry exi � 0 is the absolute value of the

expression change of gene gi. In addition, a damping factor ↵ with 0  ↵  1 that

controls the weighting of expression change to connectivity is introduced. Then, the

GeneRank algorithm can be written as a large linear system:

(I � ↵WD�1)x⇤ = (1� ↵)ex. (3.1)

The vector x⇤ is called GeneRank vector, and the entries of it give some information

about the significance of a gene. Note that for ↵ = 0 genes are ranked solely on the

basis of the microarray experiment. If ↵ = 1, then a ranking is constructed using

only the connectivity information, and the results from the microarray experiments

are ignored.

3.3 Symmetric formulation of GeneRank

The matrix W is symmetric, but I�↵WD�1 is not symmetric. Thus, for the solution

of the linear system (3.1) non-symmetric method have to be used. The information

about the symmetry of W cannot be exploited. In 2011 Wu et al. recognized that the

117

GeneRank problem can be rewritten as a symmetric linear system [117]. The main

idea is simply to write the linear system (3.1) as

(D � ↵W)D�1x⇤ = (1� ↵)ex, (3.2)

or equivalently, as

(D � ↵W)x̂ = (1� ↵)ex, (3.3)

with x̂ = D�1x⇤. The matrix D�↵W is symmetric. With this modification, methods

that are suitable for symmetric systems can be used for the GeneRanke problem. In

the next section we will see that the symmetric GeneRank matrix has some additional

nice properties.

3.4 Properties of the symmetric GeneRank matrix

Wu et al. also showed that the matrix D � ↵W has some nice properties besides

symmetry. First of all, they showed that D � ↵W is positive definite. Thus, the

conjugate gradient (CG) method [57] can be used to solve the linear system (3.3).

Wu et al. investigated the e�ciency of the Jacobi preconditioner for D� ↵W . In

that case, the preconditioned matrix is given by

D�1/2(D � ↵W)D�1/2 = I � ↵D�1/2WD�1/2.

Thus, the preconditioned linear system looks as follows:

(I � ↵D�1/2WD�1/2)x̄ = (1� ↵)D�1/2
ex, (3.4)

with x̄ = D1/2x̂ = D1/2(D�1x⇤) = D�1/2x⇤.

118

Wu et al. also showed that the eigenvalues of the preconditioned matrix are

bounded as follows:

�max(I � ↵D�1/2WD�1/2)  1 + ↵

�min(I � ↵D�1/2WD�1/2) � 1� ↵
(3.5)

The range of eigenvalues increases as ↵ increases. Thus, the rate of convergence of

CG decreases as ↵ increases. Using Gershgorin’s Circle Theorem, we can also bound

the eigenvalues of D � ↵W as follows:

�max(D � ↵W)  (1 + ↵) max
i=1,...,n

{di}

�min(D � ↵W) � (1� ↵) min
i=1,...,n

{di}
(3.6)

In addition, we can show that D � ↵W and I � ↵D�1/2WD�1/2 are nonsingular

M-matrices.

Proposition 3.4.1.

1. D � ↵W is a nonsingular M-matrix, for 0  ↵ < 1.

2. I � ↵D�1/2WD�1/2 is a nonsingular M-matrix, for 0  ↵ < 1.

Proof. We can rewrite the matrix as D � ↵W = �I � (D̃ + ↵W), where � is the

maximum degree of the underlying graph of W . That is, � = max{di | i = 1, . . . , n}.
The matrix D̃ is diagonal with d̃i = �� di on the diagonal. Thus, D̃ is nonnegative,

and with ↵ > 0 and W � 0 it follows that D̃ + ↵W � 0. Note that �I � (D̃ + ↵W)

is a nonsingular M-matrix if ⇢(D̃+ ↵W) < �. The spectral radius is bounded above

by the 1-norm. Thus, ⇢(D̃ + ↵W)  ||D̃ + ↵W ||1 =maxd
i

{� � di + ↵di} < �, for

0 < ↵ < 1.

Wu et al. showed that ⇢(D�1/2WD�1/2)  1. It follows that ⇢(↵D�1/2WD�1/2) 
↵ < 1. Since D�1/2WD�1/2 is nonnegative, I � ↵D�1/2WD�1/2 is a nonsingular

119

M-matrix.

3.5 Methods tested

Wu et al. successfully employed the Jacobi preconditioner together with CG for the

solution of the linear system (3.3). They compared the method with the original Gen-

eRank, the Jacobi and (Modified) Arnoldi iterations. CG preconditioned with Jacobi

was faster for every example tested. However, the number of iterations increases as

↵ increases.

We investigated the e�ciency of the (restricted) additive Schwarz method for

the solution of the linear system (3.4). Note that the restricted additive Schwarz

preconditioner is not symmetric and cannot be used for CG. We compared CG pre-

conditioned with additive Schwarz with the iterative additive and restricted additive

Schwarz method. We found that the convergence rates for CG with AS precondi-

tioning are encouraging. In particular, the number of iterations does not increase as

↵ increases. However, the construction time for the preconditioner is quite high. In

addition, each iteration of CG is more expensive due to the application of AS. Some

results can be seen in Appendix B.

As an alternative, we propose to use the Chebyshev iteration. The advantage of

the Chebyshev iteration is that the cost per iteration is very low. A disadvantage

is that we need bounds on the eigenvalues. But, as we saw earlier, here we do have

bounds on the largest and smallest eigenvalue of I�↵D�1/2WD�1/2, that can be used

for the Chebyshev iteration. Details about the algorithm are given in Algorithm 3.1.

The parameters lmin and lmax are bounds on the smallest and largest eigenvalue of

the preconditioned matrix. In our case, lmin = 1� ↵ and lmax = 1 + ↵.

In the next section we describe the test problems and afterwards we give the

results of our numerical experiments.

120

Algorithm 3.1 Chebyshev iteration

1: d = (lmax + lmin)/2, c = (lmax � lmin)/2
2: x = x0, r = b�Ax
3: for i = 1, 2, . . . ,m do

4: z = M�1r
5: if i = 1 then

6: p = z
7: ↵ = 2/d
8: else

9: � = (c · ↵/2)2

10: ↵ = 1/(d� �)
11: p = z + � · p
12: end if

13: x = x + ↵ · p
14: r = b�Ax
15: if norm(r) < tol then
16: break;

17: end if

18: end for

3.6 Description of test problems

We use two di↵erent types of matrices. The first matrix is the SNPa matrix (single-

nucleotide polymorphism matrix). This matrix was kindly provided to us by Pro-

fessor Yimin Wei of Fudan University. It has n = 152, 520 rows and columns, and

639, 248 nonzeros. The nonzero structure of the SNPa matrix can be seen in Fig-

ure 3.1.

The second type is a class of matrices that comes from a range-dependent random

graph model called RENGA. Two vertices i and j are connected with probability

��|j�i|�1, where 0 < � < 1 and � > 0 are given parameters. These networks capture

the connectivity structure seen in proteome interaction data [52, 51]. A MATLAB

code is available from [107]. In our experiments we set � = 0.9 and � = 1, the

default values in RENGA. Note that with � = 1 node i is connected to node i+1 for

i = 1, . . . , n� 1.

121

Student Version of MATLAB

Figure 3.1: Nonzero pattern of the SNPa matrix.

3.7 Numerical experiments

We compare the Chebyshev method with the conjugate gradient method and a Jacobi

preconditioned conjugate gradient. The Chebyshev iteration is used to solve the

system (I � ↵D�1/2WD�1/2)x̂ = (1 � ↵)D�1/2
ex using the bounds on the largest

and smallest eigenvalue given in (3.5). The stopping criteria for each of the methods

depends on the 1-norm of the residual. That is, we stop once krk1 < tol. The initial

guess is the zero vector. We use two di↵erent choices for ex: ex = (1/n)e, where e

is the vector of all ones, and ex = p, where p is a random probability vector.

The results for the SNPa matrix are given in Tables 3.1 and 3.2, and the results

for the RENGA matrices are given in Tables 3.3 and 3.4.

Note that the rate of convergence depends only on ↵ and not on the size of the

matrix. The eigenvalues of I�↵D�1/2WD�1/2 are fairly uniformly distributed in the

interval [1 � ↵, 1 + ↵]. In such a case 2(I � ↵D�1/2WD�1/2) = �
max

�
min

 1+↵
1�↵ gives a

122

Table 3.1: Results for the SNPa matrix. The matrix has n = 152, 520
rows and columns. The tolerance used is 10�10. Here ex = (1/n)e, where
e is the vector of all ones. The number of iterations and the CPU time in
seconds (in brackets) are given.

↵ 0.50 0.75 0.80 0.99

CG 86 (1.06) 107 (1.38) 145 (1.79) 470 (6.11)
PCG 17 (0.26) 24 (0.35) 35 (0.51) 91 (1.28)

Chebyshev 17 (0.10) 25 (0.14) 37 (0.21) 130 (0.73)

Table 3.2: Results for the SNPa matrix. The matrix has n = 152, 520
rows and columns. The tolerance used is 10�10. Here ex = p, where p is
a random probability vector. The number of iterations and the CPU time
in seconds (in brackets) are given.

↵ 0.50 0.75 0.80 0.99

CG 87 (1.07) 109 (1.40) 148 (1.80) 484 (5.54)
PCG 17 (0.23) 24 (0.32) 35 (0.48) 90 (1.19)

Chebyshev 17 (0.10) 25 (0.14) 37 (0.21) 131 (0.73)

Table 3.3: Results for the RENGA matrices. The tolerance used is
10�10. Here ex = (1/n)e, where e is the vector of all ones. The number
of iterations and the CPU time in seconds (in brackets) are given.

↵ 0.50 0.75 0.80 0.99

n=100,000
CG 22 (0.23) 26 (0.27) 33 (0.34) 105 (1.07)
PCG 13 (0.15) 19 (0.22) 27 (0.31) 92 (1.06)

Chebyshev 17 (0.11) 24 (0.16) 35 (0.23) 125 (0.81)

n=500,000
CG 23 (1.46) 25 (1.59) 33 (2.11) 106 (9.29)
PCG 13 (0.92) 19 (1.37) 27 (1.92) 92 (6.56)

Chebyshev 17 (0.59) 24 (0.87) 35 (1.27) 125 (4.47)

good estimate of the rate of convergence of CG and Chebyshev. Also note that we

tried unsuccessfully to use a direct solver (sparse Cholesky) for the SNPa matrix, due

to excessive fill-in.

