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Abstract

Topics in Abelian Varieties
By Michael Cerchia

We prove theorems and present progress on problems in the broad category of abelian
varieties. The flavor of these problems and the techniques used to solve them vary, but
a common theme is the use of geometric techniques (and in particular moduli theory)
to solve concrete questions from arithmetic. The first two problems involve section
rings of algebraic varieties. These rings are classical objects of study and play a central
role in the minimal model program. In the first of these problems, we describe the
section ring of elliptic curves for arbitrary divisors, and give a complete description
when the underlying divisor is supported by up to two points. In the second, we
investigate canonical rings of moduli stacks of principally polarized abelian varieties,
with particular focus on the g = 2 case. These have additional arithmetic significance:
the canonical ring of modular curves, when equipped with the structure of an algebraic
stack, gives rise to rings of modular forms. By considering this higher dimensional
analogue, we can determine explicit presentations for rings of Siegel modular forms.
After these problems, we present progress on classifying torsion subgroups for elliptic
curves over quartic fields, extending work of Mazur and Merel. Finally, we investigate
under what conditions a Weil polynomial of degree 2g occurs as the characteristic
polynomial of Frobenius for a simple abelian variety of dimension g over a given finite
field, and give an answer for the g = 7 case.
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Chapter 1

Section rings of Q-Divisors on

elliptic curves

1.1 Introduction and Background

Let X be a variety defined over a field k (which we may assume to be algebraically

closed), and let D be a divisor on X. Throughout this chapter and the next, we will

investigate the section ring of X and D:

R(X,D) :=
∞⊕
i=0

H0(X, iD),

where we use the abbreviated notation H0(X,D) := H0(X,O(D)) to denote the

global sections of the sheaf O(D) on X.

In this chapter, we will continue to restrict to the case of curves. Quotients X\Γ

of the upper half-plane by torsion-free cocompact Fuchsian groups Γ ≤ PSL2(R) are

in bijective correspondence with compact Riemann surfaces of genus g ≥ 2. The

latter can be given the structure of a nonsingular projective algebraic curve over C

via the canonical map X → Pg−1, constructed from global sections of the sheaf ΩX
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of holomorphic differential 1-forms on X. As Ω is ample, the canonical ring

R = R(X) =
⊕
d≥0

H0(X,Ω⊗d)

satisfies X ∼= ProjR. We observe that if KX (equivalently Ω) is very ample, then we

can apply the Proj functor to the natural multiplication map

SymH0(X,K) ↪→ R(X,K)

to get the canonical embedding

X ∼= ProjR(X,K)→ Proj(SymH0(X,K)/I) ∼= PN ,

where I here is the kernel of the multiplication map above.

This canonical ring is central to the minimal model program (where finite gener-

ation of the canonical ring of a variety is a main theorem) and is a classical object

of study: By a theorem of Enriques and Babbage, which is commonly referred to as

Petri’s theorem, if X is neither hyperelliptic, trigonal (possessing a degree 3 map to

P1), nor a plane curve of degree 5 (and genus 6), then R(X) ∼= C[x1, . . . , xg]/I is

generated in in degree 1 with relations in degree 2. Petri further provides explicit

quadratic relations defining I given in terms of a basis x1, . . . xg for H0(X,Ω) as well

as syzygies among the relations.

This classical result has been generalized in various ways. For instance, we can

give any quotient Γ\H with finite area the structure of a Riemann surface, but only

if we now account for the points with nontrivial stabilizer groups. If we do this by

adjusting the atlas in the neighborhoods of these points, then the resulting surface

no longer corresponds to an algebraic curve, but rather to a stacky curve, where we

now account for the finite number of points with a nontrivial (finite) stabilizer group.
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In this setting, Voight and Zureick-Brown [12] extend Petri’s Theorem by providing

an explicit presentation of the canonical ring for a tame log stacky curve: They show

that the canonical ring

R(X ,∆) =
⊕
d≥0

H0(X ,Ω(∆)⊗d),

where ∆ =
∑

i Pi is an effective divisor of distinct points, is generated as a C-algebra

by elements of degree at most 3e with relations of degree at most 6e, where e is the

maximum of 1 and the orders of the stabilizer groups. An important application of

this result is that it provides generators and relations for rings of modular forms.

Indeed, for any N ≥ 1, the ring

M(Γ0(N)) =
⊕

k∈2Z≥0

Mk(Γ0(N)) =
⊕
k≥0

H0(X0(N),Ω1(∆)⊗k/2)

of modular forms is generated as a Z-algebra in degree at most 3, with relations of

degree at most 6 (and where ∆ is the divisor of cusps).

Since log-canonical divisors on stacks are specific Q-rational divisors, a natural

question is whether we can say anything about canonical rings for general Q-divisors

for specific classes of curves. O’Dorney [9] gives a complete description of the section

ring for Q-divisors on P1 for the cases when D is supported by up to two points, and

he gives tight bounds on the degrees of the generators and relations in the general

case. In the rest of this chapter, we will extend these results to genus 1 curves; here,

we will have to be sensitive to the group structure and to the fact that elliptic curves

do not admit a rational function of degree one.
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1.2 One-point support

1.3 The one-point case

Fix an elliptic curve C with a marked point ∞. We denote by ti a function on C

whose polar divisor is i(∞). We recall that ti exists for i ∈ Z≥2 ∪ {0}; if C is given

by a Weierstrass equation y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, then we may take

ti =


xi/2, i even

x(i−3)/2y, i odd.

In this section, we take a divisor D = α(∞) and study the generators and re-

lations of the resulting section ring R(C,D). Observe that there must be at least

three generators and one relation (if R(C,D) were freely generated, it would yield a

birational isomorphism of C to some Pn, which is impossible).

Example 1.3.1. Let D = (∞) consist of a single point with multiplicity 1. Then

R(C,D) has generators u, x = u2t2, y = u3t3 in degrees 1, 2, and 3, respectively, and

a single degree 6 relation

y2 + a1uxy + a3u
3y = x3 + a2u

2x2 + a4u
4x+ a6u

6,

a homogenization of the usual Weierstrass equation of the elliptic curve C. These

generators are shown diagrammatically in Figure 1.1, where we plot degree on the

horizontal axis and pole order on the vertical axis. We use bullets for generators,

open dots for other elements of R(X,D), and +’s to emphasize the nonexistence of

elements in R(X,D) having a simple pole at ∞.

In the following, we use without comment the following well-known characteriza-

tion of the principal divisors on an elliptic curve C: ([10, Corollary III.3.5]) A divisor
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Figure 1.1: The section ring of D = (P ), which has three generators

D =
∑

nP (P ) on an elliptic curve is a principal divisor if and only if
∑

nP = 0 (as

integers) and
∑

(nPP ) = 0 (in the elliptic curve group law).

1.3.1 Generators

Theorem 1.3.2. Let D = α(∞) be a Q-divisor on an elliptic curve C supported at

a single point ∞. Let

0 =
c0
d0

<
c1
d1

< · · · < cr
dr

= α

be the nonnegative best approximations to α. Then R(X,D) has a minimal generating

set consisting of functions f = tcu
d for the following pairs (d, c):

(a) (d, c) = (di, ci) for i ̸= 1 (observe that c1/d1 is always the unique best lower

approximation with numerator 1, and therefore inadmissible here);

(b) (d, c) = (d(b), c(b)) = (⌈2/α⌉, 2) if {−1/α} ∈ [0, 1/2);

(c) (d, c) = (d(c), c(c)) = (⌈3/α⌉, 3) if {−1/α} ∈ [0, 1/3)[1/2, 2/3);

(d) (d, c) = (d(d), c(d)) = (d1 + d2, c1 + c2) if {−1/α} ∈ (0, 1/2).

We denote each relevant lattice point by vi = (di, ci), and the corresponding generator

of the section ring by fi = tciu
di, where i ranges over an index set I containing

{0, 2, 3, . . . , r} as well as the special symbols (b), (c), and (d) in the cases in which

they appear.

Proof. First, we transform the problem to finding generators for a certain semigroup.
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Observe that a k-basis for R(X,D) is given by

{tcud : (d, c) ∈M} (1.1)

where M is the monoid

M = {(d, c) ∈ Z2 : 0 ≤ c ≤ αd, c ̸= 1}.

For v = (d, c) ∈ M a vector, let fv = tcu
d be the corresponding element of R(X,D).

We cannot construct an isomorphism of R(X,D) with the monoid ring k[M ] in this

way, but the objects are closely related, and we will use the combinatorial structure

of M to probe the algebraic structure of R(X,D).

Note that, owing to the grading by d, M is an atomic monoid, that is, every

element is a (not necessarily unique) sum of irreducibles. Consequently, M has a

unique minimal generating set, namely the irreducibles. Suppose that the following

combinatorial lemmas about M are proved:

Lemma 1.3.3. The irreducibles of M are exactly the pairs (d, c) in the statement of

the theorem.

Lemma 1.3.4. Let (d, c) be an irreducible of M . Then any element (d, c′) ∈M with

c′ > c has a unique atomic decomposition.

Let us show that these two lemmas imply the statement of the theorem. Let P

be the set of irreducibles of M . Since P generates M , the corresponding generating

set {fv : v ∈ P} generates a subring S ′ ⊆ R(X,D) containing elements t
(d)
c ud for

all (d, c) ∈ M (where t
(d)
c is a function on C with a pole of order c at ∞, possibly

depending on d). These elements span R(X,D) as a k-vector space, so S ′ = R(X,D).

Now we show that each generator fv = tcu
d is necessary. Let S ′ ⊆ R(X,D) be

the subring generated by the fv′ , v
′ ̸= v, and suppose for the sake of contradiction
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that fv ∈ S ′. Write

fv = a1f1 + · · ·+ akfk,

where ai ∈ k and the fi ∈ S ′
deg=d are distinct products of the generators of S ′. Since

v ∈ M is irreducible, no fi can have a pole of order exactly c, so two of them, say

f1 and f2, must have a common larger order c′ > c to cancel the poles out. But by

Lemma 1.3.4, this is impossible.

Proof of Lemma 1.3.3. To understand the structure of M , we compare it to the sim-

pler monoid

M0 = {(d, c) ∈ Z2 : 0 ≤ c ≤ αd}

in which the condition c ̸= 1 has been omitted. This monoid controls the structure

of the section ring for the corresponding situation in genus zero, and in the course

of proving [9, Theorem 4], it was shown that the irreducibles of M0 are precisely the

vectors (di, ci) determined by the best lower approximations ci/di.

Since M ⊂ M0, all such vectors remain irreducible in M if they lie in M . Thus

the vectors of type (a) in Theorem 1.3.2 are irreducible. For types (b) and (c), note

that these are the simplest vectors in M with c-coordinate 2 and 3, respectively, and

cannot be decomposed, since M has no elements with c-coordinate 1. Thus they

must be added unless they already appeared in type (a). For type (b), we have that

c/d = 2/⌈2/α⌉ is a best lower approximation (necessarily the second one c2/d2) if and

only if

2

⌈2/α⌉
>

1

⌈1/α⌉

2

⌈
1

α

⌉
>

⌈
2

α

⌉
2

α
+ 2

{
− 1

α

}
>

2

α
+

{
− 2

α

}
2

{
− 1

α

}
>

{
− 2

α

}
. (1.2)
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Since

{2x} =


2{x} {x} < 1/2

2{x} − 1 {x} ≥ 1/2,

the inequality (1.2) holds exactly when {−1/α} ≥ 1/2, so the generator of type (b)

is needed whenever {−1/α} < 1/2. For type (c), an analogous computation shows

that {−1/α} must lie in the range [0, 1/3)[1/2, 2/3) for 3/⌈3/α⌉ not to have already

appeared as a best lower approximation.

Finally, for type (d), note that if −1/α is an integer, then there is no c2/d2 because

c1/d1 = α is the last approximation; while if {−1/α} ≥ −1/2, then c2 = 2 as we found

above, so c1 + c2 = 3, which pole order was already covered in types (a) and (c). So

we only need to consider type (d) in the case {−1/α} ∈ (0, 1/2). Here c2 ≥ 3 and c3

(if it exists) is greater than 1+ c2, so the only irreducibles that could possibly appear

in a decomposition of v = (d1 + d2, c1 + c2) are

(d0, c0) = (1, 0), (⌈2/α⌉, 2), (⌈3/α⌉, 3), (d2, c2).

The last generator (d2, c2) may be eliminated immediately since the difference v −

(d2, c2) = (d1, 1) lies outside M . That leaves three generators lying in the submonoid

∠v0v1 = ⟨(1, 0), (d1, 1)⟩ = ⟨(d0, c0), (d1, c1)⟩ =
{
(d, c) ∈ Z2 : 0 ≤ c ≤ c1

d1
d

}

of M0 determined by the first two best lower approximations of α. But v lies outside

∠v0v1 since c2/d2 > c1/d1, so v is irreducible in M . This completes the proof that

the claimed generators are irreducible and distinct.

It remains to prove that there are no other irreducibles, that is, any nonzero vector

v ∈M not among the ones listed is reducible in M . As an element of M0, any v lies in
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some angle ∠vivi+1 and so can be decomposed as a positive integer linear combination

v = a(di, ci) + b(di+1, ci+1)

of two consecutive generators of M0. If i ≥ 2, then these are also generators of M , so

we only need to consider two cases:

Case 1. i = 0. Then (d0, c0) = (1, 0) is already a generator of M . We must have

b ̸= 1 since v ∈ M , so b can be written as a sum of 2’s and 3’s, which yields an

expression for v in terms of the generators of types (a), (b), and (c).

Case 2. i = 1, so

v = a(d1, c1) + b(d2, c2). (1.3)

We may assume that a and b are nonzero, or else we could have taken i = 0 or i = 2

respectively (in the latter case, allowing a zero coefficient on a possibly nonexistent

(d3, c3)). If a ̸= 1, note that each term individually belongs to M , so v is reducible.

So a = 1 and b ≥ 1, and

v = (d1 + d2, c1 + c2) + (b− 1)(d2, c2)

is either reducible or a generator of type (d).

Proof of Lemma 1.3.4. Now let v = (d, c) be an irreducible of M . We wish to prove

that any element v′ = (d, c′) ∈ M lying above v has a unique atomic decomposition.

By the previous lemma, v is of one of the four types in Theorem 1.3.2; we handle

each type in turn. In Figure 1.2, we illustrate the various cases that can occur.