123

Table 3.4: Results for the RENGA matrices. The tolerance used is
10�10. Here ex = p, where p is a random probability vector. The number
of iterations and the CPU time in seconds (in brackets) are given.

↵ 0.50 0.75 0.80 0.99

n=100,000
CG 23 (0.24) 26 (0.27) 36 (0.37) 116 (1.19)
PCG 14 (0.16) 20 (0.23) 29 (0.34) 98 (1.13)

Chebyshev 17 (0.11) 24 (0.16) 35 (0.23) 125 (0.81)

n=500,000
CG 23 (1.45) 26 (1.64) 35 (2.23) 117 (7.42)
PCG 14 (0.99) 20 (1.42) 29 (2.06) 99 (7.03)

Chebyshev 17 (0.59) 24 (0.87) 35 (1.27) 125 (4.48)

3.8 Summary

We investigated two methods for the solution of the linear system arising from the

gene ranking problem. While additive Schwarz as a preconditioner for CG leads to

a method with a small number of iterations that does not depend on the value of

the damping parameter ↵, a high construction time makes this method less desirable.

Good results were obtained with the Chebyshev iteration. While the number of

iteration is higher than for CG with Jacobi preconditioner, the cost per iteration is

much cheaper and leads to a faster convergence in terms of CPU time. Also, the

Chebyshev iteration is more desirable in a parallel setting as it avoids computing dot

products.

Chapter 4

Disaggregation techniques for large

scale-free graphs

4.1 Indroduction

One faces many challenges when analyzing scale-free networks. The networks of

interest are usually huge and are constantly increasing in size. For example, a Google

search on the number “2” in October 2010 returned about 16,250,000,000 results

while the same search in January 2012 returned about 25,270,000,000 results. Thus,

it is required to use distributed memory systems for computations on large scale-free

graphs.

In network analysis one is often interested in finding a large number of eigenvalues

and eigenvectors of the graph Laplacian. The computation of eigenvalues and eigen-

vectors of scale-free graphs is very expensive. Any Krylov method-based eigensolver

(the methods of choice for large-scale problems) spends the majority of the time in

the matrix-vector product. Yoo et al. identified the increased communication over-

head in the matrix-vector product as a significant performance bottleneck for parallel

algorithms for scale-free graphs [118]. A common technique to improve the commu-

124

125

nication requirements is to re-partition the matrix before starting any computations.

However, state of the art parallel graph partitioners such as ParMETIS [65] and

PT-Scotch [30] were designed for graphs with a more regular or uniform degree dis-

tribution. They employ multilevel partitioning algorithms [24, 55, 62, 63, 59, 60, 64]

which depend on coarsening the graph until it is small enough to be e�ciently par-

titioned. In the case of scale-free graphs these partitioners produce partitions that

only slightly improve the communication behavior and require a high amount of time

and memory [1]. The aforementioned graph partitioners attempt to partition the

nodes of a graph. Edge or 2D partitioning has been successfully used to improve the

scalability of the matrix-vector product [118]. While matrix-vector products based

on 2D partitioning can be easily used for matrix-free eigensolvers, available multilevel

methods require a row-(or edge-)wise distribution of the matrix.

Here we present a method that embeds the original irregular graph into a more

regular one by disaggregating (splitting up) vertices in the original graph. The matrix-

vector operations for the original graph are performed via a factored triple matrix-

vector product involving the embedding graph. Even though the latter graph is larger,

we are able to decrease the communication requirements considerably and improve

the performance of the matrix-vector product.

4.2 Disaggregation

Scale-free graphs have a very irregular degree distribution. The existence of a few very

high degree nodes together with many small degree nodes make computations with

these types of graph particularly challenging. We attempt to tackle these challenges by

disaggregation, or splitting up nodes in the graph. This results in a larger graph with

a more favorable structure. Enlarging a graph of a sparse matrix with unfavorable

structure to a graph with a more desirable structure has been used before, for example,

126

in the context of matrix stretching, where dense rows (columns) in a sparse matrix

are split into several more sparse rows (columns) [2, 49]. For other methods that use

matrix enlarging, see [4]. In the finite element literature, the popular FETI (finite

element tearing and interconnecting) technique [43] can be viewed as a specialized

disaggregation method.

!

!

!

!

Figure 4.1: Disaggregating a node and using a circle as connections
between the new nodes.

!

!

!

!

Figure 4.2: Disaggregating a node and using a complete graph as con-
nections between the new nodes.

If a node i is disaggregated, it is split up into several new nodes i1, . . . , ik and every

neighbor of node i in the graph is connected to exactly one of the nodes i1, . . . , ik.

Usually, we connect the nodes i1, . . . , ik, called internal nodes, with a connected struc-

ture such as a cycle as seen in Figure 4.1 or a complete graph as seen in Figure 4.2.

We can represent the disaggregated graph Gf as a combination of a graph that con-

tains the same number of edges as the original graph G and a graph that contains

only the new internal edges, called internal graph. A visualization can be seen in

Figure 4.3. The matrix corresponding to the disaggregated graph Gf is denoted by

Af , the matrix with the same number of edges as G, but nodes from Gf is denoted

by B, and the matrix corresponding to the internal graph is denoted by C. We can

127

write Af as Af = B + sC, where s is the weight given to the internal edges. Under

certain conditions the eigenvalues of Af approximate the eigenvalues of A provided

that the weight s on the internal edges is chosen large enough.

Figure 4.3: Presenting the disaggregated graph as a combination of the
graph with internal and external edges.

Next, we construct a nonnegative intergraph-transfer operator Q. Let n denote

the number of nodes in the original graph G and nG
f

the number of nodes in the

disaggregated graph Gf . The operator Q is used to prolongate a vector from Rn to

RnG
f ,

Q : Rn ! RnG
f

The matrix Q is constructed as follows. If i = 1, . . . , nG
f

are the nodes in Gf and

j = 1, . . . , n are the nodes in G, then Qij = 1 whenever node i in Gf represents node j

in G. Thus, if node j in G is not disaggregated, the jth column in Q has exactly one

entry. If j is disaggregated into k nodes, the jth column contains exactly k entries.

Now, the original matrix A can be written in terms of the disaggregated matrix Af

by

A = QtAfQ.

That is, we can replace the matrix-vector product Ax by the factored triple matrix-

vector product Qt(Af (Qx)). Note that C · Q = 0 and the internal graph is not nec-

essary for the factored triple matrix-vector product. That is, one can use Qt(B(Qx))

for the matrix-vector product. The transfer operator Q can be scaled such that its

128

columns are orthonormal. Let D 2 Rn⇥n be a diagonal matrix such that Di,i =
1p
k
if

node i is disaggregated into k nodes. Then, Q̂ = Q ·D has the following properties:

• Q̂tQ̂ = In and

• Q̂Q̂t is a projection onto the range of Q̂.

In matrix form, the disaggregation can be described as follows. Consider the

following matrix

A =

2

66664

A11 A12 0

A21 A22 a

0 at ↵

3

77775
.

Here A =

2

64
A11 A12

A21 A22

3

75 is a n ⇥ n matrix, a 2 Rm, m  n, and ↵ 2 R. In our

application, the last row (and column) will correspond to a vertex of the associated

sparse graph for A with large degree m that we want to disaggregate.

We are interested in the following “matrix embedding”. Let e = (1) 2 Rm be the

constant vector of all ones. Form the m⇥m diagonal matrix D = diag(di)mi=1, where

d = (di)mi=1 is to be determined later on. For example, let ⇤ be the m ⇥ m graph

Laplacian matrix corresponding to a cycle:

⇤ =

2

66666666664

2 �1 0 . . . �1
�1 2 �1 . . . 0

0
. 0

0
. . . �1 2 �1

�1 0 . . . �1 2

3

77777777775

. (4.1)

In what follows, ⇤ can be any graph Laplacian matrix corresponding to a graph

defined by the sparsity structure imposed on the additionally introduced nodes. This

graph sometimes (in what follows) will be referred to as “internal graph.” For any

129

such internal graph Laplacian, we have ⇤e = 0.

Given a parameter s � 0 and a given vector c2 2 Rm, we form the m⇥m diagonal

matrix C2 = diag(c2) (i.e., C2e = c2), and consider

T = �DC2 + s⇤.

We are interested in the following (n+m)⇥ (n+m) embedding matrix:

Af =

2

66664

A11 A12 0

A21 A22 D

0 D T

3

77775
. (4.2)

From now on we assume that the original matrix A corresponds to the graph

Laplacian. For the considerations below it is su�cient to assume that Ac � 0 for a

positive vector

c =

2

66664

c1

c2

�

3

77775
,

and that A has nonpositive o↵-diagonal entries. In that case, we choose the diagonal

matrix D = diag (di)mi=1 as di = �ai, where a = (ai). It is clear that di < 0 and

De = a�.

We have the following result.

Lemma 4.2.1. The embedding matrix Af has nonpositive o↵-diagonal entries and

its action on the positive vector cf =

2

66664

c1

c2

e

3

77775
results in a nonnegative vector that has

the same values as Ac for the common rows of A and Af . For the embedding rows

this action is zero. That is, if c is a null-vector of A, then cf is a null-vector of Af .

130

In the latter case, consider

Q =

2

66664

I 0 0

0 I 0

0 0 1
�e

3

77775
.

Then, the following Galerkin relation holds:

A = QtAfQ. (4.3)

Proof. We first notice that all o↵–diagonal entries of Af are nonpositive. What

remains to show is that its action on the positive vector

2

66664

c1

c2

e

3

77775
2 Rn+m results in

a nonnegative vector. In fact, that action for the common rows of A and Af is the

same as the action of the original matrix A (which is nonnegative by assumption).

We have

A21c1 + A22c2 +De = A21c1 + A22c2 + a� = (Ac)2 .

For the embedding rows, the action is zero due to the choice of ⇤ and T . Indeed, we

have

Dc2 + Te = Dc2 + (�DC2)e+ ⇤e = Dc2 + (�Dc2) = 0.