In type (a), c/d is a best lower approximation to α. Then c′/d must also be a best

lower approximation to α, so v′ is also irreducible (note that this can only occur if

d = 1 and α ≥ 3).
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Figure 1.2: Cases covered by Lemma 1.3.4, where a generator of M has a point of M
directly above it. The bullets indicate generators, annotated with their type (items
a–d of Theorem 1.3.2).

In type (b), for there to be even one point v′ = (⌈2/α⌉, 3) in M above the given

point v = (⌈2/α⌉, 2), we must have the inequality

3

α
≤

⌈
2

α

⌉
. (1.4)

As the ceiling augments its argument by less than 1, we must have α > 1, so v is

either (1, 2) or (2, 2). The first case can be excluded as v is of type (a) rather than

(b). There remains the possibility that v = (2, 2) and v′ = (2, 3), which appears for

3/2 ≤ α < 2 and is also irreducible (of type (a)). (Points with c′ ≥ 4 cannot occur

here, as then we would have had α ≥ 2 and (1, 2) ∈M .)

In type (c), we analogously find that α > 1 and v is either (2, 3) or (3, 3). Then:

• If v = (2, 3), we must have 2 ≤ α < 3, and v′ is either (2, 4) or (2, 5). The

vector v′ = (2, 4) = 2(1, 2) has a unique atomic decomposition. If α ≥ 5/2,
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then v′ = (2, 5) is also admissible and irreducible (of type (a)).

• If v = (3, 3), we must have 4/3 ≤ α < 3/2 to get the unique possible v′ =

(3, 4) ∈M ; this v′ is irreducible (of type (a)).

For type (d), we first note that, since c2/d2 is the best lower approximation fol-

lowing c1/d1 = 1/d1, we have

c2
d2

=
c2

c2d1 − 1
≤ α <

c2 − 1

(c2 − 1)d1 − 1
. (1.5)

For a point v′ = (d1 + d2, c1 + c2 + 1) to appear above v in M , we must have

α ≥ c1 + c2 + 1

d1 + d2
=

c2 + 2

d1(c2 + 1)− 1
. (1.6)

Combining (1.5) and (1.6) yields

c2 + 2

d1(c2 + 1)− 1
<

c2 − 1

(c2 − 1)d1 − 1

which simplifies to

(c2 − 1)d1 < 3.

Accordingly, c2 and d1 must have their minimum possible values c2 = 2 and d1 = 1.

We have v = (3, 4), 5/3 ≤ α < 2, and v′ = (3, 5), which is irreducible of type (a),

completing the proof.

1.3.2 Relations

We turn our attention to understanding a set of relations for the section ring R(X,D).

We again begin by looking at the genus 0 case. In this case, we have
(
r
2

)
relations
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among the r+1 generators, each led by a different quadratic monomial. These form a

minimal basis for the relation ideal, as well as a Gröbner basis with respect to several

of the commonly used term orders, including the grevlex order chosen by default

in programs such as Sage and also used in the literature, such as in [12]. Having a

Gröbner basis is desirable for computations, especially if the Gröbner basis is also

minimal.

In the genus 1 case, as one might expect, things are a bit more involved, and it

is good to choose the term order judiciously so that the Gröbner basis is as nearly

minimal as possible. The term order we use is as follows:

Definition. Let {vi}i∈I be the generators of M as computed in Theorem 1.3.2, and

let {fi}i∈I be the corresponding generators of R(X,D). Order the index set I in

increasing degree d and, within each degree, ordered in increasing pole order c; the

order of the generators is therefore

f0 ≺ f(b) ≺ f(c), {−1/α} = 0

f0 ≺ f(b) ≺ f(c) ≺ f2 ≺ f(d) ≺ f3 ≺ · · · , {−1/α} ∈ (0, 1/3)

f0 ≺ f(b) ≺ f2 ≺ f(d) ≺ f3 ≺ · · · , {−1/α} ∈ [1/3, 1/2)

f0 ≺ f2 ≺ f(c) ≺ f3 ≺ · · · , {−1/α} ∈ [1/2, 2/3)

f0 ≺ f2 ≺ f3 ≺ · · · , {−1/α} ∈ [2/3, 1).

Given two distinct monomials

m(1) =
∏
i

v
a
(1)
i

i and m(2) = v
a
(2)
i

i ,

where i ranges over the indices of all the generators in Theorem 1.3.2, we declare

that either m(1) is lower than m(2), written m(1) ≺ m(2), or the reverse m(1) ≻ m(2) as

follows:
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1. First we compare degrees: if

∑
i

a
(1)
i di <

∑
i

a
(2)
i di,

then m(1) ≺ m(2).

2. Then we compare pole orders: if the degrees are equal but

∑
i

a
(1)
i ci <

∑
i

a
(2)
i ci,

then m(1) ≺ m(2).

3. If the degrees and pole orders are equal, we compare exponents of the generators,

starting from the highest: if a
(1)
i < a

(2)
i but a

(1)
j = a

(2)
j for fj ≻ fi, then

m(1) ≺ m(2).

We can now state our main theorem. As in [12], we cannot list the relations in

full detail, but at least we can provide the leading terms.

Theorem 1.3.5. Let D = α(∞) be a 1-point divisor. Denote the generators of type

(a) in Theorem 1.3.2 by

fi = uditci , i = 0, 2, 3, . . . , r,

and denote the exceptional generators of type (b), (c), and (d) by f(b), f(c), and f(d),

respectively. Then a Gröbner basis of the relations of R(X,D) has the following

leading terms:

1. All products fifj, where 3 ≤ i ≤ r, 0 ≤ j ≤ i−2, j ̸= 1, except possibly f3f0 (see

below);
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2. All products fif(b), fif(c), and fif(d), where 3 ≤ i ≤ r, if these exceptional

generators exist;

3. Additional relations, according to the value of {−1/α} which also controls the

generators:

{−1/α} ∈ Exc. gens. Leading terms of relations

{0} f(b), f(c) f 2
(c)

(0, 1/3) f(b), f(c), f(d) f 2
(c), f(b)f(d), f(c)f(d), f

2
(d), f0f(d), f0f2

[1/3, 1/2) f(b), f(d) f 2
0 f

2
2 , f0f(d), f(b)f(d), f

2
(d)

[1/2, 2/3) f(c) f 2
(c)

[2/3, 1) — f0f
2
3 , omit f0f3

Moreover, the relations comprising the Gröbner basis are all minimal, with the possible

exception of the two cases with a non-quadratic leading term (boxed):

• The relation with the quartic leading term f 2
0 f

2
2 is never minimal.

• The relation with the cubic leading term f0f
2
3 is minimal if and only if {−1/α}

belongs to the subinterval [2/3, 3/4).

The relations for R(X,D) are closely connected with those of the associated

monoid M . Recall from the previous subsection that M has a minimal generating set

{vi}i∈I . Let F be the free commutative monoid on |I| generators {ṽi}i∈I (isomorphic

to Z|I|
≥0), and let π be the projection map

π : F →M

ṽi 7→ vi.
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To complete a presentation of M is to find a (preferably finite) list of relations

Rj : ej ∼ e′j

such that M = F/{Rj}j, that is, such that the relation generated by the Rj is

precisely

e ∼ e′ ⇐⇒ π(e) = π(e′).

To do this systematically, we make the following definition:

Definition. If v ∈M , the minimal decomposition of v is the sum

MD(v) =
∑
i

aiṽi ∈ F

such that π(MD(v)) = v and MD(v) is minimal with respect to the order from

Definition 1.3.2 on elements of F .

Remark. It is evident from the d-grading on M that only finitely many such decom-

positions exist. Also, since v is fixed, the first two steps of Definition 1.3.2 may be

skipped when comparing decompositions.

Definition. The Gröbner basis of M consists of the relations

v ∼ MD(π(v))

for all vectors v satisfying the following two conditions:

1. v ̸= MD(π(v));

2. If w <F v (that is, v = w + z with 0 ̸= z ∈ F ), then w = MD(π(w)).

Such a vector v ∈ F is called a relation leader for M .
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Remark. It is easy to see that the Gröbner basis forms a presentation of M as a

quotient of F . Indeed, the relation leaders give the leading terms of a Gröbner basis

of the monoid algebra k[M ] as a quotient of the free algebra k[F ] (adapting Definition

1.3.2 appropriately to define a term order on k[F ]).

The proof of Theorem 1.3.5 rests on the following combinatorial lemma:

Lemma 1.3.6. The relation leaders for M are exactly the vectors v =
∑

i∈I aiṽi

corresponding to each of the monomials
∏

i∈I fi claimed to be a leading term of a

relation for R(X,D) in Theorem 1.4.2.

Given this lemma, the proof of the theorem is not so hard:

Proof of Theorem 1.3.5. Given a relation leader v ∈ F , let

v =
∑
i

aiṽi and MD(π(v)) =
∑
i

biṽi.

We get that
∏

i f
ai
i and

∏
i f

bi
i have the same degree and pole order, so their difference

(after suitably scaling) has a pole of lower order and can be written in terms of the

other generators to get a relation rv in the relation ideal of R(X,D). Since we compare

monomials with reference to their pole orders, the leading term of rv is
∏

i f
ai
i .

Now, given any element f ∈ R(X,D) expressed as a polynomial in the generators

fi, we can apply monomial multiples of the relations rv to remove any relation leaders

from the leading term, until either the entire sum vanishes (verifying that f = 0 in

R(X,D)) or the leading term is a minimal decomposition MD((d, c)), verifying that

f is a nonzero element of leading degree d with a pole of order c. This shows that

the rv form a Gröbner basis.

It remains to determine which of the relations in the Gröbner basis are minimal.

Note that if v = ṽi+ ṽj has Hamming weight 2, then rv, which has a quadratic leading

term fifj, must be minimal because there are no relations with a term of fi or fj

alone to generate this relation (or else fi, respectively fj, would not be a generator).



17

This leaves the two boxed relations. The relation with quartic leading term f 2
0 f

2
2 ,

in case {−1/α} ∈ [1/3, 1/2), has the form

f 2
0 f

2
2 = f 3

(b) + lower-order poles,

but since

2v0 + 2v2 = v0 + v(b) + v(d) = 3v(b),

this relation can be derived by subtracting those led by f(b)f(d) and f0f(d) after mul-

tiplying by f0 and f(b) respectively to cancel the f0f(b)f(d) term. Hence this relation

is never minimal.

We now turn to the relation with cubic leading term f0f
2
3 . The corresponding

relation in M is

v0 + 2v3 = 3v2 (1.7)

If {−1/α} ∈ [3/4, 1), then there is a vector v4 = 2v3− v2 ∈M , and the relation (1.7)

is not minimal, even in M :

v0 + 2v3 = v0 + v2 + v4 = 3v2.

Translating from M to R(X,D), we find correspondingly that the relation with lead-

ing term f0f
2
3 can be generated by the relations led by f2f4 and f0f4.

On the other hand, if {−1/α} ∈ [2/3, 3/4), then 2v3 − v2 /∈ M , and there are no

relations having a term of f 2
3 or f0f3, hence no way to decompose the relation with

leading term f0f
2
3 .

Proof of Lemma 1.3.6. Let v = (d, c) ∈ M . If v ∈ ∠vivi+1 for i ≥ 2, then we have

a decomposition v = aivi + ai+1vi+1 with aj ≥ 0. We claim that this is a minimal

decomposition. Suppose not; let v =
∑

j bjvj be a lesser one. We must have bj = 0 for

j ≤ i+ 1. If bi+1 < ai+1, then the difference v − bi+1vi+1 would be outside ∠v0vi and
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thus not expressible as a sum of generators preceding vi+1, all of which are within that

angle. So bi+1 = ai+1. Similarly, if bi < ai+1, then the difference v − bi+1vi+1 − bivi

would be outside ∠v0vi and thus not expressible as a sum of generators preceding

vi+1, all of which are within that angle. So bi = vi and hence all other bi are 0.

We now compute the minimal decompositions of vectors in ∠v0v2. The generators

needed are some subset of

v0, v(b), v(c), v2, v(d), v3

in the various cases. The resulting minimal decompositions are shown in Table ??.

Each individual decomposition is not hard to prove minimal. The pattern of the

decompositions is as follows: the generating sets {v0, v(b)}, {v(b), 2}, or (if {−1/α} ≥

1/2) {v0, v2} generates a sublattice of index 2 inside the appropriate angle. If the

desired vector v lies in this sublattice as tested by the parity of a1, its minimal

decomposition is an integer combination of those two generators; otherwise there is

need for a single copy of v(c), v(d), or v3.

Looking over the minimal decompositions that we have found, we immediately see

that the sums vi+ vj, where i ≥ 3 and 0 ≤ j ≤ i− 2, do not appear and therefore are

relation leaders, with one exception: if {−1/α} ∈ [2/3, 1), then v0+v3 is the minimal

decomposition of v1+ v2. The same argument applies to the sums vi+ vj where i ≥ 3

and j is one of the special symbols (b), (c), and (d). It remains only to check sums

of v0, v(b), v(c), v(d), v2, and (if {−1/α} ∈ [2/3, 1)) v3, and in each case we get the

desired result:

• For {−1/α} = 0, as the only generators are f0, f(b), and f(c), there will only be

one relation leader, namely 2v(c). Any decomposition with at most one copy of

v(c) is minimal by our computations.

• For {−1/α} ∈ (0, 1/3), any decomposition not containing the relation leaders
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2v(c), v(b) + v(d), v(c) + v(d), 2v(d), v0 + v(d), or v0 + v2 is of one of the forms

a0v0 + a(b)v(b), a0v0 + a(b)v(b) + v(c),

a(b)v(b) + a2v2, a(b)v(b) + a2v2 + v(c), a2v2 + v(d)

and hence is minimal.

• For {−1/α} ∈ [1/3, 1/2), any decomposition not containing the relation leaders

2v(c), v(b) + v(d), v(c) + v(d), 2v(d), v0 + v(d), or 2v0 + 2v2 is of one of the forms

a0v0 + a(b)v(b), a0v0 + a(b)v(b) + v2,

a(b)v(b) + a2v2, a(b)v(b) + a2v2 + v0, a2v2 + v(d)

and hence is minimal.

• For {−1/α} ∈ [1/2, 2/3), any decomposition not containing the relation leader

2v(c) is of one of the forms

a0v0 + a2v2, a0v0 + a2v2 + v(c)

and hence is minimal.

• For {−1/α} ∈ [2/3, 1), any decomposition not containing the relation leader

v0 + 2v3 is of one of the forms

a0v0 + a2v2, a0v0 + a2v2 + v3, a2v2 + a3v3

and hence is minimal.

This completes the proof of the lemma.
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1.4 The effective two-point case

Let D = α(1)(P (1)) + α(2)(P (2)) be an effective Q-divisor on an elliptic curve C sup-

ported on two points P (k). In this section, we study the structure of the associated

section ring R(X,D). We may assume that α(1) ≥ α(2) since the roles of the points

P (k) may be interchanged.

1.4.1 Generators

For c ∈ Z≥0, c ̸= 1, and for i ∈ {1, 2}, denote by t
(k)
c a function on C whose polar

divisor is c(P (i)). Also, let w be the function on C whose polar divisor is P (1) + P (2).

(Such a function is unique up to scaling and adding constants.) Note the following:

Lemma 1.4.1. Let D = a(1)(P (1)) + a(2)(P (2)) be a nonzero effective Z-divisor sup-

ported at two points. The linear system of functions H0(D) has dimension a(1)+a(2),

with a basis as follows:

• {1, t(1)2 , . . . , t
(1)

a(1)
} if a(1) > a(2) = 0;

• {1, t(2)2 , . . . , t
(2)

a(2)
} if a(2) > a(1) = 0;

• {1, w, t(1)2 , . . . , t
(1)

a(1)
, t

(2)
2 , . . . , t

(2)

a(2)
} if a(1) and a(2) are positive.

Proof. The dimension of H0(D) is given by the Riemann–Roch theorem. We check

that the claimed functions are linearly independent because they have different orders

at ∞, so they must form a basis.

We now state the generators of the section ring. Our description generalizes the

one-point case (Theorem 1.3.2):

Theorem 1.4.2. Let D = α(1)(P (1)) + α(2)(P (2)) be an effective Q-divisor on an

elliptic curve C supported on two points P (k), with α(1) ≥ α(2). Let

0 =
c
(k)
0

d
(k)
0

<
c
(k)
1

d
(k)
1

< · · · <
c
(k)

r(k)

d
(k)

r(k)

= α(k)
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be the best lower approximations to α(k). Notice that the denominators

d
(k)
1 =

⌈
1/α(k)

⌉
satisfy d

(1)
1 ≤ d

(2)
1 .

Then R(X,D) has a minimal system of generators of the following forms:

(a) f
(k)
i = t

(k)

c
(k)
i

ud
(k)
i for k ∈ {1, 2} and i = 0, 2, 3, . . . , r(k) (including f0 = u for

i = 0)

(b) f(b) = t
(1)
2 u⌈2/α(1)⌉ if {−1/α(1)} ∈ [0, 1/2);

(c) f(c) = t
(1)
3 u⌈3/α(1)⌉ if {−1/α(1)} ∈ [0, 1/3)[1/2, 2/3) and ⌈1/α(2)⌉ > ⌈1/α(1)⌉;

(d) f(d) = t
(1)

c
(1)
1 +c

(2)
2

ud
(1)
1 +d

(1)
2 , if {−1/α(1)} ∈ (0, 1/2) and ⌈1/α(2)⌉ > ⌈1/α(1)⌉;

(e) fw = wud
(2)
1 .

Proof. Lemma 1.4.1 suggests the following strategy. Write D = D(1) +D(2) where

D(k) = α(k)P (k).

Then, as a k-vector space,

R(X,D) = R(X,D(1)) +R(X,D(2)) + k[u]ud
(2)
1 w, (1.8)

because w is the only basis element for any graded piece unH0(nD) of R(X,D) that

does not already appear in either R(X,D(1)) or R(X,D(2)), and it first appears in

degree ⌈1/α(2)⌉ = d
(2)
1 . Hence we can get a generating set for R(X,D) by aggregating

generating sets for R(X,D(1)) and R(X,D(2)) and adjoining the single added gener-

ator ud
(2)
1 w. We must then pare this set down to a minimal generating set. From the

general theory of graded algebras, the degrees of the minimal generators are uniquely
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determined; but the generators themselves and their pole orders at the P (k)) are not.

Observe that the generator wud
(2)
1 is minimal, as it is the lowest-degree element in

R(X,D) that does not lie in the subring R(X,D(1))R(X,D(2)) generated by functions

with poles at only one of the two given points P (k).

A generator of type (a) in each R(X,D(k)) (the labeling coming from Theorem

1.3.2) will always remain minimal in R(X,D), as there is no way to get a pole of order

c
(k)
j by combining elements of lower degrees, by definition of best lower approximation.

We consider the other types in turn.

We first claim that the generators of types (b), (c), and (d) in R(X,D(2)), if any,

are never minimal in R(X,D) and can be removed. By the proof of Theorem 1.3.2,

all of these correspond to vectors (d, c) that are minimal generators of the monoid

M (2) = {(d, c) ∈ Z2 : 0 ≤ c ≤ α(2)d, c ̸= 1}

but not of the simpler monoid

M
(2)
0 = {(d, c) ∈ Z2 : 0 ≤ c ≤ α(2)d}.

But R(X,D), unlike R(X,D(2)), contains homogeneous elements f achieving every

vector

(d, c) = (deg f,−ordP (2)f)

in M
(2)
0 : take wud if c = 1, and otherwise take the appropriate element of R(X,D(2)).

Consequently, given a generator g ∈ R(X,D) whose associated vector (d, c) = (deg g,−ordP (2)g)

is reducible in M
(2)
0 , we can multiply elements of R(X,D) of lower degrees to achieve

the pole order c and subtract this from g to leave a pole of lower order. This lower

order can again be achieved by a product of generators besides g (note that generators

of types (b), (c), and (d) always appear in distinct degrees, referring to Lemma 1.3.4
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and Figure 1.2), and continuing this way, we arrive at a function with no pole at P (2),

that is, an element of R(X,D(1)). Hence g is a polynomial in the other generators of

R(X,D).

We now investigate under what conditions the generators of types (b), (c), and (d)

in R(X,D(1)) remain minimal in R(X,D). For (b), the generator f(b) = t
(1)
2 u⌈2/α(1)⌉

of degree d = ⌈2/α(1)⌉ is the first appearance in R(X,D) of a function with a double

pole at P (1). By assumption, there is no other generator of R(X,D(1)) with a double

pole in this degree, so the only way to eliminate it is to multiply two functions of

lower degree with simple poles at P (1). The first function of this sort is

f 2
w = wu⌈1/α(2)⌉ · wu⌈1/α(2)⌉ (1.9)

of degree

2

⌈
1

α(2)

⌉
≥ 2

⌈
1

α(1)

⌉
∗
=

⌈
2

α(1)

⌉
= d,

the starred equality holding since {−1/α(1)} ∈ [0, 1/2). So the only way that this

generator can be non-minimal is if equality holds, and in particular, R(X,D(1)) and

R(X,D(2)) look alike up to degree d. But the unique product (1.9) in this degree

has double poles at both P (1) and P (2), and since we already threw out the generator

t
(2)
2 ud of type (b) in R(X,D(2)), there is no way to cancel out the double pole at

P (2). Hence the generator f(b), if it appears in R(X,D(1)), always remains minimal

in R(X,D), as claimed.

Next, we look at type (c). Here we have a generator f(c) = t
(1)
3 u⌈3/α(1)⌉ of degree

d = 3/⌈3/α(1)⌉, which is the least degree in which there appears a triple pole at α(1).

To cancel out this pole, we must multiply two elements of lower degree with a single
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and a double pole at P (1). The first function of this sort is

wu⌈1/α(2)⌉ · t(1)2 u⌈2/α(1)⌉ =


fwf(b), {−1/α(1)} ∈ [0, 1/2)

fwf
(1)
2 , {−1/α(1)} ∈ [1/2, 1)

(1.10)

of degree ⌈
1

α(2)

⌉
+

⌈
2

α(1)

⌉
≥

⌈
1

α(1)

⌉
+

⌈
2

α(1)

⌉
∗
=

⌈
3

α(1)

⌉
= d, (1.11)

the starred equality holding since {−1/α(1)} ∈ [0, 1/3)[1/2, 2/3). Again, the generator

is therefore minimal unless equality holds. If equality holds, then the function (1.10)

has a triple pole at P (1) as well as a simple pole at P (2) which can be canceled by

adding the appropriate multiple of wud, yielding an element of R(X,D(1)) with the

desired triple pole. Accordingly, the generator g of type (c) is minimal if and only if

equality does not hold in (1.11), as claimed.

Finally, suppose R(X,D(1)) has a generator of type (d), which is of the form

f(d) = t
(1)
c ud where

d = d
(1)
1 + d

(1)
2 , c = c

(1)
1 + c

(1)
2 = 1 + c

(1)
2

Note that this is only the second degree, after d
(1)
2 , in which R(X,D) is strictly

larger than the subring S ′ = R(X, 1/d
(1)
1 P (1) + α(2)P (2))) where the pole order at P (1)

is limited by the first best lower approximation 1/d
(1)
1 . To eliminate f(d), we must

multiply two elements of lower degree at least one of which lies outside S ′. Hence we

must use

f = t
c
(1)
2
ud

(1)
2 ,

a generator of R(X,D(1)) of type (a). We must multiply it by an element h of degree

d
(1)
1 with at least a simple pole at P (1). But a double pole at P (1) does not appear

until degree ⌈2/α(1)⌉ ≥ 2d
(1)
1 − 1, which is too high unless d

(1)
1 = 1 and α(1) ≥ 2, and
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here there cannot be a generator of type (d), because then the generator t
(1)
3 u2 is of

type (a) or (c) rather than (d). So h must have a simple pole at P (1), which only

happens when the generator h = wud
(2)
1 has low enough degree, namely when

⌈
1

α(2)

⌉
=

⌈
1

α(1)

⌉
. (1.12)

We can then multiply f · h to get a function in degree d with the desired pole order

c at P (1) and a simple pole at P (2), which can be canceled by adding the appropriate

multiple of wud. Accordingly, the generator f(d) is minimal if and only if equality

does not hold in (1.12), as claimed.

1.4.2 Relations

In this section we state and prove the relations among the generators in the effective

two-point case. It will be noted that, in Theorem 1.4.2, the form of the generators

is quite different depending on whether (1.12) holds or not. This bifurcation in turn

affects the term order we choose and the form of the relations, and hence we divide

the statement and proof into two.

The unequal ceilings case

In this section we assume that

⌈
1

α(2)

⌉
<

⌈
1

α(1)

⌉
. (1.13)

Definition. Let D = α(1)P (1) + α(2)P (2) be an effective Q-divisor on C supported at

two points, and assume (1.13). We order the generators of R(X,D)

(1) first by pole order at P (2),

(2) then by degree,
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(3) then by pole order at P (1).

We order the monomials in the generators of R(X,D)

(1) first by pole order at P (2),

(2) then by degree,

(3) then by pole order at P (1),

(4) then by the exponents of the generators, starting with the highest generator.

Remark. By sorting first by pole order at P (2), we ensure that the generators of

the subring R(X,D(1)), and monomials therein, appear first in the ordering, and in

the same order as in the 1-point case (Definition 1.3.2). For instance, if {−1/α(1)} ∈

(0, 1/3), the ordering of the generators is

u = f0 ≺ f(b) ≺ f(c) ≺ f
(1)
2 ≺ f(d) ≺ f

(1)
3 ≺ · · · ≺ f

(1)

r(1)
≺ fw ≺ f

(2)
2 ≺ · · · ≺ f

(2)

r(2)
.

Theorem 1.4.3. With this term order, a Gröbner basis for the relation ideal of

R(X,D) has the following leading terms:

1. The same leading terms of the relations among the f
(1)
i , f(b), f(c), and f(d) that

obtain in the one-point case for R(X,D(1)) in Theorem 1.3.5;

2. u · f (2)
i , i ≥ 2;

3. fw · f (2)
i , i ≥ 3;

4. f
(2)
i · f

(2)
j , i ≥ j + 2;

5. All products f (1)f (2) where f (1) is of one of the forms f
(1)
i (i ≥ 2), f(b), f(c), or

f(d) and f (2) is of one of the forms f
(2)
j (j ≥ 2) or fw.
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Proof. Because we ordered the generators of R(X,D(1)) (the “old” generators) before

all others (the “new” generators), the Gröbner basis for the relations among the old

generators is unchanged from the one-point case. We call these the “old” relations.

A k-basis for the quotient space R(X,D)/R(X,D(1)) consists of one function

f
(2)
(d,c) of degree d having pole order c at P (2), for each (d, c) with 1 ≤ c ≤ α(2)d. Note

that c = 1 need not be excluded now. Consequently, the relations between the new

generators closely parallel the genus zero case. For (d, c) in the angle ∠v(2)i v
(2)
i+1, the

minimal monomial achieving degree d and pole order c is a product of the appropriate

powers of the two consecutive generators f
(2)
i and f

(2)
i+1, where f

(2)
1 must be replaced

by fw. Consequently, any product of two nonconsecutive new generators, or of a new

and an old generator, is the leading term of a relation (a “new” relation).

The new relations are all minimal because their leading terms are quadratic. It

remains to consider whether an old, minimal relation can become non-minimal when

the new generators and relations are added. (An old, non-minimal relation obviously

remains non-minimal here.) Referring to Theorem 1.3.5, there was only one case

where a relation with a non-quadratic leading term was nonetheless minimal: the case

{−1/α(1)} ∈ [2/3, 3/4). Here there are generators u = f0, f
(1)
2 , f

(1)
3 corresponding to

best lower approximations

c0
d0

= 1,
c2
d2

=
2

2n− 1
,

c3
d3

=
3

3n− 2

(letting n = d1 = ⌈1/α(1)⌉). The relation in question has leading term uf
(1)
3

2
, so if it

is not minimal, then some other relation must have a term of uf
(1)
3 or f

(1)
3

2
to cancel

it out. We claim there is no relation having either of these terms. This is clear for

f
(1)
3

2
because its pole order of 6 at P (1) is the largest possible in degree 6n−4, except

possibly ordP (1)(f
(1)
4 ) = −7 when n = 1, and no other monomial achieves this pole

order. As to uf3, we observe that the only possible monomials in degree 3n−1 having
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a pole of order at least 3 at P (1) are

uf3, f
(1)
2

2
, f

(1)
2 f

(1)
3 , f

(1)
3

2
, f

(1)
4 . (1.14)

(since f
(1)
2 fw, the first monomial of this sort outside R(X,D(1)), has degree at least

(2n − 1) + (n + 1) > 3n − 1). The functions (1.14) have poles of distinct orders

3, 4, 5, 6, 7 at P (1) and thus cannot figure in any relation, completing the proof.