To prove the Galerkin relation (4.3), from the third component of Ac = 0, we

obtain

atc2 + ↵� = 0. (4.4)

Then, by direct computation, we have (using C2e = c2, De = a�, and hence etD =

�at)

131

QtAfQ =

2

66664

A11 A12 0

A21 A22
1
�De

0 1
�e

tD 1
�e

t (�DC2 + s⇤) 1
�e

3

77775

=

2

66664

A11 A12 0

A21 A22 a

0 at 1
�2

et(�Dc2)

3

77775

=

2

66664

A11 A12 0

A21 A22 a

0 at � 1
�a

tc2

3

77775

=

2

66664

A11 A12 0

A21 A22 a

0 at ↵

3

77775
= A.

In the last equality, we used (4.4). This completes the proof.

In particular, it follows from Lemma 4.4 that for � = 1 and c2 vector of all ones,

Afe = 0. Since Af has nonpositive o↵-diagonal entries, it is a graph Laplacian. In

conclusion, we have the following result.

Theorem 4.2.2. The graph Laplacian matrix A can be embedded into a larger matrix

Af that is also a graph Laplacian matrix and has a smaller number of non-zeros per

row. The two graph Laplacians are related via a Galerkin relation, A = QtAfQ for a

block–diagonal aggregation type matrix Q, where each column of Q contains non-zero

constant entries in its rows that arise from a disaggregated vertex.

132

4.3 Parallel Disaggregation

The communication overhead during the matrix-vector product has been identified as

the performance bottleneck for parallel eigensolvers for scale-free graphs. In our ex-

perience, large scale-free graphs require communication between all processors during

the matrix-vector product. Even after re-partitioning with a graph partitioner such

as ParMETIS or PT-Scotch, communication is needed between all of the processors.

Abou-Rjeili and Karypis explained the inability of these partitioners to find a suit-

able partitioning for scale-free graphs as follows [1]. Most of the available partitioners

rely on multilevel methods where the graph is coarsened until it is small enough to

employ partitioning directly. The coarsening methods use vertex matching to reduce

the number of nodes, and this method depends on finding large enough matchings

to coarsen the graph e�ciently. Scale-free graphs have a very irregular degree distri-

bution and a large number of low degree nodes are connected to a small number of

very high degree nodes. This property leads to relatively small matchings and the

partitioner needs a high number of levels to coarsen the graph enough to be able

to partition it. In addition, this leads to a very high memory demand, and is not

suitable for large graphs. Furthermore, scale-free graphs usually also have the small-

world property, that is, the graph has a small diameter and high average clustering.

This property also makes partitioning more challenging.

A good vertex-based partitioning tries to balance the computational work by

assigning roughly the same number of vertices and edges to each processor while

at the same time minimizing the communication requirements. Banded matrices are

optimal for communication pattern, as every processor only needs to communicate

with a few close neighbors. We use disaggregation of nodes to embed the original

graph in a larger graph whose matrix representation has a more banded structure.

We strive to achieve a given inter-processor communication structure. Any node

that violates this communication pattern is disaggregated and copies of this node

133

are distributed among the processors in such a way that the desired communication

pattern is not violated. We usually restrict the communication to a percentage or

fraction of the other processors.

The communication pattern that we are enforcing depends on the“distance” be-

tween two processors. We define the distance of two processors as follows.

Definition 4.3.1. Assume that the number of processors is np. For two processors

P and Q, we define the distance between the two processors as

dist(P,Q) = min(|P �Q|, np� |P �Q|),

where P andQ are the indices (or ranks) of the processors. That is, 0  P, Q  np�1.

In particular, the distance between processor 0 and processor np � 1 is one. If

communication is restricted to a fraction p 2 (0, 1) of the number of processors np,

we say that node v violates the communication pattern if for some neighbor u

dist(PROC(v), PROC(u)) > bp · np
2
c,

where PROC(v) and PROC(u) denote the processors that hold v and u, respectively.

The following proposition and its proof show how a node is split up and the

neighbors are connected to the new nodes.

Proposition 4.3.2. Assume that communication should be restricted to a fraction p 2
(0, 1) of the number of processors np. This restriction can be fulfilled by disaggregating

any node in the given graph G = (V,E) that violates the communication pattern into

f nodes, where f = dnpl e, with l = bp·np
2
c.

Proof. Node i 2 V violates the communication pattern if there exist j 2 V with

(i, j) 2 E such that dist(PROC(i), PROC(j)) > l. We disaggregate node i into f

nodes i0, . . . , if�1. That is, in the disaggregated graph Gf node i is represented by

134

the nodes i0, . . . , if�1, where node ik, k = 0, . . . , f � 1 lies on processor (PROC(i) +

k · l) mod np. The neighbors of i in graph G are connected to the nodes i0, . . . , if�1 in

the disaggregated graph Gf as follows. If u is a neighbor of i in G, that is (i, u) 2 E,

then u is connected to ik in Gf , where

k =

8
><

>:

bPROC(u)�PROC(i)
l c, if PROC(u) � PROC(i)

bnp+PROC(u)�PROC(i)
l c, if PROC(u) < PROC(i).

Since ik lies on processor proc = (PROC(i)+k·l) mod np, and dist(PROC(u), proc) 
l, the desired communication pattern is not violated by the edge between u and ik.

The details of the parallel disaggregation method are summarized in Algorithm 4.1.

The input matrix A can be either a (weighted) incidence matrix or a matrix corre-

sponding to a graph Laplacian. In both cases the output matrix Af will be a Laplacian

matrix. To derive Af we use the representation of a Laplacian matrix in terms of its

edge-vertex incidence matrix EV and weight matrix W [17, 19, 53],

Af = (EV)t ·W · (EV)

For a graph G = (V,E) the edge-vertex matrix EV is a matrix of size |E|⇥ |V | that
is set up as follows. Each edge e 2 E is arbitrarily directed as e = (u, v). The row e

in EV has two entries, EV (e, u) = 1 and EV (e, v) = �1. The weight matrix W of

size |E|⇥ |E| is a diagonal matrix with positive entries on its main diagonal equal to

the edge weights from the original graph G.
In our algorithm, we first count the number of nodes that violate the desired

communication pattern on every processor. Those are the nodes that need to be

disaggregated. Each of these nodes i is disaggregated into f nodes i0, . . . , if�1, where

i0 replaces i on PROC(i) and ik is placed on processor (PROC(i) + k · l) mod np.

Thus, if nd is the number of nodes in G that need to be disaggregated, the number

135

Algorithm 4.1 Parallel Disaggregation

Input symmetric matrix A 2 Rn⇥n, fraction p 2 (0, 1)
Output disaggregated matrix Af , transfer operator Q

1: np number of processors, l bprop·np
2
c, f dnpl e

2: for each processor proc do
3: count 0
4: for each row i that lies on processor proc do
5: if 9j with A(i, j) 6= 0 AND dist(proc, PROC(j)) > l then
6: count count+ 1 . disaggregate i
7: end if

8: end for

9: send count to the processors (proc + k · l)mod np, k = 1, . . . , f � 1
10: . these processors receive copies of the disaggregated nodes from processor proc
11: receive the corresponding count values from processors (proc + k · l)mod np, k =

1, . . . , f � 1,
12: . determine the additional number of rows needed on this processor
13: end for

14: eG
f

 number of edges in Gf . this value depends on the internal graph
15: nG

f

 number of nodes in Gf

16: set up edge-vertex matrix EV of size eG
f

⇥ nG
f

17: set up matrix Q of size nG
f

⇥ n, diagonal matrix W of size eG
f

⇥ eG
f

18: for each processor proc do

19: for each row i that lies on processor proc do

20: if 9j with A(i, j) 6= 0 AND dist(proc, PROC(j)) > l then
21: disaggregate i: represent row i by f rows i0, . . . , if�1

22: set Q(ik, i) 1 for k = 0, . . . , f � 1
23: set edges between nodes i0, . . . , if�1 . depends on internal graph
24: for all j with A(i, j) 6= 0 do

25: if PROC(j) � proc then k bPROC(j)�proc
l c

26: else k bnp+PROC(j)�proc
l c

27: jG
f

= index of node j in Gf , e (ik, jG
f

)
28: EV (e, ik) 1, EV (e, jG

f

) �1, W (e, e) |A(i, j)|
29: end for

30: else

31: iG
f

= index of node i in Gf , Q(iG
f

, i) 1
32: for all j with A(i, j) 6= 0 do

33: jG
f

= index of node j in Gf , e (iG
f

, jG
f

),
34: EV (e, iG

f

) 1, EV (e, jG
f

) �1, W (e, e) |A(i, j)|
35: end for

36: end if

37: end for

38: end for

39: Af (EV)t ·W · EV

136

of nodes in the disaggregated graph Gf is given by nG
f

= |V |+ nd · (f � 1).

The number of edges in the disaggregated graph Gf depends on the chosen internal

graph that describes the connections between i0, . . . , if�1. If the internal graph is a

cycle (see matrix ⇤ in (4.1)), one edge is added for every ik, that is, the number of

edges in Gf is given by eG
f

= |E|+ nd · f . After the number of nodes and edges of Gf

are determined, we set up the required matrices EV 2 ReG
f

⇥nG
f , W 2 ReG

f

⇥eG
f , and

Q 2 RnG
f

⇥n.

In a second sweep through the original graph G the values in EV , W , and Q

are being set. For every node i the process depends on if i is to be disaggregated.

First, we describe the procedure if i needs to be disaggregated. For every ik, k =

0, . . . , f � 1, set Q(ik, i) = 1. In addition we need to connect the nodes i0, . . . , if�1.

This depends on the chosen internal graph. If a cycle is used, we connect ik with ik+1,

k = 0, . . . , f�2 and if�1 with i0. That is, for every e = (ik, ik+1), k = 0, . . . , f�2, we

set E(e, ik) = 1, E(e, ik+1) = �1, and W (e, e) = s. We also set E((if�1, i0), if�1) = 1,

E((if�1, i0), i0) = �1, and W ((if�1, i0), (if�1, i0)) = s. Next, the neighbors of i in

G have to be connected to the appropriate ik. For i 2 V such that (i, j) 2 E, k

is chosen as in the proof of proposition 4.3.2. Let jG
f

denote the index of j in Gf .