The equal ceilings case

In this section we assume that

⌈
1

α(1)

⌉
=

⌈
1

α(2)

⌉
. (1.15)

Definition. Let D = α(1)P (1) + α(2)P (2) be an effective Q-divisor on C supported at

two points, and assume (1.15). We order the generators of R(X,D) in the following

way:

u = f0 ≺ fw ≺
[
f(b)

]
≺ f

(1)
2 ≺ · · · ≺ f

(1)

r(1)
≺ f

(2)
2 ≺ · · · ≺ f

(2)

r(2)
,

with the brackets because f(b) appears only when {−1/α(1)} ∈ [0, 1/2). We order

monomials in the generators by the exponents of the generators, largest first (i.e. lex

order).

Remark. Note the absence of comparison of degrees or pole orders in this term order,

in contrast to Definition 1.4.2. It would be desirable to use a more uniform term order

for all effective two-point divisors, but this leads to difficulties such as a profusion of

cases and a heightened number of non-minimal relations in the Gröbner basis.

Theorem 1.4.4. With this term order, a Gröbner basis for the relation ideal of

R(X,D) has the following leading terms:

(a) If {−1/α(1)} ∈ [0, 1/2):
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1. f 2
(b);

2. uf
(k)
i , i ≥ 2, k ∈ {1, 2};

3. fwf
(k)
i , i ≥ 3, k ∈ {1, 2};

4. f(b)f
(k)
i , i ≥ 2, k ∈ {1, 2};

5. f
(k)
i f

(k)
j , i ≥ j + 2, k ∈ {1, 2};

6. f
(1)
i f

(2)
j , i ≥ 2, j ≥ 2.

(b) If {−1/α(1)} ∈ [1/2, 1):

1. f
(1)
2 f 2

w ;

2. uf
(1)
i , i ≥ 3;

3. uf
(2)
i , i ≥ 2;

4. fwf
(k)
i , i ≥ 3, k ∈ {1, 2};

5. f
(k)
i f

(k)
j , i ≥ j + 2, k ∈ {1, 2};

6. f
(1)
i f

(2)
j , i ≥ 2, j ≥ 2.

Moreover, the relations comprising the Gröbner basis are all minimal, with the possible

exception of the one with a cubic leading term (boxed), which is minimal if and only

if

{−1/α(1)} ∈ [1/2, 2/3) and {−1/α(2)} ∈ [0, 1/2).

Proof. The proof of this theorem is somewhat different from the preceding ones owing

to the different term order. Let n = ⌈1/α(1)⌉ = ⌈1/α(2)⌉, and define the subdivisors

D′ =
2

⌈2/α(1)⌉
P (1) +

1

n
P (2) =


1
n
P (1) + 1

n
P (2), {−1/α(1)} ∈ [0, 1/2)

2
2n−1

P (1) + 1
n
P (2), {−1/α(1)} ∈ [1/2, 1)

D′′ =
2

⌈2/α(1)⌉
P (1) + α(2)P (2).
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The significance of the resulting filtration of the section rings R(X,D′) ⊆ R(X,D′′) ⊆

R(X,D) is that

(a) R(X,D′) is generated by the lowest three generators: u, fw, and either f(b)

({−1/α(1)} ∈ [0, 1/2)) or f
(1)
2 ({−1/α(1)} ∈ [1/2, 1));

(b) R(X,D′′) is generated by R(X,D′) and the remaining generators f
(1)
i ;

(c) R(X,D) is generated by R(X,D′′) and the remaining generators f
(2)
i .

These claims are not hard to show. For brevity, we focus on the case {−1/α(1)} ∈

[1/2, 1), the other being analogous. Here R(X,D) has a relation because the element

f
(1)
2 f 2

w, with degree and pole orders (d, c(1), c(2)) = (4n−1, 4, 2), can be expressed as a

linear combination of terms f
(1)
2

2
u (4n− 1, 4, 0), f 2

wu
2n−1 (4n− 1, 2, 2), and elements

with lower pole orders (namely f
(1)
2 fwu

n, f
(1)
2 u2n, fwu

3n−1, and u4n−1). Applying this

relation, we can express any polynomial in the first three generators as a linear com-

bination of terms f i
wu

j, f
(1)
2

i
uj, and f

(1)
2

i
fwu

j. Specifically, in degree d ≥ n, we have

the elements

f i
wu

d−ni, 0 ≤ i ≤ d

n

f
(1)
2

i
ud−(2n−1)i, 1 ≤ i ≤ d

2n− 1

f
(1)
2

i
fwu

d−(2n−1)i, 1 ≤ i ≤ d− n

2n− 1
.

(1.16)

Comparing pole orders shows these are all linearly independent, and the number of

them is

1 +

⌊
d

n

⌋
+

⌊
d

2n− 1

⌋
+

⌊
d− n

2n− 1

⌋
= 1 +

⌊
d

n

⌋
+

⌊
d

2n− 1

⌋
+

⌊
d− n+ 1/2

2n− 1

⌋
=

⌊
d

n

⌋
+

⌊
d

2n− 1

⌋
+

⌊
d

2n− 1
+

1

2

⌋
=

⌊
d

n

⌋
+

⌊
2d

2n− 1

⌋
= dim(R(X,D′))deg=d,
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so in fact (1.16) are a basis for R(X,D′), so there are no more generators or relations

needed.

The generation of the quotient spaces R(X,D′′)/R(X,D′) and R(X,D)/R(X,D′)

follows the genus zero case: a k-basis is indexed by combinations (d, c(k)) of degree

and pole order at the respective point with

2

⌈2/α(1)⌉
d < c(1) ≤ α(1)d, k = 1 (for R(X,D′′)/R(X,D′))

1

n
d < c(2) ≤ α(2)d, k = 2 (for R(X,D)/R(X,D′′)),

and each (d, c(k)) is minimally achieved by a product of consecutive generators f
(k)
i

a
f
(k)
i+1

b
,

where fw stands in for both f
(1)
1 and f

(2)
1 . Consequently, any product of two generators

not of this type is the leading term of a relation, as claimed.

It remains to determine whether the relation with the cubic, boxed leading term

f
(1)
2 f 2

w (degree 4n−1) is minimal. We divide into cases by the values of the {−1/α(i)},

as claimed in the theorem.

If {−1/α(1)} ∈ [2/3, 1), that is, α(1) ≥ 3/(3n − 2), there is a best lower approxi-

mation c
(1)
3 /d

(1)
3 = 3/(3n − 2) giving a generator f

(1)
3 in degree 3n − 2 with a triple

pole at P (1). Using the relations

R1 = f
(1)
3 u+ · · ·

R2 = f
(1)
3 fw + · · · ,

we take a linear combination R = fwR1 − uR2, causing the leading terms f
(1)
3 fwu

to cancel. Observe that R1 has a term f
(1)
2 fw, the only possible monomial in degree

4n − 1 with a triple pole at P (1) below f
(1)
3 u in the term ordering. So R has a term

f
(1)
2 f 2

w. All other terms of fwR1 and uR2, except the leading terms which cancel, are

lower in the term ordering (namely f
(1)
2 fwu

n, f
(1)
2 u2n, fwu

3n−1, and u4n−1). So we have
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achieved a relation R with the desired leading term, showing that the boxed Gröbner

basis element is not minimal.

Similarly, if {−1/α(2)} ∈ [1/2, 1), that is, α(2) ≥ 2/(2n− 1), there is a best lower

approximation c
(2)
2 /d

(2)
2 = 2/(2n− 1) giving a generator f

(2)
2 in degree 2n− 1 with a

double pole at P (2). Using the relations

R1 = f
(2)
2 u+ · · ·

R2 = f
(2)
2 f

(1)
2 + · · · ,

we form a combination

R = f
(1)
2 R1 − uR2 − cu2n−1R1,

where the first two terms have canceling leading terms f
(2)
2 f

(1)
2 u, and the constant

c is chosen to cancel out the term f
(2)
2 u2n which may appear in uR2. The highest

remaining term is f
(1)
2 f 2

w, which must appear with a nonzero coefficient because f 2
w is

the only other term in R1 that can have a double pole at P (1). So, again, the boxed

Gröbner basis element is not minimal.

Finally, if {−1/α(1)} ∈ [1/2, 2/3) and {−1/α(2)} ∈ [0, 1/2), we claim that the

boxed Gröbner basis element is minimal. If not, it arises by canceling the leading

terms of other relations, so there must be a monomial in the generators of degree

4n−1 divisible by two different leading terms of relations. We have deg f
(2)
2 ≥ 3n−1,

deg f
(2)
3 ≥ 4n− 2, and deg f

(1)
3 ≥ 5n− 3, so we can restrict our sights to u, fw, f

(1)
2 ,

and f
(2)
2 . The only relations among these have leading terms uf

(2)
2 , fwf

(2)
2 , and f

(1)
2 f 2

w,

all of which have degree at least 4n− 1, so this is impossible.

Remark. The structure of the ring is somewhat simpler in this case and much more

nearly symmetric between α(1) and α(2).
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1.5 The subtle behavior of the ineffective two-point

case

It would be desirable to extend the results of this paper to ineffective two-point divi-

sors D having positive multiplicity at one point and negative at the other. However,

in this situation, the section ring depends on the choice of curve C and divisor D in

a much more subtle way.

Example. Let D = 4P (1) − P (2). In degree 1, we have three generators t2u, t3u,

t4u. In degree 2, the question arises of whether the six pairwise products u2titj of the

generators fill the six-dimensional space

(R(X,D))deg=2 = u2 · ⟨t3, t4, t5, t6, t7, t8⟩ .

In fact they do. If there were a linear relation among these products, a consideration

of zero and pole orders at the P (k) shows that it would have to have the form

t23 = ct2t4, c ∈ k,

but the two sides do not have the same divisor. Hence degree 1 generates degree 2,

and in particular t3 is a linear combination of the products titj, 2 ≤ i ≤ j ≤ 4. In

fact, we can be more explicit:

Taking y = t3 and x = t2 as coordinates, we get a Weierstrass equation of the

curve

C : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where P (1) is the point at ∞ and P (2) is the origin (0, 0). We must have

• a6 = 0 since (0, 0) lies on C;

• a4 = 0 since y has a double zero at (0, 0);
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• a3 ̸= 0 since C is nonsingular at (0, 0);

• a2 ̸= 0 or else y would have a triple zero at (0, 0).

Then

t4 = x2 − a3
a2

y,

and the curve’s equation can be written as

t3 =
1

a3

(
t2t4 −

a3
a2

t2t3 + a2t
2
2 − t23

)
,

showing that indeed t3 ∈ ⟨t2t4, t23, t2t3, t22⟩. Note that t3’s pole of order 3 at P (1) arises

from canceling functions with poles of order 6, 6, 5, and 4.

Example. Let p and q be coprime positive integers. By the Euclidean algorithm,

there are positive integers a and b such that aq− bp = 1. Let P (1) and P (2) be points

whose difference is not torsion, and consider the divisor

D =
a

p
P (1) − b

q
P (2)

of degree 1/(pq). For d > 0, the dimension of (R(X,D))deg=d is

dim(R(X,D))deg=d = max

{
0,

⌊
ad

p

⌋
−
⌈
bd

q

⌉
− 1

}
.

We recognize the right side as the number of ways of writing d − pq in the form

xp + yq where x, y ∈ Z≥0. The least degree in which there is any element is d = pq.

For pq ≤ d < 2pq, the degrees in which R(X,D) is nonzero are of the form d = pq+k

where k belongs to the Frobenius (symmetric, two-generated) semigroup

⟨p, q⟩ = {xp+ yq : x, y ∈ Z≥0},
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and due to the degree bound pq ≤ d < 2pq, none of these can generate each other.

This yields an intricate pattern of generators and relations.

1.5.1 A conjecture on generators

Suppose that P (1) and P (2) are two points on C such that P (1)−P (2) is not a torsion

class in the Picard group (the generic case). For c ≥ 0, let tc denote the unique

function (up to scaling) on C with

÷(t(1)c ) = −c(P (1)) + (c− 1)(P (2)) + (cP (1) ⊕ (1− c)P (2)),

where ⊕ denotes addition in the group law on C, as opposed to formal addition of

divisors. Observe that if c ≥ 2, then

ordP (1) tc = −c and ordP (2) tc = c− 1.

Lemma 1.5.1. Let D = α(1)(P (1)) − α(2)(P (2)) be a Z-divisor on an elliptic curve

supported at two points, where α(1) > α(2) ≥ 0. Then H0(D) has dimension α(1)−α(2)

with a basis consisting of the functions

• {1, t2, . . . , tα(1)} if α(2) = 0;

• {tα(2)+1, . . . , tα(1)} if α(2) > 0.

Proof. Since degD = α(1)−α(2) ≥ 1, the Riemann-Roch theorem gives us the dimen-

sion h0(D). We check that the claimed functions belong to H0(D) and have different

pole orders at P (1), so they must form a basis.

Let D = α(1)(P (1)) − α(2)(P (2)) be a Q-divisor supported at the two points P (k),

and suppose that α(1) > α(2) > 0 so that R(X,D) is non-trivial. Since P (1)−P (2) is not

torsion, H0(dD) does not contain any function f of degree d with ordP (1)(f) = ⌈dα(2)⌉.
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Figure 1.3: Example bases for R(X,D) with D as in Lemma 1.5.1

Accordingly, we mark the points (d, ⌈dα(2)⌉) in the monoidM ′ = {(d, c) ∈ Z2 : dα(2) ≤

c ≤ dα(1)} by a ‘+’ in our examples.

Conjecture. Let D = α(1)(P (1)) − α(2)(P (2)) be an ineffective (α(1) > α(2) > 0) Q-

divisor on an elliptic curve C supported at two points P (k), where P (1) − P (2) is not

a torsion class in the Picard group (the generic case). Let

0 =
c
(1)
0

d
(1)
0

<
c
(1)
1

d
(1)
1

< · · · < c
(1)
r

d
(1)
r

= α(1); 0 =
c
(2)
0

d
(2)
0

>
c
(2)
1

d
(2)
1

> · · · > c
(2)
s

d
(2)
s

= α(2)

be the best lower approximations to α(1) and the best upper approximations to α(2)

respectively. Let M = {(d, c) ∈ Z2 : dα(2) + 1 ≤ c ≤ dα(1)}.

Then R(X,D) has a minimal system of generators of the following forms:

(a) t
c
(1)
j
ud

(1)
j , for j = s(2) + 1, . . . , r(1) if c

(1)
j > ⌈d(2)j α(2)⌉ for some j;

(b) t
c
(2)
j +1

ud
(2)
j , for j = 2, . . . , s(2) if such a generator has not already appeared and

no (d
(2)
j , c

(2)
j + n) ∈ M with n ≥ 2 is (at least) two distinct nonnegative linear

combinations of (d, c) ∈M with d < d
(2)
j ;
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(c) t
c
(2)
j +2

ud
(2)
j , for j = 3, . . . , s(2) if all of the following conditions are met:

• c
(2)
j + 2 ≤ d

(2)
j α(1),

• (d
(2)
j , c

(2)
j + 2) is not a nonnegative linear combination of any (d, c) ∈ M

with d < d
(2)
j , and

• no point (d
(2)
j , c

(2)
j +n) ∈M for n ≥ 3 is (at least) two distinct nonnegative

linear combinations of (d, c) ∈M with d < d
(2)
j .

Remark. Each type of generator in Conjecture 1.5.1 is minimal because of how we

have defined them. As in [9], Theorems 1.3.2 and 1.4.2 and [8], no best lower approx-

imation to α(1) comes from combining functions in lower degrees, and by definition no

generator of type (b) or (c) corresponds to a linear combination of other generators,

nor some difference of functions as in the proof of Theorem 1.4.2. For examples of D

with sufficiently large degrees we can use Magma to determine the degrees of mini-

mal generators for R(X,D) including Example 1.5.1 which has the subtle behavior

of Example 1.5, and generators from Conjecture 1.5.1 seem to give a basis.

However, it is difficult to verify this conjecture rigorously, especially in cases such

as Example 1.5 with small degree, as Magma needs to check for generators in such

large degrees as to be computationally prohibitive. Even if Conjecture 1.5.1 is true,

the question remains of whether we can find a simpler description of the generators

which does not rely on manually working out every possible linear combination of

vectors in the monoid M while successively adding generators in the order indicated

by Definition 1.3.2.
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Figure 1.4: Generators for R(X,D) labeled according to Conjecture 1.5.1 when D =
13
5
P (1) − 1

7
P (2).

Example. Let D = 2
3
P (1) − 3

5
P (2). This is an example of the behavior discussed in

Example 1.5. Up to degree 60, Magma computes generators for R(X,D) in degrees:

15, 18, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37.

1.6 Arbitrary effective Q-divisors

For divisors supported by more than two points, generators and relations often occur

in high degrees, and it is difficult to explicitly describe the canonical ring. Thanks

to [8] we are able to determine inductive presentations of such rings for effective Q-

divisors, similar to the main inductive theorem in Voight–Zureick-Brown [12, 8.3.1].

Example. As in [12, Example 5.7.7] let D′ = 1
2
P1 +

1
2
P2, and following [12, Example

5.7.9] let D = D′ + 1
2
P3 =

1
2
P1 +

1
2
P2 +

1
2
P3. Then degD = 3/2. By the Generalized
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Figure 1.5: Generators for R(X,D) labeled according to Conjecture 1.5.1 where D =
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Max Noether Theorem [12, Lemma 3.1.4], H0(C, 2D)⊗H0(C, (d−2)D)→ H0(C, dD)

is surjective for d > 5, so all generators occur in degree < 5.

More precisely, in [12] it is computed that R(X,D′) is generated in degrees 1,

2, and 4 while R(X,D) is generated in degrees 1, 2, and 2. The square of the last

degree-2 generator of R(X,D) is the degree-4 generator for R(X,D′).

So the minimal presentations have the formR(X,D) = k[u, x1, x2]/ID andR(X,D′) =

k[u, x1, x
2
2]/ID′ , where ID, ID′ are the relation ideals. In particular, R(X,D) is gen-

erated over R(X,D′) by x2.

A powerful result which allows one to compute an inductive presentation of the

section ring of a general Q-divisor on an elliptic curve is [8, Lemma 4.4]. We para-

phrase the result, which is of independent interest, in the terminology of this document

for reference. We then use it to prove Theorem 1.6.2 by verifying that our general

Q-divisors satisfy the hypotheses of the lemma.

If D is a divisor on a curve C, P is a point on C, and f is a rational function on

C, we define, following [8],

ordD
P (f) = ordP (f) + ordP (D),

so that f ∈ H0(D) if and only if ordD
P (f) ≥ 0 for all points P .

Lemma 1.6.1 ([8, Lemma 4.4]). Let C be a curve (of any genus) and let D′ be an

effective Q-divisor on C. Suppose that P is not a basepoint of dD′ for any d ∈ N,

i.e. we can choose generators u = f0, f1, . . . , fm of R(X,D′) with deg(u) = 1, and

ordD′

P (fi) = 0 for 0 ≤ i ≤ m.

Suppose that D = D′ +
a

b
P for some a, b ∈ N such that a

b
is reduced and

h0(C, dD) = h0(C, dD′) +
⌊
d · a

b

⌋
for all d ∈ N. (1.17)
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Then

(a) R(X,D) is generated over R(X,D′) by some elements g1, . . . , gn whose degrees

di = deg(gi) and pole orders ci = −ordD′

P (gi) satisfy ci ≤ ci+1 ≤ a and di ≤

di+1 ≤ b for all i.

(b) Choose a monomial ordering ≺ on k[u = f0, f1, . . . , fm] such that

ordu(f) < ordu(h)⇒ f ≺ h.

Equip k[f0, . . . , fm] with the graded P -lexicographic order from [8, Definition 4.2]

and equip k[g1, . . . , gn]⊗ k[f0, . . . , fm] with the block order from [8, Definition

2.19]. Let I ′ denote the ideal of relations of

k[f0, . . . , fm]→ R(X,D′)

and let I denote the ideal of relations of

k[f0, . . . , fm, g1, . . . , gn]→ R(X,D).

Then

in≺(I) = in≺(I
′)k[f0, . . . , fm, g1, . . . , gn] + ⟨Ui : 1 ≤ i ≤ n⟩+ ⟨V ⟩,

where V = {figj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and Ui is the set of monomials of the

form
∏i

j=1 g
ej
j with ej ∈ N≥0 such that

(a)
∑i

j=1 ejcj ≤ ci+1,

(b) there does not exist (e′1, . . . , e
′
i) ̸= (e1, . . . , ei) with all e

′
j ≤ ej and

∑i
j=1 e

′
jcj ≥

ci+1, and
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(c) there does not exist some r < i such that
∑r

j=1 ejcj > cr+1.

(c) Let τ = maxi deg fi. Then R(X,D) is generated over R(X,D′) in degrees up to

b, with I generated over I ′ in degrees up to max{2b, b+ τ}.

Remark. Note that the condition h0(C,D′) ≥ 1 from the original statement of [8,

Lemma 4.4] is automatic any for effective Q-divisor D on a genus 1 curve C since we

have h0(C,D) = max{degD, 1}. Also, for u we can take the usual u in the definition

of the section ring.

Finally, as a corollary to Lemma 4.4(c) of [8], we obtain a bound on the generator

and relation degrees for arbitrary effective Q-divisors:

Theorem 1.6.2. Let

D =
n∑

i=1

α(i)(P (i))

be an effective divisor on a genus 1 curve C, with the coefficients α(i) = a(i)/b(i) in

reduced form and the distinct points P (i) ordered so that

α(1) ≥ · · · ≥ α(n).

Then the section ring SD is generated in degrees at most

B = max{3b(1), b(2), . . . , b(n)},

with relations in degrees at most 2B.

These bounds are achievable: see Examples 1.3.1 and 1.6.

Proof of Theorem 1.6.2. Now let

D =
n∑

i=1

a(i)

b(i)
(
P (i)

)
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be an effective divisor, with α(1) ≥ · · · ≥ α(n). We prove that the section ring R(X,D)

is generated in degrees at most

B = max{3b(1), b(2), . . . , b(n)},

with relations in degrees at most 2B.

In the base case n = 1, we are claiming that the section ring R(X,D) of a divisor

D = (a/b)P is generated in degrees at most B = 3b with relations in degrees at most

6b. The generator bound follows from Theorem 1.3.2, observing that the exceptional

generator (c) has degree at most ⌈3b/a⌉ ≤ 3b. The relation bound is automatic for

relations with quadratic leading terms. By Theorem 1.3.5, the only other minimal

relation has leading term f0f
2
3 and degree 1 + 2d3 ≤ 3b < 6b, completing the proof of

the base case.

To prove the induction step, we must verify that the subdivisor

D′ =
n−1∑
i=1

a(i)

b(i)
(
P (i)

)

and the point P = P (n) satisfy the hypotheses of Lemma 1.6.1. That P is not a

basepoint of dD′ is automatic for us, because either

• dD′ = 0, and the constant 1 ∈ H0(dD′) has no basepoints, or

• deg dD′ = 1, and the constant 1 ∈ H0(dD′) has a basepoint Pi ̸= P , or

• deg dD′ ≥ 2, and the linear system H0(dD′) is basepoint-free by Fact 1.3.

As to (1.17), the hypothesis α1 ≥ · · · ≥ αn ensures that dD = 0 exactly when

d < ⌈1/α1⌉. If this condition holds, then (1.17) reduces to 1 = 1 + 0, which is true.

Otherwise, (1.17) reduces to

deg dD − 1 = (deg dD′ − 1) + deg
⌊
d · a

b
· P

⌋
,



44

which is also true. Thus Lemma 1.6.1 applies.

By induction, R(X,D′) is generated in degrees at most

B′ = max{3b(1), b(2), . . . , b(n−1)},

with relations in degrees at most 2B′. Accordingly, R(X,D) is generated overR(X,D′)

in degrees at most b(n), so generated over k in degrees at most

max{B′, b(n)} = B.

The relation ideal I is generated over its counterpart I ′ in degrees at most

max{2b(n), b(n) + τ} ≤ max{2b(n), b(n) +B′},

and since I ′ is generated in degrees at most 2B′, the degrees of all relations are

bounded by

max{2b(n), b(n) +B′, 2B′} = 2B,

as desired.
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Chapter 2

The Canonical Ring of Ag

2.1 Introduction, Background, and Setup

We will now investigate the canonical ring of Ag, the moduli space of principally

polarized abelian varieties of dimension g. The main application of this problem is to

provide explicit generators and relations for rings of classical Siegel modular forms.

Indeed, we have the following identification:

M(Γg) ∼=
⊕
d≥0

H0(Ag, KAg),

where KAg is the canonical divisor of the corresponding space. Such rings have been

described in the cases g = 2 and g = 3 by Igusa [7] and Tsuyumine [11], but they

did not use geometric methods (for one, the notion of an algebraic stack had not

been developed by the time of those publications). Rather the tools they used were

analytic, and they worked more directly with modular forms.

In this chapter, we propose a geometric approach to the problem for g up through

6 (the last genera for which Ag is not of general type), and describe the progress

made so far. This will build off of the work of Voight and Zureick-Brown [12] who

solved the g = 1 case (and much more) by studying canonical rings of stacky curves.
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We will focus mostly on the g = 2 case, but we expect the approach to generalize,

making appropriate adjustments, to higher dimensions. What makes the g = 2 case

special is that most abelian varieties of dimension 2 come from jacobians of curves,

and this in turn allows us to identify the moduli space as a certain open subset of a

weighted projective space. Because weighted projective spaces are toric varieties, we

end up with a collection of combinatorial tools that allow us to compute log-canonical

rings of a broader class of varieties. This will in turn enable us to generalize results of

Landesman et. al. [8], who compute section rings of Q-divisors of Pn and Hirzebruch

surfaces.

2.1.1 Siegel Modular Forms

We compile some definitions and facts regarding Siegel modular forms.

Let g ≥ 1 be an integer, and let J :=
( 0 Ig
−Ig 0

)
We define the symplectic group to

be

Γg := Sp2g(Z) = {γ ∈2g (Z) | tγ Jγ = J}

and the Siegel upper half space to be

Hg := {τ ∈ Matg×g(C) | tτ = τ, Im(τ) > 0}.

We can define a natural action of Γg on Hg via

(
A B
C D

)
τ := (Aτ +B)(Cτ +D)−1.

When g = 1, this action is equivalent to the action of SL2(Z) on the complex upper

half plane via linear fractional transformation, as we would expect. The quotient

space SL2(Z)\H is in bijective correspondence with elliptic curves over the complex

numbers up to isomorphism. One would hope for a uniformization theorem for all
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abelian varieties of higher dimension, but we don’t get so lucky: A point τ ∈ Hg

determines a torus Cg/Zg + Zgτ , but we do not get all complex g-dimensional tori

this way.

To rectify this, we recall

Lemma 2.1.1. The following conditions on a complex torus X = V/Λ are equivalent:

1. X admits an embedding into a complex projective space;

2. X is the complex manifold associated to an algebraic variety;

3. There is a positive definite Hermitian form H on V such that Im(H) takes

integral values on Λ× Λ.

If a complex torus satisfies these requirements, it is called a complex abelian

variety. It is further called principally polarized if the map Im(H) : Λ × Λ → Z is

unimodular.

We have a canonical bijection between the set of isomorphism classes of principally

polarized abelian varieties of dimension g and the orbit space Γg \ Hg. For details,

see [1].

2.1.2 The g = 2 case

The moduli stack Ag can be conveniently described in terms ofMg, the moduli stack

of smooth curves of genus g, and its Deligne-Mumford compactification,Mg, which

parametrizes stable curves of genus g. The boundary divisors ofMg (respectively in

Mg, the coarse space) are denoted

δ0, . . . , δ⌊g/2⌋ (resp. ∆0, . . .∆⌊g/2⌋).
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There is a natural morphism Q :Mg →Mg, which satisfies

Q ∗∆i = δi i ̸= 1, Q∗∆1 = 2δ1.

When g = 2, the boundary divisors are ∆0 and ∆1, which (generically) parametrize

genus 1 curves with a node and two genus one curves intersecting, respectively.

We recall that a smooth genus two curve C has a sheaf of differentials ωC that

gives us the canonical morphism

j : C → P(H0(C, ωC)) ∼= P1

which is a finite map of degree two. By Riemann-Hurwitz, j is branched over 6 distinct

points, and we can construct a binary sextic form vanishing at these six points, which

is unique up to a scalar multiple. If we have, conversely, a binary sextic form F with

distinct zeros b1, . . . , b6 ∈ P1, we can construct a unique degree two cover of P1 that

is branched over these points. Ultimately, this gives us a bijection

{Genus two curves up to isomorphism} ←→ {Binary sextic forms with distinct zeros}/GL2 .