For e = (ik, jG
f

) we set E(e, ik) = 1, E(e, jG
f

) = �1, and W (e, e) = |A(i, j)|. Note

that if j lies on the same processor as i, then k = 0 and the edge e = (ik, jG
f

) lies

on the same processor as the edge (i, j) in G. Next, we describe the procedure if

node i does not need to be disaggregated. In this case we simply set Q(iG
f

, i) = 1,

where iG
f

denotes the index of i in Gf . For every e = (i, j) 2 E, we determine the

corresponding edge eG
f

= (iG
f

, jG
f

) 2 EG
f

and set E(eG
f

, iG
f

) = 1, E(eG
f

, jG
f

) = �1,
and W (eG

f

, eG
f

) = |A(i, j)|. After all values in EV and W have been set, Af can be

determined by Af = (EV)t ·W · (EV).

As described in the previous section, the original matrix A is given by A = QtAfQ,

where Af = B + s · C is the disaggregated matrix and Q is an intergraph-transfer

137

0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

1400

1600

nz = 6334

(a) Original

0 200 400 600 800 1000 1200 1400 1600

0

200

400

600

800

1000

1200

1400

1600

nz = 6334

(b) ParMETIS

Figure 4.4: Non-zero pattern of the original matrix, and the original
matrix after redistributing with ParMETIS.

operator. For the matrix-vector product it is not necessary to connect the disag-

gregated nodes, that is, the matrix C can be omitted. However, if the disaggregated

matrix is to be used in a di↵erent context, for example as an auxiliary preconditioner,

the connectivity of the graph might be desirable. Proposition 4.3.2 only shows that

the graph corresponding to matrix B does not violate the communication pattern.

However, if a cycle is used to connect the internal nodes i0, . . . , if�1 the graph Gf

corresponding to the disaggregated matrix Af does not violate this pattern either.

This can easily be seen as subsequent nodes ik and ik+1 are assigned to processors

proc1 = (proc + k · l)mod np and proc2 = (proc + (k + 1) · l)mod np, respectively,

and dist(proc1, proc2)  l. In the following, we will use a cycle for the connection

between internal (disaggregated) nodes and set the weights on these internal edges to

one, that is s = 1.

In Figure 4.4 and 4.5 we present the non-zero structure of a scale-free graph before

and after disaggregation. The scale-free graph was generated by the parallel scale-

free graph generator [119]. The matrix is split up on 16 processors and has 100

nodes per processor. In Figure 4.4 on the left-hand side (a) the non-zero structure

138

0 500 1000 1500 2000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

nz = 9606

(a) 75%

0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500

nz = 12224

(b) 50%

0 1000 2000 3000 4000 5000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

nz = 20630

(c) 25%

Figure 4.5: Non-zero pattern after using disaggregation to limit commu-
nication to 75%, 50%, or 25% of the other processors.

of the original matrix is shown. It turns out that this matrix structure leads to

communication between every single processor during the matrix-vector product. In

Figure 4.4 on the top right-hand side (b) the structure of the same matrix is given

after it is reordered with ParMETIS. The matrix is denser on the block diagonal

compared to the original matrix, but communication between all processors during

the matrix-vector product is still required. ParMETIS mainly reduces the size of the

139

messages but not the number of messages that needs to be send between processors.

Thus, we have a large number of small messages which is a particularly unfavorable

setting for distributed systems. In Figure 4.5 the non-zero structure of the same

matrix is shown after it is disaggregated, that is the non-zero structure of Af is

shown. We restricted the communication to 75%, 50% and 25% of the processors.

Recall that every processor can communicate to processors that have a distance of at

most l = bp·np
2
c. Thus, for the particular example with 16 processors every processor

is only allowed to communicate with the closest 12, 8, or 4 processors.

While the communication volume is not reduced or only slightly reduced with

disaggregation, the number of messages that are being sent during a matrix-vector

product is significantly reduced. Thus, we have a relatively small number of large

messages. In addition, each processor communicates with the same number of proces-

sors. This is a very favorable communication behavior for a distributed setting. Also,

since the distribution of the disaggregated nodes is done in a very structured way,

load balancing can be preserved provided that roughly the same number of nodes are

disaggregated on every processor. The matrix-vector product will be implemented by

the factored triple matrix-vector product Qt(Af (Qx)). Note that Q is very sparse. If

a node is not disaggregated Q has exactly one entry in the corresponding column. If a

node is disaggregated the number of entries in the corresponding column depends on

the number of nodes that this node is split up into. Next, we show that this number

does not increase as the number of processors increases.

Proposition 4.3.3. If communication is restricted to a fraction p 2 (0, 1) of the

number of processors np with p ·np > 2, then every processor can communicate solely

with its 2 · l = 2 · bp·np
2
c nearest neighbors. Every node that violates the desired

communication pattern is disaggregated into f = dnpl e nodes, and f is bounded by

2

p
 f  2

p� 2/np
.

140

Proof. From l = bp·np
2
c it follows that

p · np
2
� 1  l  p · np

2
.

Thus, f is bounded below by

f = dnp
l
e � np

p·np
2

=
2

p
,

and above by

f  np
p·np
2
� 1

=
2

p� 2
np

.

That is, the communication requirement, meaning the number of messages, for

a multiplication with Q does not increase even if the number of used processors

increases.

4.4 Numerical Results

Our experiments were conducted on Hera, a large parallel system at Lawrence Liver-

more National Laboratory. Hera is a multicore Linux cluster with 864 nodes. Each

node has 32 GB memory and 4 sockets with AMD Quadcore 2.3 GHz processors. The

nodes are connected by Infiniband network.

In our implementation we use the PETSc library [7] for the matrix-vector product.

We use a parallel scale-free graph generator [119] to test our method. The graph

generator generates scale-free graphs using the preferential attachment method [9].

In addition, we used a real-world example from the WebGraph library [18]. This

social graph, called Hollywood-2011, represents working relationships between actors.

Nodes are actors, and two actors are joined by an edge whenever they appeared in a

141

movie together. In Table 4.1 the increase in matrix size of the disaggregated matrix is

given as ratio between the size of the disaggregated and original matrix. The first two

matrices are generated with the scale-free graph generator and have average degree

two and five. The hollywood matrix has 2,180,759 nodes, 228,985,632 edges, and

average degree 105.003. As expected, the more we restrict the communication, the

more the size of the disaggregated matrix increases. While the matrix sizes increase

considerably we will later see that the time saved during communication is large

enough to compensate for the additional computational requirement.

Table 4.1: Ratio of the number of nodes of the disaggregated matrix and
the original matrix.

75% 50% 25% 10%

avg=2 1.7 2.6 5.8 15.4
avg=5 2.2 3.4 7.1 18.3

hollywood 1.7 2.4 5.0 12.8

Table 4.2: Ratio of the number of nodes of the disaggregated matrix and
the original matrix. The matrix was re-partitioned with ParMETIS before
applying disaggregation.

75% 50% 25% 10%

avg=2 1.4 1.9 3.9 9.7
avg=5 2.0 3.0 6.4 16.4

hollywood 1.66 2.4 4.77 12.72

Table 4.3: Ratio of the number of edges of the disaggregated matrix and
the original matrix.

75% 50% 25% 10%

avg=2 1.5 2.2 4.2 10
avg=5 1.4 1.8 2.8 5.9

hollywood 1.03 1.06 1.13 1.36

142

We compared the size of the disaggregated matrix if re-partitioning with ParMETIS

is applied before using disaggregation. The results are given in Table 4.2. Note that

re-partitioning the matrix leads to slightly smaller disaggregated matrices. In Ta-

ble 4.3 we provide the ratio of the number of non-zeros of the disaggregated matrix to

the number of non-zeros in the original matrix. The increase in number of non-zeros

results purely from adding internal edges.

16 80 160 240 320
0.01

 0.1

 1

 10

number of processors

ti
m

e
 f

o
r

1
0

 m
a

tr
ix
−

v
e

c
to

r
m

u
lt
s

average degree = 2

original

parmetis
disaggregation

25

disaggregation
50

disaggregation
75

Student Version of MATLAB

(a) MatVec: Afx

16 80 160 240 320
0.01

 0.1

 1

 10

number of processors

ti
m

e
 f

o
r

1
0

 m
a

tr
ix
−

v
e

c
to

r
m

u
lt
s

average degree = 2

original

parmetis
disaggregation

25

disaggregation
50

disaggregation
75

Student Version of MATLAB

(b) MatVec: QtAfQx

Figure 4.6: Numerical results for matrices with average degree two. The
matrices have 10,000 nodes per processor. Before disaggregating the ma-
trices, we first repartitioned them with ParMETIS. The time needed for
10 matrix-vector products is given in seconds.

143

16 80 160 240 320
0.01

 0.1

 1

 10

number of processors

ti
m

e
 f
o
r

1
0
 m

a
tr

ix
−

v
e
c
to

r
m

u
lt
s

average degree = 5

original

parmetis
disaggregation

25

disaggregation
50

disaggregation
75

Student Version of MATLAB

(a) MatVec: Afx

16 80 160 240 320
0.01

 0.1

 1

 10

number of processors

ti
m

e
 f
o
r

1
0
 m

a
tr

ix
−

v
e
c
to

r
m

u
lt
s

average degree = 5

original

parmetis
disaggregation

25

disaggregation
50

disaggregation
75

Student Version of MATLAB

(b) MatVec: QtAfQx

Figure 4.7: Numerical results for matrices with average degree five. The
matrices have 10,000 nodes per processor. Before disaggregating the ma-
trices, we first repartitioned them with ParMETIS. The time needed for
10 matrix-vector products is given in seconds.

In Figure 4.6 and Figure 4.7 the time needed to perform 10 matrix-vector prod-

ucts with the matrices generated by [119] are given. We consider two di↵erent matrix-

vector products, the factored triple matrix-vector product Qt(Af (Qx)) (right column)

and Afx (left column). The matrices have 10,000 nodes per processor, and have aver-

age degree 2 (Figure 4.6) and 5 (Figure 4.7). During disaggregation, communication

is restricted to 75%, 50%, and 25%. In both cases the matrix was re-partitioned with

144

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

number of processors

ti
m

e
 f
o
r

1
0
 m

a
tr

ix
−

v
e
c
to

r
m

u
lt
s
.

average degree = 2

org

10%

25%

50%

75%

Student Version of MATLAB

(a) MatVec: Afx

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

number of processors

ti
m

e
 f

o
r

1
0

 m
a

tr
ix
−

v
e

c
to

r
m

u
lt
s
.

average degree=2

org

10%

25%

50%

75%

Student Version of MATLAB

(b) MatVec: QtAfQx

Figure 4.8: Numerical results for matrices with average degree two. The
matrices have 10,000 nodes per processor. No repartitioning is used. The
time needed for 10 matrix-vector products is given in seconds.