In order to construct A2, we must consider the following Igusa invariants [7].

These arise from looking at the natural action of GL2 on a general binary sextic of

the form

F = ax6 + 6bx5y + 15cx4y2 + 20dx3y3 + 15ex2y4 + 6fxy5 + gy6

given by

F 7→ (M,F ) := (detM)−2F (xm11 + ym21, xm12 + ym22),

where the mij are the entries of the two-by-two matrix M .
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If ζi, . . . ζ6 are the roots of our binary sextic form, we use the shorthand (ij) to

denote ζi − ζj. The Igusa invariants are then given by

A = a2
∑
fifteen

(12)2(34)2(56)2

B = a4
∑
ten

(12)2(23)2(31)2(45)2(56)2(64)2

C = a6
∑
sixty

(12)2(23)2(31)2(45)2)(56)2(64)2(14)2(25)2(36)2

D = a10
∏
i,j

(ij)2

E = a15
∏
fifteen

((14)(36)(52)− (16)(32)(54))

If we define

X := ProjR = Proj k[A,B,C,D,E]/(E2 −G(A,B,C,D)),

where G is a weighted homogeneous polynomial of degree 30 giving us a unique

relation among the invariants E2 = G(A,B,C,D) (see [2]), then we have the following

from work of Igusa.

Theorem 2.1.2 (Igusa). [7]

1. X ∼= Proj k[A,B,C,D] ∼= P(2, 4, 6, 10) ∼= P(1, 2, 3, 5).

2. A binary sextic with a zero of multiplicity three, admitting a nonvanishing in-

variant of positive degree, is mapped to p := [1, 0, 0, 0, 0] ∈ X.

Further, we have that the moduli scheme M2 can be identified with X \ {D = 0},

where D is the discriminant. (See [5] for more details.)

The next step is to arrive at a nice description of A2, which involves blowing up

the invariant-theory quotient described above. We recall that the Torelli morphism
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t : Mg ↪→ Ag associates to each curve its Jacobian. Now for g = 2, we have from

the above paragraph that M2 is an open subset of X, and so we may extend it to a

rational map

τ : X 99K A2.

From inclusion and the Torelli map, we get M2 ↪→ X̃ = Graph(τ) ⊂ X × A2, and it

follows that X̃ compactifies M2. Further, from [7], we have that the indeterminacy of

τ is the point p = [1, 0, 0, 0, 0] ∈ X corresponding to binary sextic forms with a zero

of multiplicity three, and that τ is resolved by a weighted blow-up centered at p

b : X̃ → X.

The exceptional divisor is mapped isomorphically to the locus of principally polarized

abelian surfaces that decompose as a product of two elliptic curves. It then follows

from the proof of Proposition 2.10 in [5] that we have an identification

A2
∼= M2 \∆0.

We note that the right side can be identified with an open set of a blow-up of a

weighted projective space. To get a description of the canonical divisor, we have a

ramification formula due to Hassett in Proposition 3.5 of [5]:

KM2 + αδ ≡ Q∗(KM2
+ α∆0 +

1 + α

2
∆1 +

1

2
Ξ),

where Ξ is the closure of the space of smooth curves admitting a bielliptic involution.

Now, since A2 can be interpreted in terms of a weighted projective space, we can

use tools from toric geometry to complete the task of computing its canonical ring.

In particular, what we have to do is
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1. Determine how to interpret the open set M2 \∆0 as a toric variety.

2. Find a way to compute canonical rings of toric varieties with stack structure.

In either case, a necessary prerequisite is to compute the log canonical ring of

P(1, 2, 3, 5) (or for the broadest possible class of toric varieties). Luckily, we have

some tools at our disposal.

For a toric variety XΣ corresponding to a fan Σ and a divisor D =
∑

ρDρ (where

Dρ denotes the divisor corresponding to the ray ρ in the fan), we define the polyhedron

PD = {m ∈MR | ⟨m,uρ⟩ ≥ −aρ for all rays ρ},

where uρ denotes a generator of ρ. From page 190 of [3], we have a convenient tool

for computing global sections of the sheaf associated to a torus-invariant Weil divisor

D on X∑:

H0(X∑, D) =
⊕

m∈PD∩Zn

C · λm,

and we further have that PlD = lPD.

We can use this to compute some examples of log-canonical rings of toric varieties.

However, the stacky setting remains elusive.

Example 2.1.3. We shall compute log-canonical rings of X := P1
k×P1

k (with respect

to bidegree) using the toric description. First note that we have an exact sequence

given by

0→ Zn → DivTN
(X) ∼=

⊕
ρ

Dρ → Cl(X)→ 0,

where the second map is given by m →
∑

ρ⟨x, uρ⟩Dρ (see [3] for details). Since a

toric fan for X is given by ⟨(1, 0), (−1, 0), (0, 1), (0,−1)⟩ in R2, it follows from the

exact sequence that Cl(X) = ⟨D1, D2⟩ ∼= Z2. The canonical divisor of X is given by

KX ∼ −D1 −D2 −D3 −D4 ∼ −2D1 − 2D2. In degree 0, we get that the canonical
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ring is k. For any divisor with non-negative bidegree, it follows from the definition of

PD that the canonical ring is a double Veronese-embedding. For instance, when the

bidegree of D (2, 2), the log-canonical ring is (the homogenized version of)

RD = k[x1, x2, y1, y2]/(x2 − x2
1, y2 − y21).

This is what we expect since the log-canonical ring of P1 is given by Veronese embed-

dings (one can see this from the toric description or from direct computations. This

is worked out fully in [12]).
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Chapter 3

Quartic Torsion

3.1 Introduction

Let E/Q be an elliptic curve. The watershed 1978 paper by Mazur tells us what the

possible torsion subgroups of E(Q) are: E(Q)tors is isomorphic to one of Z/NZ (for

1 ≤ N ≤ 10 or N = 12) or Z/2Z ⊕ Z/2NZ (for 1 ≤ N ≤ 4). To do this, Mazur

packaged elliptic curves along with torsion data into appropriate modular curves and

studied those.

We let Y1(N) be the curve paramaterizing (E,P ), where P is a point of exact

order N on E, and let Y1(M,N) (with M |N) be the curve paramaterizing E/K such

that E(K)tors contains the subgroup Z/MZ⊕Z/NZ. Both of these types of modular

curves may be thought of as Riemann surfaces arising from smooth compactifications

of quotients of the (extended) upper half planeH∗ = {z ∈ C | Im(z) > 0}∪{Q}∪{i∞}

by the congruence subgroups

Γ1(N) = {γ ∈ SL2(Z) | γ ≡
(
1 ∗
0 1

)
(mod N)}

and

Γ1(N) = {γ ∈ SL2(Z) | γ ≡
(
1 ∗
0 1

)
(mod N) M |b},
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respectively, and where the cusps are the equivalent classes of {Q}∪ {i∞} under the

action of each group. Note that by setting M = 1, we get X(1, N) = X(N).

We can then reinterpret Mazur’s theorem as the statement that X1(M,N)(Q)

has no non-cuspidal rational points for (M,N) outside of the set {(1, N)|1 ≤ N ≤

10 or N = 12} ∪ {(2, 2N)|1 ≤ N ≤ 4}.

In the following decades, a full classification has been completed for elliptic curves

over quadratic and cubic as well. In the 1980s, Kamienny-Kenku-Momose proved

that if E be an elliptic curve over a quadratic number field K, then E(K)tors is one

of the following groups:

Z/NZ, for 1 ≤ N ≤ 16 or N = 18,

Z/2Z⊕ Z/2NZ, for 1 ≤ N ≤ 6,

Z/3Z⊕ Z/3NZ, for 1 ≤ N ≤ 2, or

Z/4Z⊕ Z/4Z.

In particular, the corresponding curves X1(M,N) all have g ≤ 2, which guarantees

that they have infinitely many quadratic points.

About a decade later, Merel proved that for every integer d ≥ 1, there is a constant

N(d) such that for all K/Q of degree at most d and all E/K, #E(K)tors ≤ N(d).

This invites us to consider the following task: Fix d ≥ 1. Classify all groups which

can occur as E(K)tors for K/Q of degree d. Which of these occur infinitely often?

The next case considered was d = 3, which was only completed in 2020 by Derickx–

Etropolski–Morrow–van Hoeij–Zurieck-Brown [4], who proved that if K/Q is a cubic

extension and E/K an elliptic curve, then E(K)tors is isomorphic to one of the fol-
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lowing 26 groups:

Z/NZ with 1 ≤ N ≤ 21, N ̸= 17, 19, and

Z/2Z⊕ Z/2NZ with 1 ≤ N ≤ 7.

This case differs from the degree 1 and 2 cases in that there is a sporadic point,

corresponding to the elliptic curve 162b1 over Q(ζ9)
+ for N = 21. This is unusual,

because Z/21Z only occurs for one elliptic curve up to isomorphism (instead of in-

finitely many).

The next case is quartic torsion, which is the focus of the rest of this chapter.

Previous work by Jeon–Kim–Park in 2006 tells us which torsion subgroups for elliptic

curves over quartic fields occur for infinitely many elliptic curves up to isomorphism:

If K varies over all quartic number fields and E varies over all elliptic curves over

K, the group structures which appear infinitely often as E(K)tors are exactly the

following:

Z/NZ with 1 ≤ N ≤ 24, N ̸= 19, 23,

Z/2Z⊕ Z/2NZ with 1 ≤ N ≤ 9,

Z/3Z⊕ Z/3NZ with 1 ≤ N ≤ 3,

Z/4Z⊕ Z/4NZ with 1 ≤ N ≤ 2,

Z/5Z⊕ Z/5Z,

Z/6Z⊕ Z/6Z,

What we want to prove is that these are the only possible subgoups – that there

is no sporadic quartic torsion.
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3.2 Strategy

We wish to rule out non-cuspidal quartic points on all the modular curves X(N),

restricting to the cases where the Jacobian of the curve is rank zero.

For a curve X and an integer d ≥ 1, we define the dth-symmetric power of X to be

X(d) := Xd/Sd, where Sd is the symnmetric group on d letters. The K-points of X(d)

correspond to effective K-rational divisors on X of degree d. And a point of degree

d gives rise to a divisor of degree d, which can be thought of as a point in X(d)(K).

If X(d)(K) is non-empty, then a fixed K-rational divisor E of degree d gives rise

to an Abel-Jacobi map

fd,E : X(d) → JX , D 7→ D − E.

By the Mordell-Weil theorem for abelian varieties, we know that JX(K) is a

finitely-generated abelian group, and so

J(K) ∼= Zr ⊕ J(K)tors,

where J(K)tors is a finite group called the torsion subgroup of J(K). We say that a

point P ∈ X(K) is a torsion point if fd,E(P ) ∈ J(K)tors. In what follows, we focus

on cases where the rank r = 0.

3.2.1 Direct Analysis

When X(N) has gonality at least 5 and the rank of J1(N) is zero, we can compute

the finitely many preimages of the Abel-Jacobi map ι : X1(N)(4)(Q)→ J1(N)(Q). If

the size of the Jacobian is relatively small and the genus of X1(Q) is small (usually

less than 10) then it might be computationally feasible to work directly over Q.

Otherwise, we can reduce by a prime of good reduction and work over a finite field.
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Either way, we fix a base point∞ ∈ X1(N)(Q) and note that a divisor D ∈ J1(N)(Q)

is in the image of the Abel-Jacobi map E 7→ E − 4∞ if and only if the linear system

|D = 4∞| ̸= ∅, which can be computed in Magma. If |D + 4∞| = ∅, we move on;

otherwise, it will contain a single effective divisor E of degree 4. As we let D range

over J1(N)(Q), we compute all effective degree 4 divisors in this way, and therefore

we will have computed the entire image of Abel-Jacobi. Since this analysis over Q

can be computationally slow, we can sometimes reduce by an appropriate prime to

speed up the process. Consider the diagram

X(4)(Q) �
� ι //

� _

redX
��

JX(Q)� _
redJ
��

X(4)(Fp)
� � ιp // JX(Fp)

This is commutative, and the injectivity of the maps holds if we assume that X

has gonality at least 5. Thus the image of ιp contains the reduction of the image of

ι, and so the strategy is to

1. compute the image of ιp,

2. compute the preimage of im ιp,

3. compute the elements of red−1
J (im(ιp)).

So far, using this strategy as is has ruled out the existence of non-cuspidal torsion

points on X1(26). This curve has genus 10 with torsion subgroup Z/133Z×Z/1995Z.

There are 12 rational cusps and zero quadratic, cubic, or quartic cusps, and we use

reduction mod 3.

We note that when the genus of X1(N) and the size of J1(N) are large, direct

analysis is not computationally feasible, even with reduction. In these cases, we use

the strategy of mapping to a quotient curve. In these cases, we attempt to map to a

quotient before attempting direct analysis (N = 25 and N = 28 work this way).
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Level X1(N) Genus XH Curve Genus XH Gonality ≥ 5 Method Level X1(N) Genus XH Curve Genus XH Gonality ≥ 5 Method
25 12 12 Y Direct analysis on a quotient 62 91 7 N
26 13 13 Y Direct Analysis on X1(26) 64 93 13 Y
27 10 13 66 81 9 N
28 10 10 Y Direct analysis on a quotient 68 105 13
30 9 9 69 133 13
31 26 6 N 70 97 9 N
32 17 17 72 97 9 Y
33 21 11 Y 75 145 9 N
34 21 9 Y 76 136 8 Y
35 25 9 Y 78 121 11 N Maps to a previous case
36 17 17 N 81 190 10 Y
38 28 10 Y 84 133 21
39 33 9 Y 87 225 9 N
40 25 9 Y 90 153 11 Y
42 25 9 Y 94 231 11 N
44 36 8 Y 96 193 17
45 41 9 Y 98 235 7 N
46 45 45 100 231 7 N
48 37 13 108 250 10 Y
49 69 19 110 281 15
50 48 22 119 481 11 N
51 65 9 Y 120 289 73
52 55 9 Y Maps to a previous case 132 381 39
54 52 17 140 457 39
55 81 9 N 150 489 19
56 61 9 Y 168 625 97
60 57 15 180 705 53

Noting that quartic torsion points do not exist of prime order p > 17, the remain-

ing values ofN that we need to rule out are {26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40,

42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 62, 64, 66, 68, 69, 70, 72, 75, 76, 78, 81, 84, 87, 90, 94, 96,

98, 100, 108, 110, 119, 120, 132, 140}. See the above table for the remaining cases, the

gonality and genera of the corresponding modular curves, and methods used so far.
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Chapter 4

Weil polynomials of abelian

varieties over finite fields

4.1 Introduction

Let A be an abelian variety of dimension g over a finite field Fq, where q = pn is a

prime power. Let Tℓ(A) be the ℓ-adic Tate module of A and Vℓ(A) = Tℓ(A) ⊗Zℓ
Qℓ.