ParMETIS before applying disaggregation. First, we can note that re-partitioning

with ParMETIS (solid red line) only gives a small advantage over the matrix-vector

product with the original matrix (dotted red line) if a small number of processors are

used. For a very small number of processors disaggregation does not give an advan-

tage. The time saved during communication does not o↵set the increased workload

generated by working with a larger matrix. However, as the number of processors

increases the reduced communication becomes more prevalent. As the number of

processors increases it becomes evident that restricting communication brings a large

145

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

number of processors
ti
m

e
 f

o
r

1
0

 m
a

tr
ix
−

v
e

c
to

r
m

u
lt
s
.

average degree = 5

org

10%

25%

50%

75%

Student Version of MATLAB

(a) MatVec: Afx

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

number of processors

ti
m

e
 f

o
r

1
0

 m
a

tr
ix
−

v
e

c
to

r
m

u
lt
s
.

average degree=5

org

10%

25%

50%

75%

Student Version of MATLAB

(b) MatVec: QtAfQx

Figure 4.9: Numerical results for matrices with average degree five. The
matrices have 10,000 nodes per processor. No repartitioning is used. The
time needed for 10 matrix-vector products is given in seconds.

advantage even though the matrix size increases considerably. Note that we used a

rather small number of processors. For a larger number of processors the memory

requirement for ParMETIS became too large.

In our next experiment we omitted re-partitioning the matrix. The results are

given in Figure 4.8 and Figure 4.9. The matrices used are of the same type as in

the previous experiment. That is, the matrices are generated with [119] and have

10,000 nodes per processor and average degree two or five. Besides restricting the

communication to 75%, 50%, and 25%, we included results were communication was

restricted even further. These experiments, similar as the ones before, are weak

146

0 500 1000 1500 2000
0

1

2

3

4

5

6

7

number of processors

ti
m

e
 f

o
r

1
0

 m
a

tr
ix
−

v
e

c
to

r
m

u
lt
s
.

o
f

th
e

 f
o

rm
 A

fx

hollywood−2011

org

parmetis

10%

25%

50%

75%

Student Version of MATLAB

(a) MatVec: Afx

0 500 1000 1500 2000
1

2

3

4

5

6

7

number of processors

ti
m

e
 f

o
r

1
0

 m
a

tr
ix
−

v
e

c
to

r
m

u
lt
s
.

o
f

th
e

 f
o

rm
 Q

tA
fQ

x

hollywood−2011

org

parmetis

10%

25%

50%

75%

Student Version of MATLAB

(b) MatVec: QtAfQx

Figure 4.10: Numerical results for the hollywood-2011 matrix. Before
disaggregating the matrix, we first repartitioned it with ParMETIS. The
time needed for 10 matrix-vector products is given in seconds.

scaling experiments. That is, ideally the time should stay constant as the number

of processors increases and the problem size per processor stays the same. For the

matrix-vector product with the original matrix (red line) this is clearly not the case.

Instead, the time needed for 10 matrix-vector products increases very rapidly as

the number of processors increases. While the timings for the 75% and 50% case also

increase at a fairly large rate, the 25% and 10% case bring a clear advantage. Note that

for multiplication with the disaggregated matrix Af restricting the communication

147

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

number of processors

ti
m

e
 f

o
r

fi
n

d
in

g
 t

h
e

 4
 s

m
a

lle
s
t

e
ig

e
n

v
a

lu
e

s
 w

it
h

 L
a

n
c
z
o

s

original
disaggregation

75

disaggregation
50

disaggregation
25

Student Version of MATLAB

Figure 4.11: Time in seconds needed to find the 4 smallest eigenvalues
with Lanczos algorithm. The matrix has 100 nodes per processor and
average degree 2.

to 10% eventually outperforms disaggregation with 25% restriction. However, for the

factored triple matrix-vector product Qt(Af (Qx)) the increased communication and

computation requirements for the multiplication with Q and Qt o↵set this advantage

and 25% restriction usually outperform the 10% case. This observation suggests that

restricting the communication even further does not give an additional advantage.

We also give the results of an experiment with a real world graph in Figure 4.10.

Note that this is a strong scaling experiment and ideally the time needed should

decrease as the number of processors increases. We partitioned the matrix with

ParMETIS before the disaggregation mainly to balance the work load. The parti-

tioning with ParMETIS is very cost intensive and not suitable in practice. We note

that for this real-world problem the behavior is similar to the synthetic problem and

restricting the communication brings a huge advantage over the performance of the

matrix-vector product with the original matrix.

Lastly, we provide a small experiment in Figure 4.11 to demonstrate the e↵ect of

the improved matrix-vector product on the performance of an eigensolver. We used

the Lanczos eigensolver from the SLEPc library [56] for our experiment. The matrix

148

was generated with [119] and has 100 nodes per processor and average degree 2.

Matrix-vector multiplication was done via the factored triple matrix-vector product

Qt(Af (Qx)). A considerable time reduction when using the factored triple matrix-

vector product can be observed.

4.5 Conclusions

The matrix-vector product is the bottleneck for the parallel computation of eigen-

values and eigenvectors of large scale-free graphs. Currently, no parallel method is

available to partition a scale-free graph in such a way that matrix-vector product

can be completed in a su�cient way. The lack of good partitioners for scale-free

graphs arises mainly from the irregular degree distribution and the existence of very

large degree nodes. We provided a method to embed a scale-free graph into a more

regular graph. The structure of the resulting graph is favorable for distributed en-

vironments. Even though the resulting graph is larger, we are able to improve the

regular matrix-vector product with a factored triple matrix-vector product using the

disaggregated matrix and a transfer operator. While we focused on disaggregating

scale-free graphs, we expect that the method described could also be used for other

graphs with irregular structure that cannot be successfully partitioned.

Chapter 5

Conclusions and suggestions for

future work

In this thesis we have studied several problems arising in computational network anal-

ysis. We have given the first theoretical analysis of the restricted additive Schwarz

method for singular M-matrices. Thus, we have extended the RAS method to the

computation of the stationary vector of large, sparse Markov chains. Our results

suggest that when combined with GMRES acceleration and inexact solves, RAS is

a promising approach for the solution of Markov chains with large, sparse transition

matrices. Although primarily designed with parallel computing in mind, for su�-

ciently large problems the proposed technique is found to be superior to standard

approaches (like ILU preconditioning) even in a sequential implementation. In the

parallel case RAS also shows promising results. The speed of convergence of GMRES

with RAS preconditioner is influenced by the choice of domain decomposition. In

some instances we have observed that the stationary RAS iteration (without Krylov

acceleration) is quite competitive. Future work may include the investigation of a

more suitable domain decomposition than a graph partitioner that minimizes the

edge cut.

150

151

We demonstrated experimentally that the Chebyshev iteration is a competitive

alternative in solving large linear systems that arise from a gene ranking problem.

While the number of iterations is higher than for CG with Jacobi preconditioner, the

previously best available method, the cost per iteration is much lower and leads to a

faster solution in terms of cpu time. Also, the Chebyshev iteration is more desirable

in a parallel setting as it avoids computing dot product. Future work may include

further e↵orts to find a preconditioner for CG so that the number of iteration does

not depend on the damping factor.

We provided a method to reduce the communication requirements during parallel

matrix-vector multiplication in the case when the underlying graph of the matrix is

scale-free. The main idea is to embed the scale-free graph into a more regular graph

that has a more favorable structure for distributed environments. Even though the

resulting graph is larger, we are able to improve the regular matrix-vector product

with a factored triple matrix-vector product using the disaggregated matrix and a

transfer operator. While we focused on disaggregating scale-free graphs, we expect

that the method described could also be used for other graphs with irregular structure

that cannot be successfully partitioned. For future work we are interested in using

the disaggregated matrix with large internal weight s to compute its spectrum. For

large s the spectrum of the disaggregated matrix approximates the spectrum of the

original matrix. For this to be feasible, a scalable (such as AMG) preconditioner is

needed. In addition, we are working to use the disaggregated matrix with s = O(1), to

construct an “auxiliary space” (AMG) preconditioner for the original matrix. It has

the form B�1 = M�1 +QtB�1
disaggr.Q where M is a standard smoother for the original

matrix and B�1
disaggr. is a preconditioner for the embedding matrix Af = B+ sC. This

approach can be used within the e↵ective 2D matrix storage [118] of the original

matrix. In either case, these preconditioners can be used in the Locally Optimal

Block Preconditioned Conjugate Gradient (LOBPCG) eigensolver [68].

Appendix A

Algorithms

Algorithm A.1 Arnoldi iteration (modified Gram-Schmidt variant)
1: v

1

= r
0

/kr
0

k
2

2: for j = 1, 2, . . . ,m do

3: Compute w
j

= Av
j

4: for i = 1, 2, . . . , j do

5: Compute h
ij

= (w
j

, v
i

)
6: w

j

= w
j

� h
ij

v
i

7: end for

8: h
j+1,j

= kw
j

k
2

9: if h
j+1,j

= 0 then Stop
10: v

j+1

= w
j

/h
j+1,j

11: end for

Algorithm A.2 Lanczos iteration
1: �

1

= 0, v
0

= 0
2: v

1

= r
0

/kr
0

k
2

3: for j = 1, 2, . . . ,m do

4: Compute w
j

= Av
j

� �
j

v
j�1

5: Compute ↵
j

= (w
j

, v
j

)
6: Set w

j

= w
j

� ↵
j

v
j

7: �
j+1

= kw
j

k
2

8: if h
j+1,j

= 0 then Stop
9: v

j+1

= w
j

/�
j+1,j

10: end for

Algorithm A.3 Gaussian Elimination
1: for i = 2, . . . , n do

2: for k = 1, . . . , i� 1 do

3: a
ik

:= a
ik

/a
kk

4: for j = k + 1, . . . , n do

5: a
ij

:= a
ij

� a
ik

· a
kj

6: end for

7: end for

8: end for

152

153

Algorithm A.4 GMRES (basic form)
1: Compute r

0

= b�Ax
0

, � = kr
0

k
2

, and v
1

= r
0

/�
2: Define the (m+ 1)⇥m matrix H̄

m

and set h
ij

= 0
3: for j = 1, 2, . . . , until convergence do

4: Compute w
j

= Av
j

5: for i = 1, 2, . . . , j do

6: Compute h
ij

= (w
j

, v
i

)
7: w

j

= w
j

� h
ij

v
i

8: end for

9: h
j+1,j

= kw
j

k
2

10: if h
j+1,j

= 0 then

11: set m = j and go to 15
12: end if

13: v
j+1

= w
j

/h
j+1,j

14: Compute u
j

as the minimizer of k�e
1

� H̄
j

u
j

k
2

15: x = x
0

+ V
j

u
j

16: end for

Algorithm A.5 GMRES(m)
1: Compute r

0

= b�Ax
0

, � = kr
0

k
2

, and v
1

= r
0

/�
2: Define the (m+ 1)⇥m matrix H̄

m

and set h
ij

= 0
3: for j = 1, 2, . . . ,m do

4: Compute w
j

= Av
j

5: for i = 1, 2, . . . , j do

6: Compute h
ij

= (w
j

, v
i

)
7: w

j

= w
j

� h
ij

v
i

8: end for

9: h
j+1,j

= kw
j

k
2

10: if h
j+1,j

= 0 then

11: set m = j and go to 15
12: end if

13: v
j+1

= w
j

/h
j+1,j

14: end for

15: Compute u
m

as the minimizer of k�e
1

� H̄
m

u
m

k
2

16: x = x
0

+ V
m

u
m

Algorithm A.6 CG
1: Compute r

0

= b�Ax
0

, and p
1

= r
0

2: for j = 1, 2, . . . , until convergence do

3: ↵
j�1

= (r
j�1

, r
j�1

)/(Ap
j�1

, p
j�1

)
4: x

j

= x
j�1

+ ↵
j�1

p
j�1

5: r
j

= r
j�1

+ ↵
j�1

Ap
j�1

6: �
j�1

= (r
j

, r
j

)/(r
j�1

, r
j�1

)
7: p

j

= r
j

+ �
j�1

p
j�1

8: end for

Appendix B

Additional numerical experiments

Here we present some results for the additive Schwarz method applied to the GeneR-

ank problem. The experiments were run on a 2.13 GHz Intel Core 2 Duo processor

with 2 GB memory.

renga matrix, n=500000
↵ 0.5 0.7 0.99

PCG-AS(2)
6 (15.18, 7.53, 22.71) 6 (16.24, 6.81, 23.05) 6 (16.93, 7.35, 24.28)

1.0e-04
AS(2)

6 (15.53, 6.68, 22.21) 6 (16.53, 5.60, 22.13) 7 (17.04, 7.16, 24.20)
1.0e-04
RAS(2)

6 (15.95, 6.70, 22.65) 6 (16.46, 6.27, 22.73) 8 (17.30, 8.90, 26.20)
1.0e-04

PCG-AS(16)
9 (36.75, 22.91, 59.66) 10 (36.08, 26.42, 62.50) 12 (38.89, 34.32, 73.21)

1.0e-04
AS(16)

10 (37.20, 24.03, 61.23) 12 (38.05, 28.44, 66.49) 19 (37.42, 50.88, 88.30)
1.0e-04
RAS(16)

6 (34.80, 12.72, 47.52) 6 (36.81, 12.54, 49.35) 8 (38.64, 18.11, 56.75)
1.0e-04

PCG-AS(32)
9 (34.28, 22.04, 56.32) 10 (36.51, 25.00, 61.51) 12 (38.27, 30.17, 68.44)

1.0e-04
AS(32)

10 (36.67, 22.05, 58.72) 12 (37.99, 27.20, 65.19) 19 (38.60, 46.27, 84.87)
1.0e-04
RAS(32)

6 (35.19, 12.03, 47.22) 6 (38.13, 13.56, 51.69) 8 (39.08, 17.48, 56.56)
1.0e-04

PCG-AS(64)
11 (33.93, 22.57, 56.50) 11 (35.83, 23.70, 59.53) 14 (36.19, 29.66, 65.85)

1.0e-04
AS(64)

10 (36.04, 18.85, 54.89) 12 (37.33, 23.90, 61.23) 20 (38.01, 42.17, 80.18)
1.0e-04
RAS(64)

6 (36.16, 10.65, 46.81) 6 (38.07, 10.52, 48.59) 8 (38.91, 14.54, 53.45)
1.0e-04

154

155

renga matrix, n=100000
↵ 0.5 0.7 0.85 0.99

PCG-AS(2)
6 (2.75, 1.42, 4.17) 6 (2.77, 1.72, 4.49) 6 (2.87, 1.54, 4.41) 6 (2.98, 1.46, 4.44)

1.0e-04
AS(2)

6 (2.98, 1.21, 4.19) 6 (2.94, 1.24, 4.18) 6 (3.15, 1.31, 4.46) 8 (3.19, 1.71, 4.90)
1.0e-04
RAS(2)

6 (2.87, 1.14, 4.01) 6 (3.05, 1.13, 4.18) 6 (3.02, 1.24, 4.26) 7 (3.11, 1.40, 4.51)
1.0e-04

PCG-AS(16)
10 (6.73, 4.48, 11.21) 10 (7.29, 4.70, 11.99) 11 (7.26, 4.81, 12.07) 12 (7.30, 5.57, 12.87)

1.0e-04
AS(16)

10 (7.18, 4.10, 11.28) 12 (7.32, 5.23, 12.55) 14 (7.69, 6.07, 13.76) 20 (7.87, 8.87, 16.74)
1.0e-04
RAS(16)

6 (7.16, 2.06, 9.22) 6 (7.42, 2.09, 9.51) 6 (7.59, 2.44, 10.03) 7 (7.84, 2.92, 10.76)
1.0e-04

PCG-AS(32)
10 (7.12, 4.20, 11.32) 10 (6.98, 4.63, 11.61) 11 (7.30, 4.67, 11.97) 12 (7.17, 5.56, 12.73)

1.0e-04
AS(32)

10 (6.74, 3.71, 10.45) 12 (7.45, 4.90, 12.35) 14 (7.42, 5.34, 12.76) 20 (7.48, 8.68, 16.16)
1.0e-04
RAS(32)

6 (6.82, 2.00, 8.82) 6 (7.22, 2.14, 9.36) 6 (7.18, 2.09, 9.27) 7 (7.41, 2.47, 9.88)
1.0e-04

PCG-AS(64)
11 (6.51, 3.85, 10.36) 12 (6.75, 4.76, 11.51) 12 (6.83, 4.53, 11.36) 14 (6.89, 5.39, 12.28)

1.0e-04
AS(64)

10 (6.33, 3.18, 9.51) 12 (6.94, 4.11, 11.05) 14 (7.12, 4.96, 12.08) 19 (7.31, 7.00, 14.31)
1.0e-04
RAS(64)

6 (6.62, 1.80, 8.42) 6 (7.12, 1.93, 9.05) 6 (7.25, 2.04, 9.29) 7 (7.28, 2.40, 9.68)
1.0e-04

SNPa matrix, n = 152520
↵ 0.5 0.7 0.99

PCG-AS(2)
17 (0.88, 1.86, 2.74) 23 (1.24, 2.22, 3.46) 112 (2.10, 11.58, 13.68)

1.0e-02
AS(2)

31 (0.97, 2.55, 3.52) 57 (1.04, 5.06, 6.10) 1589 (2.00, 159.15, 161.15)
1.0e-02
RAS(2)

31 (0.92, 2.84, 3.76) 57 (1.11, 5.20, 6.31) 1955 (1.98, 200.65, 202.63)
1.0e-02

PCG-AS(16)
22 (0.70, 2.43, 3.13) 27 (0.71, 2.99, 3.70) 150 (0.69, 16.27, 16.96)

1.0e-02
AS(16)

33 (0.75, 3.90, 4.65) 60 (0.77, 7.28, 8.05) 1697 (0.77, 205.88, 206.65)
1.0e-02
RAS(16)

33 (0.66, 3.38, 4.04) 61 (0.69, 6.18, 6.87) 2000 (0.77, 210.13, 210.90)
1.0e-02

PCG-AS(32)
22 (0.44, 2.18, 2.62) 27 (0.48, 2.68, 3.16) 148 (0.51, 14.26, 14.77)

1.0e-02
AS(32)

34 (0.53, 3.64, 4.17) 62 (0.52, 6.69, 7.21) 1730 (0.56, 189.16, 189.72)
1.0e-02
RAS(32)

34 (0.53, 2.88, 3.41) 61 (0.48, 5.55, 6.03) 2000 (0.55, 191.96, 192.51)
1.0e-02

PCG-AS(64)
22 (0.59, 2.07, 2.66) 27 (0.42, 2.38, 2.80) 148 (0.48, 13.71, 14.19)

1.0e-02
AS(64)

35 (0.38, 3.34, 3.72) 64 (0.58, 6.38, 6.96) 1820 (0.50, 172.98, 173.48)
1.0e-02
RAS(64)

34 (0.46, 2.38, 2.84) 61 (0.43, 5.05, 5.48) 2000 (0.48, 172.71, 173.19)
1.0e-02

Bibliography

[1] A. Abou-Rjeili and G. Karypis. Multilevel algorithms for partitioning power-

law graphs. In Proceedings of the 20th international conference on Parallel and

distributed processing, IPDPS’06, Washington, DC, USA, 2006. IEEE Computer

Society.

[2] M. Adlers and Å. Björck. Matrix stretching for sparse least squares problems.

Numerical Linear Algebra with Applications, 7(2):51–65, 2000.

[3] G. Alefeld and N. Schneider. On square roots of M -matrices. Linear Algebra

and its Applications, 42:119–132, 1982.

[4] F. L. Alvarado. Matrix enlarging methods and their application. BIT,

37(3):473–505, 1997.

[5] W. E. Arnoldi. The principle of minimized iterations in the solution of the

matrix eigenvalue problem. Quarterly of Applied Mathematics, 9(17):17–29,

1951.

[6] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation

in large social networks: membership, growth, and evolution. In L. Ungar,

M. Craven, D. Gunopulos, and T. Eliassi-Rad, editors, Proceedings of the 12th

ACM SIGKDD international conference on Knowledge discovery and data min-

ing, KDD ’06, pages 44–54, New York, 2006. ACM.