For ℓ ̸= p, we define the characteristic polynomial of the Frobenius endomorphism

FrobA of A as

χA(t) = det(FrobA−tI | Vℓ(A)),

which is a monic polynomial of degree 2g with integer coefficients independent of the

choice of the prime ℓ. Moreover, χA(t) can be written as

χA(t) = t2g + a1t
2g−1 + agt

g + qan−1t
g−1 + · · ·+ qg−1a1t+ qg

and its set of roots has the form {ω1, · · · , ωg, ω1, · · · , ωg}, where ωi is q-Weil number

for i ∈ {1, . . . g}. We recall that a q-Weil number ω is an algebraic integer such that

|σ(ω)| = √q for any embedding σ : Q(ω) → C. Moreover, a q-Weil polynomial is a
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monic integer polynomial whose roots are q-Weil numbers. Thus the characteristic

polynomial of Frobenius, χA(t) is a Weil polynomial.

A standard result in the field due to Tate asserts that the characteristic polynomial

is an isogeny invariant. More precisely, given two abelian varieties A and B defined

over Fq, Tate’s Theorem says that A is Fq-isogenous to B if and only if χA(t) =

χB(t). Any abelian variety can be decomposed into simple abelian varieties and the

characteristic polynomial is compatible with this decomposition. To see this, let A

be an abelian variety defined over Fq. It is well known that A is isogenous to the

product

A ∼ Ar1
1 × . . .× Arm

m ,

where each Ai is a simple abelian variety over Fq such that Ai ̸∼ Aj for i ̸= j,

and ri ≥ 1 is an integer. If χAi
is the characteristic polynomial of the Frobenius

endomorphism of Ai, we have that

χA(t) = χA1(t)
r1 . . . χAm(t)

rm .

Therefore understanding χA(t) for abelian varieties A over finite fields of dimension

g reduces to understanding χA(t) of simple abelian varieties A of dim(A) ≤ g. An

essential property of χA(t) for Fq-simple abelian varieties A over Fq is that

χA(t) = mA(t)
e

where mA(t) is an irreducible polynomial and e ≥ 1 an integer. We call e the multi-

plicity of A and we note that e | 2 dim(A). We want to know under what conditions a

given Weil polynomial of degree 2g occurs as the characteristic polynomial of Frobe-

nius for a simple abelian variety of dimension g over a given finite field, and we answer

this question for g = 7.
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4.2 Answer for g = 7

In this subsection, we answer the above question for g = 7.

In this section we let A be a simple abelian variety of dimension g over Fq with

q = pn, for a prime p and integer n ≥ 1. We denote by FrobA the q-th power Frobenius

endomorphism of A and χA(t) the characteristic polynomial of FrobA as viewed inside

Vl(A), for an l ̸= p as described in the previous section. We recall that

χA(t) = mA(t)
e, (4.1)

where mA(t) is an irreducible polynomial, and e ≥ 1 an integer called the multiplicity

of A. From this equality, it follows that e|2 dim(A). As discussed in the introduction,

it is always the case that χA(t) is a Weil polynomial. However the converse is not

always true. In the following theorem, we next answer the question of when the

converse holds in the case of g = 7.

Theorem 4.2.1. Let f(t) = t14+a1t
13+a2t

12+. . .+a2q
5t2+a1q

6t+q7 be an irreducible

Weil polynomial. Then the polynomial f(t) is the characteristic polynomial of a simple

abelian variety of dimension 7 over Fq if and only if one of the following conditions

holds:

1. vp(a1) ≥ 1
2
n, vp(a2) ≥ n, vp(a3) ≥ 3

2
n, vp(a4) ≥ 2n, vp(a5) ≥ 5

2
n, vp(a6) ≥

3n, vp(a7) ≥ 7
2
n and f(t) has no root of valuation 1

2
n nor irreducible factors

of degree 3 or 5 or 7 in Qp[t].

2. vp(a1) = 0, vp(a2) ≥ 1
2
n, vp(a3) ≥ n, vp(a4) ≥ 3

2
n, vp(a5) ≥ 2n, vp(a6) ≥ 5

2
n, vp(a7) ≥

3n and f(t) has no root of valuation 1
2
n nor irreducible factors of degree 3 or 5 in Qp[t].

3. vp(a1) = 0, vp(a2) ≥ 1
3
n, vp(a3) ≥ 2

3
n, vp(a5) ≥ 3

2
n, vp(a4) = n, vp(a6) ≥ 2n, vp(a7) ≥

5
2
n and f(t) has no root of valuation 1

3
n, 1

2
n or 2

3
n and has exactly 2 degree 3

irreducible factors in Qp[t].
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4. vp(a1) = 0, vp(a2) ≥ 1
4
n, vp(a3) ≥ 1

2
n, vp(a4) ≥ 3

4
n, vp(a5) = n, vp(a6) ≥ 3

2
n, vp(a7) ≥

2n and f(t) has no root of valuation 1
4
n, 1

2
n or 3

4
n and has at most 2 degree 2

irreducible factors in Qp[t].

5. vp(a1) = 0, vp(a2) ≥ 2
5
n, vp(a3) ≥ 4

5
n, vp(a4) ≥ 6

5
n, vp(a5) ≥ 8

5
n, vp(a6) =

2n, vp(a7) ≥ 5
2
n and f(t) has no root of valuation 2

5
n, 1

2
n or 3

5
n nor degree 3

irreducible factors in Qp[t].

6. vp(a1) = 0, vp(a2) ≥ 1
5
n, vp(a3) ≥ 2

5
n, vp(a4) ≥ 3

5
n, vp(a5) ≥ 4

5
n, vp(a6) =

n, vp(a7) ≥ 3
2
n and f(t) has no root of valuation 1

5
n, 1

2
n or 4

5
n nor degree 3

irreducible factors in Qp[t].

7. vp(a1) = 0, vp(a2) ≥ 1
3
n, vp(a3) ≥ 2

3
n, vp(a4) ≥ n, vp(a5) ≥ 4

3
n, vp(a6) ≥ 5

3
n, vp(a7) =

2n and f(t) has no root of valuation 1
3
n or 2

3
n nor degree 2 irreducible factors in Qp[t].

8. vp(a1) = 0, vp(a2) ≥ 1
6
n, vp(a3) ≥ 1

3
n, vp(a4) ≥ 1

2
n, vp(a5) ≥ 2

3
n, vp(a6) ≥

5
6
n, vp(a7) = n and f(t) has no root of valuation 1

6
n or 5

6
n nor irreducible factors of degree

2 or 3 in Qp[t].

9. vp(a1) ≥ 0, vp(a2) = 0, vp(a3) ≥ n/2, vp(a4) ≥ n, vp(a5) ≥ 3n/2, vp(a6) ≥

2n, vp(a7) ≥ 5n/2 and f(t) has no root of valuation1
2
n nor irreducible factors of degree

3 or 5 in Qp[t].

10. vp(a1) ≥ 0, vp(a2) = 0, vp(a3) ≥ n/3, vp(a4) ≥ 2n/3, vp(a5) ≥ n, vp(a6) ≥

3n/2, vp(a7) ≥ 2n and f(t) has no root of valuation 1
2
n, 1

3
n, 2

3
nover Qp[t].

11. vp(a1) ≥ 0, vp(a2) = 0, vp(a3) ≥ n/4, vp(a4) ≥ n/2, vp(a5) ≥ 3n/4, vp(a6) ≥

n, vp(a7) ≥ 5n/4 and f(t) has no root of valuation1
2
n, 3

4
n, 1

4
n

and we cannot have more than 3 irreducible factors of degree 2.

12. vp(a1) ≥ 0, vp(a2) = 0, vp(a3) ≥ 1
5
n, vp(a4) ≥ 2

5
n, vp(a5) ≥ 3

5
n, vp(a6) ≥ 4

5
n, vp(a7) =

n and f(t) has no root of valuation 1
5
n or 4

5
n and has no irreducible factors of degree
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3 in Qp[t].

13. vp(a1) ≥ 0, vp(a2) = 0, vp(a3) ≥ 2
5
n, vp(a4) ≥ 4

5
n, vp(a5) ≥ 6

5
n, vp(a6) ≥ 8

5
n, vp(a7) =

2n and f(t) has no root of valuation 2
5
n or 3

5
n and has no irreducible factors of degree

3 in Qp[t].

14. vp(a1) ≥ 0, vp(a2) ≥ 0, vp(a3) = 0, vp(a4) ≥ 1
2
n, vp(a5) ≥ n, vp(a6) ≥ 3

2
n, vp(a7) ≥

2n and f(t) has no root of valuation 1
2
n nor irreducible factors of degree

3 in Qp[t].

15. vp(a1) ≥ 0, vp(a2) ≥ 0, vp(a3) = 0, vp(a4) ≥ 1
3
n, vp(a5) ≥ 2

3
n, vp(a6) = n, vp(a7) ≥

3
2
n and f(t) has no root of valuation 1

3
n, 1

2
n or 2

3
n in Qp[t].

16. vp(a1) ≥ 0, vp(a2) ≥ 0, vp(a3) = 0, vp(a4) ≥ 1
4
n, vp(a5) ≥ 1

2
n, vp(a6) ≥ 3

4
n, vp(a7) =

n and f(t) has no root of valuation 1
4
n or 3

4
n and has at most 2 irreducible

factors of degree 2 in Qp[t].

17. vp(a1) ≥ 1
3
n, vp(a2) ≥ 2

3
n, vp(a3) = 0, vp(a4) ≥ 3

2
n, vp(a5) ≥ 2n, vp(a6) ≥

5
2
n, vp(a7) ≥ 3n and f(t) has no root of valuation 1

3
n, 1

2
n or 2

3
n and has at most

2 irreducible factors of degree 3 in Qp[t].

18. vp(a1) ≥ 1
4
n, vp(a2) ≥ 1

2
n, vp(a3) ≥ 3

4
n, vp(a4) = n, vp(a5) ≥ 3

2
n, vp(a6) ≥

2n, vp(a7) ≥ 5
2
n and f(t) has no root of valuation 1

4
n, 1

2
n or 3

4
n and has no

irreducible factors of degree 3 and f(t) has at most 3 irreducible factors of de-

gree 2 in Qp[t].

19. vp(a1) ≥ 1
4
n, , vp(a2) ≥ 1

2
n, , vp(a3) ≥ 3

4
n, , vp(a4) = nvp(a5) ≥ 4

3
n, vp(a6) ≥

5
3
n, vp(a7) = 2n and f(t) has no root of valuation 3

4
n, 2

3
n, 1

3
n, 1

4
n in Qp, nor a

factor of degree 2 in Qp[t].

20. vp(a1) ≥ 0, , vp(a2) ≥ 0, , vp(a3) ≥ 0, vp(a4) = 0, vp(a5) ≥ 1
2
n, , vp(a6) ≥ n, , vp(a7) ≥

3
2
n and f(t) has no root of valuation 1

2
n in Qp, nor a factor of degree 3 in Qp[t].
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21. vp(a1) ≥ 0, vp(a2) ≥ 0, vp(a3) ≥ 0, vp(a4) = 0, vp(a5) ≥ 1
3
n, vp(a6) ≥

2
5
n, vp(a7) = n and f(t) has no root of valuation 1

3
n, 2

3
n in Qp.

22. vp(a1) ≥ 0, vp(a2) ≥ 0, vp(a3) ≥ 0, vp(a4) ≥ 0, vp(a5) ≥ 0, vp(a6) ≥ 1
2
n, vp(a7) ≥

n and f(t) has no root of valuation 1
2
n in Qp[t].

23. vp(a1) ≥ 1
5
n, vp(a2) ≥ 2

5
n, vp(a3) ≥ 3

5
n, vp(a4) ≥ 4

5
n, vp(a5) ≥ 0, vp(a6) ≥

3
2
n, vp(a7) ≥ 2n and f(t) has no root of valuation 1

5
n, 1

2
n or 4

5
n nor degree 3

irreducible factors in Qp[t].

24. vp(a1) ≥ 2
5
n, vp(a2) ≥ 4

5
n, vp(a3) ≥ 6

5
n, vp(a4) ≥ 8

5
n, vp(a5) ≥ 0, vp(a6) ≥

5
2
n, vp(a7) ≥ 3n and f(t) has no root of valuation 2

5
n, 1

2
n or 3

5
n nor degree 3

irreducible factors in Qp[t].

25. vp(a1) ≥ 0, vp(a2) ≥ 0, vp(a3) ≥ 0, vp(a4) ≥ 0, vp(a5) ≥ 0, vp(a6) ≥ 0, vp(a7) ≥
1
2
n and f(t) has no root of valuation 1

2
n in Qp[t].

26. vp(a1) ≥ 1
6
n, vp(a2) ≥ 1

3
n, vp(a3) ≥ 1

2
n, vp(a4) ≥ 2

3
n, vp(a5) ≥ 5

6
n, vp(a6) ≥

0, vp(a7) ≥ 3
2
n and f(t) has no root of valuation 1

6
n, 1

2
n or 5

6
n nor irreducible

factors of degree 3 and f(t) has exactly 1 irreducible factor of degree 2 in Qp[t].

27. vp(a1) ≥ 1
3
n, vp(a2) ≥ 2

3
n, vp(a3) ≥ n, vp(a4) ≥ 4

3
n, vp(a5) ≥ 5

3
n, vp(a6) ≥

0, vp(a7) ≥ 5
2
n and f(t) has no root of valuation 1

3
n, 1

2
n or 2

3
n and has exactly 1

irreducible factor of degree 2 in Qp[t].

28. vp(a1) ≥ 0, vp(a2) ≥ 0, vp(a3) ≥ 0, vp(a4) ≥ 0, vp(a5) ≥ 0, vp(a6) ≥ 0, vp(a7) ≥
1
2
n.

29. vp(a1) ≥ 1
7
n, vp(a2) ≥ 2

7
n, vp(a3) ≥ 3

7
n, vp(a4) ≥ 4

7
n, vp(a5) ≥ 5

7
n, vp(a6) ≥

6
7
n, vp(a7) ≥ 3

2
n and f(t) has no root of valuation 1

7
n or 6

7
n nor irreducible factors

of degree 2 and 3.
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30. vp(a1) ≥ 2
7
n, vp(a2) ≥ 4

7
n, vp(a3) ≥ 6

7
n, vp(a4) ≥ 8

7
n, vp(a5) ≥ 10

7
n, vp(a6) ≥

12
7
n, vp(a7) ≥ 5

2
n and f(t) has no root of valuation 2

7
n or 5

7
n nor irreducible factors of

degree 2 and 3.