156

157

[7] S. Balay, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley,

L. C. Mcinnes, B. Smith, and H. Zhang. PETSc Users Manual. Technical

Report ANL-95/11, Revision 2.1.1, Argonne National Laboratory, 2001.

[8] A. L. Barabási. Linked - How Everything is Connected to Everything Else and

What It Means for Business, Science, and Everyday Life. Plume, New York,

2003.

[9] A. L. Barabási and R. Albert. Emergence of scaling in random networks. Sci-

ence, 286:509–512, 1999.

[10] D. E. Bassett, M. B. Eisen, and M. S. Boguski. Gene Expression Informatics–it’s

all in your mine. Nature Genetics Supplement, 21:51–55, January 1999.

[11] M. Benzi. Preconditioning techniques for large linear systems: A survey. Journal

of Computational Physics, 182(2):418 – 477, 2002.

[12] M. Benzi, A. Frommer, R. Nabben, and D. B. Szyld. Algebraic theory of

multiplicative Schwarz methods. Numerische Mathematik, 89:605–639, 2001.

[13] M. Benzi and V. Kuhlemann. Restricted additive Schwarz methods for Markov

chains. Numerical Linear Algebra with Applications, 18(6):1011–1029, Novem-

ber 2011.

[14] M. Benzi and D. B. Szyld. Existence and uniqueness of splittings for station-

ary iterative methods with applications to alternating methods. Numerische

Mathematik, 76:309–321, 1997.

[15] M. Benzi and M. Tůma. A parallel solver for large-scale Markov chains. Applied

Numerical Mathematics, 41:135–153, 2002.

158

[16] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sci-

ences. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,

1994.

[17] N. Biggs. Algebraic Graph Theory. Cambridge Mathematical Library. Cam-

bridge University Press, 1994.

[18] P. Boldi and S. Vigna. The webgraph framework I: compression techniques. In

Proceedings of the 13th international conference on World Wide Web, WWW

’04, pages 595–602, New York, 2004. ACM.

[19] B. Bollobás. Graph Theory: An Introductory Course. Springer-Verlag, New

York, 1979.

[20] B. Bollobás. Modern Graph Theory. Graduate Texts in Mathematics. Springer-

Verlag, New York, 1998.

[21] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,

A. Tomkins, and J. Wiener. Graph structure in the web: experiments and

models. In Proceedings of the Ninth International World-Wide Web Conference

(WWW9, Amsterdam, May 15 - 19, 2000 - Best Paper), Reston, VA, 2000.

Foretec Seminars, Inc. (CD-ROM).

[22] P. O. Brown and D. Botstein. Exploring the new world of the genome with

DNA microarrays. Nature Genetics, 21:33–37, 1999.

[23] R. Bru, F. Pedroche, and D. B. Szyld. Additive Schwarz iterations for Markov

chains. SIAM Journal on Matrix Analysis and Applications, 27(2):445–458,

2005.

[24] H. Brunst, H.-C. Hoppe, W. E. Nagel, and M. Winkler. Performance optimiza-

tion for large scale computing: The scalable VAMPIR approach. In Proceedings

159

of the International Conference on Computational Science-Part II, ICCS ’01,

pages 751–760, London, 2001. Springer-Verlag.

[25] J. J. Buoni. Incomplete factorization of singular M-matrices. SIAM Journal on

Algebraic and Discrete Methods, 7(2):193–198, April 1986.

[26] R. G. Busacker and T. L. Saaty. Finite Graphs and Networks: An Introduc-

tion with Applications. International Series in Pure and Applied Mathematics.

McGraw-Hill, New York, 1965.

[27] X.-C. Cai and Y. Saad. Overlapping domain decomposition algorithms for

general sparse matrices. Numerical Linear Algebra with Applications, 3:221–

237, 1996.

[28] X.-C. Cai and M. Sarkis. A restricted additive Schwarz preconditioner for

general sparse linear systems. SIAM Journal on Scientific Computing, 21:792–

797, 1999.

[29] T. F. Chan and T. P. Mathew. Domain decomposition algorithms. In A. Iserles,

editor, Acta Numerica 1994, pages 61–143. Cambridge University Press, 1994.

[30] C. Chevalier and F. Pellegrini. PT-Scotch: A tool for e�cient parallel graph

ordering. Parallel Computing, 34(6-8):318–331, July 2008.

[31] A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure in

very large networks. Physical Review E, 70(6):066111, December 2004.

[32] R. Cooley, B. Mobasher, and J. Srivastava. Web Mining: Information and

Pattern Discovery on the World Wide Web. IEEE International Conference on

Tools with Artificial Intelligence, pages 558–567, 1997.

160

[33] P. Crucitti, V. Latora, M. Marchiori, and A. Rapisarda. E�ciency of scale-free

networks: Error and attack tolerance. Physica A, 320(cond-mat/0205601):642.

23 p, May 2002.

[34] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices.

In Proceedings of the 1969 24th national conference, ACM ’69, pages 157–172,

New York, 1969. ACM.

[35] H. De Sterck, T. A. Manteu↵el, S. F. McCormick, K. Miller, J. Pearson, J. Ruge,

and G. Sanders. Smoothed aggregation multigrid for Markov chains. SIAM

Journal on Scientific Computing, 32(1):40–61, February 2010.

[36] K. D. Devine, E. G. Boman, L. A. Riesen, Ü. V. Çatalyürek, and C. Cheva-

lier. Getting started with Zoltan: A short tutorial. In Proc. of 2009 Dagstuhl

Seminar on Combinatorial Scientific Computing, 2009. Also available as Sandia

National Labs Tech Report SAND2009-0578C.

[37] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics.

Springer-Verlag, Heidelberg, third edition, 2005.

[38] M. Dryja. An additive Schwarz algorithm for two and three dimensional finite

element problems. In G. A. Meurant J. Périaux O. B. Widlund T. F. Chan,

R. Glowinski, editor, Second International Symposium on Domain Decomposi-

tion Methods for Partial Di↵erential Equations, pages 168–172, Philadelphia,

1989. SIAM.

[39] M. Dryja and O. B. Widlund. An additive variant of the Schwarz alternating

method for the case of many subregions. Technical Report 339, also Ultracom-

puter Note 131, Department of Computer Science, Courant Institute, New York

University, 1987.

161

[40] J. Duch and A. Arenas. Community detection in complex networks using ex-

tremal optimization. Physical Review E, 72(2):027104, August 2005.

[41] A. E. Dunlop and B. W. Kernighan. A procedure for placement of standard-cell

VLSI circuits. IEEE Transactions on CAD of Integrated Circuits and Systems,

4(1):92–98, 1985.

[42] E. Estrada. The Structure of Complex Networks: Theory and Applications.

Oxford University Press, Oxford, 2011.

[43] C. Farhat and F.-X. Roux. A method of finite element tearing and intercon-

necting and its parallel solution algorithm. International Journal for Numerical

Methods in Engineering, 32(6):1205–1227, 1991.

[44] P. Fernandes, B. Plateau, and W. J. Stewart. E�cient descriptor-vector mul-

tiplications in stochastic automata networks. Journal of the ACM, 45:381–414,

1998.

[45] A. Frommer and D. B. Szyld. Weighted max norms, splittings, and overlapping

additive Schwarz iterations. Numerische Mathematik, 83:259–278, 1999.

[46] A. Frommer and D. B. Szyld. An algebraic convergence theory for restricted

additive Schwarz methods using weighted max norms. SIAM Journal on Nu-

merical Analysis, 39:463–479, 2001.

[47] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete

graph problems. Theoretical Computer Science, 1(3):237 – 267, 1976.

[48] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Studies

in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, 3rd

edition, 1996.

162

[49] J. F. Grcar. Matrix stretching for linear equations. Technical Report SAND90-

8723, Sandia National Laboratories, November 1990.

[50] M. Griebel and P. Oswald. On the abstract theory of additive and multiplicative

Schwarz algorithms. Numerische Mathematik, 70(2):163–180, April 1995.

[51] P. Grindrod. Range-dependent random graphs and their application to model-

ing large small-world proteome datasets. Physical Review E: Statistical, Non-

linear, and Soft Matter Physics, 66(6 Pt 2):066702, 2002.

[52] P. Grindrod. Modeling proteome networks with range-dependent graphs. Amer-

ican Journal of PharmacoGenomics, 3(1):1–4, 2003.

[53] S. Guattery and G. L. Miller. Graph embeddings and Laplacian eigenvalues.

SIAM Journal on Matrix Analysis and Applications, 21(3):703–723, Feb.-March

2000.

[54] B. Hendrickson and R. Leland. The Chaco User’s Guide: Version 2.0. Technical

Report SAND94–2692, Sandia National Lab, 1994.

[55] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning

graphs. In Proceedings of the 1995 ACM/IEEE conference on Supercomputing

(CDROM), Supercomputing ’95, page 28, New York, NY, USA, 1995. ACM.

[56] V. Hernández, J. E. Román, and V. Vidal. SLEPc: A scalable and flexible

toolkit for the solution of eigenvalue problems. ACM Transactions on Mathe-

matical Software, 31(3):351–362, 2005.

[57] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear

systems. Journal of Research of the National Bureau of Standards, 49:409–436,

1952.

163

[58] Y. Ji, X. Xu, and G. D. Stormo. A graph theoretical approach for predicting

common RNA secondary structure motifs including pseudoknots in unaligned

sequences. Bioinformatics, 20(10):1591–1602, July 2004.

[59] G. Karypis and V. Kumar. Parallel multilevel k-way partitioning scheme for

irregular graphs. In Proceedings of the 1996 ACM/IEEE conference on Super-

computing (CDROM), Supercomputing ’96, Washington, DC, USA, 1996. IEEE

Computer Society.

[60] G. Karypis and V. Kumar. A coarse-grain parallel formulation of multilevel

k-way graph partitioning algorithm. In 8th SIAM Conference on Parallel Pro-

cessing for Scientific Computing, Philadelphia, 1997. SIAM.

[61] G. Karypis and V. Kumar. Metis 3.0: Unstructured graph partitioning and

sparse matrix ordering system. Technical Report 97-061, Dept. Computer Sci-

ence, University of Minnesota, 1997.

[62] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for parti-

tioning irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–392,

December 1998.

[63] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular

graphs. Journal of Parallel and Distributed Computing, 48:96–129, 1998.

[64] G. Karypis and V. Kumar. A parallel algorithm for multilevel graph partitioning

and sparse matrix ordering. Journal of Parallel and Distributed Computing,

48(1):71–95, 1998.

[65] G. Karypis, K. Schloegel, and V. Kumar. ParMETIS: Parallel graph parti-

tioning and sparse matrix ordering library. Technical Report 97-060, Dept.

Computer Science, University of Minnesota, 2003.

164

[66] J. P. Kavanagh and M. Neumann. Consistency and convergence of the par-

allel multisplitting method for singular M-matrices. SIAM Journal on Matrix

Analysis and Applications, 10:210–218, 1989.

[67] H. B. Keller. On the solution of singular and semidefinite linear systems by

iteration. Journal of the Society for Industrial and Applied Mathematics: Series

B, Numerical Analysis, 2(2):281–290, 1965.

[68] A. V. Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal

block preconditioned conjugate gradient method. SIAM Journal on Scientific

Computing, 23(2):517–541, 2001.

[69] R. Kosala and H. Blockeel. Web mining research: A survey. SIGKDD Explo-

rations, 2(1):1–15, June 2000.

[70] V. Krebs. Uncloaking Terrorist Networks. First Monday, 7(4), April 2002.

[71] A. N. Langville and C. D. Meyer. Google’s PageRank and Beyond: The Science

of Search Engine Rankings. Princeton University Press, Princeton, NJ, USA,

2006.

[72] P. J. Lanzkron, D. J. Rose, and D. B. Szyld. Convergence of nested classi-

cal iterative methods for linear systems. Numerische Mathematik, 58:685–702,

1991.

[73] Y.-J. Lee, J. Wu, J. Xu, and L. Zikatanov. On the convergence of iterative

methods for semidefinite linear systems. SIAM Journal on Matrix Analysis and

Applications, 28(3):634–641, August 2006.

[74] M. Luby. A simple parallel algorithm for the maximal independent set problem.

SIAM Journal on Computing, 15(4):1036–1055, November 1986.

165

[75] I. Marek and D. B. Szyld. Comparison theorems for weak splittings of bounded

operators. Numerische Mathematik, 58:387–397, 1990.

[76] I. Marek and D. B. Szyld. Algebraic Schwarz methods for the numerical solution

of Markov chains. Linear Algebra and its Applications, 386:67–81, 2004.

[77] J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear

systems of which the coe�cient matrix is a symmetric M-matrix. Mathematics

of Computation, 31:148–162, 1977.

[78] C. D. Meyer. Matrix Analysis and Applied Linear Algebra. Society for Industrial

and Applied Mathematics, Philadelphia, 2000.

[79] B. Mohar. The Laplacian spectrum of graphs. In Y. Alavi, G. Chartrand,

O.R. Oellermann, and A.J. Schwenk, editors, Graph Theory, Combinatorics,

and Applications, pages 871–898. Wiley, 1991.

[80] B. Mohar and M. Juvan. Some applications of Laplace eigenvalues of graphs.

In G. Hahn and G. Sabidussi, editors, Graph Symmetry: Algebraic Methods and

Applications, NATO ASI Series C, volume 497, pages 227–275, 1997.

[81] J. L. Morrison, R. Breitling, D. J. Higham, and D. R. Gilbert. GeneRank:

Using search engine technology for the analysis of microarray experiments. BMC

Bioinformatics, 6(233), 2005.

[82] E. Nabieva, K. Jim, A. Agarwal, B. Chazelle, and M. Singh. Whole-proteome

prediction of protein function via graph-theoretic analysis of interaction maps.

Bioinformatics, 21(1):302–310, January 2005.

[83] M. Neumann and R. J. Plemmons. Convergent nonnegative matrices and iter-

ative methods for consistent linear systems. Numerische Mathematik, 31:265–

279, 1978.

166

[84] M. E. J. Newman. Spread of epidemic disease on networks. Physical Review E,

66(016128), July 2002.

[85] M. E. J. Newman. The structure and function of complex networks. SIAM

Review, 45:167–256, 2003.

[86] M. E. J. Newman. Detecting community structure in networks. The European

Physical Journal B - Condensed Matter and Complex Systems, 38(2):321–330,

March 2004.

[87] M. E. J. Newman. Fast algorithm for detecting community structure in net-

works. Physical Review E, 69(6):066133, June 2004.

[88] M. E. J. Newman and M. Girvan. Finding and evaluating community structure

in networks. Physical Review E, 69(2):026113, February 2004.

[89] J. M. Ortega. Numerical Analysis: A Second Course. Classics in Applied

Mathematics. Society for Industrial and Applied Mathematics, Philadelphia,

1990.

[90] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation rank-

ing: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab,

November 1999.

[91] F. Pellegrini and J. Roman. Scotch: A software package for static mapping

by dual recursive bipartitioning of process and architecture graphs. In H. M.

Liddell, A. C., L. O. Hertzberger, and P. M. A. Sloot, editors, HPCN Europe,

volume 1067 of Lecture Notes in Computer Science, pages 493–498. Springer,

1996.

[92] B. Philippe, Y. Saad, and W. J. Stewart. Numerical methods in Markov chain

modelling. Operations Research, 40:1156–1179, 1996.

167

[93] G. Poole and T. Boullion. A survey on M-matrices. SIAM Review, 16(4):419–

427, 1974.

[94] R. Preis and R. Diekmann. PARTY - A software library for graph partitioning.

In B. H. V. Topping, editor, Advances in Computational Mechanics with Parallel

and Distributed Processing, pages 63–71, Edinburgh, 1997. Civil-Comp Press.

[95] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Di↵er-

ential Equations. Numerical Mathematics and Scientific Computation. Oxford

University Press, New York, 1999.

[96] R. Albert V. Latora R. Kinney, P. Crucitti. Modeling cascading failures in

the north american power grid. The European Physical Journal B, 46:101–107,

2005.

[97] Y. Saad. ILUT: A dual threshold incomplete LU factorization. Numerical

Linear Algebra with Applications, 4:387–402, 1994.

[98] Y. Saad. Iterative Methods for Sparse Linear Systems, Second Edition. Society

for Industrial and Applied Mathematics, Philadelphia, 2nd edition, April 2003.

[99] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algo-

rithm for solving nonsymmetric linear systems. SIAM Journal on Scientific

and Statistical Computing, 7(3):856–869, July 1986.

[100] A. Schenker. Graph-theoretic techniques for web content mining. PhD the-

sis, Department of Computer Science and Engineering, College of Engineering,

University of South Florida, Tampa, FL, USA, 2003.

[101] H. Schneider. Theorems on M-splittings of a singular M-matrix which depend

on graph structure. Linear Algebra and its Applications, 58:407 – 424, 1984.

168

[102] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 22:888–905, 1997.

[103] B. Smith, P. Bjørstad, and W. Gropp. Domain Decomposition: Parallel Multi-

level Methods for Elliptic Partial Di↵erential Equations. Cambridge University

Press, New York, 2004.

[104] Y. Z. Song. Comparisons of nonnegative splittings of matrices. Linear Algebra

and its Applications, 154/156:433–455, 1991.

[105] W. J. Stewart. MARCA Models: A collection of Markov chain models. http:

//www4.ncsu.edu/

~

billy/MARCA_Models/MARCA_Models.html.

[106] W. J. Stewart. Introduction to the Numerical Solution of Markov Chains.

Princeton University Press, Princeton, NJ, 1994.

[107] A. Taylor and D. J. Higham. CONTEST: A Controllable Test Matrix Toolbox

for MATLAB. ACM Transactions on Mathematical Software, 35(4), 2009.

[108] A. Toselli and O. Widlund. Domain Decomposition Methods - Algorithms and

Theory. Springer Series in Computational Mathematics. Springer, 2005.

[109] R. S. Varga. Factorization and normalized iterative methods. In R. E. Langer,

editor, Boundary Problems in Di↵erential Equations, pages 121–142, Madison,

1960. University of Wisconsin Press.

[110] R. S. Varga. Matrix Iterative Analysis. Prentice Hall, Englewood Cli↵s, NJ,

1962.

[111] E. Vecharynski, Y. Saad, and M. Sosonkina. Graph partitioning with matrix

coe�cients for symmetric positive definite linear systems. Technical Report

umsi-2011-143, Minnesota Supercomputer Institute, University of Minnesota,

Minneapolis, 2011.

169

[112] E. Virnik. An algebraic multigrid preconditioner for a class of singular M-

matrices. SIAM Journal on Scientific Computing, 29(5):1982–1991, September

2007.

[113] C. Walshaw and M. Cross. JOSTLE: Parallel multilevel graph partitioning soft-

ware - an overview. In F. Magoules, editor, Mesh Partitioning Techniques and

Domain Decomposition Techniques, pages 27–58, Stirling, 2007. Saxe-Coburg

Publications.

[114] D. J. Watts. Six Degrees: The Science of a Connected Age. W. W. Norton,

New York, 2004.

[115] D. J. Watts and S. H. Strogatz. Collective dynamics of “small-world” networks.

Nature, 393(6684):440–442, June 1998.

[116] Z. Woźnicki. Nonnegative splitting theory. Japan Journal of Industrial and

Applied Mathematics, 11:289–342, 1994.

[117] G. Wu, W. Xu, Y. Zhang, and Y. Wei. A preconditioned conjugate gradient

algorithm for GeneRank with application to microarray data mining. Data

Mining and Knowledge Discovery, pages 1–30, November 2011.

[118] A. Yoo, A. H. Baker, R. Pearce, and V. E. Henson. A scalable eigensolver for

large scale-free graphs using 2d graph partitioning. In Proceedings of 2011 In-

ternational Conference for High Performance Computing, Networking, Storage

and Analysis, SC ’11, pages 63:1–63:11, New York, NY, USA, 2011. ACM.

[119] A. Yoo and K. Henderson. Parallel massive scale-free graph generators. In

Proceedings of the 2006 ACM/IEEE conference on Supercomputing, SC ’06,

New York, NY, USA, 2006. ACM.

170

[120] M. Youssef, C. Scoglio, and S. Pahwa. Robustness measure for power grids

with respect to cascading failures. In Y. Qian K. Tutschku P. Van Mieghem,

U. R. Kriegerl, editor, Proceedings of the 2011 International Workshop on Mod-

eling, Analysis, and Control of Complex Networks, Cnet ’11, pages 45–49. ITCP,

2011.