31. vp(a1) ≥ 3
7
n, vp(a2) ≥ 6

7
n, vp(a3) ≥ 9

7
n, vp(a4) ≥ 12

7
n, vp(a5) ≥ 15

7
n, vp(a6) ≥

18
7
n, vp(a7) ≥ 5

2
n and f(t) has no root of valuation 3

7
n or 4

7
n nor irreducible factors

of degree 2 and 3.

We collect a few theoretical results from Hayashisa’s [6] which we will use to prove

the theorem.

Lemma 4.2.2. Let A be a simple abelian variety over Fq with q = pn elements and

χA(t) the characteristic polynomial of FrobA. Suppose that χA(t) has a real root. Then

we have

• if n is even, then dim(A) = 1,

• if n is odd, then dim(A) = 1.

Proof. This is Lemma 2.4. in [6].

Corollary 4.2.3. Suppose that the dimension of A is a prime number l ≥ 3. Then

e = 1 or e = l.

Proof. Since e divides 2l and l is a prime, we have either e ∈ {1, 2, l, 2l}. Suppose

e = 2 or e = 2l. Then mA(t) is an irreducible polynomial of odd degree. Hence the

polynomial mA(t) has a real root. This contradicts l ≥ 3 by Lemma 4.2.2.

We note that e = l is covered in the following theorem. So we are left with

studying e = 1, i.e. the irreducible case.

Theorem 4.2.4. Let a, b ∈ Z and 2 < g ∈ Z. Set f(t) = (t2 + at+ b)g ∈ Z[t]. Then

the polynomial f(t) is the characteristic polynomial of a simple abelian variety of
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dimension g over Fq with q = pn elements if and only if g divides n, b = q, |a| < 2
√
q

and a = kqs/g, where k, s are integers satisfying gcd(k, p) = 1, gcd(s, g) = 1 and

1 ≤ s < g/2.

Proof. This is Theorem 1.2. in [6].

Theorem 4.2.5. An irreducible Weil polynomial f(t) of degree 2g is the characteristic

polynomial of a simple abelian variety of dimension g over Fq (i.e. e = 1) if and only

if f(t) has no real root and the following condition holds

vp(fi(0))

n
∈ Z, for all fi monic irreducible factors of f(t) ∈ Qp[t]. (4.2)

Proof. This is Corollary 3.2. in [6].

We next prove Theorem 4.2.1

Proof. Following Hayashida’s proof of [6, Theorem 1.3.] we let f(t) be an irreducible

Weil polynomial of degree 14. It is the characteristic polynomial of a simple abelian

variety A of dimension 7 over Fq if and only if the conditions in Theorem 4.2.5 hold.

First, note that if f(t) had a real root that came from a simple abelian variety A,

then Lemma 4.2.2 gives that dim(A) is 1 or 2, a contradiction. To check the second

condition, we employ Newton Polygons. Let NP(f) be the Newton Polygon of f .

Then NP(f) has 14 possible vertices

(0, 7n), (1, 6n+vp(a1)), (2, 5n+vp(a2)), (3, 4n+vp(a3)), (4, 3n+vp(a4)), (5, 2n+vp(a5)),

(6, n+ vp(a6)), (7, vp(a7)), (8, vp(a6)), (9, vp(a5)), (10, vp(a4)), (11, vp(a3)), (12, vp(a2)),

(13, vp(a1)), (14, 0).

These give rise to 31 possible Newton Polygons, sandwiched between the two bound-

ary cases of an ordinary simple abelian variety and a supersingular one. Hayashida
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notes that if one of these points is a vertex, then the point must be a lattice point be-

longing to Z×Z/nZ. By symmetry ofNP(f), it is sufficient to classify cases according

to whether either of (0, 7n), (1, 6n+ vp(a1)), (2, 5n+ vp(a2)), (3, 4n+ vp(a3)), (4, 3n+

vp(a4)), (5, 2n + vp(a5)), (6, n+ vp(a6)), (7, vp(a7)), is a vertex of not. The rest of the

proof consists in describing these cases.

Case 0: Assume there is no vertex. This is the ordinary case. Then



6n+ vp(a1) ≥ 13
2
n

5n+ vp(a2) ≥ 6n

4n+ vp(a3) ≥ 11
2
n

3n+ vp(a4) ≥ 5n

2n+ vp(a5) ≥ 9
2
n

n+ vp(a6) ≥ 4n

vp(a7) ≥ 7
2
n

⇒



vp(a1) ≥ 1
2
n

vp(a2) ≥ n

vp(a3) ≥ 3
2
n

vp(a4) ≥ 2n

vp(a5) ≥ 5
2
n

vp(a6) ≥ 3n

vp(a7) ≥ 7
2
n

.

In this case, we have

(t− α1) · · · (t− α14) ∈ Qp[t]

with

vp(α1) = · · · = vp(α14) =
1

2
n.

Thus Theorem 4.2.5 holds if and only if

f(t) has no root of valuation
1

2
n nor irreducible factors of degree 3 or 5 or 7 in Qp[t].
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x

y

(0,7n)

(14,0)(7,0)

Figure 4.1: The Newton polygon for case 0.

Case 1: Assume the first vertex is (1, 6n+vp(a1)). In this case the only possibility

is (1, 6n+ vp(a1)) = (1, 6n) and vp(a1) = 0.

(1-1) (1, 6n+ vp(a1)) = (1, 6n) is the sole vertex. Then



5n+ vp(a2) ≥ 11
2
n

4n+ vp(a3) ≥ 5n

3n+ vp(a4) ≥ 9
2
n

2n+ vp(a5) ≥ 4n

n+ vp(a6) ≥ 7
2
n

vp(a7) ≥ 3n

⇒



vp(a2) ≥ 1
2
n

vp(a3) ≥ n

vp(a4) ≥ 3
2
n

vp(a5) ≥ 2n

vp(a6) ≥ 5
2
n

vp(a7) ≥ 3n

.
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In this case, we have

t− α1, (t− α2) · · · (t− α13), t− α14 ∈ Qp[t]

with

vp(α1) = n,

vp(α2) = · · · = vp(α13) =
1

2
n,

vp(α14) = 0.

Thus Theorem 4.2.5 holds if and only if

f(t) has no root of valuation
1

2
n nor irreducible factors of degree 3 or 5 in Qp[t].

(1-2) (1, 6n + vp(a1)) = (1, 6n) and (4, 3n + vp(a4)) = (4, 4n) are vertices. Then

vp(a4) = n and



5n+ vp(a2) ≥ 16
3
n

4n+ vp(a3) ≥ 14
3
n

2n+ vp(a5) ≥ 7
2
n

n+ vp(a6) ≥ 3n

vp(a7) ≥ 5
2
n

⇒



vp(a2) ≥ 1
3
n

vp(a3) ≥ 2
3
n

vp(a5) ≥ 3
2
n

vp(a6) ≥ 2n

vp(a7) ≥ 5
2
n

.

In this case, we have

t−α1, (t−α2) · · · (t−α4), (t−α5) · · · (t−α10), (t−α11) · · · (t−α13), t−α14 ∈ Qp[t]
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with

vp(α1) = n,

vp(α2) = · · · = vp(α4) =
2

3
n,

vp(α5) = · · · = vp(α10) =
1

2
n,

vp(α11) = · · · = vp(α13) =
1

3
n,

vp(α14) = 0.

Thus Theorem 4.2.5 holds if and only if f(t) has no root of valuation 1
3
n, 1

2
n or

2
3
n and has exactly 2 degree 3 irreducible factors in Qp[t].

(1-3) (1, 6n + vp(a1)) = (1, 6n) and (5, 2n + vp(a5)) = (5, 3n) are vertices. Then

vp(a5) = n and



5n+ vp(a2) ≥ 21
4
n

4n+ vp(a3) ≥ 9
2
n

3n+ vp(a4) ≥ 15
4
n

n+ vp(a6) ≥ 5
2
n

vp(a7) ≥ 2n

⇒



vp(a2) ≥ 1
4
n

vp(a3) ≥ 1
2
n

vp(a4) ≥ 3
4
n

vp(a6) ≥ 3
2
n

vp(a7) ≥ 2n

.

In this case, we have

t−α1, (t−α2) · · · (t−α5), (t−α6) · · · (t−α9), (t−α10) · · · (t−α13), t−α14 ∈ Qp[t]
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with

vp(α1) = n,

vp(α2) = · · · = vp(α5) =
3

4
n,

vp(α6) = · · · = vp(α9) =
1

2
n,

vp(α10) = · · · = vp(α13) =
1

4
n,

vp(α14) = 0.

Thus Theorem 4.2.5 holds if and only if f(t) has no root of valuation 1
4
n, 1

2
n or 3

4
n

and has at most 2 degree 2 irreducible factors in Qp[t].

x

y

(0,7n)

(14,0)(7,0)

(4,4n)

(10,n)

(1,6n)

(5,3n)

(9,n)

(13,0)

Figure 4.2: The Newton polygon for case (1-1), (1-2) and (1-3).

(1-4) (1, 6n + vp(a1)) = (1, 6n) and (6, n + vp(a6)) = (6, 3n) are vertices. Then
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vp(a6) = 2n and



5n+ vp(a2) ≥ 27
5
n

4n+ vp(a3) ≥ 24
5
n

3n+ vp(a4) ≥ 21
5
n

2n+ vp(a5) ≥ 18
5
n

vp(a7) ≥ 5
2
n

⇒



vp(a2) ≥ 2
5
n

vp(a3) ≥ 4
5
n

vp(a4) ≥ 6
5
n

vp(a5) ≥ 8
5
n

vp(a7) ≥ 5
2
n

.

In this case, we have

t− α1, (t− α2) · · · (t− α6), (t− α7)(t− α8), (t− α9) · · · (t− α13), t− α14 ∈ Qp[t]

with

vp(α1) = n,

vp(α2) = · · · = vp(α6) =
3

5
n,

vp(α7) = vp(α8) =
1

2
n,

vp(α9) = · · · = vp(α13) =
2

5
n,

vp(α14) = 0.

Thus Theorem 4.2.5 holds if and only if

f(t) has no root of valuation
2

5
n,

1

2
n or

3

5
n nor degree 3 irreducible factors in Qp[t].

(1-5) (1, 6n + vp(a1)) = (1, 6n) and (6, n + vp(a6)) = (6, 2n) are vertices. Then
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vp(a6) = n and



5n+ vp(a2) ≥ 26
5
n

4n+ vp(a3) ≥ 22
5
n

3n+ vp(a4) ≥ 18
5
n

2n+ vp(a5) ≥ 14
5
n

vp(a7) ≥ 3
2
n

⇒



vp(a2) ≥ 1
5
n

vp(a3) ≥ 2
5
n

vp(a4) ≥ 3
5
n

vp(a5) ≥ 4
5
n

vp(a7) ≥ 3
2
n

.

In this case, we have

t− α1, (t− α2) · · · (t− α6), (t− α7)(t− α8), (t− α9) · · · (t− α13), t− α14 ∈ Qp[t]

with

vp(α1) = n,

vp(α2) = · · · = vp(α6) =
4

5
n,

vp(α7) = vp(α8) =
1

2
n,

vp(α9) = · · · = vp(α13) =
1

5
n,

vp(α14) = 0.

Thus Theorem 4.2.5 holds if and only if

f(t) has no root of valuation
1

5
n,

1

2
n or

4

5
n nor degree 3 irreducible factors in Qp[t].
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x

y

(0,7n)

(14,0)(7,0)

(1,6n)

(13,0)

(6,2n)

(6,3n)

(8,n)

(8,2n)

Figure 4.3: The Newton polygon for case (1-4) and (1-5).

(1-6) (1, 6n+vp(a1)) = (1, 6n) and (7, vp(a7)) = (7, 2n) are vertices. Then vp(a7) = 2n

and 

5n+ vp(a2) ≥ 16
3
n

4n+ vp(a3) ≥ 14
3
n

3n+ vp(a4) ≥ 4n

2n+ vp(a5) ≥ 10
3
n

n+ vp(a6) ≥ 8
3
n

⇒



vp(a2) ≥ 1
3
n

vp(a3) ≥ 2
3
n

vp(a4) ≥ n

vp(a5) ≥ 4
3
n

vp(a6) ≥ 5
3
n

.

In this case, we have

t− α1, (t− α2) · · · (t− α7), (t− α8) · · · (t− α13), t− α14 ∈ Qp[t]
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with

vp(α1) = n,

vp(α2) = · · · = vp(α7) =
2

3
n,

vp(α8) = · · · = vp(α13) =
1

3
n,

vp(α14) = 0.

Thus Theorem 4.2.5 holds if and only if

f(t) has no root of valuation
1

3
n or

2

3
n nor degree 2 irreducible factors in Qp[t].

(1-7) (1, 6n+ vp(a1)) = (1, 6n) and (7, vp(a7)) = (7, n) are vertices. Then vp(a7) = n

and 

5n+ vp(a2) ≥ 31
6
n

4n+ vp(a3) ≥ 13
3
n

3n+ vp(a4) ≥ 7
2
n

2n+ vp(a5) ≥ 8
3
n

n+ vp(a6) ≥ 11
6
n

⇒



vp(a2) ≥ 1
6
n

vp(a3) ≥ 1
3
n

vp(a4) ≥ 1
2
n

vp(a5) ≥ 2
3
n

vp(a6) ≥ 5
6
n

.

In this case, we have

t− α1, (t− α2) · · · (t− α7), (t− α8) · · · (t− α13), t− α14 ∈ Qp[t]



76

with

vp(α1) = n,

vp(α2) = · · · = vp(α7) =
5

6
n,

vp(α8) = · · · = vp(α13) =
1

6
n,

vp(α14) = 0.

Thus Theorem 4.2.5 holds if and only if

f(t) has no root of valuation
1

6
n or

5

6
n nor irreducible factors of degree 2 or 3 in Qp[t].

x

y

(0,7n)

(14,0)(7,0)

(1,6n)

(13,0)

(7,2n)

(7,n)

Figure 4.4: The Newton polygon for case (1-6) and (1-7).

The other cases follow similarly, and this completes the proof of the theorem.
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